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Abstract

There has been a significant number of security concerns in recent times; as a

result, security cameras have been installed to monitor activities and to prevent

crimes in most public places.These analysis are done either through video analytic

or forensic analysis operations on human observations. To this end, within the re-

search context of this thesis, a proactive machine vision based military recognition

system has been developed to help monitor activities in the military environment.

The proposed object detection, recognition and re-identification systems have been

presented in this thesis.

A novel technique for military personnel recognition is presented in this thesis.

Initially the detected camouflaged personnel are segmented using a grabcut seg-

mentation algorithm. Since in general a camouflaged personnel’s uniform appears

to be similar both at the top and the bottom of the body, an image patch is initially

extracted from the segmented foreground image and used as the region of interest.

Subsequently the colour and texture features are extracted from each patch and

used for classification. A second approach for personnel recognition is proposed

through the recognition of the badge on the cap of a military person. A feature

matching metric based on the extracted Speed Up Robust Features (SURF) from

the badge on a personnel’s cap enabled the recognition of the personnel’s arm of

service.

A state-of-the-art technique for recognising vehicle types irrespective of their

view angle is also presented in this thesis. Vehicles are initially detected and seg-

mented using a Gaussian Mixture Model (GMM) based foreground/background

segmentation algorithm. A Canny Edge Detection (CED) stage, followed by mor-

phological operations are used as pre-processing stage to help enhance foreground

vehicular object detection and segmentation. Subsequently, Region, Histogram

Oriented Gradient (HOG) and Local Binary Pattern (LBP) features are extracted

from the refined foreground vehicle object and used as features for vehicle type

recognition. Two different datasets with variant views of front/rear and angle are

used and combined for testing the proposed technique.

For night-time video analytics and forensics, the thesis presents a novel ap-

proach to pedestrian detection and vehicle type recognition. A novel feature ac-
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quisition technique named, CENTROG, is proposed for pedestrian detection and

vehicle type recognition in this thesis. Thermal images containing pedestrians

and vehicular objects are used to analyse the performance of the proposed al-

gorithms. The video is initially segmented using a GMM based foreground object

segmentation algorithm. A CED based pre-processing step is used to enhance

segmentation accuracy prior using Census Transforms for initial feature extrac-

tion. HOG features are then extracted from the Census transformed images and

used for detection and recognition respectively of human and vehicular objects in

thermal images.

Finally a novel technique for people re-identification is proposed in this thesis

based on using low-level colour features and mid-level attributes. The low-level col-

our histogram bin values were normalised to 0 and 1. A publicly available dataset

(VIPeR) and a self constructed dataset have been used in the experiments con-

ducted with 7 clothing attributes and low-level colour histogram features. These 7

attributes are detected using features extracted from 5 different regions of a detec-

ted human object using an SVM classifier. The low-level colour features were ex-

tracted from the regions of a detected human object. These 5 regions are obtained

by human object segmentation and subsequent body part sub-division. People are

re-identified by computing the Euclidean distance between a probe and the gal-

lery image sets. The experiments conducted using SVM classifier and Euclidean

distance has proven that the proposed techniques attained all of the aforemen-

tioned goals. The colour and texture features proposed for camouflage military

personnel recognition surpasses the state-of-the-art methods. Similarly, experi-

ments prove that combining features performed best when recognising vehicles in

different views subsequent to initial training based on multi-views. In the same

vein, the proposed CENTROG technique performed better than the state-of-the-

art CENTRIST technique for both pedestrian detection and vehicle type recog-

nition at night-time using thermal images. Finally, we show that the proposed

7 mid-level attributes and the low-level features results in improved performance

accuracy for people re-identification.
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Chapter 1

Introduction

The integration of effective image capture, enhancement and processing techniques

with computer vision and machine intelligence technologies have recently revolu-

tionised intelligent systems that are able to mimic human behaviour, instinct

and decision making power. Such integrated intelligent technologies have recently

found their way through to many application domains ranging from smart phones,

consumer electronic devices, electronic toys, automated vehicles, security and sur-

veillance systems, entertainment and games industry, to name a few. In general,

any application that can be served by the combined power and capability of the

human eyes and brain, can be served with such technologies. The continuing chal-

lenge is to try and push the boundaries towards human like capabilities, meeting

realistic sensitivity, fidelity and accuracy constraints.

Rightly serving the above advance of technology, many fundamental areas of di-

gital imaging, computer vision and machine learning algorithms have shown rapid

advances. Digital cameras now have the capability of recording in High Defini-

tion (HD) and High Dynamic Range (HDR) format, mimicking the Human Visual

System (HVS), close to perfection. With the cost of cameras with such capability

rapidly decreasing, it has become a de-facto assumption that the captured images

are of perfect quality, noise free, super resolution and of perfect clarity, for ex-

ample. In an intelligent imaging system once a perfect quality image is captured,

it needs to be processed to enhance quality further and to remove any artefact

that would be created by the captured devices. Image processing algorithms such

as colour correction/constancy, distortion removal, white balancing, sharpening,

de-blurring, filtering and morphological algorithms are able to further improve

the quality of images, removing any artefacts that may be introduced due to any

limitation of the image capture system. In the next stage, when the images are

processed, one needs computer vision algorithms such as motion detection, fore-

ground object extraction, object detection, anti-shake algorithms etc., to detect

objects of importance in the scene. Once such objects are detected, recognising

1
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their type and analysing their behaviour requires machine learning algorithms

with embedded learning capability and built-in intelligence. Although significant

advances have been made in computer vision and machine learning algorithms,

either the limitations of the algorithms themselves or the complicated nature of

their application within practical systems, still leave many areas within the above

technology areas, open for further research and development. This thesis focuses

in general on pushing the boundaries in object detection, object recognition, track-

ing and re-identification technologies. A number of original contributions in these

areas have been made that are presented in this thesis. A particular emphasis is

also given to night-time video analysis.

In general an image processing pipeline that is used to recognise an object (see

figure 1.1), goes through three main functional stages after image capture and pre-

processing, namely, feature extraction, feature selection and object classification.

Prior to recognising the object, one needs to detect the object. However prior to

detecting the object one has to capture features of the object that can be compared

against the features of a known object of a particular type. Object recognition on

the other hand is a step beyond object detection within a hierarchy of an object

recognition task. It involved using a learning algorithm that can be taught to

recognise objects based on a training phase during which known features of each

identifiable object is given with an indication of their origin. In literature more

specific contributions to the open research problems in the above pipeline’s sub

tasks, have been made.

Figure 1.1: Object recognition paradigm

In an attempt to solve the human detection and recognition problem, [102] pro-

posed using Contour Cues, Cascade Classifier (C4) and the CENsus TRansformed

hISTogram (CENTRIST) descriptor for human object detection. In [68], to recog-

nise people and estimate their pose, four different feature based techniques were

proposed. In [58] colour and texture features were used to train an incremental

SVM classifier, for on-line human recognition. Similarly, to recognise vehicle types,

[45] investigated the use of a Hybrid Dynamic Bayesian Network (HDBN) classi-

fier. In this approach different features extracted from the tail light and vehicle

dimensions with respect to the license plate, were used for vehicle classification.

In analysing thermal images, Riaz et.al. in [77], detected pedestrians by using

CENTRIST features. Beyond object detection and recognition, algorithms have

been proposed for object re-identification. Object re-identification leads to the
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identification of different instances of the same object that may be visible within

multiple camera views. For example, in [39], re-identification was achieved by a

combination of hue, saturation histogram and Saliency Maps features extracted

from selected body parts of a human.

A detailed literature review carried out as a part of the research presented

in this thesis, presented in chapter-2, revealed that there are still research gaps

and potential areas for improvement within a selected set of practical application

domains of interest, namely; recognition of military personnel, people detection &

vehicle type recognition at both day and night times and people re-identification.

Identifying the need to close the existing research gaps in the above application

domains, a number of novel algorithms and approaches are proposed in this thesis.

They are presented in chapters 4-7.

1.1 Research Motivation

With military organisation facing different security threats on a daily basis; such as

personnel disguise, unauthorised restricted information access and leakage, iden-

tity stealing and/or impersonation to mention a few, the threat to global security

is on the increase. While several efforts have been made to resist with these

challenges, crime perpetrators continuously seek new avenues to compromise the

efforts of the military, in particular through insider attacks, so as to cause addi-

tional challenges from within the organisations. Newer and stronger attacks are

being launched to render the security of the military and police forces at large,

useless. Automated video surveillance systems that are able to identify and re-

cognise military/security personnel, within the perimeters of a secured premises,

can largely help in the timely identification on insider attacks and strengths.

A number of other application domains associated with general public spaces

provides motivation for further research into the application of computer vision

technologies for video surveillance. One such application domain is where access to

vehicles needs to be monitored automatically to manage and control their move-

ment to and from secure sites, in motorways and across international borders.

Similarly, the increase of road traffic over the years has caused serious concerns

about the level of pollution caused by vehicular traffic. In such situations the

automated computer aided detection of vehicles, recognising their type and their

make and model, provides motivation for further research.

An additional common concern within that above application domain is that

techniques that are designed for day video analysis typically fail when applied

in their original form on night-time footage. This challenge provide motivation

for further research in developing algorithms that are either adoptable to lighting
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changes or new algorithms that works efficiently on night vision videos.

A further application that has recently attracted much attention is people re-

identification in surveillance videos. The idea is to try and recognise a person in

video footage captured at different times, locations and perhaps by different cam-

eras. In attempts to apply computer vision and pattern recognition algorithms to

resolve this practical problem, challenges in illumination changes, view depend-

ency, object scaling, different camera characteristic, noise levels etc have to be

met. Algorithms and systems that meet some or all of the above challenges can

contribute effectively towards an ultimate solution.

Traditionally in many of the above application domain direct human observa-

tion or CCTV operator based surveillance have been used to monitor and analyse

scenes/content observed. Advancements in camera technology supported by the

significant improvements in computer vision, pattern recognition and machine

learning algorithms have enabled some or most of the above manual operations to

be automated exceeding accuracy levels obtainable by human observers. Further

the recent advancement in computing technologies such as multi-core technologies,

distributed computing clusters and cloud technology have significantly increased

the available computing resources, allowing the scaling of such applications to

levels that it could even replace teams of human observers working real-time over

months.

All of the above factors have provided the motivation behind the research

conducted and presented in this thesis.

1.2 Research Aim and Objectives

It is important for the military organisations to be proactive by setting up ef-

fective military surveillance systems that will help improve the security within

their premises/environments. Such systems for example should monitor people

and vehicle movement in and out of military camps so as to keep a count of the

number of people and vehicles within an environment. Consequently, when less

or more than expected number of people and vehicles are present, relevant mil-

itary authorities can be alerted of unusual activities, so that a check within the

environment can be done for malicious and suspicious elements, which in turn will

lead to an early warning signal. Further the detailed analysis of the appearance

and movement patterns of people and vehicles will provide useful information to

further strengthen security levels. The ability to do the analysis above regardless

of whether its day-time or night-time will further improve the level of security

provided by such systems.

Given the above observations the aim of the research presented in this thesis is
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to develop robust and efficient techniques that can detect people in both day-time

and night-time, recognise and re-identify people in day-time, detect and recognise

vehicle types in both day and night-times.

The above aim will be met by following the objectives listed below:

• Carry out a detailed literature review in the areas of people/vehicle detection

and recognition, military personnel recognition and people re-identification

including analysis of night-time CCTV footage.

• Design, and implement a robust and efficient algorithm for military personnel

recognition;

• Design, and implement a scalable and robust algorithm for recognition of

vehicles in day-time and night-time videos;

• Design, and implement an efficient algorithm for pedestrian detection at

night-time;

• Design, and implement an efficient algorithm for people re-identification.

• Evaluate the performance of all algorithms implemented using standard and

specially captured databases and suggest possible future enhancements and

improvements.

1.3 Scholarly Contributions

The research conducted within the context of this thesis has led to the following

original contributions:

1. A novel technique to classify the arm of service of a camouflaged military

personnel using a combination of Gray Level Co-Occurrence Matrix (GLCM)

texture and Hue colour histogram bin features. This research demonstrated

the fact that texture alone cannot discriminate between the various camou-

flage classes, without the integration of colour.

2. A novel technique to classify the arm of service of a uniformed military per-

sonnel, using the classification of their cap type, based on feature recognition

of badges, using Speed Up Robust Features (SURF) feature matching.

3. A robust and efficient technique to recognise vehicle type (e.g. car, van, bus

etc) irrespective of their angle of view. The use of a combination of Re-

gion, Histogram Oriented Gradient (HOG) and Local Binary Pattern (LBP)

histogram features that are scale and rotation invariant, was proposed.
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4. A novel algorithm that detects pedestrians and recognises vehicle types at

night-time using CENTROG features, was proposed.

5. An efficient and simple algorithm to re-identify people in non-overlapping

cameras, even in the presence of occlusion was proposed based on a normal-

ised 3D 8 bin colour histogram and seven described attributes of a person.

Apart from the above novel algorithms and approaches, the research conducted

within the context of this thesis also contributed to the general subject area of

object detection, analysis and recognition by developing transferable and re-usable

algorithms in other application domains, outside those considered for the purpose

of the research presented.

The above original contributions have resulted in the following conference and

journal paper contributions.

Refereed Journal Publication

1. Martins E. Irhebhude and E.A. Edirisinghe, ”Personnel recognition in the

military using multiple features”, in: International Journal of Computer Vis-

ion and Signal Processing (IJCVSP), September 2015 5(1), pp. 23-30.

Refereed Conference Proceeding

2. Martins E., Irhebhude, and Eran A. Edirisinghe. ”Military personnel recog-

nition system using texture, colour, and SURF features.” In SPIE Defense+

Security, pp. 90900Q-90900Q. International Society for Optics and Photon-

ics, 2014.

3. Martins E., Irhebhude, Mohammad Athar Ali, and Eran A. Edirisinghe.

”Pedestrian detection and vehicle type recognition using CENTROG fea-

tures for nighttime thermal images.” In Intelligent Computer Communica-

tion and Processing (ICCP), 2015 IEEE International Conference on, pp.

407-412. IEEE, 2015.

4. Quang A. Nguyen, Martins E., Irhebhude, Mohammad Athar Ali and E.A.

Edirisinghe, ”Vehicle Type Recognition in Video using Multiple-Feature Com-

binations”, accepted for presentation at the IS & T International Symposium

on Electronic Imaging 2016 in Video Surveillance and Transportation Ima-

ging Applications Conference, February 14-18 2016.
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1.4 Thesis Layout

For clarity of presentation, the thesis is structured as follows: chapter 2 focuses on

the study of literature in people detection, recognition & re-identification, vehicle

detection & type recognition, pedestrian detection & vehicle type recognition at

night-time; chapter 3 provides the theoretical and conceptual background on col-

our, texture and shape models and the popular Support Vector Machine (SVM)

classifier. The chapter also present feature selection techniques and experimental

performance models; chapter 4 presents a novel algorithm for the recognition of

arm of service of a military personnel; chapter 5 presents a novel algorithm for

vehicle type recognition; chapter 6 presents a novel approach to pedestrian detec-

tion and vehicle type recognition, in night-time thermal images; chapter 7 presents

a novel approach to people re-identification; and finally, chapter 8 concludes with

a view to further improvements of the proposed algorithms and suggestions for

future research.



Chapter 2

Literature Review

2.1 Introduction

This section defines a number of important terminology commonly used in image

processing related research which are vital to prevent reader confusion. In par-

ticular the terms computer vision, object detection, object recognition and object

re-identification are defined.

From the web definition [15]:

Computer vision is a field that includes methods for acquiring, pro-

cessing, analysing, and understanding images and, in general, high-

dimensional data from the real world in order to produce numerical or

symbolic information, e.g., in the forms of decisions.

In computer vision terminology, the term object detection generally refers to

the classification of a perceived object into any human identifiable type, for e.g.,

a car, human, animal, house, tree etc.

In contrast, in computer vision terminology, object recognition refers to the

classification of a perceived object into a particular group of the human identifiable

types, for e.g., a car, human, animal, house, tree etc. Object recognition requires

a more detailed analysis of features for the purpose of classification into one of

the sub groups of identifiable objects. Importantly, object recognition algorithms

needs to be robust to changing situations like different camera viewpoints and ori-

entations, varying light conditions, pose variability and clothing appearance [15],

which means that the computer should recognise or identify objects irrespective

of illumination, background, and pose of the object relative to the camera.

Following the above definitions of object detection and object recognition the

following statements can be made. Object detection refers to identifying that a

perceived object belongs to either of a number of human recognisable objects.

8
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In contrast object recognition refers to the identification of the perceived object

as belonging to a particular group of human recognisable objects, for e.g. a car.

Following the same terminology detection of a human refers to detecting that it’s

any human. Recognising a human means that the human is a particular known

individual. In the case of a vehicle one could detect a vehicle (i.e. it belongs to

any type of vehicle, car, bus, van etc.), recognise that it’s a bus (i.e. a particular

type only), or recognise that its BMW, 3 series manufactured between 2000-2002

(i.e. a particular model of a particular type, i.e. a car).

Extending object detection/recognition towards more specific requirements,

object re-identification aims to correctly identify all instances belonging to

the same visual object at any time or location [18]; which means choosing the

most probable object among sets of possible matches of consecutive observations

of the same target at different camera views [5].

To detect, recognise and re-identify an object, the appearance of such object

needs to be studied as this is vital for the classification of the object into any of the

identifiable types, in line with the above definitions. Appearance-based techniques

rely on visual information [58] (i.e. visible parts) for object classification. Simil-

arly, appearance-based methods rely on visual or perceptual principles to extract

features for object classification [23]. Colour, shape and texture are common ways

in which an appearance can be studied. Texture contains structural arrangement

of a surface and its relation with the environments’ information [38]. Colour on

the other hand, is the perceptual property of red, green, blue etc perceived by

humans/machines. Similarly, shape means the form an object assume. Hence,

tools that help capture colour, shape and texture information will be the back-

ground techniques that will be exploited in this research for the purpose of object

detection, recognition and re-identification.

In the following sections a comprehensive review of reported algorithms in

literature for object detection, object recognition, vehicle type recognition, and

people re-identification for images captured both during day and night times are

reviewed.

2.2 Object Detection and People Identification

Many algorithms have been proposed to detect objects and identify the detec-

ted objects as humans using attributes of a human appearance. The appearance

of a person is the visible foreground image after background subtraction [58].

Appearance-based methods rely on clothes, visual parts or perceptual principles

(colour, texture and shapes) to extract features for object recognition [58, 23].

Therefore, colour, texture and shapes information can be considered as features
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for object classification. The so-called Gray Level Co-occurrence Matrix (GLCM),

which is described as a descriptive texture feature can be used to provide a feature

descriptor for classification and is popularly used in literature due to its popularity

and simplicity [38, 85, 86, 14, 90]. In general colour, texture and shape features can

be used as descriptors for appearance based object recognition [1, 84, 59]. In [38],

a novel procedure for extracting textural features from image blocks was proposed

for image classification. Gray-tone spatial-dependence probability distribution

matrices or GLCM was computed on a given image to form a matrix from which

statistical features were extracted and used for classification. Four directions were

exploited: 00, 450, 900, 1350 using linear discriminant function, Min-Max decision

rule and piecewise linear discriminant function classifiers for the respective data-

sets. Similarly, the effectiveness of using GLCM features was studied in detail in

[90]. In this work the use of quantization, displacement and orientation parameter

values in the discrimination of sea ice synthetic aperture radar (SAR) imagery

datasets was investigated. In the evaluation conducted using a Bayesian classifier,

experiments with three different feature sets were conducted; 10 textural features

extracted using the following matrices, Mean Displacement & Mean Orientation

(MDMO) matrix, χ2-optimal Displacement & Mean Orientation (ODMO) mat-

rix and χ2-optimal Displacement & χ2-optimal Orientation (ODOO) matrix. In

[14] the effect of quantization levels and classification accuracy was studied. Five

quantization levels of 8, 16, 32, 64, and 256 at 0, 45, 90, 135 orientations within a

distance of 1 was studied to extract 8 shift invariant texture features. Correlation

analysis was used as a feature selector to improve classification using a Fisher

Linear Discriminant (FLD) classifier.

