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1.  Introduction 

Engineering design is a complex decision-making process and, often, decisions have to be 
based on incomplete and uncertain information. Usually, design analysis is conducted to aid 
this decision-making process using some form of mathematical model (Shigley and Mischke 
1989) for fast and economic evaluation of design performance compared to prototype testing. 
Typically, design analysis is performed as rough calculations in early design iterations, and as 
the design proceeds and becomes more complete, complex computational models may be 
used. Design analysis typically involves key stages including failure modes identification, 
mathematical modelling, computer coding, representation of design variables and output 
interpretation. The performance parameters that emerge are used to identify how well design 
requirements such as fatigue strength or reliability are satisfied and to inform the 
identification of design changes such as modifications to dimensions, materials or 
manufacturing processes to overcome limitations. Owing to pressure to reduce product 
development cost and time, computer simulations have become essential in the development 
of modern engineering products. However, many large-scale developments of engineering 
products still rely heavily on physical testing. For instance, an estimated 40% of the cost of 
product validation in automotive industry is due to the manufacture of prototypes (Honeywell 
2001).  

Integrated Product Development (IPD) emphasises the integration of Computer Aided 
Engineering (CAE) and analytical tools in the process of analysis and evaluation leading to 
the modification and refinement of the product models (Ohsuga 1989). The migration of 
product evaluation from physical to virtual testing has increased the possibility for errors due 
to the presence of uncertainties in simulation processes. Uncertainty prevails in many aspects 
of design analysis – it may arise from the representations of the data, model or process or 
from variations in natural phenomena.  It may also relate to human factors (e.g. error in 
procedures, choice of alternatives). Model and parameter uncertainties often contribute to 
discrepancies between observed and predicted results due to simplification and 
approximation, incomplete knowledge, lack of data etc. Even if the modelling procedures are 
carried out with the best available knowledge and using the most advanced computer tools, 
modelling predictions may still be in error compared to physical observations. Poor 
understanding of uncertainty and therefore limitations in analysis significantly reduces the 
ability to propose more radical designs. For simulation-based design to be successful, there is 
a need for more formal organisation of knowledge to aid decision-making for technical 
management of the IPD process. This is a crucial requirement if design is to move away from 
a dependence on physical prototype test and expensive development programmes. 
Appropriate knowledge organisation and management will allow a judgement to be made on 
the confidence that can be placed in a simulation process and will indicate where data 
collation, experimental work and research and development are needed to allow a simulation-
based design environment to operate. 

This paper discusses a framework for uncertainty characterisation based on the organisation 
of the extent and nature of knowledge regarding the design leading to the development and 
characterisation of error functions for the representation of disparity between simulation 
results and experimental and in-service observations. The framework was developed based on 
characteristics deduced from twenty literature cases from different design domains, and these 
involve varying degrees of uncertainty in the simulation data and varying quantities of 
evidence from test or service performance. These cases illustrate the rationale for the 
development of suitable error functions for each of the categories in the classification they 
represent. Two case studies conducted as part of the research on this subject are also used to 
substantiate the framework proposed and are elaborated with regards to the framework and 
error functions. The error characterisation is to be incorporated into design simulation and 
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analysis, particularly in the modelling of variant design applications in order to facilitate 
informed decisions with improved confidence and reduced risks. It is envisaged that many 
companies could potentially benefit from better utilisation of knowledge and observations 
from in-service experience and in particular past failures as they migrate from testing to 
simulation-based design. 

2. Methods for uncertainty characterisation in engineering design 

Approaches to engineering design under uncertainty have traditionally been deterministic, 
which is based on the use of Factor of Safety (FS) to accommodate unknowns. The FS are 
applied in the design of structures to allow for uncertainty in loading, the statistical variation 
of material strengths, inaccuracies in geometry and theory and the grave consequences of 
some failures. Deterministic approaches fail to effectively quantify uncertainty for reliability 
and safety as the selection of parameter values greatly depends upon the engineer's knowledge 
and experience resulting in inconsistent or sub-optimal designs. The complexity of modern 
products and their modelling in CAE systems necessitate a more complete understanding of 
uncertainty in order to achieve improved accuracy and reliability in the end results. As a 
precursor to further discussion, some useful methods for uncertainty characterisation in 
engineering design are briefly reviewed.  

2.1 Probability theory 
The advantage of probability theory in uncertainty characterisation for safety and reliability 
analysis is evident due to the inherent variability in loading and strength (Cornell 1969; 
Pugsley 1966). Probability theory makes use of the same models as deterministic design, but 
accounts for variability in the design parameters by describing these as random variables 
determined ideally from testing statistically large sample sizes of the characteristics and 
properties of interest. Computational and statistical methods are then used to investigate the 
combination and interaction of these design parameters in the performance function or failure 
models. By far the most appropriate means for characterising uncertainty of variability type is 
through Probability Density Functions (PDF) (Moens 2004), providing sufficient information 
on the frequency of occurrence characterised by the PDF is available.  

An important application of probability theory is in the prediction of reliability or Probability 
of Failure (POF). For example in reliability analysis, the load and strength can be represented 
by PDFs and the POF can be evaluated by the integral of the joint probability function, p(x) 
of the random variables in the system over the entire failure region as:  

∫∫ ⋅⋅⋅= dxxpPOF
gionfailure re

)(  (1) 

The algebra of random variables can be applied for arithmetic operations concerning normally 
distributed variables (Haugen 1980). The variance for a function g(xi) of a combination of 
more than two statistically independent variables, xi can be analytically approximated by the 
variance equation, where σ is the variable standard deviation and μ is its mean as: 
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Many advanced computational techniques based on the probability theory are available (Riha 
et al. 2002), for example, Advanced Mean Value (Wu 1987), Fast Probability Integration (Wu 
1987), Monte Carlo and Latin Hypercube simulations (McKay 1979). These techniques have 
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been successfully applied in the design of aircraft and marine structures (Ayyub and de Souza 
2000; Mavris and deLaurentis 2000). 

2.2 Interval analysis 
There are many situations where uncertainty cannot be expressed using PDFs owing to lack of 
precise knowledge of probability information. In this situation, interval numbers representing 
the range of parameter values by lower and upper bounds, i.e. the intervals of deviation of a 
parameter from its nominal value may be a useful approach. The mathematics for handling of 
interval numbers is called the interval analysis or interval arithmetic (Moore 1966). The 
interval arithmetic (or analysis) deals with arithmetic operations involving interval numbers, 
given by: 

[ ] [ ] { }dycbxayxdc,ba, ≤≤≤≤Θ=Θ ,|        (3) 

where Θ denotes +, -, *, and /, except that [a, b] / [c, d] is not defined if 0 ∈ [c, d]. 

An important property observed for the interval arithmetic is that the distributive law is not 
always true but it can be shown that for any interval numbers X, Y, and Z:  

)*()*( )(* ZXYXZYX +⊆+  (4) 

which is known as subdistributivity. A key issue in interval analysis is that it is over-
conservative with repeated variables, although there are developments towards overcoming 
this. These will not be discussed here but readers are referred to Rao and Berke (1997) and 
Ugarte and Sanchez (2003). Applications of interval analysis have been observed largely in 
structural analysis and optimisation (Rao 1997; 2002), with recent development of the interval 
Finite Element Analysis (FEA) (Modares et al. 2004; Tzannetakis et al. 2004). 

