
Task 51 - Cloud-Optimized Format Study

EED2-TP-125, Revision 01

Technical Paper
January 2020
Prepared Under Contract NNG15HZ39C

•
RESPONSIBLE OFFICE

~ Y~
Chan Yee, Task Lefci=::EED-2 Task 51

· EOSDIS Evolution and Development - 2 Contract

RESPONSIBLE AUTHORS

Chris Durbin, Principle Software Engineer
EOSDIS Evolution and Development - 2 Contract

Patrick Quinn, Principle Software Engineer
EOSDIS Evolution and Development - 2 Contract

Dana Shum, Principle Software Engineer
EOSDIS Evolution and Development - 2 Contract

Raytheon Company
Riverdale, Maryland

1/30/2-0
Date

Date

\ j '$:>)~
Date

JI ?:Pl ao
Date

https://ntrs.nasa.gov/search.jsp?R=20200001178 2020-03-28T18:59:38+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/288485484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii EED2-TP-125, Rev. 01

Table of Contents
Table of Contents ii

Introduction 1
Purpose 1

Approach 1
Summary of Formats Studied 1

Formats in Use 1
Network-Optimized Formats 3

Methodology 7
Weighted Matrix 7

Evaluated Criteria - Weighted Matrix 8

Evaluated Criteria - Details 9
Usability 9

Support for Fine-Grained Access 9
Support for a Variety of Data Types and Structures 9
Data Integrity 11
Self-describability 11

Tooling and Standards 12
Compatibility with Existing Tools 12
Open Specification 13
Independent APIs 13
Programming Language Support 14
Standards-Body Approval 14
Ability to Comply with Metadata Conventions 15

Cost Factors 15

Performance Benchmarking 15
Methodology 15

File Types and Formats Used 16
Access Patterns Tested 16
Measurements 17

Results 17
Benchmark Execution Time 18
Percentage of Bytes Accessed 20
File Size 22

Usability Findings During Benchmarking 23
Lack of GDAL Support 23
Errors in NetCDF-4/ HDF Libraries 23

 iii EED2-TP-125, Rev. 01

Necessary Performance Tuning for NetCDF-4/ HDF 24
Performance Influencing Usage Choices 24

Additional Considerations 24
File Packaging and Benchmarking 24
Server Software 25
Other Formats 25

Conclusions 27
Overarching Recommendations 27
Format Comparisons 27

Long-Term Archival Formats 27
Multispectral Data Formats 27
Multidimensional Array Data Formats 28
Specialized Data Formats 28

Recommended Follow-On Work 29

Appendix A: Acronym List 30

Appendix B - Scoring Justification and Notes 31

 1 EED2-TP-125, Rev. 01

Introduction

Purpose

“The cloud infrastructure provides a number of capabilities that can dramatically improve access
and use of Earth Observation data. However, in many cases, data may need to be reorganized
and/or reformatted in order to make them tractable to support cloud-native analysis/access
patterns. The purpose of this study is to examine the pros and cons of different formats for
storing data on the cloud. The evaluation will focus on both enabling high-performance data
access and usage as well as to meet the existing scientific data stewardship needs of EOSDIS.”
(Task 51 Statement of Work, Revision B - Enabling EOSDIS Data Usage Statement of Work)
With the above purpose in mind, the evaluation we present seeks to inform future decisions on
both archival formats for cloud data as well as formats to use for analysis, if different from the
archival format. We do not expect to produce a recommendation for a single format for use in
all cases but rather hope to inform format selection for a given use based on archival and
usability needs. Further study may be warranted as formats, EO data, cloud infrastructure and
user behavior evolve.

Approach

Summary of Formats Studied
We examine several data formats that enable high-performance analysis for network-based
access, particularly the cloud. We look at Cloud-Optimized GeoTIFF, HDF in the Cloud,
Parquet, and Zarr, Parquet in depth. We then compare these to GeoTIFF and NetCDF-4, two
existing standards which store the majority of current EOSDIS data. Although there are some
server-based solutions that can provide similar network optimizations in the cloud (e.g.,
OPeNDAP in the Cloud and the Highly Scalable Data Server), they are out of scope for this
study.

Formats in Use

GeoTIFF

GeoTIFF is an approved EOSDIS standard as well as an OGC standard built on the TIFF ISO
standard. It stores layers of two-dimensional raster data and allows the expression of
georeferencing information as well as other geospatial metadata. Though an image format, it is
able to represent its data as arrays of numeric types ranging from bytes to 64-bit floating point
numbers. The image below visually shows the TIFF specification.

 2 EED2-TP-125, Rev. 01

https://www.loc.gov/preservation/digital/formats/fdd/fdd000022.shtml

NetCDF-4

NetCDF-4 is an approved EOSDIS and OGC standard. It is the encoding of the NetCDF-
4Extended data model in the HDF5 file format, thus using HDF as the underlying storage
format, with its programmatic API built on top of the HDF5 library. In qualitative comparisons,
NetCDF-4 and HDF5 are very similar. As they constitute archival data standards in current use,
we do not distinguish them for the purpose of this study. NetCDF-4 stores data in a
hierarchical, array-based format. It is capable of describing detailed metadata on variables,
units, georeferencing, and provenance.

TIFF 6,0 Spoclficallon Final-June 3, 1992

Flgur,e 1

Hoao•r DifOCIOIY Elll'Y

~ i1Y11> Qrd8r X T.fl!l

<i ,:+; Typ~

otT8ol ol 00'> l'D X•~ Ccx.,nt

A

~

X•S v.i orr .. 1

RI

A B Nuon,., or Dl,..LO<')' Ei,q;,..

.A+14

https://www.loc.gov/preservation/digital/formats/fdd/fdd000022.shtml

 3 EED2-TP-125, Rev. 01

https://www.unidata.ucar.edu/software/netcdf/docs/netcdf_data_set_components.html

Network-Optimized Formats

Cloud Optimized GeoTIFF

Cloud Optimized GeoTIFFs (COGs) are standard GeoTIFFs. They have an internal structure
allowed, but not enforced, by the GeoTIFF standard. Because of this, we strongly recommend
that GeoTIFFs for data products be cloud optimized, due to their significant benefits with
virtually no drawbacks; in fact, tools such as GDAL produce Cloud Optimized GeoTIFFs by
default when requesting GeoTIFFs because of this. The internal structure of COGs promotes
efficient consumption of the format in networked environments, meaning that relatively few
accesses of a portion of a COG using HTTP GET range requests can be used to extract
metadata, overview imagery, a spatial subset, and / or a single multispectral band. Cloud
Optimized GeoTIFFs also define a structure for a pyramid of overview tiles, allowing the
possibility of low-bandwidth preview before access. The specification can be found at
https://github.com/cogeotiff/cog-spec/blob/master/spec.md.

HDF in the Cloud

In this paper, the storage format of The HDF Group’s Highly Scalable Data Service (HSDS) and
commercial Kita offering is referred to as “HDF in the Cloud”. This format consists of multiple
objects in an object store, where each object is either JSON storage metadata or HDF5 dataset
data chunks. The JSON metadata establishes the hierarchical organization of other stored
HDF5 objects.

File

location: Fi lename

Variables and attributes have one of
twelve primitive data types or one of

four user-defined types.
create(), open(), . . .

Attribute
name: String

type: Data Type
values: ID array

Variable
name: String

shape: Dimens ion[]

type: Data Type
array: read(), . . .

Dimension

name: String

Jen th: int

is Unlimited

DataType

type11ame : Stri11g

Enum

Opaque

Compound

VariableLength

A file has a top-level unnamed group. Each group may contain one or more
named subgroups, user-defined types, variables, dimensions, and attributes.

