Title	Deep Learning and Uncertainty Quantification for Climate Resilience

Authors	Email	Last Name, First Name	Employer/Affiliation
	thomas.vandal@nasa.gov	Vandal, Thomas	BAERI
Keywords Uncertainty Quantification, Bayesian Deep Learning, Climate			

Abstract	Modeling and monitoring of earth's processes through physical models and satellite
	observations at high resolutions is crucial for ensuring society's ability to adapt to
	climate change. Deep learning (DL) has been shown to be a valuable tool for
	generating high resolution data, emulating physical models, and detecting weather
	patterns which can then be used to inform stakeholders and decision makers.
	However, both the data and model parameters contain substantial uncertainties that
	may alter users' decisions. In this work we present two DL applications on high-
	resolution climate and satellite datasets using Bayesian neural networks to generate
	well calibrated uncertainty estimates.

Event Name	INFORMS Annual Meeting 2019
Location	Seattle, WA
Presentation Date	October 23, 2019
Presentation Sponsor	INFORMS Data Science
Presentation URL	https://www.abstractsonline.com/pp8/#!/6818/presentation/6803