2.3 Fuzzy set theory 
In Fuzzy set theory, a formal definition of the possibility distribution is given by Zadeh 
(1975) in which A is assigned as Fuzzy set over a universe of discourse with a membership 
function, Aμ , defined between 0 and 1: 
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The proposition “X is A” associating the variable X with the concept represented by A, 
induces a possibility distribution ΠX on X which restricts the values which X may take. Thus, 
the possibility distribution function of ΠX, denoted by πX is defined to be numerically equal to 
the membership function of A as : 

A  allfor    )()( ∈=
Δ

xxx AX μπ  (6) 

Standard arithmetic and algebraic operations can be extended to Fuzzy arithmetic and Fuzzy 
algebraic functions by means of the extension principle (Zadeh 1975). The extension principle 
describes the mapping from Fuzzy sets A1, …, An in X1, …, Xn to a Fuzzy set B in Y through 
the function f, where ( )nAAfB ,..,1= . The membership function of B is given by: 
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An important concept in Fuzzy theory is the notion of α-cut, as illustrated in Figure 1. For a 
number α in the unit interval [0,1], an α-cut of a Fuzzy set A is a real set that consists of all 
elements whose membership in A are larger than or equal to α, which is written 
mathematically as (Klir and Smith 2001): 

{ }αμα ≥= )(| xxA A  (8) 

Fuzzy set has been used to represent the concept of plausibility of a value under a possibility 
distribution (Zadeh 1978). An imprecise parameter may be assigned with a membership 
function corresponding to various degrees of possibility, indicated by α-levels. The concept of 
possibility has been criticised due to the lack of an operational definition (Cooke 2004), 
however the author admitted that such definition is not impossible. Given the extensive 
research on this topic and more applications in solving real world problems, we contend that a 
definition would emerge eventually. We refer to the early concept of possibility defined by 
Shackle as the degree to which an observer would be surprised by an occurrence (or potential 
surprise) (Parson and Hunter 1998). According this definition, if an event is wholly possible, 
then there is no surprise attached to its occurrence, vice versa, if an event is believed to be 
wholly impossible, then its occurrence will be accompanied by the maximum degree of 
surprise. This notion is consistent with the heuristic connection between possibility and 
probability, i.e. any event that is probable must also be possible but the converse is not true 
(Zadeh 1978). Mathematically, the relationship between probability and possibility known as 
the consistency principle can be expressed as an inequality relationship (Dubois 2004): 

P(x) ≤ ∏(x) for ∀x ⊆ ℜ (9) 

where  P(.)  = probability 

 ∏(.)  = possibility. 

For the representation of numerical uncertainty, a class called the normal Fuzzy numbers is 
generally used (Moens 2004). A normal Fuzzy number has a maximum value of unity with 
membership increasing towards the peak and decreasing away it as shown in Figure 1. The 
real interval corresponding to α=1 for an imprecise parameter assigned with a Fuzzy number 
indicates values of definite possibility, values between this point/range and the support1 have 
uncertain memberships, and any values beyond the support have no possibility of occurrence. 
The wider the support is, the greater the imprecision in the parameter (Wood et al. 1990). 
Fuzzy sets best describe uncertainty due to imprecision, applications of which have been seen 
in structural analysis and evaluation, and also in representing uncertainty in early design 
attributes etc. (Möller et al. 2000; Stroud et al. 2001; Venegas and Labib 2005).  
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1 The support is a real set of all values of a Fuzzy set where the membership is greater than zero. 
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Figure 1 Notion of α-cuts in Fuzzy theory 

2.4 Uncertainty in Engineering Design 
The initial stages of the design process are most uncertain owing to under-defined and 
ambiguous information regarding the product to be designed. Hans-Jurgen suggested that the 
engineering design process starts with mostly linguistic and only partly interval-valued or 
numerical information but aims to obtain mostly numerical information (Hans-Jurgen 2002). 
Therefore, by definition, the nature of information uncertainty evolves during design as it is 
subjected to continual refinement (Giachetti 1997). As design knowledge is accumulated from 
testing and analysis throughout the course of the product introduction process (Fajdiga et al. 
1996), uncertainty in the data and model becomes more important to resolve, but at the same 
time the understanding of uncertainty more complete and thus probabilistic methods may be 
suitable (Moens 2004). Probabilistic methods require accurate description of data and model 
to enable meaningful results to be produced. In most design problems and especially in the 
early stages, data for estimating probability distributions is particularly limited. Probabilistic 
methods are thus likely to be inappropriate where the impact of uncertainty in design is 
greatest. In fact, the success of classical probability methods has been largely confined to 
those well-established design domains that have sufficient information for probabilistic 
analysis to be carried out. 

As noted, uncertainties in design process and analysis are traditionally accounted for in an 
informal and ad hoc manner, for example, through the use of safety factors and conservative 
calculations. As variability and uncertainty inherent in the process and system are not 
explicitly defined, deterministic approaches are not conducive modern risk assessment, 
reliability prediction and robust design (Langley 2000). Deterministic approaches often lead 
to suboptimal products and in some situations, opportunities for designing more competitive 
design solutions may be lost (de Neufville 2004). Previously there have been attempts to 
bridge the design philosophies of safety factor and probabilistic uncertainty (McCalley 1957; 
Mischke 1970) but with limited success. In this respect, the possibility theory is a promising 
approach in order to facilitate uncertainty definition where limited information exist, therefore 
providing a mechanism to express uncertainty levels that are not suitably quantifiable by 
intervals or PDFs. The various uncertainty theories are, however, based on different axioms 
and research is generally limited to and done within the frameworks of these axioms. It is 
important that a conceptual framework is provided to capture the evolving nature of 
uncertainty and to allow for its impact on the decisions that are taken during the design 
process to be more fully appraised. Besides, formal information and decision-support systems 
are also decidedly weak in supporting management of uncertainty in engineering design and 
simulations. The framework presented below may provide a suitable basis for incorporating 
uncertainty in such systems. 

  

3. Framework for uncertainty characterisation 

To allow the evolution of knowledge regarding uncertainty throughout the course of a design 
analysis domain, a framework for aiding uncertainty management in the product development 
is devised. The framework will allow the assessment of confidence and uncertainty before the 
design becomes mature, and help in minimising risks in decisions based on simulation 
outcomes during development stages. The basis for the framework was drawn from 
experience with case studies and deduction from a wide range of literature cases. The design 
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analysis characteristics are first outlined prior to the discussion of a classification for 
organising knowledge of uncertainty in design simulations. 

3.1 Design analysis characteristics 
It is hypothesised that engineering design analyses of the type the paper will address have the 
following characteristics but not all aspects will always be present. These characteristics can 
be identified in the supporting cases presented in a later section.  

(1) A true relationship exists between the inputs and the outputs for the performance 
function. 

A true relationship refers to the actual behaviour of a real physical system in relation to some 
external parameters, where various aspects of its behaviour are governed by the laws of 
physics and other sciences. Engineers seek to represent these true relationships as faithfully as 
possible using their knowledge of the governing physical phenomena in the system of interest. 
However, their understanding is often limited by commercial pressures and legislation and, as 
a result, modelling activities are a compromise between model detail and available resources 
(Apeland et al. 2002; Sargent 1998). A true relationship will exist for relating the design 
parameters to the performance parameters (for each specific function of the artefact). 
However, there will always be uncertainty and incompleteness in the modelling of this true 
relationship, and these may be reduced only if resources are expended to build and validate 
the models.  