Variables also have attributes. Variables may share dimensions, indicating a
common grid. One or more dimensions may be of unlimited length .

char
byte
short

int
int64
fl oat

double
u11signed by te

unsigned short
unsigned int

u11signed int64

string

https://www.unidata.ucar.edu/software/netcdf/docs/netcdf_data_set_components.html
https://github.com/cogeotiff/cog-spec/blob/master/spec.md

 4 EED2-TP-125, Rev. 01

This HSDS object store format can also be used to provide a mapping to one or more traditional
HDF5 files stored as objects. This enables HSDS to provide read capability to existing files by
using HTTP range GET requests to read individual chunks from the file as needed.
When HSDS server runs alongside the object store, clients can use the HDF5 library APIs to
read files as though they were stored on local disk. Importantly, though, this HDF5 compatibility
does not mean that the actual stored objects are in the HDF5 file format. The HDF Group
provides tools for bi-directional conversion between HDF5 files and the HSDS object store
format. For the purpose of this study, we distinguish between the HDF5 file format and the
HSDS server with client API (HDF5 REST). For example, despite the fact that many tools can
use the HDF5 API with HSDS and the HDF5 REST Virtual Object Layer (VOL) connector, we
are not aware of any tools that are able to read the HSDS storage format (HDF in the Cloud)
directly. The HDF5 REST VOL is part of the latest HDF5 1.12.0 release. This is an important
distinction for archival reasons, operational costs, and risk mitigation. For more discussion of
this decision, see “Server Software” under “Additional Considerations.”

Parquet

Parquet is a columnar data store which is part of the Hadoop ecosystem and can be read
natively by Amazon S3 Select queries and Apache Spark. It is able to capture rich metadata on
a per-column basis and supports a wide array of data types, including custom ones. Being a
columnar data store, it is best suited to situations where data can be expressed as a fixed-size
tuple.

 5 EED2-TP-125, Rev. 01

https://parquet.apache.org/documentation/latest/

Zarr

Zarr is an array-based hierarchical data store, conceptually similar to NetCDF-4in terms of its
ability to capture and express metadata and data. It stores hierarchies as “logical paths” which
by default expand to separate keys in object stores such as Amazon S3, so a single conceptual
file may in fact be several files on disk or in object stores. This can improve both parallelism
and granularity in access.

File

-~ I I
~

Magic Number (4 bytes): ·PAR1"

C-Row group 0

Column a Footer

Page 0 _. V---- FileMetaData (Th riftCompactProtocol)

Page header (ThriftCompactProtoool) - Version (of the format)
-Schema

Repetition levels - extra key/value pairs
Definition levels Row group O meta data:

values Column a meta data:
- type I path / encodings / codec

'
- num values

~
- offset of first data page
- offset of first index page
- compressed/uncompressed size
- extra key/value pairs

-

~ · I ~olumn "b" meta~~

f'-

I Row group 1 meta_d~

~u I'
Footer length (4 bytes)

Magic Number (4 bytes): ·PAR1"
'-.. ,_..

https://parquet.apache.org/documentation/latest/

 6 EED2-TP-125, Rev. 01

An example ATL03 granule in a Zarr directory store. The .zmetadata file contains enough

information for Zarr libraries to locate necessary files for any read operation performed. The
directory and file structure mimic the variable information contained in the original NetCDF-4file.

Amazon S3 > harmony-cloud-format-study > converted > ATL03-PointCloud-Zarr >

•
harmony-cloud-format-study

Overview

Q. Type a prefix and press Enter to search. Press ESC to clear . • ,, + Create folder Download I Actions v

• Name ...

• I;. METADATA

• I;. atlas_impulse_response

• I;. ds_surf _type

• I;. ds_xyz

• I;. gt1 I

• I;. gt1 r

• I;. gt2I

• I;. gt2r

• I;. gt3I

• I;. gt3r

• I;. orbit_info

• Cl .zattrs

• Cl .zgroup

• Cl .zmetadata

 7 EED2-TP-125, Rev. 01

Navigating to the files containing the variable data for the gtl1/heights/h_ph variable contains the

chunked data for that variable. Each individual file from 0 to 36 contains a single chunk.

Methodology

Weighted Matrix
We compare the following criteria from our Statement of Work:

● Data access performance to support common forms of analysis, including time series,
shape-based averaging, regridding and data intercomparison.

● Compatibility with existing off the shelf tools, including Panoply, gdal, nco,
Jupyter/xarray, ArcGIS and QGIS.

● Ability to support fine-grained requests from S3 via range-get or other means.
● Ability to comply with community metadata conventions (e.g., CF)
● Availability of independent libraries to read the data in C/C++, Fortran, Python and R
● Comparative cost of data preparation, storage and analysis, adjusted for lossless

compressibility as appropriate.
● Ability to represent several different data types / structures including imagery, swath,

trajectory, point cloud, Platte-Carre and Sinusoidal grids, in situ and airborne
● Ability to verify data integrity upon reformatting and ongoing
● Self-describability, i.e., ability to include complete sets of both descriptive and structural

metadata
● Open specification

harmony-cloud-format-study

Overview

111111512'1'W5 °"'""

Name•

D .zarroy

Ci .zattrs

D O
C) 1

C) 10

D 11

D 12

D 13

C) 14

D 15

C) 16

C) 17

C) 18

Cl 19

.,,_, _ us w.,., 10r01lor1)

ViA'Nin{) 1 tt'l 32

Last modified• Size • Storage class•

Jan 7, 2020 7:56:50 PM GMT-0600 324.0 B Standard

Jan 7, 2020 7:56:50 PM GMT-0600 205.0 B Standard

Jan 7, 2020 7:56:50 PM GMT-0600 3.3MB Standard

Jan 7, 2020 7:56:50 PM GMT-0600 3.4 MB Standard

Jan 7, 2020 7:56:50 PM GMT-0600 3.2MB Standard

Jan 7. 2020 7:56:50 PM GMT-0600 3.2MB Standard

Jan 7, 2020 7:56:50 PM GMT-0600 3.2MB Standard

Jan 7, 2020 7:56:50 PM GMT-0600 3.1 MB Standard

Jan 7, 2020 7:56:50 PM GMT-0600 3.3MB Standard

Jan 7, 2020 7:56:50 PM GMT-0600 3.4 MB Standard

Jan 7, 2020 7:56:50 PM GMT-0600 3.2MB Standard

Jan 7, 2020 7:56:50 PM GMT-0600 3.2MB Standard

Jan 7, 2020 7:56:50 PM GMT-0600 3.0MB Standard

Jan 7, 2020 7:56:50 PM GMT-0600 3.0 MB Standard

 8 EED2-TP-125, Rev. 01

● Number of independent implementations of read/write API
● Standards-body approval (OGC, W3C, etc.)

For each criterion, we assign a score to each format, 0 through 9, providing both a description of
each score and a justification for why each format received the score. We do not assign
weights to the criteria but do provide a spreadsheet in Appendix B which others can assign
weights appropriate to their needs.
We additionally synthesize findings in this paper, describing the outcomes and also noting
circumstances where scores may be more or less important, e.g. a format could score very low
in one criterion for only representing one data type, but it may be particularly fast, inexpensive,
or useful when the data in question are of that type.

Evaluated Criteria - Weighted Matrix

 Current Formats Cloud-Optimized Formats

Criteria
Criteria
Weight netCDF GeoTIFF Zarr Parquet

Cloud -
Optimized
GeoTIFF

HDF in the
Cloud

Support for Fine-Grained
Access 1 3 3 6 9 9 6

Support for a Variety of Data
Types and Structures 1 9 3 6 00F

1 3 9

Data Integrity 1
9
 3 3 0 3 6

Self-describability 1 9 6 9 9 6 9

Compatibility with Existing
Tools 1 3 6 1 1 6 0

Programming Language
Support 1 9 9 3 6 9 0

Open Specification 1 6 6 6 9 9 6

Independent APIs 1 3 6 3 9 6 0

Standards-Body Approval 1 6 9 0 3 9 3

Ability to Comply with
Metadata Conventions 1 9 3 9 6 3 9

Weighted Score 66 54 46 52 63 48

1 While Parquet is able to represent a number of different data formats and complex data structures, it is
generally unaware of the spatiotemporal nature and structure of the data. It has no issue representing
individual data points, but it loses some of the internal structure and locality of reference relating points to
one another.

r

 9 EED2-TP-125, Rev. 01

Evaluated Criteria - Details
Each section below explains both the qualitative and quantitative analysis related to each
criteria. This information determines the score for each item in the Weighted Matrix above.

