Key Opportunities in Aeronautics Enterprise

UC Berkeley

February 19, 2020

Parimal Kopardekar, Ph.D. (PK) Director, NASA Aeronautics Research Institute Parimal.H.Kopardekar@nasa.gov

Opportunities

- Future Aircraft
 - Environmental footprint
 - Aircraft development cycle
 - Aircraft production rate
 - Supply chain
- Airspace Operations
 - Efficiency
 - Disruptions
 - Safety
 - Human and Autonomy
 - Preparing for Future Operations
- Summary

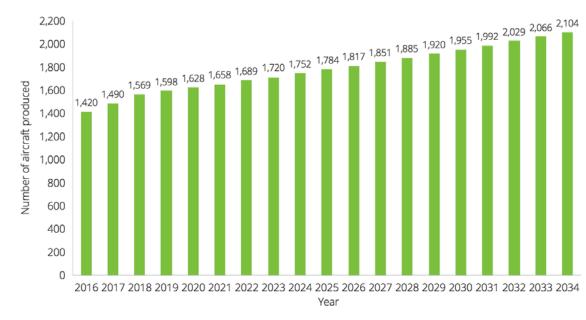
Future Aircraft

More Electrified Aircraft for Reduced Emissions

Challenge: Battery for Aviation Needs

Reduce aircraft development cycle time

- Every modern aircraft was:
 Delayed
 Over budget
 Heavier initially
- Design complexity:
 - A380-800 has about 100,000 wires, 470 km, 5700 kg of weight, and additional 30% weight for harness to hold wiring


Current Situation (\$800+B backlog)

- Boeing and Airbus have backorders (~5000+, with ~55/month rate)
 - Boeing delivered 806 aircraft and Airbus 800 in 2018
 - Airbus 863 (2019, 7% up)
 - In 2016, Boeing had 5715 undelivered orders and Airbus had 6874

Increase aircraft production rate

Forecasted production levels of commercial aircraft: 2016 to 2034

Source: Deloitte analysis, Airbus, Boeing

Set up supply chain and MRO for emerging eVTOLs Small Investment Castings

Challenges

- Casings and forging
- Composites
- Auxiliary Power Units
- Printed Circuit Boards
- Actuators
- Software
- High volume manufacturing and assembly methods
- Many others

Large Structural Castings

Forgings

AeroDyna

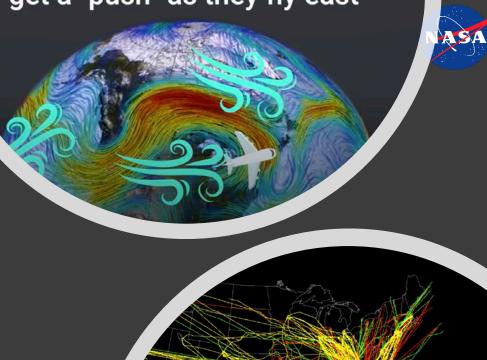
Source: AeroDynamic Advisory Analysis & Secondary Research

MRO: Maintenance, Repair, and Overhaul eVTOLs: Electric Vertical Take-off and Landing Vehicles

Need sustainable supplier, manufacturer, and MRO network

Car companies are entering aero industry

Need to understand the production certificate, and aviation grade manufacturing needs


Increase efficiency of current airspace operations

Use data to learn about inefficiencies

Airline Operations and Delay Management

Insights from Airline Economics, Networks and Strategic Schedule Planning Better automation to reduce impact of disruptions

- 25% aircraft get delayed, ~70% are due to weather
- Major disruptions cause significant impact: volcanic ash, typhoons, etc.
- Deciphering avoidable and unavoidable delays (e.g., SFO marine stratus) and use better probabilistic models

Learn from Current Aviation Safety Data

- Aviation Safety Recording System (ASRS)
- Operational errors and deviations

.em

"Every hour around here is 59 minutes of boredom and 1 of sheer terror."

