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There are compelling advantages of a human presence on the surface of the Moon, as evidenced partly by the 

preponderance of lunar surface architectures that have existed throughout NASA, industry, and academia since the 

Apollo program.  This paper specifically advocates and illustrates an example of a permanent human lunar surface 

presence enabled by a commercial launch vehicle (CLV) class Joinable Undercarriage to Maximize Payload (JUMP) 

lunar lander.  The paper will discuss purposes for such a surface presence, including SPD-1 fulfillment, global 

collaboration, US industry advancement, US government leadership in spaceflight, a Mars dress rehearsal, Mars 

collaborative exploration, and lunar village development.  An architectural description will be presented, including 

site selection, primary elements, and surface configuration.  Element and lander allocation to CLV and Space Launch 

System (SLS) rockets will be discussed in terms of launch vehicle selection philosophy and allocation to specific 

launch manifests.  This will enable a presentation of a lunar campaign spanning the period from 2026 to 2056.  In 

conclusion, various aspects of the architecture will be suggested for further study. 

I. Nomenclature 

AAMA = Active-Active Mating Adapter 

ATHLETE = All-Terrain Hex-Legged ExtraTerrestrial Explorer 

CLV = Commercial Launch Vehicle 

ISRU = In-Situ Resource Utilization 

JUMP = Joinable Undercarriage to Maximize Payload 

kWe = Kilowatt electric 

LOX = Liquid Oxygen 

MMSEV = Multi-Mission Space Exploration Vehicle 

PUP = Portable Utility Pallet 

ROI = Return on Investment 

SLS = Space Launch System 

SPD = Space Policy Directive 

SPR = Small Pressurized Rover 

II. Introduction 

The Moon has always captured the human imagination and since the Apollo program it has been evident that a 

human lunar surface presence offers unique value to the human experience.  The Moon is the only location in the 

universe where a human presence can be directly visible to Earth societies, enabling people in two “worlds” to look 

upon on each other and (with the proper telescopes) see physical evidence of each other’s existence.  Additionally, 

the relatively short travel time between the Moon and Earth encourages routine transit, including short term visits as 

well as shipping of perishable items. 

There have been architectures for lunar surface human development since the time of von Braun.  These studies 

have varied from the barebones 1996 Human Lunar Return study with its open cockpit lander and small inflatable 

habitat [1] to the grandiose plans of the 90-Day Study in 1989 with its 12-person inflatable “igloo” habitat. [2]                                                             

This paper investigates an alternative to historic lunar surface architectures and numerous current lunar studies.  The 

Joinable Undercarriage to Maximize Payload (JUMP) Lunar Lander [3] provides a lunar surface payload delivery 

capability that creates opportunities for high return on investment (ROI) lunar surface architectures. 
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III. Purpose of the Permanent Human Lunar Surface Presence 

A natural question is ‘why should there be a permanent human lunar presence?’  Fortunately, there are many reasons 

why such an endeavor is important.  The first is simply a fulfillment of the Presidential direction carried in Space 

Policy Directive 1 (SPD-1). 

SPD-1 issues direction to, “Lead an innovative and sustainable program of exploration with commercial and 

international partners to enable human expansion across the solar system and to bring back to Earth new knowledge 

and opportunities. Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans 

to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations.” 

This implies more than a simplistic Apollo “flags and footprints” return to the Moon.  Innovative and sustainable 

drives at a desire to see a lunar program that does not look like what has been done before and can be executed within 

the current economic climate.  Another key element is commercial and international partnership, suggesting NASA, 

industry, and other nations must all have significant roles.  SPD-1 requires that this return to the lunar surface must be 

led by the United States.  The phrase “long-term exploration and utilization” indicates a need for sufficient 

infrastructure to establish an ongoing presence with actual results of human activity on the Moon, including new 

knowledge and opportunities.  Finally, SPD-1 indicates that this return is a prelude to human expansion throughout 

the solar system. 

The vision of SPD-1 can be interpreted as expansive and inspiring, and there are three subsidiary rationales that 

directly follow SPD-1: global collaboration, US industry advancement, and US government leadership in spaceflight 

(human spaceflight in particular). 

A permanent human lunar surface presence creates a powerful platform to collaborate with and engage the global 

community.  This is inclusive of international crews, international provision of elements and subsystems, international 

payloads for both research and lunar resource utilization, and opportunities to engage students and the public 

worldwide.   