In military applications camouflages are generally useful to confuse an enemy’s

surveillance system. In [85] using a dendrogram as a classifier and mean of the

GLCMs the feature, camouflaged objects were recognised in a defence environ-

ment. The use of quantised colour histogram and fuzzy c-means with morpholo-

gical operations was proposed in [8] for camouflage pattern recognition. The use of

spectral texture was proposed in [91] as a discriminating feature for differentiating

between green colour camouflage and background that consists of green vegeta-

tion. Further the work presented in [54] proposed the use of weighted structural

similarity (WSSIM) and nature image features for the evaluation of camouflage

texture designs, with evaluation done by the perceived differences between camou-

flage textures and background image features. Four GLCM texture features fused

with a non-singleton dimension was used to recognised a camouflaged objects in

[86]. In [59] edge features and differential image detection techniques was used to

recognise targets.

Partial Least Squares was used to help reduce dimensions and improve recog-
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nition that was based on colour, texture and edge information [84] for human

recognition. In [66], the use of semantic and fourier Local Binary Pattern (LBP)

features was proposed for human object detection. Experiments were performed to

compare LBPs performance with Histogram Oriented Gradient (HOG) and covari-

ance tensor feature (COV) descriptors; results show that LBP outperforms both of

the alternative feature techniques. In [82], use of two different sets of edge-texture

features, i.e. Discriminative Robust LBP (DRLBP) and Discriminative Robust

Ternary Patterns (DRLTP), was proposed for object recognition. Investigations

show the limitations of LBP and its variants; hence, the relative advantage of

using the new feature sets of DRLBP and DRLTP. In solving the partial occlusion

problem, [100] proposed the combination of HOG and LBP feature sets for human

object detection. In [102], contour cues, cascade classifier (C4) was proposed for

human object detection using CENsus TRansformed hISTogram (CENTRIST)

descriptor. Authors claimed that C4 is extremely fast for human detection com-

pared to HOG and LBP. In order to eliminate the false alarm associated with

human recognition [60] proposed a background modeling algorithm using fussy

logic for accurate foreground segmentation. In [79] the role of face familiarity and

motion was examined. It was found that both roles promote recognition in diffi-

cult situations. In the paper [68], 4 different feature based techniques were used

to recognise and estimate the pose of full body of a person. Similarly, [58] used

the incremental SVM as a classifier on colour and thirteen Haralick texture fea-

tures from RGB image of segmented body parts (head, top, bottom) of foreground

image for an on-line human recognition system.

The use of Gray-Level Dependency Matrix (GLDM) within a texture-based ob-

ject detection technique was proposed in [29] to detect and localise a crowd. The

crowd was categorised as follows: 0-1 person (no crowd), 2-4 persons (low), 5-9

persons (med) and 10 and more people (high). In [108], a novel technique based

on a combination of High Frequency Optical Flow (HFOF), Multi-scale Histo-

gram Optical Flow (MHOF) and Dynamic Textures (DT) was proposed to detect

anomalies in a crowded environment. HFOF captures dynamics of motion beha-

viour, MHOF captures motion direction and energy information and DT captures

dynamic appearance properties. These features help to effectively classify beha-

vioural activities in a crowd image using Multiple Kernel Learning (MKL) as a

classification tool. The use of Extended Local Ternary Patterns (ELTP) and Uni-

form ELTP (UELTP) was proposed by [53] for noise resistivity and classification

respectively. The use of a spectral clustering technique [53] and the observation

of patterns, helped reduce dimensions in the feature. Experiments conducted in

[53] using the Support Vector Machine (SVM) as the classifier include features;

LPB, Uniform LBP (ULBP), ELTP with 64 dimension, ELTP with 128 dimension,
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UELTP with 58 dimension, UELTP with 128 dimension. In [21], c-means clus-

tering on a contourlet sub-bands was used to extract cluster features which were

combined with variance and norm-2 energy features and used for supervised clas-

sification. Relative-L1 distance metric is computed on each sub-band to eliminate

discrepancy in feature vectors with k-nearest neighbour classifier. The standard

feature vector was rearranged using random assignment to form a matrix; re-

computed using LBP, local ternary pattern (LTP) and wavelet coiflets to form a

descriptor used for classification [69]. Using SVM classifier on 50 different random

assignments, results show that the proposed descriptors outperformed the regu-

lar vector descriptor and that LTP descriptor can be combined with the regular

descriptor to improve overall performance of the classifier. In [44] a technique that

allows to search volumes of video data to find candidate person using attributes

information was proposed.

In [52] kernel-Principal Component Analysis (kPCA) was used as a dimen-

sionality and noise reduction tool on sets of colour and texture features. The

features were extracted using a colour histogram and ULBP for colour and tex-

ture, respectively. In separate experiments carried out, results show that the fused

and kPCA techniques performed better with the later recording less computation

time. However, in [4] PCA helped reduce dimensionality and improve recogni-

tion in all cases of experiment. In [1], colour and texture features were captured

in the wavelet domain on the YCbCr colour space and using histogram of both

features to capture the signature; a k-means algorithm was used to improve the

recognition and reduce dimensionality. In [84] colour, texture and edge informa-

tion were used to capture the signature of the appearance for object recognition.

Recognising the enormity of the dimension, the author chose Partial Least Square

(PLS) technique as against the popular PCA technique as classification results

from both techniques show better performance when using PLS. Further PLS is

a class aware dimensionality reduction tool i.e. it provides information regarding

the importance of features as a function of location. In [36] two feature selec-

tion techniques were compared to determine which one improves machine learning

and computation time. From the two approaches considered, namely the wrapper

approach and filter approaches, the author recommended a filter based approach,

i.e., Correlation based Feature Selection (CFS); results shows that CFS performed

better in comparison with the wrapper method.

The literature reviewed above show that significant amount of work has been

conducted in object detection and human object identification. Our detailed re-

view of literature showed that no work exist on detection and recognition of mil-

itary personnel which is a key application focus of the research presented within

this thesis. We will use the appearance of a camouflage military person to recog-
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nise the arm of service of the personnel. Apart from recognising a service of a

military personnel using appearance based features, we will also exploit the use of

badge of the military cap to recognise the service of a personnel. This means we

will develop a system which can be integrated into a face recognition system that

can be used to recognise a particular personnel and determine the arm of service

to which the military personnel belongs. This system can do military personnel

arm of service persons count, which will help check if a particular personnel is

present or absent within a particular arm; hence, check if more service personnel

are present at a time in an environment or see if a service personnel is on AWOL.

2.3 Vehicle Detection and Recognition

Existing literature in vehicle detection, counting and type recognition proposes a

number of different approaches. The authors of [51] showed that even in a conges-

ted road traffic condition an AND-OR graph (AOG) using bottom-up inference

can be used to represent and detect vehicle objects based on both front and rear

views. In a similar environment, [65] proposed the use of strong shadows as a

feature to detect the presence of vehicles in a congested environment. In [104],

vehicles were partitioned into three parts; road, head and body, using a tripwire

technique. Subsequently Haar wavelet features extracted from each part with

PCA performed on features calculated to form 3 category PCA-subspaces. Fur-

ther, Multiple Discriminate Analysis (MDA) is performed on each PCA-subspace

to extract features, which are subsequently trained to identify vehicles using the

Hidden Markov Model-Expectation Maximisation (HMMEM) algorithm. In an-

other experiment, a camera calibration tool was used on detected and track vehicle

objects so as to extract object parameters, which were then used for the classific-

ation of the vehicle into classes of cars and non-cars [34]. In [16] vehicle objects

were detected and counted using a frame differencing technique with morpholo-

gical operators: dilation and erosion. In [98], using maximum likelihood Bayes

decision rule classifier on normalised local features (roof, two tail-lights and head-

lights of rear and front view) vehicle or non-vehicle objects were detected. Further

to handle the unevenness in the road surfaces, the author added simulated images

and applied PCA on each sub-region to reduce feature sets, computation time

and hence speed-up the processing cycle. In another classification task in [75],

segmentation through image differencing was used to obtain foreground object,

thereafter, sobel edge were computed on each foreground image. Furthermore,

the foreground image size feature was extracted with two levels dilation and fill

morphological operations; and classified into small, medium and large categor-

ies. In [70], an alternative to expensive Electronic Toll Collection (ETC) full-scale
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multi-lane free flow traffic system was proposed; the technique used Scale-Invariant

Feature Transform (SIFT), the Canny edge detector, k-means clustering with Eu-

clidean matching distance metric for inter and intra class vehicle classification.

In [72], a technique for traffic estimation and vehicle classification using region

features with a neural network (NN) classifier was proposed. A technique for

rear view based vehicle classification was proposed in [45] with investigation of

Hybrid Dynamic Bayesian Network (HDBN) in vehicle classification. Tail light

and vehicle dimensions with respect to the dimensions of the license plate were

the feature sets used for classification. The width, distance from license plate

and the angle between the tail light and the license plates formed the eleven fea-

tures used for classification. The experiment was performed in two phases; known

vs unknown classes and four known classes using HDBN. HDBN was compared

with three other classifiers. The performance evaluation result using a ROC curve

shows that HDBN is the best classifier for rear view vehicle classification.

In observing the vehicle detection and recognition techniques proposed in sum-

marised paragraph above, it can be concluded that vehicles are recognised and

classified at different angles under different conditions using different feature sets,

classification techniques and hence algorithms. In other words a change of camera

angle may require a change of features that need to be extracted for classification.

The classification technique that performs best will also change. Further, most

techniques have been tested either on rear or front views only. In practice once a

camera is installed in an outdoor environment with the hope of capturing video

footage for vehicle type recognition, it is likely that due to wind or neglect in

installation, the camera could turn in due course. If the vehicle type recognition

system was dependent significantly on the angle of view, the system would thus

fail to operate accurately. Further at the point of installation practical problems

may be such that the camera position and orientation will have to be changed

as compared to the fixed angular view that it has originally being designed for.

This will either require the system to be re-redesigned using different feature sets,

classifiers and algorithms or the system having to go through a camera calibration

processes, which is typically non-trivial and time consuming. It would be ideal if

at the new orientation the captured content could still be used for classification.

Given the above observations we propose a novel algorithm for vehicle type

recognition and subsequent counting, which is independent of the camera view

angle. We adopt a strategy that uses multiple features that are scale and rota-

tion invariant, leading to the accurate classification of vehicles independent of the

camera angle.
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2.4 Pedestrian Detection and Vehicle Type

Recognition in Night-time

This section reviews a number of reported techniques that can detect pedestrians

and recognize vehicle types within night-time thermal images. In a situation where

colour and texture information are missing in a dataset, shape information can

help in recognising objects. Therefore, for night-time datasets, several techniques

are reviewed to understand how pedestrians can be detected and vehicles can be

recognised at night-time. Benezeth et.al. [7] proposed the use of a Gaussian-based

segmentation method with Haar-like features using a cascade of boosted classifiers

to detect humans in a room. Two contributions were made by Yun et. al. in [106];

segmentation based on histogram cluster analysis using k-means and a feature

extraction technique based on histogram of maximal oriented energy map using

log-Gabor wavelets for selecting orientation. An evaluation of the efficiency of a

night-time mid-range infrared sensor and its application in human detection and

recognition was done by Bourlai et. al. in [10]. The local oriented shape context

feature was used by Li et.al. in [50] to detect pedestrians in a night-time scenario

by adding orientation information to shape context feature, thereby capturing

appearance and shape information. In [57], Liu et. al. proposed a technique

based on entropy weighted HOG as a feature detector and SVM as a classifier.

The authors sped up the classification phase by reducing the number of support

vectors and filtered false alarms by introducing a validation phase that examined

the gray-level intensity of pedestrians heads. For thermal images, Chang et. al.

[13] used HOG features and Adaboost to detect and classify pedestrians. Their

feature extraction method included image segmentation and Region-of-Interest

(ROI) generation. In [77], Riaz et.al. detected pedestrians within thermal images

by using CENTRIST features and compared the performance of their technique

with the popular HOG based techniques. Both above-reported techniques proved

that CENTRIST-based approaches exhibit better detection accuracy with lesser

computation time when compared to other methods. In [55], a feature combination

of HOG and contour was proposed for pedestrian detection. The authors also

proposed a foreground segmentation technique for smart region detection. In [99],

Wang et.al. proposed a shape context descriptor (SCD) based on the Adaboost

cascade classifier framework. The technique was applied to thermal images and

the results were compared with the rectangle-based detection feature. The authors

claimed that their technique outperformed the rectangle-based features in terms

of detection accuracy but suffers in terms of higher computation intensity.

A look at the state-of-the-art reveals a lack of techniques to recognize vehicle

types in night-time thermal image sets, though quite a few techniques have been
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reported for visible images. For instance in [43], Iwasaki et. al. reported a vehicle

detection mechanism within thermal images using the well known Viola Jones

detector. The technique involved detecting the thermal energy reflection area of

tires as a feature.

2.5 People Re-identification

As mentioned before, the goal of object re-identification is to correctly identify

all instances of the same visual object at any time or location [18]; meaning,

choosing the most probable object among sets of possible matches of consecut-

ive observations of the same target at different camera views [5]. In [23] three

features were accumulated; entire colour content, colour regions, texture char-

acteristics of recurrent region to form Symmetry Driven Accumulation of Local

Features (SDALF) and used on three datasets to give a novel state-of-art per-

formance in object recognition and re-identification. In [81], authors combined

[23]’s SDALF technique with mid-level semantic feature attribute to identify can-

didate objects. Further the importance of attributes and how relevant attribute

features can be selected for object re-identification task was also demonstrated.

Random forest technique was used by [56] to determine the importance of indi-

vidual feature attributes under different circumstances of various roles for object

classification. A framework, Multiple Component Matching (MCM) was proposed

in [83] for object re-identification. MCM was explained as an ordered set of se-

quences containing several components with simulated parts generated to cater for

illumination variation. Authors however established that simulated components

increased the computation complexity. To correct the computation complexity

issue authors vectorised and clustered the MCM to form a prototype. The match-

ing were done in the dissimilarity space with text information used as a query

for image retrieval. Mean Riemannian Covariance Grid (MRCG) in [3], modeled

clothing information to describe the human object for recognition. Covariance

matrix was used to describe images of fixed sizes with equal grid structures and

averaged to get the Mean Riemannian Covariance (MRC) that describes the ob-

ject for re-identification. In [2] HOG features were trained to detect body parts;

top, torso, leg, left arm, right arm. Covariance’s of colour gradient and orienta-

tion was computed on each region including the full body to get discriminative

signature used for people re-identification. In [22] the standard LBP was modi-

fied by setting dimensionality at 16 to form the Simplified LBP (SLBP) to detect

people’s head and face. In order to re-identify people; authors used [3]’s MRCG

technique to model the detected head and face so as to capture a discriminative

signature. An optimised Speed Up Robust Feature (SURF) named Camellia Key
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Point was used in [37] to describe grayscale (to eliminate variation in colours)

candidate objects and used for re-identification on CAVIAR datasets with the

threshold set at 15. In [18] colour samples were modelled using fuzzy K-Nearest

Neighbour (KNN) algorithm to segment candidate objects into eleven culture col-

ours. Probability Colour Histogram (PCH) plot were used to identify an object

at a set threshold after comparing two targets in intra and inter camera scenarios.

People in a crowded environment can be identified by integrating appearance fea-

tures: selective upper body patch and candidate position and direction of travel

using a landmark-based model [78]. Analysis showed that the proposed technique

performed better than the full body based integration. In [20], SURF features was

proposed for interest point extraction using Sum of Quadratic Difference (SQD) as

a point correlation tool for object identification in a distributed camera network.

In a similar scenario, [87] proposed an unsupervised iterative brightness transfer

function (BTF), a technique to handle the variability that occurs in illumina-

tion conditions. BTP helps to map brightness values between intra camera views

while cumulative BTF helps to adapt colours in inter camera views for people

re-identification. In a low quality camera network; [5] used a Colour Structure

Descriptor (CSD) by extracting dominant colours from regions of interest (shirt

and pant); derived CSD by evaluating the differences of dominant colours between

the two targets and proposed a so-called Target Colour Structure (TCS) for people

re-identification. A two feature approach was proposed in [88] for object recogni-

tion, i.e., Haar and Dominant Colour Descriptor (DCD) features. Haar features

of the foreground mask recognised an object in the first technique while DCD

works by partitioning the detected foreground object into two, then using the

dominant colours of both regions as descriptors for object recognition. In [9] two

techniques were proposed; Red Green Blue (RGB) colours were used alongside

the height feature histogram and transformed normalised RGB colours plus the

height feature histogram techniques to identify objects using histogram matching.

Instead of recognising objects using a distance measure, [12] proposed Ensemble

RankSVM for ranking image sets with the correct match having the highest rank-

ing score. A comparison between rank and distance measure techniques for object

re-identification was conducted. Ensemble RankSVM was however recommended

because of the scalability of the technique. In [46], ULBP and Hue Saturation

Value (HSV) histogram were used as features extracted from body segmented into

3 parts of a detected target to capture local texture and colour features. These

features alongside direction of view captured different identifiers for 3 views; front,

back and side that helped in person re-identification. In [103], a model which is a

function of pose was developed to capture human appearance. With the rectified

pose prior image specific person’s feature of colour and textures were extracted; re-
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identification and identification of targets became more robust to viewpoint on the

trained dataset. In [61], persons were re-identified by accumulating local weight

map histogram features from 3 areas of a segmented human body. The local

weighted histograms were trained for optimal weight map. These local weight

map histograms were integrated to form a feature vector used for identification.

In [49], the use of middle-level clothing attribute information was described to

assist in person re-identification. Re-identification performance was improved by

treating clothing attributes as real value variables. In their pre-processing steps,

a body part-based representation approach was proposed by extracting HSV col-

our histogram and HOG as features. A further contribution was the generation

of a large-scale dataset that contains more samples and camera views than the

currently available public datasets. In [39], people were re-identified by a combin-

ation of features; hue, saturation histogram and Saliency Maps from selected body

parts. In [28], a technique that identifies human action and appearance based on

colour and optical flow models was proposed. The mean features from two regions

of a detected candidate identified a person’s action and appearance. The colour

features were extracted from 8 colour spaces; R, G, B, H, S, Y, Cb, Cr chan-

nels respectively. In [93], instead of solving people identification problem using

ranking and distance measures, Takac̆ et. al. used an appearance based learning

algorithm such as SVM and the Naive Bayes classifiers to identify people. Finally,

[47] proposed a mid-level identification approach called the Optimised Attribute

Re-identification. 21 attributes were proposed and detected.



Chapter 3

Background of Study

This chapter presents the theoretical and conceptual background on which the

novel and contributory work of this thesis presented in chapters 4-7 are based.

It presents the reader to colour models, Canny edge detection, SURF features,

Census transforms, HOG features, GLCM matrix, LBP descriptor, Gaussian Mix-

ture Models (GMM) and Support Vector Machine (SVM) classifiers, Correlation

based Feature Selection (CFS) and performance analysis based on Receiver Oper-

ating Characteristics (ROC) curves.

3.1 Red Green Blue (RGB) colour model

The Red, Green and Blue (RGB) colour model represent all visible colours based

on a combination of three primary colours red, green and blue [64, 63]. When

red, green and blue colour components are combined in equal proportions of 1,

white colour is produced. Other weightings produced all other colours with equal

proportions of 0, creating the colour black (see table 3.1). An RGB colour image

of size M×N is represented as a M×N×3 array of colour pixels, with each pixel

triplet corresponding to RGB components at specific pixel location [32, 63]. An

RGB colour image can also be viewed as a stack of three gray-scale images, when

fed into a colour monitor, produces a colour image on the screen (see figure 3.1).

19
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Table 3.1: RGB values of some basic colours in [32]

Name RGB Values

Black [0 0 0]

Blue [0 0 1]

Green [0 1 0]

Cyan [0 1 1]

Red [1 0 0]

Magenta [1 0 1]

Yellow [1 1 0]

White [1 1 1]

Figure 3.1: RGB Channels Separation: c© Nevit Dilmen at Wikimedia (https:
//commons.wikimedia.org/wiki/File:RGB_channels_separation.png)

3.1.1 Selected feature descriptors from RGB colour

We will briefly describe two selected features which can be extracted from RGB

colour channels. Normalised 2D histogram and local shape features.

3.1.1.1 Normalised 2D Histogram

According to [68], two dimensional (2D) normalised color histograms can be cal-

culated as:

r = R
(R+G+B)

,

g = G
(R+G+B)

(3.1)

Normalised 2D Histogram is therefore the histogram of the r and g channels

respectively.

https://commons.wikimedia.org/wiki/File:RGB_channels_separation.png
https://commons.wikimedia.org/wiki/File:RGB_channels_separation.png
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3.1.1.2 Local shape features

According to [68], the local features of an image are obtained by convolving the

local shape patterns shown in figure 3.2. These patterns were used to extract

features for position invariant person detection.

