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ABSTRACT 

Procedures for propagation of uncertainty in pore size distribution calculation based on 

classical methods for both micro and mesoporous materials are described. Uncertainty in 

experimental adsorption isotherm data and uncertainty in temperature are introduced as the 

main sources for uncertainty in height and position of peaks of PSD determined via classical 

mesopore size distribution determination method. Uncertainty in PSD derived from classical 

micropore size distribution methods mainly arises from uncertainty in experimental isotherm 

data. Calculation step size is shown to have some effects on magnitude of uncertainty in 

micropore calculation. Micropore size distribution calculations are also highly sensitive to the 

adsorptive molecular diameter.  
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1. INTRODUCTION 

Gas adsorption isotherm measurement is one of a suite of methods applied for surface and 

internal structure characterization of powders and porous materials. Details derived from 

these measurements include specific surface area, pore size distribution, pore connectivity, 

surface chemistry, and the area-density of any surface functional groups [1]. Determination of 

pore size distribution (PSD) for porous materials is one of the most challenging and important 

steps in porous materials characterization. Among numerous methods available for PSD 

determination, those based on adsorption isotherm data are frequently used and reported in 

the literature. These methods can be classified into two main categories: classical methods 

and the integral equation approach [1]. Many reviews and publications exist comparing the 

output of these methods, often showing differences between them in the so-called mean and 
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distribution of the pore size. Missing from these and the published literature in general, is an 

analysis of the contribution to these results of the inherent uncertainty in the physical 

constants and the experimental data. This paper proposes to fill this gap. 

In what we classify as the classical methods for PSD evaluation from gas adsorption 

isotherms, researchers appreciated there are differences in the pore filling and fluid-solid 

interactions mechanisms for mesopores and micropores; PSD theory developed separately. In 

1870, Thomson (Lord Kelvin) introduced the “Kelvin equation” which became a basis for the 

interpretation of the hysteresis loop and higher relative pressure ranges of (nitrogen) gas 

adsorption isotherms [2]. In 1951, Barrett et al. [3] developed the first practical method for 

mesopore size distribution evaluation, often referred to as the BJH method, using a 

cylindrical pore model based on the Kelvin equation. Values of adsorbed layer thickness were 

calculated as a function of relative pressure by Lippens et al. [4]. It was assumed that for the 

adsorptive, the thickness of adsorbed layer is only a function of relative pressure and 

independent of the porous solid surface. Dollimore and Heal [5, 6] introduced a modified 

version of the BJH method and used Halsey’s method to calculate adsorbed layer thickness 

[7]. They also discussed the inaccuracy of the BJH method for small pore sizes caused by 

assigning incorrect values to constant coefficients used in the method. Later [6], they 

corrected the coefficient used by Halsey. Overall, the Kelvin equation and methods based on 

it employ a macroscopic thermodynamics approach and assume a continuous liquid phase in 

the pores, with defined surface tension, in equilibrium with the gas phase. These assumptions 

are correct for large mesopores; as the pore width approaches 2 nm the surface tension of the 

adsorbed layer must increase to much higher values than equivalent liquid values to maintain 

the equilibrium pressure [2]. Although some studies show that the Kelvin equation-based 

methods fail for pore sizes smaller than 3.5 nm [8], such analyses are applied frequently for 

pore sizes within the mesopore range (> 2 nm).  
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The classical thermodynamics approach to PSD analysis due to Horvath and Kawazoe 

(HK) is frequently applied to the micropore range [9]. The original HK model was developed 

for slit pores with a linear Henry’s law isotherm assumption. Saito and Foley proposed HK-

type equations for cylindrical pores [10]; Cheng and Yang presented the first modified HK 

model based on the Langmuir isotherm and also included spherical pore equations in their 

analyses [11]. Rege and Yang (R-Y) addressed the incorrect estimation of adsorbate-

adsorbate interactions energy in the original HK model which had caused the model to under-

predict the PSD for micropore widths exceeding two adsorbate molecular diameters. Their 

improvements considered molecular-packing effects in micropores and presented a corrected 

form of the HK model for all three pore geometries: slit, cylinder, and sphere [12].  

