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Abstract

Tidewater glaciers form a significant drainage catchment of glacierised areas, dir-

ectly transporting meltwater from the terrestrial to the marine environment. Sur-

face melt of glaciers in the Arctic is increasing in response to warmer atmospheric

temperatures, whilst tidewater glaciers are also exposed to warmer ocean tem-

peratures, stimulating submarine melt. Increased freshwater discharge not only

freshens fjord waters, but also plays a key role in glacimarine sedimentary pro-

cesses, transporting sediment to glacial fjords. Despite this, the temporal evolu-

tion of meltwater production, storage and release from tidewater glacier systems

at seasonal and interannual time scales is poorly understood. This leaves large

uncertainties in the predictions for future sea level rise, ocean circulation and the

impacts on the marine ecosystem.

This study focuses on Kronebreen, a tidewater glacier which flows into the head

of Kongsfjorden, north west Svalbard. Surface melt produces freshwater runoff,

which is discharged from the grounding line as a buoyant, sediment laden plume,

which spreads laterally across the surface water. This supraglacial melt is the

dominant freshwater source, contributing an order of magnitude more freshwater

to Kongsfjorden, than direct submarine melting of the ice face.

Calibration of MODIS band 1 satellite imagery with in situ measurements of

Total Suspended Solids and spectral reflectance, provides a method to quantify

meltwater and sediment discharge. Plume extent has been determined for each

cloud free day, from June to September, 2002 – 2013. Analysis of plume extent

with atmospheric temperature and modelled surface runoff, gives a source to sea

insight to meltwater production, storage and discharge. The extent of the plume

changes in response to meltwater; larger plumes form when discharge increases.

These results reveal that meltwater discharge into Kongsfjorden lags atmospheric

temperature, the primary driver of meltwater production, by over a week during

June and July. This is reduced to only 1 – 2 days in August and September,

indicating a decline in meltwater storage as the ablation season progresses, and

the development of more efficient glacial drainage.

Sediment plumes respond to meltwater production, making them a valuable

tool for quantifying meltwater discharge from a tidewater glacier. Insights to

glacier hydrology can also be obtained when surface processes are also considered.

This furthers the understanding of tidewater glacier hydrology, which is valuable

for improving the accuracy of sea level rise predictions.
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Chapter 1

Introduction

1.1 Rationale for research

The Randolph Glacier Inventory (Arendt et al., 2012; Pfeffer et al., 2014) high-

lights that 39% of the total global glacierised area (726,800 ± 34,000 km2) drains

via tidewater glaciers, directly into the ocean. Only 3% of glaciers monitored

globally are tidewater, resulting in under representation in the estimates of mass

balance of the world’s glaciers and ice caps (Sharp, 2014). The recent rapid re-

treat of some tidewater glaciers (e.g. Sund et al., 2011; Straneo and Heimbach,

2013) merits further investigation into the processes leading to their mass loss.

Several mechanisms contribute to the retreat of tidewater glaciers, given their

connectivity with both the atmosphere and ocean. Increased surface melt, driven

by atmospheric processes, enhances glacier thinning and can lead to flotation.

Subsequently, increased surface melt can lead to fracturing and calving at the gla-

cier terminus. Despite this, how meltwater reaches the ocean, and the duration of

transit remains poorly understood.

Climate forecasts predict that the polar amplification will persist, causing large

areas of the Arctic to receive near-surface temperature increases greater than the

global average; results from climate models (IPCC, 2013) and observations (Chylek

et al., 2009) support this. Further glacier retreat is forecast as surface melt be-

comes enhanced and the summer melt season is prolonged, in response to these

warming trends (Oerlemans, 2005; Nuth et al., 2010; IPCC, 2013). Freshwater

runoff from Arctic glaciers and the Greenland ice sheet has a direct impact on sea

level rise (SLR) (Church et al., 2013). Understanding glacier hydrology, which can

control the rate and timing of runoff, is imperative to forecast accurate sea level

rise predictions (Chu, 2014).

Submarine melting of the termini of tidewater glaciers is a contributing factor

to reducing glacier mass (Motyka et al., 2003), which enforces the need to under-

1
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stand both atmospheric and oceanic processes (Figure 1.1; Straneo et al., 2013).

The temperature of the warm, northerly flow, of Atlantic water is increasing,

transporting more heat to the Arctic basin (Pavlov et al., 2013), whilst a decrease

in sea ice formation can reduce the buttressing support at the glacier terminus

(Vieli and Nick, 2011). This can make tidewater termini more susceptible to sub-

marine melting, as has been found in Greenland (Rignot et al., 2010; Sutherland

and Straneo, 2012; Straneo and Heimbach, 2013). Convective driven melt is an-

other consideration, with buoyant freshwater plumes emerging subglacially into

the marine environment, causing further melt of the ice face (Jenkins, 2011). As

the plumes rise, they entrain ambient seawater, increasing heat transfer; greater

discharge produces a faster plume which increases turbulent mixing at the ice -

ocean interface (Kimura et al., 2014). Several, smaller plumes across the ice face

will create greater melt, compared to just one submarine outlet source (Slater

et al., 2015).

Figure 1.1: Schematic detailing the mechanisms of retreat for tidewater glaciers.
Key processes that require further research are highlighted in blue text (Straneo
et al., 2013).

Increased freshwater supply to the marine environment has numerous implic-

ations: i) it alters ocean circulation (e.g. Straneo et al., 2011; Mortensen et al.,

2013; 2014) ii) can enhance the submarine melting (Jenkins, 2011; Motyka et al.,

2013), iii) leads to increased iceberg calving (Benn et al., 2007; Bartholomaus et al.,

2013), iv) affects the marine biogeochemistry (Bhatia et al., 2013; Hawkings et al.,

2014) and v) alters the biological composition (Hop et al., 2002; Lydersen et al.,

2014). Freshwater inputs to the marine environment as a result of the interactions

between glaciers, atmosphere and ocean, needs to be better constrained to enable

greater accuracy in the forecasting of global sea level rise (Hanna et al., 2013; Chu,

2014).

However, despite the impacts of freshwater entering the marine system, the
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ice - ocean interface of tidewater glaciers remains poorly understood, largely due

to their inaccessibility. This exemplifies the value of oceanographic observations

in the ice proximal zone (Cottier et al., 2010). There are only a few studies

which address the seasonal and interannual variability of meltwater discharge, and

the impacts this has on fjord circulation (Cottier et al., 2005; Mortensen et al.,

2013; 2014). Increased accuracy, which this study promotes, is required when

quantifying the volume of melt, from where it originates, and the timing of delivery.

There are also differences between the amount of melt produced at the glacier

surface, and how much is discharged into the fjords (Harper et al., 2012). This

places importance not only on quantifying meltwater production and delivery, but

also upon understanding glacial hydrological processes of tidewater glaciers, and

how these affect ice dynamics (Straneo et al., 2013). Increased meltwater discharge

can cause the terminus to become unstable, causing calving (Bartholomaus et al.,

2013), in addition to freshening the surface water, implicating fjord circulation

(Figure 1.1) (Cottier et al., 2005; Salcedo-Castro et al., 2011; Sciascia et al., 2013).

To study the processes taking place at the glacier-ocean interface, a fjord which

is free of ice melange would be ideal.

1.2 Study site

1.2.1 Kongsfjorden

This study focuses on the delivery of meltwater entering at the head of Kongsf-

jorden, from the tidewater glacier system of Kronbreen and Kongsvegen (Figure

1.2). Located at 79◦N, 11◦E on the west coast of Spitsbergen, Kongsfjorden forms

one of the main regions of tidewater drainage together with with Krossfjord, Horn-

sund and Van Keulenfjord (Nuth et al., 2013). It is part of a two armed glacially

eroded fjord system with Krossfjorden (Figure 1.2). Krossfjorden is orientated

from north to south, whilst Kongsfjorden is orientated from southeast to north-

west. The two meet at the mouth of the fjord, forming a deep glacial basin,

Kongsfjordrenna, in which a shallow sill is present. Its bathymetry is complex

and variable, ranging from <60 m at the head of the fjord, to 400 m, creating a

system of distinctive basins. Kronebreen is a polythermal glacier, which is frozen

to the bed rock at the margins, but has a wet bed in the upper region of the

glacier. It forms the majority of the ice front, with Kongsvegen adjoining to the

south. There are three other tidewater glaciers in Kongsfjorden: Blomstrand-

breen, Conwaybreen and Kongsbreen. Meltwater discharge from Kronebreen and

Kongsvegen is sediment laden, forming a distinctive surface plume (Figure 1.3).

Unlike Greenlandic fjords, Kongsfjorden has relatively few icebergs and lacks ice
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melange. As such, it is possible to remotely observe the ice-ocean interactions dir-

ectly in front of the ice face which has not been possible in other studies (Tedstone

and Arnold, 2012).

Figure 1.2: Regional map of Kongsfjorden, with Kronebreen, Kongsvegen and
Infontanna glaciers detailed. The area of interest extends to the island of Blom-
strandhalvøya.

Kongsfjorden is a climatically sensitive region of Svalbard. Strongly influenced

by the west Spitsbergen current (WSC), atmospheric temperatures and changes to

the cryosphere, it provides a natural laboratory for studying the ice - ocean inter-

actions of tidewater glaciers. Within the fjord, there is a balance between Atlantic

water (AW) and freshwater inputs, which both change spatially, on seasonal and

interannual time scales. Kongsfjorden is sea ice free during the summer months,

and increasingly more so during winter. No ice melange is present in the fjord,

allowing for access directly in front of Kronebreen’s marine terminus. Freshwater
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Figure 1.3: Aerial photo of the terminus of Kongsvegen, highlighting the strong
presence of sediment in the surface water, visible as a distinctive brown colour
(Storvold, 2012).

discharge, and active glacier calving at the head of the fjord, is a measure of mass

loss from Kronebreen and Kongsvegen. The meltwater discharge transports glacial

sediment to the fjord, influencing bathymetry, glacier stability and it also impacts

the marine ecosystem. The meltwater plumes rise to the surface of Kongsfjorden,

given depths of <100 m in front of Kronebreen’s terminus. The geology underlying

Kronebreen, allows the lateral spread of sediment laden meltwater across the fjord

surface, to be easily identified as a distinctive plume. Therefore, Kongsfjorden is

an ideal location to build upon previous sediment plume studies, forming a deeper

understanding of the ice - ocean interactions of a fast moving, tidewater glacier,

at seasonal and interannual time scales.

1.2.2 Kronebreen and Kongsvegen glacier complex

Kronebreen is a grounded polythermal glacier with an area of ∼390 km2 (Figure

1.2). Kongsvegen is a smaller glacier (165 km2), joining Kronebreen 5 km from

the terminus, creating a confluent glacier with Infantfonna (85 km2). The bound-

ary between Kronebreen and Kongsvegen is defined by a medial moraine. The

drainage area encompasses the ice fields of Dovrebreen, Holtedahlfonna and parts

of Isachsenfonna, through a relatively narrow channel at its calving face (Nuth

et al., 2012). Melt produced supraglacially is transported through the englacial

system and discharged at the calving face, directly into Kongsfjorden. Meltwater

transports sediment produced by basal erosion to the head of Kongsfjorden, which

is visible as buoyant sediment plumes in the ice proximal zone (Figure 1.4).
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Kronebreen terminates with an ice cliff directly into Kongsfjorden (Figure 1.4).

The ice cliff measures 3.2 km wide (B laszczyk et al., 2009) and extends 5 – 60 m

vertically above the fjord surface in August (Chapuis, 2011). It is shared with

Kongsvegen and Infantfonna, however, Kronebreen currently occupies approxim-

ately 70% of the width (Sund et al., 2011). Kongsvegen’s calving front is small,

with the majority of the glacier terminating on land.

Kronebreen (including its associate ice field catchments) is approximately 50

km long, with an elevation range of 0 – 1400 m (Nuth et al., 2012). The surface

elevation at the glacier centre line is steepest near the calving front, increasing

from 0 – 700 m, within 20 km distance of the calving front (Figure 1.5; Solbø

and Storvold, 2013). It has a mean thickness of 289 m and a maximum thickness

of 434 m (Bamber, 1989). Digital terrain models indicate that there are two

prominent longitudinal ridges on Kronebreen, with the glacier surface reflecting

bed topography. One is located at the northern margin and the other in the

centre (Sund et al., 2011). These are separated by an overdeepening in the bed,

approximately 80 m below sea level (Sund et al., 2011).

Figure 1.5: Elevation profiles measured using the Cryowing UAS: (left) displaying

the glacier front and the heavily crevassed region behind the calving front (right)

elevation profile along the centre line of Kongsvegen (Solbø and Storvold, 2013).

Typical surface velocities of tidewater glaciers in Svalbard are in the region of

∼ 100 m yr−1, whilst Kronebreen exhibits velocities of 300 – 800 m yr −1 at its

calving face (B laszczyk et al., 2009). This makes it Svalbard’s fastest measured

glacier due to its large drainage area and narrow outlet channel, exhibiting a

mean annual velocity of 2 m d−1 (Hagen et al., 2003a; B laszczyk et al., 2009),

whilst summer velocities range from 1 – 3.5 m d−1 (Kääb et al., 2005; Rolstad and

Norland, 2009). The fast flow of Kronebreen is persistent, with measurements

taken in 1964 (Voigt, 1966), 1986 (Lefauconnier et al., 1994) and 2000–02 (Kääb
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et al., 2005) all presenting similar velocities.

Intra-seasonal velocity change of Kronebreen has been captured by photo-

grammetric techniques, indicating that summer a speed up commences around

mid-June, peaking in mid-July (Svanem, 2011). August and September typically

exhibit slower velocities (Svanem, 2011). Kronebreen’s velocity is greatest within

4.5 km of the calving front, as identified by remote sensing using synthetic aper-

ture radar feature tracking (Schellenberger et al., 2014). The in situ samples for

this study were taken between 14 – 18th July 2012, during the seasonal peak in

velocity of ∼3 m d−1 at Kronebreen’s calving front (Figure 1.6; Schellenberger

et al., 2014).

Figure 1.6: Time series of seasonal speed of Kronebreen’s velocity, with distance

from the calving from, taken at the centre line between 14th April 2012 – 29th

December 2013 using RADARSAT-2 Ultrafine data (Schellenberger et al., 2014).

Kongsvegen covers an area of 102 km2 and is 26 km in length, with a north-

westerly flow direction from an ice divide at 800 m a.s.l (Figure 1.2). It terminates

at Kongsfjorden, where the majority is on land, but a small part actively calves

alongside Kronebreen. It has the been studied annually since 1987, when the first

mass balance stakes were put in place by the Norwegian Polar Institute. The

longevity of measurements makes it an ideal location for glacier mass balance

studies. The changes in altitude of Kongsvegen are reflective of the net glacier

mass balance, because it does not calve at the same rate of Kronebreen (Hagen

et al., 2003b).

Its flow rate contrasts Kronebreen’s in that it’s only <4 m yr−1 (Melvold

and Hagen, 1998), reflecting its quiescent phase. Glaciers of Svalbard experience

the quiescent phase for 50 – 100 yeasr, while surges last for only 3 – 10 years

(Dowdeswell et al., 1991). From 1987 – 1994 Kongsvegen exhibited a weak but
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positive net balance of 0.09 m w. eq (Melvold and Hagen, 1998). However, from

1965 – 2005 Kongsvegen underwent a net mass loss of -1.8 m w. eq, which is small

in comparison to the neighbouring glaciers of Midre Lovénbreen (-1.17 m w. eq)

and Austre Brøggerbreen (-18.8 m w. eq)(Karner et al., 2013). The initial mass

gain has been attributed to a dynamic response to the last surge event in 1948

(Hagen et al., 2003a).

1.2.3 Historical change of the tidewater termini

The Kronebreen - Kongsvegen tidewater glacier complex was at its maximum Holo-

cene extent during the Little Ice Age (Liestøl, 1988). It has since been in retreat,

interrupted by advance through surging, three times in historical documentation.

Liestøl (1988) notes the earliest advance took place around 1800, with two more

taking place in 1869 (Lamont, 1876) and 1948 (Bennett et al., 1999). Prior to

the 1948 surge, the width of Kongsvegen and Infantfonna at the ice cliff was near

equal, where together they occupied 25% of the ice cliff, which was dominated by

Kronebreen. The surge of 1948 saw Kongsvegen push north, as determined by the

medial moraine. This was reversed by 1964, as Kongsvegen was pushed south,

and the Infantfonna ice stream no longer reached the ice cliff; Kronebreen then

occupied 65% of the ice cliff (Voigt, 1967).

Between 1975 and 1983 sediment contributions to Kongsfjorden built a delta

in front of Kongsvegen spanning 180 m out from the glacier, with an estimated

volume of 4.5 x 106 m3 (Lefauconnier, 1987). The summer flux being discharged

from the glacier complex at the time was 0.25 x 106 m3 (Elverhøi et al., 1980).

The shared glacier complex terminus has fluctuated with time, having retreated

11 km since its maximum in 1869 (Liestøl, 1988); 6 km of this has occurred since

its surge in 1948 (Trusel et al., 2010). However, calving was responsible for 97.5%

of Kronebreen’s geodetic volume change between 1960 – 1995 and decreased to

75% from 1995 – 2007 (Nuth et al., 2012).

During the latter part of the 20th century, Kronebreen exhibited a maximum

ice velocity of 785 m yr−1 (Melvold, 1992) and an average retreat of 50 m yr−1;

this contrasts Kongsvegen which was largely stationary (Lefauconnier et al., 1994).

Since 1990, the Kronebreen - Kongsvegen glacier front has been mobile, but stable

(Figure 1.7). Its position has fluctuated, yet exhibits a trend of retreat. A large

retreat of 850 m occurred in 2011, causing a loss of area totalling 2.8 km2 (Schel-

lenberger et al., 2014).

Another retreat took place in 2013; Kronebreen’s terminus retreated 500 – 750

m from its 2011 location. Most noticeably, Kongsvegen retreated dramatically

in 2013 compared to the rest of the glacier complex (Figure 1.7), contrasting its
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previous relatively static state (Lefauconnier et al., 1994).

Figure 1.7: The location of the glacier front of Kronebreen - Kongsvegen from
2000 - 2013 (Trusel 2014, pers.comms)

1.2.4 Geological and geomorphological setting

Devonian sandstones and siltstones dominate the upper reaches of Kronebreen

south, whilst the lower extent is situated upon Permo-Carboniferous limestone and

chert (Harland, 1997). Central and northern Kronebreen lies upon metamorphic

rocks formed of marble, schist and psammite dated to the Middle Proterozoic

(Svendsen et al., 2002).

The geomorphological regime of Kongsfjorden is dictated by glacial activity.

The bathymetry and fjord topography has been sculpted by periods of glacial ad-

vance and retreat. Moraine assemblages formed on the southwest side of Kongs-
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fjorden as a result of the advances in 1869 and 1948 (Whittington et al., 1997;

Bennett et al., 1999). During phases of retreat, glacier sliding and abrasion of bed-

rock contributes sediment to the fjord, reducing the water depth (Powell, 1991).

Approximately 10 m of sediment has been deposited on top of the ice-scoured bed-

rock in central and outer Kongsfjorden, which was last exposed during the glacial

re-advance of the Little Ice Age (Howe et al., 2003). Kongsfjorden continues to be

shaped by contemporary glaciomarine sedimentary processes. Subglacial sediment

is entrained in meltwater, and enters the fjord from the base of the glacier in two

locations: 1) at the centre of the glacier, via a subglacial stream and 2) at the

southern margin of Kongsvegen via an ice-marginal stream (Trusel et al., 2010).

The location of the central subglacial stream has undergone change; between 1987

and 2001 it was located in the centre of the ice front, but it moved north by 400

– 500 m in 2002 (Kehrl et al., 2011). The grounding line fan at the location of

the previous subglacial stream is being degraded in contrast to the new location

which is observed to have a sedimentation rate between 0.06 m a−1 (Trusel et al.,

2010) and 1 m a−1 (Kehrl et al., 2011).

1.3 Research aims and thesis structure

This overarching aim of this thesis is to quantify meltwater inputs from the tidewa-

ter glacier Kronebreen, into Kongsfjorden, Svalbard, and to bolster understanding

regarding meltwater production, transport and delivery into the fjord environ-

ment. This is achieved using a multi-method approach, utilising in situ hydro-

graphic measurements, spectral reflectance and total suspend solids (TSS), from

a field campaign in July 2012, together with remotely sensed data. The meth-

ods employed offer a means to progress knowledge regarding the interactions and

feedback mechanisms of tidewater glaciers with the atmosphere and ocean, which

has been highlighted as a research priority (IPCC, 2013). Better constraints on

meltwater contributions from glacier marine margins is important to accurately

forecast sea level rise, which poses large societal impacts. The following interdis-

ciplinary research encompasses the atmosphere, cryosphere, ocean and glacimarine

sedimentary processes. To further understand the links between these processes,

the research aims of this study are to:

i Determine the origin of freshwater inputs and to quantify the amount being

delivered to the marine environment at the head of Kongsfjorden.

ii Calibrate MODIS satellite imagery with in situ measurements to determine

the daily to interannual variability of freshwater and TSS from 2002 – 2013.
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iii Understand the meteorological and cryospheric controls on meltwater produc-

tion, storage and delivery from Kronebreen - Kongsvegen to Kongsfjorden.

iv Determine the external forcing factors affecting the spatial plume extent and

TSS, once discharged to the fjord.

A detailed evaluation of oceanographic, climatic and glacier controls on melt-

water production, along with a description of the environments of Kronebreen

and Kongsfjorden is given in Chapter 2. Chapter 3 presents the hydrographic

properties at the head of Kongsfjorden, together with identifying the source of the

freshwater contributions and subsequent impacts on fjord circulation. Chapter 4

details the method of quantifying TSS and sediment plume area by calibrating

MODIS satellite imagery with in situ spectral reflectance and TSS measurements.

An assessment is made as to the effectiveness of this method. Chapter 5 uses

meteorological and modelled runoff data together with the plume size and TSS,

as determined in Chapter 5, to ascertain the drivers and temporal variability of

seasonal and interannual meltwater production. Focus is placed on the spatial

distribution of TSS and the influencing factors in Chapter 6. The final discussion,

conclusions and prospects for future research are presented in Chapter 7.



Chapter 2

Tidewater glaciers in the ocean -

climate system

Tidewater glaciers form a dynamic part of the cryosphere; influenced by both the

climate and the oceans, each element needs to be investigated to fully understand

the impacts to the glacier system. Yet obtaining high-resolution data sets of both

the cryospheric and oceanic elements of marine terminating glaciers is impeded

by logistical constraints: access to glacier termini is difficult owing to ice melange

in fjords, active iceberg calving and the high costs associated with extensive field

campaigns. Remote monitoring of sediment plumes, discharged from the ground-

ing line of tidewater glaciers, holds potential to determine meltwater discharge

over prolonged periods of time. To this end, this chapter aims to explore and

discuss the following key areas required to form a solid understanding of both the

environment and remote detection methods:

i Local oceanographic properties and fjord circulation

ii Climatic controls on supraglacial meltwater production and glacier hydrology

iii Subglacial and glacimarine sedimentary processes

iv Methods of remote detection of sediment plumes

2.1 Oceanographic influences

2.1.1 Regional coastal currents

The northward flow of the WSC is a principal pathway of heat and volume trans-

portation to the Arctic from lower latitudes (Figure 2.1; Aagaard and Greisman,

1975). The AW in the WSC is topographically steered along the continental shelf

13
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(Jónsson et al., 1992; Woodgate et al., 1998), flowing northwards, with maximum

temperature, salinity and velocity centred at its core (Saloranta and Haugan,

2004). A barrier between the WSC and the west Spitsbergen fjords is formed of

cooler, less saline, Arctic water (ArW), which also flows northwards (Figure 2.2)

(Saloranta and Svendsen, 2001). Upwelling in the WSC is caused by northerly

winds, resulting in Ekman drift; when the horizontal density gradient is changed,

exchange takes place between the WSC and ArW (Svendsen et al., 2002; Cottier

et al., 2007). Transformed Atlantic water (TAW) is clearly distinguishable from

the WSC, and is formed when AW crosses the shelf, mixing with ArW (Cottier

et al., 2005).

The exchange between northerly flowing coastal currents and fjord waters is

variable, dependant on the geostrophic coastal flow at the mouth of the fjord

(Klinck et al., 1981). When meanders and eddies form in the WSC, heat is trans-

ported across the shelf and towards the west coast fjords (Nilsen et al., 2006; Teigen

et al., 2010). The direction of the wind influences this cross-shelf exchange, due to

Ekman drift. Southerly winds initiate downwelling, with the geostrophic gradient

promoting a greater build up of water at the coast. The reverse is true under

the influence of northerly winds, where export away from the coast occurs. The

volume of AW transported into the fjords is dictated by eddy formation, as demon-

strated by numerical modelling of cross shelf exchange at Kongsfjorden (Tverberg

and Nøst, 2009). As such, the water mass classification from Cottier et al. (2005)

reflects water masses from the adjacent shelf, and within Kongsfjorden.

Heat and volume transport to the Arctic is interannually variable, resulting

in significant changes to the Arctic heat budget (Aagaard and Greisman, 1975).

Increased volume transport of AW intensified between 1995 and 2007 (Walczowski

and Piechura, 2007), leading to warmer temperatures in the WSC from the early

2000s (Figure 2.3; Schauer et al., 2008). Warm anomalies in AW have been advec-

ted north through the Fram Strait by the west WSC, since the late 1990s (Schauer

et al., 2004). From 1997 – 2005, the temperature of AW south of Spitsbergen, rose

by approximately 1◦C and salinity increased by 0.06 PSU; maximum temperat-

ures were observed in 2001 and 2005 (Walczowski and Piechura, 2007). Lateral

mixing, particularly in the subsurface water of the column (below 50 – 100 m),

acts as a heat exchange between WSC and ArW; greater lateral spread of heat

promotes heat exchange with the atmosphere and sea ice (Saloranta and Haugan,

2004). The influence of this has been measurable in fjords located on the west

coast of Spitsbergen, with approximately a 2◦C rise in temperature between 1912

– 2009 (Pavlov et al., 2013). Temperatures in the WSC core intensified during the

2000s (Walczowski and Piechura, 2007; Schauer et al., 2008), promoting stronger

21st century warming in Spitsbergen’s west coast fjords (>1◦C), comparable to
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Figure 2.1: Schematic displaying the northerly AW inflow passing the west coast
of Svalbard, contrasting the southerly flow of Arctic freshwater outflow (Weslawski
et al., 2015)
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Figure 2.2: Diagram illustrating coastal currents and fjord circulation. Warm,
saline AW is transported by the WSC. Polar water (ArW) provides a cold buffer
between AW and the fjord itself. AW flows into fjords at depth, with a freshwater
surface outflow driven by glacier meltwater. Modified from Straneo and Heimbach
(2013).

historical records for the 20th century (Pavlov et al., 2013). Warm TAW was again

prominent in the summer of 2011 (Nilsen, 2011).

Unlike many Arctic fjords the Kongsfjorden - Krossfjorden system doesn’t have

a defined sill, which enables easier transport of shelf waters into the fjord (Svendsen

et al., 2002). The amount of heat that reaches the surface of the water column,

plays a role in determining if sea ice will form in fjords (Tverberg and Nøst, 2009;

Nilsen, 2011). As a result, the region west of Kongsfjorden remains largely sea

ice free due to heat transport from the WSC, which ranges from 28 – 45 TW

(Schauer et al., 2004), 42 TW (Cisewski et al., 2003), up to 70 TW (Walczowski

et al., 2005).

The inner part of Kongsfjorden contrasts that of the mouth, with considerable

contributions of freshwater from the five tidewater glaciers. An estimated 1.4 ±
0.42 km3 of freshwater flows into Kongsfjorden annually, from glacier and snow

melt, precipitation and surface runoff (Svendsen et al., 2002). The freshwater con-

tribution accounts for approximately 5% of the water mass in the fjord (Cottier

et al., 2005), substantially greater than the average of 1% found in Spitsbergen’s

fjords (Cottier et al., 2010). Whilst climatically sensitive, the freshwater contribu-

tions are an important element to accurately quantify. Glacial melt forms surface

water (SW) at the head of the fjord, which decreases with distance from the gla-

cier (Svendsen et al., 2002; Cottier et al., 2005). The runoff from some catchments
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Figure 2.3: Anomalies in AW heat content and baroclinic currents, at 100 m
depth. Anomalies calculated from the differences from the July mean, 2000 –
2005 (Schauer et al., 2008).

which enter closer to the mouth of Kongsfjorden, such as Bayelva, terminate ter-

restrially allowing freshwater discharge to be quantified by runoff gauging stations

(Killingtveit et al., 2003). However, owing to the tidewater nature of the terminus

of the Kronebreen - Kongsvegen system, such meltwater discharge is not possible

with current methods. This causes large uncertainties when quantifying glacial

meltwater inputs to the marine system, affecting the accuracy of SLR forecasts

(Church et al., 2013). Intermediate water (IW) forms when SW mixes with AW

and TAW.

Tides propagate along the west Spitsbergen coast as Kelvin waves (Gjevik and

Straume, 1989). The tidal amplitude outside of Kongsfjorden is 0.5 m, which

propagates into the fjord. The average tidal range at Ny-Ålesund is 1.8 m and the

maximum is 2.3 m. Tides in Kongsfjorden are predominantly semi-diurnal lunar

(M2), with a solar component (S2) of approximately 50% of the M2 component

(Svendsen et al., 2002).

2.1.2 Circulation of glacial fjords

Freshwater plays a key role in the circulation of Arctic fjords, and it has two poten-

tial origins: i) submarine glacial melt, caused by either the ocean directly melting

the ice face (e.g. Holland et al., 2008; Sutherland and Straneo, 2012; Straneo et al.,
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2013) or convection driven melt (Jenkins, 2011) and ii) freshwater runoff, driven

by surface ablation (e.g. Hodgkins, 1997; Karner et al., 2013). Increased volumes

of supraglacially produced runoff discharged at depth, can initiate further sub-

marine melting of the ice face (Kimura et al., 2014), forming a positive feedback

mechanism which enhances submarine melting. This freshwater flux plays a key

role in the circulation of glacial fjords (Figure 1.1).

Fjords typically exhibit a two layer circulation, with the upper layer largely in-

fluenced by wind stress, and the bottom layer dominated by coastal inflow (Klinck

et al., 1981). Glacial fjords have an additional forcing mechanism affecting the

physical dynamics: the freshwater flux from glacier melt (Cowan, 1992; Ingvaldsen

et al., 2001). The fjords on the west coast of Spitsbergen are the most sensitive to

the northward flow of warm, saline AW (Figure 2.1). Melt contributions to glacial

fjords freshens the surface layer, and supplies fine grained sediment to the fjord.

Biological productivity is already low, and is sensitive to changes in the freshwater

balance (Cui et al., 2006), whilst sediment at the fjord surface could impose light

limitations on the surface layer.

2.1.3 Seasonal water mass modification and circulation

processes

Arctic fjords undergo seasonal changes in circulation and stratification, responding

to meltwater inputs, temperature changes and sea ice formation (Figure 2.4) (Mat-

thews, 1981; Cottier et al., 2010). Spring and summer are governed by thermal

processes, and autumn and winter by salinity driven processes (Cottier et al.,

2007). This not only governs the water masses, but vertical overturning circu-

lation in the fjord (Figure 2.4). Glacial meltwater entering the fjord at depth

during summer, creates upwelling and vertical mixing. The effect of meltwater

on water column stratification decreases with increasing distance from the source,

as a result of dilution and mixing (Cottier et al., 2005). Brine rejection in the

winter months forms the reverse processes, with dense water being produced at

the surface, initiating convective over turning of the full water column (Cottier

et al., 2010).

A three water mass structure is present, formed of: SW, IW and old winter

water (Cottier et al., 2010). The very surface of the SW can be capped with a

freshwater lens from meltwater inputs (Rysgaard et al., 1999b). The SW tem-

perature can reach >5◦C, due to atmospheric heat gain and the insolating effect

of suspended sediment, transported to the fjord by glacial melt (Rysgaard et al.,

1999b; Cottier et al., 2005; Nilsen et al., 2008). Downward mixing of meltwater

produces a brackish layer, which evolves with the seasonal development and deep-
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Figure 2.4: Illustration of the seasonal development of stratification and mixing
in a shallow (<300 m) glacial fjord, typical of Svalbard (Cottier et al., 2010).

ening of a pycnocline (Figure 2.5), responding to seasonal change in freshwater

transport (Matthews, 1981). This mixing leads to the modification of IW, which

becomes warmer and less saline during the summer (Skogseth et al., 2005b). Two

layer circulation is typical in summer, with the inflow of AW and IW at depth,

and the outflow of the fresh SW (Figure 2.2).

Rapid sensible heat removal from the water column occurs during autumn,

driven by colder atmospheric temperatures and intensified wind strength (Cottier

et al., 2007). Cooling of the SW drives thermal convection, producing a well mixed

water column, which overlies old winter water. Winter cooling brings fjord waters

to freezing point, generally between November and December in Svalbard (Gerland

and Renner, 2007), which prompts sea ice formation. Brine rejection increases the

salinity and density of the upper water column, which forms Winter Cooled Water

(WCW; Svendsen et al., 2002; Nilsen et al., 2008). The increased salinity in the

upper water column drives haline convection. This results in a fully mixed water

column, which enables the bottom waters in the fjord to be re-oxygentated (Nilsen

et al., 2008). It is the sea ice production that governs the formation of WCW, but

in some fjords, thick winter sea ice does not form (Cottier et al., 2007; Gerland
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Figure 2.5: Temperature plot displaying seasonal variation from moored obser-
vations between 4th of October 2012 and 1st of September 2013 in Kongsfjorden
(Nahrgang et al., 2014).

and Renner, 2007), leading to fresher winter water. The presence of sea ice during

winter prevents wind mixing, but makes the effects of tidal mixing more prominent

(Fer and Widell, 2007).

2.1.4 Effect of the Earth’s rotation

Some fjords are affected by the Coriolis effect; however, this is dependant on the

fjord width and the depth of stratification (Cushman-Roisin et al., 1994). The

Rossby radius of deformation provides a means of determining the importance

of both stratification and rotation. It is the ratio of the speed of a baroclinic

(internal) wave to the Coriolis parameter. Measuring 20 km in length and 4 – 10

km wide, Kongsfjorden is deemed a “board fjord”. The effects of Coriolis are felt

in Kongsfjorden during the summer months, due to a Rossby radius of deformation

of approximately 4 km (Svendsen et al., 2002; Cottier et al., 2005). However, given

the seasonality associated with Arctic fjord stratification, the effect of rotation will

depend on the season.