US industries are advanced by extending such partnerships to both existing and new commercial spaceflight 

providers.  That engagement also creates opportunities with non-spaceflight companies (e.g. research, utilization) and 

even service industries.  This US industry growth of course has significant economic impact in communities where 

those businesses are based.   

A permanent human lunar surface presence helps to advance and maintain US government leadership in spaceflight 

in multiple ways.  By definition such a lunar presence has a wide enough scope to include hands-on roles for in-house 

government developed space vehicles, thus advancing government spaceflight expertise and ensuring that technical 

proficiency continues to younger generations of government scientists and engineers.  It also provides an experience 

base for the government to develop standards and regulations to apply to industry and international partners for safe 

human spaceflight.  Finally, an active government leadership role positions the United States to define purposes for 

lunar activity and site locations. 

An often-mentioned purpose for a human lunar presence is to conduct dress rehearsals for human Mars exploration. 

The crew size and mission timelines for Mars surface missions can be fully replicated on the Moon, enabling very 

similar simulations of Mars expeditions where they can potentially be supported by additional human and autonomous 

space systems and also within range of near real-time communications and relatively rapid evacuation in the case of 

the most serious contingencies.  Even practicing and simulating contingency scenarios can reduce the risk of Mars 

exploration.  While potentially complex to create, large lunar centrifuges could replicate Mars gravity, creating unique 

Mars simulation opportunities. 

Mars collaborative exploration is also an important purpose for a permanent human lunar surface presence.  

Concurrent human operations on both the Moon and Mars can yield significant benefits.  With parallel Moon and 

Mars human operations, responses to some Mars contingencies can even be practiced on the Moon before the Mars 

crew has to execute them.  Also, science experiments performed at both destinations can use one world as a control 

for the other.  Some payloads may even begin experiments in one destination and then be transported to another.  With 

ISRU operations in progress at both destinations, there may even be instances of ISRU products developed on one 

world but used in the other, or ISRU products from both places being integrated together to form new products. 

This suggests not a transient lunar presence that goes away after a few years, but one that continues indefinitely.  

NASA Administrator Jim Bridenstine said as much in a February 14, 2019, press conference, stating, “This time, 

when we go to the Moon, we're actually going to stay. We're not going to leave flags and footprints and then come 

home to not go back for another 50 years.” The fulfillment of these goals may result in a lunar presence that matches 

the literal definition of permanent.  Literal permanent human presence on the Moon pushes the human race into a 

multi-world species and creates a frame of reference that makes Mars more than an expedition, but instead an 
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expansion.  Further, if a lunar presence is permanent, it implies that a Mars presence would become permanent as 

well. 

IV. Permanent Human Lunar Surface Presence Architectural Description 

SPD-1 introduces a transformative view of humanity’s role beyond Low Earth Orbit, but due to limitations in Earth 

launch capability it is arguable how fully this vision can be realized.  The Space Launch System is a few years from 

being operational, with some of the first SLS rockets already in production, but the launch rate will be limited to one 

or two launches per year, with no expectation that the annual launch rate could ever exceed three.  While at least one 

commercial launch vehicle of equal or superior capability is in development, other commercial rockets have 

significantly lesser launch mass capability.  However, the JUMP lander concept is predicted to be able to enable 

delivery of significant mass to the lunar surface despite launch vehicle limitations. [3] 

This research centers on a permanent human lunar surface presence at a South Pole location such as Shackleton 

Crater or Malapert Mountain.  The two locations are within pressurized rover traverse range of each other and thus 

the entire region is of potential site interest.  Terrain features may also provide benefits for radiation protection – such 

as if a habitat can be placed against the side of a cliff wall or inside a canyon or crater.  

A set of lunar surface elements are assumed to scope a permanent human lunar surface presence and characterize 

the transportation needs associated with delivery of such a capability.  Listed in Table 1 and described in subsequent 

paragraphs, the sixteen surface elements in the JUMP-enabled architecture are: ATHLETE, Small Pressurized Rover, 

Common Habitat, External Airlock, Kilopower, Power Cable Spool, Communications, External Thermal, PUP, 

Logistics Module, ISRU, Lander Tunnel, 4x4 AAMA, 5x6 AAMA, 4x6 AAMA, and Ascent Module. 