(2) Evidence from in-service experience of the artefact performance may be related to 
the function. 

In-service evidence is collected from products subjected to real use conditions and is a result 
of users’ interactions with the products. An example is evidence of the range of input values 
for which satisfactory (or unsatisfactory) performance of the product has been observed. The 
evidence may apply only to the overall functions (e.g. there may be knowledge that an artefact 
has a developed a fatigue crack, but no measurements of the stress cycles that have led to the 
crack). Notionally, companies will have collected industry-specific experience with in-service 
product behaviour, failure records and correlation analyses related to their products.  

(3) Experimental or test evidence exists for the relationship between inputs and outputs. 

This evidence is collected when products are subjected to a series of load cases which are 
representative of the expected in-service conditions. Prototypes may be built and tested under 
predicted in-service conditions and need to meet the performance criteria set in the testing 
phase. Some physical tests may be performed before sign-off to investigate critical aspects 
related to the product performance. These are often limited as testing is generally costly and 
time-consuming, which are seen as competitive disadvantages. 

(4) Analytical functions exist that provide the relationship between the inputs and 
outputs of the system behaviour.  

For each load case, the function may be approximated or modelled from physical principles or 
sometimes, heuristics to reflect the true relationship in characteristic (1) above. These 
analytical functions will deviate from the true relationship owing to limitations in the 
modelling approach. lack of knowledge and deliberate simplifications for economy and 
convenience (Nilsen and Aven 2003). Alternative models will be available for the analysis of 
a performance target depending on the level of detail or accuracy desired. Examples of 
models used for analysis are: 

a. Analytical equations derived from first principles. 
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b. Numerical models, e.g. FEA and Computational Fluids Dynamics (CFD) where the 
boundary conditions, mesh sizes and other analysis variables have great influence on 
the accuracy of the results. 

(5) Approximation functions may be identified for the analytical functions. 
Approximation functions have been used for decades in empirical model building. Empirical 
relationships obtained from observation of a set of data and often used when the behaviour of 
interest is too complex to model using first principles. More recently, approximation functions 
such as response surface functions have become more popular in probabilistic design to avoid 
the repeated computation of complex actual performance functions (Bucher and Bourgund 
1990). An approximate model over a limited region of interest may be obtained by fitting a 
metamodel to the relationships in characteristics (3) and (4). The approximate models 
introduce additional errors due to deliberate simplification in approximating the actual 
functions (for example through the use of low order polynomials) (Box and Draper 1987). 

(6) Design parameters that characterise the relationships in (4) and (5). 

Design parameters are defined by Nam Suh (2001) as the key physical variables in the 
physical domain that characterise the design that satisfies the specified functional 
requirements. The design parameters may have great influence on the accuracy of predicted 
results as uncertainty in them is propagated through the functions in characteristics (4) and (5) 
to the performance parameters. These functions will be generally referred to as the transfer 
functions. Distinction may also be made between controllable and uncontrollable design 
parameters. Controllable parameters can be varied (by designer’s choice) over the design 
space to achieve the desired product design such as design and tuning variables. Examples of 
uncontrollable parameters include environmental variables and noise. Design parameters may 
be of discrete or continuous nature, and may be statistically correlated or dependent on one 
another. For discrete variables, probability mass functions and discrete Fuzzy numbers can be 
used instead to represent the uncertainty. All the uncertainty in these parameters will be 
propagated to the performance parameters through the transfer functions.  

Performance simulation of an engineering product may involve multiple design targets, each 
associated with different load cases and failure modes. The analysis of each load case will be 
based on design parameters, and will involve one or more transfer functions for the 
computation of the performance parameters of interest. Transfer functions are known as 
performance functions when the characteristics of interest relate to the performance of a 
product, or objective functions in optimisation problems. These transfer functions may take 
different forms depending on the mechanism for the physical process. For instance, the 
thermal fatigue, mechanical fatigue and wear of an engine will be modelled differently. In 
design simulation, virtual prototypes built on various theories and computational models will 
be tested against the performance targets that the product is designed to achieve, and the 
performance parameters identified from these virtual prototypes may be compared to physical 
evidence to verify the accuracy of the virtual evaluation. A classification that organises the 
comparisons between predicted and observed performance parameters is presented next. 

3.2 The classification of uncertain design correlations 
The framework proposed in this paper allows the design correlations described in section 3.1 
above to be classified according to the extent and nature of the evidence concerning 
uncertainties both in design data and in the simulation models. A classification that organises 
the knowledge of this evidence through a 3 dimensional Cartesian system is shown in Figure 
2. The axes of this figure are: i-axis – knowledge of uncertainty in the performance parameter, 
j-axis – extent of the physical performance evidence and k-axis – number of entities in the 
performance space. The i- and j-axes are scaled according to the completeness of data 
available for characterising the variables. The performance space (k-axis) is organised 
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according to the number of solutions of the design concept for which knowledge and evidence 
of uncertainty for a performance target are available. The origin (0,0,0) represents cases with 
novel concepts where no prior information can be drawn from existing system or analysis 
model. In this situation, indirect and subjective evidence is sought to accumulate further 
understanding about the system to be designed. When sufficient confidence is attained in a 
design solution, further examples may be produced and experience with them will validate 
initial findings. For an established design there may be many exemplars, and as more similar 
systems are designed and validated, the knowledge accumulated in this manner enhances the 
knowledge base for adaptations of the design, signifying the progression of design know-how, 
i.e. knowledge for each axis improves as one moves away from the origin. The definitions for 
scales in each axis are detailed in subsequent sub-sections. 

 

Figure 2 Classification of uncertain design correlations, (i, j, k) = (performance parameter, evidence, 
performance space) 

3.2.1 Performance parameter (i-axis) 
The performance of the design is characterised by performance parameters, derived from the 
design parameters by considering the design subject to some operating regime, and as 
previously noted, the relationship between design parameters and performance parameters 
may be considered to be modelled by some form of transfer function(s). Variability and 
uncertainties can be found in the design parameters (e.g. dimensional or material properties), 
in the characterisation of the operating regime (the load cases) and in the transfer functions 
themselves (Barton 1999). As said, models used in the mapping are approximations to real 
world systems, in which there are conditional assumptions, limited available data or 
incomplete knowledge (Laskey 1996). Therefore, uncertainty in both design parameters and 
transfer functions is reflected in the performance parameters.  

A classification of performance parameters according to the completeness of the data used to 
describe them has been devised. The scale progresses from the limited data contained in a 
single deterministic value to the increasing completeness or precision of a PDF, as shown in 
Figure 2. The definition for each scale position in the i-axis is: 
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1. ‘Deterministic’ means the output of a transfer function is only available for a single value 
(or set of values), obtained by propagating a nominal set of design parameters through the 
function. 

2. ‘Interval value’ means the output of a transfer function is available as intervals with no 
information of the likelihood of occurrence except for the absolute lower and upper 
bounds. This interval value is derived from objective rather than subjective information. 

3. ‘PDF’ means the output of a transfer function is described probabilistically. The normal 
distribution is supposed here due to its wide use in engineering but other types of PDFs 
such as the Weibull and lognormal may be used (Bury 1999). 