Usability

Support for Fine-Grained Access

For fine-grained analysis, we looked at each format’s inherent ability to accommodate accessing
small areas of interest within a file without having to download a large percentage of the overall
data file, e.g. using HTTP Range GET requests. Unsurprisingly, the cloud-optimized formats all
fare well in this category, as it is a primary facet of what it means to be cloud-optimized.
Existing formats do not necessarily fare poorly, however, but they are highly dependent on the
underlying structural choices of the data. In the best circumstances, a GeoTIFF could be cloud
optimized1F2 and a near-future NetCDF-4file could be stored as Zarr2F3.3F4 In the worst, they could
be chunked and compressed in such a way that a download of the entire file followed by local
processing would be significantly faster than network processing. Because there is no standard
way to indicate to users or tools that GeoTIFF or NetCDF-4file is optimized for network access
(vs disk access or total size), documentation and examples will need to supplement such files
accessed in the cloud in order to assure the lowest cost and highest performance.

Support for a Variety of Data Types and Structures

The investigated file formats have varying degrees of support for different data structures,
ranging from generalists that support a wide range of structures to specialists that optimize
access to one type of data. That, indeed, is a key tradeoff: specialized formats benefit from
being able to optimize their use case and target their tooling, while generalized formats are able
to handle many more types of data but have less a priori knowledge of their own structure to aid
in optimization or focused tooling.
Parquet and GeoTIFF (including Cloud-Optimized GeoTIFF) provide storage specialized to
particular data types. Parquet is suitable for columnar data of the type often found in a
database table or spreadsheet4F5, with the advantage of providing fast database-style queries
using both Hadoop and S3 Select. GeoTIFF is most suitable for two-dimensional imagery and

2 “A Cloud Optimized GeoTIFF (COG) is a regular GeoTIFF file”
“Cloud Optimized Geotiff,” accessed November 13, 2019, https://www.cogeo.org/.
3 Starting with the HDF5 version 1.10.6 released in December 2019, new functionality was added to the
HDF5 library to access HDF5 files in S3 store using HTTP range GET requests. While access is not fully
optimized at this point one doesn’t need to download the whole file to access areas of interest. New
optimizations are planned for the next HDF5 releases that will minimize the number of accesses to HDF5
internal structural metadata that includes, for example, locations of raw data chunks and user-defined
attributes thus speeding up access to the data of interest
4 Ward Fisher, “NetCDF and Native Cloud Storage Access via Zarr,” News @ Unidata, last modified June
12, 2019, accessed November 13, 2019, https://www.unidata.ucar.edu/blogs/news//entry/netcdf-and-
native-cloud-storage.
5 Apache/Parquet-Format (The Apache Software Foundation, 2019), accessed November 13, 2019,
https://github.com/apache/parquet-format.

 10 EED2-TP-125, Rev. 01

benefits from the tool and library support of the decades-old open format it is built upon5F6. While
one could potentially express different data types, in either file format, doing so would diminish
the benefits of choosing that format. For example, one could inflate a multidimensional array
into a columnar format of (x, y, z, …) coordinates for Parquet, but doing so would
simultaneously increase the storage size and lose the spatial structure inherent in other formats.
We note that the ease of querying information in this format may still make Parquet compelling,
however.
On the other end of the spectrum are the more general-purpose NetCDF, HDF5, and Zarr
formats. They handle multidimensional arrays and hierarchical data, allowing them to
accommodate many different types of data. NetCDF, HDF5, and Zarr are known to be
combined with the Climate and Forecast Metadata Conventions which enable them to be highly
suitable for vast amounts of geoscience data types Their expressiveness, however,
necessitates more care on the part of file authors to ensure that data are structured in a manner
that is performant for their intended use.
Below is a table of the various formats and their suitability for each data type.

 netCDF GeoTIFF Zarr Parquet

Cloud-
Optimized
GeoTIFF

HDF in the
Cloud

Imagery Moderate High Moderate Poor High Moderate

Swath Moderate Low Moderate Low Low Moderate

Trajectory Moderate Poor Moderate Moderate Poor Moderate

Point Cloud6F

7 Low Poor Low Moderate Poor Low

Projected Grids High High High Low High High

In Situ Data Moderate Poor Moderate High Poor Moderate

Airborne Data Moderate Low Moderate Low Low Moderate

Vector + values Poor Poor Poor High Poor Poor

Key:
High Specialized support

Moderate Supported

Low
Possible to express with some interpretation of the format and/or compromises in space and
performance

Poor
Requires significant compromises in space or performance or otherwise not possible to
express

6 Geospatial World, “GeoTIFF - A Standard Image File Format for GIS Applications,” Geospatial World,
September 10, 2009, accessed November 13, 2019, https://www.geospatialworld.net/article/geotiff-a-
standard-image-file-format-for-gis-applications/.
7 While point clouds are frequently represented in array-based formats such as NetCDF, we give this a
“low” level of support based on algorithmic complexity for common operations. Locating the nearest
neighbor for a given point requires a full read of the data for array-based stores but would be a
logarithmic operation in a k-d tree representation. None of the evaluated formats have this sort of
specialized support for point data.

l l l l

 11 EED2-TP-125, Rev. 01

Data Integrity

For data integrity, we look at each format’s ability to have its data validated. The ideal in this
category would be a format that captures fine-grained (per-chunk, band, or layer) integrity
checking and is able to preserve integrity checking after altering the internal file arrangement so
long as data is not altered. While no formats landed fully in this category, NetCDF-4accessed
through HDF5 and HDF in the Cloud come the closest, due to its ability to capture fine-grained
integrity information and the presence of the h5check7F8 command-line tool checks compliance
with the HDF5 file format specification..
Regardless of it not reaching the ideal, NetCDF-4attained the most points of any format in this
category, as it maintains internal integrity checking information8F9.
Zarr and the two GeoTIFF formats received the next highest points, as neither has a consistent
way to provide integrity checks within the file, though we note that each could do so with
metadata fields, as could Parquet or any format allowing application-specific metadata. Zarr’s
multi-file key/value storage model9F10 is conducive to finer-grained integrity checking and there is
community discussion surrounding including integrity information in upcoming versions.
GeoTIFF allows fine-grained external integrity checking by, for example, running gdalinfo with
the “-checksum” flag.10F11
Parquet receives the lowest score in this category, as it neither supports internal file integrity
checks (though again, this could be done with metadata fields) nor does the format support fine-
grained integrity checking in any particular way.

Self-describability

All of the investigated formats are self-descriptive in terms of their structure. All of them also
provide some provision for application-specific metadata. We note that file formats without a
long history of use for archiving Earth observation data may need additional conventions to be
built regarding how, e.g., provenance fields are stored, whereas NetCDF-4and HDF already
have these conventions.11F12
The only score variance here is GeoTIFF (including Cloud-Optimized GeoTIFFs). Because
GeoTIFF may require or encourage application metadata to be placed in a sidecar PAM file if it
is large12F13, GeoTIFFs may not be as self-descriptive as the other formats in practice. The fact
that it remains structurally self-descriptive, that it is theoretically capable of describing
application metadata, and that there are conventions around the existence and placement of the
PAM files caused us to not greatly penalize the format in this category, however.