 

Lunar Elements Qty Estimated Unit Mass (kg) 

ATHLETE 2 2500 

Small Pressurized Rover 2 6000 

Common Habitat 1 30000 

External Airlock 1 6920 

Kilopower Unit 6 1500 

Power Cable Spool 10 100 

Communications 1 500 

External Thermal 1 5000 

PUP 4 1000 

Logistics Module 3 12000 

ISRU 3 12000 

Lander Tunnel 1 250 

4x4 AAMA 1 150 

5x6 AAMA 1 200 

4x6 AAMA 3 250 

Ascent Module 1 9000 
Table 1.  Assumed Elements in Permanent Human Lunar Surface Presence 

 

ATHLETE 

The ATHLETE is a six-legged `cargo handling robot developed by the Jet Propulsion Laboratory.  It is used to 

offload cargo from landers and to transport large modules across the lunar surface.  It can split into two three-legged 

subunits when performing these tasks.  The ATHLETE can also manipulate various tools for earth moving or 

construction tasks.  A half scale prototype for the Constellation program’s ATHLETE was tested in the desert, shown 

in figure 1.  For the JUMP architecture, each leg segment will need to be increased by one meter beyond that of the 

Constellation flight version, giving the ATHLETE sufficient vertical clearance to offload cargo from the JUMP 

landers. [3] 
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Fig. 1 Half-Scale ATHLETE Prototype Carrying Mockup Habitat Module 

 

Small Pressurized Rover 

The two rovers are the Small Pressurized Rover (SPR) variant of the Multi-Mission Space Exploration Vehicle 

(MMSEV) under development primarily at the NASA Johnson Space Center.  The first generation variants of this 

vehicle were featured extensively in NASA desert field testing, as shown in figure 2.  When operating as a two vehicle-

unit, the rovers can have a range of up to approximately 200 km from the habitat.  Similar to the ATHLETE, the SPR 

can also attach earth moving tools to itself for outpost buildup tasks. 

 

 
Fig. 2 First Generation Prototypes of SPR 

 

Common Habitat 

The habitat is a monolithic habitat based on the Skylab II concept, where a propellant tank of the SLS is used as the 

pressure vessel of the habitat, just like the original Skylab space station used a propellant tank of the Saturn S-IV stage 

as its pressure vessel.  In particular, the habitat uses an SLS core stage liquid oxygen (LOX) tank.  Note that this is a 

“dry tank” concept, meaning an additional tank is manufactured as a habitat and launched as a payload.  (A “wet tank” 

concept is where the rocket’s actual propellant tank is used as a propellant tank, carried into orbit, and then repurposed 

into a habitat.  The dry tank approach shares the same structural testing and production line with the rocket, but does 

not attempt the more complex orbital repurposing.)  It is a common habitat with a similar design used for lunar surface, 

Mars transit, and Mars surface habitation. [4]  A parallel study to the JUMP lander study is investigating the Common 

Habitat as a potential option for long duration human spaceflight and is trading four variants of the concept, involving 
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vertical and horizontal configurations as well as four and eight crew.  A notional configuration developed by 

University of Houston students is shown in Figure 3.  One of the larger long duration habitats, the variant shown has 

a vertical orientation with habitable compartments in both the upper and lower domes as well as four decks in the 

cylindrical section and provides long duration living and working space for a crew of eight.  This is larger than the 

current NASA baseline and represents an upper end in the exploration trade space. 

 

 
Fig. 3 SLS LOX Tank Skylab II Common Habitat 

 

External Airlock 

The airlock notionally selected for this study is a derivative of the MMSEV cabin and the shuttle airlock.  While 

there are literally dozens of possible airlock options, a notional airlock suggested for this study consists of a system 

lock (inner chamber) that is a three-port version of the MMSEV cabin with two suit ports.  The nose port docks to the 

habitat.  The two side hatches each are mated to a shuttle airlock, each of which serves as separate crew lock (outer 

chamber). 

 

Kilopower 

The Mars Integration Group has baselined a modular nuclear fission system for surface power that can be piloted 

on the lunar surface.  These kilopower units are 10 kWe, 1500 kg modules that are inert until activated after landing. 

[5], [6]  Six kilopower units are baselined as fixed elements to provide power for the surface outpost. 

 

Power Cable Spool 

Each fixed or mobile power system will be accompanied by a 1 km power cable spool.  The spool includes a small 

robotic rover/manipulator to self-deploy the cable to connect with the power system and powered elements. 

 

Communications 

A self-erecting tower serves as the communications hub for the outpost.  The system includes local and long-range 

radio frequency and laser communications systems.  The tower can support parallel communication between Earth 

(via relays when line of sight is not available), Gateway, other flight vehicles, and numerous surface assets including 

EVA crew members and robotic assistants. 
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External Thermal 

An external radiator system provides heat rejection for the Common Habitat and other powered elements of the 

surface infrastructure.  Forward work can determine the specific working fluid, whether the radiators are fixed or 

articulating, and specific heat rejection capability. 