DUTIFIAURUS 45927 DETURISAURUS 45927 AD-A275 986 Control Centers Main Science Control Center

Divergence of humans and technology

Regulations based on fatigue limit stage length of aircraft or increase cost by carrying additional crews

Summary of Flight and Duty Limits, for Unaugmented Operations

Maximum	Flight	Time	Limits
---------	--------	------	--------

Time of Report (Acclimated)	Maximum Flight Time (hours)		
0000-0459	8		
0500-1959	9		
2000-2359	8		

The World's Longest Non-stop Flights

From Singapore	To Newark		Time 18h 45m	Distance 16,700km
Auckland	Doha	QATAR 6	18h 30m	14,534km
e Houston	Sydney	UNITED	17h 30m	13,800km
e Perth	London-Heathrow	QANTAS	17h 20m	14,499km
Los Angeles	Singapore	UNITED	17h 20m	14,100km
Auckland	Dubai	Emirates	17h 15m	14,200km
San Francisco	Singapore		17h 05m	13,593km
Los Angeles	Jeddah	السعودية SAUDIA 🗐	16h 55m	13,409km
Johannesburg	Atlanta	A DELTA	16h 40m	13,582km
Abu Dhabi	Los Angeles	ETIHAD	16h 30m	13,502km

statista 🔽

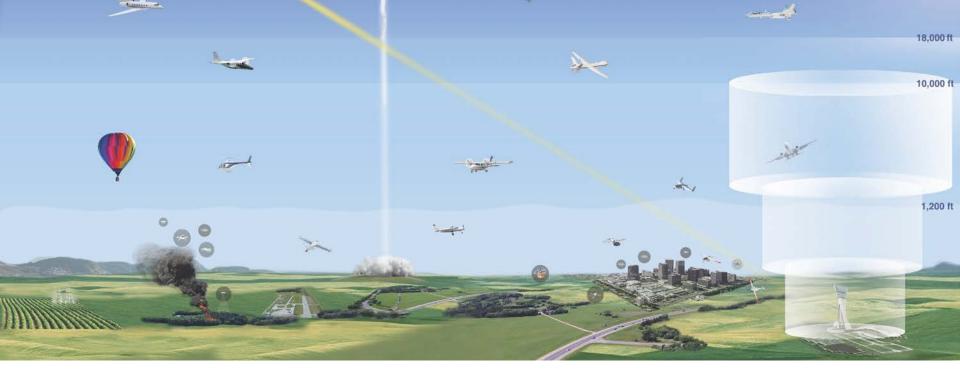
@StatistaCharts Sources: News Reports, Flightmapper, World Economic Forum

SMEREDITH1

Pilot Outlook by Region Map

The US is facing a serious shortage of airline pilots

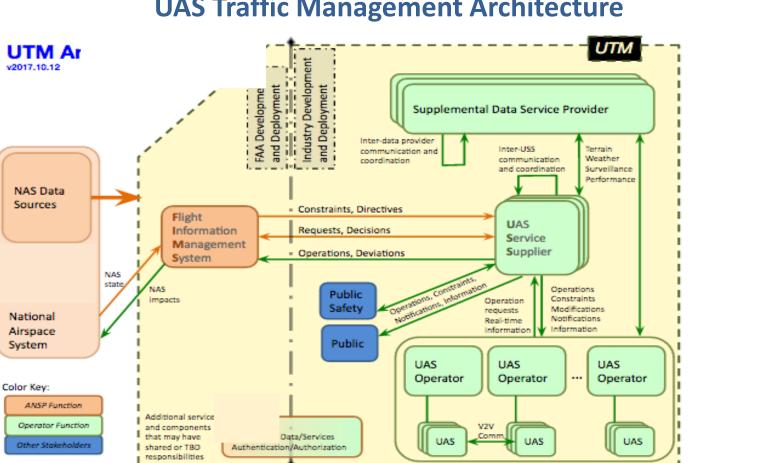
Boeing CEO says a global pilot shortage is 'one of the biggest challenges' facing the airline industry


Time for increased autonomy?

