National Aeronautics and Space Administration

Human Health and Performance/

Presenter: Andrew Abercromby (NASA JSC)

Overview

- Crew Health & Performance EVA Roadmap Status
- HH&P Technical Summary
 - Human Physiology, Performance, Protection & Operations (H-3PO)
 - Anthropometry & Biomechanics Facility (ABF)
- HH&P xEMU Priorities

Crew Health & Performance EVA Roadmap

- Purpose: Multi-year roadmap of development & testing activities associated with CHP EVA Gaps
- Updated & published annually since 2016
- Program agnostic
- Most recent version published May 2019
 https://www.nasa.gov/suitup/reference
- Initial 2020 update completed December (alignment with Artemis)
 - Full update currently underway
 - Renamed Crew Health & Performance EVA Roadmap

ORAFI

4

ORAFT

5

Crew Health & Performance EVA Gaps

CH&P Gap Title	CH&P SMT Gap ID	EVA SMT Gap No	CH&P Gap Wording
EVA Crew Required Capabilities	CHP.EVA.CREW	EVA-Gap-88	The physiological and cognitive performance capabilities that will be required of crewmembers during exploration EVA are not adequately understood.
EVA Suit Design for Health & Performance	CHP.EVA.SUIT	EVA-Gap-89	The effects of suit design parameters on crew health and performance (physical and cognitive) during exploration EVA are not adequately understood.
EVA Suit Sizing & Fit	CHP.EVA.FIT	EVA-Gap-90	The effects of EVA suit sizing and fit on crew health, performance, and injury risk are not adequately understood.
EVA Physiological Inputs and Outputs	CHP.EVA.PHYS	EVA-Gap-91	The physiological inputs and outputs associated with EVA operations in exploration environments are not adequately understood.
EVA ConOps for Health & Performance	CHP.EVA.CONOPS	EVA-Gap-92	The effects on crew health & performance (physical & cognitive) of variations in EVA task design and operations concepts for exploration environments are not adequately understood.

Crew Health & Performance EVA Gaps

CH&P Gap Title	CH&P SMT Gap ID	EVA SMT Gap No	CH&P Gap Wording
EVA Informatics for Health & Performance	CHP.EVA.INFO	EVA-Gap-93	The knowledge and use of real-time physiological, system, and operational parameters during EVA operations to improve crew health and performance (physical & cognitive) is not adequately understood.
EVA Injury Risk & Mitigation	CHP.EVA.INJURY	EVA-Gap-94	The risk of crew injury due to exploration EVA operations and methods for mitigating that risk are not adequately understood.
EVA Exploration Prebreathe	CHP.EVA.DCS	EVA-Gap-95	The decompression sickness (DCS) mitigation strategies and associated impacts on mission timelines, consumables, and the design of EVA and habitat systems for exploration missions are not adequately understood.

National Aeronautics and Space Administration

Human Health and Performance Anthropometry and Biomechanics Facility

Presenter: Karen Young (Leidos)

Han Kim (Leidos) Elizabeth Benson, Yaritza Hernandez, Eduardo Beltran, Alex Gordon (KBR) Linh Vu, Sarah Jarvis (MEIT) Sudhakar Rajulu (NASA JSC)

Anthropometry and Biomechanics Facility (ABF) Overview

The ABF helps to ensure that crewmembers of all sizes have hardware that fits them and allows them to work as safely and effectively as possible in an extremely challenging environment.

Ergonomics analysis of suited designs and tasks

Reach envelope analysis (maximal and usable)

Analysis of human-induced loads on the suit

Field of view assessment

Center of mass analysis and assessment

Developed computational models to predict suit fit probability and proportion of accommodation for the current and future crew population

- A virtual model was created for both the Hard Upper Torso (HUT) and the Lower Torso Assembly (LTA) brief
- The LTA brief dimensions were updated and optimized to maximize population accommodation.
- Multi-component interactions for population fit are being modeled and tested, as fit and mobility may differ when multiple components are combined.

Fit Probability Prediction for HUT

Suit-to-Body Contacts for Sizing and Fit

CH&P Gap TitleEVA SMT Gap NoEVA Suit Sizing & FitEVA-Gap-90

- The maximum level of acceptable skin compression was measured for people of different anthropometry. The results were compared and incorporated with a suit-to-body overlap analysis.
- Subjective perception of suit-to-body contact was measured from the fit and sizing test subjects. The outcome can provide critical regions and magnitudes of suit-to-body contact associated with individual preference of fit.
- The influence of liquid cooling garments was assessed for fit and perception of suit-to-body contacts.

