
Search Tree Pruning
for Progressive Neural Architecture Search

Deanna Flynn | deannaflynn@gci.net

Figure 1: This transition graph defines valid neural network layer
sequences in the search tree. Output is a 10-neuron, Dense, softmax layer.

Background
Neural networks are increasing in use over the last decade, but such networks require human experts

to define a specific architecture to generate optimal results. However, since the results of the network can
be quantified, the search for better networks can be automated. There are several methods of
automatically finding architectures of neural architectures, like Neural Architecture Search (NAS) by
Zoph and Le [2], the but the algorithm explored in this poster uses a tree structure which will stop when
a satisfactory architecture is created.

Progressive Neural Architecture Search Algorithm
Our algorithm is a progressive neural architecture search derived from Levin search [Schmidhuber,

1997]. Depth First Search (DFS) is used in the generation of the search tree. We expand the search tree
by adding new layers into leaf-node networks up to a maximum depth. Networks which do not perform
better than their parent in accuracy after training for a fixed number of epochs are removed (pruned)
from the search tree. This makes our algorithm greedy in nature.

Child nodes inherit the layers, weights, and hyperparameters of their parents. New layers are drawn
from the transition graph (Figure 1) given an insertion point within the parent network and the new
layers’ hyperparameters are optimized from a predefined list of values. Multiple networks of the same
architecture can be generated but contain varying hyperparameter values. Figures 2 and 3 shows an
example search tree with additional layers added in blue and the same architecture paths in red.

Transition Graph
One of the most important steps of the algorithm is the selection of a layer. Every layer within a

model must be appropriate to follow the previous layer. This entails the algorithm must eliminate having,
for example, a Dropout layer next to another Dropout layer, or a MaxPooling layer next to a Dense layer.
Figure 1 shows a transition graph used in the addition of network layers. The edges of the graph were
chosen by surveying neural network literature. An extra state called Start is added to signal which layers
are most appropriate to begin the neural network architecture, and Output represents a 10-neuron, Dense,

softmax layer.

Model # of Parameters Time to Train Computer Specification

GoogleNet 4M CPU

VGG16 ~26M Weeks Nvidia Titan Black GPUs

AlexNet ~60M 6 days 2 Nvidia GeForce 580 GPUs

Our Model 98K 4 days Intel i7 8th Generation CPU

Figure 4:
Accuracy of
non-
preprocessed
model vs our
model on
Fashion-
MNIST [Xiao,
Rasul, and
Vollgraf,
2017].

References
[1] Han Xiao, Kashif Rasul, Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms.
[2] Barret Zoph and Quoc V le. Neural architecture search with reinforcement learning. ICLR, 2017.
[3] Schmidhuber, J. 1997. Discovering neural nets with low kolmogorov complexity and high generalization capability. Neural Networks 10(5):857–873
[4] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
[5] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
[6] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 1-9).

Figure 2 (top): An example search tree with new layers-Convolution, Dense, Flatten, Dropout,
MaxPooling, and Output-in blue .
Figure 3 (bottom): An example search tree showing multiple paths leading to the same
architecture (red) given the addition of new layers.

Table 1: Comparison of models based on the number of parameters, the time to train, and the computer specification
used to train the model. All entries for the models are based on the papers.

Future Work
 In the future, varying pruning and algorithms will be implemented

to compare performance of the generated networks as well as time.
Adding Bayesian optimization for hyperparameter selection to speed
up the algorithm.

Acknowledgements
I would like to thank my NASA mentors P. Michael Furlong and

Brian Coltin as well as the Alaska Space Grant and NGA for
sponsoring my internship.

Experiments
 After four days of running on an Intel i7 8th generation CPU, 61 different network

architectures were created with the best having an accuracy of 91.9% on the Fashion-
MNIST dataset. Figure 4 compares our algorithm's best accuracy to other networks
trained on the same dataset. Our model has <2% difference in accuracy compared to
GoogleNet, the best non-preprocessed model with an accuracy of 93.7% [1]. Finally, our
algorithm produced a network with less parameters in less time on a CPU compared to
other benchmark models-VGG16, GoogleNet, and AlexNet. This can be seen in Table 1.

https://ntrs.nasa.gov/search.jsp?R=20200001286 2020-03-28T18:56:04+00:00Zbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/288485422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:deannaflynn@gci.net

	Slide 1

