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Abstract 
 

Water movement in the body is determined by the osmotic forces acting on the cell 

membrane.  Ingestion of a highly-hypertonic glycerol solution resulting in high 

extracellular osmolality could drive water out of the intracellular space into the 

vascular space resulting in reduced muscle hydration and increased blood volume. 

The aim of this thesis was to study the effects of altered body water distribution 

during exercise.  In chapter 3, ingestion of a 400 ml glycerol solution (1 g·kg-1 body 

mass) increased serum osmolality (309 mosmol·kg-1) which was associated with a 

4.0% increase in blood volume due to a 7.2% increase in plasma volume, 

attributed to a shift of water from the intracellular space, resulting presumably in 

tissue dehydration.  Glycerol ingestion was then used as a means of altering body 

water distribution in the other studies described in this thesis. 

Altered body water distribution had no acute effect on force production during 

quadriceps muscle isometric exercise (chapter 4), or handgrip strength (chapter 

5).  Regarding chronic effects (chapter 5), two groups of participants exercised 

handgrip and initiated recovery after ingestion of either a glycerol solution or 

placebo over a period of 8 weeks.  Maximum handgrip strength increased in both 

groups and there was no statistically significant difference between the two 

groups. 

In chapters 6 and 7, the subjects performed a cycling exercise protocol to fatigue. 

In the glycerol trial, time to fatigue decreased compared with the iso-osmotic trial 

during an incremental VO2max test (chapter 6) and during cycling against a 

constant load at 100% VO2max intensity (chapter 7).  In the glycerol trial, there 

was an accelerated increase in blood lactate and an accelerated increase in 

serum potassium (chapter 7), indicating altered muscle metabolism which may 

have contributed to the early development of fatigue. 

 

Keywords:  glycerol, body water, muscle hydration, isometric exercise, strength, 
handgrip, strength training, VO2max, time to fatigue, cycling 
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Body water 
 
Total body water averages about 50 – 60% of body mass.  This equates to 

approximately 35 – 42 l for an average 70 kg male. Total body fluid is distributed 

among two major compartments:  the extracellular fluid and the intracellular fluid.  

The intracellular fluid (which is inside the body cells) amounts to about 40% of total 

body mass and the extracellular space (fluids outside the cells) accounts for about 

20% of body mass (Guyton & Hall, 1996). 

Extracellular space is then divided into two compartments:  the interstitial space, 

which makes up about three-fourths of the extracellular fluid (15% total body 

mass) and the plasma, which makes up almost one-fourth of the extracellular 

space (5% total body mass) (Guyton & Hall, 1996).  Plasma is the non-cellular part 

of the blood and communicates continuously with the interstitial fluid through the 

pores of the capillary membranes.  The relative amounts of extracellular fluid 

distributed between the plasma and interstitial spaces are determined mainly by 

the balance of hydrostatic and osmotic forces.  The distribution of water between 

the intracellular and extracellular space is determined mainly by the osmotic effect 

of the solutes acting across the cell membrane.  These solutes can be inorganic 

ions such as Na+, K+, or Cl-, or organic molecules such as amino acids, taurine, 

alanine, proline, glycerol, sorbitol, or myo – inositol (Strange, 2004).  Changes in 

intracellular or extracellular solute content generate a transmembrane osmotic 

gradient and water moves across the cell membrane rapidly so that the 

intracellular fluid remains isotonic with the extracellular fluid (Guyton & Hall, 1996).  

This water movement may alter cellular hydration by causing cell swelling or 

shrinkage. 

In a series of experiments in the 1990’s, Haussinger and his group (Berneis et al., 

1999; Haussinger et al., 1991; Hallbrucker et al., 1991a; Hallbrucker et al., 1991b; 

Haussinger et al., 1990a,b; Haussinger et al., 1994; Stoll et al., 1992; Low et al., 

1996; vom Dahl & Haussinger, 1996; vom Dahl et al., 1991) studied cell 

metabolism under different states of increased and decreased hydration.  

Exposing cells to a hypo-osmotic environment led to an influx of water into the cell, 
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resulting in cell swelling, and exposing cells to a hypertonic environment led to cell 

shrinkage. They observed that cell volume increase favoured anabolic processes 

such as protein and glycogen synthesis, whereas cell shrinkage had the opposite 

effect (Haussinger et al., 1994). 

If this theory applies in a whole body situation it could affect muscle function since 

water is the organic solvent of most biochemical processes and adequate 

hydration is important for exercise performance; extracellular and intracellular fluid 

volumes affect such physiological processes as transport of respiratory gases and 

energy substrates, as well as energy metabolism (Schoffstall et al., 2001).  

 

 

Cellular hydration and cell volume theory 
 
Proper cell hydration is important as cells need to maintain a constant volume for 

normal cell function and survival (Strange, 2004).  The cellular hydration state is 

not maintained in absolute constancy, but it is dynamic and changes within 

minutes under the influence of aniso–osmolality, hormones, nutrients and 

oxidative stress (Haussinger et al., 1994; Haussigner, 1996).  Factors leading to 

cell swelling are, for example, extracellular hypo–osmolality, elevated plasma 

insulin and elevated plasma IGF-1 (Hallbrucker et al., 1991a; Hallbrucker et al., 

1991b; Haussinger et al., 1991; vom Dahl & Haussinger, 1996).  Elevated 

glutamine and plasma amino acids also lead to cell swelling due to a cumulative 

uptake of glutamine and amino acids into the cell, which creates an osmotic 

gradient and water flux into the cell (Hallbrucker et al., 1991b; Haussinger et al., 

1990b).  Other factors such as hyper-osmotic plasma, increased plasma glucagon 

concentrations and oxidative stress induce cell shrinkage (Haussinger, 1996; 

Keller et al., 2003; Schliess & Haussinger, 2002).  In time, the cells regain almost 

their original size (Haussinger et al., 1994).  Following cell swelling, the cells 

display a regulatory volume decrease and following cell shrinkage, regulatory 

volume increase mechanisms restore cell volume.  Cell volume is regulated by the 

loss or gain of osmotically active solutes such as Na+, K+ and Cl-.  Regulatory 
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volume decrease is achieved via the loss of K+, Cl-and HCO3
-, whereas regulatory 

volume increase is achieved through Na+, K+, Cl- uptake via activation of Na+-H+ 

antiport activity, Na+ - K+ - 2Cl- contraport and Cl- -HCO3
- exchanges (Haussinger 

et al., 1994; Haussinger, 1996; Keller et al., 2003).  Then, activation of the Na+ - K+ 

- ATPase serves to replace accumulated Na+ with K+ (Lang et al., 1998). 

In vitro, the cell regulatory volume mechanisms do not completely restore the initial 

cell volume (leaving the cells in either a slightly shrunken or swollen state) and the 

extent of this volume deviation has been shown to act as a signal modifying 

cellular behaviour (Haussinger et al., 1994).  Cell swelling favours the synthesis 

and inhibits the degradation of proteins, glycogen and, to a lesser degree, lipids 

(Lang et al., 1998).  Cell shrinkage has the opposite effect (Haussinger et al., 

1994; Lang et al., 1998).  Overall, cell swelling promotes growth factor-like effects 

and cell shrinkage supports a catabolic situation (Haussinger et al., 2004).  

Although most of the research was conducted on hepatocytes, the cell volume 

theory as suggested by Haussinger appears to also hold true for skeletal muscle 

cells and mitochondria (Lang et al., 1998). 

In vivo, clinical observations are in agreement with the cell volume theory.  Finn et 

al. (1996) observed that progressive cellular dehydration is associated with loss of 

protein and potassium from body stores in critically ill patients suffering from major 

trauma or sepsis.  Further, in diabetic individuals, protein catabolism is associated 

with dehydration paralleled by hyperglycaemia that results in plasma hyper-

osmolality, which may lead to cell shrinkage (Hellerstein, 1995; Lang, 2007). 

 

Cell volume and protein metabolism 

Increased intracellular water space (increased cell volume) has been shown to 

stimulate overall protein synthesis (Stoll et al., 1992) and to inhibit proteolysis 

(Hallbrucker et al., 1991a; Hallbrucker et al., 1991b; Haussinger et al., 1990; vom 

Dahl et al., 1991). 

Haussinger et al. (1990a) exposed perfused rat liver in hypo-  and hyper-osmotic 

conditions.  Control osmolality was 305 mosmol·kg-1, the hypo–osmotic condition 

was set at 225 mosmol·kg-1 and hyper-osmolality was at 385 mosmol·kg-1.  
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Following exposure to hypo–osmotic conditions, liver mass increased about 20%.  

Following a K+ efflux and a regulatory volume decrease, liver mass came to a 

steady state that was greater than the starting value.  As indicators of proteolytic 

rate, the investigators used the release of branched chain amino acids from the 

cells (since branched chain amino acids are not synthesized nor catabolised in rat 

liver).  Their results showed that hypo-osmotic exposure of rat liver resulted in a 

decrease of branched chain amino acid release (~ 22%) which was reversible 

upon re–exposure to normo–osmotic perfusion media.  Exposure of rat liver to 

hyper-osmolality resulted in an increased (22%) release of branched chain amino 

acids.  These data demonstrated that cell swelling inhibited proteolysis and cell 

shrinkage promoted protein breakdown. 

Haussinger et al. (1990b) reported that cell swelling can also be elicited by 

increases in intracellular glutamine concentration.  Exposure of perfused rat liver 

to iso-osmotic media containing glutamine led to an increased uptake of 

glutamine.  This resulted in cell swelling, which was accompanied by an inhibition 

of leucine released from the liver.  This demonstrated an inhibition of proteolysis 

by glutamine.  Other amino acids, such as alanine, serine and glycine, have also 

been shown to elicit liver cell swelling and to be potent inhibitors of proteolysis 

(Haussinger et al., 1990a; vom Dahl & Haussinger, 1996). 

Hallbrucker et al. (1991b) investigated the relationship between proteolysis (as 

expressed by leucine release) and amino acid induced cell swelling on isolated 

perfused liver.  An infusion of glutamine or glycine individually led to decreased 

proteolysis, which was strongly dependent upon the increase in liver mass.  The 

infusion of alanine, serine, proline or phenylalanine, or a mixture of these amino 

acids also led to a decrease in leucine release, suggesting inhibition of proteolysis; 

however, the effect of these amino acids was only partially explained by changes 

in cell volume.  The antiproteolytic effect of the amino acids glycine and glutamine 

could be mimicked quantitatively by equipotent hypo-osmotic cell swelling. 

Cell swelling is also induced by the action of insulin, which results in K+ uptake and 

Haussinger et al. (1991) suggested that the antiproteolytic action of insulin is 

dependent on the extent of the simultaneously occurring changes of the 
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intracellular water space in perfused rat liver.  Further research by Hallbrucker et 

al. (1991a and 1991b) and vom Dahl and Haussinger (1996) demonstrated that 

insulin and IGF –1 do result in K+ accumulation in the cells that leads to increases 

in cell volume, showing that the antiproteolytic effect of insulin and IGF – 1 reflects 

mainly their cell swelling potency.  

 

Cell volume and carbohydrate metabolism 

Cell swelling leads to decreased lactate and pyruvate release from the cell, 

whereas exposure of cells to hyper-osmotic perfusates results in an augmented 

release of lactate and pyruvate (Lang et al., 1989).  This was an early finding that 

changes in extracellular osmolality affect cell carbohydrate metabolism.  Low et al. 

(1996) investigated whether muscle glycogen synthesis was modulated by 

changes in cell volume by studying myotubes in primary culture exposed to 

sucrose solutions of different osmolality with or without insulin.  Their results 

showed that in the absence of insulin, skeletal muscle glycogen synthesis in the 

hypo-osmotic condition (170 mosmol·kg-1) increased by 75%, whereas it 

decreased by 31% in the hyper-osmotic condition (430 mosmol·kg-1) compared 

with the iso–osmotic condition (300 mosmol·kg-1).  The addition of insulin to the 

iso–osmotic media also increased glycogen synthesis by 53% compared with the                                          

control value.  Further, hypo–osmotic exposure resulted in increased glycogen 

synthesis by 40% in cells already stimulated by supramaximal insulin 

concentrations.  This showed that the anabolic effects of insulin and cell swelling 

were at least partly additive. 

Glycogen synthesis is controlled by the activity of glycogen synthase and acetyl – 

CoA carboxylase.  Baquet et al. (1991) investigated the action of these enzymes in 

parallel with the increased glycogen synthesis observed after cell swelling in 

hepatocytes.  Their results showed that exposure to hypo–osmotic perfusates 

increased cell volume and led to an activation of glycogen synthase and acetyl-

CoA carboxylase, whereas exposure to hyper-osmotic media inhibited the action 

of both enzymes.   
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Exposure of skeletal muscles to hyper-osmotic conditions 

Exposure of muscle fibres to hypertonic solutions is known to lead to cell 

dehydration and shrinkage (Blinks, 1965; Bozler, 1965).  Caputo (1968) exposed 

single muscle fibres in hypertonic solutions containing glycerol (460 mosmol·kg-1) 

and investigated changes in volume and muscle twitch.  The fibres shrank rapidly 

following exposure to the hypertonic solution and twitch tension fell by 25%.  

These effects were transient and were reversed on return to the isotonic medium.  

Even though the author could not clearly demonstrate what the underlying 

mechanism was, he suggested that the fibre volume changes that occur in 

hypertonic solutions appeared to be the cause of the alterations in twitch tension 

up to a certain extent.  However, he did point out that cellular dehydration would 

cause changes in ionic strength that could also affect the contractile mechanism of 

the cell.   A decline in twitch tension was also observed by Gordon and Godt 

(1970) following exposure of frog skeletal muscles to hypertonic conditions, which 

was attributed either to the increases in ionic strength following dehydration or a 

direct effect of cellular dehydration on the contractile proteins.  This could be 

attributed either to a failure in the process linking the depolarisation of the muscle 

membrane to calcium release from the sarcoplasmic reticulum or the inability of 

actin and myosin to move normally in the dehydrated cell (Miyamoto & Hubbard, 

1972).  Later evidence by Rapoport et al. (1982) showed that exposure of muscle 

fibres to a hyper-osmotic environment (570 mosmol·kg-1) inhibited contractility of 

the fibres when these were electrically stimulated.  The authors suggested that this 

could be due to decreased release and re – uptake of calcium during electrical 

stimulation.  Furthermore, Rapoport et al. (1982) also reported reduced 

phosphocreatine and ATP concentration, and increased glucose – 6 – phosphate 

concentration, suggesting increased glycogenolysis, during immersion of the fibres 

in the hyper-osmotic media in resting conditions.  These findings showed that 

hypertonicity affected the resting metabolism of the muscle fibres. 

Recent evidence by Antolic et al. (2007) investigated the effects of different 

osmotic conditions on intact resting skeletal muscles.  The muscles were 

incubated in either iso – osmotic (control, 290 mosmol·kg-1), hypo–osmotic (190 
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mosmol·kg-1) or hyper-osmotic (400 mosmol·kg-1) media.  The results showed a 

3% increase in muscle water in the hypo–osmotic condition and a 3% loss of water 

in the hyper-osmotic condition.  This was accompanied by an increase in cross 

sectional area in the hypo-osmotic condition and a reduction in cross sectional 

area in the hypertonic condition.  Furthermore, hyper-osmolality resulted in an 

altered resting metabolism.  There was a 12% decrease of ATP concentration, a 

43% decrease in phosphocreatine and a 150% increase in creatine content 

compared with the control condition.  There was also a 4–fold increase in tissue 

lactate.  The authors suggested that the reduced ATP content demonstrated that 

the energy pathways of glycolysis and phosphocreatine were challenged to supply 

the cell with enough energy to meet its requirements during the 60 min hyper-

osmotic condition, maybe in an effort to sustain cell volume.  Additionally, 

increased lactate and creatine content could increase cellular osmolality and act 

as a compensatory mechanism to draw water back into the cell.  Whilst the exact 

reason for the increase in resting metabolism could not be identified with certainty 

by the investigators, the reduction in the cell’s energy charge (as described by the 

decreased ATP and high – energy phosphagen compounds, and the observed 

glycolysis, glycogenolysis and lactate production) could only negatively affect the 

muscles in an exercise environment.    

 

 

Addressing the cell volume theory in whole body situation 
 
Berneis et al. (1999) addressed the cell volume theory in humans by acute 

alterations of extracellular osmolality.  The investigators induced either hypo – 

osmolality (intravenous administration of desmopressin 2 x 4 mg 12 hours apart, 

liberal water drinking, and infusion of hypotonic saline (0.4%)) or hyper-osmolality 

(intravenous infusion of hypertonic NaCl [2–5%; (wt/vol)] and restriction of water 

intake) and these changes were sustained during 17 h.  In the hyper-osmotic 

condition, plasma osmolality was raised from 283 to 296 mosmolkg-1.  In the hypo 

– osmotic condition, plasma osmolality decreased from 286 to 265 mosmolkg-1.  
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The authors suggested that these changes in plasma osmolality led to a modest 

state of cell shrinking or swelling.  Using suitable tracers ([1-13C] leucine), leucine 

rates of appearance and disappearance were measured as indicators of protein 

metabolism and leucine oxidation as an indicator of catabolism.  Glucose tracers 

([6,6-2H2] glucose) were used to monitor glucose kinetics and carbohydrate 

metabolism. 

Hypo-osmolality resulted in a decrease of both leucine appearance (from 1.90 

baseline to 1.79 μmol·kg-1·min-1), and leucine oxidation (from 0.34 μmol·kg-1·min-1 

baseline to 0.27 μmol·kg-1·min-1) rates.  Hyper-osmolality had no effect on leucine 

turnover, but led to an increase in the rate of glucose appearance (12.4 μmol·kg-

1·min-1 vs. 11.2 μmol·kg-1·min-1 in iso–osmolality), indicating hepatic glucose 

production and increased plasma glucose concentrations (5.1 mmo·l-1 vs. 4.9 

mmo·l-1 in iso-osmolality, p < 0.050).  The authors concluded that these effects 

were linked to modest cell swelling or shrinkages.  Leucine release from 

endogenous proteins (representing protein breakdown) and leucine oxidation 

(indicating irreversible catabolism) were diminished during hypo-osmolality 

compared with iso-osmolality.  Protein synthesis (non-oxidative leucine 

disappearance) during the hypo-osmotic condition was not altered, which indicates 

that net protein balance was improved during the hypo-osmolal state. 

Hyper-osmolality and cell shrinkage led to increased hepatic glucose production 

(increased glycogenolysis), which resulted in increased plasma glucose 

concentrations.  Their findings show in vivo that alteration of extracellular 

osmolality and body water exerts metabolic effects. 

Keller et al. (2003) studied the effect of acute changes of extracellular osmolality 

on whole-body protein, glucose and lipid metabolism, using the same protocol as 

Berneis et al. (1999) to induce changes in extracellular osmolality.  

During the experimental periods, plasma osmolality was 285 mosmol·kg-1 in the 

iso-osmotic condition, 296 mosmol·kg-1 in the hyper-osmotic condition and 265 

mosmol·kg-1 in the hypo-osmotic condition.  Their results showed that blood 

glucose concentration was higher (5.1 mmol·l-1) during hyper-osmolality and lower 

(4.7 mol·l-1) during hypo-osmolality compared with iso-osmolality (4.9 mmol·l-1).  
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Analysis of their results indicated a glucose sparing effect during hypo-osmolality 

and an increase in hepatic glucose production in the hyper-osmolality condition, 

which resulted in increased blood glucose concentration.  Further measurements 

by indirect calorimetry showed that during hypo-osmolality, fat oxidation was 

higher and carbohydrate oxidation lower, supporting the glucose sparing effect of 

hypo-osmolality.  Their findings on glucose metabolism agree with in vitro studies 

that glycogenolysis was reduced as a consequence of hypo-osmotic cell swelling 

(Haussinger et al., 1994; Stoll et al., 1992). 

Data on protein metabolism showed that hypo- osmolality resulted in decreased 

leucine release from endogenous proteins (representing protein breakdown) and 

decreased leucine oxidation (representing irreversible catabolism).  Leucine flux 

decreased from 1.90 μmol·kg-1·min-1 at baseline to 1.79 μmol·kg-1·min-1 during 

hypo-osmolality.  Leucine oxidation decreased from 0.34 μmol·kg-1·min-1 at 

baseline to 0.27 μmol·kg-1·min-1 during hypo-osmolality. Protein synthesis was not 

altered during hypo-osmolality, and in conjunction with the decreased protein 

breakdown, hypo-osmolality resulted in a positive net protein balance. 

 Keller et al. (2003) also failed to find increased protein breakdown during hyper-

osmolality, and they suggested that perhaps the increase in osmolality was 

insufficient to elicit significant protein catabolism.  Overall, their findings tend to 

confirm in vivo the theory of Haussinger regarding cell shrinkage and protein 

breakdown.  Despite the failure to find increased catabolism during hyper-

osmolality, the investigations by the Berneis and the Keller group are the only 

studies addressing in vivo the cell volume theory on whole body metabolism. Still 

more research is required to address the cell volume theory in the whole body 

situation, especially in exercise environments.  Whilst the Keller group used 

infusion of hypertonic solutions in a clinical environment, in an exercise 

environment it would be important to find a more feasible, practical and applicable 

method of inducing changes in extracellular osmolality.  Ingestion of a highly 

hypertonic solution, such as glycerol, could provide the means for increasing 

extracellular osmolality and potentially altering cell hydration and volume. 
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Glycerol 
 
Glycerol is a natural occurring trivalent alcohol that constitutes the backbone of the 

triglyceride molecule.  Glycerol is a viscous, colourless, odourless liquid with a 

sweet taste (Nelson & Robergs, 2007).  Physiological levels of blood glycerol are 

0.03 – 0.5 mmoll-1 (Gleeson et al., 1986; Nelson & Robergs, 2007) and it has 

been reported to be evenly distributed at low concentrations among all fluid 

compartments (intracellular and extracellular spaces), with the exception of the 

cerebral spinal fluid and aqueous humour (Lin, 1977).  Glycerol ingestion in clinical 

settings has been used to combat intracranial and intraocular hypertension; by 

ingesting glycerol there is an increase in blood glycerol concentration that creates 

an osmotic gradient made possible by the blood brain barrier, water moves out of 

the intracranial and intraocular space into the blood, reducing the pressure in 

those areas (Lin, 1977).  

In exercise settings, glycerol ingestion has been used as a means of 

hyperhydration.  Ingesting a dosage of 1.0 – 1.2 gkg-1 body mass raises blood 

glycerol concentration significantly to 12 – 15 mmoll-1.  As a result, plasma 

osmolality can rise by more than 10 mosmolkg-1 (Freund et al., 1995; Gleeson et 

al., 1986; Montner et al., 1996).  Since glycerol has the ability to retain water in the 

body, when glycerol ingestion is accompanied by large amounts of water (i.e., 20 

mlkg-1 body mass water), total body water increases (Nelson & Robergs, 2007; 

Robergs & Griffin, 1998). 

In contrast, glycerol solutions of small volume (less than 700 ml total solution 

volume) have not been shown to increase total body water (Montner et al., 1996), 

but they still result in an increase in plasma volume (Gleeson et al., 1986; Montner 

et al., 1996).  Gleeson et al. (1986) gave their participants a 400 ml glycerol 

solution to ingest, which contained 1 gkg-1 body mass glycerol. The drinks’ 

osmolality ranged between 1860 – 2350 mosmol·kg-1.  Based on peak plasma 

glycerol values, and assuming that glycerol may be distributed throughout a fluid 

compartment equivalent to 0.65 l·kg-1 body mass, according to Wilmore and Costill 
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(1974), Gleeson et al. (1986) estimated that all orally ingested glycerol was 

absorbed within 30 min of ingestion.  In the same study of Gleeson et al. (1986), 

plasma osmolality rose from 292 to 310 mosmolkg-1 and this was associated with 

an increase in plasma volume of approximately 10%.  Since water moves between 

body water compartments due to osmotic forces, the authors suggested that the 

increase in plasma osmolality and circulation volume could have led to significant 

tissue dehydration.  

In the above mentioned study by Gleeson et al. (1986) the authors used glycerol 

solutions in their aim to investigate whether glycerol could serve as an energy 

substrate during endurance cycling exercise.  The reasoning for this was that 

glycerol is a gluconeogenic substrate that is converted into glucose in the liver 

(Bortz et al., 1972) and in a study by Terblanche et al. (1981) rats fed with glycerol 

were able to exercise for longer as glycerol was used as an energy substrate.  

Gleeson et al. (1986) showed that pre – exercise glycerol ingestion did not 

increase exercise time nor did it serve as a significant energy substrate during an 

endurance cycling protocol.  The authors concluded that glycerol cannot be 

metabolised rapidly enough in humans in order to serve as a fuel source during 

strenuous exercise.  This was also confirmed in a later study by Gleeson and 

Maughan (1988) when, following a 36-hour fast, the participants ingested a 400 ml 

glycerol solution (1 g·kg-1 body mass) and then exercised at 70% VO2max to 

exhaustion.  Glycerol ingestion did not improve time to fatigue and results were 

similar to placebo. 

Since glycerol is not a significant fuel source during exercise, and in small volumes 

it does not increase total body water significantly, it can be used solely as a means 

of increasing blood osmolality (Robergs & Griffin, 1998).  Due to its osmotic 

properties, glycerol can potentially drive water into the extracellular space resulting 

in increases in plasma volume and tissue dehydration (Gleeson et al., 1986; 

Gleeson & Maughan, 1988) and can potentially provide the means for reducing 

myocyte hydration.  

Another factor to be examined is the time course of this effect.  Following peak 

blood glycerol concentration, there is a continuous decline as glycerol permeates 
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into the interstitial and intracellular space, including the skeletal muscles until it 

evenly distributes itself in the body’s water compartments (Robergs & Griffin, 

1998).  Terblanche et al. (1981) showed that glycerol can be evenly distributed 

between the liver, blood and skeletal muscle, but that this takes about 1 to 2 hours 

after ingestion.  Potentially, there could be a time window before distribution of 

glycerol in all water compartments where the alteration in body water distribution 

could allow the study of the cell volume theory and the effects of hyper-osmolality 

on muscle function during exercise in vivo.  

 
 
Safety of glycerol ingestion 
 
Participants ingesting glycerol solutions may have sensation of stomach fullness, 

light – headedness, headaches (Gleeson et al., 1986) nausea and vomiting 

(Murray et al., 1991).  The sensation of fullness subsides within 15 – 20 min 

(Coutts et al., 2002). 

Robergs and Griffin (1998) suggested that glycerol ingestion should be avoided by 

people with certain disorders.  They suggested that as glycerol ingestion may lead 

to increased gluconeogenesis that takes place in the liver and results in elevated 

blood glucose, people with diabetes or liver disorders should not ingest glycerol.  

This, however, does not appear to hold true because while glycerol ingestion may 

lead to elevated blood glucose levels in rats (Terblanche et al., 1981), studies in 

man have shown that ingestion of a glycerol solution (1 g·kg-1 body mass) does 

not increase resting blood glucose nor plasma insulin levels (Gleeson & Maughan, 

1988; Gleeson et al., 1986). 

Nevertheless, there are other clinical conditions that might be exacerbated 

following glycerol intake.  Because glycerol may draw water from the intracranial 

space, which can lead to headaches, people with migraine or who tend to be 

susceptible to headache should probably not ingest glycerol.  Individuals with renal 

problems should also seek medical advice before ingesting glycerol due to the 

increased role of the kidneys in glycerol removal when blood glycerol 
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concentrations are elevated.  People with cardiovascular disorders should also 

refrain from ingesting glycerol as any resultant increases in plasma volume could 

lead to elevated blood pressure.  

Overall, however, glycerol ingestion has been used widely in clinical settings and 

in doses between 1.0 – 1.5 g·kg-1 body mass and there seems to be no scientific 

justification for a deleterious clinical consequence resulting from such intakes 

(Robergs & Griffin, 1998). 
 
 
Potential effects of glycerol ingestion on body water distribution and 
resultant effects on exercise 
 
As indicated from the findings of Gleeson et al. (1986) and Gleeson and Maughan 

(1988), ingestion of a concentrated glycerol solution (400 ml, 1 g·kg-1 body mass 

glycerol) results in plasma and blood volume increases and there is potentially a 

degree of tissue dehydration.  If the in vitro findings from the studies described 

Haussinger and his group apply in a whole body situation, reduction in muscle 

water could have an adverse effect on muscle metabolism (i.e., reduced ATP and 

phosphocreatine content, reduced protein synthesis) and function (reduced 

contractility), which could affect exercise performance and the outcome of strength 

training.  On the other hand, increases in blood volume could have a positive 

effect on aerobic exercise; increase in blood volume results in greater cardiac 

output that may result in increased maximum oxygen uptake (VO2max) and 

aerobic exercise performance (Coyle et al., 1986).  Further information on both 

muscle dehydration and increase in blood volume and their effect on exercise are 

presented below.  
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Muscle dehydration and exercise 
 
In vivo evidence regarding muscle function and metabolism in a dehydrated state 

comes from studies where the participants performed resistance exercise in a 

dehydrated state (implying muscle hydration was also reduced), which was 

expressed as reduced total body water.  

 

 

Body hydration and strength exercise 

 

Acute effects of body dehydration on strength exercise 

Studies investigating the effects of dehydration (expressed as reduced total body 

water) on strength have reached conflicting results, reporting either a decrease 

(Bosco et al., 1974; Bosco et al., 1968; Schoffstall et al., 2001; Torranin et al., 

1979; Viitasalo et al., 1987) or no change (Bigard et al., 2001; Greenleaf et al., 

1967; Greiwe et al., 1998; Montain et al., 1998) in power output.  This could be 

attributed either to the degree of dehydration, which ranged between 1.7% 

(Schoffstall et al., 2001) to 5.7% (Bosco et al., 1974) body mass, or the method 

used to elicit dehydration or the method used to measure strength (isometric or 

dynamic model of exercise or vertical jump).  Available methods to induce 

dehydration are the use of a sauna (passive dehydration), vigorous exercise 

(active dehydration), the use of diuretics, or fluid intake restriction.  Active 

dehydration may lead to fatigue or depletion of glycogen, which will impair 

performance independent of the dehydration effects.  In the above referenced 

studies, no vigorous exercise was used.  Sauna exposure also increases core 

temperature; exercising under elevated muscle and core temperature limits work 

capacity and promotes fatigue (Galloway & Maughan, 1997; Nielsen et al., 1981) 

and may contribute to fatigue during strength exercise (Barr, 1999).  Torranin et al. 

(1979) showed that isometric endurance decreased following sauna exposure and 

4% dehydration.  Viitasalo et al. (1987) reported decreased maximal isometric leg 

strength (7.8%) following exposure to sauna.  Schoffstall et al. (2001) stated that 



 
25 

 

passive dehydration resulting in 1.5% body mass dehydration decreased 

maximum bench press performance.   Greiwe et al. (1998) described no change in 

isometric knee extension peak torque or in time to fatigue following 3.8% body 

mass dehydration (sauna exposure). 

Montain et al. (1998) used magnetic resonance spectroscopy (31P-MRS) to 

examine the effects of hypohydration on muscle metabolites and performance.  