Perceived Suit Contact

Isolation of LCVG Effects

Head Mobility and Field of View

CH&P Gap TitleEVA SMT Gap NoEVA Suit Sizing & FitEVA-Gap-90

Assessment of head mobility for spacesuit field of view predictions

- Estimated the distribution of the eye positions within the helmet across a wide range of population.
- Assessed the head mobility and range of motion while wearing a HUT.
- Field of view was estimated within a helmet. The outcome can help to determine where the crewmember can or cannot see while wearing a suit.

Mid-Eye Range of Motion within Helmet

Eye Position Statistics

Head Mobility Testing in xEMU HUT

Simulated Field of View

Exploration EVA Injury Risk

EVA Injury Risk & EVA-Gap-94 Mitigation

EVA SMT Gap No

CH&P Gap Title

- Characterize, surveil, predict, mitigate and prevent EVA-related injuries in the xEMU
- A series of stakeholder meetings in December 2019 reviewed current injury mechanisms and risks, and predicted those for planetary EVA
- A draft injury prevention roadmap was briefed to a community of academia and stakeholders at a Technical Interchange Meeting January 31st
- The next stage is implementation

Ergonomics Stresses from Planetary EVA

There are musculoskeletal loads and possible ergonomic concerns during planetary EVA, due to the suit's mobility constraints and added mass

- Information on suited loads and ergonomics challenges can be used to inform EVA training, tasks, and tool design
- Musculoskeletal loads of the body inside of the suit can be measured with different wearable sensor systems
 - Initial hardware testing has been done in a low-fidelity MKIII suit mockup
- Suit joint cycles and torques can be quantified across different movement strategies and tasks using a reposable 3-D suit model

Estimation of EVA Posture from Photographs

A technical framework was developed to estimate 3-D posture of a spacesuit from photographs or videos

Iteratively searches a database of suit postures which
maximizes the overlap with the photographs

Applications

- Can be used during NBL and ARGOS testing to evaluate suit kinematics and ergonomics
- Retrospective analysis of the past EVA video for mobility and task assessments
 - Informs types and frequency of EVA motions

CH&P Gap Title	EVA SMT Gap No
EVA Injury Risk & Mitigation	EVA-Gap-94
CH&P Gap Title	EVA SMT Gap No
EVA Suit Design for Health & Performance	EVA-Gap-89

Suit Loading Analysis

Satellite Handling Man-Loads Assessment

This task will assess the loads taken on by the suit hardware during one of the more extreme use cases: satellite deployment in microgravity

Suit Doffing Loads Analysis

This task will assess the loads imparted into the suit while a person is extracting themselves via the rear hatch

CH&P Gap Title	EVA SMT Gap No	
EVA Suit Design for	EVA-Gap-89	
Health & Performance		

Human Performance with Balance Constraints in Mockup Suit

Proof-of-concept test bed developed for balance and performance while wearing a mockup suit

- MKIII mockup suit used for testbed development
- Enabled testing with different geometric and mobility constraints of the suit and obstacles in the environment
- The implementation allows cost-and-time-effective proofof-concept evaluations
- Methodically manipulate suit conditions (i.e., center of gravity, visual input)
- Use VR technology to assess training efficacy for visualvestibular adaptation
- Iterative platform for Lessons Learned:
 - Suit modifications
 - VR programming

National Aeronautics and Space Administration

Human Health and Performance Human Physiology, Performance, Protection & Operations (H-3PO)

Presenter: Jocelyn Dunn (KBR)

Exploration Prebreathe Validation

CH&P Gap TitleEVA SMT Gap NoEVA Exploration
PrebreatheEVA-Gap-95

- Exploration atmosphere (8.2 psia, 34% O₂) will enable high efficiency planetary EVAs by reducing prebreathe resources
- Human testing on schedule for July 2020 (first run, n=6 subjects)
- Validation of 10.2 psia, 26.5% O₂ (or similar) protocol planned for FY21

6 Subjects + 2 Doppler Technicians
Planetary EVA Simulation

Day 1	3hr @ 100% O2, 14.7 psia; Ascend to
Day 2	8.2psia / 34% O2; Equilibrate
Day 3	Prebreathe; 6hr EVA @ 4.3 psia, 85% O2
Day 4	Rest & Hypoxia Characterization
Day 5	Prebreathe; 6hr EVA @ 4.3 psia, 85% O2
Day 6	Rest & Hypoxia Characterization
Day 7	Prebreathe; 6hr EVA @ 4.3 psia, 85% O2
Day 8	Rest & Hypoxia Characterization
Day 9	Prebreathe; 6hr EVA @ 4.3 psia, 85% O2
Day 10	Rest & Hypoxia Characterization
Day 11	Prebreathe; 6hr EVA @ 4.3 psia, 85% O2

