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Current understanding is that the human ovary contains a fixed number of several 

million non-growing follicles (NGF), established by five months of gestational 

age, that declines with increasing age to the menopause when approximately 1,000 

NGF remain at an average age of 50-51 years[1,2]. With approximately 450 

ovulatory monthly cycles in the normal human reproductive lifespan, this 

progressive decline in NGF numbers is attributed to follicle death by apoptosis. 

Individual histological studies[3-10] have quantified NGF numbers over limited age 

ranges. However, no model describing the rate of establishment and decline of the 

NGF population from conception to menopause has been previously reported. Here 

we describe the best fitting model of the age-related NGF population in the human 

ovary from conception to menopause. Our model matches the log-adjusted NGF 

population to a five-parameter asymmetric double Gaussian cumulative (ADC) 

curve (r2 = 0.81). Furthermore we found that the rate of NGF recruitment into 

growing follicles for all women increases from birth until approximately age 14 

years (coinciding with puberty) then decreases towards the menopause. The 

explanation for this new finding remains unclear but is likely to involve both   

paracrine and endocrine factors. We describe and analyse the best fitting model for 

the establishment and decline of human NGF; our model extends our current 

understanding of human ovarian reserve.  



Text 

Our current understanding of mammalian ovarian reserve presumes that the human 

ovary establishes several million non growing follicles (NGF) at around five 

months of gestational age which  is followed by a decline to the menopause when 

approximately 1,000 remain at an average age of 50-51 years[1,2]. With  

approximately 450 ovulatory monthly cycles in the normal human reproductive 

lifespan, this progressive decline in NGF numbers is attributed to follicle death by 

apoptosis. Some studies have suggested that the instantaneous rate of temporal 

change increases around the age of 37 years, when approximately 25,000 follicles 

remain, followed by exhaustion of the NGF pool and menopause 12-14 years 

later[6,7]. Several recent studies have challenged this long held understanding of 

mammalian reproductive biology by reporting the presence of mitotically-active 

germ stem cells in juvenile and adult mouse ovaries[11,12,13]. While the presence of 

germ stem cells within the mammalian ovary that are capable of neo-oogenesis 

remains controversial[14,15], no-one has previously attempted to unify the 

establishment and decline of NGF in the human ovary from conception to 

menopause in one biologically plausible mathematical model.  

 

Several studies have reported the number of NGF’s at different ages in humans[3-10] 

and constructed mathematical models of NGF decline[1,2,8]. Most recently a study 



by Hansen et al. (2008) described a model that predicts no sudden change in the 

rate of decline, but rather a constantly increasing rate[8]. In this study we have 

combined the eight known published studies (Table 1) that have counted the 

number of NGF in human ovaries from conception through birth to menopause. 

We have then fitted asymmetric peak models to the data (Supplementary Table 1) 

and selected the highest ranked to produce a new model to describe the 

establishment and decline of human ovarian reserve (Figure 1a). The highest 

ranked model (r2 = 0.81) is a 5-parameter asymmetric double-Gaussian cumulative 

(ADC) curve (Supplementary Figure 1). The model is asymmetric, since rapid 

establishment is followed by a long period of decline; it is double-Gaussian 

cumulative since it is the product of two Gauss-error functions.  The highest 

ranked model for the establishment and decline in NGF population from 

conception to menopause was found to be: 

 log10(NGF) = (a/4)(1 + erf((x-b + c/2)/(d√2)))(1 – erf((x-b - c/2)/(e√2))), with 

coefficients a = 5.56 (95% CI 5.38-5.74), b = 25.6 (95% CI 24.9-26.4), c = 52.7 

(95% CI 51.1-54.2), d = 0.074 (95% CI 0.062-0.085), and e = 24.5 (95% CI 20.4-

28.6). For this model, n = 325, r2 = 0.81; fit standard error = 0.46; F-value = 364 

(Supplementary Figures 1 and 2; Supplementary Table 2). Our model demonstrates 

that 81% of the variation in individual NGF populations is due to age alone. 