The definition of the internal Rossby radius (ri), in a two layer model is given

by:

ri =
ci
f

(2.1)

where

c2i =
g′H1H2

H
(2.2)

is the phase speed of the baroclinic wave and

g′ = g
ρ1 − ρ2
ρ2

(2.3)

is the reduced gravity, and ρ1, ρ2, and H1, H2, are the upper and lower dens-

ities and depths, respectively, H is the total water depth and f is the Coriolis
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parameter. Under summer, stratified conditions, ri is approximately 3.5 – 6 km;

this is less than the typical outer Arctic fjord width of 10 km. Therefore many

high-latitude fjords, such as Kongsfjorden, are affected by rotational dynamics,

despite ri decreasing with increasing latitude. As such, high latitude fjords ex-

hibit circulation patterns which are more complex than the two layer estuarine

system; this has been reported for numerous Arctic fjords (Cushman-Roisin et al.,

1994; Ingvaldsen et al., 2001; Svendsen et al., 2002; Cottier et al., 2005; Skogseth

et al., 2005a; Skarhamar and Svendsen, 2010).

As a result of rotational circulation, inflowing water masses typically hug the

right hand side of the fjord. The distribution of freshwater across the fjord surface

is also altered. Hydrographic observations reveal that meltwater contributions are

deflected to the right of the direction of outflow (Ingvaldsen et al., 2001; Svendsen

et al., 2002; Skogseth et al., 2005b). This creates a horizontal gradient in surface

temperature over the width of fjords, that are influence by Coriolis (Aliani et al.,

2004).

2.1.5 Sea ice

The WSC keeps the west coast of Svalbard largely ice free (Vinje, 1982), however

sea ice in Kongsfjorden is present during winter, generally between December

and March (Svendsen et al., 2002). However, the warming of the WSC has been

attributed to the reduction in winter sea ice extent around Svalbard, particularly

in the north (Onarheim et al., 2014).

Between 1981 – 1986 sea ice in Kongsfjorden was recorded to break up between

April and July (Mehlum, 1991; Lydersen and Gjertz, 1986). The period of break

up was reduced between 2003 – 2005, in which sea ice at the head of Kongsfjorden

broke up between 28th May and 11th June (Figure 2.6 Gerland and Renner, 2007).

The maximum thickness of sea ice between 2003 – 2005 was between 0.83 – 1.03

m, which declined to 0.63 m in 2005 due to a milder season (Gerland and Renner,

2007). In 2006 Kongsfjorden was completely ice free by 10th May which coincided

with high air temperatures on Svalbard in winter and spring (Gerland and Renner,

2007). In general Arctic sea ice has continued to decline (Cavalieri and Parkinson,

2012) and thin (Lindsay and Schweiger, 2015). The maximum winter sea ice

extent, determined in March, only reached the northern extent of Svalbard, and

the west coast remained predominantly ice free (Figure 2.7) (Perovich et al., 2013).
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Figure 2.6: Timing and extent of fast sea ice extent at the head of Kongsfjorden
from 2003 – 2005. It should be noted that Kongsfjorden was sea ice free in 2006
(Gerland and Renner, 2007).
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Figure 2.7: Winter maximum (March) and summer minimum (September) sea ice
extents for 2013. The magenta line indicates the median sea ice extent during the
period 1981 – 2010 (Perovich et al., 2013).

2.2 Meteorological influences on the west coast

of Svalbard

Arctic warming has been observed over the past 35 years, but Svalbard, unlike

Greenland, has not displayed accelerated melting (Lang et al., 2015). Whilst

Greenland has exhibited record melt in the last 10 years (Fettweis et al., 2013),

the surface mass balance (SMB) of Svalbard has remained closer to balance since

2004 (Moholdt et al., 2010). This implies that the ice cap of Svalbard appears to

be less sensitive to the recent Arctic warming (Serreze et al., 2009). Such stability

has been attributed to the change in atmospheric circulation which sees Svalbard

receive north-westerly atmospheric flows (Lang et al., 2015). Despite this, the

Svalbard’s west coast glaciers have been losing mass; Kongsvegen and Kronebreen

underwent increased melt during the 1990s (Kohler et al., 2007; Nuth et al., 2012)

and Kronebreen’s tidewater terminus has retreated (Figure 1.7).

2.2.1 Seasonal patterns

Air temperatures in Kongsfjorden are strongly seasonal; solar radiation becomes

positive in mid February, and remains positive until the end of October (Figure

2.8. Winter temperatures typically reach -15◦C and rise to 6◦C by mid summer

(eKlima, 2014). Winter temperatures are more variable, owing to the larger tem-
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perature difference between air masses originating from the Arctic and the Atlantic

(Hanssen-Bauer et al., 1990; Førland et al., 1997). The advection of mild maritime

air over cold land surfaces is greatest during the summer months, producing Arctic

sea fog and over cast days. Cloud free days are most frequent in winter (5 – 8

days/month), contrasting the summer months (June-September), which have the

lowest number of clear days annually, approximately 1 day/month (Førland et al.,

1997). Seasonal snow cover changes the surface albedo of the region, with typically

94 snow free days in the summer (Winther et al., 2002). Radiation produces the

energy to melt the snow (Boike et al., 2003), which is subsequently transported

to Kongsfjorden (Svendsen et al., 2002). Wind forcing is topographically steered

from the head to the mouth of Kongsfjorden (Hanssen-Bauer et al., 1990; Førland

et al., 1997), driven by the land-sea breeze (Esau and Repina, 2012). The winter

months typically have faster wind speeds than the summer months. The wind for-

cing in Kongsfjorden plays a key role in moving SW, but cannot penetrate beneath

the strong pycnocline in the summer months. During the autumn and winter, the

wind plays a larger role in driving the over turning circulation in Kongsfjorden

(Cottier et al., 2010).

2.2.2 Interannual variability

The Icelandic low pressure and the Greenland high pressure, forces warm hu-

mid air towards Svalbard, which dictates the large scale atmospheric circulation

of the region (Svendsen et al., 2002). Typically, the Icelandic low pressure sits

between east Greenland and Iceland, driving cyclonic circulation between Europe

and Greenland. This generally results in northerly winds being channelled down

the west coast of Spitsbergen, which is partly why the SMB of Svalbard is in re-

lative stability (Lang et al., 2015). Increased cyclone activity occurs in the Fram

Strait, with anomalously high pressures over Scandinavia, resulting in milder win-

ters for Spitsbergen (Rogers et al., 2005). However, cyclone activity focussed in the

Barents sea results in colder winters (Rogers et al., 2005). Positive phases of the

North Atlantic oscillation (NAO) result in cyclone events being twice as common,

compared to the negative extreme (Serreze et al., 1997). This was exemplified in

January 2006, when the Icelandic low moved east of Iceland, and a large, high

pressure system was located over Russia and the Eastern Arctic. Cyclone activity

in the Fram Strait intensified to the extent that the wind direction along the west

coast of Spitsbergen reversed, from northerly to southerly (Figure 2.9). This led

to anomalously warm temperatures in January (Walker, 2006). By February, this

pattern reversed and northerly winds prevailed once again. The reversal of the

winds promoted cross-shelf exchange of AW; fjords on the west coast of Svalbard
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Figure 2.8: Mean annual properties averaged over 1979 – 2013 for (A) SMB (mm
w.e.yr−1), (B) annual precipitation (mm w.e. yr−1), (C) mean annual near-surface
temperature (◦C), and (D) mean summer near-surface temperature (June, July
and August; ◦C; Lang et al., 2015).

were observed to receive greater volumes of AW, bringing the water column back

to pre-winter temperatures (Cottier et al., 2007).

2.3 Glacier system

2.3.1 Surface meltwater production

Glacier surface ablation is driven by the net flux of energy from the atmosphere,

which is transferred to the surface of the glacier, resulting in temporal and spatial

variability of SMB across a glacier. Meltwater is produced where ablation is greater

than accumulation during the length of a season (Figure 2.10). At higher altitudes,

greater temperatures are required to cause melt. The average equilibrium line
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Figure 2.9: Mean surface air temperature and wind stress fields for the years
1995 – 2005 in (A) January and (B) February. Anomalous patterns occurred in
2006, illustrated by the mean surface air temperature and wind stress anomaly,
compared to the 1995 – 2006 mean for (C) January and (D) February (Cottier
et al., 2007).

altitude (ELA), indicating the zone where accumulation is equal to ablation at

Kronebreen was located at ∼700 m a.s.l from 1996 – 2006 (Baumberger, 2007).

Below this altitude, net ablation occurs.

The surface energy balance dictates the rate of melt at the glacier surface, as

given by Equation 2.4, in whichME is melt energy (ME = 0 if surface temperature

is <273.15 K), SW ↓ and SW ↑ are downward and upward shortwave radiation,

LW ↓ and LW ↑ are downward and upward longwave radiation, SHF is the

sensible heat flux LHF is the latent heat flux and Gs is subsurface conductive

heat flux and the net radiation is Rnet (Broeke et al., 2008). Under conditions

where ME is positive, the glacier surface will heat up, causing melting. The

reverse is true of negative values.

Normally Rnet are the dominant components of the energy balance. However,

in maritime environments, turbulent heat fluxes, in which an upward positive

transfer of energy occurs, play a much greater role (Paterson, 2001). Large di-

urnal and seasonal variation in Rnet occurs, due to the cyclical variations in global

radiation. Early in the ablation season, Rnet can be negative as a result of low SW

↓ due to high surface albedo, and low LW ↓, due to cooler air temperatures (Oer-

lemans, 2001). Ablation is greatest during the summer, when ME is highest. The
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Figure 2.10: Upper glacier zonation, illustrating the relative locations of the dry
zone, the percolation zone and the wet zone. The ELA represents the elevation
where accumulation and ablation are in equilibrium (Hooke, 2005). Below this is
the ablation area, which is not depicted.

cumulative sum of positive temperatures, positive degree days (PDD), provides a

measure of how much energy is being transmitted to a glacial environment. An

empirical relationship can be formed between PDD and melt rates, which can

be used for temperature index modelling (Hock, 2003). Temperature data across

glacier surfaces are more prevalent than full energy budgets, which is why tem-

perature index modelling is widely used in studies of glacier mass balance (Hock,

2005).

ME = SW ↓ +SW ↑ +LW ↑ +SHF + LHF +Gs

ME = SWnet + LWnet + SHF + LHF +Gs

ME = Rnet + SHF + LHF +Gs

(2.4)

Albedo affects glacier melt, with the ratio between upward and downward

shortwave radiation altering the surface energy balance. Variable both temporally

and spatially, albedo is measured between 1 and 0. Fresh snow exhibits a high

reflectivity, and therefore high albedo, close to 1.0, firn typically exhibits values of

0.5 – 0.6, whilst dirty glacier ice has a much reduced albedo of approximately 0.1

(Cuffey and Paterson, 2010). Glacier albedo varies seasonally, depending on snow

cover. In Svalbard, snow fall begins in mid-September, increasing surface albedo.

As snow melts, from mid- June, the grain size of snow increases, decreasing sur-

face albedo, therefore increasing the amount of solar energy absorbed, promoting
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further melt. Short term variability in albedo (hourly) is caused by changes in

snow cover, whereas day to day changes are as a result of seasonal weathering of

the surface crust (Jonsell et al., 2003). At a seasonal scale, surface albedo is least

variable in winter and summer, but the changing snow conditions of autumn and

spring prompts large albedo changes (Winther et al., 2002).

The zonation of glacier surfaces is representative of the melt energy and melt-

water fluxes in the region (Broeke et al., 2008). Three distinctive zones are present

at the surface of glaciers, depending on elevation and melt processes: the dry zone,

the percolation zone and the wet zone (Figure 2.10) (Benson, 1961; Müller, 1962).

Typically, no melting takes place in the dry zone. The boundary between this,

and the percolation zone is the dry-snow line, located near to the elevation where

summer temperatures do not rise above -6◦C (Benson, 1961). When surface tem-

peratures increase above 0◦C in the summer months (Nghiem et al., 2012), dry

zones become smaller. In the percolation zone, meltwater percolates into snow and

firn, where it can refreeze. At the lowest elevations, summer melting is sufficient

to wet the entire snow pack, by melting all snow from previous season, and is

therefore known as the wet zone. Refreezing of surface snow in the wet zone forms

a porous layer. Saturation of the bottom layers of the snow pack occurs further

down the glacier. This refreezes to form superimposed ice, if the underlying ice

is cold (Hooke, 2005). Slush pools can form in this region of superimposed ice;

the slush limit represents the highest point at which mass is removed from the

glacier as flowing water (Chu, 2014). Regions of accumulation and ablation, at

the end of the melt season, are separated by the equilibrium line ELA. Beneath

this elevation, the glacier has undergone net mass loss, during the melt season.

2.3.2 Glacier mass balance

The mass balance of glaciers depends on the balance between accumulation, as

a result of snowfall, and ablation, as result of surface melt and terminal calv-

ing (Braithwaite, 2002). Glacier mass balance is typically determined annually,

achieved by taking direct measurements, or numerical modelling, to determine

changes in volume (Barry, 2006). Svalbard’s glaciers are in a state of negative

mass balance, having experienced a 7% loss in ice mass over the last 30 years

(Nuth et al., 2013). This loss of ice volume amounts to -9.71 ± 0.53 km3 yr−1,

which equates to 0.026 mm yr −1 sea level equivalent (Nuth et al., 2010). Estim-

ates of global SLR contributions over the last 40 years vary between +0.01 and

+0.38 mm yr−1 (Hagen et al., 2003a;b), which accelerated to 0.8 – 10. mm yr −1

from 2001 – 2004 (Kaser et al., 2006). This amounts to 4% of the total global

contribution, originating from smaller glaciers and ice caps (Nuth et al., 2010).
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Svalbard’s annual volume loss is equivalent to 40% of the total for the Cana-

dian Arctic from 1995 – 2001 (Abdalati et al., 2004), yet twice as much as the loss

from the Russian Arctic between 1952 – 2001 (Glazovsky et al., 2006; Meier et al.,

2007). The geodetic mass balance of Svalbard is twice as negative as the Cana-

dian Arctic and four times as negative as the Russian Arctic when glacier area

is considered (Nuth et al., 2010). Tidewater glaciers cover an area of 14,900 km2

in Svalbard (Figure 2.11), almost 50% of the total glacerised area, 34,000 km2

(Gardner et al., 2013), which is proportionally greater than both Alaska (13%)

and Greenland (35%) (Pfeffer et al., 2014). Approximately 42% of the freshwater

budget for Svalbard’s shelf waters is sourced from glacial discharge, driven by mass

loss from the glaciers (Beszczynska-Moller et al., 1997). Specifically, the SMB of

the Kronebreen system has become more negative since 1995. From 1960 – 1995

the system was in relative balance, -0.02 ± 0.06 m w. eq. yr−1 (metres water

equivalent per year), mass loss increased to -0.18 ± 0.03 m w. eq. yr−1 during

1995 – 2007 from enhanced summer melt (Nuth et al., 2012). The resultant fresh-

water enters the ocean through two outlets: marine terminating outlets account

for 68% of meltwater discharge, whilst the remainder exits at land terminating

outlets as runoff (Nuth et al., 2013). Addressing the recent accelerated thinning

of Svalbard’s west coast glaciers (Kohler et al., 2007), a better understanding of

processes leading to glacier retreat deserves attention from both the cryospheric

and oceanographic research communities (Straneo et al., 2013). To enable accur-

ate quantification of meltwater delivery to the ocean, a deeper understanding of

glacier hydrology is required (Chu, 2014).

2.4 Glacier hydrology

The hydrology of glaciers modulates meltwater storage, transport and discharge

of meltwater produced supraglacially. Surface melt is transported through the

glacial system, and is discharged from the glacier terminus (Figure 2.12). The

mechanisms by which englacial drainage develops in polythermal glaciers is of

interest because meltwater that reaches the subglacial system, can modulate the

basal motion of glaciers (Zwally et al., 2002; Boon and Sharp, 2003; Copland

et al., 2003). Increased contributions to subglacial channels can lead to glacier

speed up (Zwally et al., 2002), calving (Rignot et al., 2010), and drive submarine

melt (Kimura et al., 2014). Another point of interest lies in how much surface melt

reaches the ocean, and the time taken for this englacial transport. Being able to

quantify this is important, and would enable increased accuracy when forecasting

SLR (Church et al., 2013). Current uncertainties remain regarding the quantity

of melt stored, rather than being discharged; this has been attributed to cause
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Figure 2.11: Map of Svalbard displaying tidewater glaciers in blue and terrestrially
terminating glaciers in grey. The width of the caving front is indicated by the size
of the black circles (Nuth et al., 2013).
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errors in SLR predictions (Harper et al., 2012; Rennermalm et al., 2013).

Figure 2.12: Glacier hydrology of a marine terminating glacier, illustrating supra-
glacial, englacial and subglacial processes. Buoyant plumes of sediment laden
freshwater enter directly to the marine environment. Figure modified from Chu
(2014).

2.4.1 Glacier storage

Glaciers themselves are a storage mechanism for water as ice, which is released

once melted. As Jansson et al. (2003) describes, there are three time scales for

glacier storage: long term (years to centuries), intermediate (days to years), and

short term (hours to days). Long term storage depends on the volume of the

glacier itself, and provide storage in the form of ice and snow.

Intermediate storage

Storage of meltwater occurs within a glacier when the melt production exceeds

the rate of glacial discharge, which is largely dependant on the drainage system of

the glacier (Jansson et al., 2003). Seasonal snow cover provides intermediate term

storage, as does water retention in firn. Generally, >80% of annual discharge of

runoff occurs in the summer months, June - August (Jansson et al., 2003). Runoff

is delayed by about a month when the area of exposed ice is 0 – 7% of the glacier,

decreasing to ∼2 weeks when the exposed glacier area increases from 50 – 100%

(Fountain and Tangborn, 1985).

Runoff is significantly delayed due to storage in firn (Schneider, 2000). Peren-

nial firn aquifers (PFAs) form in the percolation zone; winter snowfall provides the
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meltwater reservoir, as the porous space in snow. Melt infiltrates porous firn until

it reaches the underlain ice, which can refreeze the meltwater. Aquifer formation

in this porous region will develop (e.g. Fountain, 1989; Fountain and Walder, 1998;

Schneider, 1999), unless accumulation was too low, or summer melting too high.

Continued supply leads to saturation, which increases with depth (Koenig et al.,

2014; Christianson et al., 2015) of the firn. PFAs found on Kronebreen are 10

– 20 m thick (Christianson et al., 2015), whereas the firn aquifers on the Alpine

glaciers, Storglaciären and Aletschgletscher, are 5 m and 7 m thick, respectively

(Jansson et al., 2003). PFAs have recently been found to provide a buffer mechan-

ism, storing meltwater in the Greenland ice sheet, preventing it from reaching the

ocean (Harper et al., 2012; Forster et al., 2014; Koenig et al., 2014). The under-

lain ice can be melted by stored summer meltwater (Humphrey et al., 2012). At

high elevations, once firn is saturated, a gravity driven flow transports meltwater

towards the glacier terminus, along the base of the firn (Christianson et al., 2015).

At lower elevations, thin firn layers can become saturated to form slush, which

leads to meltwater ponds.

Meltwater ponds typically form in topographic depressions, forming surface

meltwater storage (Liestøl et al., 1980). Once formed, ponds lower the surface

albedo, driving a positive melt feedback, increasing radiation driven melt (Lüthje

et al., 2005). Ponds evolve over time, increasing in size and volume (Sneed and

Hamilton, 2007). Surface pond evolution on Kongsvegen has been enhanced by

superimposed ice, which covers u pto 35% of the glacier surface, equivalent to the

area of exposed glacier (Obleitner and Lehning, 2004; König et al., 2002). Multi-

year accumulation of superimposed ice started between 1956 and 1966, when cre-

vasses would have closed (Brandt et al., 2008). Over the following ∼42 years the

annual accumulation of superimposed ice is 0.16 ±0.06 m w. eq. yr−1, corres-

ponding to ∼5 – 10% of the total winter mass balance (Brandt et al., 2008).

Supraglacial streams are fed by meltwater ponds, forming an arborescent drain-

age network across the glacier surface. Meltwater is transported to lower eleva-

tions, with increasing drainage efficiency throughout the season as the channels

enlarge (Cuffey and Paterson, 2010). Meanders develop in streams as a result

of high, early season discharge (Ferguson, 1973). Streams which have survived

a winter, can be regenerated by renewed discharge, but less supply is required

than for the formation of a new stream (Hambrey, 1977). Meltwater streams feed

crevasses and moulins that they intersect with, forming surface storage (Figure

2.13); should these become full, meltwater overflows, feeding into the stream net-

work (Marston, 1983; Boon and Sharp, 2003). Surface melt storage feeds englacial

glacier drainage network, connecting the supraglacial melt with subglacial.

At the end of the melt season, melt contributions can exceed the transport
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Figure 2.13: Heavily crevassed lower region of Kronebreen expresses meltwater
storage in the crevasse openings (Burko, 2015).

drainage capabilities, causing melt to be frozen in channels and stored during

winter (Hodgkins, 1997; Hodgkins et al., 1998). For water to be discharged from

a glacier, a high water pressure within the glacier needs to be obtained. Melt-

water stored from the previous ablation season can provide this pressure, priming

for early subglacial discharge (Hodson et al., 2005a). Discharge of the stored

meltwater from the previous ablation season presents a distinctive geochemical

signature, allowing it to be distinguished from first year melt (Hodson et al.,

2005b).

2.4.2 Glacier drainage

The idea of tubular conduits as a key mechanism of melt transport through gla-

ciers, is based upon studies at the margin of glaciers (Shreve, 1972; Röthlisberger,

1972). This is not possible at the termini of tidewater glaciers, owing to logistical

constraints of surveying their termini. However, subsequent studies have indicated

that englacial hydraulics are not likely to be dominated by these tubular conduits

(Hock et al., 1999). Instead, incised englacial conduits (Gulley et al., 2009) or

engalcial fracture networks (Fountain et al., 2005), are more probable, especially

in polythermal glaciers such as Kronebreen.

Surface melt can feed supraglacial streams, which incise the glacier surface,

transporting melt down the glacier. Smaller melt streams can join, feeding into a

larger supraglacial stream network. Discharge and stream slope are responsible for

the rate of stream incision (Fountain and Walder, 1998). When the rate of chan-

nel incision is greater than ablation, englacial conduits can form (Gulley et al.,

2009). This process occurs in the upper reaches of polythermal glaciers, where

the drainage area is large enough to sustain high rates of discharge (Figure 2.14).
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Figure 2.14: Schematic of glacier hydrological routing (Irvine-Fynn et al., 2011).

The region cannot be crevassed, else the streams feed into the crevasses (Boon and

Sharp, 2003). The englacial conduits evolve in time and space; internally ponded

water can refreeze during the winter months, providing a storage mechanism (Gul-

ley et al., 2009). These near surface conduits can link together areas of different

hydraulic potential (Gulley and Benn, 2007). Integrated, hydraulically connected

networks form between cavities filled with water (Fountain et al., 2005). These

take the form of fractures, which have been found to extend almost to the glacier

bed, as well as throughout the glacial system. These develop both seasonally and

interannually; continuous pathways can be formed when new fractures intersect

with older, water filled ones (Fountain et al., 2005).

Crevasses open and propagate through the ice, as a result of glacier speeds and

basal topography (Benn et al., 2007). Surface meltwater can flow into crevasses,

forming ponds (Fountain and Walder, 1998), which increases the hydrostatic pres-

sure. This can enable water to propagate to the bottom of the glacier (Van der

Veen, 1998). Hydrofracturing has been proposed as the mechanism driving melt

through the glacier, forcing crevasses deeper through the ice (Benn et al., 2009).

Should they intersect with a subglacial channel, a connection with the basal envir-

onment is formed, providing an outlet for rapid surface to bed meltwater drainage.

An icefall, 12 km from Kronebreen’s terminus marks the start of the crevassed

zone. This region is 500 m a.s.l and is dominated by simple, transverse crevasses

(Sund et al., 2011). Between 6 – 9 km from the terminus, a more complex cre-

vasse pattern is apparent, and from 6 km additional transverse crevasses form.
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Prints of chevron and longitudinal crevasses are imprinted on the transverse cre-

vasses advected down glacier, forming a complex system of fractures, ice blocks

and seracs (Sund et al., 2011). This crevassed zone forms a region of weakness,

with calving events occurring when the glacier ice can no longer support its own

weight. Kronebreen’s ice front actively calves during the summer months, produ-

cing numerous small icebergs, <10 m wide (Dowdeswell and Dowdeswell, 1989;

Dowdeswell and Forsberg, 1992), which total an estimated loss of 0.23 km3 yr−1

(B laszczyk et al., 2009).

In contrast, Kongsvegen’s surface is smooth and largely uncrevassed, owing

to its slow velocity. The glacier is polythermal, frozen to the mountainsides in

the ablation area (Björnsson et al., 1996). The upper layer, which is between 50

and 130 m thick, exhibits sub-freezing temperatures. Large supraglacial channels

form in the ablation area draining meltwater to Kongsfjorden (Melvold and Hagen,

1998).

2.4.3 Subglacial and sedimentary processes

Glacier sliding occurs when the base of glacier is at the pressure melting point,

producing fine grained sediment as a product of erosional processes. The supply of

meltwater to the subglacial environment plays a role in determining glacier velocity

(Iken and Truffer, 1997; Copland et al., 2003; Bartholomew et al., 2012). This has

an impact on basal erosion, which is dependant on glacier velocity (Koppes and

Hallet, 2002). Whilst the physical processes dictating glacier movement are fairly

well constrained, the englacial and subglacial drainage which supplies meltwater

to the base of the glacier is difficult to evaluate. The speed of glacier sliding is

dependant on the effective water pressure at the bed and the basal drag. The

supply of surface melt plays a key role in seasonal speed-up of glacier motion (Sole

et al., 2011). Therefore, the efficiency of the englacial drainage modulates the

rate of supraglacial melt to the glacier bed (Bartholomew et al., 2010), influencing

the effective pressure. Pressurised subglacial water decreases the effective pressure

at the bed, inducing glacier sliding. Borehole measurements have revealed how

variable subglacial water pressure is across the Greenland ice sheet, both spatially

and temporally (Andrews et al., 2014).

Evolving throughout the melt season, distributed subglacial drainage can de-

velop into a channelised system. Early in the ablation season, subglacial water

pressures are high, corresponding to higher glacier velocities (Iken and Truffer,

1997; Bartholomew et al., 2012). Drainage efficiency improves as subglacial chan-

nels develop creating easier passage for meltwater to be expelled from the glacier

terminus (Bartholomew et al., 2010). An efficient drainage system slows the rate
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of glacier flow (Cowton et al., 2013). This seasonal reorganisation of subglacial

drainage has been found in alpine glaciers (Hubbard et al., 1995; Gordon et al.,

1998; Mair et al., 2003) as well as in the Greenland ice sheet (Chandler et al., 2013;

Andrews et al., 2014). Sediment produced by erosion is dispelled from the glacier

front into the fjord, mobilised by meltwater availability (Powell and Molnia, 1989;

Cowan and Powell, 1990; Swift et al., 2002).

The relationship between sediment production and meltwater release has en-

abled the thermal regime of glaciers in numerous locations to be reconstructed

in palaeoclimate studies (e.g. Elverhøi et al., 1983; Shevenell et al., 1996; Cowan

and Powell, 2004). Arctic fjords act as natural sediment traps for glacially eroded

sediment, producing a well preserved record detailing glacier fluctuations, the rate

of erosion, and the associated climate conditions at the time (Elverhøi et al., 1983;

Syvitski, 1989; Cowan et al., 2010). Meltwater transports glacially derived sed-

iments to the fjord environment (Figure 2.15), which is a well studied process

in Kongsfjorden (Elverhøi et al., 1983; Trusel et al., 2010; Kehrl et al., 2011) as

well as in Alaskan fjords (e.g. Hoskin and Burrell, 1972; Cowan and Powell, 1990;

Hallet et al., 1996).

Figure 2.15: Schematic of buoyant sediment plume emerging from a tidewater
glacier. Glacimarine sedimentation is driven by sediment fall out (vertical black
arrows), forming sedimentary layering at the base of the glacier (Ó Cofaigh and
Dowdeswell, 2001).
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The calving front of Kronebreen is grounded approximately 60 m below sea

level, with bed topography playing a pivotal role on retreat, by which increased

water depths increase retreat (Sund et al., 2011). Buoyancy driven plumes rise

from the grounding line of the glacier, mixing with ambient sea water to transport

the sediment to the fjord surface (Figure 2.15) (Syvitski, 1989). This leads to sedi-

mentation in the ice proximal zone, which decreases with distance from the glacier

(Cowan and Powell, 1990; 1991). The build up of sediment at the grounding line of

temperate glaciers can be in the order of tens of metres per year (Powell and Alley,

1997). In Kongsfjorden, 90% of the sediment input from Kongsvegen is deposited

close (<0.5 km) to the glacier front (Elverhøi et al., 1983). As such, the rate of

infill of the Kongsfjorden basin is expected to increase with the increasing length

of the glacial ablation season, and the subsequent influx of sediment (Trusel et al.,

2010). This may lead to the stabilisation of Kronebreen through the formation of

submarine landforms, and potentially allow it to re-advance in the future (Trusel

et al., 2010). Therefore, the seasonal variability of glacimarine and oceanographic

processes in Kongsfjorden requires further understanding (Aliani et al., 2004).

2.5 Detecting plumes by spectral reflectance

Sediment plumes are visually present in the surface waters of fjord environments

as a result of erosional processes (Hallet et al., 1996) and meltwater delivery (Hub-

bard and Nienow, 1997). Influenced by rates of meltwater discharge, bathymetry,

winds and tides, they vary temporall and spatially, making them complex to study

with in situ measurements alone (Purkis and Klemas, 2011). Satellite remote

sensing has been used, together with in situ measurements, to address the limit-

ations associated with in situ sampling (Klemas, 2011). Ocean colour, turbidity,

temperature, and chlorophyll are all features of plumes, allowing plumes to be

distinguished from the surrounding seawater. Some coastal plumes, such as the

Amazon River Plume, can extend hundreds of kilometres, making remote sensing

the only viable method of monitoring (Jo et al., 2005). Buoyancy driven surface

sediment plumes have been used as a tool to monitor the variability of river dis-

charge in coastal waters for many years (Walker, 1996; Ruhl et al., 2001; Brodie

et al., 2010), as well as a method for monitoring cliff erosion (Curran et al., 1987)

and marine pollution (Clark, 1993). Whilst plume detection is well established in

the lower latitudes, it is only recently that such methods have been applied in a

high latitude, glacial setting (Chu et al., 2009; McGrath et al., 2010; Chu et al.,

2012; Tedstone and Arnold, 2012).
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2.5.1 Multispectral remote sensing

Multispectral sensors can be found on several satellites, providing varying repeat

times and at different spatial resolutions. Passive observation of the Earth’s sur-

face is achieved by simultaneous measurements of reflected electromagnetic radi-

ation, with multiple wavebands. Images are recorded in the visible: near infrared,

shortwave infrared and thermal infrared wavelengths (Campbell, 2006). Spectral

response depends on the surface; snow and clouds have a high reflectance, whereas

open ocean has a low reflectance. This has enabled maps of specific land surfaces,

such as snow, to be mapped (Hall et al., 1995). True colour images can be eas-

ily formed with a combination of bands, making multispectral images very user

friendly. This has led to their extensive use in environmental monitoring. Different

bands can be used to determine spectral reflectance from different surfaces. The

high correlation between TSS and spectral reflectance has proved to be a valuable

tool to detect sediment plumes remotely (Curran and Novo, 1988).

There are several different multispectral sensors; emphasis here is placed on

Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Ima-

ging Spectroradiometer (MODIS), and Landsat, as they have each been used in

sediment plume studies (e.g. Stumpf and Tyler, 1988; Chu et al., 2009; Kim et al.,

2014). All multispectral sensors are hindered by cloud cover, meaning that us-

able data is only available during cloud free comditions. The first AVHRR sensor

was launched in 1978, and has a maximum spatial resolution of 1.1 x 1.1 km.

So far, there have been 15 sensors launched, providing continuous, daily, global

data from 1981 - present. It has six bands ranging from 580 – 1250 nm (NOAA,

2015). The Landsat programme, which was launched in 1978, has become the

dominant multispectral imager for Earth observation, and continues to present

(Loveland and Dwyer, 2012). The latest addition to the programme is Landsat 8,

which offers a spectral range of 430 – 1380 nm, over 9 spectral bands. Bands 10

and 11 are thermal. It boasts a fine spatial resolution of 30 m (previous Landsat

sensors provided 15 – 90 m), but this comes at the expense of a 16 day revisit

cycle (USGS, 2015). MODIS is found on two NASA satellites, Terra, launched in

1999, and Aqua, launched in 2002, and are both still in operation. With 36 bands,

MODIS offers a larger spectral range from 405 – 14385 nm, in addition to a finer

spatial resolution, with a maximum of 250 x 250 m (NASA, 2012a). The MODIS

sensors are in a daily orbit, meaning that with both Terra and Aqua, twice daily,

global coverage is achieved.

There are numerous considerations when choosing the right multispectral sensor

for a study. These include: spatial resolution, temporal resolution, spectral resol-

ution/band wave lengths, cost and ease of access to data, length of data archive
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and the availability of pre-processed products. There is no optimal sensor for all

studies, forcing users to trade-off between sensor specifications, to achieve the best

possible outcomes.

2.5.2 Sediment plume detection

Low latitudes

Early studies monitoring in situ buoyant plume dynamics took place in the Missis-

sippi River (Wright and Coleman, 1971) and the Fraser River in British Columbia

(Stronach, 1981). These detailed the spatial and temporal challenges which need

to be overcome when monitoring sediment plumes: in situ sampling becomes

expensive, time consuming and often inaccurate due to the unknown represent-

ativeness of spot samples to the wider environment (Curran and Novo, 1988).

The visibility of TSS in coastal waters, and its relationship with reflectance has

enabled TSS to be quantified remotely (Curran and Novo, 1988). Higher TSS

results in greater reflectance, whilst lower concentrations have lower reflectivity

(Figure 2.16). Higher TSS responds better at higher wavelengths, with 600 – 700

nm providing an optimal range to encompass both high and low TSS concentra-

tions (Moore, 1977). In situ measurements must be well spaced, representing the

range of the variable which is to be detected remotely, in order to provide suitable

calibration data (Schofield et al., 2004).

Turbid estuarine plumes have been detected using AVHRR, which were calib-

rated with in situ measurements to determine chlorophyll and sediment concentra-

tions (Stumpf and Tyler, 1988). An early review highlights some of the challenges

associated with determining TSS with remote sensing (Curran and Novo, 1988).

Suggestions were made to increase the accuracy of TSS estimation from spectral

reflectance, which involve: take simultaneous measurements of TSS and spectral

reflectance, correct for environmental influences, and to derive an empirical rela-

tionship between TSS and spectral reflectance. This paved the way for a wealth

of marine and hydrological research, which utilises the differences in ocean col-

our, to enable remote environmental monitoring. More recently, Klemas (2011)

highlighted the need for representative in situ samples of the full range of meas-

urements in the environment of interest, to ensure the best calibration possible,

when studying coastal plumes.

Further work detailed the complex forcing factors that affect plume velocity

and size. Both winds and tides have the ability to extend the plume further from

the source, with wind stress remaining in the surface waters, increasing plume

velocity (Stumpf et al., 1993). Changes in river discharge, and therefore plume

size, has been detected using AVHRR, despite the influence of wind and tides
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Figure 2.16: Effect of TSS (µmg l−1) on radiance at different wavelengths (Curran
and Novo, 1988).