Many commercial adsorbents, such as selected activated carbons, contain both micropores 

and mesopores, not as distinct ranges but with one merging into the other, typically deduced 

from the combination of an enhanced amount adsorbed at low relative pressures leading into 

Type IV adsorption isotherm shape. For such materials, a detailed PSD analysis via the 

classical methods needs to be made across two separate, applicable, relative pressure ranges. 

Often, there is no distinct overlap between the models, particularly in the “transition” width 

range 1.5 – 3.0 nm. 

The more recently developed PSD determination methods based on those of Seaton and co-

workers and followed by other researchers[13-18], employ an adsorption integral equation 

approach. Intrinsically, these methods include a combination of molecular simulation 

methods and statistical mechanics. Molecular dynamics, Monte-Carlo simulation, or density 

functional theory (DFT) have been used as the base models for simulation of the adsorption 

isotherm on a solid with pre-defined pore sizes represented by single pore isotherms. 

Calculation of a sufficient number of single pore isotherms combined with adsorption integral 

equation inversion results in a PSD definition. For a detailed analysis see [19]. Over the last 
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three decades a vast number of papers have been published describing the development, 

modification, and application of adsorption integral equation methods for PSD determination 

(For a review see [20] or [21]). An advantage these methods have over the classical 

approaches is their applicability across both micropore and mesopore ranges. On comparison 

with the classical PSD methods, they are also considered more reliable since they were 

developed with fewer assumptions. Their application is not ubiquitous; except for nitrogen, 

argon, and carbon dioxide which are well studied in the literature; reliable parameters and 

models for other adsorptives are not yet well defined. Even for these well-studied 

adsorptives, parameters and models are available only for specific temperatures, and are not 

readily transferable to other adsorption temperatures. Additionally, calculation of single pore 

isotherms and adsorption integral inversion are sophisticated methods requiring elaborate 

computer programs. Considering these shortcomings in the new methods, classical models 

are and should be considered helpful analytical methods for PSD determination. 

Experimental results always include a variation in the actual measured parameter, the 

experimental uncertainty. Gas adsorption measurements incorporate measurement and 

control of several parameters and uncertainty in each of these parameters contribute to the 

combined standard uncertainty (CSU) in the results presented as adsorption isotherms. Any 

subsequent calculations of parameters, such as the BET specific surface area, specific pore 

volume, or the PSD propagate these uncertainties, leading to larger-valued CSU. 

There is a clear difference between the results that we present as uncertainty and other 

concepts such as accuracy, precision, repeatability, reproducibility, and error [22]. It is 

important to understand their differences; pedagogically, their interchangeable use is 

discouraged. Accepted definitions of each are given in Table 1. Unlike “accuracy” which is 

qualitative, the term we use in this work as “standard uncertainty” is a quantitative parameter. 

Terms such as precision, repeatability, and reproducibility are used for repetitive 
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measurements of experiments and, since we are using single isotherm results, i.e., no 

repetition, it would be wrong to talk about these terms. The term “error” is defined as the 

difference between a measurement and the actual or accepted value. In adsorption science, an 

actual (single) value cannot be defined, thus, in this context error is considered an idealized 

concept. Uncertainty in a measurement can be defined even when the exact value is not 

known. 

Insert Table 1 here 

Relatively few studies on adsorption uncertainty have been published in the peer-reviewed 

literature. Loebenstein and Deitz reported values for uncertainty of adsorption data, 

suggesting large dead spaces in sampling tubes are the main sources of uncertainty in 

adsorption data and concluded that uncertainty for low specific surface area (SSA) solids is 

much larger than high SSA solids [23]. They considered the first points of each isotherm for 

their analysis and reported uncertainties related to materials with different SSAs. In 

reviewing their work it is important to appreciate that with today’s more sensitive, 

temperature-controlled, electronic capacitance manometers, the uncertainties are much 

smaller. Ross and Olivier and later Robens et al. addressed uncertainty of adsorption 

experiments corresponding to apparatus calibration and the non-ideal behaviour of helium 

and nitrogen, respectively [24, 25]. Effects of liquid nitrogen level control on adsorption 

results was first reported by Killip et al. in their patent [26].  