Interestingly, if we confine our analysis to the histological data from conception to 



age 25 years we discover that the ADC model remains the best fit (r2 = 0.95) and 

that 95% of the variation in NGF numbers is due to age alone (Figure 1b). To 

guard against model selection bias, and to test the robustness of the model with 

respect to the data, we have shown that the ADC model provides the best fit of any 

asymmetric peak function to our dataset (p < 0.01, Supplementary Table 3).   

 

We hypothesise that the age at menopause for an individual woman is determined 

by the maximal number of NGF’s that are established at 18-22 weeks post-

conception, followed by a decline according to our ADC model until near 

exhaustion at the menopause (Supplementary Figure 3). If menopause is defined as 

a population of less than one thousand, the model predicts age of menopause as 

49.6 (95% CI 47.9 – 51.2) years, with a 95% prediction interval of 38.7 – 60.0 

years (Figure 2). Our model has a maximum NGF population for the average age at 

menopause of 300,000 (95% CI 225,000 – 390,000), occurring at 18-22 weeks 

post-conception, with a 95% prediction interval (PI) of 35,000 - 2,534,000 NGF’s. 

Figure 2 gives values for NGF populations at illustrative ages, together with the 

corresponding 95% prediction intervals.  Women with an average age of 

menopause (50-51 years) will have around 295,000 NGF present at birth, with 

women destined to have an earlier menopause having around 35,000 NGF and late 



menopause women having over 2.5 million NGF at birth.  These numbers are per 

ovary, so total ovarian reserve is approximately double these populations. 

 

Since the publications by Johnson et al. (2004,5)[11,12] there has been lively 

scientific debate around the widely held concept that a non-renewing oocyte 

reserve is laid down in the ovaries at birth, and  that neo-oogenesis does not occur 

in adult life[14]. Johnson and Tilly have argued that their experiments in the adult 

female mouse have demonstrated conclusively that neo-oogenesis continues in 

adulthood. They have proposed that the source of postnatal oocyte production is 

from germline stem cells in the bone marrow which are transported in the 

peripheral circulation as germline progenitor cells to arrive in the adult ovary[12]. 

The recent report showing isolation and culture of germ line  

stem cells from adult mouse ovaries[13], which restored fertility after injection into 

infertile mice, provides further evidence to support the presence of germ line stem 

cells in mammalian ovaries. Our further analysis of the available histological data 

demonstrates that any mathematical model that permits an increase in NGF 

population after the peak at 18-22 weeks has a markedly inferior fit compared to 

the best-fitting asymmetric peak functions (Supplementary Figure 4). While the 

emerging evidence strongly supports the existence of germ stem cells within adult 



mouse ovaries[15], our model provides no supporting evidence of neo-oogenesis in 

normal human physiological ageing.  

 

We describe the percentage of the NGF population remaining for a given age for 

all women whose ovarian reserve is established and declines in line with our model 

(Figure 3).  It is interesting to note that by the age of 30 years the percentage NGF 

population is already 12% of the initial reserve and only 3% of the reserve remains 

at 40 years of age. A recent study has shown that most women underestimate the 

extent to which age affects fertility and pregnancy outcomes[16].  

 

In order to better understand which factors control recruitment of NGF towards 

selection, growth and ovulation we have investigated the monthly rate of decline of 