8 See https://support.hdfgroup.org/products/hdf5_tools/h5check.html for details and limitations
9 By e.g. Fletcher32 checksumming variables. See
https://www.mathworks.com/help/matlab/ref/netcdf.defvarfletcher32.html
10 See https://zarr.readthedocs.io/en/stable/spec/v2.html#storage
11 See https://gdal.org/programs/gdalinfo.html
12 See http://cfconventions.org/
13 “gdal/geotiff.cpp · OSGeo/Gdal,” GitHub, accessed November 13, 2019,
https://github.com/OSGeo/gdal/blob/7d9482a63266c5ceb174f0ccfd4c23a10b258bde/gdal/frmts/gtiff/geoti
ff.cpp#L11690.

https://support.hdfgroup.org/products/hdf5_tools/h5check.html
https://www.mathworks.com/help/matlab/ref/netcdf.defvarfletcher32.html
https://zarr.readthedocs.io/en/stable/spec/v2.html#storage
https://gdal.org/programs/gdalinfo.html
http://cfconventions.org/

 12 EED2-TP-125, Rev. 01

Tooling and Standards

Compatibility with Existing Tools

We looked at interoperability with the following common tools and libraries:

● Panoply
● gdal
● nco
● Jupyter / xarray
● ArcGIS
● QGIS
● OPeNDAP

In each instance, we only looked at current (as of the time of this writing) support for the format
either through the tool’s binary distribution or readily available plugins.
For each tool, we gave three points if the tool could read the format over a network with only
partial downloads, one point if the tool could read the format only after a full download, and no
points if the tool could not read the file. The former two number weights are configurable in the
accompanying spreadsheet referenced in Appendix B. We then normalized the resulting points
on a scale from 1 to 9.
For the tools investigated, NetCDF-4has universal support, but also universally requires either a
full-file download before reading the files or an OPeNDAP server in front of the files to allow
partial reads. The prevalence of tool compatibility with OPeNDAP makes the case for NetCDF-
4much stronger than it would be for NetCDF-4alone, though we have no metrics as to what
percentage of users discover and use OPeNDAP when a full-file download is available.
GeoTIFF has the most support of network-based access of any of the formats with the tools
investigated. Only two of the tools listed do not support reading the format (Panoply and nco),
both of which were purpose-built for working with NetCDF.
Parquet and Zarr both currently focus on strong support for particular software, having matured
alongside Hadoop and the Zarr Python library, respectively. Neither has particularly strong tool
support among those listed, however, Parquet has a notable advantage of being supported by
S3 Select queries, and Zarr will be readable from the NetCDF-4API in the future.
The notable outlier in this comparison is HDF in the Cloud. Currently the only software that is
able to read HDF in the Cloud is The HDF Group’s Highly-Scalable Data Service (HSDS)13F14 and
their proprietary Kita server.14F15 While many clients, such as xarray, appear to be able to read
data exposed by HSDS through the HDF5 REST API using the h5pyd Python package, this is
not a fair comparison since, for example, we are not factoring in how many clients would be able
to read GeoTIFFs exposed by GeoServer15F16 using WMS or how many clients would be able to
read NetCDF-4(HDF5) files exposed by Hyrax16F17 using OPeNDAP. This comparison only
covers file formats not file formats plus server software.

14 https://github.com/HDFGroup/hsds
15 https://www.hdfgroup.org/solutions/hdf-kita
16 http://geoserver.org/
17 https://www.opendap.org/software/hyrax-data-server

https://github.com/HDFGroup/hsds
https://www.hdfgroup.org/solutions/hdf-kita
http://geoserver.org/
https://www.opendap.org/software/hyrax-data-server

 13 EED2-TP-125, Rev. 01

Open Specification

All of the formats we investigated have open specifications. We compare governance of the
specifications in “Standards-Body Approval.” For this section, we looked at facets of the
specification documentation that would impact an adopter’s ability to understand, troubleshoot,
and if necessary produce a compatible tool to read the standard’s data, all of which impact the
viability of the standard as an archival format.
Importantly, this meaning must be factored into the weight given to this category. While not
being an open standard may be disqualifying for a format, none of the formats fall into that
category. The distinctions we make in this category come down to documentation and
specificity, which are more nuanced distinctions.
All formats fared well in this category, with documentation that is specific and formal enough to
reproduce a reader for the format if necessary. Both Parquet17F18 and Cloud Optimized
GeoTIFF18F19 fared slightly better, Parquet due to its clear diagrams and descriptions to aid in a
thorough understanding of the format, and Cloud Optimized GeoTIFF due to it having an
associated test script to validate conformance to the standard. 19F20

Independent APIs

A key question for each of the formats evaluated is how dependent a format is on a specific
library implementation. We looked into the number of independent libraries for reading and
writing for each format. In addition we considered if the main library used for the format were to
disappear, how difficult would it be to implement another library in its place.
All libraries implementing reads and writes for HDF5 files utilize the same underlying libraries
provided by the HDF Group. For the HDF in the cloud format the libraries that are used all rely
on an HSDS server in order to perform reads. There is a JSON metadata file stored along with
the inflated HDF file contents in S3 that should make it possible to write an independent library
to read the file, however the same cannot be said for writes. The NetCDF-4 format also uses
one main implementation for reading and writing files provided by Unidata.
GeoTIFF files mainly utilize the libgeotiff library for performing reads or writes, but other libraries
have been built which can read GeoTIFF20F21. The TIFF standard on which GeoTIFF is built has
many independent implementations, and any conformant TIFF implementation can read
GeoTIFF though likely will not interpret its metadata tags.
Zarr also provides one main library supporting reads and writes for the Zarr format. There is
active development with the start of independent implementations and an evolving open file
format specification, which increases the likelihood of multiple independent libraries available in
the future.

18 See documentation at https://github.com/apache/parquet-format
19 See documentation at https://github.com/cogeotiff/cog-spec/blob/master/spec.md

20
https://github.com/OSGeo/gdal/blob/master/gdal/swig/python/samples/validate_cloud_optimized_geotiff.p
y
21 Pure Java implementation by UCAR: http://rhinohide.org/rhinohide.cx/co2/spatial-
analyst/scripts/GeoTiffDataReader.java
Apache Commons Imaging: https://commons.apache.org/proper/commons-imaging/index.html

https://github.com/apache/parquet-format
https://github.com/cogeotiff/cog-spec/blob/master/spec.md
https://github.com/OSGeo/gdal/blob/master/gdal/swig/python/samples/validate_cloud_optimized_geotiff.py
https://github.com/OSGeo/gdal/blob/master/gdal/swig/python/samples/validate_cloud_optimized_geotiff.py
http://rhinohide.org/rhinohide.cx/co2/spatial-analyst/scripts/GeoTiffDataReader.java
http://rhinohide.org/rhinohide.cx/co2/spatial-analyst/scripts/GeoTiffDataReader.java
https://commons.apache.org/proper/commons-imaging/index.html

 14 EED2-TP-125, Rev. 01

The Parquet format has the most independent implementations of all of the file formats. Apache
provides the main Java and C++ implementations, but there are independent implementations
in other languages including Python, Go, Rust, and many others. It is an open standard and
includes a parquet-compatibility project, which can be utilized to verify an implementation.

Programming Language Support

We evaluated each of the formats based on programming language support for C, C++, Fortran,
Python, and R.
NetCDF, HDF5, and GeoTIFF have libraries to support reading and writing in all five of the
languages. However, as mentioned previously HDF in the Cloud does not support directly
accessing the data in S3 without using an HSDS server, so the format itself does not have
programming language support.
Parquet has direct library support for each of the languages with the exception of Fortran.
However, given that Parquet has a C library, Fortran can still be used with C interop.
Zarr was the main outlier for programming language support. Zarr was initially developed using
Python and the community is starting to add support for other languages. C++ is fully supported,
and there is extensive discussion of adding C support with a library currently in development.
There’s also the start of a library for R though it is far from complete. There are no discussions
regarding a Fortran library, which would again mean that Fortran developers would need to use
C interop once the C library is ready or use the NetCDF-4API once it is adapted to support Zarr.