(Walker, 1996). This allowed for the seasonal and interannual variability of river

discharge to be determined by variability in sediment plume size, in the Mississippi

River (Walker, 1996).

With the launch of MODIS, this work has been expanded, but the finer resolu-

tion has enabled greater detail to be observed. Mapping TSS using MODIS band

1 revealed the complex dynamics of coastal waters in the Northern Gulf of Mexico

(Miller and McKee, 2004). The twice daily global coverage provided by MODIS

is a valuable attribute, supporting numerous studies of the temporal and spatial

change of TSS (e.g. Ruhl et al., 2001; Warrick et al., 2004; Chen et al., 2015).

Although Landsat has a finer resolution, its 16 day repeat time restrains it from

being used in temporal monitoring studies; TSS mapping using MODIS remaining

the preferable platform for monitoring coastal and riverine environments (Chen

et al., 2015). Both sensors are affected by cloud, but there is greater probability

of retrieving several viable images from MODIS during a season.

High latitudes

Remote sensing of TSS in the high latitude and glacial environments is in the early

stages of development. However, there is a wealth of potential since quantifying
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freshwater discharge from glaciers is of global importance (IPCC, 2013). Access

to make regular, in situ measurements, is difficult due to the remoteness of the

Polar Regions. Sampling in close proximity to tidewater glaciers induces additional

complexities: ice melange at the calving face and iceberg calving restricts access

for in situ sampling in the ice proximal zone. To determine temporal and spatial

variability of submarine meltwater release from field measurements alone would be

extremely timely and expensive, harbouring efforts to understand the key processes

affecting tidewater glaciers.

Sediment entrained in glacier meltwater discharge forms visible plumes in Arc-

tic fjords. The glacimarine sedimentary processes have been explored, but using

the sediment plumes to quantify discharge has only been recently achieved. Owing

to the high temporal repeat times and a reasonable resolution of 250 x 250 m when

using bands 1 and 2, MODIS has been the optical sensor of choice. It provides a

means to remotely detect sediment plumes, intra-seasonally, as has been achieved

at the lower latitudes (Figure 2.17).

Figure 2.17: MODIS satellite images of Svalbard (A) 6th June 2012, displaying
snow cover (B) 29th September 2012, at the end of the ablation season (C) same
previous images but focussed on Kongsfjorden as in Figure 2, displaying high
suspended sediment loads (NASA, 2012b).

Initially, the extent of sediment plumes was determined by spectral reflectance

alone (McGrath et al., 2010), revealing that plume extent provided a suitable proxy

for runoff. Large plume extents correspond with high runoff, which was measured

at a gauging station. Further to this, in situ TSS samples were collected, together

with spectral reflectance measurements, forming an empirical relationship which

was used to calibrate with MODIS band 1. This illustrated the evolution of glacial

melt inputs to Kangerlussuaq fjord, Greenland, from 2000 – 2007; including cap-

turing large lake drainage events (Chu et al., 2009). The technique was upscaled,

around the coast of Greenland, giving a synoptic scale insight to meltwater dis-

charge from the Greenland ice sheet. At interannual scales, high TSS corresponds
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with high Positive Degree Days (PDD), and plume extent again, correlates with

runoff (Chu et al., 2012). These studies demonstrated that plume extent can be

useful for determining melt entering the ocean, from land terminating glaciers.

Tedstone and Arnold (2012) progressed the field by analysing the effectiveness

of plume extent as a runoff proxy, at both land and marine terminating glaciers

in Greenland. Automated detection of sediment plumes in 36 outlet glaciers,

both land and marine terminating, along the length of Greenland’s west coast,

illustrated that MODIS is a suitable form of remote sensing to monitor glacial

meltwater delivery. The method was most effective in long, wide (>2 km), fjords,

with runoff from land terminating outlets. Although it is possible to determine

plume extent in marine terminating outlets, ice melange and sea ice can be a

problem. Intra-seasonal variability was difficult to determine, particularly melt

onset, because of the limited availability of suitable MODIS images. As such,

(Tedstone and Arnold, 2012) recommended that remote detection of sediment

plumes is best placed for detecting interannual variability.

Again focussing on land terminating glaciers, (Hudson et al., 2014) has im-

proved the detection method by using both band 1 and 2 of MODIS. This is offers

detection of a wider loading of TSS in synoptic scales studies. One the caveats of

(Chu et al., 2009), was that high TSS was not always detected; high TSS is com-

mon in riverine discharge. Plume extent was again found to be a better indicator

of runoff, because annual TSS and river volume discharge did not correlate (Hud-

son et al., 2014). Numerous processes take place in glacio-fluvial fjord systems,

making it increasingly complex to understand meltwater discharge at a synoptic

scale (Hudson et al., 2014). Despite this, sediment plume detection has been sug-

gested as means to further understand glacier hydrology, and remains a relatively

unexplored tool (Chu et al., 2012). A detailed study, capturing the seasonal and

interannual variability of meltwater discharge, from a tidewater glacier, has not

been undertaken. This leaves an area for further investigation, which could al-

low for meltwater delivery to be quantified remotely, overcoming many logistical

problems associated with in situ sampling near tidewater glaciers.

2.6 Summary

Significant uncertainties remain regarding the stability of tidewater glaciers, and

how this will change in the Arctic as both the ocean and atmosphere warm. Ob-

servational studies are limited owing to logistical, time and funding constraints.

Therefore, novel methods of remote monitoring need to be explored to enhance

process based understanding. To this end, oceanographic and spectral reflectance

measurements taken during a field campaign in July 2012 are presented. These
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reveal the hydrographic structure at the head of Kongsfjorden, in addition to

providing a time series of meltwater discharge, illustrating its seasonal and inter-

annual variability, achieved by the remote detection of sediment plume extents.



Chapter 3

Freshwater contributions and

circulation at the head of

Kongsfjorden

3.1 Introduction

Kongsfjorden is a relatively well studied fjord however, oceanographic measure-

ments at the head of the fjord, in the vicinity of Kronebreen’s calving front, are

limited. This is despite other studies which have focussed on the glacimarine

processes (e.g. Elverhøi et al., 1980; Kehrl et al., 2011). This chapter uses hy-

drographic sections from the ice proximal zone of Kronebreen, to expand the un-

derstanding of the hydrographic processes taking place in front of a fast flowing,

tidewater glacier. This study aims to quantify the freshwater inputs and under-

stand how they affect fjord circulation. This has been achieved by the following

objectives:

i Provide a detailed description of water masses and their relative locations,

directly in front of Kronebreen.

ii Illustrate the circulation and mixing processes within the ice proximal zone.

iii Quantify the volume of freshwater entering at the head of Kongsfjorden, and

determine the contributions from subglacially discharged runoff, and direct

submarine melt of the ice face.

Owing to the impacts of freshwater inputs to Arctic fjords (Section 2.1.2),

oceanographic observations are highly valued to further the understanding of gla-

cier - ocean interactions (Cottier et al., 2010). Hydrographic measurements enable

the relative quantities of freshwater to be diagnosed, revealing whether meltwater

44
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is predominantly submarine melt or surface runoff (Jenkins, 1999; Motyka et al.,

2003; Mortensen et al., 2013). Unlike terrestrially terminating glaciers, it is not

possible to quantify discharge from tidewater glaciers with a gauging station. To

address this, hydrographic sections can be used to calculate water column velocity,

and the volume of additional inputs to the system, where geostrophic circulation

permits (Jenkins and Jacobs, 2008). Such methods would assist in forming better

quantifications of meltwater discharge from tidewater glaciers, since these remain

poorly constrained. This is despite glacier melt being marked as a major contrib-

utor to eustatic sea level rise in the 21st century (Meier et al., 2007; Church et al.,

2013).

Meltwater contributions to Arctic fjords, not only contribute to sea level rise

but also cause a freshening of the water column, which has impacts for the mar-

ine ecosystem (Zajaczkowski and Legezynska, 2001). Subglacially derived melt-

water also transports sediments, which affects primary productivity in the SW.

Therefore, a better understanding of meltwater contributions and their origins,

is not only important to improve estimations of sea level rise and fjord circula-

tion (Straneo et al., 2013), but also to assess the impacts on marine biodiversity

(Lydersen et al., 2014).

3.2 Methodology

3.2.1 Hydrographic Data

Hydrographic data were collected from 15 – 18th July 2012 at the head of Kongs-

fjorden, in the ice proximal zone of Kronebreen (Figure 3.1). Temperature and

salinity profiles were measured using a YSI Castaway CTD (conductivity, temper-

ature, depth; Table 3.1). The instrument was deployed by hand from the front of

a small boat. It was stabilised at 5 m depth, for approximately 5 minutes. It was

then steadily lowered to either the sea bed, as determined by the feeling the line

of the CTD go slack, or to the full extent of the 80 m line, which ever was deepest.

When the CTD reached the seabed, a basic bathymetry was obtained.

Two sections were sampled, comprising of 25 stations in total. Each section

was repeated, with 3 – 4 days between sampling. Stations were located 200 m

apart for the north - south section, at a distance of approximately 250 m from the

ice face. The stations forming the east - west section were 200 m apart up to 1400

m from the start of the section, closest to the ice. Beyond this they were 300 m

apart until the end of the section (Figure 3.1). The spacing between stations was

determined by using a hand held GPS. However, the actual location of the start

and end of the CTD cast was measured and recorded by the YSI Castaway; the
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station location was determined as the mid-point between start and end locations.

The data were processed using YSI Castaway software to calculate values for

depth, salinity, sound velocity and density. These were binned into 0.3 decibar

intervals, starting at 1.5 decibars. This resulted in 30 cm depth resolution. The

CTD reached the seabed enabling water depth to be established for all but two of

the stations. The two furthest from Kronebreen were deeper than the line on the

CTD. These temperature and salinity measurements have been used to identify

the water masses in Kongsfjorden (Table 3.2).

Range Resolution Accuracy
Conductivity 0 - 100,000 µS/cm 1 µS/cm 0.25% ± µS/cm

GPS 10m
Pressure 0 - 100 dBar 0.01 dBar 0.25% of FS

Salinity (derived) Up to 42 (PSS-78) 0.01 (PSS-78) 0.1 (PSS-78)
Temperature -5 to + 45 ◦C 0.01 ◦C 0.05 ◦C

Table 3.1: YSI Castaway CTD specifications

Water mass Abbreviation T (◦C) S (PSU)
External Atlantic water AW >3.0 >34.65

Arctic water ArW -1.5 to 1.0 34.30 to 34.80
Internal Winter-cooled water WCW <-0.5 34.40 to 35.00

Local water LW -0.5 to 1.0 34.30 to 34.85
Surface water SW >1.0 <34.00

Mixed Transformed Atlantic water TAW 1.0 to 3.0 >34.65
Intermediate water IW >1.0 34.00 to 34.65

Table 3.2: Water masses found in Kongsfjorden and the adjacent shelf, defined by
(Cottier et al., 2005)

3.2.2 Meltwater fractions from Temperature - Salinity

analysis

In the marine environment ice will melt when the ambient ocean water has a tem-

perature above the in situ freezing point, leading to changes in temperature (T)

and salinity (S) as a result of heat loss and freshening. The opposite effects take

place with freezing. Considerable energy is required to melt glacial ice; seawater

contributes heat to bring the glacier ice to the freezing point of fjord water as well

as supplying the latent heat of fusion. The mixing of freshwater with ambient

seawater is apparent as a straight line in T-S space, with 2.5 ◦C slope per salin-

ity unit, beneath floating ice (Gade, 1979). The resultant changes in T-S space



3.2. METHODOLOGY 47

Figure 3.1: Map displaying occupied CTD stations in front of Kronebreen’s ice
face and those extending through the plume. These stations were each occupied
twice during July 2012. Note, Kronebreen’s terminus has retreated since the base
map was produced, in 2010.
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have been used to understand glacier-ocean interactions and processes in fjord

environments (e.g. Rignot and Steffen, 2008). Water masses have been identified,

including quantifying the relative proportion of freshwater, by the characteristic

changes in T-S space (Figure 3.2; Mortensen et al., 2013). Another method to

identify and quantify mixed water masses is to use the thermodynamic relation-

ship between glacier melt and seawater, which has been successfully applied near

a floating ice shelf in the Amundsen Sea (Jenkins, 1999). Addressing the origin of

freshwater reveals the dominant production process, enabling better forecasts of

freshwater entering the marine system (Mortensen et al., 2014). This study quan-

tifies subglacial freshwater (SgFW), which comprises of surface melt, that has been

discharged as a buoyant plume from the grounding line of Kronebreen, and glacial

melt (GiFW), which is formed of submarine melt, resultant of direct melting of

the ice face. This is achieved using a method analogous to the thermodynamic

model and characteristic changes in T-S space (Mortensen et al., 2013).

Figure 3.2: Schematic illustrating the thermodynamic and mixing processes as-
sociated with melting ice in a θ-S diagram. The observed potential temperature
and salinity characteristic (θobs, Sobs) is a result of mixing water source type (θWT ,
SWT ) with SgFW (θSgFW , SSgFW ) leading to a mixing ratio determined by (θ′,
S ′), proceeded by thermodynamic changes due to the melting of ice, illustrated
by the dotted “melt-line” (Mortensen et al., 2013).

To quantify the relative fractions of subglacial meltwater and glacial melt in a

water mass, a volume of seawater (V ) is considered. It has a potential temperature

(θ) above the freezing temperature (θf ) in contact with ice, and density (ρw). This

therefore gives the local heat balance:

V ρwcp
∂θ

∂t
= −LρfFw + ciρfFw (θi − θf ) + cpρwFw (θf − θ) (3.1)

Where L is the latent heat of fusion, Fw is the rate of melted ice in water
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equivalents, ρf is the freshwater density, cp and ci are the heat capacities of sea-

water and ice, respectively, θi is the temperature of the ice, and t is time. This

assumes that the local heat balance is not affected by other sources, such as solar

insolation. The equivalent balance for local salinity is specified as

V
∂S

∂t
= −FwS (3.2)

Equation 3.3 illustrates the straight line formed in T-S space as a result of

changes in temperature and salinity from the processes of melting and freezing;

these steep lines are referred to as “melt lines” as illustrated in Figure 3.2.

∂θ

∂S
=

1

S

(
L

cp

)
−
(
ci
cp

(θi − θf )− (θf − θ)
)

(3.3)

The melt line defined by Equation 3.3 passes through (θ, S) and (θ∗i , Si). Since

Si = 0, we get equation 3.4. This results in an effective temperature as given in

(Jenkins, 1999; Equation 3.5).

(θ − θ∗i ) =

(
L

cp
−
(
ci
cp

(θi − θf )− (θf − θ)
))

(3.4)

θ∗i = θf −
L

cp
+
ci
cp

(θi − θf ) (3.5)

3.2.3 Freshwater fraction model

To quantify the freshwater fractions (f) of a specific volume (Equation 3.6), the

individual components must be evaluated: ambient water type (fWT ), glacial melt

(fGiFW ), and subglacial freshwater (fSgFW ). In this instance fGiFW is the product

of ocean water directly melting the ice face, where as fSgFW is the product of

subglacial discharge entering at the grounding line. Presented here is a three water

mass mixing model to quantify the relative fractions of fWT , fGiFW and fSgFW

(Tomczak, 1981). This method has been applied using oxygen isotopes rather than

temperature as a secondary tracer (Meredith et al., 2008). Because oxygen isotope

data are not available for this study, the approach of quantifying water masses by

temperature and salinity characteristics has been adopted instead (Jenkins, 1999;

Jenkins and Jacobs, 2008; Jacobs et al., 2011). Applying this approach to the three

water mass mixing model has been shown to be synonymous to Jenkins (1999)

in determining water masses in the Amundsen Sea (Nakayama et al., 2013). The

characteristics of salinity (Equation 3.7) and temperature (Equation 3.8) for each

of the water masses is resolved, enabling the relative fractions of fWT , fGiFW and

fSgFW to be established (Equation 3.6). A matrix equation has been formulated
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to solve for the three previous simultaneous equations (Equation 3.9).

fWT + fGiFW + fSgFW = 1 (3.6)

fWTSWT + fGiFWSGiFW + fSgFWSSgFW = Sobs (3.7)

fWT θWT + fGiFW θ
∗ + fSgFW θSgFW = θobs (3.8)

 1 1 1

SWT Si SSgFW

θWT θ∗i θSgFW


 fWT

fi

fSgFW

 =

 1

Sobs

θobs

 (3.9)

With increasing distance from Kronebreen, the potential temperature and sa-

linity properties (θobsSobs) will be resultant of mixing between the ambient water,

fWT , and the two freshwater fractions, fGiFW and fSgFW . It must be noted that

this method cannot distinguish between glacial melt from the glacier terminus, or

that of melting icebergs in the fjord.

A combined freshwater fraction can be defined since Si = 0 and SSgFW = 0

(Equation 3.10). Using the salinity signal allows the overall water mass to be split

into two fractions: freshwater (fFW ) and ambient water (fWT ; Equation 3.10).

This leads to a solution for Sobs (Equation 3.7). The total fWT is determined

using equation 3.12 enabling the fFW to also be solved (Equation 3.13).

fGiFW + fSgFW = fFWfWT + fFW = 1 (3.10)

fWTSWT = Sobs (3.11)

fWT =
Sobs
SWT

(3.12)

fFW = 1− Sobs
SWT

(3.13)

Utilising the salinity equation enabled fFW to be separated from fWT . To

determine fSgFW from fGiFW , the effective temperature is used (Equation 3.8).

The energy required to melt glacial ice is much greater than that of meltwater

runoff entering the marine system as a liquid. Using the effective temperature

permits fSgFW to be quantified in the fFW fraction (Equation 3.14). The fGiFW

is the remaining fraction of fFW (Equation 3.15). This method is equivalent

to that of Jenkins (1999) despite resolving for three water masses, rather than
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just the combined meltwater fraction. Additionally this method is equivalent to

Mortensen et al. (2013), in which the freshwater fractions were diagnosed by a

geometrical reconstruction of the T-S diagram (Figure 3.2). Equation 3.14, which

quantifies fSgFW , only differs from the methods of Mortensen et al. (2013) because

the effective ice temperature (θ∗i ) is used, rather than the gradient of the “mixing-

line” which passes through θWT , SWT (Figure 3.3).

fSgFW =
(θobs − θ∗i )− Sobs

SWT
(θWT − θ∗i )

(θSgFW − θ∗i )
(3.14)

fi = fFW − fSgFW (3.15)

3.2.4 Geostrophic current velocities

The width and stratification of a fjord dictate whether it will be influenced by

the dynamic effect of the Earth’s rotation, Coriolis (Cushman-Roisin et al., 1994).

When the fjord is wider than the internal Rossby radius, cross-fjord variations

in flow can be attributed to rotational dynamics. At 4 km wide Kongsfjorden

is affected by Coriolis (Svendsen et al., 2002; Cottier et al., 2005). Since direct

velocity measurements were not taken for this study, geostrophic circulation will

be calculated to quantify the velocity and volume of freshwater exchange at the

ice front of Kronebreen. The geostrophic velocity calculations, as described in

Jenkins and Jacobs (2008), have been used. This method was applied to Pine

Island Glacier, Antarctica, in which the results from the geostrophic methods

were comparable to velocity measurements taken with an acoustic doppler current

profiler (ADCP) in a later field campaign (Jacobs et al., 2011). The vertical

pressure gradient is directly related to the density of the water. This estimate

relies upon the calculation of density, under the assumption that flows are in

hydrostatic and geostrophic balance (Equations 3.16).

F
∂v

∂P
= −∂α

∂x
|P (3.16)

In which F is the Coriolis parameter, v is the velocity perpendicular to the

CTD section, P is pressure, α is specific volume, x is the horizontal axis, and

the derivative is taken along the isobaric surface. The velocity can be calculated

on any pressure surface relative to that at a reference pressure by integrating the

equation with respect to pressure:

v(P ) = v(Pref ) +
1

f

∂

∂χ

(∫ Pref

P

α

)
|P (3.17)
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Figure 3.3: θ-S plots from CTD stations in front of Kronebreen on 14th and
18th July 2012. “Melt Line” is displayed as a solid red line representing the
thermodynamic changes as a result of melting ice (Equation 3.3).
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A reference velocity is required to vertically integrate flow velocities (Jenkins

and Jacobs, 2008). In deep sea environments the level of no motion is placed

where the vertical shear of currents is assumed to be zero, typically at a depth of

2000 m (Defant, 1961). The currents would then be integrated as a function of

depth up to the sea surface and down to the sea bed. In this scenario, the depth

at the head of Kongsfjorden ranges between 40 – 80 m. The freshwater fraction is

expected to flow away from the ice front at the surface; as such, the level of zero

motion has been set at the seabed and velocities have been integrated vertically

up to the fjord surface (Equation 3.17).

In a closed system, with no additional inputs, the inflow and outflow across

the section would be equal. The CTD section parallel to Kronebreen essentially

closes the system. Therefore the transport across the section can be calculated

with Equation 3.18, in which M is mass and the summation runs over n station

pairs.

n∑
j=1

(Mout −Min)j) = Mmelt (3.18)

3.3 Results

3.3.1 Hydrographic sections

The hydrographic data presented in this chapter, detail the composition and spa-

tial variability of water masses within the ice proximal zone at the head of Kongs-

fjorden, which have been previously undocumented. This has been achieved with

hydrographic sections, taken∼300 m in front of Kronebreen’s ice face, and through

the buoyant meltwater plume, which extends down Kongsfjorden (Figure 3.1).

These were taken in mid-July, when glacial meltwater discharge from Kronebreen

to Kongsfjorden is expected to be high. Temperature and salinity profiles of the

stations parallel to Kronebreen’s ice front, covering the full depth of the water

column, are shown in Figure 3.4, and stations through the plume are shown in

Figure 3.5. A basic bathymetric profile has also been obtained, due to the CTD

reaching the floor at each station, apart from the two furthest from the ice face.

At the ice front, temperature varies between 0.8 – 4.2 ◦C and salinity between

24.0 – 34.4 PSU (Figure 3.4). A bathymetric ridge is apparent 1.3 km south along

the section (Figure 3.6). The temperature and salinity properties differ either side

of this ridge. The south exhibits surface temperatures of 1.6 ◦C which increase to

4.1 ◦C at 15 m depth. The surface temperatures in the north range from 0.8 – 3.8
◦C increasing to 2.4 – 3.4 ◦C at 14.0 m depth, where the thermocline is observed.

This general temperature structure is similar on both 14th and 18th July however,
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the latter day has far less variability in temperature between the southern stations

(Figure 3.4). The southern stations have the greatest range of salinity, from 24.0 –

34.4 PSU, compared to the northern stations which exhibit a range of 31.2 – 34.4

PSU. A fresh surface layer is revealed by surface salinities as low as 24.0 PSU in

the upper 4.0 m of the water column. At 4.0 m depth the salinity has increased

to 32.5 PSU and continues to increase to 34.2 PSU at 20 m depth. Between 4 –

20 m the northern stations exhibit lower salinities than the south by up to 1 PSU.

From 20 m to the sea bed, the salinities of the north and south have converged

and exhibit the same properties.

The temperature in the plume is not as low as at the ice front, with temper-

atures ranging from 2.6 – 4.4 ◦C (Figure 3.5). Between 4.0 – 20.0 m temperature

increases rapidly from 3.1 – 4.1 ◦C, coinciding with a salinity increase from 33.4

– 34.9 PSU, forming the pycnocline layer. The pycnocline layer displays much

greater temperature variability on the 15th July than on the 18th July (Figure

3.5). From 26.0 m temperature continues to decrease with depth, whilst there

is only a small change in salinity. Below 62.0 m depth, the rate of temperature

change increases; the temperature cools from 3.0 ◦C to 2.3 ◦C at 82.0 m.

Water masses

Three distinct water masses have been identified at the head of the Kongsfjorden:

AW, IW, and SW. Sourced from the WSC, AW is the primary influx of heat

and salt to Kongsfjorden (Svendsen et al., 2002). Large freshwater inputs are

sourced from freshwater runoff (surface and submarine), direct submarine melt of

Kronebreen and precipitation. These contribute to the formation of SW, which

exhibits low salinity but is relatively warm due to solar heating in the summer

months (T (◦C) >1 and S (PSU)<34.00). When AW and SW mix, IW is formed

(T (◦C) >1 and S (PSU) 34.00 – 34.65).

The hydrographic structure at the ice front revealed differences in temperature

and salinity properties between the north and the south of the section, either side of

the bathymetric high (Figure 3.4). Here, the description of water mass occupation

has been separated into north and south for the section in front of Kronebreen

(Figure 3.6). The south comprises of SW from 0.0 – 8.9 m depth, IW from 9.0 –

34.9 m and the dense AW occupies from 35.0 m to the sea bed. The top 4.0 m

of the SW has signals of fresh water, with salinities reaching as low as 24.0 PSU

(Figure 3.7). The north displays the same vertical arrangement but in different

proportions: 0.0 – 13.9 m SW, 14.0 – 45.0 m IW, and 45.0 m to the seabed is

occupied by AW. Comparatively, the northern extent of the transect is cooler and

fresher than the southern extent. Again, the top 4.0 m of the SW is fresh, with
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Figure 3.6: Depth contour plots of temperature (◦C) in front of Kronebreen’s
calving face, as determined from CTD stations. Vertical black lines indicate loca-
tions of CTD measurements in front of Kronebreen on the 14th and 18th July 2012
(Figure 3.1). The CTD reached the floor each time, providing basic bathymetry
for the fjord, shown as the blacked out region. The schematic details the location
of water masses using the classifications as in Cottier et al. (2005). Dotted line
indicates base of the freshest SW at 4.0 m depth.

salinities ranging from 31.0 to 33.0 PSU (Figure 3.7).

The along fjord CTD section depicts the water masses entering the fjord and

those that leave from the ice face (Figure 3.8). The same three water masses are

present at the ice face (AW, IW, SW), with the addition of TAW (T (◦C) <3,

S (PSU) >34.65). Closest to the glacier, the top 14.0 m of the water column is

occupied by SW, 14.0 – 38.0 m occupied by IW and 38.0 – 64.0 m is AW. Surface

salinities are lowest closest to Kronebreen (Figure 3.9). Beneath the AW lies TAW

which extends to the sea bed. At the furthest extent of the transect, 2.5 km from

the ice face, the oceanographic structure is the same. However, IW occupies less

space, from 14.0 – 30.0 m, with AW replacing the difference. The TAW is the

densest of the four water masses and therefore located at the bottom of the water
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Figure 3.7: Depth contour plots of salinity (PSU) in front of Kronebreen’s calving
face, as determined from CTD stations. Vertical black lines indicate locations of
CTD measurements in front of Kronebreen on the 14th and 18th July 2012 (Figure
3.1). The CTD reached the floor each time, providing basic bathymetry for the
fjord, shown as the blacked out region. The upper plot focuses on the top 5 m of
the water column, which has a lower salinity than the rest of the water column.
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Figure 3.8: Depth contour plots of temperature (◦C) through the plume, determ-
ined from CTD stations at the front of Kronebreen to a distance of 2.7 km away,
through the centre of the plume (Figure 3.1). The vertical black lines indicate loc-
ation of CTD measurements on the 15th and 18th July 2012. The CTD reached the
floor each time, apart from the two stations furtherest from Kronebreen provid-
ing basic bathymetry for Kongsfjorden as displayed by the blacked out region.
The schematic details the location of water masses using the classifications as in
Cottier et al. (2005).

column. Its density prevents it from rising above the ridge created by sediment

deposition and therefore it does not reach the glacier face (Figure 3.8).

Freshwater fractions

The fractions of ambient AW, GiFW and SgFW have been quantified using the

three water mass mixing model (Equation 3.9). The proportion of freshwater in the

water column has been quantified (Equation 3.13), in addition to quantifying the

relative contributions from SgFW and GiFW. This has revealed that the dominant

freshwater source entering the head of Kongsfjorden is SgFW, with GiFW only

accountable for a small proportion of the freshwater present.
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Figure 3.9: Depth contour plots of salinity (PSU) through the plume, determined
from CTD stations. Vertical black lines indicate locations of CTD measurements
in front of Kronebreen on the 14th and 18th July 2012 (Figure 3.1). The CTD
reached the floor each time, providing basic bathymetry for the fjord, shown as
the blacked out region. The upper plot focuses on the top 5 m of the water column,
which has a lower salinity than the rest of the water column.
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In the section in front of Kronebreen between 3 – 30% of the SW is composed

of SgFW (Figure 3.10). The upper 45.0 cm of the water column has SgFW contri-

butions up to 30%, and decreases with depth. From 0.5 m to 14.0 m depth SgFW

declines to 3%. A spatial change in SgFW is present between the northern and

southern sections of the transect. North of the central bathymetric high (Figure

3.10), 3 – 8% of the SW is formed of SgFW. The southern extent receives con-

siderably more SgFW in the range of 12 – 30%. Although small, there are glacial

melt contributions up to 3% (Figure 3.11); this varies across the ice front with the

north receiving up to 1% more than the south. In contrast to SgFW, the glacial

ice melt is not constrained to the surface layer. In the south, the GiFW is located

at the surface within the upper 10.0 m of the water column, whilst in the north it

can also be found at 10.0 – 20.0 m depth (Figure 3.11).

Extending through the plume down the fjord, SgFW remains the dominant

freshwater fraction (Figure 3.13), with small a GiFW contribution (Figure 3.12).

The top 45.0 cm is again dominated by SgFW with up to 3% penetrating to a

depth of 10.0 m. GiFW is not found beyond 300 m of the glacier front; the small

volume found close to Kronebreen is located at 15.0 – 20.0 m depth, in the IW

(Figure 3.13). The same pattern of freshwater distribution, for both GiFW and

SgFW is observed in both the sections, on two different days.

This surface freshwater signal extends beyond the 2.5 km transect on both days

sampled (Figure 3.14). A strong ebb tide on the 15th July, exhibited a tidal range

of 42.0 cm which has coincided with a steady decrease in SgFW with increasing

distance from the ice front. SW closest to the ice front was formed of 30% SgFW

at 15 cm depth, decreasing to 10% at 2.5 km along the section. At 45 cm depth,

a SgFW fraction of 15% is found closest to the ice front, decreasing to 8% at

2.5 km distance (Figure 3.14). Three days later on 18th July the CTD stations

were sampled during high to low tide, with a much reduced tidal range of 14.0 cm

compared to the 15th July. The SgFW appears more variable with distance. It

does not exhibit the same layer structure with greater SgFW at 15 cm than 45 cm

depth as was found on the 15th July (Figure 3.14). The fraction of SgFW varies

from 6 – 2 %, with greatest variability apparent at 15 cm depth.

3.3.2 Transport velocity and freshwater volume

Transport velocity of water masses and the volume of freshwater has been calcu-

lated using the geostrophic balance across the CTD stations (Jenkins and Jacobs,

2008; Jacobs et al., 2011). This has been applied to each of the two repeat CTD

sections parallel to Kronebreen’s ice front. This has enabled the velocities of inflow,

towards the ice front, and outflow, away from the ice front at the glacier-ocean
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Figure 3.10: Depth contour plots of SgFW, determined from CTD measurements
(black vertical lines) at the front of Kronebreen on 14th and 18th July 2012 as
detailed in Figure 3.1. Sea floor bathymetry (blacked out region) was obtained
by the CTD reaching the floor. The fraction of SgFW has been determined using
Equation 3.14. The white region represents AW which has a salinity higher than
that defined in the freshwater fraction model, and appears to the right of the melt
line in Figure 3.3.
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Figure 3.11: Depth contour plots of GiFW, determined from CTD measurements
(black vertical lines) at the front of Kronebreen on 14th and 18th July 2012 as
detailed in Figure 3.1. Sea floor bathymetry (blacked out region) was obtained
by the CTD reaching the floor. The GiFW fractions have been determined using
Equation 3.15. The white region represents AW which has a salinity higher than
that defined in the freshwater fraction model, and appears to the right of the melt
line in Figure 3.3.
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Figure 3.12: Depth contour plots of SgFW fractions determined from CTD
measurements (black vertical lines), extending down Kongsfjornde away from
Kronebreen, as illustrated in Figure 3.1. The fraction of SgFW has been determ-
ined using Equation 3.14. The white region represents AW which has a salinity
higher than that defined in the freshwater fraction model. Freshwater is only
located in the upper water column.
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Figure 3.13: Depth contour plots of GiFW fractions determined from CTD
measurements (black vertical lines), extending down Kongsfjornde away from
Kronebreen, as illustrated in Figure 3.1. The fraction of GiFW has been determ-
ined using Equation 3.15. The white region represents AW which has a salinity
higher than that defined in the freshwater fraction model, and appears to the
right of the melt line in Figure 3.3. Freshwater is only located in the upper water
column.
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Figure 3.14: Changes in SgFW at 15 (black line) and 45 cm (red line) depth
with distance from Kronebreen through the plume on the 15th and 18th July
2012. The tidal height has been determined from the corresponding time of CTD
sampling. Tidal height data were obtained from the tide gauge located at Ny-
Ålesund (Vannstand, 2014).



3.3. RESULTS 67

interface of Kronebreen, to be calculated. The balance between inflow and outflow

of a closed system would be equal. Therefore if the outflow is greater than inflow,

additional freshwater inputs are reaching the marine system, which can then be

quantified.

A general trend of inflow at depth and outflow at the surface prevails, following

the two layer circulation associated with Arctic fjords (Cottier et al., 2010). A

greater inflow is found in the south, whilst the greatest outflow velocities are

found in the north (Figure 3.15). Outflow velocity is greatest in the top 45.0 cm

of the water column, 1.25 – 1.50 km along the transect from the north. Maximum

velocities of 0.6 – 1.0 m s−1 are found in the SW, with velocity decreasing with

depth (Figure 3.15). The velocities differed between days; the maximum transport

of 1.0 m s−1 was calculated for 15th July, whilst three days later on the 18th July

this maximum decreased to 0.6 m s−1 (Figure 3.15). Inflow velocities are slower,

ranging from 0 – 0.4 m s−1, but are more uniform across the ice front. The

calculated outflow velocities lie in agreement with a drifter study which stated

mean velocities of 0.36 – 0.8 m s−1 (Zajaczkowski and Legezynska, 2001). The

vertical profile structure also agrees with Zajaczkowski and Legezynska (2001), in

which the greatest velocities are found in the top 45 cm of the water column, and

decrease with depth.

Comparison of inflow and outflow volumes, to and from the ice front, as de-

termined by geostrophic velocities, reveals a net volume increase at the head of

Kongsfjorden. An additional 3.6 x 106 m3 entered the marine system on 14th July.

This increased to 4.4 x 106 m3 on the 18th July. By taking these two calculated

results of freshwater input, annual freshwater input can be estimated. Based on

a 121 day melt season, from June 1st to 30th September, an estimated 4.4 – 5.3 x

108 m3 yr−1 of additional water entered the marine system during 2012. The rate

of flow is found to be 50.94 m3 s−1 on the 14th July, decreasing to 41.74 m3 s−1.

These values are greater than the daily mean runoff for the Kronebreen - Kongs-

vegen system, established from the Weather Research and Forecasting model for

Climatic Mass Balance (WRF-CMB). Modelled runoff was 26.35 and 22.21 m3 s−1

for the 14th and 18th respectively (Aas, K 2015, pers. comm., 30 Jan).