Figure 3.2: Shape patterns in [68]

Convolution operations considered are linear and non-linear operations:

The linear operation is given by;∑
k

Vk.M
i

where M i, i = 1, 2, · · · , 25, are the patterns in figure 3.2 and Vk is a 3×3 patch

at pixel k in an image and the sum is on the image pixels.

Non-linear operation is given by;

Fi =
∑
k

C(k,i)

where

C(k,i) =

{
Vk.M

i if Vk.M
i = maxj(Vk.M

j)

0 otherwise

The local shape feature implementation uses the simple linear convolution from

the patterns 1 to 5 and the non-linear convolution from the patterns 6 to 25.
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3.1.2 Converting from RGB to other colour models

A number of other colour representation schemes exist [32], of which the HSI/HSV

(Hue, Saturation and Intensity/Value) colour scheme being the representation

scheme most widely used in image processing and manipulation.

3.1.2.1 The Hue Saturation Intensity (HSI) colour model

In [32, 94] Hue Saturation Intensity (HSI) is described as a model that helps

computers see colours in a way similar to human understanding. Hue is described

as pure colour or pigment, saturation measures rate of white light dilution on

the colour while intensity describes gray levels or brightness rates of the perceived

object. HSI is very useful for comparing two colours and changing from one colour

say cyan to another, yellow. It is also important to note that HSI is very useful

for measuring colour characteristics in objects [62].

The HSI model is specified using a three-dimensional color tree [48] (see figure

3.3). Saturation of a colour increase as a function of distance from intensity axis

[32].

Figure 3.3: The Hue Saturation Intensity (HSI) model
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Given and RGB image, HSI components can be obtained using equation 3.2.

H =

{
θ, if B ≤ G

360− θ, if B > G

with θ = cos−1
{

0.5[(R−G)+(R−B)]

[(R−G)2+(R−B)(G−B)]
1
2

}

S = 1− 3
R+G+B

[min(R,G,B)]

I = 1
3
(R +G+B)

(3.2)

where I and S are in the range of [0, 1] and H [0, 360]. In conversion from HSI

to RGB there are areas of interest depending on the values of H corresponding to

the 1200 intervals between the primaries. When H is between 00and1200 conversion

procedure is as shown in equation 3.3.

R = I
[
1 + ScosH

cos(600−H

]
,

G = 3I − (R +B),

B = I(1− S)

(3.3)

When H is between 1200and2400 conversion procedure is as shown in equation

3.4.

H = H − 1200

R = I(1− S)

G = I
[
1 + S cosH

cos(600−H)

]
B = 3I − (R +G)

(3.4)

When H is between 2400 and 3600 conversion procedure is as shown in equation

3.5.

H = H − 2400

R = 3I − (G+B)

G = I(1− S)

B = I
[
1 + S cosH

cos(600−H)

] (3.5)

Advantages of HSI colour model

The advantages of the HSI colour model over other colour models are listed

below:

• HSI components correlates better with human perception of color.

• Perfect for image processing applications.
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• The hue component can be used for segmentation process rather than the

three original components.

• Separates the saturation and intensity values from colour.

3.2 Canny Edge Detection

According to [73] an edge detector is an operator that is sensitive to grey level

change in an image. Detecting these changes in intensity can be accomplished

using first or second-order derivatives [31]. Finding edge strength and direction at

location (x, y) of an image, I, is accomplished using the gradient, denoted by ∇I;

defined by the vector [31]:

∇I ≡ grad(I) ≡

[
gx

gy

]
=
[

∂I
∂x
, ∂I
∂y

]
(3.6)

Equation 3.6 has an important geometrical property that it points in the dir-

ection of the greatest rate of change of I at location (x, y).

The direction measured with respect to the x− axis and the value of the rate

of change in the direction of the gradient vector is denoted as [31]:

M(x, y) = mag(∇I) =
√
g2x + g2y (3.7)

and

α(x, y) = tan−1
[
gy
gx

]
(3.8)

Canny defined a set of goals for an edge detector and described an optimal

method for achieving them [73]. The goals are,

• Error rate: a detector should respond to edges only and not miss any.

• Localisation: the distance between pixels found and the actual edge should

be as small as possible.

• Response: should not identify multiple edges where only one edge is present.

Canny assumed a step edge subject to white Gaussian noise [73]. The edge

detector was assumed to be a convolution filter f , which would smooth the noise

and locate the edge.

The steps to implementing a canny edge detector are [33]:

• first smooth the image to eliminate the noise;
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• find the image gradient to highlight regions with high spatial derivatives;

• algorithm track along these regions and suppress any pixel that is not at the

maximum;

• the gradient array is now further reduced by hysteresis;

• hysteresis is used to track along the remaining pixels that have not been

suppressed;

• hysteresis uses two thresholds and if the magnitude is below the first threshold,

it is set to zero (made a non-edge);

• if the magnitude is above the high threshold, it is made an edge;

• if the magnitude is between the two thresholds, it is set to zero unless there

is a path from this pixel to a pixel with a gradient above high threshold.

3.3 Gray Level Co-occurrence Matrix (GLCM)

Gray Level Co-occurrence Matrix (GLCM) is a tabulation or matrix that considers

the relationship between neighbouring pixels in an image by calculating how often

a pixel intensity value occurs to another pixel value [38]. The GLCM is a tabulation

of how often different combinations of pixel brightness values (grey levels) occur

in an image. The GLCM is a second order function which measures the angular

relationship and distance between neighbouring pixels in an image [90]. Table

3.2 specify common angles, given the distance D. GLCM probability measure as

defined by [14] is shown in equation 3.9.

Pr(x) = {Cij|(δ, θ)}; Cij =
Pij∑G
i,j=1 Pij

(3.9)

where Pij is the number of occurrences of gray levels i and j within the given

window, given a certain (δ, θ) pair, (inter-pixel distance (δ) and orientation (θ));

while G is the quantised number of gray levels.

Some pixel values and their GLCM representations are illustrated in fig (3.4).
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Figure 3.4: Pixel values with the GLCM representation

GLCM works by filling a cell with the number of times the combinations occur,

for instance, for top left cell, how many times did 0,0 occur in the image i.e. how

many times within the image area a pixel with grey level 0 (neighbour pixel) falls

to the right of another pixel with grey level 0 (reference pixel).

Table 3.2: GLCM common angles

Angle Offset

0 [0 D]

45 [-D D]

90 [-D 0]

135 [-D -D]

where offset is the distance between pixel of interest and its neighbour with respect

to the direction.

When D is 1, the common angles are as illustrated in fig 3.5.

Figure 3.5: Angle and Distance between pixel

3.4 Speed Up Robust Features (SURF)

Inspired by the popular Scale Invariant Feature Transforms (SIFT) [101], SURF is

known as a fast, robust local feature detector that is based on the Hessian Matrix.

SURF can be used to extract features of an object of interest and thus can be

used for object recognition [67]. The SURF descriptor is extracted by positioning
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a square region around a point of interest to gather reproducible orientation in-

formation [6]. A brief summary of the process of obtaining SURF features is as

follows [67]:

3.4.1 Interest point localisation

Given a point x = [x, y] in an image I, the Hessian matrix H(x, σ) in x at scale σ

is defined as follows:

H(x, σ) =

[
Lxx Lxy

Lxy Lyy

]
(3.10)

where Lxx(x, σ) is the convolution of the Gaussian second order derivative
∂2

∂2x
g(σ) with the image I in point x, and similarly for Lxy(x, σ) and Lyy(x, σ).

Location and scale of interest points are selected by relying on the determinant

of the Hessian. Further a non-maximum suppression is applied on a 3 × 3 × 3

neighbourhood of a localised interest point in the image scale and space.

3.4.2 Interest point description

SURF constructs a circular region around the detected interest points in order to

assign a unique orientation and gain invariance to image rotation. The orientation

is computed using Haar wavelet responses in both x and y directions. The Haar

wavelets can be computed using integral images, similar to Gaussian second order

approximated box filters (see Fig (3.6)). The dominant orientation is estimated

and included in the interest points information.

Figure 3.6: SURF box filter c©Copyright 2013, Alexander Mordvintsev Abid K.
Last updated on Oct 31, 2014.

SURF descriptors are constructed by extracting square regions around the in-

terest points. The windows are split into sub-regions to retain spatial information.
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Haar-wavelets are extracted at regularly spaced sample points. The wavelet re-

sponses in horizontal and vertical directions (dx and dy) are summed up over each

sub-region (see Fig (3.7)). Absolute values |dx| and |dy| are further summed in

order to obtain information about the polarity of the image intensity changes as

described by:

V = [
∑
dx,
∑
dy,
∑
|dx|,

∑
|dy|], which is the SURF descriptor.

Figure 3.7: SURF orientation graph c©Copyright 2013, Alexander Mordvintsev
Abid K. Last updated on Oct 31, 2014.

3.5 Histogram of Oriented Gradients (HOG)

According to [17] HOG is described as a concept that the local appearance and

shape of an object can be characterized well by the distribution of local intensity

gradients or edge direction, without knowledge of edge positions. It is usually

implemented by dividing an image window into small regions named cells and ac-

cumulating each local cell’s 1−D histogram of gradient directions or edge orienta-

tions over the pixels. The technique of HOG works by counting the occurrences of

gradient orientation in localized portions of an image. The feature HOG captures

local object appearance and shape which can often be characterized rather well by

the distribution of local intensity gradients or edge directions as reported in [77].

The combined entries form a representation that is contrast normalised to

ensure invariance to illumination. This normalisation is extended to all cells in

the block to form the HOG descriptor. Dalal and Triggs [11] explored different

methods for block normalization. Gradient is computed by applying [−1, 0, 1] and

[−1, 0, 1]T in horizontal and vertical directions of image [77]. Gradient inform-

ation is collected from local cells into histograms using tri-linear interpolation.

On the overlapping blocks composed of neighboring cells, as shown in fig (3.8),

normalization is performed.



CHAPTER 3. BACKGROUND OF STUDY 29

Figure 3.8: Cells and Overlapping Blocks

An example can be illustrated as in fig (3.9) below:

Figure 3.9: Cells and Overlapping Blocks in [27]

Then the normalization factor can be one of the following:

L2− norm : f =
v√

‖v‖22 + e2
(3.11)

L2− hys : L2− norm followed by clipping (limiting the maximum values of v

to 0.2) and renormalizing,

L1− norm : f =
v

(‖v‖1 + e)
(3.12)

L1− sqrt : f =

√
v

(‖v‖1 + e)
(3.13)

Let v be the non-normalized vector containing all histograms in a given block,

‖v‖k be its k − norm for k = 1, 2 and e be a small constant.

In their experiments, Dalal and Triggs found that the L2−Hys, L2− norm,

and L1−sqrt schemes provide similar performance, while the L1−norm provides

a slightly less reliable performance; however, all four methods showed significant

improvement over the non-normalized data.

Extracted HOG features are robust to changes in lighting conditions and small

variations in pose.
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HOG feature length is computed as:

~x = (~I./~z − ~y)./(~y − ~ol) + 1

length =
∏

[~x, ~y, k]
(3.14)

where ~y is a two element vector block size, k is constant 9 (number of bins), ~z

is a two element vector cell size, ~I is the image size, and ~ol is block overlap.

3.6 Local Binary Patterns

The Local Binary Pattern (LBP) operator labels the pixels of an image with

decimal numbers that encode the local structure around each pixel of an image

[40]. Each pixel (i.e. g1, g2, · · · , g8) is compared with its eight neighbours (see

equation 3.15) by subtracting the center pixel value; the results; if negative, are

encoded as 0, and the otherwise 1 (see equation 3.16). For each given pixel, a

binary number is obtained by concatenating all these binary values (referred to

as LBPs, see equation 3.17) in a clockwise direction, which starts from the one of

its top-left neighbour. The corresponding decimal value of the generated binary

number is then used for labeling the given pixel.

LBP can be described as follows:

Pixel neighbourhood:  g8 g1 g2

g7 gc g3

g6 g5 g4

 (3.15)

thresholding: s(g8 − gc) s(g1 − gc) s(g2 − gc)
s(g7 − gc) s(g3 − gc)
s(g6 − gc) s(g5 − gc) s(g4 − gc)

 s(x) =

{
1, x ≥ 0

0, x < 0
(3.16)

LBP for pixel:

LBP =
P−1∑
p=0

s(gp − gc)2P

Example  56 58 95

20 80 98

22 79 80





CHAPTER 3. BACKGROUND OF STUDY 31

 s(56− 80) s(58− 80) s(95− 80)

s(20− 80) s(98− 80)

s(22− 80) s(79− 80) s(80− 80)

⇒
 0 0 1

0 1

0 0 1


 0× 27 0× 20 1× 21

0× 26 1× 22

0× 25 0× 24 1× 23

⇒ 000011102 (3.17)

000011102

⇒ 14

Other variants are; circular LBP, rotation invariant LBP, uniform LBP, multi-

scale LBP, and multi-dimensional LBP.

3.7 Gaussian Mixture Model (GMM)

According to [76, 109] a GMM is a parametric probability density function that is

represented as a weighted sum of Gaussian distributions. The GMM technique uses

a method to model each background pixel by a mixture of k Gaussian distributions

[71]. The weight of the mixture represents the time proportion for which the pixel

values stay unchanged in a scene. Probable background colours stay longer and

are more static than the foreground colours.

In [92], the recent history of each pixel, X1, ..., Xt, is modelled by a mixture of

K Gaussian distributions. The probability of observing the current pixel value is

defined as:

P (Xt) =
K∑
i=1

ωi,t ∗ η(Xt, µi,t,
∑
i,t

) (3.18)

where K is the number of distributions, ωi,t is an estimate of the weight (what

portion of the data is accounted for by this Gaussian) of the ith Gaussian in the

mixture at time t, µi,t is the mean value of the ith Gaussian in the mixture at time

t,
∑

i,t is the covariance matrix of the ith Gaussian in the mixture at time t, and

η is a Gaussian probability density function of the form:

η(Xt, µ,
∑

) =
1

(2π)
n
2 |
∑
| 12
e−

1

2
(Xt − µt)T

∑−1(Xt−µt) (3.19)

The covariance matrix is of the form:

∑
k,t

= σ2
kI (3.20)
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3.8 Census Transform

According to [107], census transform (CT) is a non-parametric local transforms

which can be described as follows:

Let P be a pixel, I(P ) its intensity (usually an 8-bit integer), and N(P ) the

set of pixels in some square neighborhood of diameter d surrounding P . All non-

parametric transforms depend upon the comparative intensities of P versus the

pixels in the neighborhood N(P ).

Define ξ(P, P ′) to be 1 if I(P ′) < I(P ) and 0 otherwise. The non-parametric

local transforms depend solely on the set of pixel comparisons, which is the set of

ordered pairs

Ξ(P ) =
⋃

P ′∈N(P )

(P ′, ξ(P, P ′)) (3.21)

The census transform Rτ(P ) maps local neighbourhood surrounding a pixel

P to a bit representing the set of neighbouring pixels whose intensity is less than

that of P . Therefore, CT compares the intensity value of a pixel with its eight

surrounding neighbours; in other words, CT is a summary of local spatial structure

given by equation (3.22) [107]:

Rτ(P ) =
⊗

ξ(P, P + [i, j])

[i, j] ∈ D
(3.22)

where D is a set of displacements, and
⊗

be concatenation.

To illustrate the manner in which these transforms tolerate factionalism, con-

sider a 3× 3 region of an image whose intensities are:

127 127 129

126 128 129

127 131 A

for some value 0 ≤ A ≤ 256.

All the elements of Ξ except one will remain fixed as A changes. Ξ will be

1 1 0

1 0

1 0 a

where a is 1 if A < 128, and otherwise 0. The CT simply results in the bits of

Ξ in some canonical ordering such as 1, 1, 0, 1 0, 1, 0, a.
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Example:

26 75 65

26 46 22

26 40 65

⇒
1 0 0

1 1

1 1 0

⇒ (10011110)2 ⇒ CT = 158

From example above, it can be seen that if the pixel under consideration is

larger than (or equal) to one of its eight neighbours, a bit 1 is set in the cor-

responding location; else a bit 0 is set. The eight bits generated from intensity

comparisons can be put together in order and converted to a base-10 value. This

is the computed CT value for the pixel under consideration.

3.9 Correlation-based Feature Selection (CFS)

According to [36] as reported by [58], CFS is a filtering algorithm that evaluates

subsets of features based on the predicting power of the individual features of a

class label. In [58] CFS is defined as:

MeritSk
=

krcf√
k + k(k − 1)rff

.

Here, Sk is the number of features selected in the current subset,

rcf is the average value of all feature-classification correlations, and

rff is the average value of all feature-feature correlations.

It begins with an empty set of features adds one feature at a time that holds

best discriminative value.

The CFS criterion is defined as follows:

CFS = max
Sk

[
rcf1 + rcf2 + · · ·+ rcfk√

k + 2(rf1f2 + · · ·+ rfifj + · · ·+ rfkf1)

]
. (3.23)

The rcfi and rfifj variables are referred to as correlations.

According to [105], CFS involves the following two aspects:

1. how to decide whether a feature is relevant to the class or not; and

2. how to decide whether such a relevant feature is redundant or not when

considering it with other relevant features.

A feature is significant if it is the main predicting power in a class, and feature

selection for classification is a process that identifies all these principal features to

the class concept and removes the rest. If two features are found to be redundant

to each other, CFS removes one of them that is less relevant to the class concept;

and hence, keeps more information to predict the class.
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3.10 Support Vector Machine (SVM)

According to [68] SVM is a technique used to train classifiers, regressors and

probability densities that is well-founded in statistical learning theory. SVM can

be used for binary and multi-classification tasks.

3.10.1 Binary classification

SVM perform pattern recognition for two-class problems by determining the sep-

arating hyperplane with maximum distance to the closest points of the training

set. In this approach, optimal classification of a separable two-class problem is

achieved by maximising the width of the margin between the two classes [63]. The

margin is the distance between the discrimination hyper-surface in n-dimensional

feature space and the closest training patterns called support vectors. If the data

is not linearly separable in the input space, a non-linear transformation Φ(.) can

be applied, which maps the data points x ∈ R into a high dimensional space H,

which is called a feature space. The data is then separated as described above.

The original support vector machine classifier was designed for linear separation

of two classes; however, to solve the problem of separating more than two classes,

the multi-class support vector machine was developed.

3.10.2 Multi-class classification

SVM was designed to solve binary classification problems. In real world classific-

ation problems however, we can have more than two classes. In the attempt to

solve qclass problems with SVMs; training q SVMs was involved, each of which

separates a single class from all remaining classes, or training q2 machines, each

of which separates a pair of classes. Multi-class classification allows non-linearly

separable classes by combining multiple 2 − class classifiers. N − class classific-

ation is accomplished by combining N , 2 − class classifiers, each discriminating

between a specific class and the rest of the training set [63]. During the classific-

ation stage, a pattern is assigned to the class with the largest positive distance

between the classified pattern and the individual separating hyperplane for the N

binary classifiers. One of the two classes in such multi-class sets of binary classi-

fication problems will contain a substantially smaller number of patterns than the

other class [63].

SVM classifier was chosen because of its popularity and speed of processing.
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3.11 Receiver Operating Characteristics (ROC)

curves

The Receiver Operating Characteristic (ROC) curve helps to visualise classifica-

tion performance in detail. In a ROC curve the True Positive Rate (sensitivity

or recall is the fraction of relevant instances that are retrieved) is plotted as a

function of the False Positive Rate (false alarm rate refers to the probability of

falsely rejecting the null hypothesis for a particular test) for different cut-off points

or threshold of a parameter [24]. On the other hand, precision is the fraction of

retrieved documents that are relevant. Given by:

True Positive Rate (Recall) = tp
(tp+fn)

;

False Positive Rate = fp
(fn+tn)

;

Precision = tp
(tp+fp)

;

where, tp denotes the number of true positives (an instance that is positive and

classified as positive); tn denotes the number of true negatives (an instance that is

negative and classified as negative); fp denotes the number of false positives (an

instance that is negative and classified as positive) and fn denotes the number of

false negatives (an instance that is positive and classified as negative).

Precision is the probability that a (randomly selected) retrieved document

is relevant. While recall is the probability that a (randomly selected) relevant

document is retrieved in a search.

