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Observed Near-Surface Variability
Process studies (e.g., TOGA COARE, Arabian Sea Experiment, SPURS1)  clearly 
depict a diurnal cycle in surface temperature. Data from WHOI 
http://uop.whoi.edu/projects/projects.html

Remarks:
• Notice largest diurnal amplitude (>= 2C) in the first few meters (about 2m; red and 

blue lines).  
• Somedays show a small (<= 0.25C) diurnal warming even at 10- 15m depth, 

typically around 20m there is none. 
Issues:
• How to model such variability? Parameterize or sufficient vertical resolution in the 

model?
• Much of this variability is driven by solar radiation, hence frequent shortwave 

radiation flux is needed.
• Momentum stress due to surface winds and/or waves dissipate this variability, hence 

high frequency/resolution data is needed.
• Satellite measurements and turbulent air-sea fluxes are sensitive to near-surface 

temperature.

Atmosphere-Ocean Interface 
Layer (AOIL) of the NASA 
GMAO GCM
The NASA GMAO GCM is used for:
• Near-real time Weather Analysis and Prediction 

https://gmao.gsfc.nasa.gov/weather_prediction/
• Seasonal-Decadal Analysis and Prediction https://gmao.gsfc.nasa.gov/cgi-

bin/products/climateforecasts/geos5/S2S_2/index.cgi
• Reanalysis (atmospheric) https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/

Since 01/2017 the Weather Analysis and Prediction system resolves this 
surface variability (via modeling and  assimilation of AVHRR infrared brightness 
temperatures). See Akella et al, 2017 
http://onlinelibrary.wiley.com/doi/10.1002/qj.2988/full for description and 
Gentemann and Akella, 2018 https://doi.org/10.1002/2017JC013186 for 
validation.  The diurnal variability model was formulated and implemented for 
atmospheric GCM, with prescribed foundation SST that does not have diurnal 
variability. 

The present AOIL is a reformulation:
• Of the exchange of variables and fluxes across the air-sea interface, 

designed to work seamlessly within atmospheric and coupled GCMs.
• It models the near-surface variability; amplitude of the diurnal warming is 

improved from Akella et al., 2017 model. 

Akella and Suarez, 2018
NASA GMAO Tech Memo.

Validation
Offline model runs using the COARE bulk fluxes and measured temperatures from 
WHOI  http://uop.whoi.edu/projects/projects.html

SUMMARY
The AOIL has been implemented in the 
NASA GMAO models: both uncoupled 
(AGCM) and coupled GCM. 
Improvements to model near surface 
salinity are underway.
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Figure 1: Schematic of the temperature variation in the top layer (depth: D) of the OGCM. The
AOIL, or interface layer, (at depth, d, shown in dark gray) is above a foundation layer (shown
in light gray). Tw, Tf and To are the depth-averaged temperatures in the interface, foundation and
OGCM top layers, respectively. SWtop is the incident shortwave radiation at the top of the OGCM,
and the radiation that penetrates through the interface and foundation layers is denoted by SWd and
SWD respectively; the total contribution from the net longwave, latent and sensible heat fluxes at
the top of the interface layer are denoted by Q# and Fd is the local turbulent flux at the base of the
interface layer

.

In the interface and foundation layers, we assume that Tw and Tf evolve according to

d rw cw
∂Tw

∂ t
= SWtop �SWd + Q#

| {z }
=Qw

+ed QO �Fd , (7)

(D�d)rw cw
∂Tf

∂ t
= SWd �SWD| {z }

=Q f

+(1� ed)QO +Fd , (8)

where Qw = SWtop � SWd + Q#, Q f = SWd � SWD, rw and cw denote the density and heat capacity
of sea water and where Fd is the local turbulent heat flux at the base of the interface layer, which we
assume is dominated by turbulent motions within the top layer of the OGCM (to be parameterized
below). SW is the downward shortwave flux at the depth denoted by the subscript, and QO is the
total contribution of heat from mixing, transport, and (in sea-ice covered regions) the freeze-melt
potential computed by the OGCM. QO is assumed to be independent of depth within the topmost
OGCM layer. The total heating from non-solar surface fluxes is given by

Q# = LW # �LW "(Ts)�HS(Ts)�HL(Ts). (9)
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Figure 2: Details of the vertical variation of modeled temperature in the atmosphere-ocean interface
layer of depth, d. Tf is the foundation temperature, Td is the temperature at the top of the diurnal
warm layer, which has warmed by DTw from Tf . The skin SST, Ts is cooler than Td by DTc. Within
the cool-skin layer (depth: d ) the temperature is assumed to vary linearly, whereas in the warm
layer, it varies non-linearly; see text for details.
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Figure 3: Schematic illustrating the modeled temperature profile in the AOIL. During local day
time, in low wind conditions, positive DTw shifts the profile to the right. Whereas at night time or
high winds, DTw ⇡ 0, therefore Ts ⇡ Tf �DTc.