 

PUP 

The Portable Utility Pallet (PUP) is a modular power and consumables device proposed during the Constellation 

program as an augment to the SPR variant of the MMSEV. [7]  The purpose is to enable extended range excursions 

away from an outpost.  The PUP carries communications systems and additional gases, fluids, and power generation 

capability.  Constellation PUPs used solar power, but nuclear options are possible.  The SPR can carry a PUP and 

deploy it as a remote recharging station and/or communications relay, allowing excursions radially away from the 

PUP, returning periodically to recharge. 

 

Logistics Module 

The logistics modules used for purposes of this study are assumed to be dimensionally similar to the Gateway 

International Habitat, approximately 4.2 meters in diameter with a barrel length of 5 meters and 0.6 meter end cones.  

At least one logistics module is docked to the habitat at any given time. 

 

ISRU 

The In-Situ Resource Utilization (ISRU) lunar capability is presumed to focus on three primary activities: extraction 

of gaseous oxygen from lunar regolith, harvesting of water from lunar cold traps, and production of liquid oxygen and 

liquid hydrogen from harvested water.  Each activity is assumed to be contained within a distinct, uncrewed ISRU 

element that contains removable processed material containers that can be transported by ATHLETEs. 

 

Lander Tunnel 

A pressurized tunnel allows shirt-sleeve crew and equipment transfer between the Ascent Module cabin and a 

docked element.  This element is typically a pressurized rover, but in theory any of the surface pressurized elements 

could be connected to the tunnel.  In this study, the tunnel is assumed to be delivered with the JUMP descent stage, 

pre-integrated with the Ascent Module.  The lower end enables docking with surface assets.  This study conservatively 

assumes the tunnel is not reused, though further refinement may identify solutions to reuse or repurpose the tunnel. 

 

4x4 AAMA 

This study features three variants of the Active-Active Mating Adapter (AAMA).  The AAMA was developed 

during the Constellation program to facilitate docking between pressurized rovers and other assets while also reducing 

the unit masses of component vehicles and reducing the impact of docking system failures. [8]  The AAMA is a 

pressurized tunnel that contains Marmon actuators similar to those on the MMSEV suit ports.  These actuators clamp 

against a metal flange that surrounds the docking hatch of a target vessel (rover, habitat, etc.)  The 4x4 AAMA is sized 

to connect to a 40” x 40” square hatch on both ends.  This AAMA is intended to allow pressurized rovers to dock to 

each other. 

 

5x6 AAMA 

The 5x6 AAMA is identical in function to the 4x4, but is designed to accommodate a different set of hatch sizes.  

One end accommodates the 50” x 50” square hatch common to ISS and the Common Berthing Mechanism (CBM).  

The other end connects to a 40” x 60” rectangular hatch recommended by Constellation-era human-in-the-loop studies 

for surface outposts.  This AAMA is intended to allow ISS-derived logistics vehicles to retain their large hatch sizes 

in order to deliver bulk logistics items such as M-bags to the lunar surface. 

 

4x6 AAMA 

Like the 5x6, the 4x6 AAMA allows vehicles with dissimilar hatch sizes to dock to one another.  This AAMA 

accommodates a 40” x 40” square hatch on one end and a 40” x 60” rectangular hatch on the other.  This AAMA 

allows pressurized rovers to dock to the Common Habitat.  (Note that a 6x6 AAMA is not featured in this study, but 

would be present in an expanded lunar surface architecture where multiple Common Habitats are present, allowing 

increased surface populations.  It would of course link multiple 40” x 60” hatches together.) 
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Ascent Module 

The Ascent Module is the portion of the lunar lander that returns to orbit.  It consists of a pressurized cabin and a 

propulsion system.  This study assumes that the ascent cabin is another variant of the MMSEV, retaining the 

MMSEV’s traditional 40” x 40” side hatches.  The precise configuration of the ascent cabin is the subject of other 

NASA studies and is beyond the scope of this paper.  The Ascent Module is delivered to the lunar surface by the 

Descent Module and remains on top of the Descent Module until it lifts off to return the crew to Gateway. 