3.2.2 Evidence (j-axis) 
Evidence regarding the actual performance of the modelled artefact is typically gathered from 
in-service product behaviour, failure records, prototype tests and correlation analyses for 
similar but not necessarily identical products. Correlations and validation of simulation results 
against experimental test data can be complicated by the lack of evidence due to resource 
constraints and by difficulty in obtaining real life data, but in some cases there may be 
abundance of evidence for engineers to draw correlations against. Therefore, evidence of 
varying degrees may exist for correlations and used in validations to justify the confidence in 
design analysis (Kleijnen 1995). The scale for classifying the availability of validation 
evidence has been defined as follows: 

1. ‘Single’ observation – validation evidence is available for a single observation only, for 
example from a prototype test. 

2. ‘Range’ of observations – validation evidence is available for a small number of 
observations, but no inference on likelihood could be drawn from these observations 
except for the absolute bounds. 

3. ‘Statistical’ set of observations – validation evidence is available for a large number of 
observations, sufficient for statistical data to be derived, providing a reliable source of 
evidence. 

Besides the classification according to the extent of evidence available, the classification of 
evidence may need to be extended, for example, to cover for its source. The sources of 
evidence available for correlation purposes can be distinguished as primary and secondary 
sources according to their correspondence with the analysis. In general, the primary evidence 
provides a direct correlation between modelling results and experimental measurements for an 
engineering product leading to the highest confidence for validation purposes. Where primary 
evidence is not available, secondary or indirect evidence may have to be sourced from 
experience with the performance of similar products in similar service conditions or from 
other similar cases where the same manufacturing process is used. Using this type of evidence 
involves some decision-making in justifying its confidence and reliability. Some examples of 
secondary evidence are: 

• Evidence of performance of similar techniques for similar models – e.g. generic 
confidence in CFD models or the NAFEMS technical benchmarks (NAFEMS 2005) 
used to draw conclusions about the current numerical model. 

• Evidence of satisfactory/unsatisfactory performance of similar but not identical 
artefacts – e.g. in-service or historical evidence of satisfactory or unsatisfactory 
performance of artefacts. 

• Evidence of performance of parts of a more complex process – e.g. stress analysis as 
part of a fatigue analysis process. 
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• Results from other validated models – e.g. verification of results from a new method 
by comparison with conventional solutions. 

In case of secondary evidence, metrics for establishing proximity and similarity will need 
to be developed in order to relate to a performance of interest. For instance, methodology 
similar to those described in McAdams and Wood (2002) to determine the functional 
similarity between products may be useful.  

3.2.3 Performance space (k-axis) 
The performance space is the solutions region that has resulted from the exploration of several 
parameterisations of the design parameters for a product (as in parametric design). For 
example, load capabilities may be produced for bearings of various sizes but a single design 
principle. Both analysis and evidence about product performance may exist for a single set of 
product parameters (e.g. fatigue life of a particular bearing geometry), or more extensively for 
a wide range of parameters in the feasible design space (e.g. fatigue life for many similar 
bearings of different sizes). For state-of-the-art systems, analyses and tests for each 
performance parameter may have been conducted only for a specific design instance. In 
others, usually several combinations exist and the same type of analytical procedures and tests 
may have been conducted for verifying the behaviour of a number of instances. The latter 
enables the comparisons of predicted results with experimental data for more parametric cases 
to evaluate the modelling capability in the performance space. The classification proposed 
categorises the performance space into three main groups: 

1. ‘One’ means the correlation of performance parameter and evidence is only available for 
a single instance.  

2. ‘Small number’ means the correlation of performance parameter and evidence is 
available for a few instances to suggest the correlation within a limited range of 
parameters in the performance space.  

3. ‘Large number’ means the correlation of performance parameter and evidence exists for 
a relatively large number of instances to suggest the significant understanding of the 
correlation in the performance space.  

In truth, the performance space may be continuous or discrete consisting of numerous points 
constrained by the feasible solutions region, therefore discretisation of the scale is arbitrary 
and can only be defined in context. The categorisation may be judged taking into 
consideration the number of instances required to fit a sufficiently ‘good quality’ performance 
surface. This can be influenced by, for example, the nature of the function and dimensionality 
of the design space. 

The classification proposed intends to cover diverse situations in engineering validation. For 
example, in cases where the collection of experimental evidence on the behaviour of the 
whole artefact is prohibited by cost or difficulty in obtaining real data (e.g. reliability of 
nuclear plant), engineers typically resort to extensive use of secondary evidence combined 
with highly conservative design strategies. In complex analysis cases, deterministic analysis 
may be carried out but a large amount of physical evidence may be collected to qualify 
performance of a design against the specified values of the design targets or functional 
requirements in the design process. For well-established design principles and extensive field 
experience it may be possible to undertake fully probabilistic analysis. To substantiate and 
populate the classification in the framework, various cases from different design domains 
have been collected and will be discussed in a later section.  



 12

4. Error functions 

From the evaluation of the requirements for uncertainty characterisation, a method for 
representing the disparity between simulation results and experimental observations via error 
functions is developed next. The requirement for the error functions is to record uncertainty 
information from existing systems and to populate the error characterisation for use in future 
design applications to assist decision-making and to improve simulation results. From the 
various combinations of model, data and the extent of available evidence, it is proposed that it 
may be possible to identify an error function for each load case, design target or failure mode 
using: 

 Evidence = Transfer function Θ Error function  (10) 

where  Θ = addition and/or multiplication.  

The addition or multiplication operations allow for correction of the predicted response from 
the transfer function to better reflect the reality. Similar formulations have been mentioned by 
Zio and Apostolakis (1996) in what was termed an ‘adjustment factor approach’. According 
to the authors, the adjustment factor may assume a hypothetical PDF reflecting the model 
prediction uncertainty (in effect a Bayesian belief). The approach however, seems to have 
only been adopted in an ad hoc manner in risk analysis.  

4.1 Uncertainty characterisation with error functions 
The classification in the proposed framework leads to several categories of correlation case as 
summarised in Table 1. The table illustrates the categories of correlations with varying 
degrees of uncertainty describing the i- and j- variables, obtained from analytical and physical 
evaluation respectively. This categorisation may be used to suggest the most appropriate 
method for handling uncertainty in the design simulation including Fuzzy set theory, interval 
analysis and probability theory. Suitable error functions may be formulated for each category 
using the conventional uncertainty theories singly, or in combination. The scales in the k-axis 
classify the extent of knowledge available for correlation according to experience with past 
variants but have no effect on the formulation of error functions within the categories. Figure 
3 illustrates two distinct classes. The unhatched area (A, D, F) indicates correlation between 
parameters is characterised by a single uncertainty theory (probability theory (F), interval 
analysis (D), Fuzzy set theory (A)). The hatched area (B, C, E) indicates correlations that 
require a combination of uncertainty theories to formulate an error function. Even though the 
mathematics within conventional uncertainty theories is well established, research in dealing 
with a combination of different uncertainty theories is less mature (Ferson 2004). A hybrid 
approach for characterising probabilistic uncertainty and imprecision has been proposed using 
the probability box (or p-box) (Ferson 2002) where some applications are reported (Rekuc 
2006). Several transformations have been proposed in the literature Dubois et al. (2004), Klir 
and Smith (2001) and Zadeh (1978) according to the consistency principle in Eq. (9). In this 
paper the principle of maximum specificity proposed by Dubois et al. (2004) is adopted for 
the transformation from probability to possibility for deriving the error functions in the 
combined categories. The possibility distribution, ∏(x) that optimises the information content 
obtained from this transformation encodes the family of confidence intervals around the mode 
of the PDF, p(x), i.e. the α-cut of ∏(x) is the (1 - α) confidence interval of p(x) (Dubois 
2004). 
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Table 1 Categories of correlation between analysis and experiment results (i - performance parameter, j - 
physical evidence and k - performance space) 

Cate-
gory Graphical representation Cate-

gory Graphical representation 

A 
 

 
(1, 1, k) – The performance 

parameter is characterised by 
deterministic data and the 

experimental evidence by a 
single value. 