CHP EVA Informatics

- Collecting metabolic rate data for all suited NBL runs this fiscal year (3-4 NBL runs per week)
- Standardizing timeline tracking / task categorization for NBL EVAs to add value to this data archive
- Developed a new metabolic rate data collection system for the NBL to automate this process
 - Physical Workload --> Metabolic Rate

Task Timeline Tracking:

Color key:	POA LEE	POA CLA	graded LEE B SS	SRMS Setup	/Cleanup	FMS Grounding Strap		
PET	0:00		1:00		2:00		3:00	4:00
EV1	Egress / Setup (0:20)	SSRMS Setup (0:30)	Remove POA LI	EE (1:00)	[4]	Retrieve Degraded Temp Stow Ring	LEE from (1:00)	Install Degraded LEE onto POA (0:50)
EV2	Egress / Setup (0:20)	CLA Removal (0:30)	Remove POA L	EE (1:00)	[4]	Retrieve Degraded Temp Stow Ring	LEE from (1:00)	Install Degraded LEE onto POA (0:50)

Training Feedback and EVA Planning:

Task Analysis:

Task	Category			
EVA setup/cleanup	EVA Setup (Free-Float)	EVA Cleanup (Free-Float)		
	Worksite Setup (Free-Float)	Worksite Cleanup (Free-		
Worksite setup/cleanup		Float)		
	Miscelanous Work (Free Float)	Cable routing (Free Float)		
Other work				
Bolts	Bolts (Free-Float)	Bolts (BRT)	Bolts (APER)	Bolts (On SSRMS)
Fluid Connectors	Fluid Connectors (Free-Float)	Fluid Connectors (BRT)	Fluid Connectors (APFR)	Fluid Connectors (On SSRMS
	Electrical Connectors (Free-	Electrical Connectors (BRT)	Electrical Connectors	Electrical Connectors (On
Electrical Connectors	Float)		(APFR)	SSRM5)
38.R (or install) work	B&R work (Free-Float)	R&R work (BRT)	B&R work (APFR)	B&R work (On SSBMS)

CHP EVA Informatics

Phase 1A: Metabolic Rate Data Collection System

- Operational Readiness: ORR completed in FY2019; awaiting final IT Security Plan approval
 - Hardware installation completed and verified (via gas flow measurements on each umbilical)
 - Calibration Plan for CO2 sensors approved; Procurement of Calibration Gas and Regulators in progress
 - GUI for operators is developed and ready to implement along with H-3PO GovCloud data infrastructure

CHP EVA Informatics

CH&P Gap TitleEVA SMT Gap NoEVA Informatics forEVA-Gap-93Health & PerformanceEVA-Gap-93

Phase 1B: Data visualization

Extra-vehicular (EV) Capabilities

Intra-vehicular (IV) Capabilities

NBL Lunar testing: EV and IV capabilities

- *Decision Support:* Communicate via audio and utilize in-water displays to provide cue cards
- *Data Collection:* Timeline Tracking, Biometric Data recording, and Simulation Quality Ratings

NBL EMU Helmet-Mounted Display (HMD)

• Externally-mounted display for suited crew members during NBL EVA training runs

CH&P Gap Title

EVA Informatics for

Health & Performance

EVA SMT Gap No

EVA-Gap-93

• Initial demo in Summer 2020: display met rate data and phase elapsed time

Exploration EVA Decision Support

- Building up EVA data archive in order to estimate metabolic rate profiles for a given crew & task list
- Data-driven decision support tools for training, planning, and operations
- NBL Informatics as proving ground for EVA Operations System (EOS) decision support tools

EVA SMT Gap No

Planetary EVA Feasibility Testing

- Planetary EVA feasibility testing on ARGOS
 - Standard methods & metrics for characterizing simulation quality
 - New gimbal design & fabrication initiated (March/April)

End-to-end EVA simulations with suited astronaut test subjects on ARGOS

- PACES modules (procedures, hardware, mockups, and data streams)
- Significant ARGOS infrastructure upgrades including metabolic rate pipeline at ARGOS (that was first developed for NBL); recorded metabolic rates and task timelines during these PACES-ARGOS development runs

NBL Met Rate hardware @ ARGOS

CH&P Gap Title	EVA SMT Gap No
EVA Suit Design for Health & Performance	EVA-Gap-89

Planetary EVA Feasibility Testing

Automated functional movement decomposition algorithm prototyped during PACES-ARGOS runs