Reduce time to become aviation professional Training humans, increase automation, create some other hybrid paradigm

Prepare for future airspace operations

Current system is technologically behind and won't scale


New Entrants need quicker and sustained airspace access Airspace system needs to be ready when the vehicles are ready

SMALL UNMANNED AIRCRAFT SYSTEMS (UAS)

UAS Traffic Management Architecture

*Connections & communications are internet-based & built on industry standards & protocols

Global Impact

Scaled operations without burdening current air traffic system

Unmanned Aircraft System Traffic Management (UTM)

- Service-oriented architecture
- Cooperative
- Digital
- Intent-sharing
- Third-party services
- Managed by exception

Technical Capability Levels (TCL)

Risk-based development and test approach along four distinct TCL

TCL1

• Outcomes:

Validation of cloud-based serviceoriented architecture

TCL 2

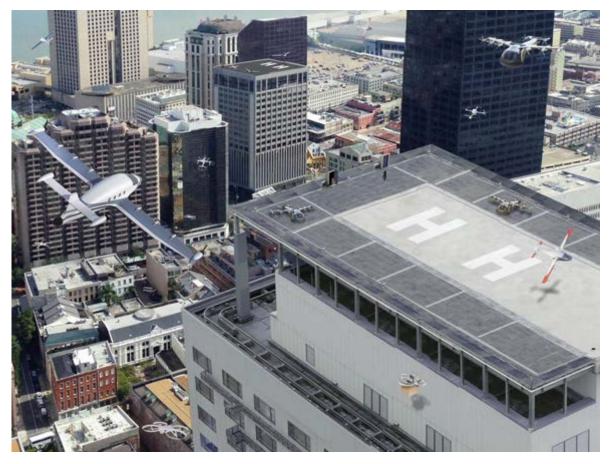
Outcomes:

Information sharing between operators, and established federated 3rd party service model to enable BVLOS

Outcomes:

TCL 3

Technologies for detect and avoid, comm. and nav., and data exchange between multiple suppliers in presence of manned aviation


TCL 4

Outcomes:

Operational concept, vehicle technologies, and data exchanges for operations near large structures and in highly populated areas

Transformation – Urban Air Mobility

Increasingly autonomous – focused on access, safety and scalability

NASA

URBAN AIR MOBILITY: SMALL DRONES TO LARGER PASSENGER CARRYING VTOLS

UTM-LIKE-ATM AIRSPACE OPERATIONS ENVIRONMENT

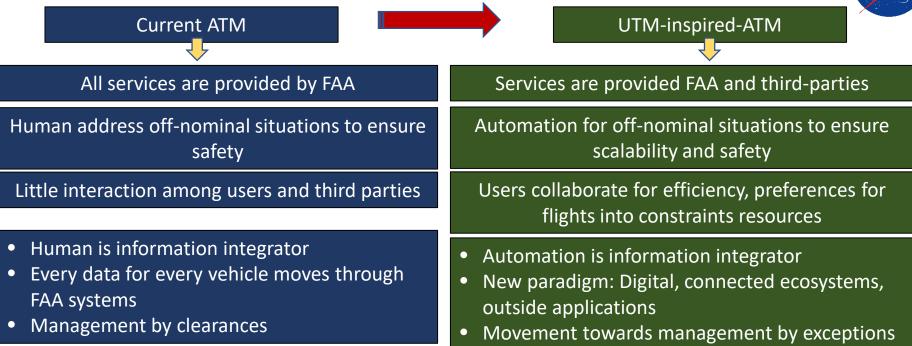
• Cooperative

- Intent-sharing
- Digital: data exchanges among operators
- Standardized application protocol interfaces
- Air/ground integrated
- Service-oriented architecture
- Role for third parties

Space Traffic Management

High Altitude UTM (upper E)

Conventional Manned Aviation (Class A, B, C, D, E)


Urban Air Mobility

Low-altitude small UAS

Access, Efficiency, Safety, Scalability, Security, Equity, and many other goals

Transition to UTM-inspired Airspace Traffic Management

Research: Architecture, data exchanges, roles/responsibilities, performance requirements for aircraft and airspace system technologies, automation for contingency management and disruption handling, machine learning environment and algorithms for improvements, safety assurance, certification, acceptance approaches

Many opportunities for research and development

Public Service Annoucements

- Internships
 - Intern.nasa.gov
 - Search "Short-term Drone for Search and Rescue"

- Urban Air Mobility Working Groups
 - https://nari.arc.nasa.gov/aam

Parimal.H.Kopardekar@nasa.gov

embracing innovation in aviation while respecting its safety tradition