https://ntrs.nasa.gov/search.jsp?R=20200001005 2020-03-28T19:06:48+00:00Z

Estimating Inducer Blade Damping in Water with On-Blade Strain Measurements

Andrew Mulder and Stephen Skelley Fluid Dynamics Branch NASA Marshall Space Flight Center MSFO

Introduction

A water flow test of a subscale inducer (RS25 Low Pressure Fuel Pump) was conducted at MSFC in July 2017 and Feb-May 2018

Objective: Measure on-blade strain response to various forms of excitation, with intent to estimate critical damping ratio of blade structural natural frequencies in real operating conditions

Strain Gauge Instrumentation

GAGE PATTERN DATA								
				GAG DESIGN	E ATION	RESISTANC (OHMS)	E OPTIONS AVAILABLE	
Sector and a sector of the				See No	ote 1	See Note 2	See Note 3	
				CEA-XX-062	UB-350	350 ± 0.39	6 P2 , SP35	
	actual size			DESCRIPT General-pu 0.10 x 0.04	ION rpose gage 5 in (2.5 x 1	e. Exposed s .14 mm).	older tab area is	
GAGE DIMENSIONS		Le ES = Each Section S = Section (S1 = Sectior		egend CP = Complete Patte n 1) M = Matrix		Pattern	tern inch millimeter	
Gage Length	Overall Length	Grid Width	Over	all Width	Matrix	Length	Matrix Width	
0.062	0.110	0.120	(0.250	0.3	21	0.34	
1.57	2.79	3.05		6.35	5.	.3	8.6	

GAGE SERIES DATA - See Gage Series datasheet for complete specifications						
Series	Description	Strain Range	Temperature Range			
CEA	Universal general-purpose strain gages.	±3%	-100° to +350°F (-75° to +175°C)			

Strain gauge info

Slip ring with amplifiers and bridge completion circuits

MSFC

Gauges installed on blades

Waterproofing (rubber coating + metal foil)

An 'electric hammer' was used to strike the inducer shaft

Excitation Method: Ping Test

• MSFC

Ping Data Analysis

SYA

MSFC

Ping Data Analysis

- Filter data around natural frequency
- Compute amplitude envelope of [≤] blade response
- Compute critical damping with impulse response formula

$$\zeta = \frac{1}{\sqrt{1 + \left(\frac{\omega_d}{\beta}\right)^2}}$$

- ω_d : Damped natural frequency
- β : Exponential decay rate of amplitude envelope

MSFC

Histograms show the frequency distribution of the highest amplitude responses over many pings

2/14/2020

MSFC

Damping histogram for ~2 kHz response

Peak strain vs damping ratio for ~2 kHz response

MSFC

Average critical damping ratio for various conditions

MSFC

Ping test data show quite a bit of variation over many pings

MSFC

Excitation Method: Stator Plate

Given facility speed limits, the 26th harmonic of shaft speed (27N) crosses the fundamental blade modes. Two stator plate designs were tested

2/14/2020

9-Vane

Approved for public release

27-Vane

- Dwell at a series of frequencies around the natural frequency
- Compute the frequency response function using strain amplitude measured at 27N
- Apply half quadratic gain formula to estimate damping

$$\zeta = \sqrt{\frac{1}{2} - \left(4 + 4\left(\frac{f_u - f_l}{f_p}\right)^2 - \left(\frac{f_u - f_l}{f_p}\right)^4\right)^{-1/2}}$$

Stator Plate 27N Amplitude vs 27N Frequency

MSFC ENGINEERING

Stator Plate Testing

 \hat{H}_{xy}

 \hat{H}_{xy}

1.4 1.6

Bridge 1

1.8 2 2.2

kHz

Bridge 4

1.8 2 2.2

1.6 1.4

 \hat{H}_{xy}

 \hat{H}_{xy}

1.4 1.6 1.8 2 2.2

Bridge 2

kHz

Bridge 5

Both stator plates did appear to generate a forcing function at 27N, with some caveats:

- Response was noted only at very 1) high (off-design) flow coefficients
- 2) The middle and downstream gauge locations responded more than the upstream location
- Response is only at ~1.5-1.7 kHz 3)

1.8 1.6 1.8 2 1.4 1.6 2 2.2 1.4 22 kHz Bridge 8 Bridge 9 Ĥ, 2.2 1.4 1.6 1.8 kHz Bridge 11 $\phi_{n} \sim 1.0181$ $\phi_{\rm p} \sim 1.3716$ $\phi_n \sim 1.5234$ 2.2 15

 \hat{H}_{xy}

1.4 1.6 1.8 2 2.2

MSFC

ENGINEERING

Bridge 3

kHz

Bridge 6

Damping Summary

- On average, results showed blade critical damping ratios of 4-7% when operating in realistic conditions
- There was significant variation in damping estimates
- Different excitation methods resulted in different frequencies responding
- Damping increased from air to still water, and again from quiescent to spinning
- Damping had moderate correlation with response amplitude
- Damping had no significant correlation with cavitation number or flow coefficient (?!?)

Acknowledgements

This test effort was sponsored by the SLS Liquid Engine Project Office at Marshall Spaceflight Center

MSFC Test Branch ET20 operated the facility and provided/installed instrumentation

MSFC Fluid Dynamics Branch ER42 designed strain gauge circuitry, generated requirements, conducted test and data acquisition, and performed data reduction/analysis

Critical Damping Ratio Analysis

Identify blade natural frequencies

Ping Test

- Filter data around natural frequency
- Compute amplitude envelope of blade response
- Compute critical damping with impulse response formula

Stator Test

- Sweep shaft speed
- Track strain response at 27N
- Compute pseudo-frequency response function with halfquadratic gain formula

Ping Hydro Set Points

~90-110% rated flow

MSFC

Damping vs Hydro Conditions

Damping vs Flow Coeff

Damping vs Cav Number

MSFC