Using a custom-built automated, manometric gas adsorption apparatus, Badalyan and 

Pendleton accurately calibrated the dosing and sample volumes of their equipment and 

demonstrated the effects of their propagated uncertainty on isotherm results [27, 28]. They 

also considered the corresponding uncertainties for physical parameters, volume calibration, 

dead-volume calculations, liquid nitrogen level-control, calculation of amount of gas 

adsorbed, and sample mass measurement in their study and calculated the CSU for the 
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adsorption isotherm data and subsequent BET analysis. They showed cumulative behaviour 

of CSU in adsorption data with experiment progress resulting in larger uncertainties in higher 

relative pressure data in the adsorption branch and still larger uncertainties in low pressure 

data in the desorption branch. They concluded the primary contributions to CSU are sample 

mass measurement, dead-volume determination, and liquid nitrogen level-control [28, 29]. 

Badalyan and Pendleton also propagated uncertainty in adsorption data to the CSU of αS 

analyses and pore volumes determination [30, 31]. Here they showed adsorbent surface 

chemistry has important influences on the determination of micropore filling and 

condensation process resulting in uncertainty in micropore volumes. 

No published literature exists describing the propagation of isotherm data uncertainty into 

the pore size distribution for either classical methods or integral equation approaches. 

However, recently Caguiat et al. calculated PSD based on nitrogen and CO2 adsorption data 

using commercial software. They calculated PSD using different DFT models and reported 

effect of DFT model and pore geometry on calculated PSD [32]. 

Here, we discuss the results of uncertainty propagation into classical PSD analysis methods 

for mesopores, due to Dollimore and Heal, and micropores, due to Rege and Yang, using 

well-defined adsorption isotherm data containing combined standard uncertainty. The results 

of a parametric sensitivity analysis for each method are also discussed. No effort is made to 

interpret or understand any differences between the PSD for mesopores and micropores in the 

transition range other than attribute them to differences between their foundation assumptions 

and pore geometry. Uncertainty propagation in adsorption integral equation methods is 

presented and discussed elsewhere [19]. 

 

2. EXPERIMENTAL 
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Single sheet, plain-weaved, activated carbon cloth FM1/250 (ex. Calgon Carbon, 

Pittsburgh, PA, USA) was used as an exemplar slit-shaped micropore material and MCM-41 

as a cylinder-shaped mesopore. The MCM-41 sample was prepared by a hydrothermal 

synthesis method at room temperature [33]. Nitrogen gas adsorption experiments were 

carried out at 77 K using an automated manometric gas adsorption apparatus described 

elsewhere [27]. Prior to measurements, samples were degassed at 200 ºC and a background 

vacuum of 0.1 mPa for 8 h. Thermal transpiration corrections were applied for pressures 

below 266 Pa. Throughout the adsorption–desorption process the liquid nitrogen level was 

controlled constant (± 0.15 mm). Ultra-high purity (99.999%) helium and nitrogen from BOC 

Gases, Australia were used for dead-space and adsorption isotherm measurements, 

respectively.  

Insert Table 2 here 

 

3. RESULTS AND DISCUSSION 

To discuss the sources of uncertainty in classical PSD determination methods, we focus on 

the corrected BJH method proposed by Dollimore and Heal [5, 6] for mesopore size 

distribution analysis and on the corrected HK method proposed by Rege and Yang (R-Y 

method) [12] for micropore size distribution analysis. Evaluation of the uncertainty in 

adsorption isotherm data was clearly demonstrated by Badalyan and Pendleton [28]. This 

uncertainty is expected to be propagated as a major contribution to the uncertainty in 

subsequent PSD analyses. Additional sources of uncertainty are expected to be due to the 

physical constants used in such analyses. Table 2 lists the physical constants used for 

calculations, their accepted values and, where available, their standard uncertainty. 