V. Launch Manifests and Lunar Surface Buildup 

This paper develops a launch manifest assigning these elements and associated landers and crew missions to 

individual SLS and CLV flights.  A preliminary manifest for the JUMP landers is in table 2.  As a general rule, crew 

will be exclusively launched in the Orion capsule atop the SLS rocket.  The habitat will be launched by a cargo SLS 

flight.  JUMP landers will be launched by CLVs.  The Gateway will be the staging point in Cislunar space for all lunar 

surface missions.  The manifest begins after the 2024 human lunar landing (the 2024 lander is not a JUMP capable 

vehicle) and will manifest a lunar surface program that supports human lunar landings in even numbered years only 

up through 2036.  This lunar manifest could cease in 2036 with a subsequent transition to human Mars exploration, 

or (if a permanent lunar presence is to be realized) lunar landings could accelerate in parallel with Mars exploration.  

In the latter scenario, an extended campaign beyond the scope of this paper could develop lunar infrastructure in the 

direction of continued permanent settlement and the first lunar village. 

 

Table 2. JUMP Lander Flight Manifest 2025 – 2036 (preliminary) 

 

Year Lander Payload (Assume ~30,000 kg JUMP Lander Payload Capacity [3]) 

2025 

JUMP Lander 1 (Cargo): ATHLETE 1, SPR 1 & 2, Kilopower 1 & 2, Power Cable Spools 1-5, 

Communications, External Thermal, PUPs 1-3, 4x4 AAMA, 4x6 AAMAs 1 & 2 [Total mass: 

27,400 kg; remaining capacity: 2,600 kg] 

2026 

JUMP Lander 2 (Crew/Cargo): Ascent Module with Crew, JUMP Lander Tunnel, Logistics 

Module [Total mass: 21,250 kg; remaining capacity: 8,750 kg] 14-day mission 

2027 

JUMP Lander 3 (Cargo): ATHLETE 2, External Airlock, Kilopower 3-6, Power Cable Spools 6-

10, PUP 4, Logistics Module, 5x6 AAMA, 4x6 AAMA 3  [Total mass: 29,620 kg; remaining 

capacity: 300 kg] 

2028 

JUMP Lander 4 (Crew/Cargo): Ascent Module with Crew, JUMP Lander Tunnel, Logistics 

Module [Total mass: 21,250 kg; remaining capacity: 8,750 kg] 14-day mission 

2029 JUMP Lander 5 (Cargo): Common Habitat [Total mass: 30,000 kg; remaining capacity: 0 kg] 

2030 

JUMP Lander 6 (Crew/Cargo): Ascent Module with Crew, JUMP Lander Tunnel, Logistics 

Module [Total mass: 21,250 kg; remaining capacity: 8,750 kg] 182-day mission 

2031 

JUMP Lander 7 (Cargo): Logistics Module, ISRU Element 1 [Total mass: 24,000 kg; remaining 

capacity: 6,000 kg] 

2032 

JUMP Lander 8 (Crew/Cargo): Ascent Module with Crew, JUMP Lander Tunnel, Logistics 

Module [Total mass: 21,250 kg; remaining capacity: 8,750 kg] 378-day mission 

2033 

JUMP Lander 9 (Cargo): ISRU Element 2 & 3 [Total mass: 24,000 kg; remaining capacity: 6,000 

kg] 

2034 

JUMP Lander 10 (Crew/Cargo): Ascent Module with Crew, JUMP Lander Tunnel, Logistics 

Module [Total mass: 21,250 kg; remaining capacity: 8,750 kg] 735-day mission 

2035 

JUMP Lander 11 (Cargo): Logistics Modules x 2 [Total mass: 24,000 kg; remaining capacity: 

6,000 kg] 

2036 

JUMP Lander 12 (Crew/Cargo): Ascent Module with Crew, JUMP Lander Tunnel, Logistics 

Module [Total mass: 21,250 kg; remaining capacity: 8,750 kg] 735-day mission 

 

This buildup places initial emphasis on mobility and resources to manipulate heavy payloads on the lunar surface.  

The Common Habitat is not delivered until Lander 5, when sufficient infrastructure is present on the Moon to support 

its operation.  However, this by no means deprioritizes habitation.  By delaying the habitat until the infrastructure is 

ready to support it, the crews can immediately jump into long duration missions, rapidly building up to 2-year 

expeditions.  Additionally, with the installation of additional subsystem hardware, an emptied Logistics Module could 
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refurbished as a short duration habitat and be carried by an ATHLETE to support an extended SPR excursion away 

from the outpost, perhaps as long as 90 days in duration. 