After a 4% loss in body mass following active dehydration, the participants 

performed single – leg knee extensions.   Maximal voluntary contraction (MVC) 

was not affected, but endurance (time to fatigue) was impaired and reduced by 

15%.  These authors had hypothesized that because elevated muscle H+ and Pi 

concentrations reduce muscle force production during repeated contractions (Fitts, 

1994), and dehydration was likely to increase H+ and Pi relative concentrations, 

significant losses of body water would reduce muscle metabolism and strength 

performance.  However, their data showed that there was not any difference in 

muscle metabolism between the euhydrated and dehydrated state.  These results 

are in contrast to those of Antolic et al. (2007) who found reduced ATP and 

phosphocreatine content in skeletal muscle cells following osmotic dehydration. 

In a thorough review of literature, Judelson et al. (2007a) concluded that 

hypohydration appears to negatively influence muscular strength, power and high 

– intensity endurance in terms of performance.  Beyond the acute effects, one 

should also consider the effects of chronic muscle dehydration.  Resistance 

exercise is usually carried out with the purpose of increasing strength and muscle 

size.  Muscle protein synthesis takes place in the recovery period.  If dehydration 

persists during recovery and muscle hydration is reduced (thereby decreasing 

protein synthesis according to the cell volume theory), it could potentially minimise 

the expected training effect. 

 

Resistance exercise training and hypertrophy 

Improvement in muscle strength and hypertrophy appear following effective 

regular resistance training.  Strength can increase after only a few days of training 

due to neuromuscular adaptations (Del Balso & Cafarelli, 2007; Folland & 



 
26 

 

Williams, 2007), but hypertrophy and further gains in strength result after about 8 

or more weeks of training (Folland & Williams, 2007; Garfinkel & Cafarelli, 1992; 

Young et al., 1983).  Gains in muscle size and strength are elicited by training 

programmes using high loading at intensities greater than 75% max of 1 RM 

(Kanehisa et al., 2002).  Training at intensities lower than 50% max of 1 RM does 

not seem to induce any hypertrophy (Moss et al., 1997).  Training volume is also 

important; resistance exercise programmes designed to elicit hypertrophy usually 

involve 3 sessions per week, and workloads consisting of 3 – 5 sets of 8 – 10 

repetitions (McCaulley et al., 2009; Schott et al., 1995; Smith & Rutherford, 1995; 

Yamamoto et al., 2008). 

In terms of hypertrophy, the adaptive response reflects the overall summation of 

protein metabolism after exposure to multiple bouts of resistance exercise.  

Resistance exercise increases both protein synthesis and breakdown, but in the 

post-absorptive state, muscle protein synthesis exceeds protein breakdown 

(Mougios, 2006).  A positive protein balance (synthesis > breakdown) results in an 

increase in muscle cross sectional area, which enhances force generation 

(Maughan, 1984a).  

The induced skeletal muscle hypertrophy produced by strength exercise has been 

linked to acute changes in the cellular processes involved in protein turnover and 

muscle growth (Crewther et al., 2006; Tipton & Wolfe, 2001) as hormones and 

growth factors interact to regulate muscle protein remodelling following resistance 

exercise (Kraemer et al., 1998).  Testosterone, growth hormone, insulin, and 

insulin-like growth factor (IGF-1) are known to promote increases in muscle protein 

synthesis (Baar, 2006; Tipton & Wolfe, 2001).  

Kraemer et al. (1998) investigated the hormonal responses following resistance 

exercise, which consisted of four sets of ten repetitions of four different exercises 

(16 sets total).  Their findings showed that circulating testosterone levels increased 

acutely following the exercise.  Hakkinen and Pakarinen (1993) demonstrated a 

similar effect following a session consisting of 10 sets of 10 repetitions at 10 RM, 

in a squatting exercise. 
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Growth hormone is another potent anabolic hormone influencing muscle tissue 

growth by increasing protein synthesis and reducing the degradation of muscle 

protein (Widerman et al., 2002).  Heavy resistance exercise at high intensity 

(above 70% of 1RM), similar to protocols inducing hypertrophy, seems to result in 

a greater growth hormone response (Kraemer et al., 1990).  The anabolic action of 

growth hormone is then mediated by the effect of secondary proteins known as 

somatomedins or insulin-like growth factors (IGFs) with IGF –1 being the most 

important (Kraemer et al., 1990; Crewther et al., 2006).  

Insulin’s main role is to regulate blood glucose, by increasing glucose uptake by 

the tissues when glucose levels in the blood rise.  Additionally, insulin increases 

the uptake of amino acids into the muscle cell (Mougios, 2006).  Amino acid 

availability is essential for protein synthesis in the recovery period following 

resistance exercise, and insulin in humans inhibits protein breakdown (Rooyackers 

& Nair, 1997); therefore insulin is considered an anabolic hormone. 

Cortisol is considered the primary catabolic hormone as it decreases protein 

synthesis and increases protein degradation.  Cortisol levels in the blood rise 

following resistance exercise, especially following a heavy workload of many sets 

at high intensity (Kraemer & Ratamess, 2005).  It is of interest to note that the 

same type of training that elicits hypertrophy results in greater acute increase of 

both the anabolic hormones and cortisol. 

 

Hypohydration and its effects on hormonal responses to resistance exercise 

Judelson et al. (2008) studied the effect of hydration state on the hormonal and 

metabolic responses to resistance exercise.  Seven male participants performed 6 

sets of 10 repetitions of back squats at 80% of 1 RM on three different occasions:  

in a euhydrated state, under 2.5% body mass hypohydration and 5.0% 

hypohydration.  The hypohydrated states were elicited by fluid restriction and a 

low-intensity walking exercise on a treadmill in a heated environmental chamber 

(36 – 37°C, 40 – 50% relative humidity), the day before the resistance exercise 

protocol.  Following completion of exercise sessions, there were different 

hormonal responses between the euhydrated and dehydrated conditions.  The 
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concentrations of the catabolic stress hormones, cortisol and epinephrine, in the 

recovery phase in the 5% hypohydration condition were higher than under the 

other conditions, and the epinephrine area under the curve tended to be 

increased.   The area under the curve of testosterone, an anabolic hormone, was 

decreased in the 5% hypohydrated compared with the euhydrated condition.  

Insulin and glucose circulating levels were increased in both the hypohydrated 

conditions, but the investigators suggested that this might be due to an increased 

insulin resistance due to hypohydration and a decrease in muscle cell volume 

(Schliess & Haussinger, 2000).  IGF-1 concentration was similar across conditions 

and there was no difference in growth hormone levels between conditions. 

The investigators concluded that hypohydration strongly enhanced a catabolic 

hormonal response to resistance exercise and attenuated the anabolic response 

to resistance exercise, producing a less beneficial muscle growth post-exercise 

milieu.  Long-term exercise under a muscle-dehydrated state could negatively 

affect the improvements in strength that are expected from resistance exercise 

training. 

 

 

Increased plasma and blood volume and potential effects on aerobic 
exercise 
 
Maximum oxygen uptake (VO2max) is defined as the highest rate at which oxygen 

can be taken up by the body and utilised during severe exercise.  The current 

belief is that maximum cardiac output is the principal limiting factor for VO2max 

during cycling tests, as the observed normal range of VO2max in trained men and 

women of similar age is due principally to variation in maximal stroke volume 

(Bassett & Howley., 2000; Ekblom, 2000; Gonzalez–Alonso & Calbet, 2003).  

Stroke volume can increase due to greater blood volume (Hopper et al., 1988; 

Gledhill, 1985; Kanstrup & Ekblom, 1982) because of the Frank–Starling 

mechanism (Coyle et al., 1990; Ekblom, 2000; Fortney et al., 1981; Kanstrup & 

Ekblom, 1982) as increased ventricular filling pressure leads to increased output 
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(stroke volume).  The increased stroke volume during exercise when plasma and 

blood volume are elevated can be explained by a concomitantly increased end – 

diastolic volume and reduced end–systolic volume (Kanstrup & Ekblom, 1982). 

Vanoverschelde et al. (1993) studied the relationship between left ventricular 

diastolic function and exercise capacity in normal participants by assessing left 

ventricular systolic and diastolic function in both sedentary and trained athlete 

groups.  Some of the sedentary individuals had a VO2max close to the athletic 

group.  These individuals with a higher VO2max had a higher end-diastolic volume 

and faster peak early filling velocities.  Early diastolic filling was the most powerful 

independent correlate of VO2max and the authors concluded that the diastolic 

properties of the heart play a central role in determining exercise capacity in both 

trained and untrained individuals and that this increased ventricular filling could be 

a result of elevated venous return. 

Endurance trained individuals exhibit a greater blood volume and total 

haemoglobin levels than sedentary individuals (Kjellberg et al., 1949).  A major 

adaptation to endurance training is an increase in stroke volume resulting from an 

increase in circulating blood levels (Coyle et al., 1986; Clausen, 1977) attributed to 

increases in plasma volume alone.  During endurance training, for example, 

plasma volume has been shown to increase by 4.5 ml·kg-1 body mass (10%), even 

24 hours after a single high-intensity (85% VO2max) cycling session (Gillen et al., 

1991).  Convertino et al. (1980) showed that following 8 days of a cycling training 

protocol at 65% VO2max, a blood volume increase resulted, which was due to a 

427 ml increase in plasma volume.  In a similar study by Green et al. (1990), the 

participants exercised at 65% VO2max for 3 consecutive days.  The results 

showed that plasma volume increased by 624 ml, which resulted in improved 

stroke volume and cardiac output.  In both studies, red cell volume remained 

unchanged.  This training-induced hypervolaemia is quickly lost when training is 

stopped (Convertino et al., 1980).  Coyle et al. (1986) observed that 2 to 4 weeks 

of detraining led to a 9% decrease in blood volume, which was associated with a 

12% decrease in stroke volume and a 6% reduction in VO2max.  In the same 

study, when blood volume was expanded to a similar level as in the trained state 
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(via the infusion of a 6% dextran solution), the effects of detraining on 

cardiovascular response were reversed and VO2max returned to values not 

different from the trained values. 

In laboratory settings, plasma volume expansion (independent of increases in 

haemoglobin and haematocrit) leading to expansion of blood volume has been 

shown to increase VO2max, especially in untrained participants who do not have 

an elevated blood volume as a result of endurance training (Coyle et al., 1990; 

Coyle et al., 1986; Krip et al., 1997).  Coyle et al. (1990) infused a 6% dextran 

solution to expand plasma volume in untrained individuals.  Firstly, they expanded 

plasma volume by 282 ml (7.3%), which resulted in a 4.5% increase in blood 

volume and a higher stroke volume during exercise.  Following plasma volume 

expansion, the participants exercised on a treadmill at maximal intensity to 

exhaustion.  VO2max during this test was significantly increased by 3.7% and time 

to fatigue increased by 6.8% compared with the normal values before plasma 

expansion (9.4 vs. 8.8 min).  Further expansion of plasma volume by 500 – 600 ml 

(18%) above normal values did not result in any improvements in performance, as 

VO2max during exercise and time to fatigue was similar to the normal value prior 

to plasma volume expansion.  This outcome was attributed to the fact that the 

large increase in plasma volume resulted in dilution of the haemoglobin 

concentration by 11.4% that limited the blood’s oxygen carrying capacity, while the 

increase in blood volume could not offset the haemodilution.  In a similar study, 

Krip et al. (1997) infused 500 ml of 6% Dextran to untrained participants.  This 

elicited increases in stroke volume and cardiac output during exercise, and 

VO2max increased by 7%. 

As already suggested, large plasma volume expansions may lead to significant 

dilution of haemoglobin concentration, as the number of red blood cells remains 

unchanged following increases of plasma water, and this reduces the oxygen 

carrying capacity of the blood (Berger et al., 2006; Coyle et el, 1990; Hopper et al., 

1988).  However, plasma volume can be expanded to an optimal level that can 

offset the effects of modest haemodilution and the improvement in stroke volume 

can result in positive effects on aerobic performance (Coyle et al., 1986; Coyle et 
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al., 1990; Hopper et al., 1988; Krip et al., 1997).  Despite the fact that some 

researchers reported no changes in VO2max following acute plasma volume 

expansion (Kanstrup & Ekblom, 1982; Kanstrup & Ekblom, 1984; Mier et al., 1996) 

recent data from Berger et al. (2006) also showed an increase in VO2peak and 

time to exhaustion during severe-intensity exercise following induction of 

hypervolaemia. 

Hence, apart from increases in VO2max, plasma volume expansion may elicit 

performance improvements.  Luetkemeier and Thomas (1994) investigated the 

effects of acute plasma volume expansion (infusion of 400 ml of a 6% dextran 

solution) on a simulated cycling time trial.  Plasma volume was expanded by 

12.4%.  The results showed that average power for the entire time trial was 

significantly higher compared with the control condition (250 W vs. 215 W), which 

resulted in better performance times (81 min in hypervolaemia vs. 91 min in 

control condition).  In another study, Berger et al. (2006) infused an average of 

588 ml of a plasma expander (Gelofusine, 4% succinylated fluid gelatin; 7 ml·kg-1 

body mass) resulting in a 14% increase in plasma volume.  The participants 

exercised to exhaustion at a high intensity, which was set at 70% of the difference 

between the gas exchange threshold and VO2max.  Time to fatigue increased 

following plasma expansion (424 s) compared with the control condition (365 s).  

Also, VO2peak attained at the end of exercise was higher following plasma 

expansion (4.12 l·min-1) than in the control condition (3.9 l·min-1).  

 

Conclusions on blood volume expansion 

Without doubt, blood volume plays a major role in cardiovascular function and 

affects aerobic exercise.  Endurance training results in increases in blood volume 

even within the first few days.  Acute plasma volume expansion via infusion of 

plasma expanders may function as an ergogenic aid for untrained individuals who 

do not already posses a high blood volume.  

Plasma volume expansion must be within a certain limit in order to elicit 

improvements in VO2max or exercise performance.  Small volumes (generally 200 

– 300 ml, and as much as 500 ml maximally) have been shown to offer a 
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beneficial effect.  Larger increases in plasma volume with unchanged red blood 

cell number lead to dilution of haemoglobin concentration and reduce the blood’s 

oxygen carrying capacity.  

 

 

Rationale of the experimental investigations of this thesis  

 

Concentrated glycerol solutions can be used for the purpose of elevating blood 

osmolality (Robergs & Griffin, 1998), as glycerol is not a major substrate for 

energy during exercise and it does not affect resting blood glucose or plasma 

insulin (Gleeson et al., 1986).  If a hypertonic solution is added to extracellular 

fluid, extracellular osmolality increases and causes movement of water out of the 

cell into the extracellular compartment.  The net effect is an increase in 

extracellular volume, a decrease in intracellular volume, and a rise in osmolality in 

both compartments (Guyton & Hall, 1996).  Therefore glycerol ingestion may 

provide the means for indirectly addressing the cell volume theory by reducing 

muscle hydration.  

Reduction in muscle hydration could have an acute or even a chronic effect.  In 

vitro, exposure of muscles to a hypertonic glycerol solution has been shown to 

result in decreased twitch tension (Caputo, 1968).  Judelson et al. (2007b) 

suggested that when individuals exercise in a hypohydrated state, it negatively 

affects the action of anabolic hormones such as testosterone and insulin whose 

physiological action promotes muscle growth and hypertrophy following strength 

training.  Increases in muscle strength and muscle size appear after a lengthy 

training period.  If athletes exercise in altered muscle hydration state during the 

training period, the training outcome could be affected. 

Glycerol ingestion (1 g·kg-1 body mass in a 400 ml solution) has been shown to 

increase plasma volume by approximately 10% (Gleeson et al., 1986; Gleeson & 

Maughan, 1988).  This level of plasma volume expansion, produced by glycerol, is 

similar to that reported to be the optimal level of expansion that results in positive 

effects on stroke volume and aerobic exercise (Berger et al., 2006; Coyle et al., 
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1986; Coyle et al., 1990; Hopper et al., 1988; Warburton et al., 1999).  It would be 

of interest to examine whether this resultant change in plasma volume would have 

any beneficial effect on VO2max, especially bearing in mind that apart from 

increasing plasma volume, glycerol ingestion could well decrease muscle cell 

hydration. 
Before venturing into investigating these theories, it would be important to 

investigate the potential changes in body water distribution following ingestion of a 

small-volume highly-hyper-osmotic glycerol solution and to establish a time course 

of any such effects. 
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Chapter 2 

 

General Methods 
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Ethical Approval 

Prior to the start of each of the experiments, ethical approval was obtained from 

the Loughborough University Advisory Committee, as all five studies described in 

this thesis involved human volunteers.  All participants were healthy male adults 

over 18 years of age.  Before signing a consent form, all volunteers were fully 

informed of procedural details of the experiments, both orally and in writing.  They 

were also reminded of their right to withdraw from the studies at any point, without 

obligation to provide any reason for doing so. 
 

 

Standardisation prior to experimental trials 

All trials took place in the morning after an overnight fast and trials were separated 

by at least 7 days.  Participants were asked to maintain the same nutritional and 

activity patterns during the 24 hours prior to the start of each experimental trial.  

Trials were randomised using a Latin square design. 

 

 

Blood sampling and analysis 

Blood samples were collected during all studies described in this thesis.   All 

analytical procedures are described below and the specific intervals and volume of 

blood sampling are described in detail in the methods section of each 

experimental chapter. 

 

In all experimental chapters, for the purpose of blood sampling, one arm was 

warmed up by immersion in hot water (42⁰ C) for 10 min.  Then an indwelling 

canula (21 g, butterfly) was inserted into a forearm vein, and remained in place 

throughout the session, to allow the withdrawal of multiple blood samples.  In the 

rare case where the arm ‘got a little cold’ during the session, the arm was placed 

on the subject’s legs (use of body heat) and towels were used to cover the arm in 
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order to keep it sufficiently warm to allow good blood flow and to reduce problems 

in blood sampling.  

Two resting blood samples were drawn 10 min apart, in all experimental chapters 

described in this thesis.  Statistical analysis confirmed that in each study there was 

no difference in measured parameters between the two resting samples, and for 

standardization all ‘Rest’ samples mentioned in this thesis refer to the second 

resting blood sample, which was drawn immediately before ingestion of the 

various solutions. 

 

Haemoglobin concentration and haematocrit  

Whole blood samples (4 ml) were collected in a syringe and 2.5 ml was then 

dispensed into a K2EDTA containing tube and 1.5 ml into a plain plastic tube.  

Haemoglobin concentration was determined using the cyanmethaemoglobin 

method and haematocrit was determined by microcentrifugation (Hawksley Micro-

Haematocrit Centrifuge, U.K.) using the anticoagulated blood samples.  

Haemoglobin concentrations were determined in duplicate while haematocrit was 

measured in triplicate.  No corrections were made for trapped plasma. 

 

Percentage changes in blood volume, red cell volume and plasma volume were 

calculated using the formulae described by Dill and Costill (1974) using changes in 

haemoglobin concentration and relative volume of red blood cells to estimate 

percentage changes (Δ%) in blood, plasma and red blood cells volume.  In the 

present thesis there was no direct measurement of blood, plasma or red cell 

volume.  Dill and Costill equations provide only an estimation of percentage 

changes in blood, plasma and red blood cells volume over time based on changes 

in haemoglobin concentration and haematocrit, as opposed to other methods that 

use bromide or inulin tracers and measure extracellular water directly. Other 

methods that determine alterations in plasma volume incorporate changes in 

circulating protein and albumin.  The method of Dill and Costill was more 

appropriate to use in the current studies due to the fact that haemoglobin is 

trapped in the red blood cells and will not leave the vascular compartment, 
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whereas proteins can enter and leave the vascular compartment during exercise 

(Harrison, 1985), which may give unreliable results.  

 

The equations used in this thesis to monitor changes in blood and plasma volume 

during different modes of exercise according to Dill and Costill are described 

below: 

  

 ΔBV % = 100 (BV2 – BV1) / BV1  BV is blood volume 

 ΔCV % = 100 (CV2 – CV1) / CV1 CV is red blood cells volume 

 ΔPV % = 100 (PV2 – PV1) / PV1 PV is plasma volume 

Numbers 1 and 2 indicate different sampling time; sample 2 is taken after sample 

1.  In all the experimental chapters described in this thesis, sample 1 was the 

resting blood sample before ingestion of any solution, and all subsequent blood 

samples were compared against the resting blood sample. 

Blood glucose and lactate 

Following collection of whole blood samples, duplicate aliquots of 100 μl from the 

K2EDTA tube were immediately deproteinised in 1 ml of ice cold 0.3 mol⋅l-1 

perchloric acid.  Following centrifugation, the supernatant was used for 

measurement of glucose and lactate.  Glucose was determined using the GOD-

PAP method (Randox) method (glucose standard was 5.5 mmo·l-1) and lactate 

concentration was determined fluorimetrically, according to Maughan (1982). For 

lactate measurements, resting blood samples were analyzed separately from 

samples obtained during exercise. For lactate measurements, resting blood 

samples were analyzed separately from samples obtained during exercise.  The 

lactate standards used for resting samples were 0, 1.0, 2.5 and 5.0 mmol·l-1, and 

for samples drawn during exercise, they were 0, 2.5, 5.0, 10.0, 15.0, and 20.0 

mmol·l-1.  Both glucose and lactate samples were determined in duplicate. 
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Serum osmolality, glycerol and electrolyte concentrations 

The whole blood samples collected into plain tubes were centrifuged at 1500 g for 

15 minutes at 4°C (ALC Multispeed Refrigerated Centrifuge, U.K.) and the serum 

was collected.  Duplicate aliquots of 20 μl serum were deproteinised in 200 μl ice 

cold 0.3 mol⋅l-1 perchloric acid.  Following centrifugation, they were stored at 

approximately -20 °C and were later fluorimetrically analysed for glycerol 

according to Boobis and Maughan (1983).  Remaining serum samples were then 

stored in the refrigerator at approximately <4ºC until analysed for osmolality (within 

14 days of sample collection).  Serum osmolality was measured by freezing point 

depression (Gonotec Osmomat 030 Cryoscopic Osmometer; Gonotec, Berlin, 

Germany).  Serum osmolality and glycerol were measured in all experimental 

studies. 

In the final experimental study, described in chapter 7, serum sodium and 

potassium concentration were also measured using flame photometry (Corning 

Clinical Flame Photometry 410C; Corning Ltd., Halstead, Essex, U.K.). 

 

 

Isometric knee extension – maximum voluntary contraction (MVC) 
Isometric knee extension was used in the study described in chapter 4.  

Participants performed single-leg isometric knee extensions on a pre-calibrated 

isometric dynamometer on both legs.  Calibration was carried out before each trial 

by applying a range of known weights, 0 – 80 kg.  Maximal calibration value was 

higher than each participant’s maximal voluntary contraction. 

Each participant was seated and strapped on an isometric chair (Fig 2.1.) 

according to Maughan et al. (1983).  The isometric chair had a moveable back, 

which allowed the seat to be adjusted so that the back of the subject’s knee was at 

the front edge of the isometric chair and the participant’s back was in an upright 

position.  Each participant was strapped on to the isometric chair with an 

adjustable harness, which prevented extension of the hip when the participant 

performed quadricep activations.  Hip and knee joints were flexed at ~90º.  During 

exercise, the participants held their arms crossed over their chest.  An inelastic 
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cable was attached to the exercising leg just above the ankle joint on one end and 

to a strain gauge on the other end.  Each participant tried to extend the knee and 

the force generated was measured by the strain gauge.  The analogue signal from 

the gauge was amplified, digitised and transmitted to a computer where a graph of 

the produced force was displayed on a monitor in real time, such that the 

participants had visual feedback of the force they were producing.  The maximum 

voluntary contraction (MVC) test protocol consisted of three sets of 3 s maximal 

muscle activations, with 1 min of recovery in-between.  All three sets were 

executed on the same leg before switching to the other leg. 
 
Figure 2.1 Isometric knee extension.  Isometric chair set up. 

 
 
 
Handgrip strength 
Handgrip strength was determined in the study described in chapter 5, using a 

Jamar Dynamometer (Lafayette Instrument, Germany; Fig 2.2).  Participants 

exercised while seated and the exercising arm was extended by the side of the 

body.  Maximum force was taken as the highest value obtained from three 
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attempts separated by 1 min of rest.  All three efforts were executed on the same 

arm before switching to the other arm.  
 
Figure 2.2 Jamar Dynamometer 

 
 
 
Forearm muscle volume 
Forearm muscle volume was indirectly estimated by water displacement according 

to Maughan et al. (1984b).  The arm of the volunteer was slowly submerged into a 

volumeter (eureka can) full of water and the displaced water was collected into a 

jug and weighed on a kitchen scale with accuracy of 1 g.  As the volume of the 

displaced water is equal to the volume of the submerged forearm, forearm volume 

can be simply derived.  The forearm was taken to extend from the olecranon 

process to the ulnar styloid.  Forearm muscle volume was estimated using the 

equations by Maughan et al. (1983):  

 
        Forearm fat content (%) = (2.80 x biceps skinfold, mm) + 2.7 

        Muscle volume (ml) = (0.92 x total forearm volume) – (0.97 x fat volume) – 38 

 

Bicep skinfold was measured in triplicate using a Harpenden Skinfold Calliper 

(Harpenden Callipers, U.K.). 

This method was used in the study described in chapter 5. 
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Maximal oxygen uptake test VO2max 
Measurement of maximal oxygen uptake was performed in the last two studies 

described in chapters 6 and 7.  In both studies, participants exercised on an 

electronically-braked cycle ergometer (Gould, Bilthoven, The Netherlands).  

Participants cycled at a self-selected cadence at or above 60 rpm.  Expired air 

samples were collected in a Douglas bag during the final 1 minute of each stage 

before determination of oxygen and carbon dioxide content (Servomex 1400, 

Crawley, East Sussex, U.K.), gas volume (Harvard Dry Gas Meter, Harvard 

Apparatus Ltd., Kent, U.K.) and gas temperature (Edale Digital Thermometer). 

In the study described in chapter 6, VO2max was determined using a continuous 

graded exercise protocol.  Initial workload was set at 100 W and this increased by 

50 W every 3 min until the participants reached volitional exhaustion.  During the 

last stages of a test, if believed that the participant would not be able to tolerate a 

greater increase in workload (heart rate within 10 beats of age-predicted maximum 

heart rate, and/or rating of perceived exertion 19-20), the workload was increased 

by only 25 W.  The test ended when the participant could not maintain a cadence 

above 60 rpm. 

In the final experimental study, described in chapter 7, VO2max was assessed 

using a discontinuous protocol.  The purpose was not only to measure VO2max, 

but also to firmly establish the intensity at VO2max that would be used later in the 

main exercise protocol of the study.  Cycling stages, intensity and increases in 

workload were similar to those mentioned above, with the only exception being the 

duration of the first stage, which was 5 min. 

 
 
Coefficient of variation for analytical procedures 
Coefficients of variation (CV) for each of the analytical procedures described are 

shown in table 2.1.  CV was calculated as the standard deviation of the difference 

between duplicates and expressed as a percentage of the mean value obtained 

for samples produced throughout this thesis. 
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Table 2.1   Mean, SD and Coefficient of variation (%) of duplicates obtained for analytical 
procedures conducted throughout this thesis. 
 
Assay n Mean SD %CV 

Haemoglobin (g·l-1) 30 141 12 1.6 

Haematocrit (%) 30 45 3 1.1 

Blood glucose (mmol·l-1) 30 6.0 1.0 0.8 

Blood lactate (mmol·l-1) 30 5.0 4.0 1.1 

Serum osmolality (mosmol·kg-1) 30 294 10 0.7 

Serum glycerol (mmol·l-1) 30 5.0 5.0 1.1 

Serum potassium (mmol·l-1) 30 4.8 0.6 1.3 

Serum sodium (mmol·l-1) 30 142 2 0.7 

Forearm volume (ml) 30 1060 93 1.4 

Handgrip strength (kg) 30 44 10 0.8 

 

Statistical analysis 

Specific details regarding the statistical procedures used during each experimental 

trial are described in the methods section of each experimental chapter.  All data 

sets were checked for normative distribution using the Shapiro-Wilks test.   When 

data were not normally distributed, they were analysed using non-parametric tests.  

All data were analyzed using SPSS (versions 14 and later) and Minitab version 15, 

Minitab Ltd., Coventry, UK, statistical software. 

In general, all studies in this thesis had a cross-over design.  In chapters 3, 4 and 

5, data were subjected to a two-factor repeated measures analysis of variance.  

Main effects of time and trial are reported, however, appropriate post-hoc tests 

were employed only when an interaction effect was observed.  In chapters 6 and 

7, where there were only two main experimental trials, the results were compared 

using paired t-tests.  Significance level was set at P < 0.050. 
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Chapter 3 

 
Acute effects of glycerol, glucose and water 

ingestion on body water distribution 
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Introduction 
 
Body hydration is an important health factor as many physiological functions such 

as the cardiovascular and thermoregulation functions are affected by an 

individual’s hydration status (Maughan, 2003).  Water accounts for approximately 

50 – 60% of the human body (35 – 42 l for an average 70 kg person).  Body water 

is distributed in the intracellular space (two thirds of total body water) and the 

extracellular space.  The extracellular space is divided into the interstitial space 

(15% total body mass) and the plasma (5% total body mass) (Guyton & Hall, 

1996). 

Cellular hydration state may play a role in cell metabolism and function.  Based on 

a theory first suggested by Haussinger (Haussinger et al., 1994; Lang et al., 1998), 

when cells shrink (i.e., high extracellular osmolality, dehydration) metabolism 

becomes mainly catabolic and when cells swell, metabolism becomes anabolic. 

Even small fluctuations in cell hydration and cell volume are thought to act as a 

separate and potent signal for cellular metabolism (Haussinger, 1996).  Cell 

swelling has been shown to inhibit proteolysis in hepatic cells (Hallbrucker et al., 

1991a,b; Haussinger et al., 1991; Haussinger et al., 1990a,b), whereas cell 

shrinkage inhibits protein synthesis and stimulates proteolysis (Meijer et al., 1993; 

Stoll et al., 1992).  Furthermore, glycogen synthesis can be stimulated by 

exposure of hepatocytes (Baquet et al., 1990; Meijer et al., 1992) and muscle cells 

(Low et al., 1996) to a hypo-osmotic environment , whereas cell shrinkage 

following exposure to a hyper-osmotic milieu decreases glycogen synthesis 

(Baquet et al., 1990; Haussinger, 1996).  If the cell volume theory applies in a 

whole body situation, in an exercising environment, where there is loss of body 

water, and reductions in intracellular water could hinder recovery and performance 

in subsequent exercise bouts or sessions.  Studies involving animals and humans 

showed that cell shrinkage signals the cleavage of glycogen, lysing of proteins and 

a temporary halt to the formation of both glycogen and protein (Ritz et al., 2003).  

In a study by Keller et al (2003), acute hyper-osmolality (296 mosmol·kg-1) via 

infusion of hypertonic NaCl solution over a 17 – hour period on metabolism 
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resulted in an increased plasma glucose concentration as a result of increased 

hepatic glycogenolysis and glucose production; whereas acute hypo-osmolality 

(265 mosmol·kg-1), induced via a combination of intravenous desmopressin and 

2.4 l/12 h water intake, resulted in decreased plasma glucose concentration 

indicating reduced hepatic glucose production.  Their findings supported in general 

the cell volume hypothesis in an in vivo model.   Therefore, acute changes in 

extracellular osmolality may play a role in metabolic regulation.  