To calculate CSU (uc) in a variable from several independent variables, a multi-variable 

uncertainty propagation method is used [37].The general formula is given as: 
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 (1) 

 

Here, uC(y) would be the CSU calculated from the uncertainty in the variables x1, x2, … xn, 

quoted as Ux1, Ux2, … Uxn. 

The two adsorbents were selected because each exhibits distinct pore size ranges. The 

FM1/250 shows a sharp, narrow PSD in the micropore range [38] and MCM-41 shows a 

sharp, narrow PSD in the mesopore range with no influence from any inherent micropores. 

We suggest a narrow distribution of width is important to demonstrate clearly any influence 

of factors contributing to subtle changes in either the position of the maximum in the peak in 

the PSD and/or the height of the peak. The latter relates to the amount or number of pores 

found within a selected calculation-width. 

Figure 1. shows high resolution nitrogen adsorption isotherms on these two adsorbents. 

Applying the Badalyan and Pendleton method [28], uncertainty in the experimental data was 

calculated and shown as uncertainty bars in each amount adsorbed. In all cases, the 

uncertainty in the relative pressure was negligible, and is not included. The cumulative nature 

of the uncertainty in the adsorption and desorption data is inherent in the method of isotherm 

data collection; the smallest uncertainty occurs in the first data point, increasing in value with 

increasing number of data points collected. In the present analyses, the largest uncertainty in 

the amount adsorbed in the adsorption branch occurred for that value closest to the saturation 

pressure. Since desorption data are typically obtained after the adsorption process, the 

desorption branch defined for the MCM-41 analysis shows an increasing uncertainty in the 

amount adsorbed. From an understanding of the classical methods of PSD analysis, it follows 

that the uncertainty corresponding to experimental data in micropore analysis would be 
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expected to increase with increasing pore size; assuming the desorption branch is used for 

mesopores, the uncertainty corresponding to experimental data in mesopore analysis would 

be expected to increase with decreasing pore size. 

 

3.1.Mesopore analysis 

The mesopore cumulative volume and size distribution shown in Figure 2 were calculated 

via the Dollimore and Heal method including the corrected Halsey coefficient for adsorbed 

layer thickness [5, 6]. The vertical uncertainty bar intensities for both analyses are relatively 

larger in value for the smallest pore sizes, decreasing with increasing pore size. A sensitivity 

analysis of the calculation procedures indicated the principal source of uncertainty in these 

analyses was in the experimental isotherm data, contributing 99.7% to the total CSU. The 

desorption branch of the adsorption isotherm is most often used for PSD evaluation; if the 

adsorption branch were selected, the intensity of the vertical uncertainty values would be 

reversed. In contrast, the uncertainty in the pore width (at each value) increases with 

increasing width. The Dollimore and Heal method calculates a pore radius (r) as the 

summation of the Kelvin radius (rK) and the adsorbed layer thickness on the pore wall (t), as 

Eq. (2): 

 (2) 

Each of the independent variables in Eq. (2) depends on relative pressure and/or 

temperature, thus, pore size is independent of uncertainty in the amount adsorbed. Since the 

adsorbed layer thickness is a function of relative pressure and the uncertainty in relative 

pressure is small (precision of the MKS pressure transducers used as part of the adsorption 

apparatus was 0.05% of scale reading), uncertainty corresponding to the physically adsorbed 

layer is relatively small compared to the uC(r). The Kelvin radius is related to adsorbate 

trr k +=
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surface tension (γ), adsorbate molar volume (Vm), universal gas constant (R), (sample) 

temperature (T), and relative pressure (p/po) via the Kelvin equation: 

 (3)
 

The condensed, liquid-like, adsorbed (multiple) layer is always regarded as being in contact 

with, at least, the first statistical adsorbed layer and thus, the contact angle (θ) is evaluated as 

zero. From the constants in Table 2, the relative uncertainty in temperature is largest. 

Adsorbate surface tension and molar volume, which is typically derived from the fluid 

density, are also temperature dependent; these two variables also have large relative 

uncertainty. 