Upscaling these daily measurements to a 121 day ablation season reveals the

geostrophic velocities and runoff are of the same order of magnitude: geostrophic

4.3 – 5.3 x 108 m3 yr−1, and runoff 0.9 – 1.1 x 108 m3 yr−1. However, these

measurements are substantially less than the total runoff for 2012 as produced by

the WRF-CMB model, of 1.0 x 1010 m3 yr−1 (Aas, K 2015, pers. comm., 30 Jan).

The modelled runoff results indicates that upscaling annual runoff from only two

days of the melt season, under represents the annual runoff.
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Figure 3.15: Adjusted geostrophic velocities from two repeat sections parallel to
Kronebreen ice front, with CTD stations occupied on 14th and 18th July 2012.
The sections are orientated looking towards Kronebreen’s ice front, in which neg-
ative values denote flow away from Kronebreen, and positive denotes flow towards
Kronebreen. The location of CTD stations is indicated by the vertical black lines.
The red lines indicate no motion.
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3.4 Discussion

Located at the head of Kongsfjorden, in the ice proximal zone of Kronebreen,

there are three water masses present: SW, IW and AW, typical of summer water

column structure in Arctic fjords (Cottier et al., 2005). SW is formed of freshwater

contributions, formed of both SgFW and GiFW, and extends down Kongsfjorden,

occupying the upper 15 m of the water column. It is downwelled, mixing with IW;

with increasing distance from Kronebreen, the occupation of AW increases, as the

depth of IW decreases. Across the ice face, AW occupied a greater proportion of

the water column at the southern side, which corroborates with observations at

the mouth of Kongsfjorden, indicating that AW inflow is concentrated on the right

hand side of the fjord (Aliani et al., 2004). An uneven distribution of freshwater

across the fjord surface has been observed (Figure 3.10), which exemplifies the

role rotational forces upon the fjord. Although SgFW discharge occurs south of

the centre line of Kronebreen (Trusel et al., 2010; Kehrl et al., 2011), the SW layer

is 5 m deeper north of the bathymetric high at the ice front (Figure 3.10). The

freshwater is deflected to the right of the outflow (Azetsu-Scott and Tan, 1997;

Ingvaldsen et al., 2001; Svendsen et al., 2002; Skogseth et al., 2005b). Deeper

mixing of freshwater in the north is assisted by downwelling, which occurs to the

right of the wind (Svendsen, 1995; Cottier et al., 2005).

This study has discerned transport velocities throughout the water column,

enabling the additional volume of freshwater entering at the head of Kongsfjorden

to be quantified during mid summer in 2012. The method of determining water

transport using geostrophic velocities has been previously applied to the cavities of

ice shelves: George VI (Jenkins and Jacobs, 2008) and Pine Island (Jacobs et al.,

2011) Glaciers, Antarctica. Using geostrophy provides an ideal alternative when in

situ velocity measurements are not available (Jacobs et al., 2011). However, both

of these Antarctic locations have water depths >1000 m, making the frictional

effects of the atmosphere and seabed negligible (Defant, 1961). Kongsfjorden

contrasts these studies as the deepest location is only 80 m; therefore the results

are likely to have incorporated some frictional processes. Despite this, the results

reveal that a two layer circulation is present in Kongsfjorden, as with many Arctic

fjords (Svendsen et al., 2002; Cottier et al., 2005). At depth AW is present (Figure

3.10), flowing towards the ice front with velocities up to 0.4 m s−1. Outflow velocity

was greatest in the SW at the north of Kronebreen, with maximum velocities of

0.6 – 1.0 m s−1, corroborating with (Zajaczkowski and Legezynska, 2001; Figure

3.15). SW velocities were not constant across the ice face, supporting the idea

that fjord velocities close to the discharge site is set by the discharge velocity

(Syvitski et al., 1990). This implies that the dominant buoyancy forcing at the
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head of Kongsfjorden is from subglacial discharge entering at depth from the

grounding line, which agrees with both modelled and theoretic studies (Sciascia

et al., 2013; Xu et al., 2012; Jenkins, 2011). Further down the fjord, the estuarine

circulation sets the transport speed (Inall and Gillibrand, 2010). The topography

of Kongsfjorden, as with other Arctic fjords, causes the strong and persistent

katabatic winds to be steered, resulting in a bi-modal, up-fjord and down-fjord

wind system, which effects the SW (Svendsen et al., 2002; Nilsen et al., 2008; Esau

and Repina, 2012). Given that Kongsfjorden lacks a defined sill, allowing easy

exchange with coastal waters, it is influenced by changes in WSC properties, which

propagate through the fjord, altering the AW properties at varying timescales

(Cottier et al., 2007).

The three water mass mixing model (Equation 3.9), which is synonymous to

the methods of Mortensen et al. (2013), revealed SgFW as the dominant fresh-

water type at the head of Kongsfjorden. Up to 30% of the SW is formed of

SgFW, which enters Kongsfjorden as subglacial discharge from the grounding line

of Kronebreen. The GiFW fraction in the SW layer is an order of magnitude smal-

ler, with inputs up to 3%. Production of GiFW by submarine glacier melt has

been highlighted as a significant contributor to freshwater production in Green-

landic fjords (Rignot et al., 2010; Enderlin and Howat, 2013), whilst it appears to

only play a small role at the ice - ocean interface of Kronebreen - Kongsfjorden

during the summer (Figure 3.10). Driven by ablation, the production of SgFW is

strongly seasonal (Bhatia et al., 2011; Sciascia et al., 2013). This study in Kongs-

fjorden has only analysed the summer freshwater regime, whilst the dominating

process for freshwater production may be different during the winter months.

Extending down Kongsfjorden, the lateral spread of the freshwater plume has

been revealed by the temperature and salinity profiles (Figure 3.8) in addition

to determining the freshwater fractions (Figure 3.12). The dominant freshwater

fraction through the plume is again SgFW, with GiFW exhibiting a minor signal.

The lateral spread of freshwater differed on the two sampling days. On the 14th

July a steady decrease in SgFW at 15 cm depth from 30% at 0 km to 10% at 2.5

km, and is estimated to extend a further 1.0 – 2.0 km away from the ice front

under the influence of a strong ebb tide. However, on the 18th July under the

influence of high tide, the SW is disrupted at the beginning of transect closest to

the ice front. The reduced tidal amplitude in comparison to the previous section

implies that the S2 tide component, which causes the tidal amplitude to vary

considerably within the fortnightly tidal cycle (Svendsen et al., 2002), affects the

transport of SgFW down Kongsfjorden. As a result the transport of SgFW away

from Kronebreen appears to be more effective under the influence of a strong ebb

tide (Figure 3.14).
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Kongsfjorden receives a net influx of freshwater at the head of the fjord, with

observations ranging from 3.6 – 4.4 x 106 m3 day−1 on the two days of CTD

occupation, as determined by geostrophic velocities (Figure 3.15). The greater

outflow of 4.4 x 106 m3 day−1 occurred on the 14th July, with CTD stations

sampled between 13:00 and 15:00 and under the influence of a strong ebb tide

(Figure 3.14). Freshwater contributions determined here by geostrophic velocities

are almost double the daily mean runoff produced by the WRF-CMB model, 7.6 –

9.1 x 105 m3 day−1, respectively (Aas, K 2015, pers. comm., 30 Jan). Some of the

discrepancy between these results could be from the time of sampling; the data

for the geostrophic calculations were collected during the early afternoon, whereas

the WRF-CMB results are a daily mean. As such, the geostrophic calculations

have not taken into account the diurnal variability of freshwater production, and

instead represent a time of high flow.

Over the duration of the 2012 summer ablation season from 1st June to 30th

September, the total additional freshwater entering the marine system, as determ-

ined by geostrophic velocities, was 4.3 – 5.3 x 108 m3 yr−1. This is substantially

less than the seasonal total runoff for 2012 from the WRF-CMB model of 1.0 x

1010 m3 yr−1 (Aas, K 2015, pers. comm., 30 Jan). The geostrophically derived

daily value for freshwater input is almost 50% higher than the modelled runoff.

There are two likely possibilities for the underestimation of meltwater delivery,

the method and meltwater retention in the glacier hydrological system. Frictional

processes could lead to an underestimation of geostrophic velocities, which in turn

leads to reducing the calculated meltwater outflow. In addition, only two days

were used to upscale the seasonal meltwater delivery. As such, these may not

be wholly representative of the seasonal meltwater delivery to Kongsfjorden since

freshwater production, and therefore delivery, has a seasonal evolution (Hodgkins,

2001; Kaser et al., 2010). This in turn creates seasonal fjord circulation patterns

(Straneo et al., 2011). Repeat CTD sections would be required throughout the ab-

lation season to be able to resolve the seasonal variability in freshwater inputs and

the resultant circulation patterns, using this method. It is possible that all of the

runoff produced during the ablation season is not discharged into Kongsfjorden,

and that a proportion is retained and stored in the glacier, as has been found in

Greenland (Humphrey et al., 2012; Rennermalm et al., 2013). Such firn aquifers

have recently been identified at Kronebreen, highlighting that meltwater storage is

an active process, which can potentially account for the meltwater delivery being

less than surface runoff (Christianson et al., 2015).

During the summer months this study has found SgFW to be the dominant

source of freshwater entering at the head of Kongsfjorden. However, composition

of freshwater transport during the winter months cannot be determined. Studies
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in Greenland have revealed that the winter months contribute greater GiFW than

SgFW (Sciascia et al., 2014). During the summer months SgFW is the dominant

driving mechanism for producing GiFW by buoyancy driven convection (Jenkins,

2011), whereas winter melt is dependent on ambient water temperatures and ve-

locities at the ice front (Sciascia et al., 2014). The current warming trend of AW

entering the Arctic (Spielhagen et al., 2011; Steele et al., 2008) could see warmer

AW entering west Spitsbergen fjords (Schauer et al., 2004). Given the findings

of Sciascia et al. (2014), freshwater from GiFW could potentially increase during

the winter due to the ambient ocean temperatures, whilst summer freshwater pro-

duction relies upon mass balance changes of Kronebreen and Kongsvegen (Nuth

et al., 2012).

The contribution of freshwater has only been determined for either SgFW or

GiFW. Contributing to SgFW is the melt of Kronebreen, Kongsvegen and the

Infontanna ice field (Figure 1.2). Results from the WRF-CMB model reveal the

proportions of freshwater from each of the three terrestrial sources: Kronebreen

= 44%, Kongsvegen = 43%, Infontanna = 13%. There are methods to further

distinguish the origin of freshwater, such as oxygen isotopes (Meredith et al., 2008;

Brown et al., 2014) and nutrient concentrations to determine routes of freshwater

transport (Torres-Valdés et al., 2013).

The transport and mixing of SgFW and GiFW in Kongsfjorden also has implic-

ations for the ecosystem (Hop et al., 2002; Lydersen et al., 2014). The freshness of

the SgFW at the fjord surface has direct implications for copepod mortality rates;

salinities below 24 PSU reduce copepod survival rate to 1 hour, whilst most spe-

cies are resilient to salinities above 24 (Zajaczkowski and Legezynska, 2001). The

high copepod mortality in front of Kronebreen’s ice cliff creates a scavenging zone

for sea birds as a result of the freshwater contributions (Figure 1.4). In addition,

suspended sediment is transported by the freshwater from subglacial channels,

and rises to the surface in the buoyant plume. Previous studies (Rysgaard et al.,

1999a; Cottier et al., 2005; Nilsen et al., 2008) have noted that summer insolation

in addition to the high suspended sediment load in the SW can lead to temper-

atures >5 ◦C. The transects from this study did not display temperatures that

warm, instead a maximum of 4 ◦C was observed. Encompassing the supraglacial

and subglacial systems, SgFW is rich in nutrients (Hodson et al., 2008) supplying

biogeochemical properties to Kongsfjorden, supporting the diverse marine ecosys-

tem (Lydersen et al., 2014). Recent studies have highlighted the importance of

bioavailable iron transported by SgFW as an importance mechanism for stimu-

lating primary productivity (Hawkings et al., 2014; Bhatia et al., 2013), yet the

fjords of Svalbard remain under studied in this domain.
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3.5 Conclusions

Presented is this chapter are hydrographic data from the head of Kongsfjorden,

which has direct contact with the ice front of Kronebreen, from July 2012. These

data and analyses make an important contribution to determining the water mass

structure, circulation and identify the sources of freshwater contributions, from the

fast flowing tidewater glacier Kronebreen. The volume of freshwater discharged

into the head of Kongsfjorden, during mid summer, has also been ascertained. De-

termining the water masses, together with the transport velocities, revealed strong

SW outflow, to the right of discharge location. Inflow of AW was strongest on the

right hand side of the fjord, complying with a geostrophically driven estuarine

circulation, in the ice proximal zone.

The dominant freshwater is SgFW, sourced from subaerially produced melt-

water runoff. Submarine melt, forming GiFW, is present, but inputs are an order of

magnitude smaller than SgFW. The volume of additional water entering the mar-

ine system has been quantified by geostrophic velocities. When compared to runoff

from the WRF-CMB model, geostrophic velocities produce a significantly higher

amount of freshwater entering Kongsfjorden, as a daily comparison. However,

when upscaled to the entire summer season, geostrophic velocities underestimate

the amount of melt compared to the WRF-CMB model, but the results are within

the same order of magnitude (Aas, K 2015, pers. comm., 30 Jan). The friction

from the seabed may be the cause of the difference between the freshwater volume

produced by geostrophy in this study, and those from the WRF-CMB model. In

addition, the hydrographic measurements are a snapshot from the middle of July,

and do not represent the variability of glacial meltwater discharge thoughout the

season, which produces inaccuracies when upscaling.

To obtain a more precise estimate of meltwater discharge throughout a melt

season, another method needs to be employed which captures the temporal variab-

ility of discharge magnitude. At Kronebreen, the dominant source of freshwater is

SgFW, and is discharged from the subglacial environment transporting sediment

to fjord surface. Therefore there is potential to be able to use the sediment as a

tracer for freshwater as has been achieved with terrestrially discharged meltwater

in Greenland (Chu et al., 2009; McGrath et al., 2010; Hudson et al., 2014).



Chapter 4

Detection of sediment plumes to

quantify meltwater discharge

4.1 Introduction

The dominant source of freshewater entering the head of Kongsfjorden during the

summer months is from subaerially produced runoff, which has been subsequent

routed through Kronebreen and discharged at the grounding line (Chapter 3). In-

situ measurements directly in front of the ice face are sparse, and lack temporal

resolution. To address this need for better temporal quantification of freshwater

inputs to the Arctic marine system, formulating a method to remotely detect

meltwater discharge, from daily to interannual timescales, will enhance predictions

of freshwater contributions. Building upon previous plume detection studies in the

Arctic (e.g. Chu et al., 2009; McGrath et al., 2010; Tedstone and Arnold, 2012) this

chapter aims to use in situ sampling of spectral reflectance and TSS measurements

to calibrate satellite images from MODIS to determine the sediment plume area

and concentration of TSS, to use as a proxy for freshwater discharge. This is

achieved with the following objectives:

i Calibrate MODIS images with in situ measurements to formulate a method

to remotely detect the spatial and temporal extent of plume area and TSS

concentration from 2002 – 2013.

ii Determine if MODIS images are suitable for detecting seasonal and interannual

change of Kronebreen’s terminus.

iii Quantify the changes in meltwater and TSS delivery from daily to interannual

time scales using sediment plume area.

Up to 30% of the surface water in front of Kronebreen is freshwater runoff, with

a small contribution (up to 3%) of glacial melt (Chapter 3). This is discharged

74
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from the grounding line, transporting fine grained sediment to the fjord surface

(Figure 1.3). At the head of Kongsfjorden it is approximately 80 m deep, there-

fore the freshwater, despite being sediment laden, forms a buoyant plume which

spreads laterally across the fjord surface. As a result, high concentrations of sus-

pended inorganic sediment are found 200 – 400 m from the termini of Kronebreen

and Kongsvegen; these buoyant sediment laden plumes are strongly seasonal, de-

pendent on freshwater inputs (Trusel et al., 2010).

As discussed in Section 2.5, it has been found that by calibrating MODIS

with in situ TSS measurements, sediment plume extent can be used a proxy for

meltwater runoff in Greenland (Chu et al., 2009; Hudson et al., 2014). Remote

sensing has enabled remote monitoring of freshwater runoff from land terminating

glaciers at seasonal to interannual time scales (Chu et al., 2009; McGrath et al.,

2010). The method has also proved successful for quantifying runoff from marine

terminating glaciers (Tedstone and Arnold, 2012; Chu et al., 2012). This study

builds upon this research, providing the first long time series which addresses both

the seasonal and interannual variability of meltwater discharge from a tidewater

glacier. This will benefit sea level rise predictions, which are currently hindered

by the lack of knowledge regarding the seasonal and interannual variability of

meltwater discharge to the oceans (Rignot and Steffen, 2008).

4.2 Methodology

TSS in marine environments can be estimated using the high correlation between

TSS and spectral reflectance (Curran and Novo, 1988). Here in situ sampling

of TSS and spectral reflectance is utilised to calibrate spectral reflectance data

from MODIS instruments on board the polar orbiting Terra and Aqua satellites.

The temporal and spatial variability of TSS is too great to quantify from in situ

measurements alone (Curran and Novo, 1988). By calibrating MODIS spectral

reflectance with in situ measurements, the spatial and temporal context of TSS

is better resolved (Robinson, 1995). This enables the quantification of plume area

which serves as a proxy for meltwater delivery (Chu et al., 2009; Tedstone and

Arnold, 2012).

4.2.1 Data collection

In situ sampling

In situ measurements of TSS were taken at multiple locations at the head of

Kongsfjorden, ensuring both high and low sediment concentrations were repres-

ented (Figure 4.1). The water samples were collected from 0 – 15 cm depth, in a
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plastic bottle. The TSSmin and TSSmax were used to define the region occupied by

the sediment plume. Spectral reflectance was determined in situ using a hand held

Analytical Spectral Devices Inc. FieldSpec spectroradiometer, which measures a

wavelength range of 325 – 1075 nm (Figure 4.2). The instrument was fitted with a

25o field of view fore-optic which when held at a height of 50 cm above the water

surface is the most appropriate set up for water surfaces (MacArthur et al., 2012).

Before each surface reading a white reference was taken to calibrate the spectral

reflectance data; these were acquired by the instrument as raw digital numbers

and converted to absolute reflectance. Five repeat spectral reflectance measure-

ments were taken at each sampling location to minimise the effects of water and

boat motion on the measurements. The spectroradiometer was connected directly

to a netbook, where the files were stored and later processed using ViewSpec Pro

software. The in situ TSS and spectral reflectance measurements were sampled

synonymously with the CTD sampling from Chapter 3.

MODIS satellite imagery

The MODIS instruments are onboard NASA’s Terra and Aqua satellites and travel

in sun-synchronous orbits. Remaining in the same location, relative to the sun,

they orbit the earth once every 24 hours. The temporal and spatial resolution

of spectral reflectance data from the MODIS instruments makes them ideal for

studying sediment plumes in Kongsfjorden. There are at least two MODIS over-

passes of Svalbard each day, measuring reflectance in visible to infrared (400 –

1440 nm) wavelengths, split into 36 bands. Band 1 (620 – 670 nm) and band 2

(841 – 876 nm) have a higher spatial resolution of 250 m compared with bands 3 –

7 (500 m) and 8 –19, 26 (1000 m) (NASA, 2012a). The high temporal resolution of

the MODIS instruments outweighs the better spatial resolution of other products.

For example, Landsat 8 offers up to 15 m resolution, but only a 16 day repeat.

Therefore MODIS is preferential for this study owing to its frequent sampling and

resolution up to 250 m, which is suitable for the detection of sediment plumes.

The use of spectral remote sensing is constrained by availability of daylight; in

the Arctic it is only possible to use the visible bands during the summer months,

when there is daylight. For Svalbard, optimum images can be obtained between

June and September. Beyond September, the onset of the Polar night curtails

MODIS image retrieval until June the following year, when there is enough light.

In addition, cloud free days are required for a suitable image to determine the

extent of TSS.

This study has used the NASA level two products, MOD09GQ (Terra) and

MYD09GQ (Aqua), which are daily gridded products in the sinusoidal projection.
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Figure 4.1: Map displaying locations of in situ TSS and spectral reflectance meas-
urements. These were occupied between 14 – 18th July 2012. Fewer stations were
sampled than for the CTD sampling (Figure 3.1) due to small, bergy bits of ice
inhibiting the spectral reflectance measurements.
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Figure 4.2: Left: A small boat was used to access the waters at the ice front of
Kronebreen, Svalbard. Right: Hand held spectroradiometer was used to meas-
ure spectral reflectance of the surface water (Photo depicts same instrument and
technique, but is located in Iceland).

These products have been corrected for atmospheric gases and aerosols, providing

spectral reflectance data at 250 m resolution (Vermote et al., 2011). The Kongsf-

jorden system is available on plate h18v01.005, which can be identified using the

NASA Reverb online search facilities (NASA, 2012c). Cloud free days between

1st June and 30th September from 2002 – 2013 were identified, following a three

step process:

i Cloud free days visually identified in true colour images (NASA, 2012b)

ii Image of composite bands 3–6–7, which highlights cloud, was viewed in NASA’s

Earth Observing System (NASA, 2012b)

iii Quality control data from the file had to show cloud free, cloud free binary bit

= 00

The cloud free images were downloaded from NASA Reverb (NASA, 2012c).

MODIS Terra images were used in the first instance, with cloud free Aqua images

used when Terra was unavailable. The preference to Terra was formed because

it was launched two years earlier than Aqua, meaning that suitable data spans

a greater amount of time. In addition, Terra typically allows for acquisition in

the morning, when cloud cover is less. A total of 239 images were used, 189 from

Terra and 50 from Aqua (Table 4.1). The year with fewest suitable images was

in 2004, with only 9 available. In 2013, 28 images were used, providing the best

yield of satellite data. On average, 20 images were available per year, representing

24% of the days between 1st June - 31st September.
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Over the 12 year period, the 12th July (day 193) was the most frequent suit-

able image, with a total of six retrievals (Figure 4.3). Three days exhibited five

retrievals: 22nd and 28th June, and 13th July. The longest period with no retrievals

was three days, from the 27th – 29th July.

The downloaded hierarchical data format (hdf) files were imported into ER-

DAS Imagine software. The files contain five layers: two comprise of the spectral

data of bands 1 and 2, and the additional three layers contain additional inform-

ation on orbit and coverage, data quality and the number of observations. The

layers containing bands 1 and 2 spectral reflectance data were converted from hdf

to img files for processing in ArcGIS 10.1.

Figure 4.3: Histogram illustrating the frequency of images throughout the summer
season.

4.2.2 Data processing

TSS concentration

The surface water samples were filtered through cellulose nitrate membrane filters

to determine the weight of sediment for the volume of sample (mg l−1) (Gray,

1973). The filters were pre-weighed on analytical balance (precision 1 x 10−3 g).

A pore size of 0.45 µm meant that all material in suspension was captured on

the filter. Samples were stirred, to ensure all sediment was in suspension. For

the majority of the collected samples, 200 ml of the sediment laden water was

filtered in the laboratory, using a hand pumped vacuum filtration system. All the

filter papers were air dried, and transported to the UK for analysis. TSS has been

determined by deducting the original weight of the filters, from the final filter

weight.
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Empirical relationship between in situ total suspended solids and

spectral reflectance

The mean in situ spectral reflectance per location was calculated with reference

to MODIS bands 1 – 4 (459 – 876 nm); this omits interference from wavelengths

outside of the interest range. The mean spectral reflectance of the repeat samples

was calculated for each location (Figure 4.4). Samples with a standard deviation

greater than 0.04 from the mean were removed; at least three of the five repeat

spectral reflectance measurements were used per locational mean (Figure 4.4).

Some locations had multiple measurements omitted, whilst others had none. This

process removed outlying measurements which were likely associated with chan-

ging light conditions. In addition, locations influenced by bergy bits in the water

and by rain were omitted from the final calibration; this is due to the impacts

these factors had on the water surface, altering the spectral reflectance (Figure

4.5). The meteorological and observational details came from field notes.
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Figure 4.4: Examples of removing outlying spectrum measurements of in situ

spectral reflectance with reference to MODIS band 1. Top: required several meas-

urements omitted. Middle: one anomalous spectrum. Bottom: all the repeats are

within the 0.04 nm threshold set and therefore none were removed. Note different

scales for reflectance, which allow outliers to be highlighted.
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Figure 4.5: Left: Visual comparison of ice covered and ice free water. Right: Some

days exhibited more ice coverage than others.

The final mean spectra for each location was calibrated with TSS. The strength

of this calibration against wavelength, indicates the wavelength that spectral re-

flectance is most sensitive to TSS. The corresponding wavelengths for MODIS

band 1 (620 – 670 nm) and band 2 (841 – 876 nm) exhibit the higher correlations

of R2 ≥ 0.8 (Figure 4.6). This indicates that MODIS bands 1 and 2 are likely to

be the best bands to calibrate with TSS.

Figure 4.6: Strength of correlation between in situ TSS and spectral reflectance,

against wavelength.

Calibrating MODIS to in situ measurements

The empirical relationship between TSS and in situ spectral reflectance was ap-

plied to form a correlation between MODIS bands 1 – 4, and the equivalent MODIS

wavelengths of the in situ absolute reflectance data. The highest reflectance cor-

responds to the highest TSS, and the lowest TSS with the least reflectance (Figure

4.7). This concurs with Han and Rundquist (1994), in that the signature of TSS
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can be detected in spectral reflectance measurements. MODIS bands 1 and 2

exhibit the highest correlation between TSS and reflectance, r = 0.79 and 0.82

respectively (Table 4.2). This indicates that band 1 and 2 are much more effective

at responding to TSS than bands 3 and 4, in which r = 0.53 and 0.58 respectively.

Figure 4.7: In situ spectral reflectance of high, medium and low TSS, with MODIS
bands 1–4 highlighted.

Band Wavelength (nm) Resolution (m) R
1 620 - 670 250 0.79
2 841 - 876 250 0.82
3 459 - 479 500 0.53
4 545 - 565 500 0.58

Table 4.2: Correlation between TSS and reflectance within different MODIS equi-
valent wavelengths.

The the empirical relationship of in situ TSS and spectral reflectance was used

to calibrate the spectral data from MODIS bands one and two. The regression

trendline was forced through zero, since the reflectance of clear water should be

very low, due to high absorbency. In this instance, a linear relationship is apparent

between TSS and spectral reflectance. Laboratory experiments have shown that
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a linear relationship is more likely with low TSS values, as exhibited here, and

that higher TSS values are more likely to display a non-linear relationship (Han

and Rundquist, 1994). However, non-linear relationships have been used in field

studies in Greenland which exhibited similar TSS values (Chu et al., 2012).

Figure 4.8: Regression between in situ TSS and equivalent wavelengths of MODIS
bands

Following the calibration of MODIS reflectance with the in situ empirical re-

lationship, MODIS band 1 exhibited the best regression coefficient, R2 = 0.63

compared to R2 = 0.48 with band 2 (Figure 4.8). Some studies e.g. Wang et al.

(2010) have demonstrated the benefits of combining spectral bands to improve the

detection of suspended sediments. Band 1 is focussed in the red spectrum, whilst

band 2 is placed in the green, so both signals would be reflected in the results.

A slightly higher regression coefficient of R2 = 0.68 was produced through the

addition of MODIS bands 1 and 2. Despite the addition of band one and two

being the most responsive, the doubling of image processing and handling, as well

as additional computing time, did not outweigh the benefits of pursuing such a

combination. As such, using twice the amount of data was not deemed appro-
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priate, since it gave only a modest 5% improvement, compared to using band 1

alone. To this end, multi-band processing was not pursued.

Selecting a region of interest

A 64.25 km2 subset of the cloud free MOD09GQ and MYD09GQ images as detailed

in Table 4.1, have been used in this analysis. The area of interest was selected

to include the glacial calving front and fjord waters, out to a distance of 13.5 km

from the glacier. This extends up to the island of Blomstrandhalvøya, at which

point the glaciers of Conwaybreen and Kongsbreen meet Kongsfjorden. The area

of the region of interest enables the TSS, which spreads laterally down the fjord,

to be detected without picking up signals from other sources of freshwater. The

majority of sedimentation occurs within the inner fjord of Kongsfjorden, with the

most sediment laden waters located 200 – 400 m from the ice front (Trusel et al.,

2010).

The terrestrial area around Kongsfjorden was masked out, together with the

group of islands including Storholmen and Midholmen, which form one of the

Kongsfjorden bird sanctuaries. Interference from sediment laden freshwater leav-

ing Kongsbreen, another tidewater glacier in close proximity, has been minimised

by masking the area in front of the glacier. This masking process ensures that

the freshwater forming the plumes is attributed to melt from the Kronebreen -

Kongsvegen system. Signals of TSS from other sources have the potential for the

area of the plume to be over estimated; omitting such regions minimises this risk.

The residence time of suspended sediment at such close proximity to the glacier

front is about 1 day (Trusel et al., 2010). MODIS images are suitably placed to

detect these sediment plumes due to their sub daily repeat overpass time. MODIS

spectral reflectance was calibrated to TSS by applying the correlation between in

situ TSS and spectral reflectance (Figure 4.8). This method offers a method to

upscale in situ TSS measurements to the entire fjord system.

The spectral reflectance of ice and snow is much greater than that of water or

land. Here, ice covered regions have been classified as areas which exhibit spectral

reflectance grater than 30%, enabling the area of ice within the masked region to

be quantified within each image.

4.2.3 Sediment plume detection model

By constructing a model to detect TSS automatically, all the data are treated

in a consistent manner. This avoids human bias and enables the processing to

take place without supervision. User defined inputs are required to determine

the region of interest, threshold of ice, and the calibration coefficient between the
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in situ measurements and the MODIS satellite imagery. These were consistent

for each image processed. The numerical results are collated into a table to be

exported for analysis. This automated method of calculating TSS within the

masked region of Kongsfjorden has enabled the identification of sediment plumes

at 250 x 250 m resolution. The model was constructed in ArcGIS 10.0 and returns

four automated result outputs for each MODIS image processed: map of TSS

distribution, area of ice removal (km2), sediment plume area (km2), and statistics

regarding TSS (maximum, minimum, mean, standard deviation; Figure 4.10).

The ArcGIS distance measuring function was used to determine the length of

the sediment plumes, with a reference line perpendicular to the ice front. This

suite of results enable a thorough analysis of sediment plume dimensions and TSS

concentrations on daily to inter-annual time scales.

Sediment plume classification

To be able to define the dimensions of the sediment plumes and TSS concentration,

a criteria to classify what is ”plume” must be applied. In this instance the following

criteria have been applied to the calibrated MODIS data:

i TSS value must be between 0.05 and 0.27 g l−1, as determined by the minimum

and maximum in situ TSS values, obtained from the filtered water samples.

Higher values were excluded as they could be misinterpreted icy regions e.g.

bergy bits.

ii The plume must have contact with the glacier face.

iii Any periphery plumes not directly attached to the primary plume (which in-

tersects with the glacier front), must be within 500 m from the primary plume.

If periphery plumes are >500 m (two pixels) from the primary plume, they are

excluded.

This method eliminates regions which meet the TSS criteria, but are not likely

to have been produced by the freshwater outflow on the day of the image, given

the 1 day residency time of suspended sediments (Trusel et al., 2010). The lower

boundary of 0.05 g l−1 also represents the concentration of TSS which is detri-

mental to copepods (Arendt et al., 2011). The excluded periphery plumes could

be sediment melting out from icebergs transported down the fjord (Dowdeswell

and Dowdeswell, 1989; Syvitski et al., 1996). Regions occupied by icebergs or

bergy bits are characterized by high spectral reflectance, and therefore have been

excluded by the criteria of maximum TSS value.

Kronebreen’s terminus retreated during the period of this study (Figure 1.7).

The line feature marking the glacier terminus was moved back to reflect this
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for the years 2012 and 2013. Without this, the plume area would have been

underestimated. These selection criteria have ensured the best representation of

plume extent, and concerted effort has been made not to over or underestimate

plume size.

4.3 Results

Calibrating MODIS images with in situ spectral reflectance and TSS has provided

a method to quantify TSS and the area of plumes emerging from Kronebreen.

Each of these is analysed here with respect to the seasonal evolution of meltwater

delivery to Kongsfjorden.

4.3.1 Modelled spatial distribution of total suspended

solids

Calibrating MODIS band 1 spectral reflectance with in situ TSS has enabled the

temporal and spatial variability of TSS at the head of Kongsfjorden to be mapped

and quantified. Instead of spot measurements, it is now possible to determine the

distribution of TSS, and at what concentration, over an area of 65 km2 at a spatial

resolution of 250 x 250 m. A selection of TSS maps from 2012 are used to give an

insight into seasonal evolution (Figure 4.11).

Early in the season, the plume area was small, with a low concentration as seen

on 5th June (day 155). A week later on the 9th June (day 161), plume area increased

as had the TSS concentration at the ice front. As the melt season progressed,

plume area generally increased but remains variable. On the 15th August (day

228), a considerably sized plume formed. TSS throughout the plume was greater,

and spanned a larger area, than earlier in the season. It also extended along the

northern extent of Kongsfjorden, spreading alongside the islands Storholmen and

Midholmen. This also occurred on 19th September (day 263), however it was not

a constant pattern as the plume extended along the southern extent of the fjord

on 25th August (day 238). The highest TSS was found at the ice front, decreasing

with distance down Kongsfjorden (Figure 4.11). A plume core of higher TSS values

was observed in the central plume.

In addition to the variability of the plume size and TSS, changes in area of ice

at the front of Kronebreen were detected. The early season displays the glacier

front extending across the region of interest at the fjord. This breaks up through

the season, depending on the flow dynamics of Kronebreen. Substantial retreat of

Kongsvegen at the southern part of the glacier terminus can be seen.
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Figure 4.9: Sediment plumes were automatically detected by calibrating MODIS
spectral reflectance with in situ TSS. (A) The area if interest is selected from
the MODIS image, open water is shown in brown. (B) Calibration between TSS
and spectral reflectance is applied. The region that meets the TSS criteria is
selected (stippled white). (C) The primary sediment plume (encased by blue
line), which intersects with the glacier face (solid black line) is highlighted, with
peripheral plumes being excluded from this selection. (D) Peripheral plumes are
removed, leaving only the primary plume (stippled white), which meets all the
plume specification criteria.
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Figure 4.10: Schematic detailing the processes undertaken by the sediment plume
model, and the corresponding result outputs
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Figure 4.11: Temporal and spatial variability of TSS during 2012 from the plume
detection model.
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4.3.2 Sediment plume area and ice cover 2002 – 2013

Plume area has been quantified for the 234 cloud free days between June - Septem-

ber from 2002 – 2013 (Figure 4.12). In addition, the area of ice within the masked

area at Kronebreen’s terminus has been revealed. Plume area is variable at short

time scales, ranging from 1 – 58 km2. Early season plume areas are generally

small (<10 km2), apart from in 2006, where they appear to be in the region of

20 km2. Due to the frequency of MODIS retrievals, determining seasonality is

difficult when assessing individual years.