It is still unknown whether ingestion of hypertonic solutions resulting in elevated 

extracellular osmolality, produces any real effect on body water distribution that 

may affect cell hydration and metabolism during rest or exercise.  Ingestion of high 

osmolality glucose drinks has been shown to cause a decrease in plasma volume 

as hypertonicity of the beverages resulted in the movement of water from the body 

water pool into the intestinal lumen, causing a transient decrease in the effective 

body water content (Merson et al. 2002).  Glycerol, on the other hand, has been 

used in solutions for hydration and over-hydration purposes prior to exercise as a 

means of attenuating the effects of dehydration that occurs during aerobic 

exercise (Wagner, 1999), as reductions in blood volume cause a decline in 

cardiovascular function, maximum oxygen uptake and time to fatigue (Coyle et al., 

1986).  An increase in the blood glycerol concentration can result in an increase in 

osmotic forces thereby promoting fluid retention in the vascular space when large 

volumes of water (~ 2 l) are ingested (Freund et al., 1995).  Total body water 

increases and this over-hydrated state has been shown to improve endurance 

performance (Anderson et al. 2001; Hitchins et al., 1999; Montner et al., 1996) as 

it may delay the onset of dehydration and give a performance advantage 

compared with someone perhaps already hypohydrated (Nelson & Robergs, 

2007).  Overall, research findings on the effects of glycerol hyperhydration are 

equivocal as some studies failed to find an ergogenic effect of glycerol 

hyperhydration during aerobic exercise.  This may be due to discrepancies in 

glycerol dosage, timing of ingestion, environmental temperature, humidity and 

exercise intensity (review by van Rosendal et al., 2010).  On the negative side, it is 

possible that glycerol ingestion in smaller volumes and more concentrated 
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solutions may lead to a different osmotic effect on body water distribution.  High 

increases in glycerol blood concentration could create a high extracellular 

osmolality and a concentration gradient that may lead to water shifts into the 

extracellular space favouring cellular dehydration and tissue shrinkage (Maughan, 

1998).  

Because of the possible water shifts caused by ingestion of hypertonic drinks and 

the effects this could have on the effective body water content and cellular 

hydration, the purpose of this study was to examine the consequences of water, 

glucose and glycerol ingestion on body water distribution during rest, and to 

establish a time course of any effects. 

 
 
Materials and Methods 
 
Following ethics approval by the Loughborough University Ethical Advisory 

Committee, nine healthy male volunteers participated in this study.  After a written 

and verbal explanation of all procedures, and their right to withdraw at any point, 

each subject signed a written consent form. 

Participants had a mean (± SD) age of 24 ± 3 years, height of 177 ± 5 cm and 

body mass of 74.8 ± 10.8 kg.  Experimental trials were separated by at least 7 

days and took place at the same time of the morning, after an overnight fast.  

Subjects followed similar nutritional and physical activity patterns for the 24 – hour 

period preceding each trial.   

Each subject participated in three experimental trials in randomised order, which 

was assigned using a Latin square design. 

 

Experimental procedure 

Upon arrival at the laboratory, the subjects voided and their body mass was 

determined wearing minimal clothing using a beam balance (Marsdens type 150, 

Marsdens Weighing Machines, London, U.K.) measuring to the nearest 10 g.  

Then the participants were seated in an upright position, which they held for the  
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3 – hour duration of the trial to avoid effects of postural changes on plasma 

volume (Hagan et al. 1978; Shirreffs & Maughan, 1994). 

Ten minutes into the session, a canula was inserted in a superficial forearm vein, 

which allowed multiple blood samples to be drawn.  The canula was kept patent 

between sample collections by flushing with heparinised sterile isotonic saline (10 

units·ml-1).  Two resting (5 ml) blood samples were obtained ten minutes apart, 

and immediately after the second sample the participants ingested 400 ml of either 

still water (0.0 mosmol·l-1), a glucose solution (1 gkg-1 body mass; 1039 ± 157 

mosmol·kg-1) or a glycerol solution (1 gkg-1 body mass; 2032 ± 309 mosmol·kg-1).  

The subjects were allowed 3 min to ingest the drink.  Blood samples (5 ml) were 

collected at 15 min interval for the first hour and then every 30 min for a further 90 

– min period.  

 
 
Sample analysis 

Samples were analysed for haemoglobin concentration, haematocrit, blood 

glucose concentration, serum glycerol concentration and serum osmolality as 

described in the general methods chapter of this thesis.  Haemoglobin 

concentrations and haematocrit were used to estimate changes in blood, red cell 

and plasma volumes as described by Dill and Costill (1974). 

 

Statistical analysis 

Two–factor repeated measures ANOVA was used to evaluate differences between 

trials.  One–factor ANOVA was used to evaluate results over time when 

appropriate.  Tukey post hoc pair wise comparisons were used to locate and 

isolate differences between trials and over time when appropriate. 
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Results 
 

Baseline measurements were similar during the three different experimental trials 

(Table 3.1). 
 
Table 3.1   Pre-trial body mass, haemoglobin concentration, haematocrit, blood glucose 

concentration, serum glycerol concentration and serum osmolality on all trials (Mean ± SD); n = 9.  

 

Measure Water trial Glucose trial Glycerol trial P value 

Body mass (kg) 74.8 ± 11.4 74.5 ± 11.3 74.9 ± 11.1 0.400 

Hb (gl-1) 152 ± 10 151 ± 12 151 ± 7 0.662 

Hct (%) 43.5 ± 2.3 43.6 ± 2.4 43.6 ± 2. 0.943 

Glucose 

(mmoll-1) 
5.35 ± 0.30 5.37 ± 0.36 5.53 ± 0.29 0.451 

Serum Glycerol 

(mmoll-1) 
0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.776 

Serum 

Osmolality 

(mosmol∙kg-1) 

291 ± 6 293 ± 5 291 ± 5 0.540 

 

 

Serum glycerol concentration (Table 3.2) 

Two-way repeated measures ANOVA on serum glycerol showed a main effect of 

trial (P = 0.000), time (P = 0.000) and an interaction (P = 0.000).  Serum glycerol 

increased following glycerol ingestion (P < 0.001) and remained elevated 

throughout the experimental trial.  The value obtained at 30 min following glycerol 

ingestion was higher (P < 0.050) than the values obtained at all other time points 

in the glycerol trial, except values at 15 and 45 min. 
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Table 3.2   Serum glycerol concentration (mmol·l-1); n = 9.  * Denotes difference between the 

glycerol trial and the other two trials (P = 0.000).  † Denotes difference from baseline in the glycerol 

trial (P = 0.000). 

 

Time 

(min) 
0 15 30 45 60 90 120 150 

Water 

trial 

0.04 

± 0.01 

0.04 

± 0.01 

0.04 

± 0.01 

0.04 

± 0.01 

0.04 

± 0.01 

0.04 

± 0.01 

0.04 

± 0.01 

0.04 

± 0.01 

Glucose 

trial 

0.04 

± 0.02 

0.04 

± 0.02 

0.04 

± 0.01 

0.04 

± 0.02 

0.04 

± 0.02 

0.04 

± 0.02 

0.04 

± 0.02 

0.04 

± 0.02 

Glycerol 

trial 

0.04 

± 0.01 

10.38*† 

± 3.98 

12.66*† 

± 3.40 

10.90*† 

± 2.68 

8.83*† 

± 1.76 

6.88*† 

± 2.28 

6.16*† 

± 0.81 

5.67*† 

± 0.77 

 
 

Serum osmolality (Fig. 3.1) 

Resting serum osmolality (Table 3.1) was slightly over the anticipated values of 

280 – 285 mosmolkg-1 (Geigy Scientific Tables, 1962).  This might be due to the 

fact that the subjects had fasted overnight before the main trials and they had not 

had any water or fluid intake during the fasting period. 

Two-way repeated measures ANOVA on serum osmolality showed a main effect 

of trial (P = 0.000), time (P = 0.000) and an interaction (P = 0.000).  One way 

ANOVA analysis over time in the glycerol trial showed that serum osmolality 

increased after glycerol ingestion to 306 ± 7 mosmol·kg-1 at 15 min, 309 ± 6 

mosmol·kg-1 at the 30 min point, and remained at higher than baseline levels for 

150 min (P < 0.02).  

One way ANOVA analysis showed that serum osmolality did not change over time 

in the water trial (P = 0.974) nor in the glucose trial (P = 0.165) and remained at 

similar to base line (Water trial 291 ± 6 mosmol·kg-1, glucose trial 293 ± 5 

mosmol·kg-1). 
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Figure 3.1   Serum osmolality (mosmol·kg-1).  Points are means ± SD; n = 9. * denotes glycerol 

time point significantly different (P < 0.05) from water point, glucose point and baseline.  

 

  
 

 

Estimated changes in blood (Fig. 3.2), plasma (Fig. 3.3) and red cell volume (Fig. 

3.4). 

The increase in serum osmolality after glycerol ingestion was associated with an 

increase in blood volume and plasma volume. 

Two-way repeated measures ANOVA on blood volume showed a main effect of 

trial (P = 0.046), time (P = 0.000) and an interaction (P = 0.003) (Figure 3.2).  Post 

hoc analysis showed that blood volume following glycerol ingestion was greater 

than in the other two trials during the first 45 (P < 0.003).  One way ANOVA over 

time for each trial showed that blood volume did not change over time in the water 

(P = 0.072) and glucose trials (P = 0.694).  In the glycerol trial, blood volume had 

increased by 15 min post-ingestion (P = 0.013) and reached its highest mean 

value (4.0 ± 2.1% increase) at 30 min (P = 0.004) after glycerol intake. 

 

* * * * * * * 
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Two-way repeated measures ANOVA on red blood cells volume (RCV) showed 

that there was no trial effect (P = 0.294), no time effect (P = 0.713) and no 

interaction (P = 0.326) (Fig. 3.3). 

 

Two-way repeated measures ANOVA on plasma volume showed a main effect of 

trial (P = 0.026), time (P = 0.000) and an interaction (P = 0.000) (Figure 3.4).  

Post-hoc analysis showed that plasma volume in the glycerol trial was significantly 

higher than in the other two trials for the first 45 min of the trial (P = 0.000).  In the 

glycerol trial, plasma volume increased above baseline at 15 min after ingestion by 

6.0 ± 3.8% (P = 0.007) and peaked at 30 min as it expanded by 7.2 ± 4.0% (P = 

0.001).  During this period of time, plasma volume in the other two trials did not 

change from baseline (water trial P = 0.191, glucose trial P = 0.513). 
 

Figure 3.2   Blood volume changes (%).  Points are means ± SD; n = 9.  * denotes glycerol time 

point significantly different (P < 0.05) from water and glucose trials at the same time point.  

 
 
 
 
 
 
 

* * * 
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Figure 3.3   Red blood cell volume changes (%).  Points are means ± SD; n = 9.  

 
 
 
 

Figure 3.4   Plasma volume changes (%).  Points are means ± SD; n = 9.  * denotes glycerol time 

point significantly different (P < 0.050) from water and glucose trials at the same time point. 

  
 

 

 

 

* * * 
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Blood glucose concentration (Table 3.3)  

Two-way repeated measures ANOVA on the blood glucose data showed a main 

effect of trial (P = 0.000), time (P = 0.000) and an interaction (P = 0.000).  

One-way ANOVA over time showed that blood glucose increased above baseline 

only in the glucose trial (P < 0.005) to 8.57 ± 1.57 mmol·l-1 at 30 min and remained 

elevated for 60 min following ingestion of the glucose solution. 

In the water trial, blood glucose was 5.35 ± 0.30 mmol·l-1 at baseline and it did not 

change over time (P = 0.433). Similarly, in the glycerol trial blood glucose was 

5.53 ± 0.29 at baseline and did not change over time (P = 0.641). 

 
Table 3.3   Blood glucose concentration (mmol·l-1).  Values are means ± SD; n = 9.  * Denotes 

difference from baseline within trial (P ≤ 0.003).  † Denotes difference between the glucose trial 

and the other two trials (P < 0.050) 

 

Time 

(min) 
0 15 30 45 60 90 120 150 

Water 

trial 

5.35 

 ± 0.30 

5.08 

± 0.29 

5.11 

± 0.40 

5.12 

± 0.43 

5.03 

± 0.43 

5.05 

± 0.46 

5.27 

± 0.51 

5.39 

± 0.51 

Glucose 

trial 

5.37  

± 0.36 

8.05*† 

± 1.04 

8.57*† 

± 1.57 

8.03*† 

± 2.09 

7.89*† 

± 1.50 

7.09† 

± 1.18 

6.76† 

± 1.17 

5.48 

± 0.97 

Glycerol 

trial 

5.53 

± 0.29 

5.55 

± 0.43 

5.67 

± 0.39 

5.73 

± 0.47 

5.78 

± 0.50 

5.72 

± 0.49 

5.83 

± 0.37 

5.86 

± 0.36 
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Discussion 
 
The purpose of this study was to look for any effects of water, glucose or glycerol 

ingestion on body water distribution.  In the human body, cell membranes are 

highly permeable to water and the movement of water depends on osmotic 

gradients across the cell membrane (Lang et al., 1998).  Water and glucose 

ingestion did not cause any changes in blood or plasma volume, whereas 

following glycerol ingestion blood and plasma volume increased for a period of 45 

min.  

 

Glucose ingestion did not produce any statistically significant changes in body 

water distribution.  On this trial the glucose drink was hypertonic, containing an 

average of 187 ± 28 g⋅l-1 glucose with an osmolality of 1039 ± 157mosmol·kg-1.  A 

transient change in body water distribution could have been expected as a result 

of the ingested solution’s high osmolality.  Merson et al. (2002) reported decreases 

in blood and plasma volume 20 min following ingestion of a 12% glucose solution 

(compared with ingestion of a 2% glucose solution) due to a net flow of water into 

the intestine.  Leiper and Maughan (1986) reported that perfusion of a hypertonic 

solution with an osmolality of 488 ± 53 mosmol· kg-1 in the jejunum resulted in net 

water secretion into the small intestine.  Evans et al. (2009) also reported a 

transient 3% decrease in plasma volume following a 10% glucose solution 

(osmolality 565 mosmol·kg-1).  Contrary to the above findings, in the present study 

there were no significant changes either in blood or plasma volumes following 

glucose ingestion.  The range of blood volume change at 30 min was between 

+2.7% and -5.6%.  Plasma volume values ranged between +0.6% and –3.5% at 

15 min, and at 30 min values ranged between +2.2% and –7.3%.  It is clear that a 

large variation exists between subjects and this might have prevented the results 

from reaching statistical significance.  This variation could be due to the difference 

in the rate of gastric emptying between subjects (Vist & Maughan, 1994). 
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Glycerol ingestion increased blood and plasma volume for a period of 45 min. 

Serum glycerol was 12.66 ± 3.40 mmol·l-1  30 min after ingestion and this was 

associated with an increase of serum osmolality of  ~15 mosmol⋅kg-1.  At this time 

point blood volume increased by 4.0% ± 2.1 and plasma volume increased by 

7.2% ± 4.0 and these increases were similar to those observed by Gleeson et al. 

(1986) who provided their subjects with a similar volume and amount of glycerol 

solution (400 ml solution, 1 g·kg-1 glycerol, 2100 mosmol·kg-1).  Because glycerol 

rapidly equilibrates across the erythrocyte membrane (Roudier et al., 1998), red 

cell volume was not different amongst trials, meaning that increases in blood and 

plasma volume were solely due to a net increase of water in the plasma.  

This increase in the vascular space was attributed to the osmotic effect of the 

hypertonic glycerol solution (osmolality 2032 ± 309 mosmol·kg-1). 

 

The distribution of fluid between intracellular and extracellular compartments is 

determined mainly by the osmotic gradient across the cell membrane (Guyton & 

Hall, 1996; Maughan, 1998).  Gleeson et al (1986) showed that ingestion of 

glycerol results in a marked rise in the extracellular glycerol concentration and 

osmolality, two facts that were also observed in the present study.  This could 

favour a water shift from the intracellular space into the extracellular space, 

resulting in cellular dehydration.  

In normal conditions there is an osmotic equilibrium between intracellular and 

extracellular fluids and glycerol is believed to be distributed evenly in all water 

compartments (Robergs and Griffin, 1998) except the cerebral spinal fluid due to 

the influences of the brain blood barrier (Nelson & Robergs, 2007).  In the present 

study, if indeed, glycerol was equally distributed in all water compartments, then 

the increase in the vascular space would reflect an increase in total body water.  

While  body water was not measured directly, only relative changes of blood, 

plasma and red blood cells volume over time were estimated using the Dill and 

Costill (1974) equations, but clearly insufficient water was ingested with the 

glycerol solution to allow total body water to increase to the same extent as did 

plasma volume.  Plasma volume is estimated to be about 4.3% of body mass (or 



 
56 

 

3200 ml in the present study) as calculated from data obtained in studies where 

plasma volume was directly measured with the Evans blue dye technique (Coyle 

et al, 1986; Coyle et al, 1990; Green et al, 1987).  On the glycerol trial in the 

present study, plasma volume increased by 7.2% and this corresponds to an 

additional ~216 ml.  As plasma volume is considered to be approximately 1/5th  of 

extracellular water (Guyton & Hall,1996) and calculations from data obtained from 

Battistini et al. (1994), Coyle et al. (1986, 1990), Ellis (2000), Green et al. (1987), 

Ritz and investigators (2000) (where blood volume, total body water, extracellular 

and intracellular water volumes were measured with tracer techniques), 

extracellular water on the glycerol trial would have to have increased by about 

1080 ml to match the plasma volume expansion seen in the present study.  

Extracellular water (measured with bromide dilution) has been reported to be 

approximately 35% of total body water (measured with deuterium oxide technique) 

in recreationally active people (Battistini et al, 1994).  This would have meant that, 

on the glycerol trial, total body water would have to have increased by ~3085 ml if 

glycerol were readily distributed equally in all body water compartments.  Using 

data on body water from a review paper by Ellis (2000) where extracellular water 

was considered to be 39% of total body water, total body water on the glycerol trial 

in the present study should have increase by ~2769 ml.  However, the total 

volume of the ingested glycerol/water solution in the present study was only 400 

ml and no other fluids were ingested on this trial.  Therefore it is likely that glycerol 

ingestion led to a transient altered body water distribution, with the amount of 

intravascular expansion suggesting that this space was the main beneficiary of the 

osmotic water flux possibly at the expense of intracellular water. 

For any osmotic effect to occur at the cell membrane, a difference in glycerol 

concentration would be required between the intracellular and extracellular space.  

Following ingestion, glycerol is absorbed in the small intestine and to a smaller 

degree in the stomach (Nelson & Robergs, 2007).  Although it is well accepted that 

glycerol absorption happens though passive diffusion (Lin, 1977) recent data has 

shown that its transport across the intestinal wall is carrier-mediated and saturable 

(Kato et al., 2005).  The absorption rate of ingested glycerol has been reported to 
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vary between 1 and 1.4 g·min-1 (Massicotte et al., 2006), and up to 3 g·min-1 

(Gleeson et al., 1986), and individual differences may influence peak serum 

glycerol concentration (Nelson and Robergs, 2007).  Provided that glycerol enters 

both extracellular (vascular and interstitial space) and intracellular water spaces, 

glycerol space had originally been reported to be 650 ml·kg-1 body mass (Wilmore 

& Costill, 1974), but recent data from studies, where tracer techniques were used, 

has reported glycerol space to be as low as 270 ml·kg-1 (Casazza et al., 2004; 

Massicotte et al., 2006).  Therefore it is difficult to estimate the exact kinetics of the 

ingested glycerol in the present study.  What is important regarding possible 

alterations in body water distribution is the glycerol concentration gradients 

between the vascular and non-vascular space, and the intracellular and 

extracellular space and glycerol cell permeability.  In the present study, it appears 

that there was a net accumulation of glycerol in the vascular compared with the 

non-vascular space over the initial 45-to-60 min after ingestion. Thereafter, 

glycerol efflux from the circulation exceeded influx and concentration gradients, at 

least in the extracellular space appear to have equilibrated.  In the present study, 

red blood cells volume did not appear to change on the glycerol trial.  This was 

due to the fact that human red blood cells are highly permeable to glycerol 

(Carlsen & Wieth, 1976; Levitt & Mlekoday, 1983).  Upon exposure of red blood 

cells to a hypertonic environment they quickly shrink; but then as glycerol enters 

through the aquaporine channel AQP3, which is highly permeable to glycerol, the 

cells regain their volume rapidly because of the accompanying water influx 

(Roudier et al., 1998).  Overall, red blood cells have adequate osmoregulation 

mechanisms that make them less susceptible to osmotic stress.  Red blood cells 

in vivo have been shown to maintain their volume in conditions of elevated plasma 

osmolality, which can occur following ingestion of a hypertonic solution (Evans et 

al., 2009; Gleeson et al., 1986) and during maximal exercise (van Beaumont et al., 

1973).  This is achieved via retention of their potassium content and intracellular 

water (Kilburn, 1965) and increase in erythrocyte-cytosol glycerol concentration.  

Red cell volume has been shown to remain stable even when plasma osmolality 
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rose to 326 mosmol·kg-1 during dynamic exhaustive forearm exercise (Maassen et 

al., 1998). 

On the other hand, muscle cells have been shown to behave like a passive 

osmometer and decrease in volume when exposed to a hypertonic environment 

(Blinks, 1965; Usher-Smith et al., 2009).  Although glycerol does permeate the 

sarcoplasmic membrane (Bozler, 1961; Howell, 1969), Krolenko (1969) showed 

that single muscle fibres shrink when they are exposed to solutions made 

hypertonic by addition of different penetrating substrates, including glycerol.  

Glycerol entry into the muscle cells, compared with erythrocytes, does not seem to 

happen at a very fast rate, and muscle cells initially shrink upon exposure to a 

hyper-osmotic glycerol solution, before regaining their initial volume when glycerol 

concentration equilibrates between the intracellular and extracellular space 

(Dulhunty et al., 1973).  Caputo (1968) exposed single muscle fibres to 230 mM 

glycerol Ringer solution and the fibres lost 30% of their volume.  Miyamoto and 

Hubbard (1972) exposed whole rat sartorii muscles to 420 mM glycerol Ringer 

solution and observed that the muscles lost 20% of their volume by 30 min, before 

starting to regain their volume.  Glycerol and cell volume equilibrium time was 160 

min, similar to 150 min found by Bozler (1961).  Guo and Jensen (1999) infused 

intravenously [U-13C] glycerol into rats to evaluate whether glycerol equilibrates 

between plasma and intramuscular compartments.  Their results showed that by 

the end of 1 hour of trace infusion, free glycerol of quadriceps, gastrocnemius and 

soleus muscles were only 40 – 70% of that of plasma glycerol.  By the end of 2 

hours of infusion, glycerol equilibrated in quadriceps and gastrocnemius, and 

glycerol equilibrated in the soleus muscle after 3 hours of infusion.  On the glycerol 

trial in the present study, changes in vascular volume only were estimated.  Blood 

and plasma volume returned to baseline by 60 min following glycerol ingestion, 

possibly due to entry of glycerol into the intracellular space, driving water away 

from the vascular space.  This time frame compares to the findings of Terblanche 

et al. (1981) who reported that glycerol can take 1 – 2 hours after ingestion to be 

evenly distributed between the liver, blood and skeletal muscles.  
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 What remains to be answered is whether the increase in plasma water was at the 

expense of intracellular or interstitial fluid.  Hamilton et al. (1993) investigated fluid 

redistribution in isolated perfused cat calf muscle caused by rapid increases in 

plasma osmolality (400 mosmol·kg-1 by adding NaCl).  Their results showed that 

total tissue water decreased by more than 15% in less than 20 min, and that the 

changes in cell volume were similar to the changes in total tissue water.  Interstitial 

fluid volume was not noticeably altered by osmolality.  The authors concluded that 

the increase in plasma volume induced by hypertonic fluids may come entirely at 

the expense of intracellular water and not interstitial fluid.  Based on the above, it 

is likely that muscle hydration on the glycerol trial in the present study had been 

negatively affected.   

A decrease in cell hydration could affect cell metabolism, according to the cell 

volume theory (Haussinger, et al., 1994).  In vivo, Keller et al., (2003) investigated 

the effects of hyper-osmolality on glucose kinetics in humans and reported an 

increased rate of endogenous glucose appearance in the plasma leading to an 

increased glucose concentration, due to hepatic glucose production in hyper-

osmotic conditions (296 mosmol·kg-1 following infusion of hypertonic NaCl).  In the 

present study, on the glycerol trial, blood glucose concentration remained the 

same despite an increase in blood volume.  This suggests that the total amount of 

glucose in the blood might have increased on this trial, implying increased 

glycogenolysis, which has been shown to occur when cells are exposed to a 

hypertonic environment (Lang et al, 1989).  On the other hand, the maintenance of 

blood glucose concentration on the glycerol trial could well be attributed to the tight 

regulation of blood glucose concentration as glucose is the fuel for the central 

nervous system (Mougios, 2006; Wasserman, 1995) and a decrease in blood 

glucose would compromise glucose delivery to the brain. 

 Antolic et al. (2007) examined the in vitro effects of extracellular osmolality on cell 

volume and resting metabolism in mammalian skeletal muscle.  Whole rat muscles 

were bathed in isosmotic (290 mosmol·kg-1), hypo-osmotic (190 mosmol·kg-1) and 

hyper-osmotic (400 mosmol·kg-1) environments.  Their results showed that 

extracellular hyper-osmolality resulted in decreases in muscle water content and 
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alterations in resting muscle metabolism, with lower ATP and PCr content.  

Judelson et al. (2008) studied the effect of hydration state on the endocrine and 

metabolic responses to resistance exercise.  Hypohydration (by 2.5% and 5% 

body mass) increased circulating stress hormones (cortisol, epinephrine, 

norepinephrine) and lowered the resistance exercise-induced increases in 

circulating concentrations of testosterone.  Based on these findings, the authors 

concluded that hypohydration can increase catabolism and potentially decrease 

anabolism, and that body water status is an important consideration in modulating 

the hormonal and metabolic responses to resistance exercise.  

 

Glycerol solutions with high concentration, as in the present study, have been 

known to be a potent dehydrating agent (Frank et al., 1981) and high elevation of 

extracellular osmolality following glycerol feeding may well result in cell 

dehydration and tissue shrinkage (Gleeson et al., 1986; Maughan, 1998; Nelson & 

Robergs 2007).  

 

 

Conclusion and future direction 

Glycerol ingestion (400 ml solution, 1g⋅kg-1 glycerol) resulted in high extracellular 

osmolality and a transient change in body water distribution.  Plasma volume 

increased for a period of 45 min suggesting a shift of water into the extracellular 

space.  This implies that cell hydration, including muscle cells, may have been 

compromised.  Exposure to a hypertonic environment may possibly lead to cellular 

dehydration, which may have negative effects during or following exercise; 

increased glycolysis and glycogenolysis that may compromise the muscles’ 

energy stores; and increased proteolysis and inhibition of insulin action that may 

restrict muscle growth.  Although intracellular water cannot be quantified from the 

data obtained, it would be of interest to investigate whether there is any effect of 

high extracellular osmolality and the resulting changes in body water distribution 

on muscle function and exercise performance. 
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Chapter 4 
 

Acute effects of water and glycerol ingestion on 

body water distribution, during and after isometric 

exercise at high intensity 
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Introduction 
 
The effects of dehydration (as expressed by decreased total body water) on the 

cardiovascular system have been well established, but research on the effects of 

dehydration on strength has produced equivocal findings.  In previous studies, 

dehydration resulted in either no changes in strength (Greiwe et al., 1998; Montain 

et al., 1998) or a decrease (Viitasalo et al., 1987; Bosco et al., 1974; Schoffstall et 

al., 2001).  The method used to induce dehydration in the various studies could 

explain this discrepancy.  In general, energy restriction, heat exposure and 

exercise in the heat used to induce dehydration all appeared to negatively affect 

muscle function (Greiwe et al., 1998, Judelson et al., 2007a). Therefore the 

outcome of the various strength tests could not solely be attributed to dehydration.  

Overall, hypohydration of 3 – 4% body mass reduces muscular strength by 

approximately 2% (Judelson et al., 2007a) and hypohydration has been shown to 

affect even brief bouts of isometric exercise (Torranin et al., 1979). 

Altered body water distribution may also influence cell volume and cellular 

metabolism (Ritz et al., 2003), without any reduction in total body water. Muscle 

tissue is approximately 75% water and adequate hydration is essential for normal 

cellular function (Jones et al., 2008).  Cell hydration and cell volume seems to be a 

signalling key for muscle cell metabolism and function (Haussinger et al., 1994).  

Decreased cellular hydration might trigger a catabolic pattern of cellular function 

(Haussinger & Lang, 1991), disturb muscle metabolism and may potentially affect 

muscle function and exercise performance. 

 

Although changes in total body hydration are easily monitored, alterations in 

cellular hydration cannot be easily determined in a total body situation, especially 

when individuals are exercising.  Invasive methods (insertion of catheters and 

muscle biopsies) have been used to describe changes in muscle water and ion 

shifts during dynamic exercise (Sjogaard & Saltin, 1982; Sjogaard et al.,1985), but 

the effects of cellular hydration during exercise have not been fully investigated, 

and almost all the information regarding the effects of cellular hydration and 
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volume on cell metabolism and function comes from in vitro studies (Lang et al., 

1998; Low et al., 1996).   

In an exercise setting, in order to address the issue of altered body water 

distribution and altered cellular hydration, glycerol ingestion may prove to be a 

useful scientific tool.  Changing body water distribution (without causing dramatic 

changes in total body water) can be achieved by the ingestion of a concentrated 

glycerol solution. This has been shown to alter body water distribution by 

increasing extracellular body water as expressed by changes in blood volume and 

plasma volume, for a period of 45 min (detailed description in chapter 3 of this 

thesis).  When glycerol is given at 1 g·kg-1 body mass, diluted in a small volume of 

water, serum osmolality increases by ~15 mosmol·kg-1, resulting in a water shift 

into the extracellular space, indicating a reduction in intracellular hydration (Guyton 

& Hall, 1996; Robergs & Griffin, 1998).  

 

Glycerol is not a major substrate for energy production during exercise. Glycerol 

can be metabolised to glucose through gluconeogenesis (Nelson & Robergs, 

2007), but humans cannot utilize glycerol as a gluconeogenic substrate rapidly 

enough to serve as a fuel during strenuous exercise (Gleeson et al, 1986).  

Therefore, it can be used solely for the purpose of altering serum osmolality and 

possibly body water distribution. 

 

The aim of this study was to investigate acute effects of glycerol ingestion and 

changes in body water distribution on muscular function during isometric exercise 

at high intensity. 

 

 

Materials and Methods 
 
Following ethical approval by the Loughborough University Ethical Advisory 

Committee, ten healthy male volunteers participated in this study.  After a written 

and oral explanation of all procedures and their right to withdraw at any point 
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without obligation, each subject signed a written consent form.  All participants 

were physically active and accustomed to resistance exercise.  Their age, height 

and body mass were, respectively, (mean ± SD) 25 ± 3 y, 178 ± 8 cm, and 78.0 ± 

9.2 kg.  Each subject participated in two experimental trials in randomised order, 

which was assigned using a Latin square design. 

 

Experimental procedure 

Each participant visited the laboratory on three occasions, separated by at least 7 

days.  The first visit was used to measure maximum voluntary contraction (MVC) 

of the quadriceps muscles and to familiarise each participant with the exercise 

protocol on the isometric chair.  The second and third visits were when the two 

main experimental trials occurred. 