Based on Eq. (1), the CSU in the Kelvin radius would be evaluated via: 

(4) 

The contributions from relative pressure and universal gas constant are relatively small and 

thus, after calculation and substitution of derivatives, uncertainty in Kelvin radius can be 
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In conclusion, our calculations show for a classical mesopore size distribution, uncertainty 

in experimental adsorption isotherm data is the principal source of uncertainty in the intensity 

of the PSD and in the cumulative volume. Uncertainty in pore size (or width) values is 

influenced by uncertainty in sample temperature. One way to reduce uncertainty in the 

intensity of the PSD peaks would be to decrease uncertainty in the experimental data, 

achieved by intermittent adsorption isotherm measurement. By dividing the adsorption 

isotherm into several relative pressure-defined segments, with each measured independently, 

i.e. the sample would be re-evacuated after completion of the adsorption analysis for each 

segment, the subsequent cumulative uncertainty in the amount adsorbed along the isotherm 

would be reduced. The calculated PSD from such experimental data would then exhibit 

smaller-valued uncertainty in peak intensity. To reduce uncertainty in peak position within 

the PSD, uncertainty in sample temperature needs to be reduced. Sample temperature is 

calculated from atmospheric pressure; uncertainty in sample temperature is a function of the 

uncertainty in the barometer used for pressure determination. The experiment as a whole is 

susceptible to fluctuations in atmospheric pressure. To reduce uncertainty in sample 

temperature higher precision barometers need to be used for atmospheric pressure 

measurement. Ideally, the sample and the liquid nitrogen bath would be surrounded by an 

isobaric chamber.  

 

3.2.Micropore analysis 

Figure 3 shows the calculated cumulative volume and PSD for the microporous FM1/250 

using the R-Y method [12]. The CSU in cumulative volume, PSD, and pore size are included. 

The calculation details and uncertainty propagation procedures are summarized in the 

Supplementary Information. Each plot includes the dependent variable CSU. The relatively 

small CSU for the cumulative volume adsorbed by the smallest pores clearly increases with 
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increasing pore width. This increase is also due to cumulative contributions. The principal 

contribution to these derived from the CSU in the experimental amount adsorbed data. The 

CSU in the (intensity) data as the micropore size distribution also increases with increasing 

pore width. 

Micropores are typically of width < 2.0 nm. Using the R-Y methodology, this width is 

equivalent to a pressure ≈ 0.16pº. For the current sample, the maximum in the distribution 

occurs at ≈ 0.6 nm, equivalent to a pressure of 4 × 10-4pº. Reproducible adsorption isotherm 

data collection at these low pressures is challenging, with most published isotherms 

comprising < 30 adsorption points below 0.16pº. The uC(Vads) at these low pressures is 

usually relatively small, with their contributions to the PSD reflected as relatively small 

values increasing in value across the PSD with increasing pore width. As with the mesopore 

analyses, temperature control has the greatest effect on the physical properties used in the R-

Y analysis. Nonetheless, sensitivity analysis including these coefficients amount to only 1.2% 

of the CSU with the remaining 98.8% due to CSU in the experimental data. 

The CSU in the pore width (uC(width)) associated with each data point is also included in 

the PSD plot in Figure 3. Pore size is principally a function of the relative pressure, with the 

remaining coefficients making negligible contributions to uC(width). Their values are not 

visible in the main plot; the inset in Figure 3 shows uC(width) for the data point equivalent to 

0.57 nm, where the relative uncertainty in width is 0.0068% and the relative uncertainty in 

intensity is 1.05%. 

