
1

IEEE Aerospace Conference, Big Sky, Montana, 12 March 2020
200114

Julia Programming Language Benchmark Using a Flight Simulation

Ray Sells
EV42/Guidance, Navigation, and Mission Analysis
DESE Research, Inc./ESSCA
NASA-MSFC 4600-5119
256-961-4619
harold.r.sells@nasa.gov

https://ntrs.nasa.gov/search.jsp?R=20200001733 2020-03-28T19:08:29+00:00Z

2

Overview
200114

• Julia is a relatively new computer language that aims to reduce the challenge for math-
modelers to develop fast computer tools and simulations. It potentially combines the
ease-of-coding feature of scripting languages (like Python) with the performance of
compiled languages (like C++).

• A key question for Julia application to the simulation domain is, “Can Julia, with its obvious
coding simplicity, provide runtime speeds comparable to conventional compiled languages
for flight simulation?”

• A unique combination of existing elements can be employed to address the previous
question

• Extensively documented object-oriented simulation architecture
• Industry standard rocket flight simulation
• Separate versions (C++, Java, and Python) already benchmarked

3

Julia Language Overview

Key Features:
• “Pythonic” syntax
• Dynamically-typed
• Built-in REPL (read-evaluate-print-loop)
• JIT (just-in-time) compilation
• Built-in library support for multi-threading, multi-core, and distributed processing
• Direct calling of C and Fortran code without “glue” code
• Automatic garbage collection (i.e. memory leak control)
• Easy extension to multi-processing

Practical Considerations:
• Designed for technical computing (like MATLAB & Fortran)
• Free and open-source
• High-level and easy-to-learn (like MATLAB & Python)
• High-performance (like C, C++, and Fortran)

official logo

4

Mini-Rocket Description

• Generate trajectory given missile aerodynamic, mass, and
propulsion parameters

• Generate family of trajectories (off-line) for higher-level
system simulations or system time-line studies

• In-line missile (offensive or defensive) model for
engagement simulations

• In-line missile dynamics model for HWIL
• Tool for quickly examining different guidance laws
• Tool for mapping battlespace engagement constraints
• Trajectory reconstruction/flight characteristics estimation

PAST APPLICATIONS:

DESCRIPTION:

EXTENSIVE LEGACY OF APPLICATION (partial list)

Strategic
• Endo-interceptors (HEDI, ARROW, THAAD)
• Exo-interceptors (ERIS, GBI, E2I)
• Anti-Satellite boosters (KE-ASAT)
• Strategic Target Vehicles (STARS, ARES)
• Numerous booster survey studies

Tactical
• NLOS-PAM
• EAPS
• Future Missile
• HAPS
• Modular Missile Technology
• IDEEAS constructive simulation (embedded interceptor)

FEATURES:

• Very fast running with unique osculating-plane formulation without
the overhead of rigid body equations-of-motion (runtime speed of a
3-DOF with additional two degrees-of-freedom)

• Motion in three-dimensional space
• Two independent channels (pitch and yaw) for steering and

guidance
• 1-d, 2-d, or 3-d table lookups to model aerodynamics and propulsion

characteristics
• Capability to model angle-of-attack variations in lift and drag
• Constraints on lateral acceleration based on angle-of-attack and

closed-loop airframe response time
• Detailed models for control and guidance subsystems not required

Very easy to configure five degree-of-freedom missile flyout
model that accurately generates trajectories in three-
dimensional space, including maneuver characteristics
without 6DOF overhead

5

Mini-Rocket Case for Benchmark

• 3-stage hypothetical rocket (to avoid SBU concerns)
• vertical launch with pitch-over
• rotating earth
• pre-programmed maneuver in pitch and yaw channels
• lift-off weight = 2500 kg
• flight time = 100 sec
• stage splits = 40, 75 at 2708, 6790 m/sec
• final velocity = 6574 m/sec at t = 100 sec

• Benchmark case replicated for all three languages:
C++, Python, Java

Benchmark TrajectoryBenchmark Rocket

"CMD Plot"

0 20 40 60 80 100
time

0

1000

2000

3000

4000

5000

6000

7000

ve
l

vel

"CMD Plot"

0 20 40 60 80 100
time

69

72

75

78

81

84

87

90

ga
m

m
a_

d

gamma_d
"CMD Plot"

0 20 40 60 80 100
time

-50

-40

-30

-20

-10

0

10

ay

ay
az

• a case was chosen to illustrate 5DOF maneuver model
(i.e. 6DOF minus roll)

• pitch-over (red)
• out-of-plane yaw (blue)
• start pitch over at 20 sec to 75 deg, then execute dual

pitch/yaw ~1g maneuvers for 15 sec

6

Julia Mini-Rocket Coding Highlights – Object Oriented

MINI-ROCKET JULIA BUILD PROCESS

• Simulation components built incrementally starting with DE engine and
support elements (tables, atm. model, stages, integrator (clock), …)