B 

 
i. (1, 2, k) – The performance 

parameter is characterised by 
deterministic data and the 

experimental evidence by a 
range of values. 

ii. (2, 1, k) – The performance 
parameter is characterised by 

interval value and the 
experimental evidence by a 

single value. 

C 

 
i. (1, 3, k) – The performance 

parameter is characterised 
by deterministic data and 
the experimental evidence 

by statistical data. 

ii. (3, 1, k) – The performance 
parameter is characterised 
by distribution function 

and the experimental 
evidence by a single value. 

D 
 

 
(2, 2, k) – The performance 

parameter is characterised by 
interval value and the experimental 

evidence by a range of values. 

E 

 
i. (2, 3, k) – The performance 

parameter is characterised 
by interval value and the 
experimental evidence by 

statistical data. 

ii. (3, 2, k) – The performance 
parameter is characterised 
by distribution function 

and the experimental 
evidence by a range of 

values. 

F 
 

 
(3, 3, k) – The performance 

parameter is characterised by a 
distribution function and the 

experimental evidence by statistical 
data. 
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Figure 3 Precision of error functions and the progression of confidence 

A pragmatic method for recording uncertainty information is proposed by separating the first 
and second moments of data to capture the systematic and random aspects of uncertainties for 
existing systems in correlation with evidence. In statistical terms, the first moment of a 
sample of data is the central tendency (or mean), and the difference between the means of the 
actual and predicted performance parameters is the systematic or bias uncertainty measure, ϕ. 
The second moment of data is the measure of dispersion (or variance), and the difference 
between the variances of the actual and predicted performance parameters is the random 
uncertainty measure, ε. The Error Functions (EF) can be defined as: 

 EF (ϕ, ε) = f(φreal, φTF, δreal, δTF) 
( )

⎩
⎨
⎧

=
φφ−φ=

TFreal

2

TFTFreal

1

/δδε:EF
/φ:EF

 (11) 

where EF1 denotes the error function accounting for systematic discrepancy  

EF2 denotes the error function accounting for random discrepancy 

φreal = first moment of the observed performance parameter  

φTF = first moment of the predicted performance parameter 

 δreal = second moment of the observed performance parameter 

 δTF = second moment of the predicted performance parameter. 

This definition of systematic and random uncertainty measures can be extended to cases 
described by Fuzzy and interval numbers, by denoting the first and second moments of data 
with their equivalent parameters, e.g. φ = average and δ = range of an interval number.  

The current development of error functions is based on the assumption of symmetric data and 
that, for a deterministic parameter, a suitable Fuzzy number may be elicited from experts. A 
deterministic design approach results in loss of second moment (or spread) information. 
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Category A is the correlation between a deterministic performance parameter and a single 
source of evidence. In this situation, engineers are uncertain about the bounds or probability 
of the predicted and experimental responses and need to rely on their expert judgment or 
experiential knowledge with regard to the uncertainty, which will be imprecise in this case. 
We suggest that for a deterministic parameter, a suitable Fuzzy number may be elicited from 
experts to represent a subjective assessment of imprecision in the performance parameter and 
evidence, by assigning a possibility distribution through a membership function, μ(x) to it 
(Zadeh 1978). In fact, intervals and subjective probability distributions (a Bayesian approach) 
are also legitimate candidates for representing uncertainty in the lack of objective data. The 
choice is with the engineer but the results should be interpreted accordingly. Systematic and 
structured methods are important to ensure the precision and reliability of subjective measures 
obtained (O'Hagan 1998) and methods have been proposed and studied (Gong 2006; Sandri 
1995). Some researchers have claimed that the expression of possibility and Fuzzy set appears 
to be more pragmatic and intuitive to experts when judgement is required (Raufaste et al. 
2003). In this paper, the focus is on the development a framework that enables a consistent 
interpretation of confidence in the simulation predictions in the light of evolving uncertainty 
in the design process. We assume that, in all cases, the quality of input data to the system is 
the best in class and should be refined continually as new knowledge and evidence becomes 
available.  

Uncertainty is widely classified into aleatory and epistemic: aleatory uncertainty refers to 
stochastic variability whereas epistemic uncertainty refers to the lack of knowledge. 
Separation of aleatory and epistemic uncertainty has been widely recognised but little work is 
seen in mitigating both types of uncertainties in simulation-based design environments (Du 
2000). It is envisaged that the isolation of systematic and random uncertainties will better 
represent epistemic uncertainty and stochastic variability arising from simulation processes. 
Although the error functions will not correct for uncertainty with absolute accuracy, they are 
potentially useful to give insights into the accuracy of the data and models used in simulation 
procedures for design applications. The uncertainty measures in error functions can be applied 
for corrections of another design simulation via: 

φreal = φTF (1+ ϕ)  (12) 

δreal = δTF * ε  (13)  

And also from Eq. (11), we can see that the errors are minimum when: 

ϕ → 0 and ε → 1 (14) 

where ϕ = systematic uncertainty measure 

 ε = random uncertainty measure. 

The error functions support uncertainty characterisation by indicating the discrepancies in 
modelling and observed results, aiding the assessment of confidence in data and model 
representations for an analysis procedure. For example, the systematic uncertainty measure, ϕ, 
may be used to judge if a modelling approach is consistently over (ϕ < 0) or under-estimating 
(ϕ > 0) the actual behaviour or performance parameter of interest. Accuracy in alternative 
models may be compared and over-conservatism resulting in uneconomic designs can be 
avoided. A value close to zero for ϕ indicates less bias uncertainty, therefore the model 
predicts the bulk of the performance parameter more accurately. The random uncertainty 
measure, ε, may also have significant influence on the accuracy of results, especially for 
performance criteria that are sensitive to dispersion, e.g. probability of failure. Under-
estimation of variability (ε > 1) in this case will cause higher than expected number of product 
failures, whereas over-estimation of variability (ε < 1) may cause designers to specify tighter 
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specifications than necessary, e.g. manufacturing tolerances or material strength that results in 
extra cost and weight. A value close to unity for ε indicates less random uncertainty.  

4.2 Improving confidence in design analysis 
The precision in error functions developed according to the classification in the framework 
can be used to judge confidence in correlations between the analysis performance parameter 
and evidence. For instance, a scale (graduated shades) for confidence related to the precision 
in error functions is indicated in Figure 3. The density of shading is an indication of the 
completeness of data describing the analysis performance parameters and evidence. The 
precision (and confidence) in an error function does not however, imply that the actual 
response is accurately predicted. For instance, the error functions obtained from correlation 
between probabilistic parameters (Category F) are precise but accuracy in the modelling may 
be low due to large systematic errors between the modelling results and evidence. The error 
functions may be used to identify critical areas and to optimise allocation of resources to 
reduce errors – to select more suitable design representations, to focus effort in data collation, 
and to select suitable design techniques by indicating relative measures of uncertainty and 
confidence among the available alternatives. For instance, in situations where the bias 
uncertainty is significantly larger than the random uncertainty, i.e. ϕ >> ε, a deterministic 
analysis and a scalar valued error function may suffice until more detailed model with higher 
accuracy can be justified. In this manner, error functions provide a mechanism to estimate the 
risks and uncertainties inherent in an application of analysis or simulation and to assess the 
adequacy of simulations in replacement of prototype tests in order to focus engineering effort 
to improve confidence in simulation-based design.  