In conclusion, since the physical constants are well defined with relatively small 

uncertainties and the CSU in amount adsorbed and relative pressure in the low pressure range 

used for the R-Y method are also relatively small, the CSU in the data defining the PSD are 

relatively small for the narrowest pores but increase with increasing pore width. 
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The PSD is the first derivative of the cumulative volume adsorbed (dV) with respect to the 

pore width (dw), as dV/dw. Intuitively, one would expect uncertainty in both parameters to 

influence the CSU in this derivative via Eq. (4): 
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Since uncertainty in pore size is small, the second term is << first term, thus, 

 (5) 

The ranges applicable to the gradient analysis are defined by the curves representing the 

upper and lower limits of the CSU in the cumulative volume adsorbed and the width of the 

“step size” (as dw). Eq. 5 shows dependency of uncertainty in PSD to uncertainty in 

cumulative volume (V) and calculation step size (dw). As expected from Eq. 5, our analysis 

identified selecting smaller step sizes in the PSD calculation would result in larger CSU in 

the calculated PSD. However when the CSU in the amount adsorbed was small, the CSU in 

the cumulative amount adsorbed was (relatively) small and, regardless of the step size, which 

must be bounded by the limits of the CSU cumulative amounts adsorbed curves, uC(PSD) 

was also relatively small. 

Like mesopore analysis, one method to reduce uncertainty in calculated micropore size 

distribution is to decrease uncertainty in the experimental data, achieved by intermittent 

adsorption isotherm measurement. The calculated PSD from such experimental data would 

then exhibit smaller-valued uncertainty. 

3.3.Probe molecule dimension effect on micropore size distribution 

( ) ( )
dw
dVUPSDuC =
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Of all the parameters tested above, the accepted physical diameter of nitrogen was held 

constant. A sensitivity analysis of this variable is quite enlightening in its influence on the 

PSD. It is well understood that the uncertainty in the accepted value for molecular nitrogen 

may be due to its method of determination or, as in the case of the constraining environment 

of a micropore, due to physical compressibility. The accepted molecular diameter of nitrogen 

is 0.3 nm, a value often cited from Horvath and Kawazoe’s paper[9], which was sourced from 

an earlier publication. This value is usually referred to as the van der Waals diameter[39-41]. 

Other van der Waals diameters are available for nitrogen, ranging from 0.292 nm[42] up to 

0.37 nm[43]. A review on reported values is due to Batsanov[43]. 

Although the relative uncertainty of the coefficients and measurement variables for the R-Y 

methodology is << 1%, for a sensitivity analysis applicable to molecule dimensions, we 

suggest a 1% variation would be acceptable, giving diameters in the range 0.297 – 0.303 nm, 

statistically consistent with those reported[43]. Figure 4a shows the effect of this range on the 

cumulative amount adsorbed and the PSD for each of the three diameters. For clarity, the 

uncertainty bars are excluded from the whole pore range, but are included in the inset 

showing the variation in the position and intensity of the (primary) peak in each distribution. 

Considering only a 1% change in molecular dimension, and the calculated CSU for 

cumulative volume was small (Figure 3), Figure 4a suggests that the effect of probe molecule 

dimensions on PSD determination is important. The largest cumulative volume adsorbed 

corresponds to the largest probe size, 0.303 nm, and the smallest volume for the smallest 

probe. This observation is counter-intuitive. A smaller probe would penetrate and accumulate 

in pores too narrow for a larger probe across the relative pressure range examined, as a 

molecular sieve process. The reason for this apparent anomaly lies in two combined sources. 

Firstly, in the algorithm used in the R-Y analysis, and secondly, the amounts adsorbed in the 

isotherm are a set of fixed values, regardless of the probe dimensions. The algorithm, 
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summarized in Supplementary Information, requires matching the pore size with the relative 

pressure, then identifying the volume adsorbed at this matching relative pressure. Assuming 

no micropore-induced compression of the probe, the minimum pore width must be equivalent 

to the probe diameter. With an increasing initial probe dimension, one obtains an increasing 

initial-valued relative pressure and, since the data set as the volume adsorbed is fixed for a 

particular molecule dimension (0.3 nm), the initial volume adsorbed for this relative pressure 

will also increase, and vice versa. Based on this analysis, the intensity of the peaks increased 

with increasing probe dimensions, but its position was shifted to smaller pore sizes. To have a 

feeling of how the peak position is changed with the probe dimension, Figure 4b shows the 

peak position as a function of probe molecular diameter ranging within the reported values in 

the literature (from 0.292 nm to 0.370 nm). Interestingly, the Figure suggests a linear 

dependency of peak position to the probe molecular diameter. The decreasing trend in Figure 

4b is consistent with the data reported in Figure 4a. 