 

Isometric exercise set-up 

Each participant was seated and strapped into an isometric chair according to 

Maughan et al. (1983) and as described in detail in the methods chapter of this 

thesis.  Hip and knee joints were flexed at ~90º.  An inelastic cable was attached 

to the exercising leg, just above the ankle joint on one end, and to a strain gauge 

on the other end.  As each participant tried to extend the knee, the force generated 

was measured by the strain gauge. The analogue signal from the gauge was 

amplified, digitised and transmitted to a computer, where a digitised graph of the 

produced force was displayed on a monitor in real time, so each participant had 

visual feedback of the force he was generating. 

 

 

First laboratory visit – MVC measurement and exercise protocol familiarisation 

MVC measurement: MVC was measured for both legs. The participants performed 

single leg maximal quadriceps muscle activations of 3 s with 1 min recovery in 

between. All activations were executed on the same leg before switching to the 

other leg.  The stronger leg was chosen as the exercising leg for the main trials. 
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After the MVC test, there was a familiarisation session with the exercise protocol 

that was to be used in the main trials. Participants performed six efforts of 6 s at 

90% MVC with 1 min rest, using their stronger leg. 

 

 

Main trials 

The two main trials were separated by at least 7 days and not more than 15 days, 

starting at the same time in the morning.  Participants were asked to fast 

overnight, and to follow a similar activity and food intake pattern for the 24 hours 

preceding each trial.  Participants assured us that they had adhered to these 

instructions. 

On arrival at the laboratory, each participant voided and then assumed an upright 

sitting position.  Their sitting position was similar to the sitting position on the 

isometric chair in order to control for any plasma volume changes due to posture.  

One arm was submerged into hot water (42ºC) for 10 min. Then an indwelling 

canula was inserted into a forearm vein, and stayed in place throughout the 

session to allow us to draw multiple blood samples.  

After a 30 min resting period, each participant ingested either water (6 ml·kg-1 body 

mass) or a glycerol solution (1 g·kg-1body mass, 6 ml·kg-1body mass).  The 

average glycerol drink contained 78 ± 9 g glycerol and had a volume of 468 ± 53 

ml.  Each participant was allowed 3 min to fully ingest the drinks.  Following 

ingestion, the participant remained seated for a further 25 min period before 

moving to the isometric chair.  

Exercise started 30 min after ingestion. The participant performed 12 quadriceps 

activations of his stronger leg at 90% MVC intensity with 1 min rest between 

efforts. 

 

Following completion of the exercise protocol, the participant remained seated in 

the laboratory for 90 min in order to monitor body water changes as indicated by 

blood and plasma volume changes (Dill and Costill, 1974) during the recovery 

period.  Because there were no visits to the toilet during the trials, there were no 
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changes in total body water due to urination, or changes in blood volume due to 

unnecessary postural changes as all subjects adhered to the trial protocol. 
 

 

Blood sampling 

During the initial resting period, blood samples were taken 20 and 10 min before 

ingestion and 25 min after ingestion (before - exercise point).  During exercise, 

blood was drawn immediately after the 4th, 8th and 12th effort.  During the recovery 

period, blood was taken at 4, 15, 30, 45, 60 and 90 min. 

 

Sample analysis 

Blood samples were analysed for haemoglobin concentration, haematocrit, blood 

glucose and blood lactate.  Haemoglobin concentrations and haematocrit were 

used to estimate changes in blood, red cell and plasma volumes as described by 

Dill and Costill (1974). 

Serum samples were analysed for osmolality and glycerol. 

All analyses were performed as described in the general methods section of this 

thesis. 

 

Statistical Analysis 

For data that were normally distributed, a two-way ANOVA was used to find 

differences among trials. Where appropriate, a Tukey post hoc test was used to 

distinguish differences among trials.  A one-way ANOVA was also used to find 

differences over time during a trial. 

Data that were not normally distributed were analyzed with non-parametric 

statistical tests. 

All data are presented as mean ± standard deviation of the mean (SD), and the 

median and range for values for each time point in the trials. For all statistical 

analyses, significance was set at P < 0.050. 
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Results 

Baseline measurements were similar during the two main experimental trials 

(Table 4.1). 
 
Table 4.1  Pre – trial body mass, Hb concentration, Hct, blood glucose concentration, serum 

glycerol concentration, serum osmolality and blood lactate (Mean ± SD); n = 10.  

Measure Water trial Glycerol trial P value 

Body mass 

(kg) 
77.87 ± 9.01 77.85 ± 9.30 0.934 

Hb (gl-1) 149 ± 1 147 ± 1 0.541 

Hct (%) 43.7 ± 3.4 42.9 ± 1.9 0.553 

Blood glucose 

(mmoll-1) 
5.27 ± 0.33 5.34 ± 0.32 0.298 

Serum glycerol 

(mmoll-1) 
0.03 ± 0.01 0.03 ± 0.01 0.167 

Serum osmolality 

(mosmkg-1) 
282 ± 5 284 ± 4 0.113 

Blood lactate 

(mmoll-1) 
0.61 ± 0.26 0.69 ± 0.28 0.419 

 

 

Serum glycerol concentration (Fig. 4.1) 

Two-factor repeated measures ANOVA on serum glycerol concentrations showed 

a main effect of trial (P = 0.000), time (P =0.000) and an interaction (P = 0.000).  

One-way ANOVA analysis over time showed that serum glycerol increased 

following glycerol ingestion to 10.26 ± 3.79 mmol·l-1 (median 9.11 mmol·l-1; range 

4.55 – 16.36 mmol·l-1) before exercise.  Serum glycerol remained elevated 

throughout the glycerol trial.  At the end of exercise, serum glycerol was 8.28 ± 

2.86 mmol·l-1 (median 7.64 mmol·l-1; range 4.14 – 13.48 mmol·l-1), and at 90 min 

after exercise, it was 4.87 ± 1.48 mmol·l-1 (median 4.87 mmol·l-1; range 3.16 – 
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7.35 mmol·l-1), which were significantly higher than the resting serum glycerol 

value of 0.03 ± 0.01 mmol·l-1. 

During the water trial, serum glycerol did not change over time (P = 0.775) and 

remained at baseline 0.03 ± 0.01 mmol·l-1. 
 
Figure 4.1  Serum glycerol concentration (mmol·l-1).  Points denote median (min,max); n = 10.   

* Denotes difference between trials (P < 0.05). 

  
 

Serum Osmolality (Fig. 4.2) 

Two-way repeated measures ANOVA on serum osmolality showed a main effect 

of trial (P = 0.000), time (P = 0.000) and an interaction (P = 0.000). 

One-way ANOVA analysis over time for the glycerol trial showed that serum 

osmolality increased following glycerol ingestion and reached 300 ± 8 mosmol·kg-1 

(median 303 mosmol·kg-1; range 287 – 307 mosmol·kg-1) before exercise started.  

Serum osmolality remained elevated throughout the experimental trial.  At 90 min 

after exercise, serum osmolality was 293 ± 4 mosmol·kg-1 (median 294  

mosmol·kg-1; range 286 – 300 mosmol·kg-1), which was significantly higher than 

the resting value. 

 
* * * * * * * * * * 
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In the water trial, serum osmolality did not change over time (P = 0.926) and 

remained close to resting levels (282 ± 5 mosmol·kg-1; median 285  mosmol·kg-1; 

range 275 – 287 mosmol·kg-1).  

The changes in serum osmolality were greater than the changes expected (~10 

mosmol·kg-1) based on the increase in serum glycerol.  It is important to note 

though that the increases in blood lactate and any changes in serum electrolytes 

(not measured in the present study) could account for the rise in serum osmolality. 
 

Figure 4.2  Serum Osmolality (mosmol·kg-1).  Points are median (min,max); n = 10.  * denotes 

glycerol time point significantly different (P < 0.05) from water point. 

 

 
 

 

Estimated changes in blood volume, red cell volume and plasma volume  

 

Blood volume changes (Fig. 4.3) 

Two-way repeated measures ANOVA on blood volume showed a main effect of 

trial (P = 0.004), time (P = 0.005) and an interaction (P = 0.001). 

 

* * * * * * * * * * 
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One-way ANOVA analysis over time showed that blood volume increased 

following glycerol ingestion (P = 0.009) by 4.5 ± 1.7% (median 4.5%; range 2.6 – 

6.3%).  Blood volume did not change following water ingestion (P = 0.994). 

During exercise, blood volume decreased in both trials in relation to pre-exercise 

values.  On the water trial, blood volume decreased by 5.2 ± 2.4% (P = 0.000) and 

on the glycerol trial, blood volume decreased by 3.9 ± 4.4% (P = 0.000) by the end 

of exercise.  Blood volume at 4 min after exercise was still lower than the pre–

exercise point in both trials (water trial - 4.4 ± 1.8%, P = 0.000; glycerol trial - 4.2 ± 

4.0%, P = 0.000).  

On the water trial, blood volume returned to the pre–exercise resting baseline at 

15 min following exercise (P = 0.080), and it remained at resting levels for the 

remainder of the study. 

As expected on the glycerol trial, blood volume did not return to the pre–exercise 

value (P < 0.050), instead it remained at the initial resting pre–glycerol ingestion 

value (P = 1.000 at end of exercise).  

 
Figure 4.3 Blood volume changes (%).  Points are median (min,max); n = 10.  † Denotes 

difference between trials (P < 0.050).  * Denotes difference from pre–exercise point in both trials (P 

< 0.050).  ** Glycerol pre–exercise point is higher than glycerol rest point (P = 0.009). 

 

 
 

† † † † † 

* * * * ** 
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Red cell volume (Fig. 4.4) 

Two-way repeated measures ANOVA on red cells volume showed that there was no trial 

effect (P = 0.867), no time effect (P = 0.103) and no interaction (P = 0.188). 
 
Figure 4.4  Estimated percentage red blood cells volume.  Points are median (min,max); n = 10. 

 
 

 

Plasma volume changes (Fig. 4.5) 

Two-way repeated measures ANOVA on plasma volume showed a main effect of 

trial (P = 0.000), time (P = 0.006) and an interaction (P = 0.001). One-way ANOVA 

analysis over time within trials showed that plasma volume increased following 

glycerol ingestion (P = 0.000) by 7.8 ± 2.0% (median 7.5%; range 4.0 – 9.9%).  

There was no change in plasma volume following water ingestion (P = 0.507). 

During exercise, plasma volume decreased from the pre-exercise value similarly in 

both trials.  On the water trial, plasma volume decreased by 7.4 ± 3.4% by the end 

of exercise (P = 0.001), and on the glycerol trial, plasma volume decreased by 7.5 

± 5.7% (P = 0.025).  During exercise, plasma volume in the glycerol trial was 

higher than that in the water trial (P< 0.050) because of the higher value at the 

beginning of exercise. 

 

At 4 min following exercise, plasma volume was still lower than the pre-exercise 

value on both trials (water trial by – 6.6 ± 2.9%, P = 0.002; glycerol trial by - 8.2 ± 
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4.4%, P = 0.003).  At 15 min after exercise, plasma volume returned to the pre–

exercise resting level in the water trial (P = 0.912). As expected on the glycerol 

trial, plasma volume did not return to the pre–exercise value, but stayed at the 

pre–glycerol ingestion values (P = 0.900). 
 
Figure 4.5   Plasma volume changes (%).  Points are median (min,max); n = 10.  † denotes 

glycerol time point significantly different (P < 0.050) from water point.  * denotes time point 

significantly different to pre–exercise point (P < 0.050) in both conditions. 

 

 

 

 

 

 

Isometric exercise results (Fig. 4.6) 

The data obtained for single-leg isometric extension force were not normally 

distributed and were analysed with non-parametric statistical tests.  A Friedman 

test showed that there was no effect of trial (P = 0.960), no effect of time (P = 

0.930), and no interaction (P = 0.100). 
 
 
 
 

† † † † † 
* * * * 
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Figure 4.6   Isometric force production (N).  Bars are median (min,max); n = 10. 

 
 

 

Blood glucose concentration (Fig. 4.7) 

The data obtained for blood glucose were not normally distributed and were 

analysed with non-parametric statistical tests.  A Friedman test showed that there 

was an effect of trial (P = 0.001) and time (P = 0.001), but no interaction (P = 

0.0995). 

A Mann-Whitney test for the glycerol trial revealed that blood glucose increased 

slightly at 4 min of recovery (P = 0.031) and remained higher than baseline 

throughout the recovery period (P ≤ 0.026).  There was no blood glucose change 

over time on the water trial. 

Comparisons between trials showed that blood glucose on the glycerol trial was 

higher than the water trial at 15 min (P = 0.034) and 30 min (P = 0.038) in the 

recovery period. 
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Figure 4.7 Blood glucose concentration (mmol·l-1). Points are means ± SD; n = 10. * Denotes time 

point significantly different from rest point in the glycerol trial.  † Denotes time point in the glycerol 

trial significantly different from time point in the water trail. 

  
 

 

Blood lactate concentration (Fig. 4.8) 

The data obtained for blood lactate were not normally distributed and were 

analysed with non-parametric statistical tests.   

A Friedman test showed that there was an effect of trial (P = 0.001), time (P = 

0.001), but no interaction (P = 0.985). 

A Mann-Whitney test for the glycerol trial revealed that blood lactate increased at 

the pre-exercise point (P = 0.011) following glycerol ingestion and remained higher 

than baseline throughout the trial (P <0.050).  On the water trial, blood lactate 

increased above baseline during exercise (repetitions 4, 8 and 12; P = 0.001). 

 Comparisons between trials (Mann-Whitney test) revealed that blood lactate on 

the glycerol trial was higher than on the water trial at the pre-exercise point 

following glycerol ingestion (P < 0.001) and remained higher almost throughout the 

duration of the trials (P < 0.030) except at repetition 12 (P = 0.080) and at 4 min of 

recovery (P = 0.054). 

 

* * * * * * 
† † 
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Figure 4.8  Blood lactate concentration (mmol·l-1).  Points are means ± SD; n = 10.  * Denotes time 

point in the glycerol trial significantly different from rest values (P < 0.050).  § Denotes time point in 

the water trial significantly different from rest values (P = 0.001).  † Denotes time point in the 

glycerol trial significantly different from time point in the water trial (P < 0.050).   

 

 

 
 
 
 

Discussion 
 
The purpose of this study was to examine muscle function during isometric 

exercise at high intensity following glycerol ingestion, increased extracellular 

osmolality and altered body water distribution.  

Skeletal muscle water accounts for 75% of total intracellular water compartment 

(Hamilton et al., 1993) and muscle cells behave as a perfect osmometer (Bozler, 

1965).  Exposure of the muscle cells to hypertonic media has been shown to lead 

to shrinkage and loss of water (Blinks, 1965) as water moves freely between the 

intracellular and extracellular space (interstitial space and plasma) and any 

changes in osmolality will result in a water movement.  Hamilton et al. (1993) 

studied the resultant water shifts in perfused cat muscle following acute increases 
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in plasma osmolality by 17 to 129 mosmol·kg-1 using various volumes of saline 

and sucrose.  Their results showed that plasma volume rose linearly with 

increasing osmolality and this was entirely at the expense of intracellular muscle 

water, as interstitial volume did not change.  Based on their findings, they 

suggested that for the average man, an increase in plasma osmolality by 30 

mosmol·kg-1 would decrease skeletal muscle water by 1 – 2 l.  Lindinger et al., 

(2011) showed that even a 5% increase in external osmolality may reduce intact-

muscle hydration by a small, but significant ~3%.  In the present study, glycerol 

ingestion raised serum osmolality by 16 mosmol·kg-1 (6%), which led to a 7.8% 

increase in plasma volume.  This was attributed to a net increase of water in the 

plasma (since red blood cell volume was not different among trials), as red blood 

cell volume remained unchanged when plasma osmolality increased (Buono & 

Faucher, 1985; Lindinger et al., 1994).  It is possible that the increase in plasma 

volume was associated with a decrease in muscle cell hydration.  

 

The potential change in muscle water did not have any effect on knee extensor 

muscle strength, as participants produced similar force in the two main trials. 

These findings agree with data from earlier studies, which indicated that 

hypohydration does not affect muscle strength (Bigard et al., 2001; Greenleaf et 

al., 1967; Greiwe et al., 1998; Montain et al., 1998).  In the literature, muscle 

dehydration and its effects on strength have been studied following total body 

dehydration, where water is lost from both intracellular and extracellular spaces 

(Guyton & Hall, 1996) and body mass is reduced. Various means (exposure to 

sauna, exercise combined with heat stress, fluid and caloric restriction) were used 

to elicit dehydration and the results on the effects of hypohydration on strength are 

inconclusive.  Heat exposure and exercise as a means of dehydration causes core 

temperature to rise, which has been shown to limit work capacity and promote 

fatigue during high intensity cycling (Febbraio et al., 1994), but it may well affect 

muscle function during strength exercise (Baar, 2006; Hedley et al., 2002).  In 

addition, if a participant is not allowed to fully recover following exercise-induced 

dehydration, the effects of hypohydration cannot be separated from the 
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performance reducing effects of muscle fatigue (Judelson et al., 2007b).  Fluid and 

caloric restriction may affect muscular endurance but maximum strength does not 

seem to be affected (Walberg - Rankin et al., 1996). Overall body hypohydration 

seems to have a limited role in reducing muscle strength and power (Judelson et 

al., 2007b). In the present study there was not any reduction in total body water, 

but an alteration of body water distribution due to increased serum osmolality and 

a possible decrease in muscle water. Although it was observed that the 

participants experienced a greater difficulty in completing the exercise protocol 

during the glycerol trial in the present study (perceived effort was not recorded), 

any degree of muscle water change in this trial did not affect muscle strength 

during the 12 high intensity isometric contractions.  

 

The strength results from the present study do not verify the in vitro findings on cell 

and muscle shrinkage, which demonstrated that reduced muscle water reduced 

muscle contractility.  Gulati and Babu (1982) showed that in intact frog muscle 

fibres, the force of isometric contraction decreased linearly with increasing 

extracellular tonicity.  These results were later confirmed by the findings of 

Bressler and Matsuba (1991) who demonstrate that maximum isometric tension of 

single muscle fibres increased when the fibres were exposed to a hypotonic 

Ringer solution.  This was attributed to a greater force produced per cross - bridge.  

In vitro, reduced cellular hydration and cell shrinkage is accompanied by a 

potassium efflux through the opening of potassium channels, and intracellular 

potassium concentration decreases (Haussinger et al., 2004).  Additionally, 

potassium exits the cell during muscle contractions.  Under normal conditions, 

potassium concentration in the cytosol is greater than in the extracellular fluid.   As 

potassium is a charged solute, any changes in potassium concentration may affect 

the electrical potential of the cell membrane and its excitability (Cairns & Lindinger, 

2008).  Sjogaard et al., (1985) suggested that a loss of intracellular potassium and 

an increase in extra cellular potassium concentration might disturb the membrane 

electrochemical potential and decrease muscle contractility.  In the current study, 

electrolytes were not measured, but participants were able to produce similar force 



 
78 

 

in both trials indicating that any changes in potassium concentration in the hyper-

osmotic glycerol trial were not enough to alter muscle function.  Participants were 

also able to maintain their strength throughout the exercise session.  

 

During short, high-intensity isometric exercise, energy is derived from the ATP –

phosphocreatine system and anaerobic glycolysis, which is accompanied by 

cellular acidification and lactate production (Ahlborg et al., 1972; Katz et al., 1986; 

Lindinger et al., 1995).  Isometric contraction at ~75% MVC causes 

phosphocreatine concentration to decline by 25% within 5 s (Hultman & Sjoholm, 

1983) and this is marked by an impressive rise in inorganic phosphate (Pi) and 

creatine (Mougios, 2006).  Creatine and Pi are intracellular osmolytes that have 

been shown to pull water into skeletal muscle during muscle contraction (Raja et 

al., 2006).  Lactate is produced by anaerobic glycolysis and accumulated in the 

muscle during repetitive exercise at high intensity, which in turn leads to an 

osmotic gradient that favours movement of water into the intracellular space 

(Sjogaard et al., 1985; Raja et al., 2006; Bangsbo et al., 1994).  Its accumulation in 

the muscle increases the number of osmotically active particles, and the 

intracellular water change is highly correlated with increase of lactate (Fitts, 1994; 

Lindinger, 2005).  In the present study, there was a water shift into the non-

vascular space during exercise, which was reflected by a decrease in plasma 

volume.  In the two trials, plasma volume during exercise decreased in a similar 

fashion, by 7.4% in the water trial and 7.5% in the glycerol trial, which are similar 

to the 7.3% decrease in plasma volume reported by Robergs et al. (1991) during 

single leg knee extension resistance exercise at 70% of 1 RM.  Raja et al. (2006) 

showed that during a wrist–flexion exercise, intracellular water increased by 7 – 

8% at 90% maximum power output and by 12.6% at 100% maximum power 

output, and it was reported that the predominant factors causing intracellular water 

increases during short-term, high-intensity exercise were phosphocreatine 

hydrolysis, intracellular acidification and increased lactate concentration. 
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In the present study, blood lactate was measured before, during and after 

exercise.  Participants performed 12 isometric efforts at 90% MVC and despite the 

high intensity and volume of exercise, there was no high blood lactate 

accumulation (Glycerol trial 1.44 ± 0.48 mmol·l-1; Water trial 1.16 ± 0.84 mmol·l-1).  

One reason for this may be that each isometric contraction was only 6 s long; it is 

generally accepted that during short contractions (<10 s) the majority of energy 

derives from the phosphocreatine – ATP system (Hultman & Sjoholm, 1983), 

although the glycolytic system has been shown to contribute to ATP production 

even during a single 6-s sprint (Gaitanos et al., 1993).  Furthermore, muscle blood 

flow has been shown to be occluded during isometric contractions in excess of 

20% MVC (Edwards et al., 1973; Katz et al., 1986) and lactate is poorly removed 

from the muscle (Harris et al., 1981), as lactate appearance in the blood relates to 

its concentration gradient between the cytosol and the blood, and to blood flow in 

the exercising muscles (Mougios, 2006).  Intramuscular lactate concentration has 

been shown to be twice the concentration of blood lactate (Robergs et al., 1991; 

Sjogaard & Saltin, 1982) and can be used as a substrate for muscle glycogen 

synthesis during the recovery period following exercise (Fournier et al., 2002; 

Robergs et al., 1991).  Another factor for the low blood lactate values obtained 

during this study is the great distance between the exercising muscles and the 

blood sampling point on the forearm; lactate is known to quickly diffuse into other 

tissues (non-exercising muscles, the heart, the liver) (Brooks & Gaesser, 1980) 

and it is likely that some of the lactate released into the blood from the exercising 

muscles was absorbed by other tissues before reaching the sampling point. 

 

Statistical analysis of blood lactate did provide some interesting findings on cell 

metabolism despite the small changes of blood lactate over time.  On the water 

trial, blood lactate increased slightly during exercise and then returned to baseline.  

On the glycerol trial, blood lactate increased following glycerol ingestion and 

remained higher than baseline throughout the trial.  Furthermore, blood lactate on 

the glycerol trial was higher compared with lactate on the water trial at 15 and 30 

min into the recovery period.  These findings indicated altered metabolism during 
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the hyper-osmotic glycerol trial.  Following exposure of cells to a hypertonic 

environment and the subsequent cell shrinkage, regulatory volume increase (RVI) 

mechanisms are activated to increase intracellular osmolality, draw water back 

into the cell and re-establish homeostasis (Lang et al., 1998).  RVI is 

accomplished by ion uptake (Na+ uptake, which is later exchanged for K+ via the 

Na+-K+-ATP pump) and by cellular generation of organic osmolytes (Strange, 

2004), such as lactate. Degradation of glycogen to glucose phosphate increases 

the number of osmotically active particles and thus increases intracellular 

osmolality (Lang et al., 1998) and glycogenolysis leads to cellular accumulation of 

lactate.  Hence, lactate production in the cell can occur in an effort to increase the 

number of intracellular particles and osmolality.  Additionally, a greater 

accumulation of intramuscular lactate would also result in a faster efflux of lactate 

into the blood due to the greater concentration gradient between the muscle and 

the blood.  The findings of the present study during the glycerol trial are in 

agreement with in vitro observations that exposure of cells to a hypertonic medium 

increases the release of lactate (Antolic et al., 2007; Lang et al., 1989), as the 

acidification accompanying intracellular lactate production acts to preserve cell 

volume (Usher – Smith et al., 2009) via subsequent activation of Na+/H+ exchange, 

Na+ uptake (Lang et al., 1989) and cell swelling.   It can be speculated that the 

difference in lactate production between the two trials may be due to a greater 

intracellular lactate accumulation, and its osmotic effect might have partly 

contributed to the fact that plasma volume in the glycerol trial did not return to its 

pre–exercise level following exercise, despite a high serum osmolality. 

 

Blood glucose was also monitored during this study. Whilst blood glucose on the 

water trial did not change over time, on the glycerol trial it had increased at 4 min 

after exercise and remained higher than baseline throughout the recovery period.  

Blood glucose on the glycerol trial was also higher than blood glucose on the 

water trial at 15 and 30 min of the recovery period.  One reason why blood glucose 

may have increased is that during recovery from strenuous exercise the availability 

of blood glucose, originating from the liver, facilitates delivery of glucose to the 
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muscles in order to replenish muscle glycogen.  Furthermore, liver cells have been 

shown in vitro to release glucose (following glycogen degradation) when exposed 

to a hyper-osmotic environment (Lang et al., 1989).  In vivo, Berneis et al., (1999) 

investigated the effects of hyper-osmolality (296 mosmol·kg-1) on whole body 

glucose kinetics and reported increased plasma glucose concentrations due to an 

increased hepatic glucose production, which can be compared with the results of 

the hyper-osmotic conditions of the present study.  Clinical evidence in diabetic 

populations also suggests that dehydration and hyperosmolarity are accompanied 

by insulin resistance (Haussinger et al., 2004) leading to increased blood glucose 

concentrations.  Overall, the fact that increases in blood glucose was observed 

only on the hyper-osmotic glycerol trial and in combination with the results on 

blood lactate, suggests that muscle metabolism was likely altered and that there 

was possibly an extra physiological strain on the exercising muscles during the 

hyper-osmotic trial.  

 

Despite different body water distribution between conditions, indicated by the 

haematological indices measured, there was not any detectable difference in 

muscle function as participants produced similar forces in both trials.  Blood lactate 

values indicated altered muscle physiology, but this was not enough to affect 

isometric exercise performance.  Judelson et al. (2007b) also failed to find any 

acute measurable changes in isometric back squats after 2.5% and 5.0% body 

mass hypohydration, but further research showed that chronic hypohydration 

could have a different effect as it produces a less beneficial postexercise milieu, 

increasing catabolism and potentially decreasing anabolism (Judelson et al., 

2008).  In general, moderate to high intensity resistance exercise acutely 

increases protein synthesis (Baar, 2006; Tipton & Wolfe, 2001).  In the process, 

amino acid (Tipton & Wolfe, 2001) availability provides a more favourable 

environment for protein synthesis.  Muscle increases are mediated by action of 

anabolic hormones such as testosterone and insulin (Greig et al, 2006).  

Testosterone levels increase in the recovery period after a strength session 

(Kraemer et al., 1998), but exercise in a hypohydrated state seemed to blunt the 
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testosterone response (Judelson et al., 2008).  Insulin not only controls blood 

glucose, but it also facilitates amino acid entry into the cell, which may promote 

protein synthesis (Mougios, 2006), and insulin action leads to cell swelling which 

also can stimulate protein synthesis (Haussigner et al., 2004).  A decrease in cell 

volume caused by dehydration due to exposure to a hyper-osmotic environment 

promotes insulin resistance (Schliess & Haussinger, 2003; Schliess et al., 2001), 

negatively affecting protein synthesis during the recovery period.  In addition, 

performing strength exercise in a hypohydrated state can increase circulating 

cortisol levels which will promote catabolic effects, suggesting that hypohydration 

significantly enhances the stress of resistance exercise (Judelson et al., 2008) and 

this additional stress might hinder the body’s ability to recover from exercise. 

 

Having failed to find any acute effects of glycerol ingestion and altered body water 

distribution on high-intensity strength exercise, future research would be directed 

into examining the potential effects of long-term exercise training and recovery 

under high extracellular osmolality and altered body water distribution. 
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Chapter 5 

 

Effect of glycerol ingestion during an eight-week 

strength training period   
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Introduction  
 
In previous work reported in the two preceding chapters, acute changes in body 

water distribution, as expressed by an increase in plasma volume and potentially a 

decrease in intracellular water, did not appear to have an effect on muscular 

function and force production during high-intensity isometric exercise.   Although 

there are no studies examining long-term effects of muscular hypohydration on 

muscle adaptations to strength training, evidence suggests that hypohydration 

may attenuate some benefits of a resistance exercise programme (Judelson et al., 

2007b). Therefore, the next area to be investigated was whether there are any 

long-term effects of exercise training following glycerol ingestion and presumed 

altered body water distribution. 

 

Resistance training improves strength and causes adaptations in the skeletal 

muscle, such as an increase in cross-sectional area (Maughan et al., 1984a).  

Gains in muscle size and strength are elicited by training programmes of high 

loading at intensities greater than 75% of 1RM (Chestnut & Docherty, 1999).  

Training at intensities lower than 50% of 1RM does not seem to induce any 

hypertrophy (Moss et al., 1997).  Induced skeletal muscle hypertrophy produced 

by strength exercise of short duration and high intensity (Booth & Thomason, 

1991) has been linked to acute changes in the cellular processes involved in 

protein turnover and muscle growth (Tipton & Wolfe, 2001) following an exercise 

session; increased serum concentration of testosterone, growth hormone and IGF-

1 (all of which have an anabolic effect on protein synthesis) (Crewther et al., 2006) 

and increased protein synthesis, which exceeds protein breakdown (Mougios, 

2006), all interact to regulate muscle protein remodelling following heavy 

resistance exercise (Kraemer et al., 1998).  

 

Muscle metabolism and protein synthesis can be affected by cellular hydration 

(Haussinger et al., 1994).  In vitro, it has been shown that exposure of cells to a 

hyper-osmotic environment leads to cellular hypohydration and this promotes 
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catabolism (Lang et al., 1998).  Body hypohydration has also been shown to 

modify the metabolic response to resistance exercise (Judelson et al., 2008) by 

decreasing testosterone and insulin secretion and increasing circulation cortisol 

concentrations.  This potentially alters the anabolic processes taking place in the 

post–exercise recovery period, and may have an impact on the expected training 

outcome if an athlete exercises under a hypohydrated state for an extended period 

of time.  

 

For the purpose of this study, extracellular osmolality was altered by the ingestion 

of a hyper-osmotic glycerol solution.  Since the cells function as an osmometer 

(Haussinger et al., 1994; Strange, 2004) the increased extracellular osmolality 

may result in water efflux from the intracellular space, as skeletal muscle fibres 

have been shown to adjust their volume in response to alterations in the osmolality 

of the extracellular environment (Blinks, 1965).   

In the present study, a training protocol typically used to produce hypertrophy 

(McCaulley et al., 2009; Smith & Rutherford, 1995; Schott et al., 1995; Yamamoto 

et al., 2008) was employed to exercise the forearm muscles. One more issue was 

the choice of type of exercise.  The use of multi-joint exercises using big muscle 

groups would make the interpretation of results difficult with regard to the exact 

loading of the muscle and gains in size and strength of each muscle.  Measuring 

acute and chronic volume changes of big muscle groups would also pose a 

greater challenge than measuring a smaller area. Therefore, handgrip exercise 

was chosen as a more practical way for examining acute and long term changes in 

muscle volume and strength.  Additionally, each exercise effort would be easily 

monitored and, with appropriate feedback, the trainees would be more able to 

maintain the prescribed exercise intensity. 