NGF from birth to menopause. To our knowledge, the number of NGF recruited 

each month has never been reliably estimated. By solving our model we can show 

(Figure 4a) that the maximum recruitment of 880 NGF's per month occurs at 14 

years 2 months for the average age at menopause. While the maximum rate of 

recruitment varies hugely, from around 100 NGF per month (Figure 4b) to over 

7,500 NGF per month (Figure 4c) for early or late menopause respectively, the rate 

of NGF recruitment increases to a plateau at just over 14 years and then decreases 

in all women irrespective of how many NGF were established by birth. This peak 



at 14 years is highly unlikely to be coincidental. In western society the average age 

of menarche is around 13 years[17], with early breast development appearing around 

age 11 years. We have found that the onset of oestrogenisation and ovulation 

heralds a slowing in the rate of NGF recruitment. Our findings strongly suggest 

that both endocrine and paracrine factors may be important in the slowing and 

subsequent decline in the rate of NGF recruitment.  An important candidate is anti-

Mullerian hormone (AMH), a member of the transforming growth factor-beta 

(TGF-beta) superfamily of growth factors[18]. They are produced by ovarian 

granulosa cells and oocytes in a developmental, stage-related manner and function 

as intra-ovarian regulators of folliculogenesis. There is good evidence that AMH 

from granulosa cells of pre-antral or antral follicles exerts a negative inhibitory 

influence on the primordial to primary follicle transition[19]. Furthermore AMH has 

been proposed as an indirect marker of ovarian reserve in post-pubertal women[19]. 

Until the onset of puberty (characterised by the switching on of the hypothalamic-

pituitary axis and the pulsatile secretion of the gonadotophins  FSH and LH) 

follicular maturation rarely progresses beyond the pre-antral stage. The presence of 

the pulsatile secretion of FSH and LH at puberty promotes follicular maturation to 

the antral stage and beyond. There is however incomplete data on AMH levels in 

pre-pubertal girls in the literature: AMH is undetectable before birth[20] and is 

detectable at low levels in infants[21]. The explanation for our finding that the rate 



of NGF recruitment increases until the onset of puberty, levels off at around 14 

years of age, and then declines to the menopause remains unclear. It is interesting 

to speculate that AMH levels which are undetectable at birth may rise at puberty 

with the establishment of regular ovulatory cycles and be responsible for the 

slowing of the rate of NGF recruitment that occurs at puberty. 

 

Can a more complete understanding of the establishment and decline of the non-

renewing pool of NGF help us to assess ovarian reserve for the individual woman? 

Several candidate markers for the assessment of ovarian reserve in the individual 

woman have been suggested including FSH, Inhibin B, AMH, and antral follicle 

counts and ovarian volume by transvaginal ultrasound[22]. We recently showed a 

striking correlation between ovarian volume and NGF population using an earlier 

model[23]. However the measurement of ovarian volume by transvaginal ultrasound 

is imprecise, particularly at the lower end of the range[24]. It is likely that a better 

understanding of NGF establishment and decline will improve our ability to assess 

ovarian reserve for the individual woman. One immediate application of our model 

is to better understand the effect of chemotherapy and radiotherapy on the human 

ovary. Using a model based on less complete histological data, we estimated the 

radiosensitivity of the human oocyte[25] and were subsequently able to estimate the 

effective sterilising dose of radiotherapy at a given age for the individual 



woman[26]. Knowledge of the dose of radiotherapy and age at which it is delivered 

provides an important opportunity for accurate counselling of women receiving 

cancer treatment and will help us to predict which women are at high risk of 

premature menopause and who may therefore benefit from ovarian 

cryopreservation[27]. 

In summary, we have identified the first biologically plausible model of ovarian 

reserve from conception to menopause that fits the combined histological evidence. 

This model allows us to estimate the number of NGF present in the ovary at any 

given age, suggests that 81% of the variance in NGF populations is due to age 

alone, and shows for the first time that the rate of NGF recruitment increases from 

birth to age 14 years then declines with age until menopause. 



Methods Summary 

Data was collected from eight separate quantitative histological studies (Table 1). 

Each of these studies used a variation on the technique developed by Block[3].  