Standards-Body Approval

For this category, we looked at standards body approval, but in the absence of that approval,
we additionally looked for a clear governance model for the standard.
GeoTIFF was a stand out in this category, as it is not only an OGC standard,21F22 but it is built on
and compatible with TIFF, which itself is an ISO standard22F23 that has been unchanged apart
from metadata and representation conventions since 1992, being vetted in software readers
present in nearly every consumer operating system since then. As all Cloud Optimized
GeoTIFF files adhere to the GeoTIFF standard, we consider them to have the same level of
standards body approval. NetCDF-4is also an OGC standard format23F24.
Neither Parquet nor HDF in the Cloud have standards body approval, but both have clear
owners and stewards in the Apache Foundation and HDF Group respectively.
Zarr does not have any clear ownership or governance model24F25. It is community-developed
and owned, and, while its contributing guidelines note that the maintainers will be conservative

22 https://www.opengeospatial.org/standards/geotiff
23 https://www.iso.org/standard/34342.html
24 Although a public announcement by OGC is pending, the 18-043r3 OGC Hierarchical Data Format
Version 5 (HDF5®) Core Standard has passed the entire OGC standard adoption process. Contact: Scott
Simmons OGC Chief Operations Officer (ssimmons@ogc.org)
25 Zarr is “Copyright (c) 2015-2018 Zarr Developers” https://github.com/zarr-developers/zarr-
python/blob/ebf67f59bacabc50d0a2361a064b472730e6b1a4/LICENSE#L3 with governance
documentation that is empty at the time of this paper https://github.com/zarr-
developers/governance/tree/1196116411f542d7cfe4879c947ccfee77b5b999

https://www.opengeospatial.org/standards/geotiff
https://www.iso.org/standard/34342.html
https://github.com/zarr-developers/zarr-python/blob/ebf67f59bacabc50d0a2361a064b472730e6b1a4/LICENSE#L3
https://github.com/zarr-developers/zarr-python/blob/ebf67f59bacabc50d0a2361a064b472730e6b1a4/LICENSE#L3
https://github.com/zarr-developers/governance/tree/1196116411f542d7cfe4879c947ccfee77b5b999
https://github.com/zarr-developers/governance/tree/1196116411f542d7cfe4879c947ccfee77b5b999

 15 EED2-TP-125, Rev. 01

in accepting changes, its criteria for incorporating change and stability are unspecified. Based
on this, it receives the lowest possible score.

Ability to Comply with Metadata Conventions

In this category, NetCDF-4(and HDF by extension) is a clear choice based on the fact that CF
conventions were built to work with the format25F26 and it has ample additional metadata fields
relevant to the Earth Science domain. Zarr has fields that allow capturing CF-compliant
metadata and has plans to be readable by the NetCDF-4API in the future, allowing it to fully and
compatibly expose those fields in the future.
Parquet has adequate fields to store metadata on variables and units26F27, however we can find
no accepted convention for the naming of those fields, nor any widespread community use, so
existing conventions would need to be extended to the format.
GeoTIFF and Cloud Optimized GeoTIFF fare the worst in this category. While they support
named layers, which could follow existing conventions, they do not provide a widely-adopted
way to express unit information for individual layers. Further, GeoTIFF metadata is capped at a
relatively low size (32000 bytes for those produced by GDAL27F28) necessitating offloading the
metadata to sidecar “PAM” files which need to be distributed separately from the data file itself.
This can make it relatively difficult to deliver metadata to users even when it is present.

Cost Factors

The “Performance Benchmarking” portion of this study describes specific factors that impact
cost, including relative data sizes for each format, time spent performing various operations
against data, and the amount of data accessed for those operations. While this is a significant
step toward an overall cost picture, we choose not to assign precise dollar figures due to ill-
defined operational costs and egress costs associated with accessing data that was processed
in the cloud. Numbers not including these factors (in the accompanying spreadsheet in
Appendix B) reveal that cloud-optimized formats do generally cost less to process and / or
distribute than similarly-sized non-optimized formats, often significantly so. Of potentially more
interest, we note that with some use cases and data types, the cost of processing in the cloud
may be substantially more than the cost incurred by allowing users to directly access the data in
an optimized format. This is not universal, but it is significant enough that it merits more
detailed analysis when producing specific data products and services.

Performance Benchmarking

Methodology
After evaluating qualitative criteria, we perform a set of benchmarks to illuminate high-level
differences in operational characteristics between netCDF, GeoTIFF, Cloud-Optimized

26 “CF Conventions Home Page,” accessed November 13, 2019, http://cfconventions.org/
27 See column metadata: https://github.com/apache/parquet-format#file-format
28 “gdal/geotiff.cpp · OSGeo/Gdal,” GitHub, accessed November 13, 2019,
https://github.com/OSGeo/gdal/blob/7d9482a63266c5ceb174f0ccfd4c23a10b258bde/gdal/frmts/gtiff/geoti
ff.cpp#L11690

http://cfconventions.org/
https://github.com/apache/parquet-format#file-format
https://github.com/OSGeo/gdal/blob/7d9482a63266c5ceb174f0ccfd4c23a10b258bde/gdal/frmts/gtiff/geotiff.cpp#L11690
https://github.com/OSGeo/gdal/blob/7d9482a63266c5ceb174f0ccfd4c23a10b258bde/gdal/frmts/gtiff/geotiff.cpp#L11690

 16 EED2-TP-125, Rev. 01

GeoTIFF, and Zarr stored in AWS S3 and accessed both from an AWS and a non-cloud
environment.
Producing benchmarks which exhaustively compare both use cases and data collections for
each file would be infeasible, so we chose to focus on four high-level access patterns, across
four common data types.

File Types and Formats Used
We used the following file types, with the specified formats for each type

● Gridded with global coverage where the grid aligns to latitudes and longitudes
(3IMERGHH), NetCDF-4(native), Zarr, and Cloud-Optimized GeoTIFF

● Gridded with tile coverage where the grid does not align to latitudes and longitudes
(MOD11A2), GeoTIFF (Converted from native by HEG) and Cloud-Optimized GeoTIFF

● Two-dimensional swath (AVHRR19_G-NAVO), NetCDF-4and Zarr
● One-dimensional point cloud (ATL03 v209), NetCDF-4and Zarr

We obtained and staged several (90 to 912) granule files from each collection above in Amazon
S3. For our tests of NetCDF-4and non-optimized GeoTIFF, we performed no transformation or
optimization on the source file as obtained from the archive.
We then converted each granule file into the desired optimized formats and staged those in
Amazon S3. When converting NetCDF-4to Zarr, we used a library28F29 which preserved the
hierarchical format and metadata of the original. Where possible, we retained the chunk sizes
of the original file. We used the default Zarr compression, Blosc. We found it necessary to
consolidate the Zarr file’s metadata for performance. This operation, with a convenience
method in the Zarr API, traverses the Zarr hierarchy and produces a top-level file containing the
metadata of each sub-directory and file.
When converting from GeoTIFF to COG, we used the one-line gdal_translate command
provided in the COG developer’s guide (https://www.cogeo.org/developers-guide.html).
As described in our methodology, each test we ran produces a numeric result that ensures the
data read is consistent between formats, and indeed this illuminated a bug in our NetCDF-
4processing for AVHRR19_G-NAVO that we were able to resolve.

Access Patterns Tested
While we chose realistic, meaningful use cases where possible, we focused on realistic byte
access patterns rather than suitability for any scientific use. We compared the following
operations for each file type and format.

● Report the value of a single point at a consistent array index within each file, slightly off-
center. This amounts to a time series for grid-aligned data, given our file organization.
For swath and point cloud data, this pattern is not as useful but we run it nonetheless to
provide more data points on single-index access.

● Average points across a spatial subset for a parameter in each input file. We chose
slightly irregular spatial subsets so that many useful data bytes could be fetched
together but they wouldn’t constitute a simple rectangle within the file’s representation.

29 https://github.com/bilts/netcdf-to-zarr

https://www.cogeo.org/developers-guide.html
https://github.com/bilts/netcdf-to-zarr

 17 EED2-TP-125, Rev. 01

We averaged them and reported the answer to ensure the data had been read fully and
correctly.

● Grid or re-grid each input file. Report the average of all the output points for validation.
For swath and point cloud files, align the data to a 500x500 pixel plate carree / WGS84
grid using nearest neighbor interpolation. For gridded files, project the input file to a
Mollweide projection centered on Greenwich.