Planetary EVA Metabolic Task Characterization

- Purpose: Develop a planetary EVA task simulation environment and protocol which can be used to characterize metabolic workload and human performance while performing EVA in Lunar gravity
 - Status:
 - Detailed procedures for task categories including: geology, maintenance, ambulation circuits, and science instrument deploy
 - Retrospective analysis of Apollo metabolic rate estimation and measurement methods

Statistical error analysis of current in-suit metabolic rate measurement methods

Examples of met rate data collected during PACES-ARGOS MKIII suited test runs

A SIVIT Gap No
EVA-Gap-89

Impaired EVA – Part I Capsule Egress

Purpose:

- Determine if deconditioned crew can safely egress a capsule unassisted after up to a year on the ISS
 - Crew will self-egress their capsule, walk a short distance, and doff their LEA suits unassisted.
- Demonstrate the ability to perform a minimal EVA unassisted within 24 hours of landing
 - Current con-ops for Mars landers include enough power for the first 24 hours.
 - Within that time, crew may have to perform an EVA to secure power.

CH&P Gap Title	EVA SMT Gap No
EVA Crew Required Capabilities	EVA-Gap-88

Impaired EVA – Part II Early EVA

Tested EVA Capabilities

- First 24 Hours
 - Ingress EVA suit
 - Translate through hatch
 - Ladder descent
 - Walk & connect supply umbilicals
 - Object translation
 - Align with rear entry donning stand
 - Egress EVA suit
- Additional Tasks Done Pre and Later Post-landing
 - Agility obstacle course
 - Jump down and stabilize
 - Incline/decline ambulation and instrument deploy

Status:

- IRB protocol approved.
- Suited testing methods development underway (PACES)

CH&P Gap Title	EVA SMT Gap No
EVA Crew Required Capabilities	EVA-Gap-88

APACHE: Assessments of Physiology And Cognition in Hybrid-reality Environments

- APACHE: First build of VR simulation of Shackleton Crater, lander, rover driving, & passive treadmill implemented (video)
- → Initial test environment for EVA ConOps, informatics & software testing; future application for xEVA training

CH&P Gap Title	EVA SMT Gap No
EVA ConOps for Health	EVA-Gap-92
CH&P Gap Title	EVA SMT Gap No
EVA Informatics for Health & Performance	EVA-Gap-93

Suited Exposure and Injury Surveillance

Mitigation

CH&P Gap Title

EVA Injury Risk &

EVA SMT Gap No EVA-Gap-94

- Use data to mitigate injuries, improve human performance and comfort
- Educate broader EVA community on risks of EVA and inform mitigations
- Important component of EVA Injury Roadmap
- Implementation for flight EVAs being pursued

Inspired CO₂ Standard and xEMU Requirement

- Standard test protocol for space suit inspired CO2 completed
 - To be published as NASA Technical Report
- Journal manuscript submitted for EMU Inspired CO2 characterization study results
- Journal manuscript in work for xEMU CO2 requirement development

CH&P Gap Title	EVA SMT Gap No				
EVA Physiological	EV/A Cap 01				
Inputs and Outputs	EvA-0ap-91				

Working Together

NASA

Mechanisms

- Proposals (e.g., PSTAR, HRP)
- Fellowships (e.g., Office of STEM Engagement)
- Internships (intern.nasa.gov)

• Examples

- Operational performance measures
- PACES Modules
- VR Models
- Human physiology & performance models (e.g., metabolic, thermal, DCS, biomechanical, etc.)
- Software tools (e.g., data visualizations, timeline management, procedure)

CH&P EVA Roadmap & Open EVA Research Forum

https://www.nasa.gov/suitup/reference

National Aeronautics and Space Administration

Human Health and Performance xEMU Priorities

Presenter: Jason Norcross (KBR)

Lunar Metabolic Rates Assumptions Combined Heat Storage, Humidity and Hydration Requirements

+

Major Concerns

- Long term consumables & EVA time
- Short term heat storage, fatigue & inspired CO2
- Reasonable fitness for duty standards

Aerobic	8-hr EVA 6-hr EVA Lo		Long Peak	Short Peak	
Capacity	Workload	Workload	orkload Workload		
BTU/hr Max	1200	1600	2500	3000	
2000	60%	80%	125%	150%	
3000	40%	53%	83%	100%	
4000	30%	40%	63%	75%	
5000	24%	32%	50%	60%	
6000	20%	27%	42%	<u>50</u> %	

11.1.2.5 Suited Crewmember Heat Storage

[V2 11011] The system **shall** prevent the energy stored by each crewmember during nominal suited operations from exceeding the limits defined by the range 3.0 kJ/kg (1.3 Btu/lb) > ΔQ stored > -1.9 kJ/kg (-0.8 Btu/lb), where ΔQ stored is calculated using the 41 Node Man or Wissler model.