 

The aim of this study was to investigate whether exercising and initiating recovery 

under an altered body water distribution would have an effect on forearm muscle 

volume and strength after 8 weeks of handgrip training at high intensity. 
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Materials and Methods 
 
Following ethical approval by the Loughborough University Ethical Advisory 

Committee, fourteen healthy male volunteers participated in this study.  After a 

written and oral explanation of all procedures, and their right to withdraw at any 

point, each participant signed a written consent form.  All participants (n = 14) 

were physically active and accustomed to resistance exercise.  Their age, height 

and body mass were, respectively, (mean ± SD) 27 ± 4 y, 174 ± 6 cm, and 73.6 ± 

5.1 kg. 

 

Experimental procedure 

Participants were randomly assigned to one of two training groups.  The first group 

ingested lemon-flavoured water (6 ml·kg-1 body mass) during the training sessions 

and the second group ingested a lemon-flavoured glycerol solution (total volume 6 

ml·kg-1 body mass, 1 g·kg-1 body mass glycerol).  Half the drink volume was 

ingested 30 min before exercise and the remaining half was ingested immediately 

after exercise. 

 

Training 

Following familiarisation with the protocol, participants trained their stronger arm 

three times a week (on a Monday, Wednesday and Friday) for eight weeks by 

performing four sets of 10 repetitions (sustained for 1 s) at 80% of their maximum 

handgrip strength using a Jamar® Hydraulic Hand Dynamometer, with 2 minutes 

rest between sets.  The other arm acted as a control. Participants trained on 

alternate days, at the same time of day.  In order to maintain the appropriate 

intensity, during training sessions, participants were given oral feedback regarding 

the force they were generating with each repetition.  During all training sessions 

and maximum handgrip tests, participants sat in an adjustable, straight-backed 

chair.  The exercising arm was placed by the side of the body, with the elbow 

extended, and the forearm and wrist held in a neutral position. 
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Maximum handgrip strength test and forearm volume 

Three days before the start of the training period, participants visited the laboratory 

for an initial assessment of their maximum handgrip strength of both arms, using 

the same apparatus that would be used during the training sessions.  The best of 

three efforts was taken as their maximum.  There was one minute of rest between 

efforts.  When evident that a participant was improving with every repetition, he 

proceeded to perform more efforts, until a true maximal value was obtained.  

Maximum handgrip strength for both arms was assessed every two weeks, and 

absolute training intensity was adjusted so it always corresponded to 80% 

maximum handgrip strength.  Following completion of the 8–week training period, 

participants visited the laboratory ~72 hours after the last training session for the 

last maximum handgrip strength measurement.  A 72-h period was given to allow 

full recovery from the last training session. 

Forearm volume was measured in duplicate by the water displacement method 

(CV 1.4%) as described by Maughan et al. (1984b), in order to measure any 

changes in forearm muscle volume during the eight-week training period.  Forearm 

volume of both arms was measured before the training period, every two weeks 

during the training period, and at the end of the training period.  Acute changes in 

forearm volume of the exercising arm were measured at the first and last training 

sessions, before and immediately after the four sets of handgrip exercise.   

 

All training sessions lasted 45 min, apart from the first and last sessions which 

involved blood sampling, and therefore lasted three hours.  For the long sessions 

that included blood sampling, participants came to the laboratory after an 

overnight fast.  After voiding, body mass was measured and participants were 

seated comfortably in the laboratory in the same upright chair that was used in all 

of the training sessions.  The non-exercising arm was immersed in water (42ºC) 

for 10 min.  Then, a small canula (butterfly, size 21g) was inserted into a 

superficial vein.  The canula stayed in place throughout the session to allow 

multiple 3 ml blood samples to be drawn.  Two resting blood samples were 

obtained 10 min apart. Immediately after the second sample, participants ingested 
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half the volume of the test drink.  Another blood sample was drawn 30 min after 

ingestion and exercise started. Blood samples were also drawn at the end of each 

set and then at 15, 30, 45, 60 and 90 min, post-exercise.  

Forearm volume of the exercising arm was measured during rest before exercise 

and immediately after exercise. 

 

Sample analysis 

Blood samples were analysed for haemoglobin concentration, haematocrit, blood 

glucose and blood lactate.  Haemoglobin concentrations and haematocrit were 

used to estimate changes in blood, red cell and plasma volumes as described by 

Dill and Costill (1974). 

Serum samples were analysed for osmolality and glycerol. 

All analyses were performed as described in the general methods section of this 

thesis. 

 

Statistical Analysis 

Changes in strength, forearm volume, blood glucose and lactate, serum osmolality 

and glycerol were analysed using repeated measures ANOVA for group, time and 

“group x time” interaction.  Changes over time were analysed using one-way 

ANOVA.  Where appropriate, significant differences were detected using a Tukey 

post-hoc test. 

Data not normally distributed were analyzed with non-parametric statistical tests. 
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Results 
 
Independent t-test comparing the values obtained prior to the training period 

showed that there was no difference in handgrip strength (P = 1.000) and forearm 

volume (P = 0.535) of the exercising arm between the two training groups.  

Therefore, the two groups were equally matched in handgrip strength and forearm 

volume (Table 5.1). 
 
Table 5.1   Participant characteristics (means ± SD) at the beginning of the training period (Water 

group n = 7, Glycerol group n = 7).  P denotes comparison between groups. 

 Water Group Glycerol Group P value 

Age (y) 27 ± 3 27 ± 5 0.901 

Height (cm) 173 ± 6 176 ± 5 0.379 

Body mass (kg) 72.2 ± 5.2 75.0 ± 4.9 0.316 

Dominant arm 

handgrip strength (kg) 

51 ± 4 51 ± 8 
0.933 

Non dominant arm 

handgrip strength (kg) 

48 ± 5 48 ± 6 
0.963 

Dominant arm forearm 

muscle volume (ml) 

781 ± 94 812 ± 68 
0.494 

Non dominant arm 

forearm muscle 

volume (ml) 

767 ± 79 803 ± 72 

 

0.388 

 

 

 

Blood analysis 

The analyses described in this section are from the blood samples taken during 

the first training session.  Analysis of blood samples over time describes changes 

within a single training session.  
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Serum glycerol concentration (Table 5.2) 

Two-way repeated measures ANOVA showed a group effect (P = 0.000), time 

effect (P = 0.000) and an interaction (P = 0.000).  Post-hoc analysis showed no 

difference in serum glycerol between the two groups at the rest point prior to 

glycerol or water ingestion (P = 0.515).  In the glycerol group, following glycerol 

ingestion, serum glycerol increased (P = 0.000) to 7.41 ± 2.34 mmol·l-1 and 

remained higher than the resting values (P < 0.001) and higher than all the points 

of the water group throughout the experimental trial (P = 0.000). One-way ANOVA 

analysis over time for the water group showed no change in serum glycerol (P = 

0.500).  

 
Table 5.2   Serum glycerol concentration (mmol·l-1).  Values are means ± SD (Water group n = 7, 

Glycerol group n = 7).  P denotes difference between groups. 

 

 Rest 
Pre 

Exercise 
Set 4 

End Exercise 
15 min 30 min 45 min 60 min 90 min 

Water 

group 
0.03 

± 0.01 

0.03 

± 0.01 

0.04 

± 0.02 

0.04 

± 0.02 

0.04 

± 0.01 

0.03 

± 0.01 

0.04 

± 0.01 

0.03 

± 0.01 

Glycerol 

group 
0.03 

± 0.01 

7.41 

± 2.34 

6.45 

± 2.03 

11.09 

± 4.74 

12.62 

± 2.83 

10.21 

± 1.95 

8.88 

± 1.33 

7.26 

± 1.46 

P 0.515 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

 

 

Serum Osmolality (Figure 5.1) 

Two-way repeated measures ANOVA showed a group effect (P = 0.003), time 

effect (P = 0.000) and an interaction (P = 0.000).  At rest, there was no difference 

in serum osmolality between the two groups (P = 0.859).  One-way ANOVA over 

time showed that following the initial glycerol ingestion, serum osmolality 

increased (P = 0.040) to 296 ± 5 mosmol·kg-1 in the glycerol group.  After exercise, 
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following ingestion of the second portion of the glycerol solution, osmolality 

increased further (P = 0.000) to 304 ± 5 mosmol·kg-1 and remained elevated 

compared with the resting value (P < 0.030).  Post-hoc analysis showed that 

following glycerol ingestion serum osmolality in the glycerol group was higher than 

osmolality in the water group throughout the session (P < 0.002).  
 
 
Figure 5.1   Serum osmolality (mosmol·kg-1).  Points are means ± SD; Water group n = 7, Glycerol 

group n = 7.  * denotes glycerol time point significantly different (P < 0.050) from water point and 

glycerol resting point. 

 
 

 

Plasma volume changes (Figure 5.2) 

Two-way repeated measures ANOVA showed a group effect (P = 0.021).  Time 

tended to have an effect on plasma volume (P = 0.055), and there was no 

interaction (P = 0.220).  Post-hoc analysis showed that during the initial resting 

period following glycerol ingestion plasma volume increased by 5.2 ± 3.3% (P = 

0.009) in the glycerol group.  

During exercise, plasma volume in the glycerol group decreased compared with 

the pre-exercise point by 5.7 ± 5.0% (P = 0.023).  In the water group, plasma 

* * * * * * * * * * 



 
92 

 

volume tended to decrease (2.8 ± 2.8%) during exercise, but it did not reach 

statistical significance (P = 0.079).  

Following the second glycerol ingestion after exercise, plasma volume increased 

above resting values reaching a maximum increase of 6.1% ± 1.1 at 30 min (P = 

0.042) (Figure 5.2). 
 

 

Figure 5.2   Estimated percentage plasma volume changes.  Points are means ± SD; Water group 

n = 7, Glycerol group n = 7.  † denotes glycerol group exercise point significantly different from pre-

exercise point (P < 0.050).  * Denotes glycerol point higher than rest point (P < 0.050) 

  

 
 

 

Blood glucose concentration (Table 5.3) 

Two-way repeated measures ANOVA showed no group effect (P = 0.722), a time 

effect (P = 0.000) and no interaction (P = 0.080).  Post-hoc analysis showed that 

there was no difference in blood glucose between the two groups at rest (P = 

0.861).  Time pair wise comparisons showed that there was a difference in 

glucose between the 90 min point and set 1 (P = 0.038), 90 min point and set 4 

(end of exercise)  (P = 0.005). 

* * † 
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One-way ANOVA analysis over time within groups showed that compared with the 

resting values, blood glucose did not change during the experimental trials (P > 

0.05) in either of the groups.  Post-hoc analysis showed that blood glucose was 

not different between the two groups (P > 0.050) at any point.  
 

 
Table 5.3   Blood glucose concentration (mmol·l-1).  Values are means ± SD; Water group n = 7, 

Glycerol group n = 7.  P denotes difference between the two groups. 

 

 Rest 

 Pre 

Exercis

e 

Set 1 Set 2 Set 3 Set 4 15 min 
30 

min 

45 

min 

60 

min 

90 

min 

Water 

group 

5.06 

±0.41 

5.10 

± 0.62 

4.92 

± 0.52 

4.94 

±0.44 

5.02 

±0.53 

4.93 

± 0.47 

4.98 

±0.57 

5.14 

±0.51 

5.27 

±0.48 

5.39 

± 0.42 

5.65 

±0.87 

Glycerol 

group 

5.03 

±0.68 

5.34 

± 0.87 

5.09 

± 1.08 

5.19 

±1.02 

5.06 

±1.05 

4.96 

± 1.06 

5.13 

±0.85 

5.10 

±0.93 

5.14 

±0.94 

5.28 

± 0.92 

5.37 

±1.11 

P 0.921 0.590 0.746 0.598 0.949 0.950 0.725 0.939 0.766 0.785 0.629 

 

 

 

Blood lactate concentration (Fig. 5.3) 

Two-way repeated measures ANOVA showed no group effect (P = 0.173), a time 

effect (P = 0.004) and an interaction (P = 0.045).  Post-hoc analysis showed that 

that there was no difference in blood lactate between the two groups at rest before 

glycerol ingestion (P = 0.253) or after (P = 0.728).  

One-way ANOVA analysis over time within groups showed no change in blood 

lactate in the water group (P = 0.900).  For the glycerol group, one-way ANOVA 

analysis over time showed that compared with the initial rest point, blood lactate 

was higher (P < 0.05) at set 3, set 4, 15 min and 30 min into recovery.  

Between groups, comparisons during exercise showed that blood lactate was 

higher in the glycerol group after set 4 (end of exercise) (P = 0.012).  Following the 
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second ingestion of glycerol, blood lactate was higher in the glycerol group at 15 

min (P = 0.022).  At 30 min, the difference between groups was P = 0.065, and at 

45 min, P = 0.076.  
 

 

Figure 5.3   Blood lactate concentration (mmol·l-1).  Points are means ± SD; Water group n = 7, 

Glycerol group n = 7.  * Denotes difference compared with rest point in glycerol group (P < 0.05).  † 

denotes glycerol time point significantly different (P < 0.050) from water point. 

 

 
 

Handgrip strength (Fig. 5.4) 

As shown in table 5.1, there was no difference between groups in their maximum 

handgrip strength prior to the training period.  A Shapiro-Wilks test showed that 

data on handgrip strength were not normally distributed (P < 0.01) and handgrip 

data were analyzed with non-parametric statistical tests.  A Friedman test showed 

that there was a time effect (P = 0.026), but no trial effect (P = 0.340) and no 

interaction (P = 0.800).  Overall, handgrip strength increased over the 8 weeks of 

training (P = 0.030; Kruskal-Wallis test) but there was no difference between 

groups. 

* * * * 

† 
 

† 
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In the water group, handgrip strength increased by 8 ± 6 kg (16%) to 59 ± 8 kg 

(median 61 kg, range 48 – 70 kg), and in the glycerol group, by 4 ± 4 kg (6%) to 54 

± 6 kg (median 52 kg, range 50 – 67 kg).  The large variation in strength 

improvements between participants and the small number of participants might 

have prevented the values in handgrip strength from reaching a statistically 

significant difference between groups. 
 
Figure 5.4   Handgrip strength (kg) for the exercising arm before and after training period.  Values 

are median (range); Water group n = 7, Glycerol group n = 7.  * denotes handgrip value (for both 

groups combined) after the training period higher than initial pre-training assessment (P < 0.050). 

 

  
 

 

 

Forearm volume – Exercising arm (Fig. 5.5)  

Forearm volume prior to the training period was not different between groups, as 

shown in table 5.1.  Forearm volume did not measurably change over the 8-week 

training period (Table 5.4). 

* 
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Two-way repeated measures ANOVA over the 8-week training period showed that 

there was no group effect (P = 0.552), no time effect (P = 0.520) and no interaction 

(P = 0.947). 

Results within group  paired t – tests during a single training session showed that 

compared with forearm volume at the resting period, at the end of exercise (set 4), 

forearm volume increased by 20 ± 7 ml (2.8%) in the water group (P = 0.001) and 

by 17 ± 11 ml (2.1%) in the glycerol group (P = 0.006).   
 

 

 

 

 

 

 

 

 

 
Table 5.4 Forearm muscle volume (ml) of the exercising arm over the eight – week training period. 

Values  

 

 

 

 
 
 
 
Table 5.4  Forearm muscle volume (ml) before and after 8 weeks of handgrip training.  Values are 

means ± SD; Water group n = 7, Glycerol group n = 7.  P denotes difference over time within 

group. 

 Before Training 
After 8 weeks of 

training 
P 

Water group 781 ± 94 783 ± 99 0.875 

Glycerol group 812 ± 68 817 ± 72 0.661 
 

Figure 5.5   Acute forearm muscle volume (ml) before and immediately after 4 sets of handgrip exercise. 

Values are means ± SD; Water group n = 7, Glycerol group n = 7.  * denotes difference from pre-exercise 

point (P < 0.010).  

 

* * 
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Non-exercising control arm data 

Handgrip strength  

Two-way repeated measures ANOVA on handgrip strength for the control arm 

showed that there was no group effect (P = 0.684), no time effect (P = 0.163) and 

no interaction (P = 0.460), as handgrip strength for the control group did not 

change over time in either of the two groups.  For the water group, handgrip 

strength was 48 ± 5 kg at the beginning of the study and 50 ± 5 kg at the end of 

the training period.  For the glycerol group, handgrip strength at the beginning of 

the study was 48 ± 6 kg and at the end of the study period, handgrip strength was 

50 ± 5 kg.  

 

 

Forearm muscle volume  

Two-way repeated measures ANOVA on forearm muscle volume for the control 

arm showed that there was no group effect (P = 0.552), no time effect (P = 0.610) 

and no interaction (P = 0.664), as forearm volume did not change over time in 

either of the two groups.  For the water group, forearm muscle volume was 767 ± 

79 ml at the beginning of the study and 752 ± 81 ml at the end.  For the glycerol 

group, forearm muscle volume was 803 ± 72 ml at the beginning of the study and 

798 ± 82 ml at the end of the study.  
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Discussion 
 
Resistance training is widely accepted as an important tool to increase muscle 

strength and muscle volume (i.e., hypertrophy).  Type of training (Crewther et al., 

2006; Folland & Williams, 2007), volume and intensity of exercise (Kanehisa et al., 

2002; McCaulley et al., 2009) and training status (Maughan et al., 1984a; 

Crewther et al., 2006) can all influence the outcome of resistance training 

programmes.  Body hydration status has also been shown to alter the hormonal 

response to resistance exercise, namely decreasing the anabolic hormone 

testosterone and increasing the catabolic stress hormone cortisol, potentially 

altering the training effect and adaptation of exercising muscles (Judelson et al., 

2007b).  The aim of this study was to investigate potential differences in strength 

and muscle volume following eight weeks of strength training at high intensity, 

under potentially different body water distribution status.  The participants in this 

study were recreationally active individuals but no one engaged in regular weight 

training.  Therefore, they were considered untrained and suitable for this study, as 

changes in untrained individuals are greater than trained participants, and easier 

to monitor (Crewther et al., 2006).  

 

The glycerol group ingested the first bolus of the high concentration glycerol 

solution prior to exercise.  Following the initial glycerol ingestion, serum glycerol 

increased; this was accompanied by an increase in osmolality of more than 10 

mosmol·kg-1, and an increase of plasma volume by 5.2% prior to exercise.  As 

already discussed in the previous chapters of this thesis, the changes in 

extracellular osmolality induced presumably a modest state of cell shrinking (Keller 

et al., 2003), since in vitro data suggest that increases in plasma volume induced 

by hypertonic fluids may come entirely at the expense of cell volume (Hamilton et 

al., 1993).  The presumed reduced muscular hydration did not affect exercise, as 

participants in the glycerol group were able to exercise at the required intensity of 

80% MVC, as mild to moderate levels of hypohydration does not seem to affect 
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strength acutely (Bigard et al., 2001; Greenleaf et al., 1967; Greiwe et al., 1998; 

Montain et al., 1998).  

 

During exercise, plasma volume decreased on the glycerol group and tended to 

decrease on the water group, whilst forearm muscle volume increased in both 

groups by the end of exercise.  These changes demonstrate the water shift and 

increase in muscle fluid, which occurs during muscle contractions (Nygren et al., 

2000; Sjogaard & Saltin, 1982).  The significant finding of the present study is that 

the decrease in plasma volume on the glycerol group was greater than on the 

water group and it was accompanied by an increase in blood lactate, which was 

not observed on the water group.  The increase in muscle water during contraction 

is attributed to osmotic pressure changes due to the accumulation of osmolytes 

such as ADP, inorganic phosphate, creatine and lactate (Rapp et al., 1998).  In the 

type of exercise used in the present study, energy derives from the ATP – 

Phosphocreatine system (Katz et al., 1986; Lindinger et al., 1995) and a 10 s 

forearm isometric contraction at 70% MVC has been shown to decrease 

phosphocreatine by 30% (Kimura et al., 2006), which results in the increase of free 

inorganic phosphate and creatine.  The decrease in plasma volume observed in 

the present study during exercise on both trials can therefore be attributed to the 

potential accumulation of metabolic, osmotically active molecules within the 

contracting muscles, which swells, as solute-free water from the vascular space 

enters the exercising muscles (Lindinger et al., 2011; Lindinger et al., 1994).  

The difference between the two experimental groups is that blood lactate 

increased during exercise only in the glycerol group, suggesting altered muscle 

metabolism in the glycerol group.  Lactate is formed as a product of anaerobic 

glycolysis derived from either blood glucose or muscle glycogen.  In the present 

study, blood glucose during exercise was neither different from resting values nor 

different between groups.  It may be that the increased lactate observed in the 

glycerol group derived from increased glycogenolysis.  It is possible that the hyper-

osmotic stress in the glycerol group led to higher rates of ATP turnover as 

observed by Cermak et al. (2009) during isometric contraction of muscles exposed 
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to a 400 mosmol·kg-1 environment, and this led to a shift in substrate utilization 

favouring a greater glycolytic flux (Hultman, 1995).  

 

Blood lactate in the glycerol group was also higher compared with the water group 

for the first 30 min of the recovery period.  As participants in the glycerol group 

ingested the second bolus of the glycerol solution immediately after exercise, 

serum osmolality increased to 304 mosmol·kg-1 and plasma volume increased by 

6.1% compared with the resting value.  Plasma volume was higher than baseline 

for a period of 30 min after exercise, possibly demonstrating that participants 

recovered from exercise in a state of altered body water distribution.  Increased 

lactate production in resting conditions has also been reported by Antolic et al. 

(2007); following exposure of whole muscles to a hypertonic bath (400 mosmol·kg-

1) and the subsequent cell shrinkage, tissue lactate increased four-fold.  The 

authors suggested that this was due to an effort of the muscle cells to regulate and 

re-establish cell volume via an increase in intracellular osmolality and an attraction 

of water back into the cell.  Similarly, Lang et al. (1989) showed in vitro that 

exposure of liver cells to a hypertonic environment resulting in cell shrinkage is 

accompanied by an increase in lactate release from the muscle.  This is in 

agreement with Usher-Smith et al. (2009) who, in a review of literature, concluded 

that intracellular lactate and the accompanying acidification acts to regulate and 

preserve muscle cell volume.  In the present study, the increased lactate efflux 

observed in the glycerol group is an indication that skeletal muscle water was 

likely reduced during the first 30 min of recovery, which does not favour anabolic 

processes in the cell (Haussinger, 1996; Haussinger et al., 1994). 

 

As muscle hypertrophy is the result of remodelling of the muscle and the increase 

in muscle protein synthesis that take place following strength exercise sessions 

(Crewther et al., 2006; Jones & Rutherford, 1987; Folland & Williams 2007; Tipton 

& Wolfe, 2001 ), a potential reduction in cell hydration in the recovery period could 

lead to altered training effects.  In vitro, cell shrinkage has been shown to stimulate 

protein breakdown (Hallbrucker et al., 1991a; Haussinger et al., 1990; Haussinger 
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et al., 1991; vom Dahl et al., 1991) and inhibit amino acid uptake (Haussinger, 

1996; Haussinger et al., 1994) both of which would decrease protein synthesis and 

muscle growth (Biolo et al., 1997; Tipton & Wolfe, 2001).  In vivo, Berneis et al. 

(1999) failed to find any changes in whole body protein synthesis or protein 

breakdown during hyperosmolal conditions (296 mosmol ·kg-1).  Keller et al. 

(2003) also failed to find any effects of hyperosmolality (induced by intravenous 

infusion of hypertonic NaCl and restriction of water intake) on protein breakdown.  

In the present study, the results showed that compared with baseline 

measurements, there was no change in muscle volume in either of the two groups 

over the eight weeks of handgrip training. 

 

The type of training in the present study was similar to a widely used mode and 

volume of training that is expected to induce hypertrophy; 4 sets of 10 repetitions 

at high intensity (>75 – 80% max) (Kraemer et al., 1990; McCaulley et al., 2009; 

Yamamoto et al., 2008).  In the present study, forearm muscle volume was not 

measured directly, but was estimated using the water displacement method 

(Maughan et al., 1984b), where the forearm is submerged in a volumetric canister 

and the displaced water gives the forearm volume.  The water displacement 

method is valid and is also used in the medical/physiotherapy field (Karges et al., 

2003).  In the present study, it was also sensitive enough to detect acute changes 

in muscle volume during training sessions.  It is important to note that acute 

increases in forearm volume immediately after a set of muscle contractions may 

partially be the result of the increased muscle blood flow that has been shown to 

increase between contractions during a train of contractions (Gonzales et al., 

2007), which minimizes the effect of the mechanical compression placed on the 

muscle vasculature.  This is in addition to the water that enters the contracting 

muscles due to the osmotic gradients set up by the increase in cytosol metabolites 

generated by the exercise.  The absence of muscle hypertrophy at the end of the 

training period in the present study is puzzling. From the study data it cannot be 

specified whether the training load used was an insufficient stimulus to induce 

hypertrophy or whether the training period was too short for this purpose.  The 



 
102 

 

training volume and intensity were similar to that of Cureton et al. (1988) and 

O’Hagan et al. (1995) who reported muscle hypertrophy after 12 and 20 weeks of 

training, respectively.  Therefore it is likely that had the present study training 

continued for more than 12 weeks, measurable increases in arm muscle mass 

would have been evident in at least one of the training groups. (Folland & 

Williams, 2007; Kanehisa et al., 2002). 

 

Strength increased similarly in both groups in the present study with the water 

group’s maximum handgrip strength improving by ~16% and in the glycerol group 

by ~ 8%. The small number of participants in each group and the large standard 

deviation in strength measurements may have prevented the results between 

groups from reaching statistically significance.  A post-hoc power test based on 

the average strength scores obtained from the present study suggested that with 

the large standard deviation observed at the end of the training period (± 8 kg the 

water group; ±6 kg glycerol group) 25 participants per group would be required in 

order to have an 80% chance of obtaining measurable differences between 

groups, whereas a much smaller standard deviation of ±4 kg would require only 8 

subjects per group to yield a statistically significant difference between groups. 

 

It is possible for strength to increase without increases in the cross-sectional area 

(Jones, 1992).  Young et al. (1983) found an increase in muscle strength, which 

was greater than could be accounted for by a change in the cross-sectional area 

of the muscle group.  In that study, participants exercised the quadricep muscles 

three times per week for five weeks.  Their maximum isometric strength increased 

by 15%, while the muscle cross-sectional area increased by only 6%.  Jones and 

Rutherford (1987) examined the effects of isometric quadriceps training at 80% 

MVC, three times per week, for 12 weeks.  Their results showed that isometric 

force increased by 34%, whilst hypertrophy increased by only 5%, and they 

reported no correlation between changes in force and the cross-sectional area.  

The authors concluded that as a result of strength training, the main change in the 

first 12 weeks is an increase in the force generated per unit cross-sectional area of 
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muscle, possibly due to increased activation of the muscle as a result of changes 

in motor unit firing patterns. Indeed, changes in the neuromuscular system may 

account for most of the increases in force generation in the early stages of training 

(Hakkinen et al., 1985).  Following resistance training, muscle force can be 

augmented as a result of better synchronization of motor unit contractions 

(Duchateau & Hainaut, 1984), an increase in the motor units firing frequencies rate 

(Van Cutsem et al., 1998), an increase in central descending (efferent) motor 

drive, an increase in motor unit excitability and a decrease in neural inhibition 

(Aagaard, 2003).  During the present study, no data were collected regarding 

potential neuromuscular changes, and no conclusions can be made regarding this 

issue. 

 

Overall, there were no significant differences in the training effect between the two 

training groups in the present study, neither were there any differences for the 

control arm.  The hypertonicity and the presumed altered cell hydration on the 

glycerol trial did not affect forearm muscle volume.  As cell shrinkage results in 

increased protein breakdown (Haussinger et al., 1994; Lang et al., 1998), it was 

hypothesized that the training effect could be altered in the glycerol group.  Muscle 

hypertrophy comes as a result of positive net balance; protein synthesis must 

exceed muscle protein degradation.  Resistance exercise also seems to increase 

muscle protein breakdown, but to a lesser degree than protein synthesis (Tipton & 

Wolfe, 2001).  If muscle degradation were to be increased due to cell 

hypohydration, muscular development in the glycerol group would be less than in 

the water group.  Muscle protein metabolism was not measured in the present 

study, but in vivo Yamamoto et al. (2008) did not detect a greater magnitude of 

muscle damage consequent to resistance exercise in hypohydrated (5% body 

mass) trained weight lifters, compared with exercise in the euhydrated state.  Still, 

the authors suggested that athletes should exercise in a euhydrated state to 

maximise the endogenous hormonal and metabolic benefits. 

Hypertrophy results from exercise of a short duration and high intensity (Booth & 

Thomason, 1991) as this increases muscle protein synthesis (Tipton and Wolfe, 
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2001) resulting from a change in the metabolic state of the muscle and the action 

of various hormones (testosterone, growth hormone, insulin, IGF-1) and growth 

factors (Baar, 2006).  Testosterone and growth hormone increase acutely 

following resistance exercise (Kraemer et al., 1998) and they contribute to muscle 

growth by increasing protein synthesis and decreasing protein degradation 

(Crewther et al., 2006).  Resistance exercise also increases secretion and action 

of insulin-like growth factor IGF-1 (Widerman et al., 2002), which also promotes 

protein synthesis and decreases protein degradation.  Insulin is another hormone 

related to exercise and muscle metabolism.  Insulin’s primary role is to regulate 

blood glucose, but it also has a strong anabolic effect, as it increases the uptake of 

carbohydrates and amino acids into the muscle (Crewther et al., 2006).  

Furthermore, insulin induces cell swelling (Vom Dahl et al., 1991) and this 

increase in intracellular water space is a crucial event in mediating the 

antiproteolytic effect of insulin (Haussinger et al., 1991).   All of the above-

mentioned hormones are related to cell swelling (Lang et al., 1998) and their 

action is inhibited by cell shrinkage.  Hypohydration and consequent cell shrinkage 

may indeed alter the hormonal response to exercise.  Judelson et al. (2008) 

showed that exercising while hypohydrated (decreased total body water) 

decreased circulating testosterone and raised insulin resistance, in agreement with 

previous in vitro findings (Schliess & Haussinger, 2000).  Furthermore, Judelson et 

al. (2008) reported that hypohydration increased circulating cortisol; strengthening 

the hypothesis that hypohydration may have a catabolic effect in vivo.  Since 

hormones were not measured in this study, it cannot be determined whether the 

training protocol and the difference in body water distribution had any effect on the 

secretion and action of hormones which affect protein synthesis. 

 

In conclusion, glycerol ingestion and the resultant movement of water into the 

vascular space and potential mild muscle hypohydration did not have a significant 

acute or chronic effect on muscle function during an 8-week handgrip strength 

training period.  There were few participants in each group and this might have 

prevented differences between groups in regards to increases in strength from 
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reaching statistical significance. However, in general, hypohydration does not 

seem to affect strength and power (Maughan, 2003). 