According to [95] an ROC curve visualises the following:

1. It shows the tradeoff between sensitivity and specificity (any increase in

sensitivity will be accompanied by a decrease in specificity).

2. The closer the curve follows the left-hand border and then the top border of

the ROC space, the more accurate is the test.

3. The slope of the tangent line at a cutpoint gives the likelihood ratio (LR)

for that value of the test.

Accuracy of an experiment is measured by the Area Under the ROC Curve

(AUC). An area of 1 represents a perfect test; an area of 0.5 represents a worthless

test.

Accuracy of performance is defined as:

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(3.24)

A rough guide for classifying the accuracy of a diagnostic test is the traditional

academic point system [95]:
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• 0.90-1 = excellent (A)

• 0.80-0.90 = good (B)

• 0.70-0.80 = fair (C)

• 0.60-0.70 = poor (D)

• 0.50-0.60 = fail (F)

In summary the ROC curve shows the ability of the classifier to rank the

positive instances relative to the negative instances.

3.12 Summary

This chapter has provided the reader with the fundamental theoretical and concep-

tual background of the original and contributor work that is presented in chapters

4-7 of this thesis. More specific theoretical and conceptual knowledge that is

required by the individual chapters will be presented within the relevant chapters.

Chapter-4 provides the readers with the pre-processing algorithms and tech-

niques that are used within the context of the research presented in this thesis.



Chapter 4

Recognition of Military Personnel

4.1 Introduction

Current security challenges such as impersonation, disguise, information and iden-

tity theft etc, have made it imperative for organisations and individuals to setup

surveillance systems to help improve security. It is not uncommon that military

environments are under serious threats on a daily basis from terror groups or or-

ganisations. These groups seek ways to destroy a country’s military force (security

base): who help defend against potential domestic and foreign attacks. Suicide

bombing, information gathering and leakages, insider attack etc, are various ways

these individuals could attack military organisations.

Given the above observations there is the need for an automated computer

vision based surveillance system to recognise military personnel wearing a given

uniform type within the military camps or environments. Such a system can de-

termine the flow of persons or personnel in and out of the environments and within,

so that various discrepancies and threats as mentioned above, can be identified,

validated, minimised or fully eliminated. To this end, in this chapter we design,

implement and analyse an automated, computer vision based, military personnel

recognition system that is based on texture, colour and SURF features. A GLCM

texture implementation [96] is used to extract texture features, while a 256 bin

colour histogram is used to compute the colour features. These basic features, i.e.,

texture, colour and SURF features are used as descriptors within the proposed

appearance-based personnel recognition system. The classification of personnel is

achieved using a SVM classifier, firstly on the multi-category classification task

of Army, Air Force, Navy caps into camouflage and plain types, respectively and

secondly, camouflage uniform classification into Army, Air Force and Navy types,

respectively. In order to maximise the recognition accuracy, CFS is used to select

discriminative features and improve recognition results. After the categorisation

37



CHAPTER 4. RECOGNITION OF MILITARY PERSONNEL 38

into camouflage and plain caps, additional SURF features are used to further

categorise a plain cap’s badge into Army, Air Force and Navy types, accordingly.

For clarity of presentation this chapter is divided into three further sections.

Section 4.2 presents the proposed system. Section 4.4 presents the experimental

results and a comprehensive analysis of the performance of the proposed system.

Section 4.5 finally concludes the chapter.

4.2 The Proposed System

The block diagram of the proposed system is illustrated in figure 4.1 for a quick

overview and for the purpose of clarity.

Figure 4.1: An overview of the proposed method for military personnel recognition

The above block diagram assumes that the detected moving object is a human

being and the background area around the human has been removed already, i.e.

an amount of pre-processing of the original video data has been performed (see

section 4.2.1).

The recognition of military personnel’s arm of service is based primarily on

analysing the personnel’s cap and the uniform. Therefore the first step is to

identify the head area and the uniform area of a detected, moving, human being.

A face detector is used to localise the head region, within the detected human’s top

part of the body, and thus determining the cap area, which should lie above the
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face and thus to localise attention on the cap region. Based on texture analysis,

the cap is first classified into camouflaged or plain types, i.e. caps that consist of

no camouflage. If the cap is of plain type SURF features are used to recognise the

type based on the recognition of the badge. If the cap is camouflaged then the

analysis enters the camouflaged type recognition stage. Similarly the body region

is analysed for the personnel’s uniform type. This is done by first acquiring a

region-of-interest of the potential uniformed area of a personnel’s upper body area.

Selecting the ROI results in increasing the chances of obtaining pixel samples that

relate to the uniform area rather than to the background of the body. Subsequently

from this sample area, texture and colour features are used to classify the uniform

types based on the classification of the type of camouflage. Feature selection is

used to reduce the initial, large set of parameters and improve results prior to

classifying using SVM.

4.2.1 Pre-processing

Initially, the sample image is segmented to obtain the foreground object by the

method in [25] which is a learning-based system for detecting and localizing objects

in images using HOG features (see figure 4.2) and making further refinements using

the grabcut algorithm [80] which is an interactive image segmentation technique

(see figure 4.3). It is noted that as a result of using the grabcut algorithm, the

human body region area has been approximately segmented.

Figure 4.2: Detected people results
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Figure 4.3: Segmented foreground images using grabcut

Subsequently, the foreground of the detected and extracted human image is

segmented into two parts namely the, top-half and bottom-half (see figure 4.4).

From the top-half of the human body, a simple and efficient face detector which

uses haar-like features and AdaBoost feature selection [97] helped identified the

cap region. Therefore each object is now divided into three different regions of

military clothing, namely; the bottom half, the top half (excluding the upper part

including the face and cap regions) and the cap region itself.

Figure 4.4: The two segmented body parts of a detected human

Finally, the three regions are partitioned into equal patches of size 50 × 50

pixels (see figures 4.5 & 4.6) for the purpose of providing a reliable centre sample

areas that do not contain object boundary and background pixels, for the uniform

and cap area feature extraction and selection presented in this chapter.

Figure 4.5: Examples of camouflage image patches
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Figure 4.6: Examples of plain image patches

4.2.2 Feature extraction for camouflage type

identification

A significant number of colour and texture features are extracted from all image

patches (figures 4.5 & 4.6) separated in section 4.2.1 and is used for providing

samples for training and testing purposes.

The basic colour and texture features extracted are as follows:

1. Hue colour histogram: A one dimensional colour histogram with 256 bins

is obtained from the hue colour channel of the patch represented in the HSV

colour domain.

2. GLCM texture features: Initially, a GLCM was derived for each patch

using the MATLAB implementation of GLCM, ”graycomatrix”. Twenty two

statistical texture features were extracted from the GLCM representation of

the image patch. The texture features extracted from the GLCM matrix are

listed as follows:

• Contrast, Correlation, Energy, Sum of squares: variance, Sum of average,

Sum of variance, Sum of entropy, Difference of variance, Difference of en-

tropy, Information measure of correlation, Information measure of correla-

tion 2 as defined in [38]

• Autocorrelation, Cluster prominence, Cluster shade, Dissimilarity, Entropy,

Homogeneity, Max probability as defined in [90]

• Inverse difference normalised, Inverse difference moment normalised as defined

in [14]

• Correlation, Homogeneity as defined in [96]

The 256 colour bins were combined with the 22 texture features for the ap-

pearance based categorisation of the camouflage into army, navy, air force types

in the uniformed areas excluding the cap region.
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Although the same texture and colour features may be used in the categor-

isation of the cap into army, navy, air force types, due to the presence of both

plain and camouflaged caps, initially only the texture features should be used

for categorisation into either plain or camouflaged types. In the event the cap is

categorised into a camouflaged type, further categorisation is done following the

process described for other areas of the uniform. In the event the categorisation is

that the cap is of the plain nature an attempt is then made to recognise the badge

of the arms of service to categorise it into a type (see section 4.2.4). It is noted

that the original RGB colour representation is first converted to the HSI colour

space (see section 3.1.2.1) before bin values are extracted from the H channel as

features used for recognition.

A close visual inspection of image patches illustrated in figures 4.5 & 4.6,

indicates similarity of patterns but differences in colour between Army and Air

Force camouflage and similarity of colour but differences in patterns between the

Army and Navy camouflage. Therefore the above colour and texture features

(relates to patterns) when combined should provide a reasonably accurate means

of contrasting between the army, navy and air force camouflages.

4.2.3 Feature selection

To improve recognition accuracy and reduce the feature dimension and processing

time, the discriminative features for classification were selected. In other words

the full set of combined colour and texture features that were presented in section

4.2.2 was first reduced with the aim of optimising classification accuracy.

It is noted that feature selection helps to improve machine learning.

There are two approaches to feature selection; wrapper based and filter based

approaches [35]. The method adopted here is the filter based approach CFS (see

section 3.9). The CFS based approach was selected as the feature selection ap-

proach as it performed better than the wrapper based approach and is not al-

gorithm specific [35]. The CFS approach helps to rank feature subsets according

to the correlation based on the heuristic ”merit” as reported by [58].

4.2.4 Recognition of arm of service

For all recognition tasks the popular SVM multi-class classifier was utilised.

We assume that the uniform of all military personnel is of camouflaged type

but the cap can be of either camouflaged or plain type. The camouflage type

recognition will allow one to categorise the arm of service of the military personnel.

For this purpose both texture and colour features are combined and used following

the feature extraction and selection stages described in sections 4.2.2 and 4.2.3
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respectively. However, as the cap has high possibility of being plain, we first use

only the texture features presented in section 4.2.2 alone to categorise the cap into

plain of camouflaged type. If the cap is camouflaged, the camouflaged uniform

type recognition process described above is followed. In contrast if the cap is plain

then the categorisation is done by the detection and recognition of the type of the

badge on the cap using the method in section 4.2.5.

4.2.5 Recognition of arm of service of a plain cap

Although a camouflaged cap can be recognised following steps described in sec-

tion 4.2.2 (feature extraction), 4.2.3 (feature selection) and 4.2.4 (recognition),

the recognition of the type of a plain cap calls a simple but completely different

approach. The idea here is to detect and recognise the logo of the arm of service

that will be on the front of the cap. We use SURF features (see section 3.4) and

recognition using a feature matching approach.

4.3 Experimental Setup

The software tool utilised in our experiments are MATLAB and Weka using a PC

configuration of intel core i5 dual core processor 2.70Ghz with 6GB ram.

We designed a model presented in figure 4.7 to run the military personnel

categorisation experiment.

Figure 4.7: Classifiers and feature selection algorithms comparison model

Figure 4.7 above includes two feature reduction techniques; CFS & PCA and

four classification algorithms; SVM, Bayes Network, Nearest Neighbour Euclidean

Distance (NNED), and Bagging respectively.

From the experiments conducted using the proposed colour and texture fea-

tures, the following results in table 4.1 below were obtained.
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Table 4.1: Classification Accuracy using four classifiers

Classifier + Selector Accuracy Classifier + Selector Accuracy

SVM + CFS 94.1% SVM + PCA 91.4%

BayesNet + CFS 91.8% BayesNet + PCA 85.1%

NNED + CFS 91% NNED + PCA 83.9%

Bagging + CFS 86.7% Bagging + PCA 84.3%

From results obtained from table 4.1, we observe that SVM + CFS gave the

optimal accuracy; therefore it was adopted for all the experiments conducted in

this thesis. The specific parameters used for SVM and CFS algorithms are: CFS

search method - BestFirst -N 5, where N is the termination point. SVM is tabu-

lated below:

Table 4.2: SVM parameters

Parameter name Parameter value

complexity 1.0

epsilon 1.0E-12

filterType Normalise training data

kernel PolyKernel with exponent 1.0

4.4 Experimental Result and Analysis

A number of experiments were conducted to analyse the performance of the pro-

posed military people identification approaches. For all experiments, accuracy is

used as a measurement of success.

Classification accuracy is defined as:

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(4.1)

4.4.1 Camouflaged type recognition army, navy, air force

An initial experiment was conducted for the classification of camouflaged uniforms

into the three categories, using only using the 22 original set of texture features.

For the purpose of training and testing the classifier, a total of 510 image patches

(170 each from each type) were used. Fifty percent of the total sets were used for

training and fifty for testing. A low classification accuracy of 71% was recorded.

A feature selection using CFS selected 9 features; only maintained an accuracy

figure of 68%. These experiments concluded that the texture features only cannot
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be effectively used for the uniform type classification. Although increasing the

training set and test set could lead to higher efficiencies a significant improvement

of accuracy cannot be expected using texture features only. Including the colour

features can result in an improved classification accuracy.

In the second set of experiments a total of 256 colour bin values were extracted

and combined with the texture features giving a total of 278 features. However

in the classification of camouflaged uniforms into Army, Air Force and Navy cat-

egories, CFS [35] was used to select discriminate features from the original 278

feature set of 22 texture features and 256 colour features to a total of 46 features

that comprised of 8 texture features and 38 colour features, recording a slight

improvement of accuracy to 94% from 92.5% when the full feature set was used.

Table 4.3 tabulates further performance related metrics that can be used to

evaluate the performance of the proposed camouflaged recognition approach when

both the full feature sets and the selected feature sets are used. The performance

values of True, false positive rates, precision, recall, F-Measure and ROC area are

reported. F-measure is a measure of an experiment’s accuracy. It is the harmonic

mean of precision and recall given as:

F = 2 · precision · recall

precision + recall
(4.2)

Table 4.4 tabulates the related confusion matrices.

Table 4.3: True, false positive rates, precision, recall, F-Measure and ROC area
performance values

TP FP Precision Recall F-Measure ROC Area Class

Whole features

0.946 0.019 0.967 0.946 0.957 0.977 Air Force

0.939 0.046 0.906 0.939 0.922 0.967 Army

0.888 0.046 0.899 0.888 0.893 0.924 Navy

0.925 0.036 0.926 0.925 0.926 0.957 Weighted

Average

Selected feature sets

0.946 0.012 0.978 0.946 0.962 0.984 Air Force

0.927 0.035 0.927 0.927 0.927 0.971 Army

0.913 0.057 0.88 0.913 0.896 0.932 Navy

0.929 0034 0.931 0.929 0.93 0.964 Weighted

Average
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Table 4.4: Confusion matrix for personnel recognition

Whole feature sets Selected feature sets

Air Force Army Navy Air Force Army Navy

88 (95%) 0 5 (5%) Air Force 88 (95%) 0 5 (5%)

2 (3%) 77 (93%) 3 (4%) Army 1 (1%) 76 (92.8%) 5 (6.2%)

1 (1%) 8 (8%) 71 (91%) Navy 1 (1%) 6 (5%) 73 (94%)

It is shown that the Air Force camouflage type has the highest level of recog-

nition accuracy Navy indicating the least accuracy or highest level of confusion.

A closer visual comparison of the three camouflage types (see figure 4.5) reveals

that this is expected. Air Force camouflage has a unique colour combination and

a texture pattern as compared to the Navy camouflage. The Navy camouflage in

comparison on the other hand shares the green colour with the Army camouflage

and a unique high-level texture pattern compared to the other two.

4.4.2 Cap type recognition camouflaged vs plain

In the classification of the cap type into plain and camouflaged categories, as

mentioned in section 4.2, only the original 22 texture features (i.e. all texture

features) were considered. For each of the camouflaged (i.e. Army, Air Force

and Navy camouflaged, respectively) vs the corresponding plain cap classification

tasks, respectively 6, 4 and 12 textures features were selected via the use of CFS

in the classification process (see Table 4.5 for a summary of features selected for

different classification tasks). In all of the above experiments the classifier used is

the SVM classifier.
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Table 4.5: Selected Features using CFS on the proposed feature sets

Camouflage cat-

egorisation

Army Camo

vs Plain

Air Force

Camo vs Plain

Navy Camo vs

Plain

CP, CS, EN, ET,

HG1, HG2 SE, IMC,

Bins 1, 20, 31, 33, 42,

43, 45, 46, 53, 64, 67,

68, 85, 89, 90, 128,

132, 149, 151, 155,

156, 157, 159, 162,

163, 165, 168, 169,

172, 173, 174, 175,

176, 177, 202, 210,233,

252

CT, D, EN, ET,

SE, IMC

CT, CR, ET, SE CT, CR, CP,

EN, ET, MP,

SA, SE, DV,

DE, IMC2,

IDMN

Notations used: Camo - camouflage, CP - Cluster Prominence, EN - Energy,

HG1 & HG2 - Homogeneity, SE - Sum of Entropy, IMC - Info measure of Cor-

relation, CS - Cluster Shade, D - Dissimilarity, CR - Correlation, CT - Contrast,

ET - Entropy, MP - Maximum Probability, SA - Sum of Average, DV - Differ-

ence of Variance, DE - Difference of Entropy, IDMN - Inverse Difference Moment

Normalised.

4.4.3 Plain cap type recognition using badges

If the cap type recognition experiment presented in section 4.4.2 revealed that the

cap is of the plain type (i.e. no camouflage) then the best option is to carry out

its categorisation into the three types using the badge that will be present at the

front of the cap. The assumption that a badge will be present that is unique to the

arm of service is reasonable given the regulations governing the armed forces. The

idea of using colour as to perform the discrimination will not be a sound judgment

given illumination, colour constancy, colour balancing problems that are inherent

in most captured videos.

Therefore we use SURF features on the cap badge, for the classification of

the cap into Army, Air Force and Navy types (see figures 4.8,4.9, and 4.10).

Experimental results indicate a high accuracy of recognition despite variations

in scale, orientation etc., (see figures 4.11, 4.12 and 4.13).
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Figure 4.8: Air Force cap badge matching
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Figure 4.9: Army cap badge matching
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Figure 4.10: Navy cap badge matching
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Figure 4.11: Using SURF to recognise Air Force cap badge type
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Figure 4.12: Using SURF to recognise Army cap badge type
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Figure 4.13: Using SURF to recognise Navy cap badge type

Figures 4.11, 4.12 & 4.13 shows cap badges of Air Force, Army and Navy with

each serving as query into the three badges in the database. Result at different

orientation shows accurate recognition of the three cap badges.

4.4.4 Effect on hue, saturation and texture on

camouflage type recognition

Detailed visual inspections that were done on mis-classifications revealed that

different levels of saturation and intensity could cause the hue to be less dominant

and thus have less significance in the recognition process. Nevertheless Hue should

play a more significant role as the uniforms are of particular colours combinations.

In contrast, a change of hue can happen due to fading of colours on the uniform
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due to wear and tear or weathering or due to changes in scene illumination (i.e.

due to contrast and excess lighting/exposure) and a change of intensity can occur

due to scene illumination and under exposed imaging.

Therefore, a further experiment was conducted to investigate the effect of sep-

arately using the various colour channels of the HSI colour representation in cam-

ouflaged uniform classification, i.e. using H, S and I values separately, with their

combinations, alongside texture features. The specific feature combinations in-

cluded in the experiments were as follows:

• GLCM texture and histogram of Saturation

• GLCM texture and histogram of Intensity

• GLCM texture and histogram of Hue

• GLCM texture and histogram of Hue and Saturation

• GLCM texture and histogram of Hue and Intensity

• GLCM texture and histogram of Saturation and Intensity

• GLCM texture and histogram of Hue, Saturation and Intensity

Experimental results were recorded as shown in table 4.6 and figure 4.14

Table 4.6: Experimental Results for camouflage classification using different com-
binations of colour channels and GLCM texture Features.

Features Extracted Recognition Accuracy

Saturation and Texture 81.9%

Intensity and Texture 77%

Hue and Texture 94%

Hue, Saturation and Texture 89.8%

Hue, Intensity and Texture 92%

Saturation, Intensity and Texture 83.5%

Hue, Saturation, Intensity and Texture 89.8%
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Figure 4.14: Experimental Results for camouflage classification using different
combinations of colour channels and GLCM texture Features.

From table 4.6 and figure 4.14 it can be seen that the highest level of classifica-

tion accuracy (94%) is achieved when using only Hue with the texture features. It

is clearly better than the use of all three colour components, i.e. when Saturation

and Intensity is included with Hue and Texture features. The least performance is

indicated when only intensity features are included with texture. This conditions

means that colour has been totally ignored from being considered. The intensity

distribution that is spread on the camouflage within different colour patches con-

tributes marginally to the case when only texture features are included (71%, see

section 4.4.1) and hence shows a slightly better accuracy rate of 77%.

4.4.5 Comparison of proposed vs benchmark algorithms

We compared our technique with the techniques proposed in [68] and [58]. The

result of the accuracies are tabulated in table 4.7 and illustrated in figure 4.15.

