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– Thermoviscous Effects
– Radiation Acoustics

• Numerical Modeling
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– Nonlinear Effects

• Specialized Filter Design for Data Correction
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Background
• Acquiring data that is representative of an environment 

can often be difficult due to a multitude of influences: 
– acquisition system electronics, sensing components, cables
– contamination from mains electrical noise
– sensitivity to other environments

• Another source of contamination that is often not 
considered – it may not always be possible to install a 
dynamic pressure sensor so that it is mounted flush with 
the environment of interest

– Mounting accessibility
– Thermal isolation
– Shock reduction
– Prevention of debris impingement

• The recess produces an acoustic cavity referred to as a 
sensor port

– The sensor port may be small; its contribution to collected 
data may be very significant
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The sensor port is part of the system being measured, but it 
is not part of the system that is intended to be measured
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Background
• The cavity acoustics produce a frequency-dependent 

amplification and phase deviation that directly affects the 
data collected

• Goal
– A sensor port acoustic response is desired

• for port design, data interpretation, or data correction

• Approach
– Develop a theoretical acoustic model that gives the acoustic 

response of a sensor port
– Develop a numerical methodology to verify the analytical 

theory, and that can be extended for more complex port designs
• Apply numerical modeling to understand more complex effects

– Compare analytical and numerical models
– Design a specialized filter that can be used for data correction
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Design Guidelines
• A desired port configuration is usually flush mounted

– Acceptable configurations can be close coupled such that frequencies-of-interest are 
negligibly affected

• Traditional form derived from wave equation at resonance conditions
– Open boundary is not truly a pressure release boundary
– A general impedance exists due to the local pressure radiating from the end into the 

fluid outside the port

• Traditional criteria range between 3x to 5x lower than the natural 
frequency.  

– Criteria based on a forced undamped single-degree-of-freedom (SDOF) model 
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• Or more useful is a design length written in 
terms of a specified flat useable bandwidth 
(gain relative error and max frequency-of-
interest)

• Simple Design Estimate (pros/cons)
– Good for a preliminary estimate
– Not always guaranteed (limiting assumptions 

and complex multi-port designs)
– Can be very conservative, where a longer port 

may be adequate 
– Simple design estimates do not provide the 

frequency response for data correction and/or 
data interpretation

Improvements to Design Guidelines
• Using an undamped SDOF model

– The gain and gain error can be written in 
terms of the frequency multiplication factor, 
M = fn / fi

– For M = 3x the amplification is 1.125 (error of 
12.5%), and for M = 5x the amplification 
factor is 1.042x (error of 4.2%). 

– This general approach has been used as a 
guide to represent the upper bound of the 
pressure amplification factor.

– The improvement is describing this in a 
convenient form.

• A design length can also be written in a 
convenient form
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Sensor Port Frequency Response Model 
• As an advancement to the undamped SDOF model, a theory is developed 

for obtaining the acoustic frequency response of a sensor port
• There are three critical advancements

– Application of the distributed acoustic models
• Classic lumped acoustic element approach relies on the long wavelength limit

– Development an exact solution to the thermoviscous wave equation applicable to 
the framework

– Formulation of acoustic radiation impedance into an acoustic propagation constant

• Pressure transfer function (complex pressure ratio) must be obtained to 
extract the amplification factor and relative phase

ER42/Casiano 7

 ˆ
ˆ
out

in

pH
p

=
 ˆ

( )
ˆ

U

D

pX f
p

=
 ˆ

( )
ˆ

U

D

pf
p

φ
 

= ∠ 
 



Statement A: Approved for public release; distribution is unlimited.

• An effective damping mechanism is due to the 
local pressure in the sensor port radiating into the 
fluid outside of the port  

– Surrounding medium imposes an impedance on the 
propagating waves which results in attenuation and 
an added effective length to the port

– Attenuation due to the geometry is not truly a 
damping mechanism as no absorption takes place 
and no energy is lost

• Piston Vibration Theory used to approximate the 
solution of a pressure wave exiting a flanged port, 
however results are traditionally linearized

• True solution reveals the end correction is freq.  
dependent.  Resistive component can be significant

• Furthermore formulated as a propagation constant 
for use in theory
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Sensor Port Framework

• Impedance model or transfer matrix 
system.  Solution form given as

• 2-line model is required to include both 
thermoviscous damping and radiation 
acoustics
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Approximate End Correction
• 1st order Struve function can be described as a power series

• Note the low frequency approximation (m = 0)

• Well known end correction – note there is no frequency dependence

End Correction Comparison

End Correction
• Acoustic radiation that arises from a moving surface is well understood

– It is described by the radiation impedance, which represents the resistance and 
mass loading that is confronted by a pressure wave exiting the port

– For a circular rigid diaphragm

– Note that the piston reactance term is a function of the 1st order Struve function

Exact End Correction

• Piston vibration theory shows the reactance term contributes to an added mass (see paper)

– Can be represented by a short continuation of the port

– In terms of mathematical functions
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Numerical Modeling
• Break model down to fundamental physics

–Model piston functions and compare to analytical model
–Model thermoviscous effects and compare to numerical model
–Model the combined system and compare to theory
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Example Showing Combined System
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Verification for Radiation Physics

• Piston Vibration Theory is well established
• Model using COMSOL and compare to theoretical model
• This establishes that the mesh and domain design is adequate
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Verification for Thermoviscous Physics

• Thermoviscous influence is well established
• Model using COMSOL and compare to theoretical model
• This establishes that the mesh and domain design is adequate
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Sensor Port Modeling

• Instantaneous 
velocity contours 
zoomed in near port 
corner

• Partly responsible for 
deviation observed
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Multiphysics Modeling

• Numerical models can capture thermoviscous effects more accurately
• Nonlinear thermoviscous effects – secondary resonances
• Can be extended to model liquids, thru-flow, cross-flow, etc.
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Specialized Filter Design

ER42/Casiano 15

• In most cases, a filter is used to 
pass certain frequencies and 
reject others, but in general a 
filter is a device that modifies 
certain frequencies relative to 
others

• Flowchart describes the use of a 
frequency response function 
(transfer function) as a filter, so 
that the data is modified 
accordingly

• Process can be applied to 
correct data known to be 
contaminated with a sensor port 
response
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• Simulated data is first produced to show procedure
– Sinusoid at peak resonance frequency
– Uniform random

• The filtering operation is performed and the processed data is analyzed

Specialized Filter Design Application
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Summary
• A sensor port is part of the system being measured, but not part of the 

system that is intended to be measured. 
– The acoustic resonance within the sensor port produces a frequency-dependent 

amplification and phase deviation that directly affects the data collected
• Several theoretical and numerical advancements

– Traditional design criteria is improved to directly incorporate an end user’s 
acceptable error

– Theoretical framework developed as a concise tractable solution to model a 
frequency response

• 3 critical analytic improvements needed to combine as a response model
– Numerical methodology developed to determine sensor port response

• Methodology takes advantage of numerical deterministic modeling

• Application/Verification of a specialized filter based on a sensor response to 
simulated data
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Backup
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Exact Thermoviscous Propagation Constant
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Everything Needed for a Sensor Port Model
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