2.1 Turbulent heat flux at the base of the interface layer

Following ZB05 and ATS17, we assume that the turbulent heat flux at the base of the warm layer is
given by

Fd = �rw cw


K(z)

∂T
∂ z

�

z=d
, (17)

and using Eq. (12) and Eq. (14), we obtain

∂T
∂ z

����
z=d

= �µ
✓

Td �Tf

d �d

◆
⇡ �(1+ µ)

(Tw �Tf )

d
, (18)

so that Eq. (17) can be written in terms sT :
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Figure 2: Details of the vertical variation of modeled temperature in the atmosphere-ocean interface
layer of depth, d. Tf is the foundation temperature, Td is the temperature at the top of the diurnal
warm layer, which has warmed by DTw from Tf . The skin SST, Ts is cooler than Td by DTc. Within
the cool-skin layer (depth: d ) the temperature is assumed to vary linearly, whereas in the warm
layer, it varies non-linearly; see text for details.
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Figure 3: Schematic illustrating the modeled temperature profile in the AOIL. During local day
time, in low wind conditions, positive DTw shifts the profile to the right. Whereas at night time or
high winds, DTw ⇡ 0, therefore Ts ⇡ Tf �DTc.

2.1 Turbulent heat flux at the base of the interface layer

Following ZB05 and ATS17, we assume that the turbulent heat flux at the base of the warm layer is
given by

Fd = �rw cw


K(z)

∂T
∂ z

�

z=d
, (17)

and using Eq. (12) and Eq. (14), we obtain

∂T
∂ z

����
z=d

= �µ
✓

Td �Tf

d �d

◆
⇡ �(1+ µ)

(Tw �Tf )

d
, (18)

so that Eq. (17) can be written in terms sT :
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Schematic of the AOIL, embedded 
in the top layer of the ocean 
model

We solve for  σT = Tw − Tf

Fd = rw cw K(d)(1+ µ)
sT

d
, (19)

From similarity theory, the diffusivity at depth d can be written as:

K(d) =
k u⇤ d
f(z )

, (20)

where k is the von Karman constant, u⇤ =
q

tw
rw

is the friction velocity in water, tw is the magnitude
of the shear, and f(·) is an empirical similarity function operating on a non-dimensional measure of
stability, z , with f(0) = 1 (details follow in section 3). Using equations (19) and (20), Eq. (10) can
be rewritten as:

∂sT

∂ t
=

Qs
d rw cw

� 1
ts

sT , (21)

where the turbulent relaxation time for sT is given by

ts =
d2 (1� ed)

K(d)(1+ µ)
=

d (1� ed)f(z )

k u⇤ (1+ µ)
. (22)

To summarize the main computations, given Qs , we solve for the AOIL state variable sT using
equation (21). Td and Ts are obtained by solving equations Eq. (15) and (16), respectively.

In the future, the GEOS DAS will be an atmosphere-ocean CDAS. The present operational
version of the GEOS atmospheric DAS, though uncoupled to an ocean, uses the ATS17 based
atmosphere-ocean interface layer for SST diurnal warm and cool-skin layers and will switch to the
present formulation of AOIL to prepare for a future CDAS. Appendix C provides a few sugges-
tions and remarks regarding the possible replacement of the parameterized SST diurnal cycle in the
GMAO seasonal forecasting system with this formulation of the AOIL.

2.2 AGCM configuration

When the AOIL is exercised in the uncoupled, AGCM configuration, we simply ignore the Q f term
on the right-hand side of Eq. (10), i.e., Qs = Qw. We also neglect ed when calculating the relaxation
time-scale; therefore ts = d f(z )

k u⇤ (1+µ) . Finally, Tf is read in from an already existing dataset; using
(14) and (16) we calculate Td and Ts respectively. With the above simplifications we recover the
formulation given by ATS17 and ZB05. Given the nature of these simple modifications, which
keeps the core of the AOIL formulation intact between coupled and uncoupled GCM configurations,
we have achieved our goal, outlined in section 1, of deriving a unified formulation.

3 Similarity function

Following Monin-Obukhov (M-O) similarity theory, ZB05 set z = z/L, where

L =
u3

⇤
k FB

(23)

is the M-O length. The M-O length, which fully characterizes turbulence in the ocean’s surface
layer, depends only on the imposed surface quantities u⇤ and the buoyancy flux at the surface:

FB =
ga

rw cw
Qw � cw Sb

aLe
HL(Ts), (24)
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Qσ = (SWto p − SWd+ Q↓) − ϵ
1 − ϵ (SWd− SWD) τσ = d(1 − ϵ)ϕ(ζ)

κu *(1 + μ)

 versus Local Mean Time (LMT) for an ideal day 
with constant friction velocity ( ) and =-150 .

σT
u* Q↓ W/m2
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