• Extensive experimentation with coding techniques and structures to leverage
Julia features with emphasis on code readability and then timing

• Benchmark timing studies conducted with DE engine and table elements to
understand optimum Julia coding practice for speed

• Multiple, independent 2nd order transfer functions ran in parallel to
prototype different DE engine representations and numerical
integrators

• Large-scale table lookup benchmarks conducted to optimize speed
(without sacrificing readability)

• After much experimentation, Julia was ~1/2 as fast as equivalent C++
code for DE and table look-up benchmarks

DIFFERENTIAL EQUATION (DE) ENGINE (the “main” program) OBJECT-ORIENTED
• all simulation entities are a hierarchy of objects

• clock
• rocket
• rocket stages
• atmosphere model
• etc. down-the-hierarchy

• Differential Equation Engine orchestrates execution

TABLE OBJECT CREATION AND USAGE

7

Lines-of-Code Comparison

C++ Java Python Julia4

DE Engine1 360 310 227 982

rocket model 830 753 596 613

vector utilities 533 524 351 03

table utilities 650 384 252 165

misc. utilities 104 153 64 82

TOTAL 2477 2124 1490 958

NOTES:
1. All models coded to same O-O simulation kernel architecture

Reference
Sells, H.R., A Code Architecture to Streamline the
Missile Simulation Life Cycle
AIAA Modeling and Simulation Technologies Conference, 12 January 2017

2. Julia DE engine does not encompass full functionality for OSK train-of-objects built into other
DEs. This lack of functionality was not relevant for this study.

3. Julia built-in linear algebra functionality used
4. Julia characters-of-code would have been GREATLY reduced without specifying types (at cost

of great speed penalty and code readability)

8

Benchmark Results – Mini-Rocket1

• initial data file read not included in timing loop
• small amount of screen output redirected to buffered file (SSD)
• no explicit compiler optimization flags for C++ and Java
• all cases run on Windows 10, Dell Precision 7820, Wintel High Performance Dual Socket Engineering

Workstation, Intel Xeon Gold 6130 CPU @ 2.10GHz (2 processors, 32 cores each) , normal single-thread
processing used for these runs

References:
1. “Mini-Rocket User Guide”, U.S. Army Technical Report AMR-SS-07-27, online link https://apps.dtic.mil/docs/citations/ADA472173
2. “C++ Model Developer”, U.S. Army Technical Report, U.S. Army Technical Report AMR-SG-05-12, online link

https://apps.dtic.mil/docs/citations/ADA433836

9

Benchmark Plots – Mini-Rocket

• Nature of Just-In-Time (JIT) is
evident for Java and Julia

• JIT compile on-the-fly is more
efficient for large # runs (JIT
compilation consumes less amount
of total run time)

• Surprise #1: Java as efficient (or
better than C++) – previous
experience was Java ~ 4x slower*

• Surprise #2: Python much better
than previous experience ~ 100x
slower*

*my personal experience as well as
generally-accepted independent
benchmarks

10

Multi-Core Processing Benchmarks

• Julia has very easy-to-extend functionality for utilizing multiple cores.
• The Julia Distributed package adds functionality to extend the single execution thread used-to-now

to multiple cores.
• All cases run on Dell Precision 7820, Wintel High Performance Dual Socket Engineering Workstation,

Intel Xeon Gold 6130 CPU @ 2.10GHz (2 processors, 32 cores each)

NOTES:
1. 65 runs executed concurrently including the master process and its 64 worker processes.
2. All output turned off, except final report
3. More runs per core appears to reduce overhead of distributing runs

Wrap-Up

• Challenges still exist in providing the tools and environment for quickly and efficiently
constructing dynamical system simulations that address every step in the missile & rocket
simulation life cycle

• The potential contribution of Julia is to give “non-expert” coders (scripters) the ability to build
high performance simulations

• Julia was well suited to coding the object-oriented structure in MR with an exceptional
economy-of-code

• Julia execution speed was much faster than Python but still slower than C++ and Java

Path Forward
• The economy of Julia to express complex programming constructs makes it attractive as a

simulation experiment “testbed” for prototyping any future simulation applications
• Although only touched upon in these results, parallel computing capability and its application

to time-domain dynamic system simulations is especially compelling for further flight
simulation research

	IEEE Aerospace Conference, Big Sky, Montana, 12 March 2020
	Overview
	Julia Language Overview
	Mini-Rocket Description
	Mini-Rocket Case for Benchmark
	Julia Mini-Rocket Coding Highlights – Object Oriented
	Lines-of-Code Comparison
	Benchmark Results – Mini-Rocket1
	Benchmark Plots – Mini-Rocket
	Multi-Core Processing Benchmarks
	Wrap-Up