				m co	
Table 23—EVA S	Spacesuit Inspired	I Partial Pressure	of CO ₂	$(\mathbf{P_{ICO_{2}}})$	Limits

PICO2 (mmHg)	Allowable Cumulative Duration (hours per day)
P _I CO ₂ > 15.0	Do Not Exceed
$12.5 < P_{I}CO_{2} \le 15.0$	≤ 0 .5
$10.0 < P_I CO_2 \le 12.5$	≤ 1.0
$7.0 < P_I CO_2 \leq 10.0$	≤ 2.5
$4.0 < P_{I}CO_{2} \le 7.0$	≤ 7.0
$P_{I}CO_{2} \leq 4.0$	<i>≤</i> 14.0

In-Suit Hydration, Nutrition, Waste Management & Contingency Durations

ISS EVA Crew Considerations

5 hr. Pre-EVA Prep + 6-7 hr. Nominal EVA + 1 hr. Post-EVA Total Nominal Time to Consider 12-13 hours

Exploration EVA Crew Considerations

2 hr. Pre-EVA Prep + 6-8 hr. Nominal EVA + 1 hr. Post-EVA Total Nominal Time to Consider 9-11 hours

What if we have to stay in the suit longer than 12 hours?

MAG – TBD

Nutrition – TBD

DIDB – 64 oz. (8 oz. x 8 hr.)

Vehicle Loop Mode Integration (HLS and xEMU)

Crew Restraints and Orthostatic Support for Launch & Landing G-Loads

Suit Don/Doff Speed and Duration Reqs

Do we need heart rate?

Nutrition, Hydration & Waste Management

Breathing Mixtures

O₂ vs Cabin Air vs Nitrox Mix

Protection for Cabin Depress

Beyond 8.2/34 for Exploration Prebreathe

Saturation Atmosphere	Microgravity Prebreathe* (h:mm)	<u>Estimated</u> Planetary Prebreathe*				
14.7 psi, 21% O2	4:00	6:30-7:00 ²				
10.2 psi, 26.5% O2	0:40-1:10	3:00-3:30 ³				
8.2 psi, 34% O2	0:00-0:15	0:00-0:30 ⁴				
5.0 psi, 100% O2 (Apollo, Gemini)	0:00	0:00				
*Assume 6hr EVA @ 4.3 psia	Un-validated (i.e., not yet available for flight use)					

SAT	0000 0100 0200 030	0 0400 05	500 0600	0700 0800 0900 10	000	700 18	00 [1	900	2000	2100 22	200 2300 2400
8.2psi /34% O2	SLEEP (8.0 HRS TOTA	AL)	Postsleep- 1.5 hrs	EVA Prep (excl. PB)	EVA (8 HRS)	Post-E Overhe	Meal Av	MARGI (60 mins)	PMC &	Presleep - 1.5 hrs	SLEEP
10.2psi /26.5% 02	SLEEP (6.0 HRS TOTAL)	Postsleep- 0 1.5 hrs	은 EVA Prep (excl. PB)	Prebreathe (3.5 HRS)	EVA (8 HRS)		Post-E Overh	EVA a	PMC &	Presleep - 1.5 hrs	SLEEP
14.7psi /21% 02	Postsleep-		Prebre (7 Hi	eathe RS)	EVA (8 HRS)		Post-E Overh	EVA de	PMC &	Presleep - 1.5 hrs	SLEEP (2.5 HRS TOTAL)

Assumptions

1 DPCs are for system status checks and any general Q&A for crew

2 PMCs are for pre/post EVA medical status checks

3 Sleep period = 8 hrs, immediately following Presleep activity (no sleep shifting for crew during surface ops)

4 Post/presleep include routine system/HAB cks, hygiene and meal

5 EVA Prep includes pre-EVA conference with MCC

² Abercromby et al. "Suited Ground Vacuum Chamber Testing Decompression Sickness Tiger Team Report", 2018 NASA Technical Report
 ³ Abercromby, et al. "Using the Shuttle Staged Prebreathe Atmosphere and Variable Pressure Spacesuits for Exploration Extravehicular Activity", 2018 AsMA.
 ⁴ Abercromby et al. "Modeling Oxygen Prebreathe Protocols for Exploration EVA Using Variable Pressure Suits", 2017 AsMA.

- Adjust 10.2/26.5 atmosphere
- Exercise enhanced prebreathe
- Utilize xEMU variable
 pressure capabilities
- Intermittent Recompressions