On the other hand, glycerol ingestion resulted in a significant increase in plasma 

and blood volume, which can have an effect on aerobic exercise.  Increases in 

blood and plasma volume have been shown to elicit improvements in aerobic 

performance and increase maximum oxygen uptake (VO2max) (Warburton et al., 

1999; Coyle et al., 1986; Coyle et al., 1990; Hopper et al., 1988).  Acute plasma 

volume and blood volume expansion represents a potential ergogenic aid (Krip et 

al., 1997).  Bearing in mind that the shift of water into the vascular space following 

glycerol ingestion may possibly compromise the intracellular water volume, a new 

question arises:  Would glycerol ingestion and the subsequent blood volume 

increase bring any improvements in VO2max and aerobic performance, or would a 

potential decrease in intracellular water inhibit performance? 
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Chapter 6 

 

Effects of glycerol ingestion and subsequent 

plasma and blood volume expansion on VO2max 
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Introduction 
 
Maximum oxygen uptake (VO2max) is defined as the highest rate at which oxygen 

can be taken up by the body and utilised during severe exercise.  The current 

belief is that maximum cardiac output is the principal limiting factor for VO2max 

during cycling tests, as the observed normal range of VO2max in trained men and 

women of similar age is due principally to variation in maximal stroke volume 

(Ekblom, 2000; Basset et al., 2000).  Stroke volume is affected by blood volume 

(Hopper et al., 1988; Gledhill, 1985; Kanstrup & Ekblom, 1982).  A higher blood 

volume enhances diastolic filling of the left ventricle (Gledhill et al., 1994) resulting 

in a greater stroke volume because of the Frank-Starling mechanism (Coyle et al., 

1990; Ekblom, 2000; Fortney et al., 1981; Kanstrup & Ekblom, 1982).  It has been 

reported that endurance trained athletes have a higher blood volume than 

untrained individuals (Convertino et al., 1980; Gledhill et al., 1994; Green et al., 

1990; Warburton et al., 1999), which is directly related to their enhanced aerobic 

performance (Krip et al., 1997; Warburton et al., 2004).  In laboratory settings, 

acute blood volume expansion by infusion of whole blood has also been shown to 

improve VO2max (Ekblom et al., 1976; Gledhill, 1985; Warburton et al., 1999), as 

by increasing blood volume and the number of red blood cells, more oxygen can 

be transported to the exercising muscles.  
Plasma volume expansion independent of increases in haemoglobin and 

haematocrit leading to expansion of blood volume may also increase VO2max 

(Coyle et al., 1990; Coyle et al., 1986; Krip et al., 1997).  On the other hand, acute 

plasma volume expansion may also lead to haemodilution, as the number of red 

blood cells remains unchanged following the increase of plasma water, and this 

reduces the oxygen carrying capacity of the blood (Berger et al., 2006; Coyle et el, 

1990; Hopper et al., 1988).  However, plasma volume can be acutely expanded at 

an optimal level that can offset haemodilution and the improvement in stroke 

volume may result in positive effects on aerobic performance (Coyle et al., 1986; 

Coyle et al., 1990; Hopper et al., 1988; Krip et al., 1997).  Despite the fact that 

some researchers reported no changes in VO2max following acute plasma volume 
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expansion (Kanstrup & Ekblom, 1982, 1984; Mier et al., 1996), recent data from 

Berger et al. (2006) also showed an increase in VO2peak and time to exhaustion 

during severe-intensity exercise. 

Glycerol ingestion (1 g·kg-1 body mass in a 6 ml·kg-1 body mass solution) 

increases plasma volume by ~ 8% and blood volume by ~ 5% due to the osmotic 

properties of glycerol, as shown in the previous chapters of this thesis.  This level 

of plasma and blood volume increase is similar to that reported to be the optimal 

level of expansion that results in positive effects on stroke volume and aerobic 

exercise (Berger et al., 2006; Coyle et al., 1986; Coyle et al., 1990; Hopper et al., 

1988; Warburton et al., 1999). 

The purpose of this study was to investigate potential effects of glycerol ingestion 

and the subsequent blood volume increase during an incremental VO2max cycling 

test. 

 

 

Materials and methods 
 
Following ethics approval by the Loughborough University Ethical Advisory 

Committee, eight healthy male volunteers participated in this study.  After a written 

and oral explanation of all procedures, and their right to withdraw at any point 

without giving any reason for doing so, each participant signed a written consent 

form.  All participants were physically active, but none of them was an athlete 

engaged in full-time training.  Their age, height and body mass were, respectively, 

(mean ± SD) 23 ± 3 y (range 20 – 26 y), 180 ± 7 cm, and 81.0 ± 5.9 kg.  Each 

subject participated in two experimental trials in randomised order, which was 

assigned using a Latin square design. 

 

Experimental procedure 

Participants visited the laboratory on four different occasions.  The first two visits 

were used for familiarisation with the laboratory environment and experimental 
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procedures, and the participants performed a VO2max test.  The other two visits 

were the main trials. 

The two main trials were separated by at least 7 days and not more than 15 days, 

starting at the same time in the morning.  The participants were asked to fast 

overnight, and follow similar activity and food intake patterns for the 24 hours 

preceding each trial.  The participants were also asked to refrain from strenuous 

exercise the day before each trial.  Participants kept a record of their food intake 

and activities for the 24 hours before each trial and stated that they had adhered to 

these instructions. 

Participants arrived at the laboratory in the morning (9 am ± 1 h).  After voiding, 

body mass was measured wearing minimal clothing on a beam balance 

(Marsdens type 150, Marsdens Weighing Machines, London, U.K.) to the nearest 

10 g.  Then participants were seated comfortably in the laboratory.  One arm was 

warmed up by immersion in hot water (42⁰ C) for 10 min, and  then, an indwelling 

canula (size 21 g) was inserted into a forearm vein and stayed in place throughout 

the session to allow multiple blood samples to be drawn.  The canula was kept 

patent between sample collections by flushing with heparinised isotonic saline 

(0.9% NaCl solution). 

After a 30 min rest period, participants ingested either lemon-flavoured water (6 

ml·kg-1 body mass) or a lemon-flavoured glycerol solution (1 g·kg-1 body mass 

glycerol, 6 ml·kg-1 body mass volume) and remained seated for another 30 min to 

allow body water changes to occur.  From previous work it was known that at 30 

min following glycerol ingestion, plasma volume expansion was likely to be at its 

maximum value. 

 

Exercise protocol 

Exercise consisted of an incremental VO2max test on an electrically braked cycle 

ergometer (Gould, Bilithoven, The Netherlands).  The cycle ergometer seat was 

adjusted according to the height of each participant.  Participants were allowed to 

pedal at a cadence of their choice, higher than 60 rpm.  Starting intensity was set 

at 100 W, and it was increased by 50 W every 3 min until participants reached 
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volitional exhaustion or when they could not maintain a cadence above 60 rpm.  

When participants approached the last stage of exercise, the increase in intensity 

was adjusted according to heart rate and rate of perceived exertion, and the 

increase could be only 25 W instead of 50 W, if heart rate was within 10 beats of 

the subject’s predicted maximum and/or RPE ≥19.  During the last minute of every 

stage, expired air was collected in Douglas bags before determination of oxygen 

and carbon dioxide content (Servomex 1400, Crawley, East Sussex, U.K.), gas 

volume (Harvard Dry Gas Meter, Harvard Apparatus Ltd., Kent, U.K.) and gas 

temperature (Edale digital thermometer). 

Heart rate (HR) was monitored using a Polar heart rate monitor (Polar Team 

System, Polar, U.S.A.) strapped on the chest of each participant.  HR was 

recorded immediately before exercise and at the end of each exercise stage.  

Rating of perceived exertion (RPE) was also recorded at the end of each stage on 

the cycle ergometer. 

 

Blood sampling and analysis 

Two blood samples (3 ml) were taken at rest, 10 min apart, before ingestion.  

Then, blood samples (3ml) were taken immediately before exercise, at the end of 

each stage (within the last 10 s of the stage) and immediately at the end of 

exercise.  Blood samples were analysed for haemoglobin concentration, 

haematocrit, blood glucose and blood lactate concentration.  Haemoglobin 

concentrations and haematocrit were used to estimate changes in blood, red cell 

and plasma volumes as described by Dill and Costill (1974).  Serum samples were 

analysed for osmolality and glycerol concentration. 

All analyses were performed as described in the general methods section of this 

thesis. 

  

Statistical Analysis 

A two-way ANOVA was used to find differences between trials where multiple 

measurements were taken.  Where appropriate, a Tukey post-hoc test was used 

to distinguish differences between trials.  One-way ANOVA was used to find 
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differences over time during a trial.  Paired t – tests were also used where 

appropriate. 

All data are presented as mean ± standard deviation of the mean (SD).  For all 

statistical analyses, significance was set at P < 0.05. 

 

 

Results 
 
Baseline measurements were similar during the two different experimental trials 

(Table 6.1). 

 
Table 6.1   Pre-exercise body mass, Hb concentration, haematocrit, blood glucose concentration 

blood lactate, serum glycerol and serum osmolality on the two trials (Mean ± SD); n = 8. 

 

 Water trial Glycerol trial P value 

Body mass (kg) 79.77 ± 5.29 79.41 ± 5.33 0.198 

Hb concentration 

(g·l-1) 
166 ± 17 168 ± 17 0.311 

Haematocrit (%) 44.6 ± 1.8 44.3 ± 2.2 0.907 

Blood glucose 

(mmol·l-1) 
5.59 ± 0.65 5.32 ± 0.43 0.310 

Blood lactate 

(mmol·l-1) 
0.88 ± 0.17 0.78 ± 0.12 0.320 

Serum glycerol 

(mmol·l-1) 
0.03 ± 0.01 0.03 ± 0.01 0.248 

Serum osmolality 

(mosmol·kg-1) 
286 ± 3 288 ± 3 0.195 
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Serum glycerol concentration (Table 6.2) 

Two-way repeated measures ANOVA on serum glycerol showed a main effect of 

trial (P =0.000), time (P = 0.000) and an interaction (P = 0.000).  Serum glycerol 

increased following glycerol ingestion to 9.57 ± 3.49 mmol·l-1 (P = 0.000) and 

remained elevated throughout the experimental trial.  During the water trial, serum 

glycerol did not change over time and remained at baseline (P = 0.658). 

 

 
Table 6.2   Serum glycerol concentration (mmol·l-1).  Values are means ± SD; n = 8. P denotes 

difference between trials. 

 

 Rest 
Pre- 

Exercise 
Stage 1 Stage 2 Stage 3 Stage 4 

End 

Exercise 

Water 

trial  

0.03  

± 0.01 

0.03  

± 0.01 

0.03  

± 0.01 

0.03  

± 0.01 

0.03  

± 0.01 

0.03  

± 0.01 

0.03  

± 0.01 

Glycerol 

trial  

0.03  

± 0.01 

9.57 

± 3.49 

8.32 

± 2.63 

8.83 

± 2.73 

9.19 

± 1.70 

9.66 

± 1.93 

9.17 

± 1.65 

P 0.178 0.000 0.000 0.000 0.000 0.000 0.000 

 

 

Serum osmolality (Fig. 6.1) 

Two-factor repeated measures ANOVA on serum osmolality showed a main effect 

of trial (P = 0.000), time (P = 0.000) and an interaction (P = 0.002).  Comparisons 

between trials showed that serum osmolality was higher on the glycerol trial at all 

time points following drink ingestion (P = 0.000) and this difference was associated 

with the higher serum glycerol concentration. 

On the water trial, serum osmolality increased at the end of exercise to 304 ± 9 

mosmol·kg-1
 and this was higher than all other time points (P = 0.000).  

On the glycerol trial, serum osmolality increased to 299 ± 5 mosmol·kg-1
 following 

glycerol ingestion (P = 0.000) and remained higher than baseline throughout the 
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session.  Compared with the pre-exercise point, serum osmolality increased to 312 

±4 mosmol·kg-1
 at stage 4 (P = 0.000).  At the end of exercise, serum osmolality 

was 322 ± 4 mosmol·kg-1, and this was higher (P<0.001) than all other time points 

in the trial.  
 
Figure 6.1   Serum osmolality (mosmol·kg-1).  Points are means ± SD; n = 8.  * Denotes difference 

between trials (P = 0.000).  ** Denotes difference from pre-exercise point on the glycerol trial.  † 

Denotes difference from all other time points (P = 0.000) in both trials. 

 

 

 
 

Haemoglobin concentration (Fig. 6.2) 

A two-way ANOVA on Hb showed no effect of trial (P = 0.304), an effect of time (P 

= 0.000) and no interaction (P = 0.062).  Hb was not different between trials (P > 

0.050); except at the pre-exercise point, where Hb on the glycerol trial tended to 

be lower (P = 0.062) than on the water trial. 

Over time comparisons for haemoglobin concentration (both trials results pooled 

together) showed that Hb concentration compared with the pre-exercise point 

(pair-wise comparisons with Tukey correction) increased during exercise reaching 

its maximum value at the end of exercise (P = 0.000). 
 
 

* * * * * * 
** † 
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Figure 6.2    Haemoglobin concentration (g/l).  Points are means ± SD; n = 8.  * Denotes difference 

from the pre-exercise point for both trials together.   

 

 

 

 

Haematocrit (Fig. 6.3) 

Two-way repeated measures ANOVA on Hct showed a main effect of trial (P = 

0.002), time (P = 0.000) and an interaction (P = 0.005). 

Analysis of Hct over time showed that there was no difference between rest and 

the pre-exercise point (water trial P = 0.868, glycerol trial P = 0.963), but that 

compared with the pre-exercise point Hct increased during exercise.  At stage 4, 

the difference reached statistical significance (water trial P = 0.019, glycerol trial  

P = 0.012) and Hct reached its peak value at the end of exercise (water trial  

P = 0.000, glycerol trial P = 0.000). 

While Hct on the glycerol trial appeared to be lower than on the water trial at all 

time points following glycerol ingestion, comparisons between trials using an 

ANOVA test with pair wise comparisons indicated that there was no difference in 

Hct between the two trials at any time point (P > 0.100). 

 

* * * * 
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Figure 6.3    Haematocrit (%).  Points are means ± SD; n = 8.  * Denotes difference over time 

compared with the pre-exercise point, on both trials. 

 

 
 

Plasma volume changes (Fig. 6.4) 

Two-way repeated measures ANOVA on plasma volume changes showed a main 

effect of trial (P = 0.000), time (P = 0.000) and an interaction (P = 0.000). 

Comparisons between trials showed that plasma volume on the glycerol trial was 

higher at all points following glycerol ingestion (P ≤ 0.030), except at stage 4 (P = 

0.070). 

On the water trial, plasma volume was not different between rest and pre-exercise 

(P = 0.968).  During exercise, plasma volume at each stage decreased (P < 

0.050), and at the end of exercise, it was 26.7% ± 4.2 lower than baseline and 

statistically lower than all other time points (P < 0.023).  

On the glycerol trial, plasma volume increased following glycerol ingestion, and at 

the pre-exercise point, it was 7.7% ± 4.6 higher than baseline (P = 0.034).  Plasma 

volume during exercise showed a statistically significant continuous decrease 

compared with the pre-exercise point, starting from stage 2 (P = 0.000).  At the 

end of exercise, plasma volume reached its lowest value and it was 27.0 % ± 4.1 

lower than the pre-exercise point (P = 0.000). 

 

* * 
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Figure 6.4   Plasma volume changes (%).  Points are means ± SD; n = 8.  * Denotes difference 

between trials (P ≤ 0.030).  ** Denotes difference from pre-exercise point on both trials.  § Denotes 

difference from pre-exercise point on the water trial.  † Denotes difference between rest and pre-

exercise point on the glycerol trial.  

 

 

 

 
 

 

 

Blood volume changes (Fig. 6.5) 

Two-way repeated measures ANOVA on blood volume showed a main effect of 

trial (P = 0.001), time (P = 0.000) and an interaction (P = 0.005).  

Comparisons between trials showed that following glycerol ingestion, blood 

volume was higher than on the water trial at all time points (P < 0.002). 

For the water trial, analysis over time showed that blood volume was not different 

between rest and pre-exercise (P = 1.000), but from the first stage, blood volume 

started to decrease (P = 0.037).  At the end of exercise, blood volume was 14.5 % 

± 2.7 lower than at the pre-exercise point, and this was lower than all other time 

points in the trial (P ≤ 0.010). 

* * * * * * 
** ** ** ** 

§ 

† 
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On the glycerol trial, blood volume increased by 5.4 % ± 3.1 following glycerol 

ingestion (P = 0.050).  Then, blood volume decreased during exercise, reaching 

statistical significance from stage 2 (P = 0.005) onwards.  At the end of exercise, 

blood volume was 15.8 % ± 2.1 lower than at the pre-exercise point (P = 0.000), 

and statistically lower from all points (P = 0.000), except for that at stage 4 (P = 

0.096). 
 
Figure 6.5   Blood volume changes (%).  Points denote means ± SD; n = 8.  * Denotes difference 

between trials.  ** Denotes difference from pre-exercise point on both trials.  § Denotes difference 

from pre-exercise point on the water trial.  † Denotes difference between rest and pre-exercise 

point on the glycerol trial. 

 

 

 

 

 

 

Red cell volume (Table 6.3) 

Two-way repeated measures ANOVA on red cell volume showed no effect of time 

(P = 0.260), no trial effect (P = 0.517) and no interaction (P = 0.341). 

 

 

* * * * * * 
** ** ** ** § † 
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Table 6.3   Red cell volume (%).  Values are presented as means ± SD; n = 8.  P denotes 

difference between trials. 

 

 
Rest 

Pre - 

exercise 
Stage 1 Stage 2 Stage 3 Stage 4 

End 

Exercise 

Water 

trial 

44.2 

± 1.7 

45.0 

± 1.3 

44.8 

± 1.9 

45.1 

± 1.5 

45.4 

± 1.7 

44.5 

± 1.5 

44.1 

± 1.5 

Glycerol 

trial 

44.3 

± 2.2 

45.7 

± 2.7 

46.3 

± 3.5 

45.2 

± 2.3 

45.0 

± 2.5 

44.6 

± 2.4 

44.6 

± 2.5 

P 0.897 0.696 0.224 0.880 0.626 0.956 0.353 

 

 

VO2max test parameters (Table 6.4) 

Paired t – test analyses showed that there was no difference between the two 

trials in the maximum workload reached at the end of exercise (P = 0.180), the 

VO2max attained (P = 0.770), the maximum heart rate (P = 0.100) or the 

respiratory exchange ratio (RER) at maximum workload (P = 0.700). 

Paired t – test analysis on time to fatigue showed that participants reached fatigue 

slightly sooner on the glycerol trial (P = 0.044).  All participants exercised for 

slightly less on the glycerol trial, except for only one subject (Figure 6.6). 

 
Table 6.4   VO2max test parameters.  Values are presented as means ± SD; n = 8.  * Denotes 

significant difference between the two experimental trials (P < 0.05). 

 

 Water Trial Glycerol Trial 

VO2max (ml·kg-1·min-1) 51.2 ± 8.1 50.5 ± 10.4 

Workload (W) 313 ± 44 300 ± 59 

HR (bpm) 185 ± 8 178 ± 12 

RER 1.14 ± 0.08 1.13 ± 0.05 

Time to fatigue (s) 937 ± 179 904 ± 167 * 
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Figure 6.6  Individual cycling exercise time (s) for all subjects (n = 8). 

 

 

 

 

 

Blood lactate concentration (Table 6.5) 

Two-way repeated measures ANOVA of blood lactate data showed a time effect 

(P = 0.000), but no trial effect (P = 0.995) and no interaction (P = 0.811).  Pair-

wise comparisons with a Tukey adjustment showed that compared with pre-

exercise measurements, lactate concentration were greater at stage 4 (P < 0.003), 

and had increased further by the end of exercise (P = 0.000). 
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Table 6.5   Blood lactate concentration (mmol·l-1).  Values are means ± SD; n = 8.  * Denotes 

difference from pre-exercise point, stages 1 & 2  (P < 0.020) for the water trial.  ** Denotes 

difference from all previous time points (P = 0.000) 

 

 Rest 
Pre 

Exercise 
Stage 1 Stage 2 Stage 3 Stage 4 

End 

Exercise 

Water 

trial 

0.88 

± 0.77 

1.18 

± 0.28 

1.52 

± 0.58 

1.85 

± 0.55 

2.81 

± 1.10 

5.15* 

± 2.64 

13.31** 

± 3.55 

Glycerol 

trial 

0.78 

± 0.12 

1.33 

± 0.16 

1.61 

± 0.55 

1.85 

± 0.51 

2.71 

± 0.89 

5.51** 

± 1.69 

12.91** 

± 3.50 

 

 

Blood glucose concentration (Table 6.6) 

Two-way repeated measures ANOVA of blood glucose data showed a main time 

effect (P = 0.035), but no effect of trial (P = 0.687), and no interaction (P = 0.338), 

and that blood glucose was lower at stage 2 (P = 0.001) and stage 3 (P = 0.035) 

compared with the end of exercise point.  One-way ANOVA over time within trials 

showed no significant change in blood glucose concentration on either trial (water 

trial P = 0.695, glycerol trial P = 0.951). 
 
Table 6.6  Blood glucose concentration (mmol·l-1).  Values are means ± SD; n = 8.  P denotes 

difference between trials. 

 

 Rest 
Pre 

Exercise 
Stage 1 Stage 2 Stage 3 Stage 4 

End 

Exercise 

Water 

trial  

5.50  

± 0.64 

5.37  

± 0.53 

5.16 

± 0.59 

5.27 

± 0.60 

5.35 

 ±0.53 

5.51 

± 0.46 

5.68 

± 0.57 

Glycerol 

trial  

5.32 

± 0.43 

5.39 

± 0.64 

5.31 

± 1.04 

5.12 

± 0.68 

5.19 

± 0.62 

5.37 

± 0.76 

5.57 

± 0.83 

P 0.554 0.947 0.755 0.679 0.625 0.686 0.778 
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Discussion 
 
The aim of this study was to investigate potential effects of glycerol ingestion and 

subsequent blood volume expansion during an incremental cycling VO2max test.  

The hypothesis was that increased blood volume would lead to positive effects on 

aerobic performance during the cycling test.  However, even although blood 

volume was increased, VO2max remained unchanged, and time to exhaustion was 

reduced on the glycerol trial. 

The importance of blood volume for aerobic cardiovascular capacity has been well 

studied and documented.  Blood volume increases following endurance training 

(Convertino et al., 1980; Green et al., 1990; Gillen et al., 1991) and endurance 

trained individuals have a greater blood volume and exhibit greater stroke volume 

and cardiac output than untrained individuals during maximal exercise (Ekblom & 

Hermansen, 1968).  For untrained individuals, acute expansion of blood volume 

using a blood volume expander (i.e. dextran) has been reported to result in an 

immediate, considerable effect on diastolic filling time and rate, and thus on 

maximum stroke volume and cardiac output (Coyle et al., 1990; Kanstrup & 

Ekblom, 1982; Krip et al., 1997).  Other investigators (Kanstrup & Ekblom, 1984; 

Mier et al., 1996; Warburton et al., 1999) failed to find any increases in VO2max 

following plasma volume expansion, but plasma expansion in these studies was 

500 – 700 ml.  This greater degree of plasma volume expansion resulted in a 

significant decrease in haemoglobin concentration (> 8%), reducing the oxygen 

carrying capacity per unit volume of blood.  VO2max was not reduced in these 

studies because the increase in cardiac output following blood volume expansion 

appeared to compensate for the haemodilution and there was no decrease in 

aerobic exercise performance despite the reduced oxygen carrying capacity of the 

blood.  

In the present study, glycerol ingestion resulted in a 5.4% increase in blood 

volume and a 7.7% increase in plasma volume due to the osmotic properties of 

glycerol.  Haemoglobin was not significantly reduced following glycerol ingestion, 

thus haemodilution did not appear to be an issue.  The change in plasma volume 
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was estimated to be ~ 300 ml (Guyton & Hall, 1996).  Coyle et al. (1990) and 

Hopper et al. (1988) suggested that a plasma volume expansion of 400 ml or less 

in untrained participants seems to be the optimum level for increasing stroke 

volume and cardiac output.  Coyle et al. (1990) reported that 200 - 300 ml of 

dextran infusion resulted in a 10 – 15% increase in stroke volume and cardiac 

output allowing VO2max to increase by 4%. Berger et al. (2006) reported that 

infusion of 500 ml of 6% dextran improved maximum stroke volume by 9.1% and 

maximum cardiac output by 8.9%, resulting in an increased VO2max by 7%.  In the 

present study, despite what seemed to be a beneficial blood volume expansion, 

VO2max did not increase following glycerol ingestion. 

The major factor leading to fatigue during an incremental cycling VO2max test has 

been shown to be the impaired O2 supply due to a fall in stroke volume as arterial 

O2 content, heart rate and O2 extraction increase during exercise (Mortensen et 

al., 2005).  A larger blood volume may help maintain adequate filling pressure and 

end diastolic volume at high heart rates where heart diastole time is shorter 

(Gledhill et al., 1994).  Any difference in either heart rate or blood volume during 

exercise may affect stroke volume and VO2.  In the present study, heart rate was 

similar on the two trials; however, blood volume was different.  Participants on the 

glycerol trial started exercise with a higher blood volume. During exercise, blood 

volume decreased on both trials and this was attributed to a decrease in plasma 

volume as there was no change in red cell volume at any time point on any of the 

two trials.  Plasma volume decreased almost linearly as exercise intensity and 

muscle power increased.  The exit of water from the vascular space is largely 

attributed to the accumulation of lactate in the muscle, which has been shown to 

be double the concentration of blood lactate (Sjogaard & Saltin, 1982), thus 

creating an osmotic gradient and entry of water into the muscle.  The decrease in 

plasma volume was similar in both trials (~27%) compared with the pre-exercise 

point.  This is in agreement with the decrease in plasma volume (21 – 27%) 

reported by Sjogaard and Saltin (1982) following a short cycling session at 120% 

VO2max to exhaustion that resulted in a 15% increase in intramuscular water of 

the exercising muscles which, according to the authors, explained the loss of 
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water from the plasma.  Sjogaard et al. (1985) reported a 21% increase in total 

muscle water following single leg dynamic knee extension to fatigue at 100% 

VO2max of the knee extensors.  The loss of water from the blood also leads to 

haemoconcentration.  A haemoconcentration from rest to maximal exercise of 

between 10 – 15% is regarded as normal (Ekblom & Hermansen, 1968).  In the 

present study, haemoconcentration from rest to the end of exercise was 15% on 

the water trial and 12% on the glycerol trial. The results of the present study show 

that as participants on the glycerol trial initiated exercise in an elevated blood 

volume state the decrease in blood and plasma volume during exercise was 

similar in the two trials, but blood and plasma volume were higher on the glycerol 

trial at the point of exhaustion.  Based on the fact that a higher blood volume 

enhances stroke volume and is beneficial for aerobic exercise, participants on the 

glycerol trial should benefit from the higher blood volume, but this was not the 

case in the present study, as the participants reached exhaustion slightly sooner. 

One major difference between the present study and other studies investigating 

plasma volume expansion is that participants in other studies were well hydrated 

and more fluid was infused to further increase plasma volume.  In the present 

study, participants ingested glycerol, which resulted in an increased serum 

osmolality.  Ingestion of highly hypertonic fluids may result in altered body water 

distribution (see chapter 3 of this thesis) and the subsequent increase in plasma 

volume could possibly be at the expense of cell volume and cell hydration 

(Hamilton et al., 1993) which, in effect, may increase exercise stress (Judelson et 

al., 2007).  It is possible that the change in body water distribution on the glycerol 

trial impaired skeletal muscle aerobic energy provision and work capacity during 

maximal exercise, thus reversing the effects of increased stroke volume during 

high intensity aerobic exercise. 

Energy during cycling at high intensity derives from glycogen breakdown and the 

main product is lactic acid, which is completely ionized to lactate and free 

hydrogen ions (H+) (Maughan et al., 1997).  Blood lactate measured in the present 

study was not different between trials at the point of exhaustion, but exhaustion on 

the glycerol trial occurred sooner, possibly indicating an accelerated 
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glycogenolysis and lactate production or release into the blood.  On the water trial, 

blood lactate significantly increased from baseline at stage 4 and only at the end of 

exercise was blood lactate higher than at all of the previous stages. On the 

glycerol trial, blood lactate increased from baseline more abruptly, and, at stage 4, 

it was higher than at all the previous time points on the trial.  Exposure of cells to a 

hypertonic environment and the ensuing cell shrinkage has also been shown to 

increase lactate production (Antolic et al., 2007; Lang et al., 1989).  Increased 

lactate, which is accompanied by an increase in H+ concentration and the ensuing 

muscle acidosis are linked with a decline in development of muscle tension 

(Bangsbo et al., 1996).  In vitro studies have shown that a fall in pH has a direct 

depressant effect on the contractile machinery.  Fabiato and Fabiato (1978) and 

Godt and Nosek (1989) showed that a decreasing pH results in decreased Ca2+ 

sensitivity of skinned skeletal muscles and a decrease of the maximum tension 

obtained in the presence of an optimal free Ca2+ concentration.  It is possible that 

an abrupt rise in H+, as mirrored by the lactate accumulation observed on the 

glycerol trial, contributed to the earlier development of fatigue. 

Another factor also related to muscle contractions and fatigue is muscle potassium 

concentration.  Excessive potassium efflux and increased extracellular potassium 

may lead to reduced muscle fibre excitability and reduced ability to respond to 

motor signals (Nielsen & de Paoli, 2007) leading to fatigue.  Potassium is lost from 

muscle during intense exercise (Bangsbo et al., 1996; Vollestad et al., 1994).  

Potassium efflux may also increase due to increases in H+ (Davies, 1990; Usher-

Smith et al., 2009). Cell shrinkage (reduced cellular hydration) is also 

accompanied by potassium efflux through the opening of potassium channels and 

intracellular potassium decreases (Haussinger et al., 2004).  It is possible that on 

the glycerol trial there was an increased loss of potassium from the muscle.  

However, as electrolytes were not measured in the present study it is impossible 

to confirm this speculation. 

The significant finding of this study is that despite the increase in blood volume 

following glycerol ingestion, maximum oxygen uptake (VO2max) was not improved 

and that time to exhaustion was reduced despite the fact that the maximum 
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workload achieved was similar on the two trials.  This negative outcome may 

possibly be related to the hyper-osmotic conditions that the muscles were exposed 

to following glycerol ingestion, and muscle function might have been 

compromised.  From the data obtained from this study, it was not possible to reach 

any definite conclusions relating to the mechanism leading to fatigue. 

Since the only difference between the two trials occurred at the last stage of the 

VO2max test, the next area of focus would be to investigate aerobic performance 

at high intensity 100% VO2max.  Apart from lactate measured in the present study, 

it would be helpful to monitor electrolyte concentration, such as potassium, which 

may play a role in muscle function and fatigue development. 
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Chapter 7 

 

Effects of glycerol ingestion on exercise capacity 

at 100% VO2max intensity 
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Introduction 
 
Results from the study described in the previous chapter of this thesis showed that 

blood volume expansion following ingestion of a glycerol solution (1g·kg-1 body 

mass; 6 ml·kg-1 body mass) did not improve VO2max during an incremental cycling 

protocol, and that time to exhaustion was decreased on the glycerol trial. 
In the literature, increases in blood volume as a result of endurance training are 

associated with improvements in VO2max, endurance and enhancement in 

aerobic exercise performance (Convertino., 1991).  This is mainly due to an 

improved stroke volume and cardiac output caused by the Frank–Starling 

mechanism (Coyle et al., 1990; Gledhill et al., 1999).  In untrained individuals, 

induced plasma volume expansion with dextran has also been shown to improve 

maximal oxygen uptake (Berger et al., 2006; Coyle et al., 1990; Coyle et al., 1986; 

Krip et al., 1997), which can lead to improved exercise performance.  Coyle et al. 

