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More than 3X lower core loss than 

the best commercial powder cores. 
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BACKGROUND

High frequency, low loss power systems enable

electrified aircraft propulsion. Filter inductors that

reduce noise in high current systems can account

for 50% of the motor drive mass. Efficient inductor

cores with tunable permeability reduce system

mass by producing less heat, that removes heat

sink mass. Requirements for filter inductors vary

based on the chosen topology, but all inductor

cores must operate below saturation levels. As the

saturation flux density is limited (less than ~2 T),

high differential current applications require cores

with low relative permeabilities. The large induced

anisotropies possible in Co-rich metal amorphous

nanocomposite materials enables gapless

inductors with relative permeabilities down to ~20.

These materials have a nanocomposite close

packed structure with high fault density [1].

Scalable processing methods have been

demonstrated to produce graded permeability

cores [2]. The impact of different processing

methods on core losses are presented along with

comparison to other low permeability soft magnetic

materials.

METHODS

1. Produced amorphous ribbons from pre-alloyed 

ingots

2. Annealed amorphous ribbon under tensile 

stress (SA) followed by a transverse magnetic 

field (TMF) anneal

3. Measure core loss using a high accuracy power 

meter (Yokogawa WT5000) and an 

oscilloscope with a phase shifting capacitor

RESULTS

• Results presented for Co75.4Fe2.3Mn2.3Nb4B14Si2

alloy

• In-line stress varied between 13-200 MPa 

produces µr between 216-40

• Permeability is highly linear to saturation

• After annealing at low tensile stresses (<50 

MPa), BH loops shows large coercivity Hc>300 

A/m at 2 kHz.  Following subsequent TMF, Hc

decreases to ~50 A/m   

• Permeability remains fairly constant between SA 

and SA+TMF processing 

• SA+TMF anneal significantly lowers core loss 

compared to SA-only core loss
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MEASUREMENT DETAILS 

Core loss measurements of low permeability cores 

requires large output currents and excellent phase 

angle accuracy ∆φ.  Assuming small ∆V and ∆I, the 

power measurement error ∆P is described as:

Small phase angle errors lead to large power

measurement errors when φ→90°. Measurements

that rely on oscilloscope probes can have ∆φ~0.5°,

but power analyzers can improve accuracy. A

series capacitor can be used to lower circuit

impedance near the test frequency and to remove

DC bias. Otherwise, the test circuit is similar to

standard two winding core loss measurements.

Measurement accuracy was verified by comparing

two different measurements; individual losses in the

core and the capacitor with a power analyzer, and a

second that measured the total loss (both core and

capacitor) with an oscilloscope. The measurement

frequency was chosen near the LmC resonance so

that the phase angle was far from 90°. There is

good agreement between the two measurements.
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