Ice area decreased throughout the season, which is particularly prominent in

2008 and 2009. Early season glacier extent in the region of interest was >6 km2

from 2002 – 2012, whereas the glacier front retreated in 2013, exhibiting an area

of <5 km2.

4.3.3 Temporal variability of sediment plume area and

total suspended solids

Seasonal

The modelled results of plume area and TSS in Kongsfjorden illustrate a seasonal

pattern of plume development, in addition to interannual variability (Figure 4.12).

The trends and variability of TSS and plume area is apparent at monthly, 10 -

day, and daily time scales. Plume area ranges from 1.0 km2 to 50.8 km2, with an

overall mean of 14.2 km2.

To assess the monthly to seasonal variability in both plume area and TSS, the

results for the 12 year sampling period have been combined. June exhibits a mean

plume area of 9.8 km2, which increases to 16.8 and 17.6 km2 respectively for July

and August (Table 4.3). Mean plume area decreases in September to 12.6 km2,

but remains above the mean plume are for June. The minimum plume area is

smallest during June (1.0 km2) and increases to its maximum in July (6.3 km2).

The minimum plume area in September, which represents the end of the ablation

season, was 3.6 km2. This is greater than the early season minimum in June. The

maximum plume area is greatest in June and July, 55.5 and 52.8 km2 respectively.

July exhibits the smallest standard deviation from the monthly mean of 7.9 km2

whilst the largest of 10.5 km2 occurs in August.
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June July August September Mean June - Sept

Mean 9.8 16.8 17.6 12.6 14.2

Min 1.0 6.3 2.9 3.6 3.5

Max 35.1 55.5 52.8 40.8 46.0

Range 34.1 50.8 49.2 35.2 48.5

Sd 7.9 8.1 10.5 9.9 9.1

Table 4.3: Mean monthly characteristics of plume area (km2) 2002 – 2013

Unlike plume area, there is little seasonality observed in TSS when analysing

monthly means (Table 4.4). TSSmean is 0.01 g l−1 greater in July and August,

whilst the maximum and minimum remain the same throughout.

June July August September Mean June - Sept

Mean 0.15 0.16 0.16 0.15 0.15

Min 0.05 0.05 0.05 0.05 0.05

Max 0.21 0.21 0.21 0.21 0.21

Range 0.16 0.15 0.15 0.16 0.16

Table 4.4: Mean monthly characteristics of TSS (g l−1) 2002 – 2013

A seasonal trend is observed in monthly means for plume area, but there

doesn’t appear to be a defined seasonal trend for TSS. By increasing the temporal

resolution from monthly means to 10 day means, a more detailed analysis of

seasonal variability has been achieved. The plume area and TSSmean values for 10

days prior to the marker were averaged (Figure 4.13).

Plume area is low at the beginning of the season extending 7.2 km2 on average

between 1st - 18th June (day 152 – 169). As the season evolves, plume area increases

until 29th July - 7th August (day 210 – 219), where the mean plume area peaks at

23.9 km2. From the peak of the season, the plume area decreases steadily, until

reaching 5 – 10 km2 at the end of September, which is similar to the extent during

the early season plumes. This seasonal evolution of plume area is similar to what

was revealed in the monthly analysis.

Analysis of the 10 day mean reveals that TSSmean is the highest of the season,

0.10 g l−1, between 1st - 18th June (day 152 – 169) (Figure 4.14). This corresponds

with a small mean plume area. TSSmean declines from 19th June (day 170), re-

maining steady at approximately 0.09 g l−1 until the end of September. Standard

deviation from the mean was greatest between 1st - 18th June and 18th August -
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30th September at >0.01 g l−1. Comparably it was much smaller during the peak

of the melt season between 19th June - 17th August, ranging between 0.006 – 0.008

g l−1.

Interannual variability of plume area and total suspended solids

The results for both plume area and TSS indicate interannual variability (Table

4.5). The maximum plume extent during the 12 year period was 55.5 km2, meas-

ured on the 15th July 2011. The minimum extent was <1% (0.4 km2), which

was found on multiple occasions. The 12 year mean plume area was 14.2 km2.

The mean plume length of 5.25 km is 30% of the overall length of the study re-

gion. There is a positive relationship (R2 = 0.90 p <0.001) between plume area

and plume length. The two largest mean annual plume areas were in 2003 and

2011, 18.3 and 19.4 km2, respectively. The smallest was 8.7 km2 in 2010 (Figure

4.15). The mean annual plume area displays no particular temporal trend, over

the twelve years.

Annual TSSmean displays a contrasting picture in which larger plume area

corresponds to lower TSSmean (R2 -0.63, p <0.05, n = 12). The highest TSSmean

of 0.10 g l−1) was found in 2010, whilst the lowest was 0.08 g l−1 in 2003 (Table

4.6).

During the 12 year period, TSSmean of the sediment plumes is 0.15 g l−1,

maximum concentration was recorded to be 0.21 g l−1 and the minimum 0.05 g

l−1. The upper TSS boundary (0.27 g l−1), formed from in situ measurements was

never met. In contrast, the TSS minimum boundary value of 0.05 g l−1 has been

met on multiple occasions, acting as a minimum cut-off point; only 13% of the

minimum individual TSS concentrations were 0.051 g l−1 or above. Interannual

variability of both plume area and TSS is present, however, there is no persistent

trend of increase or decline, from 2002 – 2013.

The TSS detection model has also produced the area of ice coverage at Kronebreen’s

terminus. This occurred because the ice was omitted, when determining the extent

of the sediment plumes. Although ice area does show a decline during the season

(Figure 4.6), the year to year mean annual variability provides information on the

stability of the ice front. The maximum annual mean ice area was in 2009, 1.95

km2, and the smallest was 2013 at 0.14 km2. From 2007 onwards, mean annual

ice area was 1.0 km2 or less. Three years, 2007, 2012 and 2013 all displayed 0 km2

as the minimum ice area. This is because the end of season ice front retreated

beyond the masked region.
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Figure 4.14: Ten day binned TSSmax and TSSmean, from 2002 – 2013.

Figure 4.15: Annual mean variability of plume area, TSSmean and TSSsum from
2002 – 2013, displayed with bars of standard deviation. Red line indicates 12 year
mean.
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4.4 Discussion

This chapter has presented TSS concentration for each of the 234 cloud free days

between June - September from 2002 – 2013. Calibrating MODIS band 1 satel-

lite spectral reflectance data with in situ measurements of TSS has enabled the

quantification of meltwater delivery from the Kronebreen - Kongsvegen system.

The approach of empirical modelling has facilitated the upscaling of point in situ

measurements, to an area of 65 km2. The seasonal and interannual variability of

TSS and plume area have been determined, which would have previously required

intensive in situ sampling (Collins, 1990). Whilst hydrological data from the Arc-

tic remains sparse, this study presents an effective method to further understand

the TSS and meltwater delivery from a fast flowing tidewater glacier.

4.4.1 Total suspended solids model

Building on previous work, this model has used an empirical relationship between

in situ TSS and spectral reflectance (Chu et al., 2009; 2012; Tedstone and Arnold,

2012), to calibrate MODIS band 1 images. This has provided the TSS and plume

extent, of freshwater discharge from Kronebreen, on cloud free days. Tedstone and

Arnold (2012) indicated that detecting sediment plumes discharged from tidewater

glaciers is more difficult than terrestrial runoff, due to the presence of ice melange

and bergy bits. However, these were rarely present in Kongsfjorden, and was

therefore not such a problem. Areas of bergy, floating ice were identified and

removed, but this did not hinder obtaining plume extents. At its minimum width

of 4 km, there was a minimum of 16, 250 m pixels, across the ice front. Studies in

Greenland, revealed that fjords with a width of 2 km or less were not suitable for

plume identification (Tedstone and Arnold, 2012). Quantification of plume area

is constrained by the 250 x 250 m resolution of MODIS. Landsat 8 offers a much

higher spatial resolution of up to 15 m, but only offers a 16 day repeat cycle. Such

a constraint on temporal sampling would hinder the ability for Landsat 8 to be

used effectively as a monitoring tool at seasonal time scales.

The fast flowing nature of Kronebreen meant that the TSS model required

adjustment to account for the changing location of the calving face. This enabled

the plume area from 2012 and 2013 to not be underestimated by being cut off

by the requirement of the plume to interact with the glacier front. However,

the TSSmax and TSSmin values, 0.05 and 0.27 g l−1 respectively, appear to act

as cut off boundaries for the plume. This is particularly apparent for TSSmax

concentrations, in which no TSS was detected closest to the ice front during 2012

and 2013 where TSS is most likely to be highest (Figure 4.11). The main outlet

from Kronebreen is in the centre of the calving front, which also displays some
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open water pixels. Therefore open water pixels in direct contact with Kronebreen

are likely to have exceeded the TSSmax value that was put in place. The region

not captured by the model is closest to the ice front, which was not sampled due to

safety concerns. In situ samples could only be taken 250 m from the glacier front,

which is the same as the pixel resolution of MODIS band 1. Using both band 1

and band 2 of MODIS did offer a slight improvement on the retrieval. A method

combining the these bands has been applied in Greenland (Hudson et al., 2014),

which enabled the detection of high TSS, which was was curtailed in a previous

plume detection study (Chu et al., 2009). However, owing to the terrestrial nature

of these studies, TSSmax is higher than in Kongsfjorden. Therefore, increasing the

in situ samples to accommodate the full range of TSS, would strengthen the model

(Klemas, 2011). The lower plume boundary of TSSmin also represents the level at

which copepods are affected by surface sedimentation, providing a measure of the

area of the fjord that will be inhibiting for primary productivity (Arendt et al.,

2011).

Remote sensing does not allow for the relative sources of freshwater to be de-

termined. But, the change in plume extent does give insight to the amount of

freshwater entering the system, with greater spatial accuracy and temporal resol-

ution than in situ sampling alone. Therefore, in situ hydrographic measurements,

as presented in Chapter 3, form a valuable compliment to remotely sensing sedi-

ment plumes.

Detection of the glacier ice at Kronebreen’s terminus was not the primary goal

when building the TSS detection model. It has however, provided an insight to

seasonal degradation of the glacier front, and interannual variability in terminus

positions. The terminus positions, however, are not as accurate as when using

Landsat (Figure 1.7). For the model to be used more extensively for terminus

positions, the region of interest mask needs to cover a greater proportion of the

lower extent of Kronebreen. This would avoid the minimum cut off as seen in

2007, 2012 and 2013. Extraction of the terminus positions would be a valuable

addition, particularly for detecting terminus position change within an ablation

season.

4.4.2 Seasonal evolution of meltwater and total

suspended solids delivery from Kronebreen to

Kongsfjorden

A daily snapshot of TSS and plume area has proved adequate to resolve the variab-

ility in meltwater delivery from the tidewater glacier, Kronebreen, at daily (where

images permit) to interannual intervals. The extent of the plume Arctic fjords,
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has been found to change in response to meltwater forcing, which changes during

the ablation season (McGrath et al., 2010; Chu et al., 2009; Hudson et al., 2014).

Contrasting previous studies, this research has focussed solely on a tidewater gla-

cier. Therefore, the TSS detected is representative of the sediment discharged

from subglacial conduits to the fjord, since the meltwater has not been transpor-

ted through terrestrial streams for mixing of sediments to take place (Gurnell,

1982). As a polythermal glacier, the variability of TSS transport by glacial melt-

water is largely expected to be dictated by the rate of meltwater production at the

surface of Kronebreen, and the subsequent routing through the glacier (Collins,

1979; Gurnell et al., 1992b; Clifford et al., 1995). Determining changes in sediment

plume area provides a method to remotely detect meltwater delivery to the mar-

ine environment. Given the frequency of MODIS image acquisition, seasonal and

interannual trends have been identified in this chapter. This provides an insight

into Kronebreen’s glacial architecture and hydrological processes, in addition to

providing an indicator of changing ablation patterns.

These results have highlighted three distinctive periods within the season: 1st

June - 18th, 19th June - 17th August, and 18th August - 30th September. As such,

the following discussion addresses each of these time periods separately to discern

the seasonal properties in TSS and plume area.

Early season: 1st June - 18th June (Day 152 – 180)

Meltwater release from Kronebreen persists throughout the year due to the poly-

thermal properties of the glacier (Irvine-Fynn et al., 2011). The contribution of

freshwater to the marine system increases with the onset of snow ablation in late

April, followed by glacial ablation, which begins in June in Svalbard (Hanssen-

Bauer et al., 1990). In addition, the early season marks the beginning of the engla-

cial and subglacial drainage systems beneath Kronebreen becoming re-established

after winter (Collins, 1990).

Plume area is predominantly <10 km2 during this period, indicative of low

meltwater discharge. Meltwater delivery from Kronebreen early in the ablation

season appears to be characterised by high TSSmean relative to plume area. This

relationship has been noted in many other glacial environments including alpine

glaciers (Collins, 1989; 1990) and high Arctic glaciers (Hodgkins et al., 2003; Hod-

son et al., 1996), but has not previously been characterised in the sediment plumes

emerging from tidewater glaciers. Sediment is mobilised throughout the year by

glacial sliding, leading to high sediment concentrations at the base of the gla-

cier (Collins, 1979). Eroded sediment remains at the base of the glacier, having

been isolated from hydrologic controls during the winter months (Collins, 1990).
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Hydraulic instabilities enable meltwater to access the glacier bed, promoting the

sediment rich meltwater to be flushed from the system (Collins, 1988; 1989). This

occurrence of high TSSmean at the beginning of the ablation season (Figure 4.14),

before 19th June, is in conjunction with the maximum extent of the distributed

system (Willis et al., 1996). High TSSmean could be a result of winter erosion

products being flushed from the system(Østrem, 1975). Large quantities of TSS

in meltwater release can also be caused by glacial advance (Humphrey and Ray-

mond, 1994; Iken and Truffer, 1997); this has been discounted here as Kronebreen

has been in retreat during the study period (Figure 1.7).

In contrast to TSSmean, sediment plume area is at its smallest of the ablation

season (Figure 4.13). Plume area is predominantly below 10 km2, with only 7

events reaching above 18 km2. The area of the sediment plume is heavily re-

liant on meltwater contributions to the marine system. Meltwater originating

at the surface of Kronebreen must navigate through the snow pack and the in-

ternal glacier drainage system to reach the glacier bed, in order to be expelled

into Kongsfjorden. The supraglacial drainage of polythermal glaciers does not

facilitate efficient drainage from the glacier surface to the glacier bed early in the

ablation season (Hodgkins, 2001). Superimposed ice, formed by meltwater freez-

ing at the base and within snow pack (Müller and Keeler, 1969; Wakahama et al.,

1976) inhibits the permeability of the glacier. The snow pack can become inter-

spersed with ice layers, restricting percolation of surface melt (Wadham et al.,

2000). Approximately 35% of the surface of Kongsvegen is covered by super-

imposed ice, which is comparable to the area of bare ice (36%) (Obleitner and

Lehning, 2004; König et al., 2002). Restricted flow through the snow pack leads

to accumulation of meltwater in ponds at the glacier surface early in the ablation

season (Hodgkins, 2001; Obleitner and Lehning, 2004). Early season internal gla-

cier dynamics prevent the vertical percolation of snow melt and encourage lateral

flow instead (Fountain, 1996). As such, hydraulic inefficiencies of the snow pack

and englacial drainage system could be responsible for the constraint upon melt-

water discharge from Kronebreen during the early season, as has been found at

warm based glaciers (Willis et al., 1996).

The area of ice detected at Kronebreen’s terminus is greatest during the early

season, at approximately 9 km2. It is variable, but remains fairly constant. Be-

cause of the speed of Kronebreen, its area appears to increase slightly from day

to day. Due to the resolution of MODIS, it is difficult to get an accurate repres-

entation of the location of the ice front.
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Mid season: 19th June - 17th August (Day 181 – 230)

Following the early season flushing, the TSSmean declines to approximately 0.09

g l−1, whilst TSSmax remain at approximately 0.21 g l−1. Throughout the rest of

the season, both TSSmean and TSSmax do not substantially change (Figure 4.14).

Alpine glaciers have exhibited this trend of constant sediment supply, after the

initial hydraulic engagement of the bed (Collins, 1990). Increased sediment load

during the ablation season has been observed at other polthermal glaciers, thought

to be caused by increased meltwater reaching the subglacial environment (Vatne,

1992; Vatne et al., 1995; Hodson and Ferguson, 1999).

TSS delivery has been linked with the evolution of subglacial drainage, in

which meltwater is constrained to the area of the bed from where sediment has

already been flushed (Collins, 1990). Basal erosion is reduced as a channelized

systems develop, which constrains meltwater to the area of the bed from where

sediment has already been flushed (Willis et al., 1996). Increased englacial hy-

draulic efficiency has been observed at Finsterwalderbreen, Svalbard, through the

monitoring of dissolved solutes (Wadham et al., 1998). However, in Kongsfjorden

the size of the sediment plume expelled from Kronebreen typically increases from

the 19th June; as such the lower TSSmean in comparison to 1st – 19th June, could

be a result of the same quantity of TSS entering Kongsfjorden, but being spread

over a greater area, therefore reducing the concentration of TSSmean. The high

discharge velocity associated with large meltwater discharge events, forces the sed-

iment further across the fjord surface. This can have negative connotations for

primary productivity due to greater limitation of light (Piwosz et al., 2009).

Glacial ablation commences before the peak of the melt season (19th July - 8th

August) (Hanssen-Bauer et al., 1990), leading to greater meltwater availability.

As a result, increased water pressure at the base of Kronebreen exerts greater

meltwater release into Kongsfjorden (Gurnell et al., 1992a; Clifford et al., 1995).

During this period, plume area ranges from 10 – 56 km2. The change from re-

stricted flow to more variable meltwater delivery is illustrated by the variability

of plume area during the mid season, compared to the early season (Figure 4.13).

Whether the hydrological system of Kronebreen evolves during the ablation sea-

son, moving from a distributed system to a channelized configuration (Hodson and

Ferguson, 1999), cannot be discerned from these TSS and plume size results alone.

The plume extent does not give any insight to glacier hydrology, since the timing

between melt production and the surface, and discharge as a plume, cannot be de-

termined. The mid-season is characterised by an ice face area of approximately 4

km2, which marks the largest seasonal change. This is indicative of calving events

once the ablation season has begun (Benn et al., 2007).
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Late season: 18th August - 30th September (Day 231 – 270)

The latter part of the ablation season is characterised by the same TSS values

as during the peak of the melt season from the 19th June, but plume areas are

generally below 20 km2. Sediment exhaustion is not explicitly apparent from

Kronebreen. This lies in agreement with studies of other Arctic polythermal gla-

ciers, which have not revealed seasonal sediment exhaustion (Hodson and Fer-

guson, 1999; Irvine-Fynn et al., 2005). However, seasonal TSS exhaustion has

been widely documented at multiple time scales in proglacial streams (Hodgkins

et al., 2003) and is a notable signature of warm based glaciers (Østrem, 1975;

Hodson and Ferguson, 1999).

The intra-seasonal pattern of meltwater delivery from Kronebreen to Kongs-

fjorden aligns with observations from studies of other Arctic tidewater glaciers

(Vieli et al., 2004; Andersen et al., 2010). Small plume size is prevalent the early

in the season, increasing at the peak of ablation when there is greater meltwater

availability, and decreases at the end of the season as meltwater production de-

creases. In comparison to the early season, plume area is larger and more variable

at the end of the season (Figure 4.13). It is possible that glacial efficiency of

meltwater transport, from the supraglacial to the subglacial, improves during the

ablation season. The results from TSS and plume area present the intra-seasonal

development of meltwater discharge, but do not offer any indication on the tem-

poral variability in timing, between melt production and discharge. Knowledge of

supraglacial processes, such as atmospheric temperature and runoff production,

would provide information on the production of melt. The timing between melt-

water production and discharge as a sediment plume, could provide an insight

to the seasonal development of englacial hydrological efficiency. The terminus of

Kronebreen remains with an ice area similar to the mid-season, indicating that

calving has not continued to accelerate.

4.4.3 Interannual variability

The onset of seasonal melt can lead to more surface meltwater reaching the basal

surface, acting as lubricant and increasing glacier velocity (Dunse et al., 2012).

The rapid decrease in SMB of Kronebreen - Kongsvegen from 1995 – 2007 has

been highlighted as a factor leading to greater meltwater flux, which has the

potential to alter subglacial hydrology (Nuth et al., 2012). Increased surface melt

can induce high rates of calving (Zwally et al., 2002) and increase glacier velocity

(Schoof, 2010). However, over the 12 year period, there has been no sustained

pattern of increased mean annual plume extent. It remains variable, responding

to meltwater fluxes. Chu et al. (2012) found that mean annual plume extent
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correlated with PDD. Therefore, under scenarios of enhanced Arctic warming

(IPCC, 2013), increased discharge of meltwater and sediment to Arctic fjords

would occur. Sediment transport to fjords, from tidewater glaciers, leads to the

formation of grounding line fans, which can act to stabilise the glacier and even

allow for glacier advance (Stearns et al., 2015). This however is dependent on the

rate of retreat, because sediment transported to the fjord during rapid retreat is

spread out, rather than becoming built up (Dowdeswell et al., 2015).

During the course of an ablation season, there was a general decline in glacier

ice coverage at Kronebreen’s terminus. Over the 12 year period, there has been

a decline at the terminus, which corroborates with the terminus retreat in Figure

1.7. The marked retreat from 2011 to 2013 is apparent as mean annual ice area

declines from 0.9 – 0.1 km2. The ice area provides a measure of retreat, but

area alone does not indicate which region has undergone retreat. For instance,

Kongsvegen underwent a marked retreat in 2013; using annual mean area alone

does not give any spatial representation of the location of retreat.

4.5 Conclusions

This study has identified the seasonality within meltwater delivery from the tide-

water glacier Kronebreen, into Kongsfjorden. Quantification of plume area and

TSS is feasible in Kongsfjorden, using an automated model to calibrate MODIS

satellite images with in situ measurements. A total of 234 cloud free days were

available for analysis between June and September, from 2002 – 2013, from the

Terra and Aqua satellites. This expands upon previous studies which have used re-

mote sensing to determine meltwater delivery from terrestrial glacial rivers (Chu

et al., 2009; 2012; Tedstone and Arnold, 2012). The seasonal development of

meltwater discharge has been captured in plume extent, as well as TSS deliv-

ery. Interannual variability is apparent, but the drivers behind this have not been

addressed in this Chapter.

These results have revealed a seasonal trend in both plume area, a proxy for

meltwater delivery, and TSS. Plume area is typically <10 km2 before 19th June,

and increases to range between 10 – 58 km2 at the peak of the melt season from

19th July – 18th August. The availability of meltwater decreases at the end of

the season, characterised by plume areas <20 km2. Evaluation of plume area

together with TSS indicates early season flushing of sediment from 1st - 19th June,

with a seasonal maximum for TSSmean (>0.1 g l−1), despite the smallest mean

plume area of the season. Whilst this process has been documented in alpine and

terrestrial Arctic glaciers, this is the first indication of this process in a tidewater

glacier environment. Despite more meltwater reaching the base of the glacier,
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seasonally there was no increase in TSSmean, indicative of constant TSS availability

for transportation to Kongsfjorden. This study did not discern any significant

signs of sediment exhaustion at the end of the season. Constrained by daylight

availability for adequate MODIS image retrieval, the sampling period ended on

30th September, before the onset of the Polar night. As such sediment exhaustion

may occur beyond this time frame. Development of glacier drainage systems,

from supraglacial to subglacial, and the transport time of meltwater cannot be

discerned from these data alone.

The year to year variability of both TSS and mean plume extent is apparent.

High melt years, indicated by large mean plume area, transport a greater sediment

flux to Kongsfjorden. Studies in Greenland have also found this both through dir-

ect observations, (Hasholt et al., 2013) and by remote sensing of sediment plumes

(Chu et al., 2009; Hudson et al., 2014). Whilst the TSSsum maintains a close rela-

tionship with plume area, TSSmean has little relationship. The increased velocity

of larger meltwater discharge is able to transport the sediment further, creating a

larger plume, resulting in lower TSSmean. In this instance, TSSmean is not repres-

entative of the total flux of sediment to the fjord. There is no trend of increase

or decline during the 12 year period. Further work is required to determine what

controls the annual contributions of TSS and freshwater discharge. Glacier ice

was identified through the process of exclusion when determining TSS. Although

a proportional area of glacier ice at Kronebreen’s terminus was established, the

resolution for an accurate assessment of the terminus is difficult using MODIS.

The annual change of Kronebreen’s terminus position is much better addressed

using Landsat 8 (Figure 1.7). However these results do reveal the dramatic ice

front retreat in 2013.

Despite Tedstone and Arnold (2012) suggesting that remote sensing of sedi-

ment plumes from tidewater glaciers is not appropriate for quantifying meltwater

discharge, the ice melange free environment of Kongsfjorden has suggested other-

wise. Calibration with MODIS band 1 has been appropriate for the quantity of

TSS in Kongsfjorden, despite other studies using a multi-band approach (Hudson

et al., 2014). For a specific site, this method has provided a novel insight to both

the temporal, and spatial variability of meltwater and sediment transport, from

a tidewater glacier. The TSS detection model was modified to account for the

retreating position of Kronebreen’s terminus. With this in mind, synoptic scale

use of sediment plume detection from tidewater glaciers may not be appropriate.

Instead, it is a viable tool for site specific investigations.

Following the call from Chu (2014), to better understand tidewater glacier hy-

drology, further work could be undertaken to extend this study. Sediment plumes

provide a proxy for meltwater discharge, and surface melt production is obtain-
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able from surface mass balance models (Aas, 2015). Therefore, determining if

there are links between the two would offer information on the amount of melt-

water that actually enters the fjord, and the time scales involved between surface

melt production and subglacial discharge.



Chapter 5

Seasonal and interannual

evolution of meltwater

production, storage and release

from Kronebreen

5.1 Introduction

Polythermal glaciers follow a pattern of meltwater storage and release, which con-

trols the seasonal discharge regime (Hodgkins, 1997). Meteorological factors play

a crucial role in meltwater production, with glacier hydrology modulating melt-

water storage and drainage (Irvine-Fynn et al., 2011). A solid understanding of

the connections between the supraglacial and subglacial environments is required

to determine the rate that meltwater can reach the glacier bed, where it can im-

pact velocity and frontal calving (e.g. Vieli et al., 2004; Andersen et al., 2010).

Quantifying supraglacial melt alone is not enough to determine how much melt-

water reaches the ocean, since glaciers can store water both intra-seasonally, and

from year to year (Hooke, 2005). Retention of meltwater within glaciers, is causing

large uncertainties in sea level rise forecasts (Harper et al., 2012).

Determining the drivers of meltwater production is important to accurately

forecast future inputs to the marine environment. As such, the climate forcing on

meltwater delivery and the time scale between meltwater production and discharge

is to be examined, together with investigation into the seasonal glacial hydrology.

To achieve this, the following research questions have been addressed:

i How does sediment plume area compare with runoff from the WRF - CMB

model?

109
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ii What is the role of atmospheric temperature on meltwater delivery at daily,

seasonal and interannual time scales?

iii Are there intra-seasonal and interannual differences in meltwater delivery?

iv Does precipitation make a significant contribution to the sediment plumes?

Glacier hydrology plays an important role in determining flow velocity, which

can influence calving rates at the terminus of tidewater glaciers and their overall

mass balance. Comparable to their temperate counterparts, the drainage of poly-

thermal glaciers is complex, yet they remain less well studied (Hodgkins et al.,

2013). This study utilises sediment plume extent, as determined in Chapter 4,

which revealed seasonal and interannual variability in meltwater delivery to Kongs-

fjorden. To determine if sediment plume extent is a suitable proxy for runoff, a

comparison will be made with runoff results from the WRF-CMB model (Aas, K

2015, pers. comm., 30 Jan).

A long time series of SMB studies from Kronebreen and Kongsvegen exist from

the 1950s (Hagen and Liestøl, 1990) and continues to the present day (Karner

et al., 2013). The SMB of Kronebreen and Kongsvegen was near zero until the

late 1990s, at which point it became negative until 2007, stabilising thereafter

(Nuth et al., 2012). The relative stability of Kongsvegen in comparison to other

smaller glaciers such as Brøggerbreen has been attributed to its greater size and

higher mean altitude (Hagen, 1988). Although relatively stable, the south-south-

westerly atmospheric flow of 2013 broke the summer melt record for Svalbard,

displaying a negative SMB of -20.4 Gt yr−1 (Lang et al., 2015). Recent research

has focussed on Kronebreen’s velocity (Figure 1.6) and calving regime (Figure 1.7)

(Rolstad and Norland, 2009; Sund et al., 2011).

Despite this, the connection with discharge to Kongsfjorden has not previously

been investigated. A time series of discharge has also been found to be an effective

method of discerning the seasonal and interannual development of glacial drainage

(Hodgkins et al., 2013). However, an in situ gauging station at the grounding line

of Kronebreen, where meltwater is discharged into Kongsfjorden, is not currently

feasible. Therefore a remote detection method, determining the size of suspended

sediment plumes, has been employed to determine meltwater delivery (Chapter

4).

Plume extent, determined by calibrating MODIS band 1 imagery with in situ

TSS and spectral reflectance, has been found to be a good indicator of meltwater

discharge (Chapter 4). However, obtaining plume extent from MODIS satellite

images is reliant on cloud free days (Table 4.1), meaning there is not a continuous

seasonal record, as with a gauging station. Therefore plume extent is compared
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with modelled surface runoff from the WRF-CMB model, to determine if it is a

suitable proxy for meltwater discharge. Focus is placed on the relationship between

meteorology and discharge, both intraseasonally and annually. The time between

meltwater runoff formation, and sediment plume formation, provides an indicator

for the seasonal evolution of meltwater production, storage and discharge. Owing

to the duration of this study, from 2002 – 2013, interannual variability and winter

controls on meltwater storage are revealed. Consideration is also placed upon

annual changes to the NAO and the Arctic oscillation (AO), which affect Arctic

temperatures.

5.2 Methodology

The temporal variability of the extent of sediment plume area and TSS concentra-

tion, as determined in Chapter 4, will be analysed with both meteorological and

modelled runoff data. A series of regression and statistical analyses will examine

the effect of atmospheric temperature on plume formation, from daily to inter-

annual time scales, from 2002 – 2013. The interactions between plume area and

runoff, produced by the WRF-CMB model, will be examined from 2004 – 2013;

modelled runoff data are only available from 2004.

5.2.1 Meteorological data

Hourly meteorological data are available from the weather station based at Ny-

Ålesund research station which is 14 km away, south-west of Kronebreen (eKlima,

2014). This study focusses on mean, maximum and minimum daily temperature

and daily mean precipitation.

Atmospheric temperature is strongly seasonal, with large interannual variabil-

ity. A ten day running average has been applied to reduce the daily noise in these

data (Figure 5.1). A daily climatological mean has been calculated for the 12 year

period, taking the average of the same day each year, in order to determine the

overall seasonal trend, whilst dampening interannual variability. This will provide

a basis to highlight annual anomalies and deviation from the climatological sea-

sonal trends due to the passage of air masses (Nesje et al., 2000).

Assessing the 2002 – 2013 average daily temperature, the range of temperature

differs throughout the year. The winter months (December, January, and Febru-

ary) display the greatest standard deviation from the mean, ± 4.5 ◦C. This is

much reduced in June, July and August at ± 1.1 ◦C (Figure 5.1). The temperat-

ure rises above zero from approximately 1st June until 30th September. However,

the annual mean remained negative at -4.0 ◦C. The maximum mean temperature
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was 6.3◦C, occurring on 2nd August, whilst the minimum of -13.5 ◦C occurred

on 3rd March. Atmospheric temperature is negative for the majority of the year,

consequently during periods of positive temperatures the glaciers will be prone to

melt. Snow ablation generally starts at the end of April, in coordination with the

surface energy balance (Hinzman and Kane, 1992).

The coldest year was 2003, which exhibited an annual mean temperature of

-5.8 ◦C and the warmest was 2012 with a mean annual temperature of -2.5 ◦C. The

maximum and minimum daily mean temperatures from 2002 – 2013 are displayed

in Figure 5.1. The overall coldest day was the 23rd January 2004 which exhibited

a mean temperature of -21.9 ◦C, whilst the warmest daily mean temperature was

13.4 ◦C on 7th July 2005.

In this study the PDD is the cumulative sum of daily mean temperature above

zero, from 1st January – 30th September. Typically positive temperatures do not

occur until May. The PDD season was curtailed at the 30th September due to the

polar night limiting suitable MODIS retrievals beyond this time. The length of the

melt season has been determined by how many PDDs there are in a season. Two

measures have been used: 1) the total number of days above zero from 1st January

– 30th September and 2) the number of continuous positive days, in which there

can only be a one day break into negative temperatures. This second measure

provides the continuous melt season length.

Mean and cumulative snow depth have been calculated from 2009 – 2013; data

are not available before this period. Data from 1st October to 31st May have been

used to determine the annual values.

5.2.2 Runoff data from the Weather Research and

Forecasting - Surface Energy Balance model

Modelled results for runoff from Kronebreen and Kongsvegen, in addition to the

Infantfonna ice field, are available at hourly resolution from 2004 – 2013 from

WRF-CMB model. The WRF model has been used in many surface - boundary

layer process studies in Svalbard (e.g. Kilpeläinen et al., 2012; Mayer et al., 2012).

The set up of the WRF model has used version 3.4.1 (Skamarock et al., 2008)

and the full set up is described in (Aas et al., 2015). Comparison of observed

energy balance with modelled surface energy balance using the WRF model have

reproduced monthly to seasonal mean temperatures across Svalbard very well (Aas

et al., 2015). To link with the cryosphere, the WRF model has been coupled with

a physically-based CMB model to form WRF-CMB. This incorporates a coupled

high-resolution mesoscale atmospheric component to link glacier CMB feedbacks

with the atmosphere as described in Collier et al. (2013). The full model simulation
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setup is documented by Aas (2015, in press) and mean daily runoff (m3 s−1) results

were contributed to this study by personal communication.

Figure 5.2: Map illustrating grid points included from the WRF - CMB runoff
model for Kronebreen (black), Infantfonna ice field (green) and Kongsvegen (blue).
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5.3 Results

5.3.1 Relationship between plume area and WRF - CMB

runoff

Results from the WRF-CMB model indicate that daily mean runoff from 1st June

– 30th September from 2004 – 2013 was 31 m3 s−1, whilst the maximum was 484

m3 s−1. Runoff is variable from daily to interannual time scales (Figure 5.3). To

assess the seasonal evolution of runoff, a mean for the same day from 2004 – 2013

has been taken to provide a 10 year daily mean. Seasonally there is an association

between plume area and runoff, despite the comparatively limited plume area

measurements (Figure 5.4). Runoff is near zero in the early season from 1st June

to 18th June, whereas plume area is approximately 10 km2. From 19th June both

runoff and plume area increase displaying a good relationship; 2005 is a good

example of this. Runoff increases between 28th June and 17th August ranging

from 27 – 184 m3 s−1. A maximum peak in runoff occurs around day 31st July,

coinciding with several large plume events (area >25 km2). From 18th August

onwards, runoff remains variable, but the outputs are largely <60 m3 s−1. Runoff

only reaches zero at the end of September. The end of season pattern in similar

to mean plume area in which it decreases, remaining variable, but doesn’t stop

altogether.