A comparison between Figure 4 and Figure 3 is interesting. Figure 3 shows that uncertainty 

in the physical parameters and also uncertainty in experimental data does not influence the 

position and/or intensity of the primary distribution peak. On the other hand Figure 4 shows 

that even 1% change in molecular diameter will result in considerable change in both 

intensity and position of the primary peak. This latter observation has particular ramifications 

for adsorptives whose dimensions are not yet agreed upon. 

We emphasise that the above analysis is not an analysis of molecular sieve effects because 

these are defined as exclusion of pore penetration due to probe molecular dimensions. The 

amount adsorbed by a micropore for a given relative pressure will always be fixed by the 

physical dimension of the probe; the major question then becomes an accepted definition of 

the (correct) molecular dimensions. Secondly, no account is taken of possible (accepted) 

kinetic diameter-reduction caused by micropore-induced compressibility, as suggested by 
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Everett and Powl [44]. Such issues become more important for larger molecules typically 

employed as molecular sieve probes, including hydrocarbons and CCl4 and SF6. 

4. CONCLUSIONS 

Uncertainty in experimental adsorption isotherm data and uncertainty in physical 

parameters are considered to be the main sources of uncertainty in PSD determination. 

Detailed analysis of mesopore size distribution calculations via the Dollimore and Heal 

method showed how the uncertainty in adsorption data was the main source of uncertainty in 

peak height or intensity in the PSD. Uncertainty in peak position mainly arose from 

uncertainty in temperature and was independent of the experimental data. For an improved 

accuracy in mesopore size distribution analysis we recommend intermittent adsorption 

isotherm measurement which would lead to decreased uncertainty in the PSD intensity. From 

an equipment perspective, one would require improved sensitivity in monitoring atmospheric 

pressure conditions to determine exact positions of the PSD peaks. 

For the micropore size distribution analyses, calculations using R-Y method showed that 

although uncertainty in experimental isotherm data was the principal source of uncertainty in 

PSD, it only affected peak height; peak positions were relatively stable. Although the step 

size (value) selection in the calculations was not a source of the uncertainty, it affected the 

magnitude of the uncertainty. To determine a more accurate micropore size distribution, we 

again recommend intermittent adsorption isotherm measurement together with optimal 

selection of calculation step size. Selection of step size is not without consequence; larger 

step sizes would result in smaller uncertainty and decreased resolution of the PSD, and vice 

versa. Our suggestion is to select the largest possible step size which gives a reasonable PSD 

resolution. 

The calculated PSD was very sensitive to the probe molecule diameter. Our calculations 

showed a relative uncertainty as small as 1% in the molecular diameter would result in 
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different peak positions and intensities within the PSD. If a large molecule with no well-

defined size and/or with several chemical bonds and compressibility issues were to be used 

for micropore size distribution analysis, interpretation of micropore size distributions derived 

from such adsorptives should be made with careful consideration of molecular size effects. 
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TABLES 

Table 1. Definitions used for interpretation of experimental data [22] 

Term Definition Nature 
Accuracy Closeness of the agreement between the result of 

a measurement and the value of the measurand 
(True value). 

Qualitative 

Precision The closeness of agreement between independent 
test results obtained under stipulated conditions. 
Precision encompass both repeatability and 
reproducibility as they may be called precision in 
repeatability and precision in reproducibility. 

Quantitative/Qualitative 

Repeatability Closeness of the agreement between the results 
of successive measurements of the same 
measurand carried out under the same conditions 
of measurement (e.g. adsorption measurement on 
the same material with the same equipment in the 
same operating conditions including location, 
temperature, and pressure). 

Quantitative/Qualitative 

Reproducibility Closeness of the agreement between the results 
of measurements of the same measurand carried 
out under changed conditions of measurement 
(e.g. adsorption measurements on the same 
material carried out using different instrument or 
with different methods or in different locations, 
temperatures or pressures). 