Ovaries are sectioned and some of the sections stained and photographed. A mean 

follicular volume is calculated from a sample image and used throughout all 

subsequent calculations. The photographs are analysed by hand, with the number 

of NGF’s appearing in the photograph being counted. By assuming an even 

distribution throughout the ovary, the population of the samples is integrated into 

an estimated population for the entire ovary.  The studies differ in the stain used, 

the number of samples chosen, the method of counting, and the mathematical 

formula used to obtain the estimated population from the sample populations.  No 

standard error has been calculated for such studies, as the exact number of NGF’s 

in a specific ovary has not been calculated. We combined these data into a single 

dataset (n=325) (Supplementary Table 4) and enforced a zero population at 

conception.  

We fitted 20 asymmetric peak models to the data set, using TableCurve-2D (Systat 

Software Inc., San Jose, California, USA), and ranked by r2 correlation coefficient 

(Supplementary Table 3). An asymmetric double-Gaussian cumulative (ADC) 

model was ranked highest (Supplementary Tables 1, 2, 4, 5 & 6; Supplementary 

Figures 1 & 2). To avoid selection bias, we randomly removed 50 datapoints 61 



times and re-fitted the models, with the ADC model being, on average, the best 

fitting model (double-sided t-test for the difference of means, p < 

0.01)(Supplementary Table 3). To further avoid selection bias from our initial 

choice of models, we fitted all 266 models supplied by TableCurve, again ranking 

by r2. The ADC model was again the highest ranked (Supplementary Table 7).   

The highest ranked model was used as the basis for further calculations.  Under    

the modelling assumption that, in general, a high (respectively low) established 

population results in a late (resp. early) menopause (Supplementary Figure 3), we 

calculated the percentage of  NGF pool at given ages (Supplementary Tables 5 & 

6), and the absolute monthly loss of germ cells from birth until age 55 (Figure 4). 
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Legends to Figures 

 

Figure 1a.  

The best model for the establishment of the NGF population after conception, and 

the subsequent decline until menopause is described by  log10(NGF) = (a/4)(1 + 

erf((x-b + c/2)/(d√2)))(1 – erf((x-b - c/2)/(e√2))), with parameters a = 5.56 (95% CI 

5.38-5.74), b = 25.6 (95% CI 24.9-26.4), c = 52.7 (95% CI 51.1-54.2), d = 0.074 

(95% CI 0.062-0.085), and e = 24.5 (95% CI 20.4-28.6). 

Our model has correlation coefficient r2 = 0.81, fit standard error = 0.46 and F-

value = 364. This figure shows the dataset (n= 325), the model, the 95% prediction 

limits of the model, and the 95% confidence interval for the model. The horizontal 

axis denotes age in months up to birth at age zero, and age in years from birth to 51 

years. 

Figure 1b.  

The best model for the establishment of the NGF population after conception, and 

the subsequent decline until 25 years of age is described by  log10(NGF) = (a/4)(1 + 

erf((x-b + c/2)/(d√2)))(1 – erf((x-b - c/2)/(e√2))), with parameters a = 5.79 (95% CI 

5.03-6.55), b = 28.0 (95% CI 15.8-40.2), c = 57.4 (95% CI 33.1-81.8), d = 0.074 

(95% CI 0.067-0.081), and e = 34.3 (95% CI -4.2-72.8). 



This model has correlation coefficient r2 = 0.95, fit standard error = 0.29 and F-

value = 585. This figure shows the dataset (n= 126), the model, the 95% prediction 

limits of the model, and the 95% confidence interval for the model. The horizontal 

axis denotes age in months up to birth at age zero, and age in years from birth to 25 

years. 

 

Figure 2. 

This figure gives illustrative examples of NGF populations predicted by our model. 

At ages 20 weeks, birth, 13 years, 25 years and 35 years the average NGF 

population is given, together with the respective 95% prediction intervals. The 

predicted average age at menopause (49.6 years) is also shown, together with the 

95% prediction interval.  

 

Figure 3. 