For the purpose of fair comparison we implemented the technique proposed in [58]

twice; (a). firstly, we split image patch into three segments and extract features

from each segment - (Technique proposed in[58](a)); (b). secondly, we extract

features directly from the image patch - (Technique proposed in[58](b)). For all

experiments we used SVM as the classifier.
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Table 4.7: Recognition accuracies for various techniques using SVM classifier

Feature techniques Accuracy

CFS features Whole features AUC

RGB 32Bin Histogram in [68] 70%(23) 86.7%(96) 78%

Normalised 2D Histogram in [68] 45%(60) 56.5%(1024) 62%

RGB 32Bin + Shape Hist in [68] 70%(26) 87%(136) 77.8%

Local Shape Features in [68] 69%(30) 72.5%(75) 78%

Technique proposed in [58](a) 71%(12) 71%(31) 82.7%

Technique proposed in [58](b) 72.5%(20) 74%(93) 83%

Proposed technique (Hue and Texture) 94%(46) 92.5%(278) 96.4%

We can see from the above table that proposed technique recorded highest

accuracy with normalised 2D histogram demonstrating the lowest recognition per-

formance (see figure 4.15).

Figure 4.15: Recognition accuracies including area under curve (AUC) for various
techniques using SVM classifier.

Further experimental results from the compared approaches are shown in tables

4.8 and 4.9 below:
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Table 4.8: True, false positive rates, precision, recall, F-Measure and ROC area
performance values for whole feature sets when using different approaches.

Proposed technique

TP FP Precision Recall F-

Measure

ROC

Area

Class

0.946 0.019 0.967 0.946 0.957 0.977 Air Force

0.939 0.046 0.906 0.939 0.922 0.967 Army

0.888 0.046 0.899 0.888 0.893 0.924 Navy

0.925 0.036 0.926 0.925 0.926 0.957 Weighted

Average

Technique proposed in [58] (a)

TP FP Precision Recall F-

Measure

ROC

Area

Class

0.86 0.216 0.696 0.86 0.769 0.836 Air Force

0.61 0.087 0.769 0.61 0.68 0.824 Army

0.738 0.091 0.787 0.738 0.761 0.896 Navy

0.741 0.135 0.748 0.741 0.738 0.851 Weighted

Average

Technique proposed in [58] (b)

TP FP Precision Recall F-

Measure

ROC

Area

Class

0.806 0.21 0.688 0.806 0.743 0.819 Air Force

0.598 0.11 0.721 0.598 0.653 0.804 Army

0.713 0.12 0.731 0.713 0.722 0.872 Navy

0.71 0.15 0.712 0.71 0.707 0.831 Weighted

Average

Local Shape Features in [68]

TP FP Precision Recall F-

Measure

ROC

Area

Class

0.559 0.123 0.722 0.559 0.63 0.719 Air Force

0.915 0.081 0.843 0.915 0.877 0.942 Army

0.725 0.206 0.617 0.725 0.667 0.768 Navy

0.725 0.136 0.728 0.725 0.721 0.806 Weighted

Average

Normalised 2D Histogram in [68]

TP FP Precision Recall F-

Measure

ROC

Area

Class

0.505 0.228 0.56 0.505 0.531 0.667 Air Force

0.585 0.197 0.585 0.585 0.585 0.755 Army

0.613 0.229 0.551 0.613 0.58 0.73 Navy
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0.565 0.218 0.565 0.565 0.564 0.715 Weighted

Average

RGB 32 Bin Histogram in [68]

TP FP Precision Recall F-

Measure

ROC

Area

Class

0.849 0.093 0.84 0.849 0.845 0.884 Air Force

0.939 0.04 0.917 0.939 0.928 0.972 Army

0.813 0.069 0.844 0.813 0.828 0.878 Navy

0.867 0.068 0.866 0.867 0.866 0.911 Weighted

Average

RGB 32Bin + Shape Histogram in [68]

TP FP Precision Recall F-

Measure

ROC

Area

Class

0.849 0.074 0.868 0.849 0.859 0.897 Air Force

0.939 0.052 0.895 0.939 0.917 0.967 Army

0.825 0.069 0.846 0.825 0.835 0.884 Navy

0.871 0.065 0.87 0.871 0.87 0.915 Weighted

Average
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Table 4.9: True, false positive rates, precision, recall, F-Measure and ROC area
performance values for selected feature sets when running different approaches.

Proposed technique

TP FP Precision Recall F-

Measure

ROC

Area

Class

0.946 0.012 0.978 0.946 0.962 0.984 Air Force

0.927 0.035 0.927 0.927 0.927 0.971 Army

0.913 0.057 0.88 0.913 0.896 0.932 Navy

0.929 0.034 0.931 0.929 0.93 0.964 Weighted

Average

Technique proposed in [58] (a)

TP FP Precision Recall F-

Measure

ROC

Area

Class

0.849 0.191 0.718 0.849 0.778 0.848 Air Force

0.585 0.11 0.716 0.585 0.644 0.79 Army

0.725 0.114 0.744 0.725 0.734 0.872 Navy

0.725 0.141 0.726 0.725 0.721 0.837 Weighted

Average

Technique proposed in [58] (b)

TP FP Precision Recall F-

Measure

ROC

Area

Class

0.828 0.21 0.694 0.828 0.755 0.823 Air Force

0.585 0.11 0.716 0.585 0.644 0.791 Army

0.7 0.12 0.727 0.7 0.713 0.856 Navy

0.71 0.15 0.712 0.71 0.706 0.823 Weighted

Average
Local Shape Features in [68]

TP FP Precision Recall F-

Measure

ROC

Area

Class

0.538 0.154 0.667 0.538 0.595 0.682 Air Force

0.817 0.087 0.817 0.817 0.817 0.927 Army

0.738 0.223 0.602 0.738 0.663 0.763 Navy

0.69 0.154 0.695 0.69 0.688 0.786 Weighted

Average

Normalised 2D Histogram in [68]

TP FP Precision Recall F-

Measure

ROC

Area

Class

0.57 0.222 0.596 0.57 0.582 0.703 Air Force

0.573 0.156 0.635 0.573 0.603 0.791 Army

0.7 0.206 0.609 0.7 0.651 0.768 Navy
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0.612 0.196 0.612 0.612 0.61 0.751 Weighted

Average

RGB 32 Bin Histogram in [68]

TP FP Precision Recall F-

Measure

ROC

Area

Class

0.72 0.16 0.72 0.72 0.72 0.781 Air Force

0.695 0.133 0.713 0.695 0.704 0.814 Army

0.763 0.12 0.744 0.763 0.753 0.812 Navy

0.725 0.139 0.725 0.725 0.725 0.801 Weighted

Average

RGB 32Bin + Shape Histogram in [68]

TP FP Precision Recall F-

Measure

ROC

Area

Class

0.72 0.148 0.736 0.72 0.728 0.785 Air Force

0.732 0.139 0.714 0.732 0.723 0.823 Army

0.75 0.114 0.75 0.75 0.75 0.803 Navy

0.733 0.134 0.734 0.733 0.733 0.803 Weighted

Average

The following plot is the weighted average of the proposed technique vs the

methods in [58] and [68].

Figure 4.16: TP, FP rates, precision, recall, F-measure and ROC area plot of
proposed technique vs methods in [58] and [68]
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Table 4.10: Confusion matrix for personnel recognition using whole and selected
feature sets on different experiments

Proposed technique

Whole feature sets Selected feature sets

Air Force Army Navy Air Force Army Navy

88 0 5 Air Force 88 0 5

2 77 3 Army 1 76 5

1 8 71 Navy 1 6 73

Technique proposed in [58] (a)

Whole feature sets Selected feature sets

75 10 8 Air Force 77 10 6

20 49 13 Army 19 48 15

14 9 57 Navy 15 9 56

Technique proposed in [58] (b)

Whole feature sets Selected feature sets

80 9 4 Air Force 79 10 4

20 50 12 Army 18 48 16

15 6 59 Navy 13 9 58

Local Shape Features in [68]

Whole feature sets Selected feature sets

52 5 36 Air Force 50 6 37

7 75 0 Army 13 67 2

13 9 58 Navy 12 9 59

Normalised 2D Histogram in [68]

Whole feature sets Selected feature sets

47 17 29 Air Force 53 18 22

23 48 11 Army 21 47 14

14 17 49 Navy 15 9 56

RGB 32 Bin Histogram in [68]

Whole feature sets Selected feature sets

79 4 10 Air Force 67 13 13

3 77 2 Army 17 57 8

12 3 65 Navy 9 10 61

RGB 32Bin + Shape Histogram in [68]

Whole feature sets Selected feature sets

79 4 10 Air Force 67 13 13

3 77 2 Army 15 60 7

9 5 66 Navy 9 11 60
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For the purpose of detailed analysis of the performance of the proposed ap-

proach, the classification performance is finally evaluated using the ROC curve

that helps visualise performance, in detail. The ROC curves for the proposed

approach and those of [58] and [68] are illustrated in figure 4.17.

Figure 4.17: Proposed technique vs [58] and [68] techniques

From the ROC curve in figure 4.17, we see that the proposed approach has an

excellent performance compared to other techniques with AUC of 96%. Method

in [58] was good with [68] performing fairly; except with one technique which was

poor at 62% AUC.

4.5 Conclusions

This chapter proposed an appearance-based technique that help recognise the arm

of service of a military personnel based of the identification of the camouflage of

the uniform and the recognition of the badge on the cap in cases where the cap is

plain. The camouflage type categorisation into army, navy and air force indicated a

94% accuracy when the original feature set comprising of 278 features was reduced

to 46 features. In the case where the cap was plain (i.e. no camouflage) a texture

feature based classification approach using a support vector machine gave accuracy

levels of 100%, 90% and 100% in the identification of Army, Navy and Air Force

categories respectively using SURF matching technique.

The proposed systems can be implemented within a fully automated, real-time,

military arm of service recognition system that integrates the various classification

algorithms presented in the chapter, within a single logically organised unit. Such
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a system can help a military base to check and monitor the following: appro-

priate or inappropriate dressing, absence from duty post, impersonation, disguise

and completeness or incompleteness of personnel presence in military camp or

environment.



Chapter 5

Vehicle Type Recognition

5.1 Introduction

In the recent past, concerns directly associated with vehicle related crime have

risen internationally. As described by the Interpol report in [42] vehicle crime is:

...a highly organized criminal activity affecting all regions of the whole

world and with clear links to organized crime and terrorism. Vehicles

are not only stolen for their own sake, but are also trafficked to fin-

ance other crimes. They can also be used as bomb carriers or in the

perpetration of other crimes.

To this end, there are many situations where access to vehicles needs to be

monitored automatically to manage and control their movement to and from se-

cure sites, motorways and across international borders. Although number plate

recognition provides a level of security based on the license information gathered,

in an era where vehicle cloning prevails, any additional vehicle identification data

can help to improve the robustness against such unlawful activities. The identi-

fication of vehicle type and keeping a count of each type passing certain known

locations will help this process.

Further, the increase of the cost of building and maintaining motorways have

forced many governments to consider privatising motorways resulting in a need

for toll collection from their users. The number of toll roads present is growing

fast internationally and so is the crime rate to avert the payment of the correct

toll. Toll is normally charged based on vehicle type and the varied tariffs used

means that when a human observer is not present the systems can be fooled by a

vehicle that is charged a higher rate being driven through a gate meant to be for

a type that is charged less. The automatic identification of the vehicle type can

help take preventive measures to stop this crime.

64
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The exponential increase of road traffic over the years has caused serious con-

cerns about the level of pollution caused by vehicular traffic. Especially the pro-

duction of ozone is considered a by-product of nitrogen dioxide caused directly

due to internal combustion engines, when exposed to direct sunlight. The larger

the power of a vehicle engine, the larger would be the impact it will have on the

creation of the secondary pollutants such as, ozone. The counting of various types

of vehicles that uses a motorway on an hourly or daily basis will help in estim-

ating the emitted and formed air pollutants from vehicles [74]. Simply detecting

vehicles and tracking them will allow the monitoring of total road usage and the

estimation of their speed that also has an impact on approximating the pollution

levels [74].

The above needs solicits the importance of the design, development, imple-

mentation and the installation of a computer vision based automated vehicle

counting and type recognition system, which is the key focus presented in this

chapter.

In observing the techniques proposed in literature summarised in section 2.3,

it can be concluded that vehicles are recognised and classified at different angles

under different conditions using different feature sets, classification techniques and

hence algorithms. In other words, a change of camera angle requires a change of

features that needs to be extracted for classification. The classification technique

that performs best will also change. Further, most techniques have been tested

either on rear or front views only. In practice once a camera is installed in an

outdoor environment with the hope of capturing video footage for vehicle type

recognition, it is likely that due to wind or neglect in installation, the camera

could turn in due course. If the vehicle type recognition system was dependent

significantly on the angle of view, the system would thus fail to operate accurately.

Further at the point of installation practical problems may be such that the camera

position and orientation will have to be changed as compared to the fixed angular

view that it has originally being designed for. This will either require the system

to be re-redesigned using different feature sets, classifiers and algorithms or the

system having to go through a camera re-calibration processes, which is typically

non-trivial and time consuming. It would be ideal if at the new orientation the

captured content could still be used for classification.

Given the above observations we propose a novel algorithm for vehicle type

recognition and subsequent counting, which is independent of the camera view

angle. We adopt a strategy that uses multiple features that are scale and rota-

tion invariant, leading to the accurate classification of vehicles independent of the

camera angle.

For clarity of presentation this chapter is divided into four sections. Apart from
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this section, which introduces the reader to the problem domain and identifies the

research gap based on existing work, presented in the literature in section 2.3, the

remaining sections are structured as follows: the proposed vehicle type recognition

algorithm is presented in section 5.2. Section 5.3 is focused on experimental results

and a performance analysis with concluding remarks provided in section 5.4.

5.2 Research Methodology

This section introduces the reader to the proposed methodology, presenting in de-

tail the functionality of each module/stage of the proposed vehicle type recognition

system under three main topics: vehicular object segmentation; feature extraction;

and vehicular object classification. Figure 5.1 illustrates a block diagram of the

proposed system.
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Figure 5.1: Proposed methodology for vehicle classification

The analysis of the performance of the proposed system for vehicle type re-

cognition was conducted on datasets gathered from two low medium resolution

cameras that were installed on the roadside of the Sohar Highway, Oman. They

were of pixel resolution 320× 240, and the frame rate was 25 FPS. The data used

in the experimental analysis consisted of 10 hours video footage, captured during
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daytime.

5.2.1 Vehicular object segmentation

The video frames were first segmented using a GMM (section 3.7) based fore-

ground/background subtraction algorithm [71, 76] that detects moving objects.

Due to the close-up view settings used in capturing the video footage from a mo-

torway environment, it can be assumed that all foreground objects picked up by

the above algorithm are moving vehicles only. The segmented vehicular object

regions need further processing to ensure that the segmented regions more appro-

priately represent the true shape of a vehicle. For this purpose a Canny Edge

Detector was first used to estimate the edges of the segmented object and the

segmented region was subsequently refined using several morphological operators

[32] that included, disk structure, bwareaopen, dilation and filling. The contribu-

tion of each of the operators in improving the segmented vehicular object shapes

is demonstrated by the experimental results presented in figure 5.2.

Figure 5.2: Diagram shows original vehicle, after edge detection, after removing
extra edges and after dilate and fill operations respectively

After the extraction of the foreground vehicular objects, they are placed within

the tightest fitting square shaped Regions of Interest (RoIs). These are sub-

sequently resized to a normalised size of 100×100 pixels that are the regions used

by subsequent stages for further processing.
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5.2.2 Feature extraction

Feature extraction is performed on square shaped windows (normalised to 100×100

pixel areas) surrounding the segmented foreground objects, with the background

pixels within the square area set to zero.

Firstly for the purpose of training, we manually extracted vehicle image samples

normalised to a size of 100 × 100 pixels from the recorded video footage frames.

Figures 5.3 and 5.4 illustrate some examples of segmented foreground objects.

Figure 5.3: Training samples some segmented vehicles from front/rear view data-
set

Figure 5.4: Training samples some segmented vehicles from angular view dataset

For testing purposes the ROIs are automatically segmented following the pro-

cess described in section 5.2.1. Note that once the segmented foreground region

is extracted it is first enclosed within a tightest fitting square area that is sub-

sequently normalised to a size 100× 100 pixels. The pixels within the square area

but outside the object’s ROI is set to zero. The features are calculated on the

above mentioned 100 × 100 square regions. The following sections describe the

feature extraction process.

We propose the use of 17 simple scalar Region descriptors as features, alongside

HOG and LBP histogram features. They can be detailed as follows.
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5.2.2.1 Region descriptors/features

We propose the initial use of 17 Region Features, which can be defined as follows:

1. Area in [26]: The total number of pixels that are included in the ROI within

the square area.

2. Centroid in [26]: Horizontal and vertical coordinates of center of mass are

computed as the two features that represent the centroid.

3. Bounding Box in [41]: The smallest rectangle containing the ROI. Bound-

ing box feature is of the form [x, y, width]; where x, y specifies the upper-left

corner of the bounding box, and width is in the form [xwidth ywidth...] and

specifies the length of the bounding box along each dimension.

4. Eccentricity in [41]: The Eccentricity characteristic is the ratio of the

length of the maximum chord A to the maximum chord B, which is perpen-

dicular to the ROI enclosed within the rectangle.

5. Major Axis Length in [41]: The length (in pixels) of the major axis of the

ellipse that has the same second moments as the ROI.

6. Minor Axis Length in [41]: the length (in pixels) of the minor axis of the

ellipse that has the same second moments as the ROI.

7. Orientation in [41]: The angle (in degrees) between the x-axis and the

major axis of the ellipse that has the same second-moments as the ROI.

8. Filled Area in [41]: The number of pixels in Filled Image; where filled

image is a binary image (logical) of the same size as the bounding box of

the ROI.

9. Convex Area in [41]: The number of pixels within the convex hull of the

ROI, with all pixels within the hull filled in.

10. EquivDiameter in [41]: the diameter of a circle having the same area as

the ROI.

11. Solidity in [41]: The proportion of the pixels in the convex hull that are

also within the ROI. Computed as Area/ConvexArea.

12. Extent in [41]: The proportion of the pixels in the bounding box that are

also in the ROI. Computed as the Area divided by area of the bounding box.

13. Perimeter in [41]: The perimeter is the length of the boundary of the object

ROI, in pixels.
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Note that since horizontal and vertical coordinates of the centroid are com-

puted as two separate centroid features and bounding box features include four

component features, namely, the x and y co-ordinates of the top left hand corner

and the width and height of the bounding box there are altogether a total of 17

region features that will be considered.

5.2.2.2 HOG features

The HOG features were extracted as defined in section 3.5. An HOG feature set

of length 144 was computed thus:

~x = (~I./~z − ~y)./(~y − ~ol) + 1

length =
∏

[~x, ~y, k]
(5.1)

where ~y is a two element vector [2 2] (block size), k is the number of bins; 9 ,

~z is a two element vector [32 32] (cell size), ~I is 100× 100 (size of the image), and
~ol is [1 1] (~y/2 - block overlap).

5.2.2.3 LBP features

The LBP histogram features (section 3.6) were extracted from each image enclosed

within the 100× 100 rectangular area giving a 256 bin histogram.

5.2.2.4 Feature combination

In order to recognise, classify and count vehicle types, we captured appearance and

shape information using the proposed feature sets; in doing so, Region Features,

HOG Features, and LBP Histogram Features defined above were extracted from

the segmented foreground object and were combined to form a feature vector for

the classification of vehicles into four categories namely, cars, buses, jeeps and

trucks respectively. The extracted Region (17), HOG (144) and LBP histogram

(256) features were combined and used for the experiments.

5.2.3 Feature selection

To reduce the feature space and speed-up the processing cycle, we used the CFS

[36] approach (see section 3.9) as the feature selector. CFS algorithm helps to

rank feature subsets according to the correlation based on the heuristic ”merit” as

reported by [58]. This reduced the original feature attributes obtained from the

segmented foreground vehicle objects to the minimal. In section 5.3 we showed

that with feature selection, substantial accuracy improvement for vehicle classific-

ation using both types of views was achieved.
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5.3 Experimental Analysis

A number of experiments were conducted to evaluate the performance of the pro-

posed algorithm in vehicle type recognition. The experiments were conducted

on video footage captured by a general purpose, non-calibrated, CCTV camera

installed on the side of Sohar Highway, Oman, in the city of Sohar. As the ro-

bustness of the algorithm to the vehicle’s angle of approach to the camera axis

and real-time performance capability are two important design criteria, further

experiments were conducted to evaluate in detail the accuracy and speed of the

proposed algorithm.