(1986) showed an increase in time to fatigue during upright cycling following 

plasma volume expansion with dextran.  Luetkemeier and Thomas (1994) showed 

that induced hypervolaemia had a beneficial effect on performance and average 

power output during a cycling time trial protocol.  More recently, Berger et al. 

(2006) reported that acute hypervolaemia increased time to exhaustion during 

cycling at high intensity against a constant workload. 

On the other hand, Kanstrup and Ekblom (1982) observed no change in VO2max 

following acute plasma volume expansion with an average of 700 ml of a dextran 

solution and Green et al. (1987) also reported no change in VO2max following a 

624 ml increase in plasma volume after short-term training.  Coyle et al. (1990) 

reported that a modest plasma volume expansion (7.3%) in untrained individuals 

was associated with a significant increase in VO2max, whereas a larger plasma 

volume expansion (17%) resulted in no change in this parameter.  They suggested 

that there may be an optimal increase in plasma volume (200 – 300 ml), where the 

increase in stroke volume is not offset by a proportional dilution in haemoglobin 

concentration.  As indicated in chapter 6 of this thesis, increases in plasma volume 

(7.7%) following ingestion of a glycerol solution (glycerol 1g·kg-1 body mass; total 
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solution volume 6 ml·kg-1 body mass) were similar to those reported by Coyle et 

al. (1990), as well as those reported by Luetkemeier and Thomas (1994) that 

reported improved maximal oxygen uptake and improved exercise performance 

during a simulated cycling time trial. 

In the previous chapter of this thesis, participants were untrained and it was 

hypothesized that an improvement could occur on the glycerol trial both in oxygen 

uptake and time to fatigue.  While VO2max was similar in the two trials, there was 

a slight decrease in time to exhaustion when participants were cycling at 100% 

VO2max intensity on the glycerol trial.  The amount of blood and plasma volume 

expansion was moderate and haemoglobin dilution was not an issue in this study.  

Since there was no difference in any of the measured variables (VO2, RER, heart 

rate, blood lactate) in the submaximal intensities, and the only difference occurred 

at the last stage of the incremental cycling test, it would be of interest to further 

examine the effects of glycerol ingestion at 100% VO2max intensity. 

Another factor to consider was that ingestion of glycerol also results in an increase 

in serum osmolality that is likely to lead to a water shift from intracellular to the 

extracellular space (Antolic et al., 2007; Blinks et al., 1965; Haussinger et al., 

1994, Lang et al., 1989; Low et al., 1996), resulting in tissue dehydration (Gleeson 

et al., 1986; Graf & Haussinger, 1996).  This, in effect, may lead to increased 

lactate production (Antolic et al., 2007; Lang et al., 1989), which is accompanied 

by hydrogen ions accumulation and is a fatiguing factor.  The movement of water 

may also affect ionic balance which, in turn, could affect performance, especially 

at high intensity, where ionic regulation and fatigue seem to be linked (Cairns & 

Lindinger, 2008). 

The aim of this study was to investigate potential effects of glycerol ingestion and 

the subsequent body water alteration and blood volume increase on time to fatigue 

during a single cycling bout at 100% VO2max intensity. 
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Materials and methods 
 
Following ethical approval by the Loughborough University Ethical Advisory 

Committee, eight healthy male volunteers participated in this study.  After a written 

and oral explanation of all procedures and their right to withdraw at any point 

without giving any reason for doing so, each participant signed a written consent 

form.  All participants were physically active, but none of them was an athlete 

engaged in serious physical training;they had a VO2max of 45.6 ± 8.4 ml·kg-1·min-1 

(range 37.8 – 59.3 ml·kg-1·min-1).  Their age, height and body mass were, 

respectively, (mean ± SD) 27 ± 2 y, 179 ± 9 cm, and 79.6 ± 12.1 kg.  Each subject 

participated in two experimental trials in randomised order, which was assigned 

using a Latin square design. 

 

 

Experimental procedure 

Participants visited the laboratory on four different occasions.  The first visit was 

used to measure VO2max, the second visit was used for familiarisation with the 

main exercise protocol and the other two visits were when the two main trials were 

carried out.  VO2max was assessed using an intermittent protocol, as described in 

the general methods of this thesis.  VO2max was indicated by the achievement of 

the objective criteria of RER > 1.1 and a peak heart rate at least equal to 90% of 

the age-predicted maximal (Caputo & Denadai, 2008; Duncan et al., 1997; Taylor 

et al., 1955).  Additionally, all subjects expressed RPE = 20 during the last stage 

of the incremental cycling test. The results of the VO2max test and the maximum 

workload achieved was used to determine the absolute workload to be used 

during the main experimental trials.  During the second visit, participants 

completed the ‘cycling to exhaustion at 100% VO2max intensity protocol’ that they 

would undertake in the main experimental trials.  However, the blood sampling 

protocol was not included in the familiarisation session.   

Data was gathered from each participant in the two experimental trials that 

occurred in randomised order, separated by a period of seven days.  Trials began 
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at the same time in the morning and participants followed similar physical activity 

and nutritional patterns for 24 hours prior to the start of each trial.  

After an overnight fast and upon arrival at the laboratory, participants voided and 

body mass was measured (with minimal clothing on participants) on a beam 

balance (Marsdens type 150, Marsdens Weighing Machines, London, U.K.) to the 

nearest 10 g.  Then participants were comfortably seated in the laboratory.  One 

arm was warmed up by immersion in hot water (42⁰C) for 10 min, and then a 

canula (butterfly, 21 g) was inserted into a superficial forearm vein.  The canula 

remained in place for the duration of the trial and it was kept patent between 

sample collections by flushing with heparinised isotonic saline (0.9 %). While 

participants were at rest, blood samples of 3 ml each were taken from each 

participant, 10 min apart.  Then participants were given 3 min to ingest either 6 

ml·kg-1 body mass lemon-flavoured water or an equal volume of a lemon-flavoured 

glycerol solution (1 g·kg-1 body mass; total volume of solution 6 ml·kg-1 body 

mass).  Participants remained seated for the duration of the resting period to avoid 

the previously reported postural changes in plasma volume (Hagen et al., 1978; 

Shirreffs & Maughan, 1994).  Another pre-exercise 3 ml blood sample was taken 

25 min after ingestion while participants were still at rest.  The participant then 

moved to the cycle ergometer.  

Exercise was performed on an electrically braked cycle ergometer (Gould, 

Bilithoven, The Netherlands).  The cycle ergometer seat was adjusted at the 

appropriate height for each participant and the same seat height was used for both 

trials.  Exercise commenced 30 min after glycerol ingestion because from previous 

work (as described in chapter 3 of this thesis), it was known that following glycerol 

ingestion, expansion of plasma and blood volume peaks at ~30 min.  Cycling 

workload for both experimental trials was set at the maximum workload achieved 

during the preliminary VO2max test for that individual.  Exercise started with 5 min 

cycling at a workload corresponding to 50% VO2max (low intensity warm up).  A 4 

ml blood sample was taken at the end of this stage and immediately after the 

exercise intensity was increased to elicit the subject’s 100% VO2max (high 

intensity).  The workload remained constant and participants were asked to cycle 
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at this intensity for as long as they could.  Exercise was terminated when the 

participant could not maintain a cadence above 60 rpm.  Throughout exercise, 

participants were allowed to pedal at a cadence of their choice, but higher than 60 

rpm.  Participants were given strong verbal encouragement throughout the high-

intensity exercise stage and the time to exhaustion was recorded to the nearest 

second.  A final 3 ml blood sample was taken immediately after cessation of 

exercise. 

Heart rate was monitored using a Polar heart rate monitor (Polar Team System, 

Polar, U.S.A.) and recorded immediately before exercise, at the end of the warm-

up phase and at the end of exercise.  Rating of perceived exertion (RPE) was also 

recorded at the end of the warm-up phase and at the end of exercise. 

 

Blood sample analysis 

Blood samples were analysed for haemoglobin (Hb) concentration, haematocrit 

(Hct), blood glucose concentration and blood lactate concentration.  Haemoglobin 

concentrations and haematocrit were used to estimate changes in blood, red cell 

and plasma volumes, as described by Dill and Costill (1974). 

Serum samples were analysed for osmolality, glycerol concentration, sodium 

concentration and potassium concentration. 

All analyses were performed as described in the general methods section of this 

thesis. 

 

Statistical analysis 

A two-way ANOVA was used to find differences between trials where multiple 

measurements were taken.  Where appropriate, a Tukey post-hoc test was used 

to distinguish differences between trials.  One-way ANOVA was used to find 

differences over time during a trial.  Paired t – tests were also used where 

appropriate. 

All data are presented as mean ± standard deviation of the mean (SD).  For all 

statistical analyses, significance was set at P < 0.05. 
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Results 

 
Baseline measurements were similar during the two different experimental trials 

(Table 7.1). 

 
Table 7.1   Pre - exercise body mass, haemoglobin concentration, haematocrit, blood glucose 
concentration blood lactate, serum osmolality, serum glycerol, sodium and potassium on the two 
trials (Mean ± SD); n = 8. 
 
 Water Trial Glycerol Trial P 

Body mass (kg) 78.8 ± 12.4 78.6 ± 12.4 0.220 

Hb (g·l-1) 166 ± 16 167 ± 18 0.929 

Hct (%) 45.1 ± 2.5 44.5 ± 2.7 0.110 

Blood glucose (mmol·l-1) 4.62 ± 0.20 4.53 ± 0.25 0.534 

Blood lactate (mmo·l-1) 0.7 ± 0.3 0.6 ± 0.3 0.290 

Serum osmolality (mosmol·kg-1) 281 ± 4 282 ± 3 0.677 

Serum glycerol (mmol·l-1) 0.04 ± 0.01 0.03 ± 0.01 0.256 

Serum sodium (mmo·l-1) 142 ± 1 142 ± 1 1.000 

Serum potassium (mmol-1) 4.7 ± 0.4 4.5 ± 0.1 0.217 

 
 
Serum glycerol concentration (Table 7.2) 

Two-way repeated measures ANOVA on serum glycerol concentration showed 

that there was a main drink effect (P = 0.000), a time effect (P = 0.000) and an 

interaction (P = 0.000).  

On the water trial, one-way ANOVA analysis over time showed that compared with 

rest, serum glycerol concentration did not change over time (P = 0.172). 

On the glycerol trial, one-way ANOVA analysis over time showed that serum 

glycerol concentration increased following glycerol ingestion (P = 0.000).  From 

the rest concentration of 0.03 ± 0.01 mmo·l-1, serum glycerol concentration 

increased to 7.07 ± 1.55 mmo·l-1 at the pre-exercise point.  During exercise, serum 

glycerol concentration tended to decrease compared with the pre-exercise point.  
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At the end of the low-intensity stage, serum glycerol concentration was 5.70 ± 1.04 

mmo·l-1 (P = 0.058), and at the end of exercise, 5.72 ± 0.90 mmo·l-1 (P = 0.063). 

Comparison between trials showed that following drink ingestion, serum glycerol 

concentration was higher on the glycerol trial at all time points (P = 0.000). 
 
Table 7.2   Serum glycerol concentration (mmol·l-1).  Values are means ± SD; n = 8.  P denotes 
statistical difference between trials. 
 

 Rest Pre-exercise Low intensity High intensity 

Water trial 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 

Glycerol trial 0.03 ± 0.01 7.07 ± 1.55 5.70 ± 1.04 5.72 ± 0.90 
P  

between trials 0.255 0.000 0.000 0.000 

 
 
 
 
Serum osmolality (Figure 7.1) 

Two-way repeated measures ANOVA on serum osmolality showed a main drink 

effect (P = 0.000), time effect (P = 0.000) and an interaction (P = 0.001).  

On the water trial, one-way ANOVA analysis over time showed that serum 

osmolality increased at the end of exercise (high intensity) to 298 ± 2  

mosmol·kg-1 and this was higher than all other time points on that trial. 

On the glycerol trial, one-way ANOVA analysis over time showed that serum 

osmolality following glycerol ingestion at the pre-exercise point (298 ± 7 

mosmol·kg-1) was higher than the rest point (P = 0.001).  Serum osmolality at high 

intensity increased further (P = 0.000) to 317 ± 12 mosmol·kg-1 and this was higher 

than all other time points on the glycerol trial (P = 0.000). 

 
 
 
 
 
 



 
134 

 

Figure 7.1   Serum osmolality (mosmol·kg-1).  Points denote means ± SD; n = 8.  * Denotes 
difference compared with all other time points within trials.  ** Denotes difference between trials. P 
< 0.050)  
 

 
 
 
 
 
Haemoglobin concentration (Fig. 7.2) 

Two-way repeated measures ANOVA on haemoglobin concentration showed a 

main effect of time (P = 0.000), no effect of trial (P =0.250) and an interaction (P = 

0.006). 

On the water trial, one-way ANOVA over time with pair-wise comparisons showed 

that Hb concentration at 100% VO2max at the end of exercise (189 ± 19 g·l-1) was 

higher compared with the pre-exercise point (P = 0.042). 

On the glycerol trial, one-way ANOVA over time with pair-wise comparisons 

showed that Hb increased at 100% VO2max intensity and it was higher compared 

with the pre-exercise point value (P = 0.031). 

 
 
 
 
 
 
 

* 
** 

** ** 
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Figure 7.2   Haemoglobin concentration (g·l-1).  Points are means ± SD; n = 8.  * Denotes 
difference from the pre – exercise point on both trials. P < 0.050.  
 

         
    
 
 

Haematocrit (Fig. 7.3) 

Two-factor repeated measures ANOVA on Hct showed a main trial effect (P = 

0.000), a main time effect (P = 0.011) and an interaction (P = 0.027).  Simple pair 

t-tests between trials at corresponding time points showed that Hct was not 

different at rest (P = 0.110), following glycerol ingestion, Hct on the glycerol trial 

was lower than on the water trial at the pre-exercise point (P = 0.005), at 50% 

VO2max intensity (P = 0.032) and at 100% VO2max intensity (P = 0.013), but pair-

wise comparisons between trials using an ANOVA test showed that there were no 

real differences between trials at any time point.  

On the water trial, one-way ANOVA analysis over time with pair-wise 

comparisons(Tukey) showed that Hct increased at high intensity (51.1 % ± 3.3) 

and this was higher than the pre-exercise value (P = 0.002)  

On the glycerol trial, one way ANOVA analysis over time with pair wise 

comparisons (Tukey) showed that Hct increased to 49.5% ± 2.5 at the high 

intensity and this was higher than the pre – exercise point (P = 0.000). 

 

* 
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Figure 7.3   Haematocrit (%).  Points are means ± SD; n = 8.  * Denotes difference difference from 
the pre-exercise point on both trials. P < 0.050. 
 

         
 

Plasma volume changes (Fig. 7.4) 

Two-way repeated measures ANOVA on plasma volume changes showed a main 

trial effect (P = 0.003), a time effect (P = 0.000) and an interaction (P = 0.006).  

Comparisons between trials (ANOVA test) showed that plasma volume on the 

glycerol trial was higher than on the water trial at only the pre-exercise point (P = 

0.001). 

On the water trial, one-way ANOVA with pair-wise comparisons showed that 

plasma volume was not different between rest and the pre-exercise point (P = 

0.991).  During exercise, plasma volume had decreased by 9.2% ± 2.9 at the end 

of the low-intensity exercise (P = 0.000) and at the end of the high intensity 

exercise by 21.5% ± 4.8 compared with the pre-exercise (P = 0.000). Plasma 

volume values were also statistically different between the two exercise intensities 

(P = 0.000). 

 On the glycerol trial, one-way ANOVA with pair-wise comparisons showed that 

following glycerol ingestion, plasma volume increased by 7.7% ± 2.9 at the pre-

exercise point (P = 0.002).  During exercise, plasma volume decreased compared 

with the pre-exercise point by 13.0% ± 4 at the end of the low intensity exercise (P 

* 



 
137 

 

= 0.000), and by 25.9% ± 3.9 at the end of the high intensity exercise (P = 0.000).  

Plasma volume values were also statistically different between the two exercise 

intensities (P = 0.000). 

 
Figure 7.4   Plasma volume changes (%).  Points denote means ± SD; n = 8.  * Denotes difference 
between trials.  ** Denotes difference compared with the pre-exercise point and between exercise 
intensities (P ≤ 0.002) on both trials. 
          

 
 
 
 

 

Blood volume changes (Fig. 7.5) 

Two-way repeated measures ANOVA on blood volume changes showed a main 

trial effect (P = 0.004), a time effect (P = 0.000) and an interaction (P = 0.010). 

On the water trial, one-way ANOVA analysis with pair-wise comparisons showed 

that blood volume between rest and pre-exercise point was not different (P = 

0.875).  Compared with the pre-exercise point, during exercise, blood volume 

decreased by 5.3% ± 2.5 (P = 0.000) at the end of the low-intensity stage and by 

12.6% ± 2.5 (P = 0.000) at the end of the high intensity exercise.  Blood volume 

between exercise intensities was also statistically different (P = 0.000).  

* 
** ** 
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On the glycerol trial, one-way ANOVA analysis with pair-wise comparisons 

showed that the 4.7% ± 1.8 increase in blood volume at the pre-exercise point 

following glycerol ingestion was statistically higher than the rest point (P = 0.002).  

During exercise, blood volume decreased compared with the pre-exercise point (P 

= 0.000) by 7.3% ± 2.4 at the end of the low-intensity stage (P = 0.000) and by 

14.8% ± 2.7 at the end of the high intensity (P = 0.000). Blood volume values 

between exercise intensities were also statistically different (P = 0.000). 

Comparisons between trials (using ANOVA test with pairwise comparisons) 

showed that blood volume was higher on the glycerol trial than on the water trial at 

only the pre-exercise point (P = 0.003). 
 
Figure 7.5   Blood volume changes (%).  Points are means ± SD; n = 8.  * Denotes difference 
between trials (P < 0.050).  **Denotes difference compared with the pre-exercise point and 
between exercise intensities (P ≤ 0.002) on both trials.  
 
 

 
 
 
 

Blood glucose concentration (Table 7.3) 

Two-factor repeated measures ANOVA on blood glucose concentration showed a 

main effect of time (P = 0.008), no effect of trial (P = 0.901) and no interaction (P = 

0.555).  Blood glucose concentration was lower following low intensity exercise 

* 
** ** 
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compared with rest (P = 0.009) and the pre-exercise point (P = 0.001).  Following 

high intensity cycling, blood glucose was not different from any other time point. 
 
Table 7.3   Blood glucose concentration (mmol·l-1).  Values are means ± SD; n = 8.  * denotes 
difference from the pre-exercise point (P < 0.050).  P denotes difference between trials. 
 
 Rest Pre - exercise Low Intensity High 

Intensity 
Water trial 4.62 ± 0.20 4.65 ± 0.33 4.35 ± 0.30* 4.64 ± 0.35 

Glycerol trial 4.53 ± 0.25 4.71 ± 0.32 4.34 ± 0.29* 4.59 ± 0.25 

P 0.530 0.770 0.930 0.800 

 
 
 
Blood lactate concentration (Table 7.4) 

Two-factor repeated measures ANOVA on blood lactate concentration showed a 

main time effect (P = 0.000), no trial effect (P = 0.482) and no interaction (P = 

0.225).  Blood lactate concentration compared with the pre-exercise point 

increased only during the high intensity stage (P = 0.000).  Blood lactate between 

conditions was also similar (P > 0.050). 

 
Table 7.4   Blood lactate concentration (mmol·l-1).  Values are means ± SD; n = 8.  * Denotes 
difference from other time points within trials (P < 0.050).  P denotes difference between trials. 
 
 Rest Pre – exercise Low intensity High intensity 

Water trial 0.7 ± 0.3 0.8 ± 0.1 1.2 ± 0.3 7.5 ± 1.6* 
Glycerol trial 0.6 ± 0.3 1.0 ± 0.2 1.1 ± 0.2 8.0 ± 1.7* 

P 0.290 0.128 0.208 0.282 
 
 

Serum potassium concentration (Table 7.5)  

Two-factor repeated ANOVA on serum potassium concentration showed a main 

time effect (P = 0.000), no trial effect (P = 0.824) and no interaction (P = 0.547) 

and that serum potassium concentration increased only at high intensity and was 

significantly higher than the pre-exercise point (P = 0.000) and the low intensity 

stage (P = 0.000). 
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Table 7.5   Serum potassium concentration (mmol·l-1).  Values are means ± SD; n = 8.  P denotes 
difference between trials.  * Denotes difference from all other time points within a trial. 
 
 Rest Pre - exercise 50% VO2max 100% VO2max 

Water trial 4.7 ± 0.4 4.6 ± 0.3 4.6 ± 0.2 5.9 ± 0.7* 
Glycerol trial 4.5 ± 0.1 4.4 ± 0.2 4.6 ± 0.2 5.9 ± 0.7* 

P 0.217 0.171 0.356 0.680 
 
 
 
Serum sodium concentration (Table 7.6) 

Two-way repeated measures ANOVA on serum sodium concentration showed a 

main time effect (P = 0.000), no trial effect (P = 0.324) and no interaction (P = 

0.553).  Serum sodium concentration increased only at high intensity and it was 

higher than the pre-exercise point (P = 0.001) and sodium concentration at low 

intensity (P = 0.002). 

 
Table 7.6    Serum sodium concentration (mmol·l-1).  Values are means ± SD; n = 8.  P denotes 
difference between trials.  * Denotes difference from all other time points within a trial. 
 
 Rest Pre – exercise Low intensity High intensity 

Water trial 142 ± 1 141 ± 1 142 ± 2 146 ± 2* 
Glycerol trial 142 ± 1 141 ± 1 142 ± 1 146 ± 2* 

P 1.000 0.381 0.381 0.697 
 
 
 
 

Exercise results (Table 7.7) 

There were no differences between the subjects’ previously determined VO2max 

(45.6 ± 8.6 ml·kg-1·min-1) and oxygen uptake during the high-intensity exercise 

stage on the water trial (P = 0.745) and on the glycerol trial (P = 0.691).  A small 

but significant difference occurred during the low-intensity stage.  Oxygen uptake 

for the same absolute cycling workload was lower on the glycerol trial (19.9 ± 4.4 

ml·kg-1·min-1) compared with the water trial (21.6 ± 4.0 ml·kg-1·min-1) (P = 0.005).   
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The only other difference between the two trials was time to exhaustion (P = 

0.003).  Participants reached fatigue slightly sooner (23 ± 15 s) on the glycerol trial 

in 248 ± 62 s, while on the water trial, time to exhaustion was 271 ± 68 s (P = 

0.003).  During exercise, there were no differences between trials in HR or RER. 

 All participants cycled slightly longer on the water trial and only one participant 

exercised longer on the glycerol trial (Figure 7.6). The individual values of VO2 

obtained during this study are presented in table 7.8. 

 
Table 7.7    Exercise results.  Values are means ± SD; n = 8.  P denotes difference between trials. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Low intensity High intensity 
Cycling 

intensity (W) 132  ± 41 319  ±  73 

 Water trial Glycerol 
trial P Water 

trial 
Glycerol 

trial P 

VO2 (ml·kg-

1·min-1) 21.6 ± 4.0 19.9 ± 4.4 0.005 43.1 ± 7.2 42.2 ± 7.1 0.265 

HR (bpm) 123 ± 7 121 ± 6 0.305 179 ± 5 177 ± 7 0.055 

RER 0.97 ± 0.10 0.95 ± 
0.06 0.243 1.28 ± 

0.10 
1.32 ± 
0.11 0.273 

RPE 11 ± 2 11 ± 1 0.351 20 ± 0 20 ± 0 1.000 

 Time to exhaustion (s) 271 ± 68 248 ± 62 0.003 
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Figure 7.6  Individual exercise time (s) of all participants on both trials. 
 

 
 
Table 7.8 Individual VO2max values and VO2peak obtained on both trials (ml·kg-1·min-1). 
 

Participant 

 
 
 

VO2max 
 

 
ml·kg-1·min-1 

Water trial 
VO2 

at low 
intensity 
exercise 

 
ml·kg-1·min-1 

Glycerol trial 
VO2 

at low 
intensity 
exercise 

 
ml·kg-1·min-1 

Water trial 
VO2peak 

 
 
 

ml·kg-1·min-1 

Glycerol trial 
VO2peak 

 
 
 

ml·kg-1·min-1 
1 37.8 18.5 17.0 37.4      35.9 
2 48.2 22.6 20.9 41.7      41.8 
3 59.3 30.1 28.1 58.0      54.0 
4 54.7 24.0 24.9 46.7      49.0 
5 34.8 18.3 16.1 37.5      33.8 
6 42.3 20.1 16.6 41.5      42.9 
7 40.4 18.6 17.0 36.0      35.3 
8 47.9 20.4 18.4 46.3      44.8 
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Discussion 
 
The aim of this study was to examine any effect of glycerol ingestion and potential 

altered body water distribution on performance during exercise at 100% VO2max 

intensity.  Ingestion of glycerol resulted in increased serum osmolality by 16 

mosmol·kg-1.  This was accompanied by an increase in blood volume by 4.7%, 

secondary to a 7.7% increase in plasma volume.  The increase in plasma volume 

was attributed to a shift of water into the vascular space due to increased serum 

osmolality because of the osmotic properties of glycerol (see chapter 3 of this 

thesis) leading presumably to a modest state of cell shrinkage (Graf & Haussinger, 

1996; Keller et al., 2003).  During the exercise, participants reached similar VO2 

levels at the end of exercise on both trials, which were not statistically different 

from their previously determined VO2max values, but time to fatigue on the 

glycerol trial was decreased by a mean of 23 s compared with the water trial.  

During short exhaustive exercise of 6 – 7 min in duration, the VO2max is 

recognised to be an important determinant of performance (Bassett et al., 2000).  

Exercise duration in the present study was short (~4.1 min on glycerol trial; ~4.5 

min on water trial) as exercise intensity was set at a constant high workload, which 

elicited oxygen utilization levels similar to that of the participants’ VO2max.  This 

intensity was chosen based on the findings of the study described in chapter 6 of 

this thesis, where during an incremental VO2max test the only difference between 

water and glycerol trials was observed only in the very last stage of the  test, 

where participants reached fatigue slightly sooner on the glycerol trial.  Despite the 

short duration of exercise in the present study, it has been shown that in severe-

intensity constant work rate exercise, the termination of exercise coincides with the 

attainment of a VO2 that is close to the VO2max attained during incremental 

exercise (Rossiter et al., 2006; Tordi et al., 2003).  In the present study, at high 

intensity exercise, VO2 attained was similar to the participants’ VO2max in both 

trials, but on the glycerol trial, participants reached peak VO2 and exhaustion 

sooner, as exercise time was reduced by 8.5% compared with the water trial.   
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Therefore, it could be deduced that volitional fatigue during high intensity exercise 

may possibly be dependent on other factors besides VO2max (Coyle et al., 1986).  

Mortensen et al. (2005) showed that the limiting factor during cycling against a 

constant workload (85% VO2max) was the impaired systemic oxygen delivery due 

to a decline in stroke volume (and cardiac output) as a result of the restriction in 

left ventricular filling time and left ventricular end-diastolic volume that 

accompanies severe tachycardia.  Expansion of plasma and blood volume, even 

when induced acutely (via infusion of a plasma expander) in untrained 

participants, before starting a single exercise bout, may favour endurance exercise 

performance due to an increase in blood availability, end-diastolic volume and 

stroke volume (Coyle et al., 1990; Kanstrup & Ekblom, 1982; Mier et al., 1996).  

During exercise in the present study, blood and plasma volume fell in both 

conditions.  Water loss to the extravascular space during exercise is attributed to 

increased interstitial osmolality within working muscles (Hayes et al., 2000).  The 

accumulation of exercise by-products, such as lactate, acts to draw water into the 

intracellular space, effectively diluting intracellular concentrations to maintain 

resting conditions (Raja et al., 2006).  Damon et al. (2002) demonstrated a 

significant correlation between lactate, proton production and the resulting 

intracellular acidification with the increase in intracellular water.  The decrease in 

plasma volume in the present study is in agreement with the changes in plasma 

water reported in previous studies in literature during cycling (Sjogaard & Saltin, 

1982) and dynamic knee extension (Sjogaard et al., 1985).  At the end of exercise, 

blood and plasma volume were higher on the glycerol trial than on the water trial.  

Therefore, blood availability, and potentially stroke volume, were probably not a 

limitation for exercise performance on the glycerol trial.  

 

Decreased time to fatigue following plasma volume expansion has also been 

reported by Coyle et al. (1986) and Kanstrup and Ekblom (1982).  In those studies, 

plasma volume expansion was elicited via infusion of 700 ml dextran.  Despite the 

positive effect of improved stroke volume and cardiac output, the resulting 

haemodilution of 8 – 11% drastically reduced the blood’s oxygen carrying capacity 
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and delivery to the exercising muscles.  It appears that plasma volume expansion 

greater than 650 ml has a detrimental effect on aerobic exercise performance in 

untrained participants (Coyle et al., 1990; Kanstrup & Ekblom, 1982, 1984).  In the 

present study, on the glycerol trial, haemoglobin concentration was slightly 

(statistically non-significantly) decreased by 5% and the increase in plasma 

volume was 7.7%.  According to the literature, a moderate plasma volume 

expansion (250 – 500 ml) which results in a moderate haemodilution of 4 – 5% 

appears to have a positive effect on aerobic exercise performance, as the 

improvement in cardiac output offsets the mild haemodilution, resulting in 

improved performance (Coyle et al., 1990; Krip et al., 1997; Luetkemeier & 

Thomas, 1994). According to the literature, these moderate alterations of 

haemoglobin and plasma volume should have a positive effect on exercise 

performance and time to fatigue.  An explanation for this discrepancy between the 

literature and the results of the present study may lie in the methods used to elicit 

plasma volume expansion.  In other studies, participants were well hydrated and a 

plasma volume expander was infused to further increase plasma volume.  In the 

present study, participants ingested a glycerol solution that possibly resulted in 

alterations of body water distribution, and the increase of plasma volume may 

have potentially been at the expense of intracellular water and muscle hydration 

(Hamilton et al., 1993). 

It is likely that the increases of extracellular osmolality on the glycerol trial induced 

a modest state of cell shrinkage (Blinks, 1965; Graf & Haussinger, 1996; Hamilton 

et al., 1993; Keller et al., 2003).  A decrease in cell hydration has been shown to 

elicit increases in blood lactate (Antolic, 2007; Lang et al., 1989).  In the present 

study, blood lactate concentration were similar between the two conditions, but 

peak blood lactate value on the glycerol trial occurred in less time; this could 

suggest an accelerated lactate production or efflux, as exercise time was slightly 

shorter on the glycerol trial. Because these blood samples was taken at the end 

point of high intensity exercise it is not, however, clear whether samples taken at 

the same chronological time points during this stage of exercise would have 

yielded lower lactate levels on the glycerol trial compared with the water trial.  
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Furthermore, blood volume on the glycerol trial was higher than that on the water 

trial, which suggests a higher net lactate production on the glycerol trial (Kanstrup 

& Ekblom, 1982).  Lactate production is accompanied by hydrogen ion 

accumulation which is a fatiguing factor, and this might have contributed to the fact 

that exhaustion occurred sooner on the glycerol trial. 