Quantitative/Qualitative 

Error Result of a measurement minus the actual value 
(or accepted conventional value) of the 
measurand. 

Quantitative 
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Table 2. Physical constants and their uncertainty used for classical PSD determinations 

Symbol Parameter Value 
Standard 

uncertainty 
Unit (SI) Data source* 

T Sample temperature 77.497 0.010 K [28] 

R Universal gas constant 8.3144621 7.5×10-6 J.mol-1.K-1 [34] 

 

Molecular weight, 

nitrogen 
28.01371×103 8.5×10-4

 
kg.mol-1

 

[35] 

me Electron mass 9.10938291×10-31 4×10-38 kg [34] 

c Light speed 299792458 0 m.s-1 [34]/Definition 

 

Polarizability of 

adsorbent (carbon) 
1.46×10-30 n/a** m3 [9] /- 

 

Polarizability of 

adsorptive (nitrogen) 
1.02×10-30 n/a** m3 [9] /- 

 

Magnetic susceptibility 

(adsorbent atom, carbon) 
2×10-35 n/a** m3 [9] /- 

 

Magnetic susceptibility 

(adsorptive, nitrogen) 
13.5×10-35 n/a** m3 [9] /- 

 

Density, liquid nitrogen 807.2395 0.0464
 

kg.m-3

 [36] /Calculated based 

on uncertainty in T 

 

Avogadro number 6.02214129×1023 2.7×1016 mol-1 [34] 

γ 
Surface tension, liquid 

nitrogen 
8.837×10-3 3×10-6

 N.m-1 
[36] / Calculated based 

on uncertainty in T 

* The information given is cited as the reference for the value / the reference for the 
uncertainty 
** No values could be found in the literature; uncertainty for this parameter is considered 
negligible. 

  

2NM

aα

sα

aχ

sχ

2Nρ

AN



 26 

FIGURE CAPTIONS 

Figure 1. Nitrogen adsorption isotherm for microporous carbon cloth FM1/250 (──) and 

mesoporous MCM-41 (adsorption: – –, desorption: •••) showing uncertainty in amounts 

adsorbed for each equilibrium relative pressure. Each sample was degassed at 200 ºC and 0.1 

mPa for 8 h 

Figure 2. Calculated cumulative (liquid) volume adsorbed (–  –), PSD (──), and related 

uncertainties for mesoporous MCM-41 

Figure 3. Calculated cumulative (liquid) volume adsorbed (– –), PSD (─), and related 

uncertainties for microporous carbon cloth FM1/250 

Figure 4. Calculated cumulative volume (– –) and PSD (─) for microporous carbon cloth 

using different nitrogen molecular diameters: 0.297 (●), 0.3 (x), and 0.303 (■). The inset 

shows the subtle increase in (apparent) mean pore diameter for the smallest probe dimension, 

0.297 nm. 
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FIGURES 

 

Figure 1. Nitrogen adsorption isotherm for microporous carbon cloth FM1/250 (──) and 

mesoporous MCM-41 (adsorption: – –, desorption: •••) showing uncertainty in amounts 

adsorbed for each equilibrium relative pressure. Each sample was degassed at 200 ºC and 0.1 

mPa for 8 h 
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Figure 2. Calculated cumulative (liquid) volume adsorbed (–  –), PSD (──), and related 

uncertainties for mesoporous MCM-41 

* Derivative is calculated based on pore radius but it is plotted against pore diameter to be 

consistent with next micropore section. 
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Figure 3. Calculated cumulative (liquid) volume adsorbed (– –), PSD (─), and related 

uncertainties for microporous carbon cloth FM1/250 
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Figure 4. (a) Calculated cumulative volume (– –) and PSD (─) for microporous carbon cloth 

using different nitrogen molecular diameters: 0.297 (●), 0.3 (x), and 0.303 (■). The inset 

shows the subtle increase in (apparent) mean pore diameter for the smallest probe dimension, 

0.297 nm; (b) effect of probe molecular diameter on the position of the main peak 

 