Two video datasets were collected for training and testing, by installing the

camera appropriately to capture front/rear (F/R) views of the vehicles and side /

angular views. The first dataset was collected during a short duration (15 minutes)

and captured the views of the vehicles in line with the motorway lanes. This was

achieved by filming from an overhead bridge with the camera installed rigidly on

a tripod. The second dataset was captured over a 10 hour period of daytime and

recorded footage at approximately a 450 angle from the direction of the movement

of vehicles. It is this angle that we consider a more practical direction of view for

a camera installed in the roadside. The experimental results for the two datasets

are presented, combined and separated to enable subsequent, direct comparison.

The idea is to prove that the proposed algorithm can produce accurate results

regardless of the angle of operation as long as training has been done on sample

images that have been recorded at a similar angle.

In general, the set of input-output sample pairs that are used for the training

of the classifier can be represented as,

(x1, y1), (x2, y2), ..., (xN , yN) (5.2)

where the input xi denotes the feature vector extracted from image I and

the output yi is a class label. Since we are categorising into vehicle types, the

class label yi encodes the four vehicle types, namely, cars, buses, jeeps and trucks;

while the extracted feature xi encodes one of the combinations of the feature sets

described above, i.e. Region, LBP and HOG features; 1). Region; 2). LBP; 3).

HOG; 4). Region and LBP (RL) ; 5). Region and HOG (RH); 6). Region, LBP

and HOG (RLH); 7). LBP and HOG (LH) respectively.

Note that all of the above seven feature set combinations were tested to de-

termine which combinations results in the best accuracy. As two datasets were

used, namely; F/R view dataset and angular view dataset. The experimental

results are presented separately in sections 5.3.1 and 5.3.2 respectively, as follows:
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5.3.1 Experiments on the front and rear view dataset

The dataset consisted of approximately 100 different vehicles and was split 50:50

for the purpose of training and testing. The vehicles captured and thus used

in experimentation only consisted of two vehicle types, namely, cars and buses

(unfortunately due to short duration of test data recording no jeeps and trucks

were captured) and hence the classification was of a binary nature, i.e. into these

two classes.

We conducted experiments using different feature attributes; 1). Region; 2).

LBP; 3). HOG; 4). RL; 5). RH; 6). RLH; 7). LH. Various success rates were

recorded. Using region features, we recorded 93% prediction accuracy when using

the entire set of feature attributes and the same percentage accuracy when CFS

selected 3 discriminating features from the original 17. Using LBP features only,

we recorded 79% recognition accuracy using the entire set of feature attributes

with significant improvement of recognition accuracy to 90% when CFS selected

8 discriminating features from the original 256. Using HOG features only, we

recorded a 97% recognition accuracy using the entire set of feature attributes

with accuracy dropping to 94%, when CFS selected 23 discriminating features,

from the original set of 144. Using RL features, we recorded 99% recognition

accuracy using the entire set of feature attributes with improvement to 100%

recognition accuracy when CFS selected 8 discriminating features from the possible

total of 273. Using RH features, we recorded 96% recognition accuracy using the

entire set of feature attributes, with an improvement to 97% recognition accuracy

when CFS selected 10 discriminating features from the total of 161. Using LH

features, we recorded 96% recognition accuracy using the entire set of feature

attributes, with an improvement to 97% recognition accuracy when CFS selected

24 discriminating features from a total of 400. Finally, using RLH features, we

recorded 97% recognition accuracy when using the entire set of feature attributes

with same level of accuracy of 97% indicated when CFS selected 16 discriminating

features from the original 417.

A summarisation of these results and observations are recorded in the first

third of the table 5.1.

Figure 5.5 below shows an example of a classified vehicle from the F/R dataset.
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Figure 5.5: Some examples of recognised vehicle from front/rear dataset

5.3.2 Experiments on angular view dataset

The second dataset obtained at an angle of approximately 450 to the direction of

vehicular movement consisted of sufficient number of examples of all four types of

vehicles that can be used for training purposes. Therefore the classification was

carried out into four categories cars, jeeps, trucks and buses respectively. A 50:50

split was used for training and testing.

We conducted experiments using all of the seven different selections of feature

attributes; 1). Region; 2). LBP; 3). HOG; 4). RL; 5). RH; 6). RLH; 7). LH.

Various success rates were recorded. Using region features only, we recorded 85.7%

recognition accuracy using the entire set of feature attributes with an improvement

to 86% recognition accuracy when CFS selected 9 discriminating features from the

original 17. Using LBP features, we recorded 74% recognition accuracy using the

entire set of feature attributes, with a significant improvement to 77% recognition

accuracy when CFS selected 20 discriminating features from the original 256.

Using HOG features, we recorded 92.7% recognition accuracy using the entire set

of feature attributes with accuracy dropping to 89% recognition accuracy when

CFS selected 34 discriminating features from the original 144. Using RL features,

we recorded 89% recognition accuracy using the entire set of feature attributes with

an improvement to 96% recognition accuracy when CFS selected 26 discriminating

features from the original 273. Using RH features, we recorded a 95% recognition

accuracy using the entire set of feature attributes with the accuracy dropping to

93% when CFS selected 22 discriminating features from the original 161. Using

LH features, we recorded a 93% recognition accuracy using the entire set of feature

attributes with an improvement to 94.7% recognition accuracy when CFS selected

47 discriminating features from the original 400. Finally, using RLH features, we

recorded a 94% recognition accuracy using the entire set of feature attributes with

significant improvement of accuracy to 97% when CFS selected 37 discriminating
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features from the original set of 417.

A summarisation of these results and observations are recorded in the second

third of the table 5.1.

Figure 5.6 below shows some examples of classified vehicles from the angular

view dataset.

Figure 5.6: Some examples of recognised vehicle from angular dataset

5.3.3 Analysis of results

Table 5.1 summarises the recognition accuracies achieved when using the two

datasets (i.e. F/R and angle), with and without feature selection. It also gives an

indication of the number of features in each category, i.e., Region, HOG, LBP and

their various feature combinations that remain after feature selection is applied.

The table also includes experimental results when the two datasets were combined

for both training and testing purposes. [Note: these are included in the bottom

third of the table. CV = combined view.].
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Table 5.1: Classification accuracy results with selected features

Features Whole accuracy Selected accuracy Selected features View angle

HOG 97% 94% 23 F/R

Region 93% 93% 3 F/R

LBP 79% 90% 8 F/R

RL 99% 100% 4R,4L F/R

RH 96% 97% 3R,7H F/R

LH 96% 97% 6L,18H F/R

RLH 97% 97% 3R,8H,5L F/R

HOG 92.7% 89% 34 Angle

Region 85.7% 86% 9 Angle

LBP 74% 77% 20 Angle

RL 89% 96% 9R,17L Angle

RH 95% 93% 8R,14H Angle

LH 93% 94.7% 22L,25H Angle

RLH 94% 97% 7R,14H,16L Angle

HOG 90% 87.8% 35 CV

Region 75% 74% 7 CV

LBP 74% 80% 23 CV

RL 84% 82.5% 7R,15L CV

RH 91.5% 83.5% 9R,11H CV

LH 89.5% 91.8% 20L,25H CV

RLH 91.5% 90.8% 8R,12H,15L CV

The overall conclusion when observing the results tabulated in table 5.1 is that

the feature combinations RL, RH, LH and RLH performs best as against using a

single set of features all being either Region, LBP or HOG features.

Results tabulated in table 5.1 shows that the experiments on the first dataset

(that consists of vehicles captured from their F/R) indicates higher accuracy fig-

ures as compared to experiments with the second dataset (angular view). There

are many reasons for this. It is noted that with the F/R dataset the classifications

were done only between two classes, namely cars and buses. This was due to the

practical reason that during the short duration (15 minutes) in which the video

footage of F/R dataset was captured, only a very few samples of trucks and jeeps

appeared in the footage. This made it impossible to find sufficient samples to train

the classifier. Classifying between two vehicle classes which are relatively distinct

(i.e. cars vs buses) as in the experiments, will be more accurate as compared to

discriminating between four vehicular classes that have some class pairs, which are
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harder to discriminate between (e.g. cars vs jeeps and jeeps vs mini buses). This

argument is justified when analysing the confusion matrices of tables 5.2 and 5.3

for the two datasets using the feature set of RLH. Further the angular dataset was

significantly larger, though producing a lower accuracy provides a more accurate

and trusted estimate of the performance accuracy of the proposed approach.

Table 5.2: Confusion matrix for Angular view dataset using RLH feature

Car Jeep Bus Truck

Car 1480 (98%) 0 0 0

Jeep 60 (1.4%) 1380 (88%) 20 (0.7%) 0

Bus 20 (0.7%) 60 (1.4%) 1480 (98%) 0

Truck 0 0 0 1500 (100%)

Table 5.3: Confusion matrix for F/R view dataset using RLH feature

Car Bus

Car 500 (100%) 10 (1%)

Bus 20 (2%) 470 (97%)

Figure 5.7: Accuracy on both datasets

Figure 5.7 plots the accuracy of various techniques, with and without feature se-

lection, for comparison purposes. We see that the feature combination techniques,

in particular the RLH technique performed generally better in all experiments.
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Table 5.4: Speed of processing using varying feature attributes

Features F/R

Whole

F/R

Selected

Angle

Whole

Angle Se-

lected

CV

Whole

CV Se-

lected

HOG 0.02sec 0.01sec 0.08sec 0.04sec 0.17sec 0.05sec

Region 0.01sec 0sec 0.03sec 0.02sec 0.03sec 0.02sec

LBP 0.05sec 0.01sec 0.2sec 0.03sec 0.37sec 0.04sec

RL 0.03sec 0.01sec 0.14sec 0.03sec 0.32sec 0.05sec

RH 0.01sec 0sec 0.09sec 0.03sec 0.14sec 0.04sec

LH 0.03sec 0.01sec 0.15sec 0.04sec 0.27sec 0.05sec

RLH 0.02sec 0.01sec 0.13sec 0.04sec 0.6sec 0.07sec

Using different combinations of features will result in spending different amount

of time for modelling. Table 5.4, and Figure 5.8 illustrate that when the whole

feature set is used, time required for modelling increased; this is due to the fact

that when the number of feature attributes are large, more time is required for the

modelling to complete successfully. However the careful analysis of the results also

indicate that feature selection can improve the classification result and reduce the

feature set to a reduced number of discriminative features that result in making

the time requirement for classification minimal.

Figure 5.8: Speed of processing: whole vs selected. Notations used: C - combined
view, FR - frontrear view, A - angular view

For the purpose of detailed analysis of the performance of the proposed ap-

proach, the classification performance is evaluated using the True, false positive

rates, precision, recall and ROC area values of the two views and combined (see

tables 5.5, 5.6 and 5.7 below for details).
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Table 5.5: True, false positive rates, precision, recall, and ROC area performance
values for angular view dataset

TP FP Precision Recall ROC Area Class

Whole features

0.959 0.027 0.922 0.959 0.972 Car

0.918 0.035 0.893 0.918 0.96 Bus

0.897 0.014 0.959 0.897 0.968 Jeep

1 0 1 1 1 Truck

0.943 0.019 0.944 0.943 0.975 Weighted

Average

Selected feature sets

1 0.018 0.949 1 0.991 Car

0.945 0.013 0.958 0.945 0.964 Bus

0.949 0.005 0.987 0.949 0.983 Jeep

1 0 1 1 1 Truck

0.973 0.009 0.974 0.973 0.985 Weighted

Average

Table 5.6: True, false positive rates, precision, recall, and ROC area performance
values for F/R view dataset

TP FP Precision Recall ROC Area Class

Whole features

0.98 0.041 0.962 0.98 0.97 Car

0.959 0.02 0.979 0.959 0.97 Bus

0.97 0.03 0.97 0.97 0.97 Weighted

Average

Selected feature sets

0.98 0.041 0.962 0.98 0.97 Car

0.959 0.02 0.979 0.959 0.97 Bus

0.97 0.03 0.97 0.97 0.97 Weighted

Average
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Table 5.7: True, false positive rates, precision, recall, and ROC area performance
values for combined view dataset

TP FP Precision Recall ROC Area Class

Whole features

0.872 0.034 0.928 0.872 0.952 Car

0.904 0.04 0.911 0.904 0.95 Bus

0.925 0.042 0.816 0.925 0.953 Jeep

1 0 1 1 1 Truck

0.915 0.031 0.917 0.915 0.96 Weighted

Average

Selected feature sets

0.902 0.049 0.902 0.902 0.953 Car

0.872 0.033 0.924 0.872 0.951 Bus

0.881 0.045 0.797 0.881 0.941 Jeep

1 0 1 1 1 Truck

0.908 0.034 0.91 0.908 0.956 Weighted

Average

In table 5.8, we compare the average of true, false positive rates, precision,

recall and ROC area performance values on the dataset. Figure 5.9 tabulates

these results as bar graphs for ease off interpretation.
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Table 5.8: Weighted average of true, false positive rates, precision, recall, and
ROC area performance values on all datasets

TP FP Precision Recall ROC Area datasets

RLH feature sets

0.97 0.009 0.97 0.97 0.99 Angle

0.97 0.03 0.97 0.97 0.97 F/R

0.91 0.034 0.91 0.91 0.96 CV

HOG feature sets

0.89 0.035 0.90 0.89 0.96 Angle

0.94 0.061 0.94 0.94 0.94 F/R

0.88 0.045 0.88 0.88 0.94 CV

Region feature sets

0.86 0.046 0.86 0.86 0.94 Angle

0.93 0.058 0.94 0.93 0.94 F/R

0.74 0.094 0.74 0.74 0.87 CV

LBP feature sets

0.77 0.076 0.77 0.77 0.90 Angle

0.90 0.101 0.90 0.90 0.90 F/R

0.80 0.074 0.80 0.80 0.92 CV

Figure 5.9: Weighted average plot of TP, FP rates, precision, recall and ROC area
for RLH, HOG, Region and LBP feature sets

In summary the ROC curve shows the ability of the classifier to rank the

positive instances relative to the negative instances. The table below shows the

true, false positives including the AUC values on all datasets using the RLH feature



CHAPTER 5. VEHICLE TYPE RECOGNITION 82

combination.

Given the above observations and facts, we plot the ROC graphs of the pro-

posed approach when tested with the F/R datasets and angular datasets, in figures

5.10, 5.11 and 5.12 below.

Figure 5.10: ROC curve of front/rear view datasets

Figure 5.11: ROC curve of angular view datasets
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Figure 5.12: ROC curve of combined view datasets

The average AUC value for the classification of using the proposed feature

combination on F/R and angular datasets is 97%, which is greater than 90%

(section 3.11). Therefore the average performance (across the classification of

various vehicle types) of the algorithm can be concluded to be excellent.

It is noted that each point on the ROC curve represents a TPR/FPR pair,

corresponding to a particular decision threshold. The AUC is a measure of how

well a parameter can distinguish between groups. ROC curves can also be used to

compare performance of two or more experiments (see figures 5.10,5.11 and 5.12).

For the purpose of detailed analysis, we present the F-measure analysis of the

classification performances in table 5.9.

Only the results when feature selection was used have been tabulated. From

the table 5.9, we see the impact feature combinations on the percentage accuracy

values indicated. It is clear that combining two or all three types of features

enables a more accurate overall performance.

A final observation is that the accuracy levels are better when the training and

testing are both done on footage captured within a limited angle. When all data is

combined the accuracy drops. However this drop of accuracy is not significant to

rule out that the proposed approaches will work regardless of the angle of approach

of the vehicle.
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Table 5.9: F-measure recognition percentages

Features Angular view Front/Rear view Combined view Average value

HOG 89% 94% 87.8% 90%

LBP 77% 90% 80% 82%

Region 86% 93% 74% 84%

RH 93% 97% 84% 91%

RLH 97% 97% 91% 95%

RL 96% 100% 83% 93%

LH 95% 97% 92% 94.6%

5.4 Conclusion

In this chapter we have proposed a real-time vehicle type recognition and counting

system that can be re-used, independent of the direction of view. The system

is based of detecting a vehicle and using a combination of features of Region,

Local Binary Pattern and Histogram Oriented Gradient, to identify the vehicle

type. Further we show that using a suitable feature selection approach both the

speed and the accuracy of the algorithms can be significantly increased. Average

accuracy figures reaching 95% has been achieved on CCTV video footage captured

via a general purpose, non-calibrated camera on the side of a motorway during a

ten hour recording period.



Chapter 6

Night-time Detection and

Recognition

6.1 Introduction

Human object detection and vehicle type recognition have always been popular

application domains that have been served by computer vision techniques since

they are fundamental to a number of video analytic and surveillance scenarios and

can be quite effective even as a standalone system for basic level security provision.

The applications could range from video analytic/forensics, where the objective

would be to analyse a crime scene for the benefit of corporate/government bodies

and/or military establishments or applications that will employ them for envir-

onment monitoring related surveillance activities. Recently, human and vehicle

detection have found many uses in application domains that incorporate such a

need as part of some core functionality namely, intelligent transportation systems,

smart vehicles and in robotics.

This ever-increasing range of applications, especially in mission-critical situ-

ations or wherein human safety may be compromised, necessitates the development

of a reliable and robust human detection and vehicle type recognition system. Con-

sequently, a number of detection and recognition techniques have been developed

and are already in use. However, techniques that were initially designed for day-

time images fail when applied in their original form on night-time images. The

primary reason is that conventional night-time images suffer either from low light

conditions or from bright and intense light sources that tend to flood the entire

image, such as the dazzle of headlights from oncoming vehicles. Consequently,

thermal images tend to offer a better alternative for analyzing night-time scenes

than conventional night-time images. Thermal images, on the other hand, have

their own drawbacks such as the lack of colour and texture information, which

85
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may be the very features required by the aforementioned techniques.

Given the above observations this chapter proposes the use of contour-related

feature extraction from thermal images, which are largely unaffected by widely

varying lighting conditions. We show that the proposed technique based on the

CENsus Transformed histogRam Oriented Gradient (CENTROG) descriptors

(see section 3.8) is able to classify vehicles and detect pedestrians at night-time

based on captured thermal images.

For clarity of presentation this chapter is divided into several sections. Apart

from this section which is a general introduction to the problem domain sec-

tion 6.2 provides the theoretical background behind CENTRIST and CENTROG

descriptors. Section 6.3 subsequently details the proposed approach for human ob-

ject detection and vehicle type classification. Section 6.4 provides the experimental

results and a detailed analysis and finally section 6.5 concludes the chapter.

6.2 CENTRIST and CENTROG Descriptors

Census Transformed Histogram for encoding sign information (CENTRIST) is a

visual description technique that was originally proposed by Wu et. al. [102]

that is used to detect topological sections or scene categories. It extracts the

structural properties from within an image, while filtering out the textural details.

It employs the Census Transform (CT) [107] technique in which an 8-bit value is

computed in order to encode the signs of comparison between neighbouring pixels.

Census Transform compares the intensity value of a pixel with its eight surrounding

neighbours (see example below).

Example CT:

26 75 65

26 46 22

26 40 65

⇒
1 0 0

1 1

1 1 0

⇒ (10011110)2 ⇒ CT = 158

From CT example above, it can be seen that if the pixel under consideration

is larger than (or equal) to one of its eight neighbours, a bit 1 is set in the cor-

responding location; else a bit 0 is set. The eight bits generated from intensity

comparisons can be put together in order and converted to a base-10 value (e.g.,

binary to decimal conversion). This is the computed CT value for the pixel under

consideration. The so-called CENTRIST descriptor therefore is the histogram of

the CT image generated from an image.

In order to compute the CENTROG features (the proposed technique), after

the image structure has been captured, we compute CT on captured edge image,

thereafter HOG is computed from the transformed edge image. The HOG works
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by counting the occurrences of gradient orientation in localized portions of an

image. The HOG captures local object appearances and shape, which can often

be characterized rather well by the distribution of local intensity gradients, or

edge directions as reported in [77]. Gradient is computed by applying [1, 0, 1] and

[1, 0, 1]T in horizontal and vertical directions within an image. Gradient inform-

ation is collected from local cells into histograms using tri-linear interpolation.

On the overlapping blocks composed of neighbouring cells, normalisation is per-

formed. CENTROG descriptor therefore is the HOG on the CT generated image.