Fatigue may also result from a substantial loss of K+ from the active muscles; its 

accumulation in the extracellular space and the associated decline in the K+ 

concentration difference across the sarcolemma might have promoted exhaustion, 

as muscle excitability and contraction depends on the K+ concentration gradient 

across the muscle surface membrane (Sejersted & Sjogaard, 2000; Sjogaard et 

al., 1985).  In vitro, it has been shown that membrane depolarization caused by 

accumulation of extracellular potassium leads to the development of muscular 

fatigue (Cairns et al., 1995).  Even though potassium is lost from the exercising 

muscles at all intensities, at low intensities, there is sufficient re-uptake of 

potassium to maintain intracellular concentration, but at high intensity, there is a 

mismatch between K+ loss and re-uptake and, as a result, venous potassium has 

been shown to rise throughout the exercise period to a maximum value at 

exhaustion (Vollestad et al., 1994).  In the present study, serum potassium 

concentration was measured before exercise, at the end of the low-intensity phase 

and at the end of exercise.  Serum potassium rose in both trials only during high-

intensity exercise, showing increased extracellular accumulation of potassium.  At 

exhaustion, serum potassium concentration was similar on both trials, but exercise 

duration was slightly shorter (23 s) on the glycerol trial. This could, perhaps, 

suggest a larger release of potassium from the muscle into the extracellular space 

on the glycerol trial, which possibly affected endurance. This suggestion is in 

agreement with in vivo evidence that during exhaustive leg exercise, a faster 

accumulation of interstitial K+, which was induced by prior arm exercise, was 

associated with a reduced time to fatigue (Bangsbo et al., 1996; Nordsborg et al., 

2003). However, it is unclear in the present study, whether serum potassium levels 

were really different between trials at the same chronological time points.  



 
147 

 

Some other factors and assumptions can be taken into consideration, bearing in 

mind that these derive from in vitro studies.  Caputo (1968) showed that exposure 

of muscle cells to a hypertonic medium containing glycerol resulted in cell 

shrinkage that was accompanied by a reduction in twitch force, which was 

reversed upon return to the normal isotonic medium.  In accordance with these 

findings, Suarez-Kurtz and Sorenson (1977) reported that hyper-osmotic glycerol 

solutions have an inhibitory effect on muscle membrane Ca2+ activation, which 

may negatively affect muscle contractility.  In a different study, Devin et al. (1996) 

reported that hyperosmolality resulted in decreased mitochondria matrix volume 

and a reduction in ATP synthesis due to decreased oxidative phosphorylation 

efficiency.  More recently, while investigating the effects of extracellular osmolality 

on muscles, Antolic et al. (2007) reported that in hypertonic conditions, muscle 

water decreased and this was accompanied by decreased muscle ATP and 

phosphocreatine contents, increased creatine, inorganic phosphate and lactate 

contents.  Muscle contractility could have been affected by the decrease in 

hydration.  Furthermore, lactate with the accompanying hydrogen ions, along with 

increased inorganic phosphate, have all been linked to fatigue (Allen & 

Westerblad, 2001).  None of the above can be confirmed by the data collected in 

the present study nor can the exact mechanism that led to fatigue on the glycerol 

trial be confirmed. 

 

Conclusion 

Glycerol ingestion and the subsequent blood and plasma volume increase did not 

increase time to fatigue during high-intensity exercise at 100% VO2max.  On the 

contrary, time to exhaustion decreased slightly on the glycerol trial.  This may have 

been due to a negative effect of high extracellular osmolality on muscle 

metabolism and function.  As most of the evidence regarding cell hydration and 

how that affects cell function derives from in vitro studies, the magnitude that 

extracellular tonicity may affect cell volume, metabolism and function in vivo 

remains elusive.  More research is required to shed light on the cell volume theory 

in a whole body situation during exercise. 
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Body water distribution – effects of glycerol ingestion 
The purpose of this thesis was to indirectly assess in vivo the cell volume theory, 

proposed by Haussinger in the 1990s, in a whole body situation in an exercising 

environment.  In vitro evidence shows that hypo-osmotic cell swelling counteracts 

proteolysis and glycogen breakdown in the liver, whereas hyper-osmotic cell 

shrinkage promotes protein breakdown, glycolysis and glycogenolysis (Haussinger 

et al., 1990, 1991, 1994).  In vitro exposure of muscle fibres to a hypertonic 

environment has been shown to inhibit contractility when the fibres were 

electrically stimulated (Rapoport et al., 1982).  

 

Exposure of muscle fibres to hypertonic solutions in vitro is known to lead to cell 

dehydration and shrinkage (Blinks, 1965; Bozler, 1965).  In vivo high concentration 

glycerol solutions have been reported to be a potent dehydrating agent (Frank et 

al., 1981), and high elevation of extracellular osmolality following glycerol feeding 

may well result in cell dehydration and tissue shrinkage (Gleeson et al., 1986; 

Maughan, 1998; Nelson & Robergs, 2007) as the distribution of fluid between 

intracellular and extracellular compartments is determined mainly by the osmotic 

gradient across the cell membrane (Guyton & Hall, 1996; Maughan, 1998).  

 

The study reported in Chapter 3 of this thesis was designed to indicate the 

potential changes in body water distribution following ingestion of glycerol in a 

small-volume, highly-hyper-osmotic solution (400 ml solution, 1 g·kg-1 glycerol), 

and to establish the time course of this effect.  Blood volume increased following 

glycerol ingestion, secondary to an increase in plasma volume, suggesting an 

alteration in body water distribution, as no real change had occurred to the total 

body water volume. From the data obtained it was not possible to distinguish 

whether the increased amount of water in the vascular space originated from the 

interstitial or intracellular space, or from both of these pools.  Data from in vitro 

studies suggest that water movement due to high extracellular osmolality does 

indeed reduce intracellular water volume (Hamilton et al., 1993; Lindinger et al., 

2011); and in vivo induced high serum osmolality, which was presumed to promote 
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cell volume shrinkage, has been reported to lead to alterations in the regulation of 

intracellular metabolic pathways (Berneis et al., 1999; Keller et al., 2003).  Based 

on the presumption that glycerol ingestion likely resulted in a modest reduction of 

muscle hydration,  glycerol ingestion was then used in the other studies reported 

in this thesis as a means of altering body water distribution in order to investigate 

potential effects of increased extracellular osmolality and a possible reduced 

muscle cell hydration on acute strength exercise (chapter 4 and chapter 5), over 

an 8-week strength training programme (chapter 5), and the effects of increased 

blood volume availability combined with potential decreased muscle hydration on 

oxygen uptake and time to fatigue (chapter 6 and chapter 7). 

 

Effects of altered body water distribution on strength 

Previous studies on isometric strength and dehydration have reached conflicting 

results.  Torranin et al. (1979) showed that isometric endurance decreased 

following 4% dehydration by sauna exposure.  Viitasalo et al. (1987) reported 

decreased maximal isometric leg strength (7.8%) following exposure to sauna.  

Schoffstall et al. (2001) reported that passive dehydration resulting in 1.5% body 

mass dehydration decreased maximum bench press performance.  On the other 

hand, Greiwe et al. (1998) reported no change in isometric knee extension peak 

torque or in time to fatigue following 3.8% body mass dehydration (sauna 

exposure).   Montain et al. (1998) showed that after a 4% loss in body mass 

following active dehydration, maximum voluntary contraction (MVC) during single-

leg knee extensions was not affected, but endurance (time to fatigue) was reduced 

by 15%.  

The difference between the studies reported in chapters 4 and 5 and the studies 

referenced above is that in the present study, there was no reduction in total body 

water, only an alteration of body water distribution and possibly a reduction in 

muscle cell hydration due to the distribution and osmotic properties of ingested 

glycerol.  In the study reported in chapter 4, participants were asked to perform 

isometric quadricep activations at 90% MVC, while participants in the study 

reported in chapter 5 were asked to execute 4 sets of 10 repetitions of handgrip 
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exercises at 80% MVC.  The results showed that glycerol ingestion and the 

subsequent water shifts, did not have any acute effect on strength.  This is in 

agreement with some of the previous studies on dehydration and strength in the 

literature (Bigard et al., 2001; Greenleaf et al., 1967; Greiwe et al., 1998; Montain 

et al., 1998). 

The important finding in the study reported in chapter 4 was the difference in blood 

lactate concentration, which was higher on the glycerol trial than on the water trial 

during the recovery period, suggesting possible altered muscle metabolism.  This 

elevated blood lactate in the recovery period could be attributed to a regulatory 

volume increase mechanism.  In vitro evidence showed that exposure of cells to a 

hypertonic medium results in increased glycogenolysis, which leads to increased 

lactate production (Antolic et al., 2007; Lang et al., 1989).  Lactate accumulates in 

the muscle cell, thereby intracellular osmolality increases, water is drawn into the 

cell and cell volume increases (Usher-Smith et al., 2009).  This mechanism has 

been suggested to occur in an effort for the muscle cell to maintain its volume, 

although the specific mechanism(s) that result in the increased activity of the 

glycolytic machinery and lactate accumulation are unclear (Antolic et al., 2007).  In 

the present study, if the increase in blood lactate on the glycerol trial was an 

indication of reduced cell hydration and volume, and if muscle dehydration 

persisted in the recovery period, it could potentially have a long-term effect on 

strength exercise and training, as muscle dehydration in vitro has been shown to 

counteract anabolic processes such as protein synthesis (Haussinger et al., 1994).  

Measures involving humans and animals (Ritz et al., 2003) have shown that cell 

volume shrinkage signals a temporary halt in protein formation.  Judelson et al. 

(2008) showed that performing strength exercise in a dehydrated state (5% body 

mass) attenuates the exercise response, as catabolic hormones cortisol and 

norepinephrine were higher than in a control trial; furthermore, the response of the 

anabolic hormones testosterone and insulin were attenuated, producing a less 

beneficial post-exercise milieu. 

The study reported in chapter 5 was designed to investigate long-term effects of 

exercising and recovering under high extracellular osmolality and a potential 
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reduced muscle cell hydration following ingesting of a glycerol solution before and 

immediately after exercise (total glycerol solution 1g·kg-1, 6 ml·kg-1
 body mass).  

Two groups of participants undertook the same handgrip strength training regimen 

for 8 weeks.  One group ingested water and the other group ingested the glycerol 

solution immediately before and after each training session.  The results showed 

that maximum handgrip strength increased in both groups to the same extent.  

Mean strength in the water group increased by 15% and in the glycerol group by 

8%.  The small number of participants (7 in each group) and the large standard 

deviation observed between participants might have prevented the results 

between groups from reaching a statistical significant difference. 

 

Future research on muscle hydration and strength should possibly incorporate a 

more strenuous strength exercise regime using multiple exercises in a single 

workout and training a greater muscle mass, or the training could be extended for 

at least 12 weeks.  Measurements such as hormonal response and more invasive 

methods in measuring extracellular and intracellular cell hydration from muscle 

biopsies and protein metabolism could be used to shed light onto the role of 

muscle cell hydration in a whole body situation. 

 

 

Effects of altered body water distribution on maximum oxygen uptake and time to 

fatigue 

Endurance trained individuals exhibit higher blood volume and total haemoglobin 

levels than sedentary individuals (Kjellberg et al., 1949).  A major adaptation to 

endurance training is an increase in stroke volume resulting from an increase in 

circulating blood (Clausen, 1977; Coyle et al., 1986), because of the Frank-

Starling mechanism (Coyle et al., 1990; Ekblom, 2000; Fortney et al., 1981; 

Kanstrup & Ekblom, 1982), as increased ventricular filling pressure leads to 

increased output (stroke volume).  Plasma volume expansion independently of 

increases in haemoglobin and haematocrit leading to expansion of blood volume 

has been shown to increase VO2max, especially in untrained participants who do 
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not have an elevated blood volume as a result of endurance training (Coyle et al., 

1986, 1990; Krip et al., 1997). 

 

In the studies reported in chapter 6 and chapter 7 of the present thesis, 

participants ingested a glycerol solution (1 g·kg-1 body mass, 6 ml·kg-1 body 

mass), which resulted in a 5% increase in blood volume secondary to a 7.7% 

increase in plasma volume and a slight non-significant 5% decrease in 

haemoglobin concentration.   A moderate plasma volume expansion (250 – 500 

ml) that results in a moderate haemodilution of 4 – 5% appears to have a positive 

effect on aerobic exercise performance, as the improvement in cardiac output 

offsets the mild haemodilution, resulting in improved performance (Coyle et al., 

1990; Krip et al., 1997; Luetkemeier & Thomas, 1994).  

In the study reported in chapter 6 of this thesis, participants performed an 

incremental VO2max test on a cycle ergometer under control and blood volume 

expanded conditions.  The results showed that VO2max did not improve on the 

glycerol trial and that time to fatigue decreased.  In the study reported in chapter 7 

participants cycled to fatigue against a constant workload corresponding to their 

VO2max intensity under control and blood volume expansion due to glycerol 

ingestion.  The results showed that participants matched their VO2max in both 

conditions, but time to fatigue was decreased on the glycerol trial. This is contrary 

to the findings of Berger et al. (2006), Coyle et al. (1990) and Luetkemeier and 

Thomas (1994) who found improvements in aerobic performance promoted by 

hypervolaemic-induced increase in stroke volume. 

The current belief is that maximum cardiac output is the principal limiting factor for 

VO2max (Basset et al., 2000; Ekblom, 2000; Gonzalez-Alonso & Calbet, 2003) as 

a result of the impaired systemic oxygen delivery due to a decline in stroke volume 

(and cardiac output) caused by the restriction in left ventricular filling time and left 

ventricular end-diastolic volume that accompanies severe tachycardia.  In the 

present studies, blood volume at the end of exercise was higher on the glycerol 

trial than on the water trial, so blood volume availability was presumably not a 

limiting factor.  
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The slightly faster rate of fatigue on the glycerol trials in the studies reported in 

chapters 6 & 7 may have occurred due to peripheral reasons.  Fatigue is 

traditionally associated with high intracellular accumulation of H+, which 

accompanies lactate production.  In the studies reported in chapter 6 and chapter 

7, blood lactate concentration was similar between the two experimental 

conditions, but exercise on the glycerol trial ended slightly sooner, perhaps 

suggesting, an accelerated lactate production or efflux.  It is possible that lactate 

production on the glycerol trial was greater. In vitro, osmotic cell shrinkage has 

been shown to increase lactate release from the muscle (Antolic et al., 2007; Lang 

et al., 1989), and in the studies described in chapters 6 & 7 the alteration of body 

water distribution on the glycerol trials had likely resulted in a modest decrease in 

muscle water.  

Fatigue may also result from increases in extracellular K+ concentration, which 

alters muscle excitability and contraction (Sejersted & Sjogaard, 2000; Sjogaard et 

al., 1985).  During high intensity exercise, there is a mismatch between myocyte 

K+ loss and re-uptake and, as a result, venous potassium concentrations have 

been shown to rise throughout the exercise period, to a maximum value at 

exhaustion (Vollestad et al., 1994).  In the study reported in chapter 7, serum 

potassium concentration was higher at the end of exercise compared with rest and 

50% VO2max intensity.  Comparisons between the two experimental conditions, 

showed that serum potassium concentration was similar, but exercise time on the 

glycerol trial was, again, slightly shorter (23 s).  Although this time difference is 

small, it is possible that a larger release of potassium from the muscle into the 

extracellular space occurred on the glycerol trial.  In vivo evidence has shown that 

during exhaustive leg exercise, a faster rate of accumulation of interstitial K+ 

(which was induced by prior arm exercise) is associated with a reduced time to 

fatigue (Bangsbo et al., 1996; Nordsborg et al., 2003).  Therefore the potential of a 

fatigue-inducing higher K+ release from the muscle on the glycerol trial cannot be 

excluded. 
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From the data collected in the present thesis, no conclusive remarks can be made 

concerning what affected exercise performance and accelerated the development 

of fatigue following glycerol ingestion.  More in-depth research is required to 

investigate how increased extracellular osmolality and possible altered muscle 

hydration status affect muscle function and metabolism in vivo.  Perhaps more 

invasive methods would be able to reveal how the intramuscular environment is 

affected by hyper-osmolality and cell volume shrinkage in a whole body situation. 

 
Conclusions 
Ingestion of a small-volume, highly-hypertonic glycerol solution results in altered 

body water distribution, as indicated by an increase in plasma and blood volume. 

High serum osmolality and the potential altered body water distribution appear to 

have no acute effect on force production during isometric exercise at high 

intensity.  Any potential altered body water distribution during and immediately 

after exercise following glycerol ingestion does not seem to affect the training 

outcome of an 8-week handgrip training programme, but further investigation is 

required. 

High serum osmolality and the potential altered body water distribution leads to a 

slight but significant decrease in time to fatigue during cycling at high intensity. 

Further research is required to investigate the mechanism that accelerates this 

fatigue development. 
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Detailed description of various haematological 

assays 
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Measurement of haemoglobin concentration 
 

Haemoglobin concentration was determined with the cyanmethaemoglobin 

method, where haemoglobin is converted to cyanmethaemoglobin and measured 

photometrically. 

 

Blood samples collected during the experimental studies where dispensed in 

K2EDTA containing tubes.  The tubes where then placed on racks until the end of 

the experimental session (<2.5 hours) and then stored temporarily in the 

refrigerator (<4⁰ C) until analysis time.  All blood samples were analyzed for 

haemoglobin on the same day of collection.   

Prior to blood analysis the tubes were placed on a roller mixer so that the blood 

was uniformly mixed. 

 

Sample analysis 

In duplicate, 10 μl of blood sample was added to 2.5 ml of Drabkins reagent in 

small glass tubes and mixed thoroughly.  Special care was taken when pipetting 

and dispensing the blood due to the small quantity of blood needed for this assay.  

A tissue was used to wipe off any excess blood from the outside surface of the 

pipette tip.  Adequate pipetting skills training and practice took place prior to blood 

and data collection for this thesis.   

Following mixing of blood with the reagent in small glass tubes, the samples were 

left to incubate for 30 min at room temperature, away from direct sunlight.  

Haemoglobin standards were previously prepared in the laboratory from blood and 

Drabkins reagent and were calibrated against a commercial standard.  Always the 

haemoglobin concentration of the standards was 180 g·l-1 or higher.  

Following incubation, the standards and samples absorbance was read by the 

spectrophotometer at a wavelength of 540 nm.  In order to do so the standards 

and the samples were dispensed in a plastic cuvette, which was then placed in the 

appropriate slot in the spectrophotometer.  The same cuvette was used for all 
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standards and samples.  Special care was taken to remove all fluid from the 

cuvette (by giving it a strong shake) before dispensing the next sample in it. 

 

Measurement of red blood cells volume (Haematocrit) 
Haematocrit is the volume occupied by the red blood cells compared with the 

overall volume of a column of whole blood, expressed as a percentage of the 

whole blood volume (e.g. 45%).   

Plain capillary tubes were dipped in tubes containing EDTA treated blood, and 

blood was drawn into plain capillary tubes by simple capillary attraction.  Care was 

taken that there were no air bubbles formed in the capillary tube, which was filled 

to approximately 2/3 of its length.  The capillary end not dipped in blood was 

sealed by inserting and twisting that end into a block of clay type sealant.  Then, 

the outside of the capillary tube was wiped cleaned.  Each sample was measured 

in triplicate.  All capillary tubes were placed in the rotor of a micro-haematocrit 

centrifuge.  Each capillary tube lay in one of the channels in the rotor with the 

sealed end resting against the rubber rim of the centrifuge.  When there were not 

enough capillary tubes to fill all channels of the rotor, care was taken than the 

tubes were placed in such a way to provide equal balance around the rotor.  Then, 

the centrifuge lid was closed tightly and the samples spun for 5 min. 

 

Following centrifugation, each spun tube was placed in the slot of the haematocrit 

reader.  The base line of the reader was aligned with the bottom of the red blood 

cells column (upper end of the sealant plug).  By using the handle, the middle line 

was adjusted to intersect with the top of the red blood cell column.  Haematocrit 

was read at the point where the middle line cut the scale.  Caution was taken to 

look directly down at the reader when lining up the capillary tube with the lines on 

the reader as this minimizes readings errors.  
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Figure A.1.  Haematocrit reader 

  
 

 
 
 
Measurement of blood glucose concentration 
Blood glucose concentration was determined by the GOD-PAP method (Randox).   

Upon collection of the blood sample 100 μl of whole blood was deproteinised by 

being added into an eppendorf tube containing 1000 μl of ice cold 0.3 M perchloric 

acid, in duplicate.  As the blood tends to stick to the inside wall of the plastic 

pipette tip, the pipette was rinsed several times by depressing the pipette button 

half-way and releasing it several times before finally dispensing the mixture into 

the eppendorf tube.  Then, the eppendorf tube was given a good shake for better 

mixing of the blood with the perchloric acid.  Following collection of all blood 

samples,  the eppendorf tubes were spun in an eppendorf centrifuge for 1 min and 

were then stored in a refrigerator (<4⁰C).  The supernatant collected was used for 

blood glucose determination on the same day. 

 

Scale 
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Sample analysis 

In duplicate, 200 μl of supernatant was added to 2000 μl of Randox reagent in 

small glass tubes.  For the blank standard, 200 μl of distilled water was added to 

the reagent.  The top standard used was a 5.55 mmol·l-1 glucose stock solution, 

previously prepared in the laboratory, which was compared against a commercially 

available standard.  The samples were left to incubate for 30 min at room 

temperature, away from direct sunlight.  Following incubation, the standards and 

samples absorbance was read by the spectrophotometer at a wavelength of 500 

nm, using a single cuvette as already described above for the haemoglobin assay. 

 

 

Measurement of blood lactate concentration 

The supernatant collected from blood samples and perchloric acid (as described 

above for blood glucose determination) was frozen (-20⁰ C) and was later used for 

determination of blood lactate concentration. 

The method used was based upon that of Maughan (1982) which is dependent 

upon the release of NADH during the follow reaction 

 Lactate + NAD   Pyruvate + NADH 

 

For the lactate assay, hydrazine buffer (pH 9.4) and a reaction mixture were 

needed.  The reaction mixture was prepared immediately prior to use, containing 

2.0 mg NAD and 10.0 μl LDH per 1 ml hydrazine buffer. This made 1 ml of 

reaction mixture. 200 μl of hydrazine buffer was required per fluorimeter tube for 

the assay.  Hydrazine buffer was made by 6.5g hydrazine sulphate and 24.26 ml 

hydrazine hydrate, diluted in distilled water to make 500 ml hydrazine buffer. 

Enough reaction mixture was prepared for a batch of samples in duplicate and for 

>17 more tubes of blanks and standards: 4 blank tubes, 4 top standard tubes and 

various in between standards (at least three) in triplicate. Furthermore, extra 

reaction mixture enough for 5 tubes was prepared to allow for some loss in 

pipetting.  One blank and one top standard tube were used to set the range on the 
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fluorimeter.  Once the tube was read it was not used again as the fluorescence 

changes.  The standard curve was always found to be linear. 

The standards were made from 1.0 M sodium L-Lactate stock solution, 

representing concentrations of 0.5, 1.0, 2.5, 5.0, 10.0, 15.0 and 20.0 mml·l-1.  

Different concentration standards were used for each batch of samples according 

to the expected range of results. 

 

Sample analysis 

The samples and standards were removed from the freezer and were allowed to 

thaw at room temperature for at least one hour.  Then, 20μl of either standard or 

supernatant was dispensed into a pyrex fluorimeter tube and 200 μl of reaction 

mixture was added. The supernatant was thoroughly mixed with the reaction 

mixture, and the tubes were allowed to incubate for 30 min.  The tubes were 

covered with a sheet of paper to prevent contamination.  Following incubation, 1.0 

ml of distilled water was added to the tubes and then fluorescence of the blanks, 

standards and samples were read on the fluorimeter. 

 

 

Measurement of serum glycerol concentration 
Determination of serum glycerol concentration was done based on the method by 

Boobis and Maughan (1983), which is dependent upon the release of NADH 

during the follow reaction: 

 Glycerol + NAD+   dihydroxacetone + NADH + H+ 

 

For the glycerol assay a reaction mixture made of hydrazine buffer, NAD 20 μl (1 

mmol·l-1 final concentration) and GDH 5 μl (2.5 U·l-1 final concentration) were 

needed.  All details regarding these reagents can be found in the original paper by 

Boobis and Maughan (1983).  Caution must be taken so that the buffer has pH 9.9 

for the above chemical reaction to proceed to the right to completion in order to get 

correct readings of serum glycerol. 
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Sample analysis  

Following collection of serum samples, 20 μl of serum was added to 200 μl of ice 

cold 0.3 M perchloric acid in eppendorf tubes.  Then the eppendorf tubes were 

spun for 1 min in an effendorf centrifuge, and the supernatant collected was used 

for determination of glycerol.  The samples were frozen (-20⁰ C) until analyzed. 

Glycerol stock solution (2 mmol·l-1) was also stored at -20⁰ C in small effendorf 

tubes.   

On analysis day, the samples and standards were removed from the freezer and 

were allowed to thaw at room temperature for at least one hour.  Different working 

standards were prepared fresh as needed.  Low glycerol concentration standards 

(expected values below 0.075 mml·l-1) were analyzed separately from samples 

taken following glycerol ingestion where glycerol concentration was expected to be 

very high.  Low glycerol standards were prepared as described in the method by 

Boobis and Maughan (1983).  For samples where high glycerol concentration was 

expected, glycerol standards of 0, 0.5, 1.0, and 1.5 mmol·l-1 glycerol concentration 

were made, and following fluorescence reading glycerol concentration for the 

standards and samples was corrected for dilution (multiplied by 11). 

 

In duplicate (triplicate for the standards), 50 μl of blank, standard and sample was 

dispensed in pyrex fluorimeter tubes.  Then 200 μl of reaction mixture was added 

and mixed thoroughly with the sample.  Enough reaction mixture was prepared for 

a batch of samples in duplicate, for blanks, standards and for 5 tubes extra to 

allow for some loss in pipetting.  The tubes were left to incubate for 90 min in room 

temperature and they were covered with a sheet of paper to prevent 

contamination.  Following incubation, 1 ml of 20 mmol·l-1 sodium carbonate buffer 

was added to each tube.  Then, the range on the fluorimeter was set with the use 

of extra blank and top standard containing tubes and fluorescence was measured 

for the standards and samples.  Glycerol concentration of the samples was 

calculated from the linear standard curve. 
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Appendix B 
 

Pilot study on potential effects of glycerol 
ingestion on blood pressure 
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Introduction 
 
Prior to the studies on glycerol ingestion and cycling exercise, the ethical advisory 

committee of Loughborough University raised the question whether glycerol 

ingestion and the resulting increase in plasma volume would increase blood 

pressure, and whether such an increase would pose a safety issue during cycling.  

In order to answer this question four volunteeres (3 male, 1 female) cycled on two 

occasions following ingestion of either lemon- flavoured water (6 ml·kg-1 body 

mass) or a lemon-flavoured glycerol solution (1 g·kg-1 body mass glycerol;  

6 ml·kg-1 body mass total solution volume). 

 

After the participants arrived at the laboratory they were seated comfortably for a 

period of 20 min, and then the first blood pressure measurement was taken using 

the Omron MS-I automatic blood pressure monitor (Omron Healthcare, Inc.,  USA).  

Immediately after, the subjects ingested either lemon flavoured water or the lemon 

flavoured glycerol solution and remained seated for a further 25-min period before 

moving onto the cycle ergometer.  Exercise commenced 30 min after ingestion of 

water or the glycerol solution, as at this time point plasma volume expansion 

reaches its peak value following glycerol ingestion. Exercise consisted of 5 min 

cycling on an electrically braked cycle ergometer (Gould, Bilithoven, The 

Netherlands) at a constant intensity equal to 50% of the maximum workload 

achieved during a previously performed VO2max test.  The cycle ergometer seat 

was adjusted according to the height of each participant.  The participants were 

allowed to pedal at a cadence of their choice, but higher than 60 rpm.  Two blood 

pressure measurements were taken when the participants were on the bike; one 

resting measurement before exercise and another measurement during the last 

minute of exercise whilst the participants were still pedalling.  In order to take 

blood pressure measurements the participants would release the left arm from the 

bicycle handle bars and tried to maintain minimum movement of the upper body.  

Attempts to measure blood pressure at higher cycling intensities often ended in 
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failure as there was great body movement by the participants and valid blood 

pressure readings could not be obtained. 

 
 
Results 
Blood pressure measurements showed that blood pressure was not affected by 

glycerol ingestion and the subsequent increase in plasma volume.  Systolic blood 

pressure during submaximal cycling was (mean ± SD) 161 ± 16 mmHg on the 

water trial and 156 ± 19 mmHg on the glycerol trial.  Diastolic blood pressure was 

80 ± 6 mmHg on the water trial and 72 ± 6 mmHg on the glycerol trial.  Table 1 

below shows systolic blood pressure of each participant. 

 
 Table 1.  Systolic blood pressure (mmHg). 

 

 Water trial Glycerol trial 

Participant Rest 

Rest 

on 

bike 

Exercise Rest 

Rest 

on 

bike 

Exercise 

1 120 117 168 120 120 146 

2 125 125 153 119 120 156 

3 120 120 142 99 94 139 

4 140 140 179 127 133 183 

Mean 

±SD 

126 

±9 

126 

±10 

161 

±16 

116 

±12 

117 

±16 

156 

±19 

 

 

Conclusion 
From the above results it was obvious that compared to a control trial, glycerol 

ingestion does not increase blood pressure during rest, nor at a submaximal 

cycling intensity.   

From data taken previously in the laboratory, plasma volume increases by ~7.7% 

and blood volume increases by ~4.5% following glycerol ingestion.  These 
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changes in plasma and blood volume are moderate in comparison with other 

studies (Table 2) where plasma volume expanders were used.  Blood pressure 

was monitored in the studies described in table 2 and there was no difference 

between control and plasma volume expansion conditions. 

 
Table 2. Studies on plasma and blood volume expansion which measured blood pressure. PV – 

plasma volume, BV – blood volume, BP – blood pressure. 

 

Authors 
PV and BV 
expansion 

Type of 
exercise used 

Blood pressure 

Hopper et 

al., 1988 

PV↑ 20% via 

infusion of 6% 

dextran 

solution 

Cycling at 

50% and 60% 

VO2max 

BP measured 

sphygmomanometrically. No 

difference in BP between 

conditions. 

Kanstrup 

and Ekblom, 

1982 

BV↑ 12.6% via 

infusion of 500 

– 1000 ml of 

6% dextran 

solution 

Cycling at 100, 

150, 200W 

and maximal 

intensity 

running 

exercise to 

exhaustion 

BP measured via an arterial 

catheter. 

No difference in BP between 

control and BV expansion 

conditions. 

  

 

 

Other studies also studied acute effects of plasma and blood volume expansion on 

aerobic exercise but without monitoring blood pressure (Table 3).  In these studies 

there were no reports of any adverse health effects following plasma and blood 

volume expansion. 
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Table 3. Studies on plasma and blood volume expansion that did not monitor blood pressure. 

 

Authors PV and BV expansion Type of exercise used 

Zavorsky et al., 2003 
BV↑ 8.3% via infusion of 

500 ml Pentaspan 

6.5 min cycling at 

~92% VO2max 

Coyle et al., 1990 
PV↑ 11% via infusion of 

6% dextran solution 

Running at 75% 

VO2max,  

95-100% VO2max, and 

110% VO2max 

 

Based on the data collected during this pilot study and from other studies in the 

literature, it was safe to assume that glycerol ingestion and the subsequent blood 

volume expansion did not pose any health risks regarding blood pressure.  

Furthermore, it was made certain that all participants in the cycling studies would 

be recreationally active, accustomed to cycling and high intensity exercise, as they 

would be asked to reach volitional exhaustion. 
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