Arguably, ultimate confidence in engineering design can only be achieved by accounting for 
uncertainty in an objective manner. Probability theory is by far the most appropriate to 
represent uncertainty in engineering simulations owing to its suitability to propagate 
numerical and objective uncertainty information. Other methods like interval analysis and 
Fuzzy set theory may play a greater role in providing a means to deal with uncertainty during 
the early and intermediate design stages, and for novel artefacts. Ideally, the design approach 
should progress diagonally upwards through design iterations as design data becomes more 
complete, i.e. from deterministic to probabilistic values as more information is gathered. 
Nevertheless, some iterations may be necessary when decisions for design changes are made 
and new design parameters are acquired. The error representation through error functions will 
also evolve from imprecise possibility to precise probability. The framework provides a 
roadmap to identify a progression from current state of data and model representations to 
achieve the most desired state – precise correlation between the analysis performance 
parameter and evidence (Category F) in order to attain confidence in design simulations. For 
example, the route for the development of confidence in simulation for a current state of 
category C is to follow the path from C-E-F, which requires the company to collect more 
evidence regarding the performance of more similar systems to enable more precise 
characterisation of error. A systematic documentation of evidence collected over many design 
variants such as that proposed in the framework is suggested to assist the company to build a 
more robust and reliable simulation-based design environment. However, there are 
implications on resource commitment for the accumulation of design knowledge as illustrated 
in Figure 3, which typically constrains the progression of confidence to achieve precise 
correlation of analytical performance and evidence. 
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5. Case studies 

Twenty cases from the literature have been collected and presented in (Goh 2005a) to 
substantiate and populate the (i, j, k) coordinate system model shown in Figure 2. Although 
the number of cases represents a substantial population size, it only represents a partial 
population of the 48 coordinates (4 x 4 x 3) in the classification. These cases illustrated the 
rationale for the development of suitable error functions for each of the categories they 
represent and are included in Appendix I for reference. In addition, two more extensive case 
studies have been conducted by the authors as part of this research (Booker 2004; Goh 
2005b). The framework and error functions are now illustrated with the two case studies. 

5.1 Suspension dynamics case study 
A case study on the suspension dynamics of a sports utility vehicle (Goh 2005b) was 
conducted to compare analytical and experimental values of road loads transferred onto the 
chassis to gain an understanding of the systematic and variance errors arising from various 
data and model representations. The collaborating company was interested to establish the 
influence of statistical variability in component dimensions, properties and assembly factors 
onto the estimated loads from simulations, as well as the confidence in these predictions. In 
particular, if the company could establish sufficient confidence in simulation-based design, 
the use of intermediate prototypes could be reduced (especially in non-critical areas) thus 
saving product development time and cost. The correlation assessed from the current system 
was then used to judge the potential accuracy of modelling predictions for the estimation of 
load transfer in early design stage of a variant vehicle where experimentally measured 
response is not available. The characteristics relating to the framework and error functions for 
this case study are now established. 

Classification 

Performance parameters – the average and range of vertical top (suspension) mount force 
were predicted from two models, where: 

• Design parameters were suspension component properties, with their statistical 
variations first assumed from published data and specifications, then improved with 
data measured from tests conducted. 

• Transfer functions were available to provide an analytical relationship between the 
design parameters and performance parameter of the function: 

a. Computational model – MSC.ADAMS model (37 degree of freedom) 

b. Analytical model – simplified model (1 degree of freedom). 

Performance parameters from various data sets and models were described by normal PDFs, 
providing a probabilistic description of variability. This corresponds to i=3 in the scale for 
performance parameter. 

Evidence for the top mount force was derived from a load history measured from a laboratory 
test on a prototype vehicle. Experimental or test evidence exists for the performance 
parameters from a single vehicle, but the actual properties (design parameters) of this test 
system are unknown. Testing requires very expensive hardware and data acquisition systems 
that typically cost automotive companies millions of dollars of investment per car tested and 
taking months to set up. Evidence for this case study was only available from a single vehicle, 
corresponding to j=1 in the scale for evidence. 

The performance space for this case study contains only one correlation case for a specific 
suspension system design, but the collaborating company will have collected vast experience 
from designing variants of the vehicle type. However, the performance space considered in 
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this case study involved only one solution, therefore implying k=1 in the scale for 
performance space. 

Error functions 

The top mount forces predicted from various combinations of data and model representations 
for a stationary 10s time frame are given in Figure 4, along with the single experimental 
observation. Nominal values of the top mount force obtained from deterministic analyses are 
indicated by arrows in the same figure. The mathematical formulation of error functions for 
category C from Table 1 has been applied to this case study. The error functions required a 
combination of a Fuzzy number (fitted to the singly available evidence) and a normal PDF, 
and were developed based on the consistency principle (Eq. 9). The optimal possibility 
distribution function corresponding to a normal PDF is expressed as (Nikolaidis 2004): 

⎥
⎦

⎤
⎢
⎣

⎡ −
Φ−=

σ
μπ xx 12)(  (15) 

where  Φ(⋅) = standard normal distribution function. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

7000 7200 7400 7600 7800 8000 8200 8400 8600 8800 9000

Top Mount Force (N)

P
ro

ba
bi

lit
y 

(%

ADAMS assumed ADAMS measured Simplified assumed Simplified measured

Experimental 
7401.51

7969.99

8063.36

8448.19

8571.77

Experimental
7401.51

Normal (8077.52, 86.45)

Normal (7976.29, 100.76)

Normal (8448.81, 181.56)

Normal (8555.24, 153.91)

Notation
Normal (ΗΗΙΗ)

ADAMS assumed data Simplified measured dataSimplified assumed dataADAMS measured data

 

Figure 4 Correlations between predicted top mount force and experimental measurement 

Possibility distributions for experimental and modelled top mount force are illustrated in 
Figure 5. Owing to the lack of knowledge of the actual PDF in the experimental measurement 
of the top mount load, this single suspension system example could lie anywhere within the 
variability range described by its PDF. It is reasonable to assume that the uncertainty in the 
physical suspension system is similar to that predicted from its most accurate modelling 
representation – ADAMS model and measured variables. Pessimistically, this measured 
system can be a ‘lower bound’ or an ‘upper bound’ of this PDF in which the worst-case 
uncertainty can be expected. The experimental point is then fitted with a triangular possibility 
distribution with its peak equivalent to the measured value and its support equal to twice the 
width of the PDF, i.e. 2*(±3σ). The possibility distribution can be interpreted as the degree of 
possibility with its peak representing absolute possibility and values beyond its support 
having no possibility of occurrence. The error functions computed for various models and 
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data representations for the prediction of average top mount force are tabulated in Table 2 for 
several α-cuts. 
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Figure 5 Possibility distributions for experimental and predicted top mount force 

Table 2 Error functions for suspension analysis case study 

Models and data/Error 
functions 

α-cut EF1 (ϕ) EF2 (ε) 