The seasonal correlation between plume area and runoff is r = 0.56, p <0.001,

with plume area lagging behind runoff by two days. During June, the correlation

is lower than for the overall season (r = 0.42, p <0.001); there are not many

occurrences of runoff from the WRF-CMB model during this time (Figure 5.5).

July exhibits a lag of 6 days with the maximum correlation of r = 0.52, p <0.001.

Response between runoff and plume area increases in August illustrated by a

higher correlation than the seasonal average (r = 0.70 p <0.001) and no lag. The

correlation increases again in September, but with a two day lag (r = 0.82, p

0.001).

Regression analysis reveals a relationship between runoff and plume area,

which increases in strength throughout the ablation season (Figure 5.6). June

and July exhibit significant association despite being moderate. The relationship

strengthens with less lag time in August and September. Runoff in September can

account for 71% of the sediment plume size, which is greater than 50% in August.

From 2004 – 2013 there is a relationship between mean annual plume area and

total runoff (Figure 5.7). This is despite plume area being determined from only

the cloud free days, rather than runoff which is available at a daily time scale.

Runoff can explain 41% of the variance in mean plume area over the 10 year study
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Figure 5.4: Daily mean runoff (m3 s−1) from the WRF - CMB model. Each day
is averaged from 2004 – 2013 (blue line), with plume area (km2; black crosses)
for every cloud free day from 2002 – 2013. Standard deviation from the mean is
represented by the black bars.
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Figure 5.5: Correlation coefficients between daily mean plume area (km2) and run-
off (m3 s−1) from the WRF - CMB model, for June, July, August and September,
with a 0 –25 day lag applied for monthly, from 2004 – 2013.

period (R2 = 0.41, p <0.05). Only in 2004 and 2007 does the trend reverse, in

which plume area decreases but total runoff increases (Figure 5.4).

5.3.2 Seasonal plume response to atmospheric

temperature

Association between atmospheric temperature and plume area is not clear when

addressing each year individually (Figure 5.8). Years such as 2007 and 2009 display

an increase in plume area from 29th June to 19th July identifiable due to several

consecutive cloud-free MODIS retrievals. In contrast, years such as 2004 and 2010

exhibit a relative data sparsity in successful, successive, MODIS retrievals and

therefore do not display any particular trends.

Taking the mean plume area for each day over the 12 year period reveals a

seasonal evolution, which follows a similar composition to the seasonal climatology

of atmospheric temperature (Figure 5.9). Greatest plume area occurs at the peak

of the melt season in July. A moderate correlation is present between the seasonal

atmospheric temperature climatology and plume area (r = 0.49, p <0.01, n = 105),

implying that there is a seasonal association in that atmospheric temperature is a

driving mechanism for plume area.
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Figure 5.6: Regression between runoff (m s−1) and plume area (km2) for the lag
day with highest association as displayed in Figure 5.5: June 7 day, July 6 day,
August 1 day and September 2 day lag.

Month Mean Min Max Std
June 2.8 -2.4 8.2 2.23
July 5.9 0.7 13.4 1.59
August 4.89 -0.1 10.9 1.96
September 1.1 -8.4 7.7 3.2

Table 5.1: Mean monthly characteristics in atmospheric temperature (◦C) from
2002 – 2013.
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Figure 5.7: Mean annual plume area (km2) from 2002 – 2013 (black line) and total
annual runoff (m3 s−1; blue line).
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Figure 5.9: Plume area (km2) from 2002 – 2013 (black crosses) with daily clima-
tology of mean atmospheric temperature (◦C) (blue line). Standard deviation of
mean plume area is displayed as black lines.

Considering all of the data available, correlating daily mean atmospheric tem-

perature with plume area reveals that plume area does not respond instantaneously

to atmospheric temperature. Plume area lags behind atmospheric temperature

(Figure 5.10). The mean temperature has the greatest influence on plume area

seasonally, with the greatest response to temperature from 4 – 13 days prior to

the day of plume formation (r = 0.55 ± 0.001, p <0.05). Maximum and minimum

temperatures follow a similar pattern to the mean temperature, with the response

to temperature increased from lag day 4; at this point minimum temperature ex-

erts greater control than the maximum temperature. These converge and peak at

lag days 12 – 13. From lag day 14 onwards, the response of plume area to mean,

maximum and minimum temperature decreases. However, the seasonal influence

of temperature on plume area masks any variability which may be taking place

during the melt season.



5.3. RESULTS 123

Figure 5.10: Correlation coefficients between daily plume area (km2) and mean,

maximum and minimum temperatures (◦C), seasonal mean from 2002 – 2013, with

0 – 25 day lag applied.

A monthly outlook breaks down the seasonal means, illustrating the influence

of atmospheric temperature on plume area throughout the melt season. During

June, mean and minimum temperatures exert almost the same control over plume

area, whereas the effect of maximum temperature is on average 35% less (Figure

5.11). The greatest effect of mean temperature on plume area is from lag day 7 –

9 (r = 0.53, p = 0.001). From lag day 10, the effect of mean and minimum tem-

perature decreases. July presents a different outlook with mean, maximum and

minimum temperatures all exerting similar control until lag day 14. The degree

of correlation increases with lag time, presenting two peaks during July. The first

on lag day 7 (r = 0.48, p <0.01) and the second between lag days 12 – 14 (r =

0.48 ± 0.005, p <0.001). From lag day 14 the degree of association decreases, as

was observed in the seasonal trend. The fastest plume area response to temperat-

ure occurs during August, illustrated by the highest correlation coefficient of the

season, r = 0.70, p <0.001, at lag day 2. A steady decrease in association between

mean temperature and plume area occurs until lag days 11 – 13 (r = 0.59 ± 0.004,

p <0.001), which corresponds in timing to a similar secondary peak in July. From

lag day 14, once again the degree of association decreases. September exhibits

the second highest correlation coefficient. Plume area responds to the maximum

temperature 4 days prior (r = 0.57, p <0.001), which is a greater response than

for both the mean and minimum temperatures. From lag day four onwards the

plume response to temperature is relatively uniform, with the secondary peaks no

longer apparent. During September the maximum temperature appears to be the
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dominant driver of plume formation, which opposes the trend of June which saw

the minimum and mean temperatures exerting greatest control.

Correlation analysis reveals that plume area responds to atmospheric temper-

ature at different time scales throughout the ablation season. August responded

not only the fastest, but with the highest correlation. Regression analysis indic-

ates that the temperature two days prior to plume formation it responsible for

almost 50% (R2 0.49) of the plume area.
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5.3.3 Effects of rainfall during the summer melt season

For all months during 2002 – 2013 the mean rainfall was 1.2 mm day−1, with

a maximum of 98.0 mm occurring on 30th January 2012. The seasonal mean,

from June - September was slightly less at 1.0 mm day−1, whilst the maximum

is approximately one third of the annual maximum precipitation measured at

36.1 mm on 22nd July 2002. There is no defined seasonality to precipitation from

rainfall between 2002 – 2013 (Figure 5.12). Mean monthly rainfall exhibits a range

of only 0.9 mm from June – September (Table 5.2). Interannually there is a 1.6

mm range in mean precipitation. The wettest summer was in 2013 with an average

daily rainfall of 1.9 mm day−1, and the driest year was 2010 with an average daily

rainfall of 0.4 mm day−1. Total rainfall in summer 2013 was 243 mm compared

with only 40 mm in 2010.

Correlation analysis reveals that rainfall has little, if any impact on the area of

sediment plumes; this is true both with the seasonal daily mean from 2002 – 2013,

and daily influence. Precipitation occurring on the day of plume formation has

no significant impact upon the plume area (r = 0.005, p >0.90, n 235). There is

no significant relationship between plume area and rainfall within 7 days of plume

formation. With a lag of 11 days applied, there is a slight, significant correlation

(r = 0.192, p <0.05, n 235). This increase could be seen as a random artefact due

to the time between rainfall events.

Month Mean Max Sd
June 0.4 15.2 1.4
July 1.1 36.1 3.4
August 1.2 24.0 3.1
September 1.3 18.2 2.9

Table 5.2: Mean monthly characteristics in rainfall (mm) from 2002 – 2013.

5.3.4 Interannual variability of plume formation

Meltwater delivery from Kronebreen is influenced on a seasonal time scale by

atmospheric temperature. Understanding the interannual drivers of meltwater de-

livery is important to quantify how freshwater inputs to Kongsfjorden may change

in the future. Mean plume area was 14.4 km2 for the 12 year period. During this

time, four years presented with below average plume area: 2007, 2008, 2010 and

2012, whilst the other 8 years were above average.
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Influence of summer meteorological parameters

PDD varied from the annual maximum of 606 ◦C in 2011 to the minimum of 433
◦C in 2010, whilst the 12 year mean was 493 ◦C (Figure 5.13). The annual PDD

has been variable throughout the study period but has not significantly changed

(R2 = 0.16 p = 0.2 n 12; Figure 5.13). Plume area is positively influenced by PDD

(R2 = 0.33, p <0.05, n = 12); larger plume areas form with higher PDD (Figure

5.14). This analysis indicates that 33% of plume size can be attributed to PDD at

an annual time scale. The maximum PDD coincides with the largest mean plume

area in 2011, whilst the minimum PDD is the same year as the smallest mean

plume area in 2010. The total amount of TSS brought to the marine environment

is also controlled by PDD, with 18% of TSSsum dependant on PDD (R2 = 0.18, p

<0.05, n = 12).

The mean length of the melt season was 122 days, the longest melt season was

in 2006 totalling 144 days, and the shortest was 2007 with only 100 days (Table

5.3). The longest continuous melt was in 2011 with 122 melt days, over a month

longer than the continuous melt of 2004 which was only 89 days. Unlike PDD,

the duration of the melt season has no significant impact on plume area (Figure

5.14).

Annual summer rainfall ranges from 40 mm in 2010 to 245 mm in 2013. The

12 year summer mean was 122 mm yr−1. Although a source of freshwater, rainfall

does not play a significant role in determining the size of sediment plumes at an

annual time scale (Figure 5.14).

Influence of winter meteorological parameters

Mean annual winter temperatures (December, January, February, March) range

from -14.0 ◦C in 2005 to -5.7 ◦C in 2012. The 12 year mean was -10.3 ◦C (Table

5.3). When snow data were available (2008 – 2013), the annual mean snow depth

was 22.6 cm. The winters of 2009 and 2011 displayed the greatest mean snow

depths, 36.5 and 35.7 cm respectively. These coincided the coldest winters, exhib-

iting mean winter temperatures of -10.6 ◦C in 2009 and -12.0 ◦C in 2011. Winter

temperature was above average, -9.0 ◦C whist mean snow depth was below average,

9.1 cm, preceding the 12 year minimum mean plume area of 2010.

Linear regression has identified that colder winters promote larger plume areas

in the following ablation season (Figure 5.15). Mean temperature during DJFM

accounts for 36% of plume area in the summer (R2 = 0.36, p <0.5, n = 12). Winter

temperatures exert even greater control, 52%, on sediment availability during the

ablation season (R2 = 0.52, p <0.5, n = 12). With only 5 years of snow data, its

relationship with plume area cannot be determined with any significance.



5.3. RESULTS 130

450

500

550

600

P
D

D
 (

o C
)

80

100

120

140

M
el

t l
en

gt
h 

(d
ay

s)

2002 2004 2006 2008 2010 2012 2014
5

10

15

20

P
lu

m
e 

ar
ea

 (
km

2 )

Year

Figure 5.13: (A) Annual PDD (◦C), (B) black line represents the total annual
melt season length, and the blue line shows the annual consecutive melt season
length (days), (C) Mean annual plume area (km2).
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Plume area = 0.0293 * Rainfall + 10.83
R2 = 0.20 p > 0.05

Plume area = 0.0359 * PDD − 3.28
R2 = 0.33 p < 0.05

TSS
sum

 = 0.0322 * PDD + 0.92

R2 = 0.18 p < 0.05

Plume area = 0.0161 * MSL + 12.45
R2 = 0.003 p > 0.05

Figure 5.14: Influence of PDD (◦C) and melt length (days) on sediment plume area
(km2) from 2002 – 2013. (A) Positive trend between PDD and plume area. (B)
Relationship between total melt season length and plume area. (C) Relationship
of the period of continuous melt on plume area.
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Figure 5.15: Influence of mean winter (DJFM) temperature (◦C) on mean plume
area and mean TSSsum.

Influence of the NAO and AO on interannual freshwater production

The NAO brings basin wide change of the location of the North Atlantic jet stream,

influencing modulation in meridional and zonal transport of heat and moisture.

During its positive phase northern Europe experiences above average temperat-

ures, with increased precipitation. In contrast, Greenland experiences below nor-

mal temperatures and less precipitation. The AO also modulates atmospheric

circulation, with winds constrained in counter-clockwise circulation around the

North Pole during positive AO phases. This circulation relaxes during negative

phases allowing cold winds to penetrate further south.

The summer (June, July August, September; JJAS) NAO index was negative

from 2006 – 2012, whilst the AO index was also negative from 2007 – 2011. The

largest mean plume area was 19.4 km2 in 2012, which occurred with the second

greatest snowfall the preceding winter, and the highest PDD that summer. Both

the NAO and AO were negative, with normally means colder temperatures for

northern Europe. Greenland had record surface melt in 2010 and 2012 (Box

et al., 2010; 2012), however plume discharge from Kronebreen and rainfall were

below average for both of these years. Linear regression indicates that there is no

significant relationship between either the summer NAO or the AO with plume

size. The same relationship is apparent with PDD.

Increased snow cover in the Autumn can lead to a negative phase of the AO

in the winter (Cohen et al., 2012). With limited snow data, this pattern has not
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been apparent. Both 2009 and 2011 exhibited cumulative snow depths greater

than the mean (5504 cm) of >8500 cm from October - May (Table 5.3). However,

the mean annual AO index for both these years differs, being negative (-0.33) in

2009 yet positive (0.53) in 2011. The NAO indexes for each of these years exhibits

the same pattern as the AO, negative in 2009 (-0.24) and positive in 2011 (0.29).

5.4 Discussion

Satellite remote sensing together with in situ measurements, addresses the tem-

poral and spatial limitations associated with in situ sampling alone (Klemas,

2011). The extent of sediment plumes, reflects the changes in meltwater dis-

charge, corroborating with sediment plume detection studies in Greenland (Mc-

Grath et al., 2010; Chu et al., 2009; 2012; Tedstone and Arnold, 2012). This is the

first study to focus on the intraseasonal and interannual variability of meltwater

discharge from a tidewater glacier, using this method.

Unlike with terrestrially terminating glaciers, discharge cannot be measured at

a gauging station. Instead, runoff, as determined by the WRF-CMB model, has

been used as a measure of subaerial melt production. A good correlation exists

between surface runoff and plume extent. This strengthens during the ablation

season, indicating production and delivery become better connected.

As a glacerised basin, Kronebreen supports energy dominated meltwater pro-

duction, rather than precipitation driven, as found in glacier-free catchments

(Lang, 1986; Chen and Ohmura, 1990). Rainfall does not play a significant role

in the transport of TSS to Kongsfjorden (Figure 5.2). The glacierised rather than

non-glacierised catchment of Kronebreen maintains ice melt as the primary produ-

cer of meltwater which transports sediment during the ablation season (Hodgkins

et al., 2009). Atmospheric temperature has been identified as the primary driv-

ing mechanism of freshwater production during the ablation season, with PDD

responsible for 33% of plume size each year. This corroborates with Chu et al.

(2012), who ascertained a good relationship between annual PDD and mean an-

nual plume extent. Winter meteorological conditions play a significant role in

determining TSS availability during the summer, as well as meltwater availability

(Figure 5.15).

The following discussion focusses on the relationship between plume area with

runoff and atmospheric temperature, and explores the evolution of meltwater and

TSS discharge throughout the year from Kronebreen into the head of Kongsf-

jorden.
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5.4.1 Seasonal evolution of meltwater production, storage

and discharge during summer from Kronebreen

Stimulating surface melt, atmospheric temperature drives meltwater production

during the ablation season, indicated by the positive correlation between plume

area and PDD. The time at which plume formation responds to atmospheric tem-

perature is variable during the ablation season (Figure 5.11), indicating that there

are other elements of the glacial system controlling the travel time of meltwater.

If the seasonal correlation between plume area and atmospheric temperature is

used alone, the shorter term variability is masked out (Figure 5.11), making the

correlation appear weaker than it is. This is same pattern as with the correla-

tion between plume extent and surface runoff; the correlation of both temperature

and surface runoff, increases during the melt season. Bartholomew et al. (2010)

found that the same is true when analysing seasonal ablation rates with velocity

of Greenland glaciers; seasonal correlations masked the variability within a sea-

son. Polythermal glaciers, such as Kronebreen, have typically cold ice surfaces

which are largely impermeable, restricting the flow of surface melt to the basal

regions (Hodgkins, 1997). This leads to intermediate-term storage of snow and

water, which is a notable characteristic of polythermal glaciers (Jansson et al.,

2003). Insights to the evolution of meltwater production, storage and transport at

a seasonal scale for the Kronebreen - Kongsvegen system are discussed. The lag

between plume area and glacial runoff and PDD indicates that the snow pack and

glacial reservoirs serve as temporary storage locations for meltwater (Kjell, 1988;

Vatne et al., 1996; Hodgkins, 2001; Hodson et al., 2005a).

Onset of the ablation season starts in June when atmospheric temperatures

become positive (Hanssen-Bauer et al., 1990). The mean and minimum temper-

ature during June holds most control over plume area (Figure 5.11). During this

period temperatures are not yet constantly above zero (Figure 5.1), and minimum

temperatures control surface melt. This is because ME can be both positive or

negative while the mean temperature can fluctuate around zero. Meltwater can

be refrozen within or at the base of the snow pack, forming layers of superimposed

ice (Müller and Keeler, 1969; Wakahama et al., 1976). Interspersion of ice layers

in the snow inhibits meltwater percolating through the glacier, leading to storage

of early season snow melt at the surface in supraglacial ponds (Hodgkins, 1997).

With low glacier cover of 0 – 7%, water can be stored for up to a month (Fountain

and Walder, 1998). As the cover of exposed glacier increases, the storage time

decreases. Early in the ablation season, 36% of Kongsvegen’s surface is bare ice,

and 35% superimposed ice (Obleitner and Lehning, 2004; König et al., 2002). Sur-

face melt from Kronebreen - Kongsvegen takes approximately 4 – 9 days to reach
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Kongsfjorden as a sediment plume, as determined by correlation with PDD and

runoff. This is the mean of the maximum influence across June.

During July the correlation coefficient remains the same as June, but the lag

time changes to 6 – 7 days between runoff, PDD and plume formation (Figure

5.11). This is indicative of continued water storage within the glacier system.

Ground penetrating radar surveys of Stagnation Glacier, Canada, revealed noise

in the surface from the storage of water, and a strong reflectance from the tem-

perature ice below (Irvine-Fynn et al., 2006). Later in the season, there was less

water storage present. Similar seasonal storage has been observed at Haut Glacier

d’Arolla, Switzerland (Richards et al., 1996) and Mikkaglaciären, Sweden (Sten-

borg, 1970), in which discharge at each location occurred in the latter part of the

season. The lagged response of plume formation, or a discharge upwelling, to the

onset of glacier melt has been documented in at Austre Brøggerbreen and Midtre

Lovénbreen, Svalbard (Irvine-Fynn et al., 2005; Hodson et al., 2005a) and at John

Evans Glacier, Canada (Skidmore and Sharp, 1999), among others.

The rapid reduction in time lag from 7 days in July to 1 day in August indicates

that the critical water pressure has been met, forcing the development of drainage

by reopening englacial conduits or overcoming ice damming at the glacier margin

(Bingham et al., 2005; Skidmore and Sharp, 1999; Wadham et al., 2001). The

surface of Kronebreen is heavily crevassed, providing a means of rapid meltwater

transport from surface to bed (Benn et al., 2009). Surface meltwater can pond

in crevasses, which forms a hydrological driving mechanism propagating from the

surface to the bed (Boon and Sharp, 2003; Bingham et al., 2005). The larger

the surface melt accumulation, the greater the pressure acting upon the crevasse,

which increases the likelihood of extension to the glacier bed (Van der Veen, 1998).

Owing to the cold nature of non-temperate glaciers, refreezing of propagating

meltwater can occur, obstructing drainage along fractures (Boon and Sharp, 2003).

The correlation coefficient between plume area and atmospheric temperature

is highest in August (r = 0.7, p <0.05), indicating a stronger response to sur-

face processes. This implies that flow is less restricted than in June and July,

likely because the subglacial drainage has developed by this point. At Haut Gla-

cier d’Arolla, channelised drainage systems develop during the ablation season,

increasing hydraulic efficiency (Nienow et al., 1998). This decreases the residence

time of meltwater as observed at Finterwalderbreen, Svalbard, by dissolved solute

analysis over the duration of an ablation season (Wadham et al., 1998). The ef-

fect of cooling can be identified in the lag between atmospheric temperature and

plume extent; in contrast to June, the highest correlation is with the minimum

temperature (r = 0.6, p <0.05). ME is decreasing as SW ↓ and LW ↓ decrease,

with the onset of the Polar night. However, September exhibits the highest correl-
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ation coefficient of the season between plume area and runoff (r = 0.82, p <0.05),

presenting with a 2 day lag. By this point in the season the subglacial system

will be at its seasonal maximum, allowing for rapid transport of surface runoff

through en/subglacial channels to be released into Kongsfjorden. Continued flow

of meltwater to the glacier bed increases the subglacial water pressure, reduces

friction and increases Kronebreen’s sliding velocity (Kääb et al., 2005). These

results reveal the seasonal change in drainage efficiency, but cannot illuminate

drainage pathways as can be achieved with dye tracing experiments (Vatne et al.,

1995).

By mid-October temperatures remain consistently below zero and darkness

sets in (Hanssen-Bauer et al., 1990). As winter sets in, the hydrological regime is

anticipated to become largely dormant as the subglacial drainage starts to freeze

(Hodgkins et al., 2009). Englacial conduits can store water (Benn et al., 2009),

the volume of which is dependent on the size of the channels and glacier, and the

rate of hydrologic shut down after summer (Irvine-Fynn et al., 2011).

5.4.2 Controls on interannual variability of plume

formation

Atmospheric temperature plays a significant role on meltwater delivery to Kongs-

fjorden. Years with higher PDD typically have the largest mean plume areas,

placing this study in agreement with Chu et al. (2012). Increased energy from the

atmosphere is driving meltwater production, leads to increased meltwater delivery

in Kongsfjorden.

No significant increase in meltwater delivery with time has been found in this

study; a longer temporal series would be needed to determine if there were longer

term trends. The recent extensive melt patterns occurring in Greenland have not

been mirrored in Svalbard. In 2010, Greenland underwent record temperatures

during winter, spring and summer together with record surface melt (Box et al.,

2010; Cappelen et al., 2011), while Svalbard displayed below average PDD and

plume area (Table 5.3). Melt in Greenland started two weeks earlier than normal in

2012, setting new melt record (Box et al., 2012), while plume size in Kongsfjorden

was again, below average.

Extensive Greenland melt has in part been attributed to the negative NAO,

which brings mild, southerly airflows to the ice sheet (Hanna et al., 2012). How-

ever, under these conditions, the European sector is colder and typically receives

less precipitation. This is reflected in the meteorological conditions imposed upon

Svalbard. Both 2010 and 2012 exhibited below average plume area, snow depth

and rainfall. Despite this, there was no significant relationship between either the
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NAO or AO with plume area during the study period. However, other studies

have found that indices of the NAO and AO for both the current and previous

hydrological years can partly explain the length of accumulation and ablation,

in addition to snow depth (Luks et al., 2011). A negative winter AO phase can

in part be instigated by greater snow cover in the autumn, indicating that the

relationship between the AO and snow is not simplistic (Cohen et al., 2012).

5.4.3 Winter controls on sediment availability and

meltwater production

The controls of winter temperatures on the delivery of meltwater from the cryo-

spheric hydrological system to the Kongsfjorden have been revealed by regression

analysis of mean winter temperature (DJFM) and mean plume area. The winter

temperature accounts for 36% of plume formation, and therefore meltwater deliv-

ery, during the following summer. For discharge to occur, there must be hydrologic

pressure in the glacier. The retention of meltwater during the winter allows for

a rapid regeneration of discharge in the following ablation season (Hodson et al.,

2005a). Winter meltwater storage has also been identified at Scotts Turnerbreen

glacier, Svalbard, in which ice marginal channel ice over, because the drainage can-

not adjust to the end of season melt contributions (Hodgkins, 1997). There have

been very few studies which address winter storage, and even less so in tidewater

glaciers, yet it plays a crucial role in determining mass balance and glacier flow

dynamics (Rennermalm et al., 2013). Cryospheric hydrological storage is deemed

to be responsible for a large part of the uncertainties when predicting sea level

rise from the Greenland ice sheet (Harper et al., 2012). As such, understand-

ing the seasonal and interannual controls which determine meltwater delivery is

imperative.

Winter storage, but also drainage, is apparent in the Greenland ice sheet, with

meltwater delivery even during the cold season (Harper et al., 2012). Signals of

such processes can now be discerned in Kronebreen. The coldest winters, 2009

and 2011, also had the greatest snow cover. Snow cover not only contributes

to potential meltwater, but it also acts as an insulator. Therefore, a greater

extent and depth of snow cover can increase the insulation provided to the glacier,

reducing ablation (Boike et al., 2003). However, these results indicate that during

colder winters, less meltwater can escape during the cold period, which leads to

increased meltwater delivery in the following summer season. This is despite the

increased snow depth. In contrast, milder winters do not have the capacity to

retain so much meltwater, and subsequently it can be released during the cold

months.
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The winter freeze-up not only retains meltwater, but also traps basal sediment,

increasing availability for the following summer. Up to 56% of summer sediment

availability can be explained by winter temperatures, with higher TSSsum after

the coldest winters. This can have implications for primary productivity and the

marine ecosystem (Hop et al., 2002). The phenomenon of melt storage has previ-

ously been observable in ice cores (Harper et al., 2012) and river discharge data

(Rennermalm et al., 2013). This study highlights that these retention processes

take place in fast flowing tidewater glaciers, as well as terrestrially terminating. It

is also novel to be able to detect these signals using plume size, determined from

remotely sensed data, giving further value to such plume detection studies.

5.5 Conclusions

As meltwater production increases in a warming climate (IPCC, 2013), more is

expected to reach the subglacial environment which leads to increased glacier

velocities (Kääb et al., 2005). As such, studies of englacial routing of have become

increasingly important (Parizek and Alley, 2004). This chapter has presented the

added value to which sediment plume studies hold. It is the first study to have

revealed the seasonal evolution of tidewater glacier meltwater production, storage

and delivery using remotely sensed data. Valuable information about tidewater

glacier hydrology can be drawn from these results. In addition, these methods

offers a novel way to detect winter storage of meltwater, which has been at the

focus of recent studies (Harper et al., 2012).

Plume extent is representative of surface meltwater runoff production, as de-

termined by correlation with results from the WRF - CMB model. Meltwater

production at Kronebreen - Kongsvegen is produced by atmospheric temperature

driving glacial ablation. June and July are characterised by plume formation in

Kongsfjorden, 6 – 10 days after surface runoff. This decreases to 1 – 2 days during

August and September. The same pattern occurred between surface runoff and

plume extent. These time lags highlight the meltwater storage in the early part of

the season, likely in part by retention in firn (Christianson et al., 2015). Saturation

of firn and the evolution of subglacial drainage reduces storage, driving an efficient

flow of meltwater through the englacial system. The response of plume area to

PDD and runoff is almost twice as great in August and September, compared to

June and July, supporting the notion of increased glacier efficiency throughout the

ablation season.

With only 12 years of data from this study, it is difficult to determine the factors

controlling plume size beyond interannual, since interdecadal patterns cannot be

discerned. Whilst other studies have highlighted the effects of the NAO and AO on
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snowpack in Svalbard (Luks et al., 2011; Cohen et al., 2012), further investigation

is required to see if they do impact plume size, and therefore meltwater delivery

to Kongsfjorden.

This chapter has presented the drivers of meltwater production and seasonal

storage at Kronebreen - Kongsvegen. However, if suspended sediment is to be used

as a proxy for meltwater delivery, it is critical to understand the other factors than

can effect plume size and the concentration of TSS once in Kongsfjorden. Effects of

wind and tide have been observed to alter plume size in other locations (Castaing

and Allen, 1981). As such, analysis to determine if and how wind and tides effect

sediment plume size in Kongsfjorden are presented in Chapter 6.



Chapter 6

Spatial distribution of total

suspended solids at the head of

Kongsfjorden

6.1 Introduction

Throughout the summer months the head of Kongsfjorden is supplied with sed-

iment from Kronebreen and Kongsvegen. Entering at the grounding line it rises

in a buoyant plume, and spreads laterally across the surface of the fjord (Chapter

4). Plume extent has been successfully used as a proxy for meltwater discharge

from Kronebreen. However, to ensure the plume size is representative of meltwater

discharge, considerations must be paid to the effects of external forcing factors,

such as winds and tides.

Using in situ measurements of TSS and particle size this, the spatial variability

in surface sediment plume characteristics is assessed. To complement this, the

temporally and spatially high resolution results of TSS from Chapter 4, together

with daily wind speed and direction, and tide height, have enabled external forcing

factors on plume size to be characterised. This chapter presents analysis on the

spatial distribution of TSS, which has addressed the following questions:

i What is the concentration and size of the particles through the sediment

plume?

ii Does wind speed and direction alter the extent of sediment plumes?

iii What role do tidal currents play in the distribution of TSS?

Tidewater glaciers lose mass through iceberg calving, which is reduced in the

presence of shallower water depths because glacier buoyancy and thinning rates at

140
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the glacier terminus are reduced (Benn et al., 2007). High sedimentation rates at

the glacier terminus can act to stabilise the glacier by reducing the water depth

in front of the ice face. However, this is only the case if the terminus is in relative

stability (Dowdeswell et al., 2015). Glacimarine sedimentation can also protect the

glacier terminus from submarine melting (Powell, 1991). Whilst submarine melt

has been a significant factor in the retreat of tidewater glaciers in Greenland (e.g.

Rignot et al., 2010; Mortensen et al., 2011; Straneo et al., 2013) and Antarctica

(Holland et al., 2008), only a small proportion of freshwater entering Kongsfjorden

is from direct submarine melting of the glacier terminus (Chapter 3).

Changes in sediment plume area have been used to reveal the seasonal and

interannual variability of freshwater inputs to Kongsfjorden (Chapter 4). How-

ever, suspended sediment plumes are not only controlled by meltwater inputs

(Dowdeswell and Cromack, 1991), but also external forces such as wind and tidal

currents (Castaing and Allen, 1981). Wind forcing can move well stratified plumes

within the fjord, causing elongation or degradation (Buckley and Pond, 1976;

Stumpf et al., 1993). The state of the tide, either flood or ebb, can impact the size

of buoyant plumes: large plume area coincides with flood tides, and the smallest

plume area is found at low tide (Dowdeswell and Cromack, 1991). In addition to

the size of the plume, the tidal height (Castaing and Allen, 1981) and amplitude

(Szczucinski and Zajaczkowski, 2012) can dictate how much sediment remains in

suspension.

The fjord floor bathymetry is altered by the glacimarine sedimentation process;

the relative water depth closest to the glacier terminus shallows with increased de-

position (Powell, 1991). Near terminus sedimentation rates at the head of Kongsf-

jorden have previously been quantified by in situ sampling utilising sediment traps

and bathymetric mapping (Trusel et al., 2010; Kehrl et al., 2011). Larger sedi-

ment grains typically fall out of suspension soon after being discharged, leaving

a pattern of fining with distance from source (Dowdeswell and Cromack, 1991;

Elverhøi et al., 1983). Therefore, understanding the spatial distribution and size

of sediment particles, can provide further insights to glacimarine processes in the

ice proximal zone of Kronebreen.

Freshwater inputs and light limitation from sediment load are limiting factors

for phytoplankton in Kongsfjorden (Cui et al., 2006), providing further motivation

to understand the spatial distribution of surface sediments. The diversity and com-

position of surface microbial communities are likely to change with the freshening

of Arctic fjords (Piquet et al., 2010). During melt events, photosynthetic activity

close to Kongsfjorden is reduced, as indicated by lower chlorophyll a concentra-

tions, despite increased nutrient contributions (Cui et al., 2006). Strong winds,

despite increasing vertical mixing can rapidly decrease surface phytoplankton bio-
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mass, contrasting lighter wind events which promote higher plankton biomass

(Andersen and Prieur, 2000).

The premise for better understanding of sediment supply and deposition in

Kongsfjorden is twofold: 1) increased sediment can act to stabilise or destabilise

the calving front of Kronebreen and 2) freshwater, sediment and wind can all act

to change phytoplankton communities and abundance, having a direct impact on

the marine food web. While using sediment plume size as a proxy for meltwater

discharge, it is important to determine the external forcing factors on plume size,

as well as the consequences of the sediment load.

6.2 Methodology

6.2.1 In situ total suspended solid distribution and

particle sizing

In situ TSS samples were taken from the head of Kongsfjorden as described in

Chapter 4. Since the samples had been filtered, the sediment had to be returned to

suspension for particle sizing analysis. The filter papers were placed in a beaker of

deionised water in a sonic bath. When as much sediment as possible was removed

from the filter papers, they were disposed of. The TSS samples were stored in

plastic vials whilst they waited to be processed. Before processing, each sample

was returned to the sonic bath for 15 minutes to break up the flocculated particles

which formed during storage. Using a micro volume module, the samples were

sized using a Beckman Coulter laser particle scanner. A one minute run time and

six repeats was used for each sample. The mean of the six repeats has been used

in this analysis.

6.2.2 Influence of the tide

The tidal amplitude outside of Kongsfjorden is 0.5 m, which propagates through

the fjord as a Kelvin wave. This induces a semi-diurnal force upon the water

masses in Kongsfjorden (Svendsen et al., 2002). Over the fortnightly spring-neap

period, tidal amplitude varies between 1.5 – 2.0 m, with weak currents (Bluhm

et al., 2001). During the flood tide, an intrusion of dense, coastal water enters

Kongsfjorden, whilst an ebb tides sees this intrusion return to the shelf seas (Perkin

and Lewis, 1978).

To determine the extent to which tides effect the sediment plumes in Kongsf-

jorden, two factors must be known: 1) the time of MODIS image acquisition, and

2) whether the tide was in an ebb or flood state at the time of image acquisition.
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Using the frequency at which plumes of a particular size form, under which tidal

state, will determine the influence of tides on plume extent.

Satellite overpass times were sourced from NASA’s overpass prediction service

(NASA, 2014b). This provides the time at which the satellite, either Terra or

Aqua, passed over a particular latitude and longitude. Due to the high latitude of

Kongsfjorden, the satellites pass over this location multiple times a day. Therefore,

the images acquired were compared with the original swath images (NASA, 2014a).