● (Gridded only) Compare a parameter across two input files and produce a resulting array
that contains the maximum valid value at each input point. Report the average of all the
output points for validation.

Wherever possible, the benchmarking code used identical configuration, algorithms, and code
paths, with the only distinction being the format driver. We did this using xarray as an
abstraction layer over the underlying zarr, rasterio (GeoTIFF), and h5py (HDF5 / NetCDF)
libraries.

Measurements
For each access pattern executed on each file type and format, we measure the following:

● Time to perform the operation from a c4.xlarge instance (4 vCPUs and 7.5 GB of
memory) running in AWS in the same region as the data. This instance type provides a
reasonable balance of CPU performance, network performance, and price. This
simulates in-cloud services and usage.

● Time to perform the operation from a computer (2.8GHz Core I7 MacBook Pro with
16GB of RAM) fetching the data across the Internet. This simulates non-cloud usage.

● Number of requests made to Amazon S3 in performing the operation, which has both a
cost and performance impact.

● Number of bytes transferred from Amazon S3 in performing the operation, which has
both a cost and performance impact.

● Number of bytes consumed by the data staged in Amazon S3, which impacts cost.

We further note any challenges encountered with file formats or libraries when performing the
tests for qualitative comparison.

Results

Note: The full numeric quantitative results are available in a spreadsheet delivered alongside
this paper

 18 EED2-TP-125, Rev. 01

Benchmark Execution Time

Note that for ATL03, we encountered errors in attempting to process HDF5 data in situ which
did not occur when downloading the data. The above time represents the time to download the
entire dataset within AWS plus a small delta for processing. We did not attempt full downloads
for non-cloud access.

Benchmark Execution Time - 31MERGHH (Global Grid)

• COG • NetCDF • Zarr

20

~
15

-= --~
10 Q)

E
t=
C
,Q 5 :,
(.)
Q)
X

LU

0
Area Mult i-File Regrid Single Area Mult i-File Regrid Time

average point read average (AWS) (AWS) series
(AWS) (AWS)

Benchmark (Run in and out of AWS)

Benchmark Execution Time - ATL03 (Point Cloud)

NetCDF (Errors) Zarr

50

-40 -
Q)
i;:

~
30

-Q)

E -
t= 20
C
0
:g --u

10 Q)
X
w

0

>-

fl r--,
,--

Area average Regrid Single point Area average Regrid (AWS) Single point
read (AWS) read (AWS)

Benchmark (Run in and out of AWS)

 19 EED2-TP-125, Rev. 01

Benchmark Execution Time -AVHRR_G-NAVO (Swath)

• NetCDF • Zarr

50

!!:,,
Q)

E
i=
C
0

~ u
Q)
X
w

40

30

20

10

0
Area average Regrid Single point Area average Regrid (AWS) Single point

read (AWS) read (AWS)

Benchmark (Run in and out of AWS)

Benchmark Execution Time - MOD11A2 (Tile Grid)

Q)

E

2.5

2

1.5

F 1
C
0

5
~ 0.5
w

0

• COG • GeoTIFF (non-COG)

Area Multi-File Regrid Single Area Multi-File Reg rid Single
average point read average (AWS)

(AWS)
(AWS) point read

(AWS)

Benchmark (Run in and out of AWS)

 20 EED2-TP-125, Rev. 01

Percentage of Bytes Accessed

To better understand the overall access patterns and egress costs associated with in situ data
processing, we report the number of bytes accessed as a percentage of the total file size, where
100% means the entire file was read in order to perform the processing.

Percentage of File Size Read - 31MERGHH (Global Grid)

• COG • NetCDF • Zarr

100%

Q)
N ·en
~ 75%
ro
:§
.8
-o 50%
ro
~
en
Q)

>,
.c

0
0

25%

~
0::

0%----• =
Area average Multi-File Regrid

Use Cases (Run in and out of AWS)

Single point read

 21 EED2-TP-125, Rev. 01

Note that for ATL03, we encountered errors in attempting to process data in situ which did not
occur when downloading the data. The above chart represents a full download of the data, as
would be necessary for end users to overcome this error.

Percentage of File Size Read - ATL03 (Point Cloud)

NetCDF (Errors) • Zarr

100%

Q)
N
"cii
_gi 75% ;;::

76
:§
.8
-0 50% ro
~
en
Q)

>,
.c 25%
0
0

~
0::

0% I 11 I l
Area average Regrid Single point read

Benchmark

Percentage of File Size Read -AVHRR_G-NAVO (Swath)

Q)
N
"cii

100%

~ 75%
76
:§
.8
-0 ro
~
en
Q)

>,
.c
0
0

~
0::

50%

25%

Area average

• NetCDF • Zarr

Regrid

Benchmark

Single point read

 22 EED2-TP-125, Rev. 01

Note that for the single point read use case, Zarr is represented on the above chart but only
accessed 0.13% of the total file size, causing it to not appear in that column.

File Size

The following chart represents the average file size using default transformation settings, with
no attempt to alter or optimize compression.

Percentage of File Size Read - MOD11A2 (Tile Grid)
• COG • GeoTIFF (non-COG)

Q)
N
'ui

100%

a> 75%
i;:

~
.8
"'O
ro
~
VI
Q)

>,
.0 -0
0

~
0::

50%

25%

Area average Multi-File Regrid Single point read

Benchmark

 23 EED2-TP-125, Rev. 01

When comparing file sizes, we again note the use of default compression settings. This
resulted in a substantial increase in file size for Zarr for two collections and a dramatic decrease
on a third collection. We recommend a more thorough analysis of the impact of compression on
file size and performance, though this is generally an orthogonal concern to format, as most
formats support multiple compression types.

Usability Findings During Benchmarking

We encountered the following challenges in making use of the data during tests:

Lack of GDAL Support
We would have liked to have tested operations run by GDAL. GDAL, however, does not yet
have a Zarr driver. It further does not yet support reading NetCDF-4files from Amazon S3.
Because of this, we chose not to make use of it for any format, despite it being a popular tool
and providing much simpler and likely faster regridding operations than we ultimately used.

Errors in NetCDF-4/ HDF Libraries
We encountered the following errors while using NetCDF-4files:

● AVHRR19_G-NAVO: “RuntimeError: Unspecified error in H5DSiterate_scales (return
value <0)” We encountered this cryptic error preventing us from opening any files when
running on Amazon Linux (based on CentOS). We resolved it by downloading the HDF5
binaries and development headers and recompiling the h5py library from source.

File Size

125

100

en 75
£>.,
(I)
N
u5 50
_gi
u:::

25

0

• COG • GeoTIFF (non-COG) • NetCDF • Zarr

3IMERGHH
(COG, HDF5, Zarr)

ATL03
(HDF5, Zarr)

AVHRR19 G-NAVO MOD11A2
(HDF5, Zarr) (COG, GeoTIFF)

Data Collection

 24 EED2-TP-125, Rev. 01

● ATL03: Out of memory area during the shape based averaging benchmark. While we
were able to successfully run the benchmark against some of the files, we were not able
to run the complete benchmark against all of the ATL03 files. The EC2 instance we used
had 7.5GB of memory, but for at least one of the test files we saw that all of the memory
on the instance was used and the python benchmark script errored out.

● We encountered a memory leak when performing time series analysis on AVHRR19_G-
NAVO, which caused our test process to abort as the system ran out of memory.
Debugging this uncovered an efficiency gain we could apply to this test case across all
formats, but the underlying leak still exists.

Necessary Performance Tuning for NetCDF-4/ HDF
NetCDF-4and HDF require tuning of xarray’s block size parameter, which describes the
minimum number of bytes to be read from S3 per call. The parameter is intended to allow
sequences of reads of nearby data to avoid repeated network requests. The default value of
this parameter, 5MB, caused pathologically bad behavior for NetCDF; doing an area average of
a single parameter in a single variable in a single file egressed approximately ten times the
number of bytes contained in the file and took two and a half minutes to perform. Users simply
opening a remote file would encounter this behavior. We tuned the block size parameter,
though optimal performance would require re-tuning it for each use. We found 5KB provided
nearly optimal speed while keeping network traffic relatively low and used that for our tests. It is
worth noting that the value for optimal performance is different from the value for optimal
network usage (cost) and users can tune the parameter or fail to tune the parameter to the
detriment of the archive.