ADAMS with measured 
variables 

0.0001 
0.25 
0.5 

0.75 
1 

-0.07 

1.54 
3.91 
4.45 
4.71 

- 

ADAMS with assumed 
variables 

0.0001 
0.25 
0.5 

0.75 
1 

-0.08 

1.80 
4.56 
5.18 
5.49 

- 

Simplified with measured 
variables 

0.0001 
0.25 
0.5 

0.75 
1 

-0.12 

0.86 
2.17 
2.47 
2.61 

- 

Simplified with assumed 
variables 

0.0001 
0.25 
0.5 

0.75 
1 

-0.13 

1.01 
2.56 
2.91 
3.08 

-  
Observation of the error functions formulated for various model and data representations for 
the prediction of top mount force indicates that varying scales of systematic and random 
uncertainty exist. The systematic and random uncertainties are separately characterised by 
two components of the EFs. This way, distinction between the two types of uncertainties is 
made. For instance, suspension dynamics modelling is found to over-estimate the average 
vertical top mount force, observed in EF1 being consistently negative. Due to the lack of 
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variability information, there is greater imprecision in the experimental system with respect to 
its second moment. The supports (width of possibility distributions at α ≈ 0) obtained for 
normal distributions are wide as their limits extend to ±∞. Therefore, EF2s are mainly greater 
than unity (under-estimation) except near the supports of the simplified model. The error 
functions so proposed maintain the more conservative uncertainty axiom in the correlation 
(Fuzzy in this case due to imprecision in experimental parameter) so that extra information 
content was not added. Nevertheless, they inform the systematic and random components of 
uncertainty associated with the modelling results that is consistent with the interpretation of 
possibility theory. 

5.2 Shrink-fit failure case study 
A case study on the failure of a shrink-fit assembly subjected to torsional loading was 
conducted (Booker 2004). The case study is a typical engineering problem and is of less 
complexity compared to the suspension analysis, but allows for experimental data collection 
to be carried out more extensively to describe the design and performance parameters. The 
failure mechanics was modelled using traditional design formulae and a relatively new micro-
mechanical approach to compare the modelling and computational errors to experimental 
measurements of a statistical sample. The comparison between modelling results was 
extended to explore the characterisation of error functions within a performance space. 

Classification 

Performance parameters – contact pressure and holding torque were estimated from 
conventional and new models, where: 

• Design parameters are the dimensional, material and frictional properties of the shaft 
and hub components. Variability in these parameters was derived from dedicated tests 
on statistical samples. 

• Transfer functions for the failure mechanism involve mechanics of material and 
contact mechanics theories. 

Performance parameters were characterised by PDFs and their equivalent normal PDFs. This 
means a precise probabilistic description was available, and implies i=3 in the scale for 
performance parameters. 

Evidence for the holding torque was obtained by experimentally testing a statistical sample of 
shrink-fit assemblies. Evidence was also precisely described by a PDF in this case study, 
corresponding to the statistical scale point, j=3 in the scale for evidence. 

Performance space in this case study consisted of one correlation case between analytical 
and experimental results, but correlation between the design formula and the micro-
mechanical model was extended to a large number of fit dimensions. The performance space 
consisted of correlation between analytical results and the experiments for one nominal set of 
dimensions, k=1 in the scale for performance space, but correlation for large number of 
variants (k=3) between micro-mechanical models and conventional design formula if 
secondary evidence is considered. 

Error functions 

The error functions for this case study are more straightforward (category F). The category 
also represents the most complete state of knowledge regarding uncertainty in correlation. 
The equivalent normal distributions of holding torque from various models and experiments 
are presented in Figure 6. Results of error functions for various models in this case study are 
computed and presented in Table 3. It is evident that all models consistently under-estimate 
the experimental holding torque, observed in EF1 being greater than zero. The design formula 
with surface roughness included in the formulation has the greatest systematic discrepancy 
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from experimental measurement (126%), whereas the original micro-mechanical approach 
yields the best correlation against experimental evidence (15%). Discrepancies in variance 
(EF2) are also observed, but the micro-mechanical method with an empirical coefficient 
greatly over-estimates variability. Owing to precise understanding of uncertainty in this 
category, the error functions accurately characterise both the systematic and random 
uncertainty that arise in the modelling process that is consistent with the probability theory. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

Torque (N m)

Pr
ob

ab
ilit

y 
(%

)

Experiment Micro Orig Micro Emp Design formula noSR Design formula SR

196.4187

129.1116
252.6688

241.0107

 291.3215
Normal (129.11, 52.46)

Normal (196.42, 61.06)

Normal (252.67, 55.17)

Normal (241.01, 75.34)

Normal (291.32, 54.68)

Notation
Normal ( )(μ, σ)

 

Figure 6 Equivalent normal distributions of holding torque from various models and experiments 

Table 3 Error functions for shrink-fit case study 

Models/error functions EF1 (ϕ) EF2 (ε) 

Design formula with surface roughness 1.26 1.09 

Design formula without surface roughness 0.48 0.80 

Micro-mechanical original 0.15 0.98 

Micro-mechanical empirical 0.21 0.53 

6. Discussion 

6.1 Application of the framework in design 
Uncertainty characterisation using error functions is most suited to the third scale in the 
performance space classification in the framework (k=3), i.e. design with a large number of 
solutions in the performance space where products are varied from existing ones over many 
design cycles. This type of information is typically available in designs which are variations 
or adaptations of existing designs (Fajdiga et al. 1996). Since these design types constitute 
about 80 % of engineering products (Pahl et al. 2007), many companies can benefit from 
better utilisation of information and knowledge obtained through prototype tests or lessons 
learnt from past failures. The extensive experience and knowledge accumulated from a large 
number of design variants could allow for very useful inference of the accuracy of modelling 
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or simulation techniques to build up a reliable knowledge-based system. The error functions 
can be stored along with the data, model and load cases, and retrieved for reuse in a similar 
design case. 

6.1.1 Similarity measures 
The feasibility of an information system using a knowledge repository for an engineering 
model has been investigated by other researchers (Mocko 2004). The importance of 
‘inaccuracy’ in these developments was also recognised and the work presented here is of 
conceptual relevance. Such error functions might be used to estimate the risks and 
uncertainties inherent in an application of analysis/simulation, and might allow identification 
of where resources should be expended to reduce error. Typically, evaluation techniques 
available in the early product development process do not consider the effects of systematic 
and stochastic variability during production or end-use of the design (Kazmer and Roser 
1999). Therefore, if error functions for the analytical relationships from a similar product are 
available, designers can estimate the uncertainty and variability associated with the analysis. 
Parametric error models may be built and applied in early estimation to correct for the 
discrepancy but allow simpler models to be used. In case of continuous performance space, 
the error models are continuous functions of key design parameters and may be interpolated 
between those points. In case of discrete performance space, the error models consist of sets 
of discrete performance and design parameters. In both cases, mechanisms for inferring 
similarity between variants can be established either theoretically or empirically (Pahl et al. 
2007). 

6.1.2 Utility and decision metrics 
The utility of error functions has to be interpreted in the context of the design problems. As 
these performance parameters are the basis for judging the adequacy of a design against the 
objectives/requirements, any errors in the estimation may move the design point away from 
the optimum. For a performance that is sensitive to spread and tail distribution, e.g. reliability, 
errors in the estimation of second moment (EF2) are dominant. In this situation, minimising 
susceptibility to this type of error may be of primary importance to designers owing to the 
potential risks of errors, increased costs and rework that may entail. On the other hand, for 
assessing a design performance against a specified target, models with lowest first moment 
error (EF1) are generally preferred. Typically, a model that tends to conservative estimate was 
acceptable but this design philosophy is not suitable in designing efficient modern systems. In 
particular, an over-conservative model is not preferred when variability in the design 
parameters can be better accounted for probabilistically. 