Image acquisition times have been obtained for Terra images from 2007 – 2013.

When there have been multiple raw images, occasionally none of them could be

exactly matched with the MOD09GQ plate, the image has been discarded from

tide analysis. This is to ensure that all acquisition times used are as accurate as

possible.

The height and state of the tide is measured and recorded at a tidal gauge at

Ny-Ålesund. The observed tidal height data are available in 10 and 60 minute

intervals from Vannstand (2014). In this study, ten minute data have been used;

positive values denote a flood tide and negative values an ebb tide. The slack

period of the tide has been identified by periods of small changes in tidal height;

heights which change less than 2 cm in between the 10 minute samples has been

classified as slack. Numerical indicators have been applied to the tidal state: flood

= 1, ebb = -1 and slack = 0 (Figure 6.1). Both the tidal height and state were

associated with the acquisition time of each MODIS image (NASA, 2014b), using

the 10 minute data.

6.2.3 Wind speed and direction

Daily mean wind speed and direction have been sourced from the automatic

weather station at Ny-Ålesund. These can be obtained from eKlima (2014). The

weather station is located 14 km to the southwest of Kronebreen.

6.3 Results

6.3.1 In situ total suspended solids characteristics and

spatial distribution

Total suspended solids spatial distribution

In situ measurements of TSS through the surface meltwater plume reveal a de-

crease in TSS with increasing distance from the ice front (Figure 6.2). The highest

TSS is found closest to Kronebreen at the historical site of submarine discharge

(1987 – 2001) (Trusel et al., 2010), and decreases with distance down Kongsfjorden.
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Figure 6.1: Example of semi-diurnal tidal height (cm; black) and tidal state (blue;
flood = 1, ebb = 2, slack = 0) from 14th July to 21st July 2012. Tide data obtained
from Vannstand (2014).

Due to large amounts of bergy bits in front of the modern location of submarine

discharge, no TSS samples were taken at this location. High TSS is also found at

the Kongsvegen upwelling located at the southern extent of the section (Figure

6.2).

The section across the ice front reveals variable TSS in front of Kronebreen

(Figure 6.3). The lowest TSS, 0.11 g l−1 was located at the northernmost extent.

TSS increases to 0.23 g l−1, located 1.45 km south from the fist sampling station,

in the centre of the transect. Continuing south along the transect, TSS declines

up to a distance of 2 km. TSS increases to a maximum of 0.27 g l−1, located at the

southern most extent, 2.7 km along the transect. This is indicative of meltwater

entering from the Kongsvegen upwelling, a second source of meltwater from the

glacier system entering at the head of Kongsfjorden. With this variability of TSS

along the ice face, there is no statistical significance between TSS and distance

from the initial sampling station (one-sample t(5) = -9.06, p <2.02, at the 0.05

significance level).

In contrast, a more definitive pattern of TSS decline is observable through out

the plume. The maximum of 0.27 g l−1 was located closest to the ice front, at 0

km on the section, decreasing to 0.14 g l−1 at 0.5 km away. This rate of decline is
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not sustained, as TSS only decreases 0.03 g l−1 from 0.5 – 2 km distance. Beyond

2 km the measured TSS is only 20% of that closest to the ice face, measuring 0.06

g l−1 (Figure 6.3). Repeat measurements at 1.25 km distance reveal a ± 0.04 g l−1

difference from the mean from over the 3 days of sampling. The reduction of TSS

with distance from the ice face is statistically significant at the 0.05 significance

level (one-sample t(5) = 1.89, p <3.83).

Figure 6.2: In situ measurements of TSS along Kronebreen’s ice front and through
the sediment plume extending down fjord. Symbols are proportionate to the
weight of TSS, where TSS ranges between: TSSmin = 0.05 g l−1 and TSSmax =
0.21 g l−1. Arrows denote current and historical upwelling zones as defined by
Trusel et al. (2010): (A) modern submarine discharge and location of upwelling
from Kronebreen (B) historical submarine discharge site from 1987 – 2001.
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Figure 6.3: TSS declines with distance from the glacier, through the plume (0 km
closest to Kronebreen; top) and is variable in front of the ice face (0 km is at the
north of Kronebreen, with a transect south; bottom).
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Particle size

The particle size of the sediment samples indicates a dominance of silt material,

<63 µm (Wentworth, 1922). Mean particle size ranges from 8.66 µm to 24.69 µ m

through the plume extending away from Kronebreen (Figure 6.4). The transect

parallel to the ice front displays particle sizes ranging from 8.86 – 15.62 µm. In

contrast to TSS there is no significant fining of sediment with distance from the

ice face (one-sample t(6) = -7.25, p >0.05, at the 0.05 significance level. This

applies to the samples across the ice front, one-sample t(5) = -7.17, p >0.05, at

the 0.05 significance level (Figure 6.5).
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Figure 6.4: Particle size of surface suspended sediments through the plume, from
point closest to Kronebreen (0 km) out to a distance of 1.9 km.

6.3.2 Tidal influence on plume formation

Results from Chapter 3 indicate that the state of the tide effects the surface waters.

To determine if tidal currents play a role in determining the size of plumes, tidal

gauge data has been analysed with plume area and TSS concentration results from

Chapter 4.

The largest plume areas (mean 15.9 km2) were found to form under the in-

fluence of a flood tide (Figure 6.6). In contrast, smaller plume areas (mean 10.8

km2) were found during ebb tides (Table 6.1). There was little change in TSSmean
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Figure 6.5: Particle size of surface suspended sediments in front of Kronebreen’s
calving face, starting at 0 km in the north, to 2.7 km south towards Kongsvegen
glacier.

Tide state Numerical indicator Mean Plume area (km2) TSSsum n
Flood 1 15.9 22.3 32
Ebb -1 10.8 16.24 24
Slack 0 12.5 18.6 47

Table 6.1: Mean plume area and TSSsum under the influence of flood, ebb and
slack tides.
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however, TSSsum was higher during flood tides than ebb. One tailed t-tests have

revealed a significant relationship between plume size and tide height: t(102) =

9.04, p <0.05. TSSsum is also significantly related to the tide height: t(102) =

10.7, p <0.05.

6.3.3 Wind speed and direction

The wind direction in Kongsfjorden is predominantly northwest or southeast, with

winds being channelled along the fjord axis (Figure 6.7). Kongsfjorden is subjec-

ted to persistent katabatic winds throughout the year, with varying strength. The

most dominant wind direction is south-easterly, channelled down fjord driven by

mechanical wind channelling from topographic features, and the thermally driven

land-sea breeze (Esau and Repina, 2012). The second most dominant wind dir-

ection is northwesterly, channelled up fjord (Svendsen et al., 2002). The fastest

wind speeds occur down fjord, forced by katabatic winds and are most dominant

in the winter months (Esau and Repina, 2012).

Over the 12 year period, the winter (October, November, December, January;

ONDJ) displayed the fastest mean wind speed of 4.6 m s−1, followed by spring

(February, March, April, May; FMAM) at 4.1 m s−1. Summer (JJAS) displayed

the slowest mean wind speed, 2.9 m s−1. The overall maximum wind speed of

25.4 m s−1 occurred during summer. Maximum wind speeds for winter and spring

were 19.5 and 17.7 m s−1, respectively.

Although wind direction is variable throughout the year (Figure 6.7) there is

little seasonal difference. South-easterlies dominate, with mean wind directions

for spring, summer, and winter as 158, 161 and 163◦, respectively. The overall

mean wind direction from 2002 – 2013 was 161◦. This indicative of wind being

funnelled either up or down fjord.

For days of successful MODIS image retrieval, wind speeds averaged 2.8 m s−1,

with a maximum speed of 8.8 m s−1. The mean wind direction was 149◦ indicating

the dominance of south south-easterly winds. Division by quadrants, using the

mean wind direction as the mid-point of one of these, reveals that detection of

sediment plumes is infrequent under up fjord winds. Only 6% of plumes detected

were formed under north-westerly winds (285 – 14◦), whilst 50% were formed under

south-easterly wind conditions (105 – 194◦) (Table 6.2). Plume length is greater

between 14 – 104◦ and 105 – 194◦, 5.9 and 5.4 km, respectively. The same is true

for plume area (Table 6.2). Wind direction plays a significant role in determining

plume length, in which longer plumes are formed under south-easterly winds, as

indicated by a one-tailed t-test: t(231) = 35.0, p <0.05.

Plume length is typically longer with faster wind speeds (Table 6.3). Mean
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Figure 6.7: Seasonal and annual wind speed and direction measured at Ny-Ålesund
research station, from 2002 – 2013.

Quad Wind direction Plume length Plume area n
(◦) (km) (km2)

mean max min mean max min
1 15 – 104 5.9 12.6 1.8 16.8 55.5 4.6 51
2 105 – 194 5.4 13.7 0.3 15.2 52.3 1.8 115
3 195 – 284 4.5 11.9 0.3 11.4 35.1 0.9 52
4 285 – 14 3.6 8.7 1.6 7.8 20.1 2.0 13

Table 6.2: Influence of wind direction (◦) on mean wind speed (m s−1), mean
plume length (km) and mean plume area (km2).
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plume length on days with wind speeds <2 m s−1 was 4.4 km, increasing to

6.9 km when winds were >6 m s−1. The relationship between wind speed and

plume length is significant, with longer plumes formed under faster wind speeds,

as indicated by a one-tailed t-test: t(231) = 12.2, p <0.05. The minimum plume

length was 0.3 km when winds were <4 m s−1. Once >4 m s−1, the minimum

plume length increased to 1.6 km. Plume area did not display these characteristics

however, the smallest minimum plume area was formed under winds <2 m s−1,

while the largest minimum plume area was formed when winds were >6 m s−1

(Table 6.3). The effect of wind speed and direction is depicted in Figure 6.8. Note

that the bars depicting wind direction have been reversed, so that the length of

bar representing sediment plume length is orientated down fjord.

Wind speed (m s−1) Plume length (km) Plume area (km2) n
mean max min mean max min

0 – 2.0 4.4 11.8 0.3 11.5 32.1 0.9 92
2.1 – 4.0 5.2 13.5 0.3 14.2 52.8 2.4 94
4.1 – 6.0 6.6 12.7 1.6 19.9 55.5 2.0 31
>6.0 6.9 13.7 1.6 21.5 48.6 3.0 14

Table 6.3: Influence of wind speed (m s−1) on mean, minimum and maximum
plume length (km) and mean, maximum and minimum plume area (km2).

6.4 Discussion

6.4.1 Spatial distribution of total suspended solids

In situ measurements taken in July 2012 reveal a significant decrease in TSS with

distance away from Kronebreen (Figure 6.2). This is a common observation of

in situ sediment plume characteristics (Syvitski, 1989; Cowan and Powell, 1991).

This implies that sedimentation is greater closer to the ice front leading to accu-

mulation and shallower water depths, as seen in the CTD profiles (Figure 3.8).

The reported rates of sedimentation at the ice front is variable; Elverhøi et al.

(1980) report rates of >0.10 m a−1, Trusel et al. (2010) of >0.06 m a−1 (within

500 m of the point of meltwater delivery) and the greatest sedimentation rate of

1.0 m a−1 from Kehrl et al. (2011). Sedimentation results in raised grounding line

fans are found to be present at each of locations A and B, with A still being built

and B eroded away (Kehrl et al., 2011).

Surface TSS declined with distance whilst water depth increased; the majority

of sedimentation appears to take place within 500 m of the transect, approximately

800 m from the ice front of Kronebreen (Figure 6.3). Zajaczkowski (2008) detailed
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Figure 6.8: Distribution of plume length (length of bar) with wind speed (colour
of bar) and reversed direction (orientation of bar). Wind direction reversed to
highlight plume formation down fjord. The map of the study area is for reference.
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a three stage sedimentation regime in front of Kronebreen: high, constant TSS

concentrations from 0 – 1 km, decreasing surface TSS from 1 – 3 km, and a low,

constant TSS concentrations from 3 – 7 km. The in situ measurements of TSS

presented in this study fit within the regime of Zajaczkowski (2008). Unfortunately

no in situ measurements were taken beyond 3 km from Kronebreen.

Across the ice front TSS is greatest in the centre, 1.5 km along the transect.

It is anticipated that this is the point closest to the source of sediment supply

(Cowan and Powell, 1990). However, the maximum TSS at the ice front coincides

with the historical location of submarine discharge and upwelling, rather than the

modern location as identified by Trusel et al. (2010). The location of upwelling

from 1987 – 2001 was at site B. It moved in 2002 where it is believed to have

remained stable since (Trusel et al., 2010; Kehrl et al., 2011). Bergy bits restricted

sampling in the modern upwelling zone. Therefore, it is not possible to determine

the exact location of entry of submarine meltwater delivery from these in situ TSS

measurements alone. High TSS was also present at the southernmost extent, near

the Kongsvegen outflow.

The contribution of sediment from tidewater glaciers to glacial fjords plays an

important role on stabilising the glacier front (Meier and Post, 1987). If sedi-

mentation is high near the glacier terminus, a grounding line fan can form. This

is reliant on the marine terminus remaining stable; large periods of retreat will

cause the sediment to be spread over a wider area, and will not be able to build up

much vertical height (Dowdeswell et al., 2015). Grounding line fans can protect

parts of the glacier from submarine melt, in addition to enabling advance of the

glacier terminus (Powell and Alley, 1997; Alley et al., 2007). It has been estim-

ated that a grounding line fan could emerge at the surface of Kongsfjorden, in

front of Kronebreen within two decades, should the glacier terminus remain stable

(Trusel et al., 2010). However, with the large retreat of 2013 (Figure 1.7), using

this method of remote sensing of TSS, offers a mean to monitor both sediment

discharge, and the rate of retreat of the glacier front.

Despite the expectation of coarser particles settling faster due to lateral mixing

between the plume and surface waters causing deceleration in the plume (McCli-

mans, 1978), particle size in Kongsfjorden did not show any significant relationship

between size and proximity to the source. This contrasts other studies which have

revealed a fining of sediments with increased distance down fjord (e.g. Dowdeswell

and Cromack, 1991; Elverhøi et al., 1983). However, these results of fining have

been determined from core samples, which was not possible in this study. To make

a valid comparison of methods, more surface samples are required, and a faster

analysis of them would be preferential.

The temporal and spatial variability of TSS has been quantified by calibrating
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MODIS band 1 satellite images with in situ TSS and spectral reflectance, which

is a beneficial advance on in situ measurements alone (Dowdeswell and Cromack,

1991). It is assumed that all TSS has originated from the submarine plume from

Kronebreen since there has been no transport through streams for mixing of sed-

iments to take place (Gurnell, 1982). However, sediment is also transported into

Kongsfjorden by icebergs (Dowdeswell and Dowdeswell, 1989), which has not been

considered here. The highest TSS concentrations are always closest to Kronebreen

and decrease with distance as per the in situ measurements. High TSS reduces

light availability for primary productivity in Kongsfjorden (Cui et al., 2006). En-

hanced TSS supply and plume extent will increase the area of the fjord surface

that inhibits light; as a result ecosystems will have to adapt, and marine diversity

may decrease as a response (Lydersen et al., 2014).

6.4.2 Tidal influence on sedimentation

The relationship between tidal height and both plume size and TSSsum is signi-

ficant. Previous studies have revealed two controls that tides exert on buoyant

sediment plumes: i) by affecting the rate of sedimentation and ii) by damming

freshwater against the ice face during flood tides reducing the area of the sedi-

ment plume (Cowan and Powell, 1990). During flood tides turbidity is high and

the velocity of surface water increases as the thickness decreases, maintaining sed-

iment in suspension. During ebb tides surface plume velocity decreases with the

thickening of the surface waters. This decrease in turbidity releases sediment from

suspension, decreasing the amount detectable at the surface. This corroborates

with findings from McBride Inlet, Alaska, in which flood tides were found to keep

fine grained material in suspension due to the high current velocities (Cowan and

Powell, 1990). Vertical settling of particulate matter is expected during the slack

tides as a result of reduced current velocities, with deposition of both fine and

course material at low tide (Ó Cofaigh and Dowdeswell, 2001). The majority of

sedimentation occurs within 5 km of Kronebreen’s ice front, with sedimentation

further down fjord being reliant on redeposition and resuspension (Zajaczkowski,

2008). Previously, semi-diurnal sedimentation patterns have been determined by

sediment traps and cores in Arctic fjords (Cowan and Powell, 1990; Hill et al.,

1998; Ó Cofaigh and Dowdeswell, 2001; Zajaczkowski, 2008).

Sediment remains in suspension for longer during spring tides, whereas rapid

deposition takes place during neap tides (Szczucinski and Zajaczkowski, 2012).

Sediment trap experiments have found that the highest measured sedimentation

fluxes are found in the traps closest to the sea floor (Szczucinski and Zajaczkowski,

2012) which has been attributed to bottom resuspension of sediments (Wassmann
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et al., 1996; Zajaczkowski, 2002).

6.4.3 Wind forcing on sediment plumes

Arctic fjords differ to estuarine and coastal environments by having steep walls and

a relatively narrow channel, exhibiting comparably different flow regimes for both

wind and ocean currents (Cushman-Roisin et al., 1994). Kongsfjorden’s wind flow

is modulated by mechanical wind channelling from topographic features and the

thermally driven land-sea breeze originating from Kronebreen (Esau and Repina,

2012). The mean wind direction on days with detectable plume formation was

149◦, which supports down fjord wind channelling. These south south-easterly

winds increase the size of sediment plumes down Kongsfjorden. Up fjord winds

reduce plume size by pushing the surface water towards Kronebreen, instigating

downwelling and mixing of surface water deeper into the water column (Table 6.2).

Wind speed also plays a role in determining plume size, significant at the 0.05 level

as indicated by a one-tailed t-test. Faster winds channelled down Kongsfjorden

push surface waters further away from Kronebreen, initiating upwelling of cold,

deep water to the fjord surface. As the surface plume spreads it thins and wind

mixing reduces its overall buoyancy (Whitney and Garvine, 2005). When wind

speeds are >4 m s−1 the minimum plume length increases from 0.3 km to 1.6 km.

This could imply a point at which wind driven flow takes over from buoyancy

driven flow as has been found in the Delaware Coastal Current (Whitney and

Garvine, 2005).

6.5 Conclusions

The size of sediment plumes found at the head of Kongsfjorden provide a metric for

quantifying freshwater contributions from Kronebreen (Chapter 5). However this

chapter has revealed that plume size is not only dictated by freshwater availability,

but is also significantly impacted by wind and tide forcing. These are important

findings, which must be considered when using sediment plume area as a proxy for

meltwater discharge. As such, the methods employed in this study have enabled

the glacimarine sedimentation regime at the head of Kongsfjorden to be assessed

over several years, which has previously not been achieved.

TSS declined significantly with distance away from Kronebreen, with the greatest

sedimentation occurring at the glacier terminus. Across Kronebreen’s ice front

TSS was greatest at points of submarine discharge, building grounding line fans.

There was no significant change in particle size throughout the sections, despite

this having been observed in other Arctic fjord environments (Dowdeswell and
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Cromack, 1991; Elverhøi et al., 1983).

South south-easterly winds prevailed, which increased the length of sediment

plumes down fjord. Up fjord winds dammed sediment plumes in front of Kronebreen,

resulting in smaller plume size. Plumes were also extended under faster wind

speeds, causing spreading and thinning of the surface layer across the fjord. Min-

imum plume length increased from 0.3 to 1.6 km under wind speeds>4 m s−1. This

indicates a possible threshold in which wind forcing overrides buoyancy forcing.

Flood tides maintain sediment in suspension, as displayed by larger plume

areas and higher TSSsum than during ebb tides. Smaller plume areas and lower

TSSsum are a significant indicator of sedimentation taking place during ebb tides

when turbulence is low. This study has not found a direct correlation between

the height of the tide and plume size, despite height of tide. Damming of plumes

against Kronebreen’s ice front has not been apparent in flood tides.

Winds and tides play a significant role on modulating the suspension of sedi-

ments in surface waters. However, this study has not been able to draw a direct

correlation between winds and tide on plume size. In order to fully establish

this relationship, more images of the plume extent are required. This could be

achieved using a time lapse camera, together with data from a weather stations

on Kronebreen, or closer to the terminus than the station at Ny-Ålesund. Such

additional work to determine the thickness and velocity of the surface plume un-

der different wind speeds and tide conditions would be beneficial. The impacts

of wind and tides on the water column in Kongsfjorden, and subsequent drivers

behind changes in primary productivity, would be better understood.



Chapter 7

Synthesis

This thesis illustrates that meltwater discharge from tidewater glaciers can be

monitored by remote detection of sediment plumes. This is the first compre-

hensive study of discharge variability from daily to interannual timescales. The

combination of in situ hydrographic measurements, TSS and spectral reflectance,

together with remotely sensed imagery, has provided key findings regarding ice

- ocean interactions, and the circulation processes taking place at the head of

Kongsfjorden. Thus study has furthered the understanding of tidewater glacier

hydrology, addressing the some of the uncertainties which surround meltwater

export from marine terminating glaciers, as presented by Chu (2014).

This chapter provides a synthesis of discussions and conclusions from earlier

chapters, placing this study contextually with the wider literature. An overview

of the research aims that were presented in Section 1.3, together with how each

has been addressed is detailed in Section 7.1. A holistic review of meltwater pro-

duction, storage and delivery is presented in Section 7.2, and potential avenues for

future research are explored in Section 7.4. The concluding remarks are presented

in Section 7.5.

7.1 Realisation of research aims

Each chapter has addressed one of the four primary aims of this thesis as detailed

in Section 1.3. Here a brief synthesis is provided, describing how each was achieved.

In Chapter 3, temperature and salinity profiles were used to separate the fresh-

water fractions, SgFW and GiFW, from ambient water (Figure 3.3). A water

mass mixing model drew upon differing potential temperatures of each freshwater

source, revealing SgFW as the dominant freshwater source at the head of Kongs-

fjorden. The volume of freshwater from the tidewater glacier, Kronebreen, was

determined by using geostrophic current velocities. This provided an estimation

158
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of freshwater volume which was comparable to other oceanographic studies as

well as runoff data from the WRF-CMB model. It also illustrated the two layer

circulation, with a strong outflow of SW, and an inflow of AW at depth (Figure

3.15).

Chapter 4 utilised spot, in situ measurements, of TSS and spectral reflectance

to calibrate MODIS band 1 spectral reflectance. This was possible for 234 cloud

free images during the ablation season (June - September), from 2002 – 2013.

This allowed the area of buoyant sediment plumes, emerging from Kronebreen’s

grounding line, to be quantified, providing a measure of discharge (Figure 4.11).

The seasonal development of meltwater and TSS delivery to Kongsfjorden from

Kronebreen has been revealed, in addition to the interannual variability. Small

plume area and high TSSmean dominates the early season, followed by large plume

areas in the middle of the ablation season with comparatively less TSSmean (Figure

4.13). The end of the ablation season presents smaller, but variable plumes with

TSSmean remaining the same as the mid-season.

Plume extent was found to be responsive to changes in subaerial meltwater

production, as revealed by correlation analysis between plume area and runoff

results from the WRF-CMB model in Chapter 5. Determining the lag between

meltwater production and plume formation was achieved by correlating atmo-

spheric temperature and plume area. Seasonal storage was found to play a key

role in the early season, illustrated by the 7 – 9 day lag between production and

discharge during June and July, which decreased substantially by the end of the

ablation season (Figure 5.6). It has been proposed that this is due to intermediate

term storage and the evolution of an efficient hydrological drainage system. In-

terannually, low winter temperatures impose a deep freeze on meltwater and TSS

englacially, creating greater availability for release in the following ablation season

(Figure 5.15).

The seasonal pattern of meltwater delivery is present in plume area, despite it

being affected by external forcing factors once in the fjord, as presented in Chapter

6. Wind speed and direction both play a role in extending plumes down fjord,

which occur under faster and down fjord winds (Table 6.2). Tides have an impact

on how much sediment remains in suspension, with more TSS under the influence

of flood tides, rather than ebb tides (Figure 6.6). TSS declines with distance from

the ice front, corroborating with other glacimarine sedimentation studies.

This thesis has highlighted the wealth of research possibilities associated with

sediment plume detection studies. Together with in situ hydrographic measure-

ments, and meteorological data, a deeper understanding of the source to sea devel-

opment of meltwater production, storage and discharge has been presented. It is

the first study to use remote sensing to determine the intra-seasonal development
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and interannual variability in meltwater discharge, from a tidewater glacier. This

method has explored the viability of sediment plume detection for use as a site

specific tool, with tidewater glaciers. The results have linked meltwater delivery

with glacier hydrology, providing insights to the supra and englacial processes of

meltwater production, storage and transport, exemplifying the value of sediment

plume detection studies. Both the summer and winter meteorological controls on

plume formation are clear, despite wind and tidal forcing impacting plume size.

Therefore, it is a valuable tool to remotely monitor largely inaccessible glaciers,

both seasonally and interannually.

7.2 Results

The results presented in this thesis provide insights to meltwater delivery and

the glacier hydrology of the Kronebreen - Kongsvegen complex. As such, the

following discussion focusses on these results with a source to sea approach: melt-

water production, storage and transport, and finally, the plume and sedimentary

characteristics once in the fjord.

7.2.1 Meltwater production

Supraglacial meltwater production is dictated by atmospheric influence on the gla-

cier surface. For tidewater glaciers, this melt is transported to the marine terminus

where it is discharge subglacially, dispelling freshwater to the marine environment.

However, the importance of submarine melting at marine terminating glaciers was

highlighted at LeConte glacier, Alaska by Motyka et al. (2003). As such, quan-

tifying the proportions of each of submarine melt and glacial runoff has become

the focus of much research (Mortensen et al., 2011; Sutherland and Straneo, 2012;

Sciascia et al., 2013; Mortensen et al., 2014).

At the head of Kongsfjorden, up to 30% of the surface water was SgFW and

only 3% GiFW. At an order of magnitude greater than direct submarine melt

production, SgFW from Kronebreen is the dominant freshwater type found at

the head of Kongsfjorden (Chapter 3). The emerging buoyant plume is sediment

laden, which has enabled it to be detected remotely. By detecting TSS, plume size

provides a tool to quantify meltwater discharge (Chu et al., 2009; 2012), furthering

the understanding of the quantity and timing of freshwater delivery to the marine

environment. Since freshwater inputs vary both seasonally and interannually, wa-

ter column stratification (Mortensen et al., 2013) and fjord circulation are affected

(Mortensen et al., 2014).
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Supraglacial meltwater production

Meltwater contributions entering at the head of Kongsfjorden have been quanti-

fied by sediment plume area in Chapter 4. Rising from the northern section of

Kronebreen’s ice front, the buoyant freshwater plumes are sediment laden. In situ

measurements determined surface sediment loading to be between 0.05 – 0.27 g

l−1, which has been used to determine the area of the sediment plumes. Plume

extent increases in response to increased meltwater production, as determined by

correlation with runoff from the WRF-CMB model (Aas. 2015. Pers. Comms).

This exemplifies that plume extent provides a representative proxy for melt pro-

duction. The extent of plumes has revealed seasonality in discharge, which can

be attributed to seasonal evolution of atmospheric temperature which drives pro-

duction of surface runoff. The lag between production and discharge reveals the

seasonal storage of meltwater (Chapter 5).

Correlation analysis revealed that atmospheric temperature is the significant

driver of meltwater production, with plume extent reflecting the amount dis-

charged into Kongsfjorden. Rainfall does does significantly contribute to the

freshwater discharge, as discerned by plume extent (Chapter 5). Solar radiation

increases at Ny-Ålesund at the beginning of February, peaking in June at approx-

imately 600 W m−2. Temperatures start to rise above 0◦C in late April and early

May. It is at this point in late May when snow albedo starts to rapidly decrease

from its winter reflectivity of ∼80% (Winther et al., 1999). It is the minimum

daily temperature that holds the greatest control on meltwater production during

the early season, rather than the mean. This is because ME can be both posit-

ive and negative, dependent on early season temperatures (Hock, 2003). Typical

precipitation in Svalbard, between September and May, is 400 mm; this mainly

falls as snow (Førland et al., 1997). Snow depth is at its annual maximum during

April, 0.8 – 1.0 m in 1999 and 2000, and rapidly melts during the latter part of

May and early June, until there is none left by late June (Boike et al., 2003).

Small plume size, typically <10 km2, has been detected between 1st – 18th June,

supporting the notion that this is predominantly snow melt, with limited supply.

Snow has an approximate density of 350 kg m−3, whilst ice has a much greater

density of 850 kg m−3 (Shumskiy, 1960). Prior to melting, the high albedo of snow

enables it to act as an insulator of the glacier ice below (Boike et al., 2003). Once

removed, the lower albedo of glacier ice makes it more susceptible to melt, whilst

the higher density of ice means that there is more volume available.

During the middle of the ablation season, 19th June – 17th August, the in-

creased availability and variability of meltwater production is emphasised by lar-

ger plume areas, which range from 10 – 56 km2. Temperatures are constantly
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above 0◦C, but radiation starts to decline from its peak in July (Boike et al.,

2003). During this time, there is a stronger correlation between plume area and

atmospheric temperature, than in the early season, indicating that meltwater pro-

duction is more responsive to changes in temperature (Chapter 5). This has an

impact on glacier albedo, which changes both spatially and temporally during an

ablation season, dictating the amount of energy the glacier absorbs (Hock, 2005).

Albedo decreases throughout the season as the area of exposed bare ice increases,

which can be determined visually by oblique photography (Huss et al., 2013), and

MODIS imagery (Dumont et al., 2012). Decreased albedo causes Kronebreen and

Kongsvegen to absorb more energy, driving increased surface melt, which leads to

the larger sediment plumes, which have been detected in Kongsfjorden. Larger

sediment plumes reflect the increase in surface melt production, as per previous

glacial sediment plume studies (Chu et al., 2009; McGrath et al., 2010; Chu et al.,

2012; Hudson et al., 2014).

The end of the melt season, 18th August – 30th September, exhibits plume sizes

<20 km2, but they are much more variable in size than during the early season. By

this point, temperatures can start to dip below 0 ◦C and radiative forcing declines,

as the polar night set in at the end of September (Boike et al., 2003). This causes

the mean maximum temperature to hold greatest control on plume formation,

the reverse of the early season. The snow line will be at its highest elevation of

the season, leaving the greatest area of bare ice exposed. Plume area detected in

September exhibited the highest correlation with both temperature and runoff, of

the season. As such, the variability in the latter part of the season comes from

temperature conditions, which control whether supraglacial melt takes place. This

will be limited during periods when temperatures are below 0 ◦C, allowing freezing

to occur.

Over the 12 year study period, 33% of mean annual plume extent can be

attributed to the PDD of the corresponding year, as determined by interannual

analysis (Chapter 5). There was no significant trend of increasing mean annual

plume extent during the study period. This relationship with mean annual plume

extent and PDD has also been observed in Greenland (Chu et al., 2009). However,

it also indicates that temperate alone is not the only factor which controls plume

size. Although the climate of Svalbard has been relatively stable over the last

∼30 years (Lang et al., 2015), the glaciers on the west coast have been in retreat

(Kohler et al., 2007). The extreme melt event of Greenland in the summer of 2010

has been attributed to above average temperatures, which led to increased surface

ablation which reduced the albedo over much of the ice surface (As et al., 2012).

With increasing temperatures forecast for the duration of this century (IPCC,

2013), Svalbard’s glaciers will likely decrease in size, following trends presented
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by Nuth et al. (2010), discharging more meltwater to the ocean. There has been

no significant influence of either the NAO or AO on plume extent. These are

interdecadal trends, and therefore unlikely to be detectable in a 12 year study.

However, the NAO/AO is forecast to become persistently positive this century

(Serreze et al., 1997). Shifts in the location of the Icelandic low can have large

scale impacts upon Kongsfjorden, making it susceptible in synoptic scale changes

in climate (Cottier et al., 2007).

Being able to detect the meltwater through sediment plume detection, provides

a method of remotely monitoring meltwater discharge, at both intraseasonal and

interannual time scales. Variability of meltwater discharge from the grounding

line of Kronebreen can greatly enhance the ice-ocean heat transfer (Jenkins, 2011;

Kimura et al., 2014), which leads to differing rates of submarine melt. This ex-

emplifies the key role that atmospheric temperature has on the production of

supraglacial melt, and the effect it has on albedo.

Submarine melt

Meltwater produced by submarine melt processes is an order of magnitude smaller

than supraglacial meltwater production (Chapter 3). However, understanding the

processes attributed to submarine melt is important for assessing what changes

could occur in the future. Increased submarine melt of Greenland’s tidewater

glaciers has been attributed to the influence of warmer AW entering the fjords

(Straneo et al., 2012). Given the strong influence the WSC holds on determining

the ocean temperatures in Kongsfjorden (Cottier et al., 2007), warming of north-

ward flowing AW has the potential to affect Svalbard’s marine termini (Pavlov

et al., 2013). As Motyka et al. (2003) detailed, it is not only the effect of warm

ocean waters melting tidewater glacier termini that contributes to submarine melt

rates, but the entrainment of warm, ambient water, with the rising buoyant plume

which drives melt. Convective melt, driven by rising buoyant plumes, is another

driver of ice melt at marine terminating termini (Jenkins, 2011; Kimura et al.,

2014; Slater et al., 2015).

Emerging from Kronebreen’s grounding line is one dominant buoyancy driven

plume, as determined by outflow velocities and remote sensing of plume area.

This SgFW is produced supraglacially and routed through the glacier to subglacial

conduits. This meltwater exits Kronebreen as a submarine jet, forming a buoyant

vertical plume which spreads horizontally across the fjord surface. Modelling

studies indicate that the buoyancy flux of the plume is the most important for

driving the lateral spread of the plume, because momentum from the jet is soon

lost (Salcedo-Castro et al., 2011). The buoyant plume rises vertically from the
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grounding line, remaining connected with the ice face, regardless of the velocity

(Salcedo-Castro et al., 2011). Earlier observational studies, proposed that under

low velocity conditions plumes would remain connected to the ice face (Syvitski,

1989), but that high velocity conditions would cause the plume to detach and be

pushed down fjord, emerging at the surface (Syvitski, 1989; Cowan and Powell,

1990).

The buoyancy driving force for the plume comes from the SgFW, since the

proportion of GiFW is small. GiFW is predominantly found where the plume is

located, indicative of convection driven melt, rather than heat driven (Jenkins,

2011). In the region of plume upwelling, convection drives ice melt whilst the

ambient ocean temperature plays a negligible role. However, the proportion of

the ice face not affected by convective melt will be more prone to changes in

ambient water temperature (Jenkins, 2011). This indicates that the southern

extent of Kronebreen, which receives a stronger inflow of AW than the northern

extent, could be more prone to changing AW temperatures. Therefore, monitoring

the inflow at the mouth of Kongsfjorden would further illuminate the circulation

within the fjord (Cottier et al., 2007). A mooring would be ideal, which presents

changes in water column properties for prolonged periods of time (Figure 2.5).

However, to obtain the transport of water, a mooring array would be required.