Performance Influencing Usage Choices
While producing and debugging code for non-optimized formats, we found ourselves iterating on
the code while using an optimized format and only using the non-optimized format when
changes worked on the optimized format. The development experience changed dramatically
when code could be run in a couple of seconds rather than tens of seconds. This would
translate to easier algorithm iteration by end users.

Additional Considerations
While researching this study, we encountered additional factors to consider when choosing a
format which do not lend themselves to a straightforward scoring approach. We capture them in
this section.

File Packaging and Benchmarking
While choice of format has inherent performance implications, decisions made when packaging
files can be highly impactful. Further, there is no one-size-fits-all packaging for data, as the
optimal packaging is highly use-case dependent. In general, files should be arranged such that
an operation can access the data of interest and only those data in either as few requests as
possible (for typical bandwidth-constrained end-user machines) or several highly-parallel
requests (for HPC and highly scalable systems). To do this, those packaging files should

 25 EED2-TP-125, Rev. 01

maximize spatial locality of reference, i.e. arrange files such that bytes typically read together
are in contiguous blocks in the file, and that any block or chunk sizing allows for reading those
bytes in a small number of requests without extraneous data being read.
These packaging considerations constitute trade-offs that may favor some use cases over
others. Optimizing for time-series analysis at a particular location may favor placing temporally
proximate data close to one another on disk for each latitude and longitude with less concern for
keeping nearby latitudes and longitudes close to one another on disk. Optimizing for spatial
analysis at a particular time would do the opposite. Further, even optimizing for spatial access
may produce greatly differing file structures depending on whether users typically have a small,
large, or global area of interest; file structures allowing a large area to be loaded in a single read
tend to require loading small areas to read significant extraneous data, while file structures
minimizing extraneous reads for small areas tend to produce a high number of requests and
subsequent manipulation when reading large areas.
Because of this variance in file structure, we recommend that, when performance and network
access patterns are a concern, tests capturing typical use cases be run on a per-collection level
to inform packaging decisions, if not format decisions.

Server Software
Server software, in particular OPeNDAP and HSDS / Kita, may alter the user-facing
performance characteristics and tool support for some formats, particularly NetCDF-4, HDF5,
and HDF in the Cloud. Both OPeNDAP and HSDS optimize for network-based partial reads
and take advantage of parallelism in cloud environments. This effectively allows tools which
often otherwise require whole-file downloads for NetCDF-4 and HDF5 to instead take advantage
of partial file access done efficiently near the data.
While coupling the data to server software can make the underlying formats faster and easier
for end-users to work with, it comes with increased operational complexity and potentially cost.
In order for a user to gain the benefits of these formats, users must rely on an organization to
operate instances of the server software, with appropriate scaling, monitoring, and maintenance
for both the underlying software as well as (in many cases) the operating system running it. We
do not attempt to characterize operational staffing costs or the cost of additional computing
power other than noting that it is certainly present when relying on servers to mediate data
access.
Alternately, users can reap the benefits of natively cloud-optimized formats by pointing libraries
directly at the object stores which are already storing and serving cloud-based archives with no
additional server software necessary.
For the purposes of this study, therefore, we separated the presence of such server software
from the characteristics of the underlying format.

Other Formats
We note that, while the studied formats are among the most popular for storing and
manipulating Earth observation data, other potentially beneficial formats exist. In this section,
we note a few that may be situationally useful or otherwise worth watching.

 26 EED2-TP-125, Rev. 01

JPEG 2000 with JP2 Georeferencing

JPEG 2000 is an ISO standard with an OGC standard for metadata georeferencing. It has a
lossless compression mode using a wavelet-based method that can have different, often
compelling compression ratio characteristics compared to the formats studied. The wavelet-
based storage also inherently supports progressive rendering, allowing previews of data during
access, efficient overview creation, and potentially lower bandwidth usage.
On the other hand, JPEG 2000’s open source drivers have some defects, are approximately 10
times slower than proprietary alternatives, with read characteristics that are potentially
problematic for cost in cloud environments.29F30 The fast proprietary drivers, though, demonstrate
that better performance is possible. It may be worthwhile to investigate the benefits of the
format and whether the cost savings from compression gains would make an investment in
improving the open source driver worthwhile.

Point Cloud Formats (Entwine Point Tile and others)

While most of the formats investigated are well-suited to array-based data, we note the
existence of formats that are better suited to fast analysis of point cloud data. Because they are
specialized to this particular use and tend to be somewhat niche, we did not include them in this
study. An example here is Entwine Point Tile30F31 which is a format that stores point clouds in an
octree. This allows high spatial locality of reference while also enabling tools to visualize the
point cloud at different levels of detail, two features which all formats we investigated would
struggle to duplicate.

TileDB, Meta Raster Format (MRF), Cloud Raster Format, and Similar

We note the existence of several formats which are functionally very similar to Cloud-Optimized
GeoTIFF, in that they are being optimized for access of multispectral data and are typically
organized into tiles. TileDB31F32, Meta Raster Format (MRF)32F33, and ESRI Cloud Raster
Format33F34 are examples. While none of these formats have a level of adoption comparable to
Cloud-Optimized GeoTIFF, the existence of several implementations optimizing access to
multispectral data suggests that we should consider monitoring the format landscape in the
future for new developments. It should also be noted that ESDIS has experience with MRF as
part of the Global Image Browse Services (GIBS).

30 Chris Tweedie, “JPEG 2000 Is Slow … Or Is It? ...,” Sensing Change Blog, last modified December 28,
2015, accessed November 19, 2019, https://blog.hexagongeospatial.com/jpeg2000-quirks/.
31 See https://entwine.io/entwine-point-tile.html
32 https://tiledb.com/
33 https://github.com/nasa-gibs/mrf
34 https://pro.arcgis.com/en/pro-app/help/data/imagery/supported-raster-dataset-file-formats.htm#GUID-
73EFF808-12B0-4434-B3C3-4BA8423B64FE

https://blog.hexagongeospatial.com/jpeg2000-quirks/
https://entwine.io/entwine-point-tile.html
https://tiledb.com/
https://github.com/nasa-gibs/mrf
https://pro.arcgis.com/en/pro-app/help/data/imagery/supported-raster-dataset-file-formats.htm#GUID-73EFF808-12B0-4434-B3C3-4BA8423B64FE
https://pro.arcgis.com/en/pro-app/help/data/imagery/supported-raster-dataset-file-formats.htm#GUID-73EFF808-12B0-4434-B3C3-4BA8423B64FE

 27 EED2-TP-125, Rev. 01

Conclusions

Overarching Recommendations
Regardless of selected format and compression algorithm, data providers should optimize files
for partial access over HTTP using the Range header, which is the underlying mechanism used
to retrieve data from cloud-based object stores but is also possible to use from a variety of
systems, including on premises servers. Doing so can improve performance for services and
end users, decrease costs and system demands, and simultaneously improve user experience
and enable new access patterns for a given format and compression choice. Our quantitative
benchmarks on GeoTIFF vs Cloud-Optimized GeoTIFF showed this to be a win-win situation
having at worst comparable performance and cost profiles and in most cases dramatically
improving both.
That all said, it is clear from this study that the choice of format and compression itself is critical
for enabling archival integrity, broad tool support, and fast, cost-effective use. We find no one-
size-fits-all solution but offer some broad guidelines to inform choices for specific needs.

Format Comparisons
We have provided a weighted matrix informing decision making about file formats for general
use, with configurable weights based on desirable attributes. Because we do not supply these
weights, we do not attempt to form a conclusion about a single best format choice. While some
decisions seem relatively straightforward, like the choice of Cloud Optimized GeoTIFF over
standard GeoTIFF when a TIFF is desired, other format decisions require more nuanced trade-
offs. To help understand those trade-offs, we recognize a few themes that would make formats
more or less appropriate for a particular use, summarized here.