In the shrink-fit design case study (refer to Table 3), the empirical micro-mechanical model, 
although providing a reasonable estimation of the mean, also results in serious over-
estimation of the variability. If the model was used in designing shrink-fits, the designer is 
likely to specify much tighter tolerance or may resort to selective assembly for quality control 
purposes, thus increasing manufacturing and assembly costs unnecessarily. On the other hand, 
the design formula with surface roughness model under-estimates holding torque 
significantly, potentially resulting in uneconomic over-design. For instance, for a specified 
torque transmission requirement, shrink-fits may be designed with higher quality materials, 
larger nominal sizes etc. causing material wastage and additional weight. In the case study, 
the original micro-mechanical model results in the lowest errors and is preferred to design 
formula providing the increased modelling detail is not cost-prohibitive. In more regular 
design settings, designers may be required to make more difficult trade-offs and 
compromises. With respect to this, utility and decision metrics taking account of cost and time 
of using the different models can also be developed. These metrics for model selection may 
be weighted against the modelling issues, the design context and the user preferences.  



 23

6.2 Limitations and challenges 
There are some limitations and challenges to the characterisation of uncertainty using error 
functions. The knowledge base for the error functions may require several years over many 
product variants to establish its validity and reliability before companies can benefit from its 
incorporation in future design applications to assist decision-making. In this respect 
construction of the knowledge base would be very much assisted by a more systematic 
structuring of engineering data and by the application of techniques such as formal 
information management and decisions-support systems. It is envisaged that the construction 
is also best done as a collaborative activity, for example concentrating in a particular industry.  

Without doubt, the introduction of any new design methodology will require commitment of 
time and cost from industry. As such, the application of error functions may be constrained to 
cases where these issues are not restrictive. Due to market pressure to reduce prototype testing 
in the product development cycle, resources dedicated for improving confidence in virtual 
simulations can be more justifiable (Shephard et al. 2004). Besides, the culture inherent in a 
company is often difficult to change, but change may still take place slowly with some 
resistance. It is acknowledged that any incorporation of new methods should be done with 
minimum modification to existing design tools and procedures to ensure acceptance in 
industry (Frost 1999). Furthermore, engineers often need to comply with legislation and 
regulations including health and safety, ethical and environment issues and considerations. 
Standards and best practice codes for example, are expected to be adhered to for economical 
or safety reasons due to the lack of confidence in engineering analysis, for example in fracture 
mechanics as discussed by De Castro and Fernandes (2004). Therefore, the technique 
described in this paper may be of less relevance to safety critical industries like nuclear 
engineering and aerospace that may need to abide by strict physical testing requirements. It is 
envisaged however, that high volume and customer-sensitive industries, e.g. automotive 
sector can potentially benefit from such approach.  

7. Concluding remarks 

This paper has presented a knowledge management approach to aid uncertainty management 
in product performance evaluation using analytical and simulation tools. A framework for the 
systematic organisation of the understanding of uncertainty in product development and in 
simulation procedures has been presented and substantiated with case studies from different 
design domains involving varying degrees of uncertainty in the simulation data and varying 
quantities of evidence from test or service performance. Informed by these case studies, a 
classification is devised based on the organisation of knowledge regarding the disparity 
between analytical and experimental evidence. This classification is used to identify the most 
appropriate method for the representation of error, including conventional probabilistic design 
techniques, interval methods and methods based on Fuzzy set theory. The error functions 
have been developed by isolating systematic and stochastic uncertainty arising from 
simulation processes. The incorporation of error functions into the modelling of design 
processes is suggested to aid analysis strategy and to identify the progression of confidence to 
achieve reliable virtual product evaluations. The improvement of confidence in simulation-
based design environments through management of knowledge gained from previous design 
activities and from in-service experience with products will aid decision-making in future 
design applications. It is intended that the framework may provide first steps towards 
developing conceptually more robust information and decision-support systems incorporating 
uncertainty theories and formalisms. 

As uncertainty evolves from imprecise to precise variables as design knowledge is 
accumulated, design tools and techniques need to be adapted for handling the various types of 
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uncertainty. It is acknowledged that probability-based methods are the most reliable for 
propagating uncertainty at the downstream end of the design process. The application of 
probabilistic methods has generally improved the understanding of variability in loading, 
geometry and material properties, but, coupled with the understanding of model uncertainty, 
the methods will provide a powerful tool for more complete characterisation of uncertainty in 
engineering analyses. For instance, the precise understanding of the errors between models 
and experiments can only be facilitated by probabilistic methods taking into consideration the 
variability that is inherent in the process and design parameters. Improvement in the 
understanding of uncertainty and limitations in design analysis can minimise errors and 
increase the opportunity for designing more competitive products. Further work involves the 
collection of a wider range of design exemplars to substantiate the framework and to further 
evaluate requirements for the error functions. Additionally, contributions towards education 
and training, minimisation of modelling and computational intensity and improvement to data 
management can facilitate industrial implementation of the method proposed. The authors 
contend that educational awareness and technology progression towards more sophisticated 
methods for handling uncertainty in the engineering design is improving. 
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Appendix A Literature Cases 

Table A-1 Twenty literature cases to exemplify the proposed classification (Goh 2005a) 

Case 
No. Case description Performance 

parameter Transfer function Analysis Evidence Performance 
space 

0 1 2 3 0 1 2 3 1 2 3 

1 Failure of bonded 
joint 

Fracture strength
Material strength

Fracture mechanism
Material behaviour       

2 Solenoid torque 

Stress rupture 
torque 
Torque at 
loosening 

Material failure 
Loosening criterion       

3 (a) Reliability 
handbook data Failure rates Failure mechanisms 

       
3 (b)        
3 (c)        

4 Heat sinks 
performance 

Thermal 
resistance 
Pressure drop 

Fluids mechanics 
Heat transfer        

5 Die surface press. 
distn. Pressure Upsetting process        

6 Static failure 
theories Combined stress Static material 

failure        

7 (a) Fatigue life of 
steering knuckle Fatigue life cycle Fatigue failure        

7 (b)        

8 Brake design Torque due to 
friction 

Force and moment 
balance        

9 (a) Safety factor Structural 
strengths Failure limits        

9 (b)        

10 Pitting of gear Number of cycle 
to pitting 

Fracture mechanics 
(contact)        

11 (a) Sheet metal 
flanging Springback angle Flanging process        

11 (b)        

12 Structural analysis Displacement Structural reliability        

13 Rupture of 
steering knuckle Rupture velocity Brittle rupture        

14 Shot peening life 
increase Fatigue life Residual stress in 

shot peening process        

15 Residual stress in 
quenching 

Surface axial 
residual stress Quenching process        

16 (a) Tolerance stack 
analysis 

Assembly 
tolerance Geometry        

16 (b)        

17 Buckling of cyl. 
shells 

Buckling limit 
load Structural buckling        

18 Bearing failures Bearing life Failure mechanisms        

19 Fatigue crack 
growth Fatigue life Fatigue crack growth        

20 Residual stress and 
fracture toughness

Fracture 
toughness 

Residual stress 
influence on fracture 
toughness 

       

 