The melt rate to form GiFW is related to the freshwater flux; the melt rate is

dependant on the cube root of the freshwater flux, in which doubling the melt rate

will produce an order of magnitude increase in the flux (Jenkins, 2011). Such an

increase in SgFW will lead to an increase in GiFW, because the plume will have

greater acceleration, therefore increasing the transfer of heat by turbulent mixing

at the ice - ocean boundary (Kimura et al., 2014). At present, convective driven

melt at Kronebreen forms a small proportion of the freshwater flux to Kronebreen,

but under scenarios with larger GiFW inputs it has the potential to substantially

increase. Increases in surface melt with drive a positive feedback, resulting in

greater submarine melt.

As well as the volume of freshwater, the number of submarine outlets also

affects the rate of submarine melt. Convective driven melt of the ice face is

less with one plume than several plumes along the ice front (Slater et al., 2015).

Therefore, it is anticipated that the melt emerging from multiple plumes would

create greater frontal melt than the one which is currently present at Kronebreen.

If englacial conduits were to move, creating more than one submarine outlet, an

increase in submarine melt would be expected (Slater et al., 2015). It is possible

to determine the locations of submarine meltwater delivery by detection of TSS,

which highlights another value of this remote sensing method.
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7.2.2 Meltwater storage and drainage

Storage of meltwater in glacier systems varies temporally and spatially, modulating

the amount discharged from the glacier. Meltwater can be stored supraglacially,

englacially and subglacially, with intr-aseasonal and interannual variability, (Chu,

2014). Retention of meltwater in the glacial hydrologic system remains at the

centre of current research (Rennermalm et al., 2013), since it is partly responsible

for the discrepancies in sea level rise predictions (Harper et al., 2012). The lagged

relationship that both runoff and atmospheric temperature have with plume area,

provides a novel insight to the intraseasonal and interannual storage of meltwater

and drainage development in the Kronebreen-Kongsvegen system.

The restricted size of sediment plumes during the early season (1st - 18th June),

has been attributed to the limited runoff supply, due to melting snow rather

than ice (Boike et al., 2003). Snow is much less dense that ice, therefore less

meltwater is produced, attributing to small, constrained plume sizes (Shumskiy,

1960). In addition, energy availability to drive melt is also limited. During this

period, it was found that the maximum atmospheric temperature holds greatest

control over plume formation, since temperatures can still return to <0 ◦C. Surface

albedo is high early in the summer owing to perennial snow cover, meaning that

upward shortwave radiation is high. Incoming shortwave radiation must be able

to provide enough energy to instigate melting, which supports the findings that

its the maximum temperatures early in the season, that are most important for

the onset of melt (Broeke et al., 2008).

The largest variability in plume size (10 – 58 km2) was found during the peak

of the ablation season, from 19th June - 17th August. From 18th August - 30th

September plume area was generally <20 km2. Net radiation drives surface melt

in the ablation zone, leading to higher production during the peak of the melt

season (Broeke et al., 2008). Melt at higher elevations, in the percolation zone, is

driven by both temperature, and the decreasing albedo of the glacier surface as

the melt season progresses (As et al., 2012). Melt is enhanced with the increasing

exposure of bare ice. Lower elevation melt production is driven by temperature

alone (As et al., 2012). During September, plume formation was most respons-

ive to minimum temperatures; as atmospheric cooling takes place, the minimum

temperature now needs to be >0 ◦C, the reverse of June. This supports the

temperature driven melt regime (As et al., 2012). These results affirm that the

intraseasonal and interannual hydrologic response of sediment plumes to supragla-

cial melt can be observed at the tidewater glacier Kronebreen, as has been found

in proglacial rivers (Chu et al., 2009; McGrath et al., 2010).

Seasonal storage of meltwater within the Kronebreen - Kongsvegen glacier sys-
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tem is notable in this study from the lag time between plume formation with both

runoff and atmospheric temperature. This supports the idea of englacial storage

(Humphrey et al., 2012), which prevents rapid discharge to the fjord. Hydrolo-

gical connections need to be established over time, presenting a seasonal signature

in meltwater discharge, as discussed by Irvine-Fynn et al. (2006). During June

and July sediment plumes form 7 – 9 days after the most influential atmospheric

temperature, which is within the time frame of 1 month proposed by Fountain

and Walder (1998). This is the first study to have identified meltwater retention,

as detected by sediment plumes. Plume studies in Greenland revealed rapid link-

age between supraglacial and subglacial hydrology (Chu et al., 2009). However,

the growing body of literature supporting englacial storage of meltwater retention

(Humphrey et al., 2012; Rennermalm et al., 2013), supports the idea that there is

a delay in discharge, which varies during a season. Aerial photographs illustrate

supraglacial melt storage is present in ponds, as well as in crevasses. Recent re-

search has revealed that the upper extent of Kronebreen has PFAs (Christianson

et al., 2015), further supporting the idea of meltwater storage.

Supraglacial melt driven by atmospheric temperature will percolate through

the snow pack, where if temperatures permit, it becomes refrozen. This forms

layers of superimposed ice, which can be within or at the base of the snow pack

(Müller and Keeler, 1969; Wakahama et al., 1976). The melt and refreeze process

of firn is important for the intraseasonal storage of meltwater, and modulating its

release as runoff (Fountain and Walder, 1998). Firn becomes ice through meta-

morphic processes which close the void spaces, increasing its density. Meltwater

can become trapped within a matrix of refrozen vertical flow and superimposed

ice, providing storage (Humphrey et al., 2012). The Holtedalfonna ice field, which

drains into Kronebreen, has a notable PFA, in which the upper∼10 m of firn is dry,

whilst saturated firn is present from ∼10 – 35 m depth (Christianson et al., 2015).

Meltwater percolates through the firn, when temperature conditions allow, until

it reaches glacial ice, where it is driven to the firn line by gravity (Christianson

et al., 2015).

The presence of superimposed ice can lead to supraglacial water storage in

the form of melt ponds early in the melt season (Hodgkins, 1997). Superimposed

ice, which covers approximately 35% of the surface of Kongsvegen (Obleitner and

Lehning, 2004), restricts meltwater flow through the snow pack, causing it to ac-

cumulate in surface ponds (Hodgkins, 2001). The presence of meltwater ponds re-

duces the surface albedo, enhancing radiative-driven melt, forming a positive feed-

back mechanism, driving further melt (Lüthje et al., 2005). Supraglacial streams

provide a surface transport mechanism for meltwater; these form by thermal and

radiative processes excavating incisions in the surface of the glacier (McGrath
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et al., 2011). These streams transport volumes of water down glacier to the cre-

vassed zone. The crevasses provide a subglacial reservoir for meltwater (Skidmore

and Sharp, 1999), which dampens the diurnal cycle of meltwater delivery (Mc-

Grath et al., 2011). Crevasses are found from Kronebreen’s terminus to 12 km back

(Sund et al., 2011); approximately one fifth of Kronebreen’s surface is crevassed,

forming a large reservoir for meltwater storage at lower elevations. Supraglacial

lake drainage events were identifiable in sediment plume formation in Kangerlus-

suaq fjord (Chu et al., 2009), but this process is not applicable to Kronebreen.

The fast velocity of Kronebreen likely inhibits the formation of moulins, therefore

making crevasse drainage the primary linkage between supraglacial and subglacial

environments, which supports Benn et al. (2009).

Plume formation only lagged atmospheric temperature and runoff by 1 – 2 days

in August and September. This reveals the strong seasonal signature of meltwater

retention, agreeing with Irvine-Fynn et al. (2006), who details greater meltwater

storage earlier in the melt season, than at the end. Meltwater travels through

polythermal glaciers via a network of englacial fractures, which form an internal

hydrological system, providing connections between the surface and the bed of the

glacier (Fountain et al., 2005). However, englacial crevassing has been suggested as

a primary mechanism for firn aquifer drainage (Fountain et al., 2005). Surface melt

that forms ponds in crevasses (Figure 2.13), increases the hydraulic pressure (Boon

and Sharp, 2003; Bingham et al., 2005), which drives surface meltwater through

the englacial fractures (Fountain et al., 2005). This can lead to hydro-fracturing,

in which high rates of summer meltwater can cause crevasses to propagate to the

glacier bed, intersecting with subglacial drainage channels (Benn et al., 2009).

Meltwater transported through crevasses, rather than moulins, means that dis-

charge is slower and steady, rather than rapid evacuation (McGrath et al., 2011).

This discharge route also dampens the diurnal cycle of meltwater input (McGrath

et al., 2011). However, this engagement between the surface and subglacial chan-

nels allows for rapid delivery of meltwater, which is supported by the short lag

times between runoff and temperature, with plume formation. It is likely that a

move from a distributed drainage system to a channelised system would account

for the increased englacial drainage efficiency, as has been documented at Haut

Glacier d’Arolla, Switzerland (Nienow et al., 1998). Smaller channels and cavities

will become dormant, with larger channels growing into a simpler, more efficient

network (Hock and Hooke, 1993; Walder, 2010). Cavities in the upper extent of

the glacier are particularly prone to becoming isolated (Fountain et al., 2005).

The large variability in plume size from July onwards is likely to be due to

the establishment of the englacial drainage system. As the season progresses,

an efficient connection between the supraglacial and subglacial has been formed
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(McGrath et al., 2011). Meltwater discharge can respond rapidly to changes in

surface meltwater production (Broeke et al., 2008), which is reflected in the size

of the sediment plumes at the head of Kongsfjorden. Plume size at the end of

the season remains larger than at the beginning of the season, probably because

the glacier is already saturated with meltwater. The pressure within the glacial

system has been formed, so discharge will continue until freezing takes place (Boon

and Sharp, 2003).

Feasibility for observations during the winter months means that the hydro-

logical system remains poorly understood (Chu, 2014). This study has provided

further insights to winter processes regarding melt discharge and storage. Colder

winter temperatures have been found to play a significant role in increasing melt-

water availability for the following summer (Chapter 5). In addition, the mean

temperature of DJFM plays a significant role in sediment availability. Extremely

cold winters cause a deep freeze, in which meltwater is not able to slowly discharge.

As a result, increased meltwater delivery occurred in the following ablation season,

because winter storage was released. This lies in agreement with (Hodson et al.,

2005a), who suggest that when there is greater storage of meltwater over winter,

its easier to re-energise the hydrological system the following season. The winter

freeze also traps basal sediment, which is flushed from the subglacial conduits

when melt discharge is instigated at the onset of the melt season. Other studies

have revealed stored winter water exhibits geochemical properties which are res-

ultant of storage in an anoxic, geochemically reactive sedimentary environment

(Hodson et al., 2005b). If temperatures are mild enough, the pressure remaining

in the system can enable melt to slowly discharge (Irvine-Fynn et al., 2011).

7.2.3 Delivery of meltwater and total suspended solids to

Kongsfjorden

A net influx of meltwater is delivered at the head of Kongsfjorden, from the ice-

ocean interface, as determined by geostrophic current velocities on the two days

of CTD profiling (Chapter 3). The fastest outflow from Kronebreen was observed

in the SW, north of the bathymetric high. This corroborates with Trusel et al.

(2010), who documented that the location of submarine discharge moved north-

wards from its historical, more southerly location, which was occupied between

1987 – 2001. Entering at the grounding line, the plume is buoyancy driven by

the flux of supraglacially produced meltwater, causing it to rise vertically up the

ice face and raise the sea surface at the ice-ocean interface (Salcedo-Castro et al.,

2011). It then spreads horizontally across the fjord surface, transporting sediment,

which provides a proxy for meltwater discharge (Chu et al., 2009; 2012; Tedstone
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and Arnold, 2012).

During the peak of the ablation season in 2012, meltwater delivery ranged

between 3.6 – 4.4 x 106 m3 d−1, which equates to an annual influx of 4.4 – 5.3 x

108 m3 yr−1. Determined by geostrophic velocity, these measurements are an order

of magnitude smaller than annual runoff for 2012, (Aas, K 2015, pers. comm., 30

Jan). The primary flow away from the ice face is at the surface, driving the

two layer fjord circulation (Svendsen et al., 2002; Cottier et al., 2010). Plume

velocity close to the location of discharge is dependent on the volume of discharge

Syvitski et al. (1990), whereas further down the fjord the estuarine circulation

of the fjord will dominate (Inall and Gillibrand, 2010). The surface water of

the plume contains 30% SgFW, which has been discharged from the submarine

conduit, entraining ambient AW at it rises to the fjord surface. The fraction of

GiFW is an order of magnitude smaller, likely due to the velocity of discharge.

The calculated discharge rates of 41 – 50 m3 s−1, are much smaller than the 100

m3 s−1, which is proposed by Bendtsen et al. (2015) to be the point at which direct

melting of the ice face becomes an important producer of freshwater.

The maps of TSS coverage in the fjord, as well as in situ measurements indicate

that TSS declines with distance away from the ice face. This corroborates with

modelling studies, which found that progressive dilution by entrainment causes the

spatial decline in surface TSS (Salcedo-Castro et al., 2013). This study revealed

that fine sediment can be transported at least 13.5 km away from the ice face,

with TSS decreasing with distance, lying in agreement with Zajaczkowski (2008).

However, a fining of particles with increased distance has not been observed in

TSS in Kongsfjorden, contrasting measurements from the inlet of Signehamma,

Svalbard (Dowdeswell and Cromack, 1991) and Howe Sound, Canada (Syvitski

and Murray, 1981). Sedimentation can be affected by the landward estuarine

currents in the lower part of the water column, which transports sediment back

towards the glacier (Salcedo-Castro et al., 2013). Estuarine circulation can affect

the sediment, but the sediment can also impact estuarine circulation. Increased

sediment loading in the buoyant plume can reduce the buoyancy of the plume

(Salcedo-Castro et al., 2013). Early season flushing of sediment is present in

Kongsfjorden, with increased TSSmean in early June. Early season meltwater

discharge was characterised by high TSS, and plume areas of <10 km2, indicative

of sediment flushing from the subglacial channels. This is the first study to have

identified this in a tidewater glacier system, but it has been previously identified

in discharge from high Arctic glaciers (Hodgkins et al., 2003; Hodson et al., 1996).

Reduced buoyancy will decrease the plume velocity, which in turn will decrease

the production of GiFW at the ice face (Kimura et al., 2014; Bendtsen et al.,

2015).
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Once in the fjord, the buoyant sediment plumes are affected by both wind and

the tidal state, as revealed in Chapter 3. Despite this, the relationship with plume

area and runoff remains clear, enabling plume area to be used as a proxy for melt-

water discharge. A large tidal range enabled SW to extend further down fjord,

with depth decreasing with distance. Such tidal straining is a common observa-

tion in estuarine environments, in which tides influence stratification (Simpson

et al., 1990). Under a smaller tidal amplitude, the SW was disrupted, and no

definitive trend was observed with distance. As well as stratification, tides employ

control on surface TSS. This study reveals that under ebb tide conditions, TSS

is less than during flood tides. This has been attributed to the reduced turbidity

during ebb tides, which allows for sedimentation to take place (Szczucinski and

Zajaczkowski, 2012). Previously, factors controlling sedimentation have been de-

termined by sediment traps and cores (e.g. Dowdeswell and Cromack, 1991; Trusel

et al., 2010). Quantifying TSS by calibrating in situ measurements with MODIS

satellite imagery is a new and novel method, which can be used to address not

only meltwater delivery, but factors affecting the distribution of TSS.

Wind is another factor which affects the size of buoyant sediment plumes;

faster winds extend plumes further downstream (Whitney and Garvine, 2005).

As such, it is important to consider the impacts of winds and tides as external

forcing factors, which can alter the distribution of TSS. However, in this case, the

seasonal and interannual patterns were clear, despite the plumes being affected by

external forcing when in Kongsfjorden. This provides reassurance to the methods

used, and prompts that sediment plumes provide a mean of remotely detecting

not only meltwater delivery, but TSS distribution fjord environments.

Owing to light availability for MODIS satellite images, this study is con-

strained to the summer months. As such, processes which determine the timing

and magnitude of meltwater delivery during the winter requires further investiga-

tion. Winter stratification of the water column will be different (Mortensen et al.,

2013), in addition to the geochemical properties of the meltwater (Hodson et al.,

2005b).

7.3 Wider implications of this research

Remote detection of sediment plumes at low latitudes, in coastal and estuarine

environments, is well developed. For decades, researchers have been able to de-

duce rates of river discharge, identify pollutants, and ascertain the impacts of

discharge variability on the environment. It remains a largely unexplored tool in

the Polar Regions, despite having large potential (Chu, 2014). There remains a

±20% uncertainty in sea level rise contributions from glaciers and ice caps, (ex-
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cluding the Greenland and Antarctic peripheral glacier and ice caps; Jacob et al.,

2012). Therefore, understanding the linkages between surface melt and glacial

discharge will make a valuable scientific contribution, leading to better accuracies

when forecasting sea level rise (Church et al., 2013). The combination of in situ

and remotely sensed data used in this study has provided insights to glacier hy-

drology, with benefits for a range of research. It has also provided a foundation for

future remote sensing studies, particularly regarding tidewater glaciers, to further

explore the potential of such work.

The Arctic is undergoing a period of amplified warming; land surface temper-

ature has increased by approximately 2 ◦C since the 1960s, with positive anom-

alies persisting in the 21st century (Overalnd et al., 2014). The declining albedo,

among other things, has forged several positive feedback mechanisms leading to

accelerated change to the atmosphere, cryosphere, land and oceans in the Arctic

(Hodgkins, 2014). The increased thinning of Svalbard’s glaciers is producing larger

meltwater contributions (Kohler et al., 2007). Increased meltwater contributions

can lead to Arctic freshening, prompting changes in both local (Shadwick et al.,

2013) and large scale circulation (Morison et al., 2012). In situ measurements are

needed to determine the water masses, but changes to meltwater delivery can be

tracked by sediment plume development in both land (Chu et al., 2009; 2012) and

marine terminating glaciers. By using this methodology, meltwater delivery can be

monitored, and reveal interannual variability, which is advantageous when annual

measurements are not able to be taken. Monitoring annual discharge plume by

remote sensing also provides an indicator as to when direct glacier melt might be

increasing. Larger rates of SgFW discharge are more likely to produce GiFW, for-

ging a positive feedback in freshwater contributions (Slater et al., 2015; Bendtsen

et al., 2015). Enhanced plume discharge increases entrainment, thus heat transfer

at the ice-ocean interface also increases (Kimura et al., 2014).

A sea ice free Arctic is predicted by 2040 – 2060 (Overland and Wang, 2013),

which will cause many more tidewater glaciers to have an open connection with

the ocean. Almost 40% of the total global glacerised area is formed of tidewater

glaciers (Arendt et al., 2012), which are currently thinning at a faster rate than

their terrestrial counterparts in Alaska and Greenland (Arendt et al., 2006; Sole

et al., 2008). However this has not yet been observable in the Canadian Arctic

Archipelago (Gardner et al., 2011). Northerly flows of water entering the Arctic,

in both the Atlantic (Pavlov et al., 2013) and Pacific (Woodgate et al., 2012)

sectors, is warming. This increases the need for methods to remotely monitor how

these glaciers are effected by both ocean and atmosphere, and to quantify how

much freshwater they are contributing to the marine system.

A wider implication of increased freshening is ocean acidification. Fjords can
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change from a CO2 source to a CO2 sink, driving another positive feedback leading

to increased ocean acidification, which will change the living conditions of marine

calcifying organisms (Fransson et al., 2015). This has been found in regions of

the Antarctic, with glacier calving enhancing CO2 saturation (Shadwick et al.,

2013). Freshening of the surface waters also leads to higher zooplankton mortality

rates, closest to the point of meltwater discharge, despite increased nutrient input;

this already been observed in Kongsfjorden (Cui et al., 2006), and in other gla-

cial environments (Weslawski and Legezynska, 1998). The transport of sediment

via turbid meltwater discharge, reduces the extent of the euphotic zone (Svendsen

et al., 2002), reducing rates of photosynthesis and primary production, determined

by lower chlorophyll-a concentrations (Piwosz et al., 2009). Transport of sediment

to fjord environments imposes light limitation, which restricts phytoplankton pro-

duction (Cui et al., 2006). Meltwater discharge also changes the temperature of

the water column, which can have impacts for the marine biodiversity (Svendsen

et al., 2002; Slemmons et al., 2013). Variability of glacier hydrology has direct

impacts on the marine food web, which has implications from planktonic species

to mammals (Lydersen et al., 2014). As glaciers continue to melt and retreat,

contributing large amount of freshwater to the marine environment, the effects of

interseasonal and interannual variability in hydrology require better understanding

(Sommaruga, 2015).

Transportation of sediment, by glacial discharge, leads to higher sedimentation

rates closest to the glacier, which decrease with distance. If sedimentation rates

are high, there is potential that the deposits could act as a stabilising mechanism,

reducing iceberg calving (Meier and Post, 1987), and influencing rates of retreat or

advance (Alley, 1991; Powell and Alley, 1997; Alley et al., 2007; Dowdeswell et al.,

2015). The current rate of infill of the Kongsfjorden basin implies that a grounding

line fan could emerge from the fjord within two decades, if Kronebreen’s terminus

remains stable (Trusel et al., 2010). This has previously taken place for Kongs-

vegen, which was once the dominant sediment source for Kongsfjorden. Sediment

plume studies at Austfonna, Svalbard, revealed that if the glacier terminus is un-

stable, with fast retreat, the ice-proximal sediment deposits cannot form enough of

a stabilising fan; tidewater glacier termini need to be stable for periods of years to

decades (Dowdeswell et al., 2015). Therefore, monitoring of both the terminus and

sediment contributions to glacial fjords is required to ascertain if a pronounced

grounding line fan will form, facilitating the re-advance of the terminus in the

future (Trusel et al., 2010).
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7.4 Recommendations for future work

This thesis has opened several avenues for further investigation. It has built upon

previous studies using remote sensing of sediment plumes (Chu et al., 2009; Mc-

Grath et al., 2010; Chu et al., 2012; Tedstone and Arnold, 2012; Hudson et al.,

2014), by extending into a tidewater glacier system, quantifying TSS and has the

added value of being accompanied by oceanographic measurements. Recommend-

ations for future work is divided into: improvements to the methods for future

work, extending the reach of this study and suggestions for new research direc-

tions as a result of this work.

This study would benefit from measurements of velocity, using an ADCP. This

would directly measure the transport velocities flowing towards and away from the

ice front, enabling the volume of meltwater to be more accurately quantified. A

repeat survey adopting this method would enable the results to be compared with

those calculated by geostrophic velocity in this study. This has been undertaken

at Pine Island Glacier, Antarctica, with the results revealing the temporal change

in circulation between the two field studies (Jacobs et al., 2011). This study was

unable to determine the seasonal variability of meltwater production and sub-

sequent fjord stratification, because hydrographic sections were only sampled in

July. Sampling several times a year, in both winter and summer, gives greater

insights to meltwater discharge and the impacts on fjord circulation (Mortensen

et al., 2013; 2014). Melt water fractions were derived from temperature and sa-

linity, which has been used in numerous other studies. However, the addition

of oxygen strengthen this method (Jenkins and Jacobs, 2008) and would provide

greater insights to the origin of melt (Meredith et al., 2008; Brown et al., 2014).

Regarding in situ TSS sampling, this could be extended further down the fjord to

obtain lower TSS values. Connected with this, obtaining high TSS samples from

close to the ice front would mean the extremely high TSS values are included by

the sediment plume model, thus not underestimating plume area. These however,

are constrained by working at a safe distance from the calving regions of the gla-

cier. Plume detection could be achieved at a finer resolution by using images from

Landsat. This could be used to validate the MODIS images, when image pairs

are available, to discern if MODIS over, or under estimates plume size, due to the

resolution. The use of Landsat alone would not allow for the seasonal evolution

of melt to be documented, because of the 16 day return interval on images, and

cloud cover, which restricts image retrieval.

The sediment plume maps hold a wealth on information which could be used

to extend the breadth of this study further. Mapping the seasonal change in the

ice front, rather than just calculating the area of ice coverage, would present the
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degradation of the front with time, both during a season, and year to year. The

resolution will not be a great as what can be achieved with Landsat (Figure 1.7),

but it would ensure an annual estimate of frontal change. The plumes themselves

provide key information for sedimentary processes. To take sections along the

plume, would provide both temporal and spatial change in the concentration of

TSS as in Zajaczkowski (2008). This would offer greater temporal and spatial

details, than in situ sampling alone. This would allow for further work to invest-

igate the removal rate of sediment, and better assess factors controlling sediment

fluxes in glacial fjords (Szczucinski and Zajaczkowski, 2012). It also enables a

tool to remotely monitor TSS contributions to Kongsfjorden, together with ice

front positions, which can provide insights to the stability of the marine terminus,

and whether advance may occur in the future (Dowdeswell et al., 2015). For the

marine biology community, the TSS maps could be utilised to better understand

the spatial impacts of sediment plumes on zooplankton diversity. Arendt et al.

(2011) detailed that zooplankton communities are less diverse when TSS is >0.05

g l−1, which is the lower boundary of what has been classified as “plume” in this

study. As such, there is potential that the plume outlines could be associated with

marine productivity.

Sustained hydrographic observations would make a valuable addition to know-

ledge, allowing the assessment of the oceanic heat flux entering Kongsfjorden. If

these were located at the mouth of Kongsfjorden, and at the head in the ice prox-

imal zone, the transport of both AW and SW through the fjord could be identified.

Kongsfjorden has in the past been largely affected by changes in coastal waters

during the winter (Cottier et al., 2007), which strengthens the need for year round

monitoring to determine changes in circulation (Mortensen et al., 2013). This

oceanographic work could be further developed by linking to the biogeochemical

cycles. In situ measurements of nutrients and chlorophyll-a offers a mechanism

to trace meltwater pathways (Torres-Valdés et al., 2013) and link with ecosys-

tem development (Hodson et al., 2005b). In situ chlorophyll-a measurements

can be used to calibrate remotely sensed images, which has been achieved in

Kongsfjorden using Landsat 8 (Kim et al., 2014). This produces a simultaneous

comparison between primary productivity and TSS. However, monitoring seasonal

phytoplankton plume development with Landsat is less purposeful, because of the

temporal sparsity of suitable images.

To further address the timing regarding the temporary storage of meltwater,

a multispectral analysis of glacier facies could be implemented. Pope and Rees

(2014) found that Landsat 8 is suitable for classifying glacier surfaces, whilst the

250 m resolution of MODIS was too coarse. Application of photogrammetry from

UAV would give high resolution images, enabling identification of meltponds on
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Kronebreen’s surface. However, this would require a full summer field season to

be able to determine seasonal change in supraglacial meltwater storage. Summer

surveys UAV surveys have been undertaken, focussed on elevation change (Solbø

and Storvold, 2013). Terrestrial time lapse photography has been documented

as being an effective method to determine the relationship between supraglacial

meltwater ponds and glacier velocity (Danielson and Sharp, 2013).

7.5 Concluding remarks

The research presented here has provided insights into meltwater production, stor-

age and delivery, for the fast flowing tidewater glacier, Kronebreen, at seasonal and

interannual time scales. It has revealed the complex interactions between climate,

glacier hydrology, fjord circulation and glacimarine sedimentary processes. The

multi-method approach has surmounted the temporal and spatial caveats associ-

ated with in situ observations alone. As a result, a detailed dataset of meltwater

and TSS discharge is presented for a 12 year period. This is the first study to

have applied this remote sensing method to a tidewater glacier, with a source to

sea approach, resolving seasonal meltwater transport and revealing the effects of

winter meltwater storage. The methods employed for this study in Kongsfjorden

can be applied to similar glacial fjord environments (e.g. Greenland), providing

knowledge regarding the glacial hydrological system, and the impacts placed upon

Arctic fjords. Such expansions would enhance quantifications of glacial meltwater

discharge, allowing for more accurate SLR estimates to be formulated.

This works highlights the value gained by exploring ways in which sediment

plumes can be used, which extends beyond quantifying meltwater and sediment

delivery. The plume detection model, together with a local automatic weather sta-

tion, forms a cost and time effective way to monitor meltwater production, storage

and discharge of both meltwater and sediment from tidewater glaciers to glacial

fjords, over sustained periods of time to capture intraseasonal and interannual

variability.
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Arendt, K., Dutz, J., Jónasdóttir, S. H., Jung-Madsen, S., Mortensen, J., Møller,

E., Nielsen, T., 2011. Effects of suspended sediments on copepods feeding in a

glacial influenced sub-Arctic fjord. Journal of Plankton Research 33 (10), 1526–

1537.

As, D. v., Hubbard, A., Hasholt, B., Mikkelsen, A., Van den Broeke, M., Fausto,

R., 2012. Large surface meltwater discharge from the Kangerlussuaq sector of

the Greenland ice sheet during the record-warm year 2010 explained by detailed

energy balance observations. The Cryosphere 6 (1), 199–209.



REFERENCES 178

Azetsu-Scott, K., Tan, F., 1997. Oxygen isotope studies from iceland to an East

Greenland fjord: Behaviour of glacial meltwater plume. Marine Chemistry

56 (3), 239–251.

Bamber, J., 1989. Ice/bed interface and englacial properties of Svalbard ice masses

deduced from airborne radio echo-sounding data. Journal of Glaciology 35 (119),

30–37.

Barry, R., 2006. The status of research on glaciers and global glacier recession: a

review. Progress in Physical Geography 30 (3), 285–306.

Bartholomaus, T., Larsen, C., ONeel, S., 2013. Does calving matter? Evidence

for significant submarine melt. Earth and Planetary Science Letters 380, 21–30.

Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M., Sole, A., 2010.

Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet

glacier. Nature Geoscience 3 (6), 408–411.

Bartholomew, I., Nienow, P., Sole, A., Mair, D., Cowton, T., King, M., 2012.

Short-term variability in Greenland Ice Sheet motion forced by time-varying

meltwater drainage: Implications for the relationship between subglacial drain-

age system behavior and ice velocity. Journal of Geophysical Research: Earth

Surface (2003–2012) 117 (F3).

Baumberger, A., 2007. Massebalanse p̊a Kronebreen/Holtedahlfonna, Svalbard-

kontrollerende faktorer: En studie av romlige og temporale variasjoner i masse-

balanse og de mekanismer som styrer endringene. Sammenlikning med Kongs-

vegen. Masters thesis, University of Oslo.

Bendtsen, J., Mortensen, J., Lennert, K., Rysgaard, S., 2015. Heat sources for

glacial ice melt in a West Greenland tidewater outlet glacier fjord: The role of

subglacial freshwater discharge. Geophysical Research Letters 42 (10).

Benn, D., Gulley, J., Luckman, A., Adamek, A., Glowacki, P., 2009. Englacial

drainage systems formed by hydrologically driven crevasse propagation. Journal

of Glaciology 55 (191), 513–523.

Benn, D., Warren, C., Mottram, R., 2007. Calving processes and the dynamics of

calving glaciers. Earth-Science Reviews 82 (3), 143–179.

Bennett, M., Hambrey, M., Huddart, D., Glasser, N., Crawford, K., 1999. The

landform and sediment assemblage produced by a tidewater glacier surge in

Kongsfjorden, Svalbard. Quaternary Science Reviews 18 (10), 1213–1246.



REFERENCES 179

Benson, C., 1961. Stratigraphic studies in the snow and firn of the Greenland ice

sheet. Folia Geographica Danica 9, 13 – 37.

Beszczynska-Moller, A., Walczowski, W., Weslawski, J., Zajaczkowski, M., 1997.

Estimation of glacial meltwater discharge into Svalbard coastal waters. Ocean-

ologia 39, 289–298.

Bhatia, M., Das, S., Kujawinski, E., Henderson, P., Burke, A., Charette, M.,

2011. Seasonal evolution of water contributions to discharge from a Greenland

outlet glacier: insight from a new isotope-mixing model. Journal of Glaciology

57 (205), 929–941.

Bhatia, M., Kujawinski, E., Das, S., Breier, C., Henderson, P., Charette, M., 2013.

Greenland meltwater as a significant and potentially bioavailable source of iron

to the ocean. Nature Geoscience 6 (4), 274–278.

Bingham, R., Nienow, P., Sharp, M., Boon, S., 2005. Subglacial drainage processes

at a high Arctic polythermal valley glacier. Journal of Glaciology 51 (172), 15–

24.

Björnsson, H., Gjessing, Y., Hamran, S.-E., Hagen, J., Liestøl, O., Pálsson, F.,

Erlingsson, B., 1996. The thermal regime of sub-polar glaciers mapped by multi-

frequency radio-echo sounding. Journal of Glaciology 42 (140), 23–32.

B laszczyk, M., Jania, J., Hagen, J., 2009. Tidewater glaciers of Svalbard: Recent

changes and estimates of calving fluxes. Polish Polar Research 30 (2), 85–142.

Bluhm, B., Iken, K., Laudien, J., Lippert, H., 2001. German activity in cold water

scientific diving.

Boike, J., Roth, K., Ippisch, O., 2003. Seasonal snow cover on frozen ground:

Energy balance calculations of a permafrost site near Ny-̊alesund, spitsbergen.

Journal of geophysical research-atmospheres, 108 (D2) 8163 4, 1–11.

Boon, S., Sharp, M., 2003. The role of hydrologically-driven ice fracture in drainage

system evolution on an Arctic glacier. Geophysical Research Letters 30 (18).

Box, J., Cappelen, J., Chen, C., Decker, D., Fettweis, X., Mote, T., Tedesco, M.,

van de Wal, R., Wahr, J., 2012. Greenland [in Arctic report card 2012]http:

//www.arctic.noaa.gov/report12/greenland_ice_sheet.html.

Box, J., Cappelen, J., Decker, D., Fettweis, X., Mote, T., Tedesco, M., van de

Wal, R., 2010. Greenland [in Arctic report card 2010]http://www.arctic.

noaa.gov/reportcard/.

http://www.arctic.noaa.gov/report12/greenland_ice_sheet.html
http://www.arctic.noaa.gov/report12/greenland_ice_sheet.html
http://www.arctic.noaa.gov/reportcard/
http://www.arctic.noaa.gov/reportcard/


REFERENCES 180

Braithwaite, R., 2002. Glacier mass balance: the first 50 years of international

monitoring. Progress in Physical Geography 26 (1), 76–95.
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M., Rasch, M., 1999a. Changes in Arctic marine production. Tech. rep., Danish

Polar Center.

Rysgaard, S., Nielsen, T., Hansen, B., 1999b. Seasonal variation in nutrients, pela-

gic primary production and grazing in a high-Arctic coastal marine ecosystem,

Young Sound, Northeast Greenland. Marine ecology. Progress series 179, 13–25.

Salcedo-Castro, J., Bourgault, D., Bentley, S., 2013. Non-hydrostatic modeling of

cohesive sediment transport associated with a subglacial buoyant jet in glacial

fjords: A process-oriented approach. Ocean Modelling 63, 30–39.

Salcedo-Castro, J., Bourgault, D., de Young, B., 2011. Circulation induced by

subglacial discharge in glacial fjords: Results from idealized numerical simula-

tions. Continental Shelf Research 31 (13), 1396–1406.

Saloranta, T., Haugan, P., 2004. Northward cooling and freshening of the warm

core of the West Spitsbergen Current. Polar Research 23 (1), 79–88.

Saloranta, T., Svendsen, H., 2001. Across the Arctic front west of Spitsbergen:

high-resolution CTD sections from 1998-2000. Polar Research 20 (2), 177–184.
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