Common Habitat research is currently trading benefits of 4 vs. 8 person crew sizes [4], and it is worth noting that 

the crew lander missions have significant excess cargo capacity, suggesting multiple paths to reach an 8 person crew.  

A larger lander cabin could allow all 8 to be delivered together.  Alternately, overlapping crews could arrive midway 

through the others’ missions, similar to how ISS expedition crews rotate today. 

It should be noted from table 2 that continuous occupancy is achieved in the 2036 mission, where the crew of 

Lander 12 will arrive prior to the departure of the crew of Lander 10.  It is at this point that the infrastructure for 

permanent lunar surface human presence has been achieved. 

This JUMP-enabled architecture places 2058 days (8232 crew days) on the lunar surface between 2025-2036.  

Without the JUMP lander, and assuming annual crew flights, the nominal 5-9 mt lander capacity would likely max 

out with a Gateway-derived surface habitat and 30-day missions, resulting in less than 350 days (less than 1400 crew 

days) on the lunar surface during this same time period.  The JUMP architecture delivers approximately 360,000 kg 

to the lunar surface in twelve missions (requiring 48 CLVs), while the nominal 9 mt lander capacity may deliver on 

the order of 216,000 kg, assuming the same number of CLV launches.  Clearly, the increase in lunar exploration 

enabled by a JUMP capability is staggering. 

A notional Phase Two campaign could be constructed for the years 2037-2058 with annual landings representing a 

delivery capability of approximately 630,000 kg.  Of course, if the launch rate were to enable both crew and dedicated 

cargo missions in the same year, this capacity would double.  There is no practical way to reach Phase Two with the 

nominal 9 mt lunar lander cargo delivery capacity.  Without greater Earth launch systems, an augmentation along the 

lines of the JUMP lander is necessary to enable substantial lunar infrastructure development.  

Research can show how this delivery capability can enable construction of a lunar village.  It should be noted that 

the term lunar village has been used in popular culture and even the aerospace industry with widely differing meanings.  

The Census Bureau notes that different states in the United States vary significantly in the population requirements to 

constitute a village. [9]  ESA Director General Jan Woerner spoke of a lunar village but made the specific disclaimer 

that he did not mean a village on the Moon, but Jeff Bezos is quoted as saying he wants to put a city on the Moon. 

[10]  In the context of this paper, a lunar village is intended to imply an actual village of sorts, with a population of 

250 identified as a semi-notional target to constitute a village.   

A 10-meter diameter variant of the Common Habitat has been shown to be able to house habitation facilities for as 

many as 48 people. [11]  Six of those, along with other ISRU, mobility, robotic, power/thermal, and habitable facilities 

for working, subsystems, and logistics, could be delivered and outfitted during this 21-year period, to form such a 

village. 

VI. Conclusion and Forward Work 

A CLV class JUMP lander enables lunar development on par with early Constellation outpost concepts and Mars 

field station conceptual designs, even with Earth launch capability reduced (from Ares V class rockets) to primarily 

Falcon-Heavy class CLVs.  This capability prevents a human lunar presence from being only slightly more than flags 

and footprints and enables orders of magnitude greater crew time and mission productivity. 

Continued JUMP lander research is an obvious priority.  The payload capacity of the JUMP lander has a 

transformative effect on the resulting lunar architecture and all aspects of the JUMP system, including Earth launch 

vehicle availability and manufacturing chains deserve focused attention. 

Forward work also includes refinement of all of the estimated masses used in this paper.  Many of the elements 

are proposed in other concept studies or Agency programs and mass values are constantly changing as systems are 

better defined.  Additional Operational Concepts research can identify specific outpost needs such as landing site 

constraints, science and ISRU zones, options for addressing used lander descent stages and logistics modules, etc. 

An area of significant interest for future research is to delve into the Phase Two lunar campaign suggested by this 

paper.  Artist concepts have shown lunar cities since the dawn of the space program, but few serious studies have 

developed a credible path to transition from Apollo sortie missions, to Constellation-type outposts, to these notional 

cities.  Identification of a technical path could enable companion economic and political studies to develop the 

rationale and means for such development. 

Additional forward work can examine the interaction between parallel human Moon and Mars programs.  The 

Phase Two suggested in this paper would occur at the same time as the human Mars missions proposed by NASA’s 

Mars Integration Group.  To what extent can lunar ISRU be utilized by the Mars missions?  Could a parallel (as 

opposed to precursor) lunar outpost play any role in crew training, contingency response, planetary protection?  What 

additional benefits are provided by concurrent human missions to both destinations? 
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