The curve describes the percentage of ovarian reserve remaining at ages from birth 

to 55 years, based on the Wallace-Kelsey model. 100% is taken to be the 

maximum ovarian reserve, occurring at 18-22 weeks post-conception.  The 

percentages apply to all women whose ovarian reserve declines in line with our 

model (i.e. late and early menopause are associated with high and low peak NGF 

populations, respectively). 



 

Figure 4 

Each sub-figure describes the absolute number of NGFs recruited per month, for 

ages from birth to 55 years, based on population decline predicted by the Wallace-

Kelsey model.  Figure 4 (a) – red curve – denotes the average age at menopause  

case ; maximum recruitment of 880 follicles per month occurs at 14 years 2 

months. Figure 4 (b) – green curve – denotes recruitment for individuals whose 

decline is in line with the 95% lower prediction limit for the model; maximum 

recruitment of 104 follicles per month occurs at 14 years 2 months. Figure 4 (c) – 

yellow curve – denote recruitment in line with the upper 95% prediction limit; 

maximum recruitment of 7,520 follicles per month occurs at 14 years 2 months.   

 

Supplementary Figure 1. 

The figure produced by TableCurve for the highest ranked model fitted to the 

combined dataset. The first three parameters, (a, b and c) define the maximum 

amplitude, centre and width respectively. The remaining parameters (d and e) 

define the scale of population establishment and decline. 

 

Supplementary Figure 2. 



The first equation is the generic form of an asymmetric double-Gaussian 

cumulative curve related to log adjusted data. The curve is asymmetric as it is the 

product of two Gaussian cumulative functions having a shared peak, but having 

different scale factors for growth and decline. Amplitude parameter a controls the 

maximum height of the curve above the x-axis; location parameters b and c control 

the height of the curve either side of the maximum. Scale parameters d and e 

control the width of the growth and decline sections of the curve. The second 

equation is the model obtained by replacing the parameters with computed values 

that maximise the r2 correlation coefficient for the 325 data points. The x variable 

is now age, and the y variable is the log-adjusted NGF population. This is the 

Wallace-Kelsey model from conception to menopause.  

 

Supplementary Figure 3. 

This table describes the hypothesis that individual age at menopause is determined 

by the peak NGF population established at around 20 weeks post-conception. The 

central curve is the ADC model described in Figures 1a and 2. Above and below 

are the hypothetical curves for an ovary having log-adjusted peak population 

varying from the average case by one half, one, one and a half, and two standard 

deviations. Under this hypothesis, a variation by, for example, one standard 



deviation in the initial peak population results in a one standard deviation from the 

average age at menopause.  

 

Supplementary Figure 4. 

The TableCurve output for the highest ranked model that permits more than one 

population peak. Compared to the ADC model, this has lower correlation 

coefficient, higher fit standard error, and lower F-statistic. All other TableCurve 

models that allow multiple peaks have  an inferior fit to the data.  
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Table One. 

Legend: Details of the eight quantitative histological studies used to form the 
combined dataset. 

Study Statistics 

Number 
First 
Author Year Ovaries

Min. 
Age 

Max. 
Age 

Median 
Age 

1 Bendsen 2006 11 -0.6 -0.6 -0.6
2 Baker 1963 11 -0.6 7.0 -0.2
3 Forabasco 2007 15 -0.5 0.5 -0.3
4 Block 1953 19 -0.2 0.0 0.0
5 Hansen 2008 122 0.1 51.0 38.0
6 Block 1952 86 6.0 44.0 28.0
7 Gougeon 1987 52 25.0 46.0 39.5
8 Richardson 1987 9 45.0 51.0 46.0

Overall 325 -0.6 51.0 32.0
 

 
























	Article File
	Table one
	Figure1a
	Figure1b
	Figure2
	Figure 3
	Figure 4a
	Figure 4b
	Figure 4c
	SIFigure1
	SIFigure2
	SIFigure3
	SIFigure4