Long-Term Archival Formats
Long-term archival use emphasizes the need for a stable, self-describing, standard format,
preferably with multiple reader implementations, which can be checked for integrity. It also
emphasizes optimal disk usage over performance. Finally, it relies heavily on portability, i.e. the
ability to move files between different storage options and access them in places other than
their original storage location. The combined needs for portability and integrity checking tend to
favor formats in which files are self-contained rather than spread between objects in an object
store, as unitary files can be readily and atomically moved, checksummed as a whole, and are
typically easier to conceptualize. COG, GeoTIFF, and NetCDF-4are forerunners here, with the
latter having an edge in being able to accommodate more metadata and more different types of
data. Zarr is particularly weak in this category, as its format is not recognized by any standards
body and may evolve over time, and a single Zarr file tends to be spread across objects in an
object store, weakening direct portability via copying objects (though notably the Zarr library
supports storage backends such as zip that are individual files).

Multispectral Data Formats
Cloud Optimized GeoTIFF specializes in structuring and displaying imagery (or, layers of two
dimensional arrays) in a single file. It has a wide range of tooling, both for its Cloud Optimized
variant as well as the GeoTIFF and TIFF standards it is based on. It has very few down-sides

 28 EED2-TP-125, Rev. 01

as both an archival and analysis-ready format for this type of data, the most noteworthy of which
is its reliance on sidecar files for capturing large amounts of metadata, which slightly
compromises its self-describability and ease of archival.

Multidimensional Array Data Formats
NetCDF, Zarr, and HDF in the Cloud all natively store hierarchical multidimensional array data,
making them appropriate for data with more than two dimensions. Of these, Zarr stands out for
an analysis-ready format for the Cloud, as it provides performance optimized for a network
environment in a way that requires no specialized server software. NetCDF-4lacks some of the
network optimization, while HDF in the Cloud requires specialized server software. See the
“Long-Term Archival Formats” section above for reservations about Zarr as an archival format.

Specialized Data Formats
Parquet has potentially strong uses for particular data types and particular types of analysis on
common data types. Among the formats studied, it is uniquely suited to database- or
spreadsheet-style data. It also has fast yet powerful query capabilities with SQL-like interfaces,
some of which, like Amazon Athena, are serverless and operate at scale. These interfaces
make it very useful for analysis requiring simple mathematical operations such as arithmetic,
minimums, maximums, and averages. The fact that it is not structured to support array-based
data, while a weakness in dealing with spatial operations, can be a strength in providing even
performance across both spatial and time series analysis for the same dataset.
The strength of Parquet in these circumstances underscores a salient conclusion: it is important
to match the file format and internal data structure to the most important usage patterns. These
usage patterns may differ between products and there may be multiple important usage
patterns for a single product. As such, the ability of an organization to meet their user’s needs
may be less about finding the singular optimal data format and more about the organization’s
ability to stage select, highly used data in multiple different formats simultaneously.

 29 EED2-TP-125, Rev. 01

Recommended Follow-On Work
This study constitutes an overview of some available network-optimized file formats with
benchmarks against a handful of disparate datasets using consistent conversion, compression,
and representation settings. We note several potential lines of study which are not in scope for
this effort but nonetheless may aid in decision making about file formats:

1. Operational trials against real data for select users. Provide and publicize an alternative
access format to users of an existing dataset. Use metrics to determine the actual cost
of storage, compute, and egress against their real use cases and quantify usability by
allowing users to vote with their feet. Reach out to other organizations and entities that
may have such metrics.

2. Total cost analysis of formats and of in-cloud services vs non-cloud partial file access.
The study data contains significant useful information in looking at the total cost to
provide data for given use. To provide a better cost analysis, we would need to look at
operational costs of maintaining server software and egress costs in delivering service
responses to users.

3. Store collections as a single logical file, in Zarr and NetCDF-4in particular, and
investigate the impact on ingest time and benchmarks. Zarr allows appending time data
or ranges of time data without overwriting the dataset. NetCDF-4allows this as well but
the underlying object store would require overwriting the entire dataset. This change in
representation would likely improve time series performance while potentially negatively
impacting fitness for archival use, spatial performance, and ability to search and select
temporal data from non-temporal metadata.

4. Repeat the study, focusing on server software that enables faster access across a wide
range of tools instead of focusing on formats. OPeNDAP and The HDF Group’s Kita
software both provide compelling cases for their use but ought to be examined for
operational cost, scalability, and performance compared to simpler access methods.

Additionally, the analysis may be extended with more use cases, more data formats, and more
file structure optimizations of original and network-optimized formats.

 30 EED2-TP-125, Rev. 01

Appendix A: Acronym List
API - Application Programming Interface
ArcGIS - Aeronautical Reconnaissance Coverage Geographic Information System
CF - Climate and Forecast Metadata Conventions
COG - Cloud Optimized GeoTIFF
EOSDIS - Earth Observing System Data and Information System
GDAL - Geospatial Data Abstraction Library
GeoTIFF - Georeferenced Tagged Image File Format
GIBS - Global Image Browse Services
HDF - Hierarchical Data Format
HDFS - Hadoop Distributed File System
HPC - High Performance Computing
HSDS - Highly Scalable Data Service
HTTP - Hypertext Transfer Protocol
JP2 - JPEG 2000
JPEG - Joint Photographic Experts Group
JSON - JavaScript Object Notation
ISO - International Standards Organization
MRF - Meta Raster Format
NCO - NetCDF-4Operators
NetCDF-4- Network Common Data Form
OGC - Open Geospatial Consortium
OPeNDAP - Open-source Project for a Network Data Access Protocol
PAM - Persistent Auxiliary Metadata
QGIS - Quantum Geographic Information System
TIFF - Tagged Image File Format
W3C - World Wide Web Consortium
WMS - Web Mapping Services

 31 EED2-TP-125, Rev. 01

Appendix B - Scoring Justification and Notes

Additional details regarding how scores were determined can be found at the spreadsheet
below. It also contains raw data from the quantitative analysis results:

https://docs.google.com/spreadsheets/d/11mCu6-Ql7LBnoIPk29yJcNoFKi-
CdlOrUTLhyU5e5dc/edit?usp=sharing

https://docs.google.com/spreadsheets/d/11mCu6-Ql7LBnoIPk29yJcNoFKi-CdlOrUTLhyU5e5dc/edit?usp=sharing
https://docs.google.com/spreadsheets/d/11mCu6-Ql7LBnoIPk29yJcNoFKi-CdlOrUTLhyU5e5dc/edit?usp=sharing

	Table of Contents
	Introduction
	Purpose

	Approach
	Summary of Formats Studied
	Formats in Use
	Network-Optimized Formats

	Methodology
	Weighted Matrix

	Evaluated Criteria - Weighted Matrix
	Evaluated Criteria - Details
	Usability
	Support for Fine-Grained Access
	Support for a Variety of Data Types and Structures
	Data Integrity
	Self-describability

	Tooling and Standards
	Compatibility with Existing Tools
	Open Specification
	Independent APIs
	Programming Language Support
	Standards-Body Approval
	Ability to Comply with Metadata Conventions

	Cost Factors

	Performance Benchmarking
	Methodology
	File Types and Formats Used
	Access Patterns Tested
	Measurements

	Results
	Benchmark Execution Time
	Percentage of Bytes Accessed
	File Size

	Usability Findings During Benchmarking
	Lack of GDAL Support
	Errors in NetCDF-4/ HDF Libraries
	Necessary Performance Tuning for NetCDF-4/ HDF
	Performance Influencing Usage Choices

	Additional Considerations
	File Packaging and Benchmarking
	Server Software
	Other Formats

	Conclusions
	Overarching Recommendations
	Format Comparisons
	Long-Term Archival Formats
	Multispectral Data Formats
	Multidimensional Array Data Formats
	Specialized Data Formats

	Recommended Follow-On Work

	Appendix A: Acronym List
	Appendix B - Scoring Justification and Notes