The resultant images are shown below, see figure 6.1. CENTROG is a very useful

technique which helps to capture local and global structure of a particular image

effectively when colour and texture information are missing in a given image.

CENTROG compared against CENTRIST in pedestrian detection and vehicle

type recognition. Results obtained shows that CENTROG is a better alternat-

ive for pedestrian detection and vehicle type recognition for night-time thermal

images.

(a) Pedestrian sample

(b) Car sample

(c) Truck sample

Figure 6.1: Samples showing original image with processed images after CT, edge
and HOG operations (a) Pedestrian sample, (b) Car sample, (c) Truck sample

The resultant images as shown in figure 6.1, Parts (a), (b) and (c) shows the;

original, edge, CT-edge, CT and HOG on CT-edge images, respectively.
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6.3 Proposed System Description

The proposed system consists of pedestrian detection and vehicle type recognition

subsystems. These are described as follows:

6.3.1 Pedestrian detection

Night-time thermal pedestrian images of resolution 360×240 pixels were obtained

from publicly available database of thermal images in [19]. Human figures were

manually extracted as rectangular regions of 20 × 40 pixels as sample regions

for training for the presence of human figures. Further, additional 20 × 40 pixel

regions were extracted from the background regions as samples for training for

the absence of a human figure. Canny edge detection (section 3.2) was applied

on all of the extracted 20 × 40 image regions (i.e. both positive and negative

sample regions for human object recognition) followed by the computation of the

CT. HOG features were then extracted. The resulting feature sets were used to

train an SVM classifier for pedestrian detection. The flow diagram for pedestrian

detection is shown in figure 6.2 below.
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Figure 6.2: Proposed night-time pedestrian detection technique

6.3.2 Vehicle type recognition

Night-time thermal vehicle images were retrieved from a publicly available video

dataset in [89], which were then segmented using the GMM (section 3.7) based

background subtraction technique. The GMM technique uses a method to model

each background pixel by a mixture of k-Gaussian distributions. The weight of the

mixture represents the quantum of time for which the pixel values stay unchanged
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in a scene.

The resolution of the video dataset used was 720 × 480 pixels. Within these,

a ROI from co-ordinate locations [127.5, 149.5, 401, 262] was extracted as it can

be assumed that all foreground objects picked up by the above algorithm in this

region were moving vehicles only. These co-ordinate locations were selected since

they represented a region of the image wherein the vehicles were located when

it was closest to the camera and hence offered the best view. This resulted in

a ROI with a resolution of 401 × 262 pixels, which was then resized to 100 × 66

in order to maintain the aspect ratio. From the dataset used, trucks and cars

categories were classified using SVM binary classifier and used as a training set

and a test set. Canny edge detection was applied on the extracted images followed

by computation of the CT. HOG features were then extracted and employed to

train the SVM classifier for vehicle type recognition. The flow diagram is as shown

in figure 6.3.
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Figure 6.3: Proposed night-time vehicle classification technique
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6.4 Experiments and Performance Analysis

Results

A number of experiments were conducted to evaluate the performance of the

proposed algorithm on pedestrian detection and vehicle type recognition in night-

time thermal images. The experiments were conducted on thermal image dataset

given in [19] for pedestrian detection. Similarly, thermal video dataset given in [89]

was used for vehicle type recognition. The results obtain from these experiments

are discussed in the following subsections.

6.4.1 Pedestrian detection experiments

The following are the parameters associated with the image dataset used to capture

images. The dataset comprises images captured under different environmental

conditions.

Name Description

Sensor Raytheon 300D thermal sensor core, 75 mm lens, Cam-

era mounted on rooftop of 8-story building, Gain/focus

on manual control.

Data Pedestrian intersection on the Ohio State University

campus, Number of sequences = 10, Total number of

images = 284, Format of images = 8-bit grayscale bit-

map, Image size = 360 × 240 pixels, Sampling rate =

non-uniform, less than 30Hz.

Table 6.1: Pedestrian Camera parameter

Sections within these images consisting of humans were manually extracted.

These were rectangular regions of 20× 40 pixels. A total of 942 pedestrian image

sections were extracted, half of which were used for training and the remaining half

for testing. Similarly, a total of 2494 background image sections with dimensions

of 20×40 pixels were also extracted and half of them were used for training and the

remaining half for testing. Samples of extracted pedestrian and non-pedestrian

image sets can be seen in figure 6.4.
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(a) Pedestrian (b) Non-pedestrians

Figure 6.4: Some examples of extracted 20×40 pixel pedestrian and non-pedestrian
images

The proposed technique was evaluated using a sliding window approach for

annotating detected humans accordingly. To detect pedestrians in a given image

sample, the whole image is scanned with a sliding window of width 20 pixels and

a height of 40 pixels. Binary classification using SVM was conducted on feature

sets of length 144. Experiments were conducted using CENTROG and compared

with CENTRIST feature descriptor. Experimental results obtained showed that

CENTROG (the proposed technique) outperformed CENTRIST by recording a

detection accuracy of 97% versus 94%. figure 6.5 shows the results of detected

pedestrians using the two approaches.
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(a) CENTROG

(b) CENTRIST

Figure 6.5: Detected pedestrians using (a) CENTROG and (b) CENTRIST

From figure 6.5, it can be observed that CENTRIST failed to detect some

pedestrians and flagged a few false alarms, while CENTROG did not. However,

CENTROG failed to detect one pedestrian due to an object that elongated the

pedestrian in the image (figure 6.5a, image on the right).

Table 6.2 tabulates further performance related metrics that can be used

to evaluate the performance of CENTROG based recognition approach vs the

CENTRIST based recognition approach. Table 6.3 tabulates the related confu-

sion matrices.
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Table 6.2: True, false positive rates, precision, recall, F-measure and ROC area
performance values for pedestrian detection

TP FP Precision Recall F-Measure ROC Area Class

CENTROG

0.94 0.017 0.95 0.94 0.95 0.96 Pedestrian

0.98 0.06 0.98 0.98 0.98 0.96 Non-

pedestrian

CENTRIST

0.91 0.05 0.88 0.91 0.90 0.93 Pedestrian

0.96 0.09 0.97 0.96 0.96 0.93 Non-

pedestrian

In justifying the experiment, we present the confusion matrix in table 6.3

below.

Table 6.3: Confusion matrix for pedestrian detection

Pedestrian Non-pedestrian

CENTROG

Pedestrian 429 (93.5%) 28 (6.5%)

Non-pedestrian 22 (1.8%) 1239 (98.2%)

CENTRIST

Pedestrian 421 (90%) 43 (10%)

Non-pedestrian 56 (4.7%) 1198 (95.3%)

6.4.2 Experiments on vehicle type recognition

The following are specifications of the camera used to capture the video footage

within the dataset provided:

Description

FLIR SR-19 Thermal Camera, White Box,

Black Box, Total Video Footage Captured:

63 min of ROBB DRIVE and 1-80 OVER-

PASS

Table 6.4: Vehicle Camera parameter

After segmentation using the GMM foreground/background subtraction tech-

nique, 650 truck and 650 car images were selected, half of which were utilized

for training and the remaining half for testing (see figure 6.6 for an example of
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extracted vehicle image sets). Binary classification (i.e. car vs truck) using SVM

was conducted on feature sets of length 2772. A number of experiments were

conducted using CENTRIST and CENTROG feature descriptors. Results from

these experiments showed an accuracy of 100% for the CENTROG based tech-

nique in contrast to an accuracy of 92.7% demonstrated by the CENTRIST based

technique

Figure 6.6: Some examples of extracted segmented vehicles

The CENTROG technique was tested on a number of randomly selected im-

ages, the results of which are depicted in figure 6.7. As can be observed, CENTROG

was able to successfully recognize all vehicle types.

Figure 6.7: Classified vehicles using CENTROG feature descriptor
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This is in contrast to the application of the CENTRIST technique on the same

data set which resulted in some cars being wrongly classified as a truck (see figure

6.8).

Figure 6.8: Classified vehicles using CENTRIST feature descriptor

Table 6.5 tabulates further performance related metrics that can be used to

evaluate the performance of CENTROG recognition approach vs the CENTRIST

recognition approach. Table 6.6 tabulates the related confusion matrices.

Table 6.5: True, false positive rates, precision, recall, F-measure and ROC area
performance values for vehicle type recognition

TP FP Precision Recall F-Measure ROC Area Class

CENTROG

1 0 1 1 1 1 Truck

1 0 1 1 1 1 Car

CENTRIST

0.96 0.10 0.91 0.96 0.93 0.93 Car

0.90 0.04 0.95 0.90 0.93 0.93 Truck

In justifying the experiment, we present the confusion matrix in table 6.6

below.
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Table 6.6: Confusion matrix for vehicle type recognition

Car Truck

CENTROG

Car 325 (100%) 0

Truck 0 325 (100%)

CENTRIST

Car 322 (99.1%) 3 (0.9%)

Truck 1 (0.3%) 324 (99.7%)

6.4.3 Performance evaluation using ROC curves

In this section a further comprehensive performance evaluation of the proposed

approach is carried out using ROC curves.

The Area Under Curve (AUC) is a measure of how well a parameter can

distinguish between two contrasting groups of values.

Given the above observations and facts, we plot the ROC graphs of the pro-

posed approach CENTROG based approach when tested on the pedestrian and

vehicle datasets against the CENTRIST based approach, in figures 6.9 and 6.10

respectively.

Figure 6.9: ROC curves showing the performance of CENTROG vs CENTRIST
feature descriptors on the pedestrian detection experiment
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Figure 6.10: ROC curves showing the performance of CENTROG vs CENTRIST
feature descriptors on the vehicle type classification experiment

From figures 6.9 and 6.10 it is seen that the average AUC value for the clas-

sification of pedestrian dataset is 96% when using the CENTROG descriptor and

93% when using the CENTRIST descriptor. Although they both have excellent

performances, the proposed feature descriptor has a higher performance value of

96%. Similarly, the average AUC value for the classification of vehicle dataset is

100% when using the CENTROG descriptor and 92.7% when using the CENT-

RIST descriptor. Therefore the proposed CENTROG descriptor based approach

out performances the CENTRIST descriptor based approach by a percentage of

7.3%, which is a significant performance improvement.

Tables 6.7 and 6.8 tabulate full performance comparison data when using

CENTROG and CENTRIST feature descriptors, whilst detecting pedestrians and

recognizing vehicle types on the thermal image dataset, respectively. As can be

observed, the CENTROG based approach outperforms the CENTRIST based ap-

proach in detecting both pedestrians and in recognizing vehicle types.

Table 6.7: Performance analysis on pedestrian detection

Technique True

Positive

False

Positive

Precision Recall F-

measure

ROC-

Area

CENTROG 97% 5% 97% 97% 97% 96%

CENTRIST 94% 8% 94% 94% 94% 93%
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Figure 6.11: Performance analysis plot on pedestrian detection

Table 6.8: Performance analysis on vehicle classification

Technique True

Positive

False

Positive

Precision Recall F-

measure

ROC-

Area

CENTROG 100% 0% 100% 100% 100% 100%

CENTRIST 92.7% 7.3% 92.9% 92.7% 92.7% 92.7%

Figure 6.12: Performance analysis plot on vehicle type recognition

Further experiments were performed on the pedestrian dataset by combining
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CENTROG and CENTRIST feature descriptors. Experimental result gave 98.8%

accuracy, which is a slight improvement over CENTROG technique which recorded

97%.

In order to reduce the computation complexity and hence the computation

time, a subset of discriminating features were chosen from the entire feature set

and used within the experiments (see section 3.9).

Table 6.9 tabulates and compares the recognition accuracies, the number of fea-

tures used and the processing time required for training (i.e. building the model)

before and after the use of the feature selection algorithm. The improvement of

speed obtainable is clear whilst maintaining the accuracy at the same level.

Table 6.9: Processing time and accuracy rates after feature selection for both
pedestrian detection and vehicle type recognition

Features Total

Features

Processing

Time

Accuracy Selected

Features

Processing

time

Accuracy

CV 2772 1.05 secs 100% 22 0.03 secs 97.3%

CP 144 1.02 secs 97% 27 0.15 secs 95.9%

CTV 256 0.26 secs 92.7% 37 0.05 secs 90.2%

CTP 256 1.57 secs 94% 35 0.14 secs 93.2%

CTEI 512 2.54 secs 95.6% 92 0.48 secs 96%

CCT 656 1.62 secs 98.9% 92 0.33 secs 98%

Notations used: CV - CENTROG vehicle, CP -CENTROG pedestrian, CTV -

CENTRIST vehicle, CTP - CENTRIST pedestrian, CTEI - CENTRIST edge and

image, CCT - CENTROG and CENTRIST.

In order to improve pedestrian detection, we combined extracted features of

histogram of CT image and edge image (CENTRIST Edge and Image). It recorded

a slight improvement for pedestrian detection from 94% to 95.6% using the com-

bined CENTRIST features. Similarly, we combined CENTRIST and CENTROG,

which improved slightly from 97% to 98.9% for pedestrian detection.

6.5 Conclusion

This chapter proposed a feature-based technique for pedestrian detection and

vehicle classification in night-time thermal images. The features were extracted by

applying Histogram Oriented Gradient feature extraction on Census Transformed

images and hence is termed as CENTROG. A linear SVM classifier was trained

on the features obtained from the two datasets (pedestrian and vehicle). The pro-

posed technique was implemented and compared with the CENTRIST technique.
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Experimental results showed that the proposed CENTROG based approach out-

performed the CENTRIST based approach in detecting pedestrians (3% realative

improvement) as well as recognizing vehicle types (7.3% relative improvement),

thereby exhibiting a higher detection and classification accuracy. Further exper-

iments revealed that combining CENTROG and CENTRIST feature descriptors

offered the best performance (1.9% relative improvement over CENTROG). Fi-

nally the impact of the CFS on the processing time taken for training (i.e. building

the model) before and after the use of the feature selection algorithm was also ana-

lysed. Results indicated a significant reduction (1.02 seconds - vehicles recognition,

0.87 seconds - pedestrian detection ) in time taken for detection and classification

in contrast to employing the entire feature set. Reduction in processing time

implies that the proposed technique can be employed in real-time detection and

classification scenarios.



Chapter 7

People Re-identification by

Low-Level Features and Mid-level

Attributes

This chapter presents a novel approach to people re-identification, a task that

is considered as of fundamental importance in modern video analytic/forensic

systems.

7.1 Introduction

A fundamental task for a distributed multi-camera surveillance system is to recog-

nise individuals in diverse scenes obtained using two or more cameras at different

times and locations. Person re-identification is a long term people surveillance

and monitoring task, where individuals or a group of people are differentiated

from several possible targets in diverse scenes, obtained from different cameras

distributed over a network of locations of substantial distances, in the presence of

occlusions, difference in view angles, lighting conditions and time.

In a surveillance scenario, an individual disappearing from a particular cam-

era view needs be matched with similar human objects present in one or more

other views obtained at different physical locations, over a period of time, and

be differentiated from numerous other human objects in the same views. In a

typical surveillance / video monitoring task, it can help to find out if a particular

individual who enters and exits a building is the same person identified within

another different building; within a public space, work environment, university

campus, school, train station, airports etc. It is noted that in answering the above

question the views of surveillance footage may be taken from different, angles and

distances, backgrounds, lighting conditions and various degrees of occlusions.

103



CHAPTER 7. PEOPLE RE-IDENTIFICATION BY LOW-LEVEL FEATURES ANDMID-LEVEL ATTRIBUTES104

As reported by [47], concentrating errors, biasness, matching errors and human

surveillance costs, has given rise to the need for the automation of re-identification

tasks. Despite the past and present efforts to solve the automation of the re-

identification problem using various techniques [30], it still remains a research

area, where much research effort are needed, due to the fact that conventional

biometrics such as face recognition has failed as a result of insufficient region of

interest (ROI) detail for extracting robust features.

Further in exploiting other visual features such as appearance of a person, most

features used in literature have not been sufficiently discriminative enough for

low quality inter-camera differentiation, due to changes in a person’s appearance,

differences in view angles, changes in lighting conditions, presence of background

clutter and occlusion etc [30].

Although in general, significant feature variations could be present in a sig-

nificant variety of clothes worn by people, vast majority of public may choose

to wear ordinary clothes with similar appearance in daily living. Such charac-

teristics which bear a mid-level semantic meaning can be exploited for a person

re-identification task. In this chapter, we will consider mid-level semantic attrib-

utes as valued variables for the person re-identification problem. For example, we

will consider the trouser to either be coloured or bright.

In this chapter we propose a selective parts-based approach for low-level feature

representation of a pedestrian and for mid-level feature attribute detection for

human description. This approach helps to reduce misalignment, avoidance of

the background and helps in clothing attributes detection, which help improve

re-identification accuracy.

A specifically captured dataset alongside existing publicly available dataset;

Viewpoint Invariant Pedestrian Recognition (VIPeR) were used in the experiments

conducted.

For clarity of presentation the chapter is divided into a number of sections

as follows: immediately following this section is section 7.2, which describes the

proposed method for person re-identification. Section 7.3 describes how the parts

of a holistic human figure were detected to enable detailed clothing attribute de-

tection. Section 7.4 shows us the list of clothing attributes used for the proposed

person re-identification task. Section 7.5 gives us the results of the various experi-

ments performed. Section 7.6 presents experimental analysis with their respective

performance results, while section 7.7 concludes this chapter.
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7.2 Proposed Re-identification Framework

This section presents the operational details of the proposed human object re-

identification system. The process of re-identifying a person in a video surveil-

lance system generally includes three broad steps: human object detection; feature

capture and representation and object classification (see figure 7.1).

Figure 7.1: Human re-identification process

Figure 7.2 illustrates the detailed block diagram of the proposed person re-

identification system. Sections 7.3 7.5 presents the underlying algorithmic details

of each of the functional blocks of the figure 7.2 below.

Figure 7.2: Proposed system for person re-identification

Fundamentally, in the proposed system, the re-identification of a person is

carried out by jointly making use of so-called low-level features of a person’s ap-

pearance (i.e. a detailed colour histogram of central body part regions, see section

7.3.1) and so-called mid-level features captured from a person’s head, torso and

leg regions (e.g. dark head, coloured shirt, dark trouser etc). More specifically

the low-level feature representation of person’s appearance is defined by detailed

colour histograms which are normalised and obtained in regions of an initial body

part segmentation and a subsequent sub-division (see section 7.3.1); while the

mid-level feature representation of a person’s appearance is defined by a higher-

level description of the same regions that determines for example whether the

shirt/trouser is dark/coloured or not and head is dark or not etc. The details of

these functional blocks can be described in the following section.
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7.3 Human Body Part-based Feature

Representation

Prior to the detection and analysis of a human body parts or segments for sub-

sequent feature extraction, the full human body needs to be detected in a scene.

For this purpose we utilised the object detection technique of [17] which uses HOG

features for human localisation. Once the full body is identified as defined within

a single rectangle, a body part segmentation and a subsequent sub-division is car-

ried out. Finally the a detailed feature analysis is carried out (see section 7.4 and

7.5) within the above regions that is finally used for person re-identification (see

section 7.4.3).

7.3.1 Body region segmentation and sub-division

Assuming a standing and upright human, body region segmentation and sub-

division helps subsequent capture of specific features of a segmented human object.

This segmentation is performed by splitting the rectangular region containing

the complete human figure into three parts, namely; head, torso, and leg (see

figure 7.2). Further sub division of these three regions into smaller regions of

interest (ROIs) is done by further splitting the; head region into three horizontally

separated, equally sized sub-regions, the torso and leg regions are divided into

equally sized, 3× 3 rectangular sub-regions, as depicted by figure 7.2. In order to

minimise the effects of consideration of the background regions in further analysis,

only the middle rectangular patch is selected from the head region and the four

middle patches, placed vertically, are selected from the torso and the leg regions,

for subsequent capture of low-level colour histogram features and further attribute

selection.

7.3.2 Low-level feature extraction and representation

The next step after body regions segmentation and sub-division is the colour

histogram based feature detection and representation of the five centrally spaced

regions. For each of the five said regions a so-called RGB 3D-8 bin colour histogram

is extracted by (see figure 7.2) dividing each colour channel (i.e. R,G and B)

into 8 bins and concatenating into a single feature vector of length 8 × 8 × 8 =

512. Consequently, the appearance of a person is described by a feature vector,

obtained by concatenating features of the five centrally located patches; giving a

total feature length of 2560 (see figure 7.3).
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Figure 7.3: Low-level feature concatenation

7.4 Clothing Attribute Representation

Aimed at creating a more detailed representation of a human figure by adding

further higher level features to the low-level feature descriptor obtained above

(see section 7.3.2) the said five regions are further analysed to determine seven

attributes that determines a higher-level appearance of the human body.

Figure 7.4 illustrates the seven attributes defined. One attribute is defined

from the head-region, namely the ’head-colour’. Three attributes are defined from

the shirt region, namely the ’shirt-colour’, ’shirt-brightness’ and ’shirt-pattern’,

Two attributes are defined from the trouser region, namely, ’trouser-colour’ and

’trouser-brightness’. Finally, one attribute is defined for describing the overall

appearance, namely, ’clothing-style’. Each of the above attributes can take two

possible values as tabulated in table 7.1. Hence the value of each of the attributes

can be represented by a binary number 1, or 0, for e.g. dark-shirt with 1 and

non-dark shirt with 0.

Figure 7.4: Definition of medium-level attributes
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Table 7.1: Attributes description and values

Number Attributes Value1 Value2

1 Shirt-Colour Coloured No Colour

2 Shirt-Brightness Bright Dark

3 Shirt-Pattern Patterned No Pattern

4 Clothing-Style Single colour up/down Multi-colour up/down

5 Head-Colour Dark Other

6 Trouser-Brightness Dark Bright

7 Trouser-Colour Coloured No No colour

7.4.1 Clothing attribute value determination

The medium-level attribute values of test human objects were determined by using

a Support Vector Machine (SVM) classifier to train on hand annotated attributes

with known values from known sample regions of a training image dataset (see

section 7.6.1).

As a result of the above each detected human figure’s medium-level features

will be represented by a seven element vector with each element being either a

zero or a one.

7.4.2 The combined feature vector

Figure 7.5 illustrates the combined feature vector that comprises of the low-level

3D-8 bin colour histogram features and medium level features that are represented

by the above mentioned attributes. This combined feature vector defines the

detected human and will subsequently be used in human re-identification.

Figure 7.5: Total feature length

7.5 Experiments

Two datasets were used for experiments, a self-captured set of new content and

the most popular database used by other researchers, i.e., VIPeR.
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7.5.1 Self-captured dataset

The captured database has 118 frames which comprises of footage relevant to 6

different people taken from two different cameras. All images are scaled to a size

of 128× 48 pixels. In our experiments the cameras are named as A and B and the

set of images captured by Cam B are used as the gallery images and the set of

images captured by the Cam A are used as the probe image set. The performance

of the proposed algorithm for person re-identification is evaluated by matching

each test image in Cam A against the images in Cam B, the gallery image set.

Figure 7.6 shows some examples of the detected persons in the self-constructed

dataset. This dataset contains predominantly indoor images with challenges in

illumination changes due to changes in artificial lighting within the building.

Figure 7.6: Samples from the self-captured data set

7.5.2 The VIPeR dataset

The VIPeR dataset contains 632 pedestrian image pairs captured by two cameras

having different viewpoint, pose and lighting. Images are scaled to size 128 × 48

pixels. In our experiments we name the two camera as Cam A and Cam B. In the

experiments conducted the set of images captured by the Cam B are considered

the gallery set and those captured by the Cam A are considered as the probe

image set. The algorithmic performance is evaluated by matching each test image

in Cam A against the Cam B gallery.

Some selected example images from the VIPeR dataset are illustrated in figure

7.7

Figure 7.7: VIPeR data samples
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7.5.3 Evaluation and metrics used

The database used for evaluation be it the VIPeR dataset or the self-captured

dataset is first divided into two sets, i.e., the training image set and test image

set. Approximately half of the images are used for training and the remaining

half is used for testing. We train an SVM classifier on both the training and

validation portions, while re-identification performance is reported on the held

out test portion.

A person from the query image set is re-identified using a distance metric

between itself and each of the candidate images in the gallery image set.

The low-level, distance measure, dL, between a query image, Iq and a candidate

image from the gallery image set Ig is defined as follows:

dL(Iq, Ig) =
∑
l

dLl (Ll(Iq), Ll(Ig)) (7.1)

where Ll(Iq) and Ll(Ig), refers to the extracted type l low-level features from

the query and gallery images i.e Iq and Ig respectively and dLl is the corresponding

distance measure for the feature type l.

For the clothing attributes, the distance measure is defined as follows:

dA(Iq, Ig) =
∑
a

dAa (Aa(Iq), Aa(Ig)) (7.2)

where Aa(Iq) and Aa(Ig) are the attribute encoding ’a’ of the query image Iq

and the candidate gallery image Ig

Given the above definitions, the Euclidean distance metric between a query

image and a gallery image based on the low-level features is defined as follows:

dL =

√∑
i

(q(li|xq,i)− g(li|xg,i))2 (7.3)

where li|xq,i refers to the ith low-level feature of the query image given all

other features of the query image and li|xg,i refers to the ith low-level feature of

the gallery image given all other features of the gallery image.

Similarly, the Euclidean distance metric between the query image and a gallery

image based on the attribute-space is defined as follows:

dA =

√∑
i

(q(ai|xq,i)− g(ai|xg,i))2 (7.4)

where all terms can be defined in a manner similar to that defined in equation

7.3.
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In literature, the standard performance evaluation metrics used in person re-

identification are matching performance at rank n, cumulative matching char-

acteristic (CMC) curves, and normalised Area Under the CMC Curve (nAUC)

[47]. The matching performance at rank n reports the probability that the correct

match occurs within the first n ranked results from the gallery image set. This

is obtained by calculating the Euclidean distances between a query image and all

images in the gallery image set and ordering the matches in ascending order of

matching error. The match with the smallest error is considered the rank-1 image

and so on. The CMC curve plots the recognition for all rank values, n, and the

nAUC summarises the area under the CMC curve (Note: the ideal nAUC is 1.0

and nAUC of 0.5 defines match obtains simply by ’chance’).

However, the measures used for the performance evaluation of the proposed

person re-identification algorithm are limited to the rank score illustrated by the

associated cumulative matching characteristic (CMC) curves.

7.6 Experimental Results and Analysis

This section presents the experimental results and a detailed analysis. The per-

formance of the proposed approach was considered using three different matching

metric measures namely, a) matching based on low-level features only b) matching

based on medium-level attribute signatures only and c) matching based on both

low level features and attributes, combined.

7.6.1 Attributes detection

After the extraction of low-level colour features they can be used in the colour

based recognition of values of the seven attributes of a human figure defined in

Table 7.1. The VIPeR database was used for the attribute training and testing.

From the images captured for Camera A, each attribute value was manually annot-

ated. The manually annotated information from Camera A, for a given attribute

(say for e.g. shirt-colour) was used in training an SVM. The testing was done on

images captured by Camera B. Each attributes value was determined using the

relevant trained SVM. This training and testing processes were carried out for

each attribute, separately, using a different SVM. Table 7.2 records the detection

accuracies obtained for each of the attributes. The highest accuracy has been ob-

tained for ’Style’ and the lowest accuracy has been recorded for the Head region

in deterring whether it is dark or not. The latter is due to the high possibility of

presence of individuals with darker skin tone and these individuals getting mixed

up with people who are turning the back of their head to the camera.
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Table 7.2: Attributes classification accuracies based on VIPeR dataset

Number Attributes Value1 Value2 Detection

accuracy

1 Shirt-Colour Coloured No Colour 79.4%

2 Shirt-Brightness Bright Dark 73.4%

3 Shirt-Pattern Patterned No Pattern 87.8%

4 Clothing-Style Single colour

up/down

Multi-colour

up/down

90.7%

5 Head-Colour Dark Other 66.5%

6 Trouser-Brightness Dark Bright 70.9%

7 Trouser-Colour Coloured No No colour 76.4%

Mean 77.9%

The average accuracy for the detected attributes is 77.9%.

7.6.2 Matching performance analysis

Figure 7.8 illustrates the CMC curves when low-level features and attributes are

used for the representation of detected people, both as individual metrics and

together, i.e. as a combined metric. When the combined feature set is used the

figure 7.9 illustrates the same graphs plotted within the narrow range of Rank-1

to Rank-20.

The results indicate that up to Rank-5 the combined feature set performs bet-

ter than the individual feature sets. However above Rank-5 a better accuracy of

recognition is demonstrated when using the Attributes only. This indicates that

the detailed low level colour histogram features add details to the person’s At-

tributes making the matching more accurate at up to Rank-5. However the use

of low-level colour features only is not recommended due to relatively poor per-

formance. A detailed study revealed that the low-level colour features although

providing details for higher ranked matches, when used independently varies signi-

ficantly between images of even the same person. Having the Attributes considered

in addition allows the combined features to more accurately define an object.
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Figure 7.8: Cumulative matching characteristic curves of proposed technique

Figure 7.9: Cumulative matching characteristic curves of proposed technique plot-
ted within the narrow range of Rank-1 to Rank-20

The average accuracy obtained by averaging over all Rank’s was 62%, 97.6%

and 92.1% respectively for low-level features, attributes and their combination.

Table 7.3 compared the performance of the proposed approach to that of the

method proposed in [47] that proposed a low-level feature based approach de-

pendent on colour and textures for initial attribute detection and an subsequent
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attribute only based approach for person re-identification. The results have been

tabulated for the same set of training and test images obtained from the VIPeR

image database.

The results tabulated in Table 7.3 show that the at Rank-5 and above the

proposed approach when only the Attributes are used and the combined set of

Attributes and low-level features are used performed significantly better than the

method proposed in [47] a method popularly used as a benchmarking algorithm

in literature. However at Rank-1 the proposed method when only the Attributes

are used performs less accurately as compared to the benchmark algorithms. It

is noted that the benchmark algorithm of [47] is based on a larger (hence more

detailed set of medium-level features) set of attributes (21 attributes) as compared

to the number of attributes used by the proposed technique (7 attributes). This is

the likely reason for it to perform better than the proposed algorithm at Rank-1

when only the Attributes are use. However when the combined low-level colour

features and medium-level Attributes are used the proposed algorithm works bet-

ter. This is due to the additional detail of the objects definition included by the

low-level colour attributes that are used in the proposed approach.

The proposed low-level feature set only includes colour features from the RGB

representation of the image. However the low-level feature set that the algorithm

in [47] uses for attribute detection uses both colour features and texture features.

The colour features, show less in number is spread across three different represent-

ations of object colour (RGB, HS and YCbCr). Our detailed investigation revealed

that when colour features of the same object when represented in different colour

features are used, a significant amount of redundant information is used in the

training process. This affects the accuracy. Further global texture features are

very much subjected to changes due to background clutter, over/under exposed

images etc, that could also affect in a negative manner if texture features are also

used alongside colour features.

Table 7.3: Person re-identification accuracy

VIPeR Rank1 Rank5 Rank10 Rank20

Attributes 15.5 50 68.4 85.8

Low-level features and attributes 24.7 54.4 65.5 75

Low-level features 5.1 13 17.4 26.6

Method in [47] 21.4 41.5 55.2 71.5

Self-constructed

Proposed technique 5 35.6 56 74.6

Figure 7.10 illustrates bar graphs comparing the performance at different Rank
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scores. Results in Table 7.3 also tabulates the performance of the proposed ap-

proach when combined features are used and the self-captured dataset with more

challenging images are used for experimentation.

Figure 7.10: Rank scores re-identification performance

Figure 7.11 illustrates an example of matching gallery images for a probe image

from the query image dataset when using the VIPeR dataset (top row) and the

self-captured (bottom row) dataset. It is seen that the query image matches with

a number of candidates from the gallery image database where the person has

turned with respect to the camera angle of view.

Figure 7.11: Human re-identification on both datasets

The above results indicate the superior performance obtainable from the pro-

posed approach.
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7.7 Conclusion

In this chapter, we have shown that detailed colour featured captured in known

localities of a human figure in the form of a 3D colour histogram with a finite

number of bins can be used to accurately determine attributes of a human body

that can then be used together with the low-level colour features for person re-

identification. Accuracy figures of approximately 75% and 85% have been ob-

tained when using combined Attribute and low-level features and Attributes only,

respectively at a rank of Rank-20.



Chapter 8

Conclusions and Future Work

This thesis presented a number of novel approaches to the general areas of object

detection, recognition and people re-identification.

The first original contribution made within the context of the research presen-

ted in this thesis was a novel approach to military personnel recognition i.e. a

system that helps count the number of military personnel present within an envir-

onment so as to enable the counting of personnel. Such a system can be used for

alerting for missing personnel or reporting an increase of the number personnel

within a secured premises enabling the generation of early warnings. Apart from

using the camouflage type of the personnel’s uniform we proposed the use of the

badge on the cap to recognise the arm of service of some personnel.

The second original contribution made within the context of the research

presented in this thesis was a vehicle type recognition algorithm. A unique feature

of this novel approach was it ability to recognise the vehicle type irrespective of the

angle of view of the camera. This contribution alleviates the a major challenge as-

sociated with requiring re-calibration of camera and re-training on captured data,

should the camera change its direction of view.

The third contribution of this thesis focused on night-time people detection

and vehicle type recognition using thermal image sets. The proposed technique

based on a novel featured named as CENTROG is a variant of the well-known

CENTRIST approach in which HOG features are extracted from a CT transformed

image.

The fourth and final contribution of the research presented within the context

of this thesis is an algorithm for person re-identification. In the approach proposed

the person re-identification was done based on detected medium-level Attributes

of a person combined with a low-level, detailed, colour histogram feature vector.

The Attributes themselves were first determined based on using known informa-

tion from detailed colour histograms from corresponding Attributes of a training

database of images. Both the use of colour histogram details only and Attribute

117
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details only and then using the combined feature set were investigated.

The following section presents the conclusion reached.

8.1 Conclusion

Two techniques were presented and implemented [58, 68] for military personnel

recognition in chapter 4 of this thesis. However, both techniques were challenged

in their ability to categorise military personnel based on the appearance of their

uniforms due to the presence of similarities of colour and texture of a camouflage

of a personnel’s uniform. Particularly, it was observed that an army camouflage

appearance pattern is similar to that of the air force camouflage appearance pat-

tern while the army and navy uniforms have similar colour contents. Colour and

texture features alone were unable to categorise between classes based on ex-

perimental results obtained. We explored colour and GLCM texture features to

effectively differentiate between military persons’ class of arm of service. It was

shown that colour plays a vital role in camouflage person recognition especially

when the camouflage appearance between classes have colour variations. We also

showed the importance of selecting discriminative features using feature selection

in particular the use of the CFS algorithm, so as to speed up processing and im-

prove recognition accuracy. In the same work, we showed that the cap badge of a

military person can categorise between classes using matching of SURF features.

With the proposed system, any military personnel on AWOL can be detected, an

alert can be signalled for a check of suspicious persons within an environment.

Therefore the proposed military personnel arm of service recognition system can

complement any existing face recognition based security technology by integrating

the two system. The proposed system was simple algorithmically and fast and can

be implemented for a real-time military monitoring system.

A novel technique for vehicle type recognition irrespective of angle of view was

proposed in chapter 5. The integration of region, HOG and LBP features showed

that single individual feature for vehicle type recognition cannot adequately cat-

egorise vehicle types in different view related scenarios. To demonstrate the per-

formance of the proposed algorithm, data were combined from datasets obtained

from two datasets of different views (front/rear and angular views) using the pro-

posed feature combination approach. An overall average recognition accuracy of

95% was recorded in combined view datasets, which means a vehicle can be re-

cognised irrespective of direction of movement or view with the need for only a

single initial training requirement. We also showed the importance of selecting

discriminative features using CFS, so as to speed up processing and improve re-

cognition accuracy. With this system, the bottlenecks associated with the need for
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re-calibration and re-training were eliminated, since, only a once for all training

is required for vehicle type classification in any direction or angle of view. This

system will provide assistance in any toll collection facility and in situations where

there is the need to keep count of a particular vehicle movement in a location at

a particular time. For example, in determining vehicle air pollution, this system

can help give information about the proportions of each vehicle type that pollutes

a particular environment.

In chapter 6, the use of CENTROG features was proposed for the detection

of pedestrians and recognition of vehicles at night-time when using thermal im-

ages. We proposed a feature set that can both detect people and recognise vehicles

at night-time. This approach is useful in a driver assistance system, in which a

single feature set can be processed and used for pedestrian detection as well as for

vehicle type recognition. We compared the use of the proposed CENTROG fea-

tures against the use of known CENTRIST features for the recognition of people

and vehicle in thermal images datasets. Results obtained showed that CENTROG

can effectively detect pedestrians and recognise vehicles at night-time and per-

forms significantly better than the known CENTRIST feature based approaches.

We also showed the importance of selecting discriminative features using CFS,

so as to speed up processing and improve recognition accuracy. This system is

implementable in real-time and can serve especially in mission-critical situations

or a situation wherein human safety cannot be compromised.

In chapter 7, we proposed the use of low-level RGB colour features and medium-

level Attribute features obtained based on the said colour features, both individu-

ally and in a combined format for person re-identification. The features and At-

tributes were obtained from a selected set of regions highly likely to be a parts of

a human body, from within a rectangle enclosing the captured whole human body.

This specific selection of regions was done so that it is possible to reduce the im-

pact of background clutter that may severely affect recognition performance. The

use of seven clothing attributes was proposed for person re-identification along

with the use of low-level colour features. The described Attributes were detec-

ted using the low-level colour features captured initially and making use of an

SVM classifier, giving an overall accuracy of 77.9%. It was shown that combining

the low-level colour features with the Attributes described above helps increase

recognition accuracy giving a rank-5 accuracy of approximately 54% as against

the reported rank-5 accuracy of the 42% by [47]. The proposed system can help

improve human tracking performance; track a particular person in a shopping

mall; track a particular person in non-overlapping camera in a military or school

environment etc.
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8.2 Future Work

Although the novel ideas presented in this thesis advances the current state of

art and technology in a number of areas related to the application of computer

vision and pattern recognition technologies in the application areas of security

and surveillance there are further opportunities for improvements and extensions

of the proposed algorithms and systems. There is also the possibility of integrating

the proposed technology with other vision technologies to enhance overall system

performance.

To address the problem of civilian presence in a military environment, the

proposed military personnel recognition system can be further extended to en-

able the recognition of non-military personnel. To this effect a new category/type

that is worthy of inclusion is the civilian category. Similarly, the proposed uni-

form/clothing appearance based personnel recognition algorithm can be integrated

with existing face recognition technologies to provide a security system which can

be of more significant practical use. Such a system can be used to for example

track the whereabouts of a particular known individual military officer within the

video/images captured by a distributed camera system to ensure his/her safety

and thus contributing towards the general safety of a campsite.

For the day-time vehicle type recognition algorithm proposed in chapter 5,

vehicles were identified on a frame-by-frame basis. It is however possible to extend

this work so that, vehicles are not recognised on a frame-by-frame basis but rather

based on an entire tracked vehicle object. This would allow for the opportunity

to further increase the robustness and the accuracy of the proposed system based

on assigning a majority voted outcome and/or a position dependent, weighted

outcome for the vehicle type. It is possible to test the proposed system under

different environmental conditions such as rainy and windy weather; in different

geopolitical zones such as vehicles in Africa, Europe, Asia, Australia and America.

More extensive testing to evaluate the performance of the algorithm under non-

ideal illumination situations could also have been conducted but was not possible

due to the lack of test video footage and restricted access to resources.

In Chapter-6, two approaches were proposed for pedestrian detection and

vehicle type recognition at night-time. It is possible to integrate both systems

to remove if any, bottlenecks, associated with the individual use of algorithms

to solve the challenges of a similar practical nature. The proposed system for

vehicle type recognition at nigh-time can be further extended to accommodate

more vehicular classes, so that we can generalise the applicability of the proposed

algorithm on practical vehicle type recognition tasks carried out at night-time.

The implementation of the integrated system in real-time so as to demonstrate
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how the system can assist in a driver assistance system on-board a vehicle is a

further possible practical application or enhancement.

In literature the performance of people re-identification systems have always

been demonstrated and evaluated on still images. The possibility of implement-

ing the proposed technique within a real-time video analytic scenario so as to

demonstrate the applicability of this system in a real world system, is proposed as

future work. It was also revealed that the mid-level attributes detection perform-

ance could benefit from some performance improvements. Investigation of the use

of additional features, the use of more effective feature reduction techniques and

feature combinations are recommended. Further investigating the use of effective

feature weighting, based on training data in obtaining the combined feature vector

for representing an human object is also recommended.
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