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Abstract

In this thesis new methods are presented for achieving spectrum sensing in

cognitive radio wireless networks. In particular, supervised, semi-supervised

and unsupervised machine learning based spectrum sensing algorithms are

developed and various techniques to improve their performance are described.

Spectrum sensing problem in multi-antenna cognitive radio networks is

considered and a novel eigenvalue based feature is proposed which has the

capability to enhance the performance of support vector machines algorithms

for signal classification. Furthermore, spectrum sensing under multiple pri-

mary users condition is studied and a new re-formulation of the sensing task

as a multiple class signal detection problem where each class embeds one or

more states is presented. Moreover, the error correcting output codes based

multi-class support vector machines algorithms is proposed and investigated

for solving the multiple class signal detection problem using two different

coding strategies.

In addition, the performance of parametric classifiers for spectrum sens-

ing under slow fading channel is studied. To address the attendant per-

formance degradation problem, a Kalman filter based channel estimation

technique is proposed for tracking the temporally correlated slow fading

channel and updating the decision boundary of the classifiers in real time.

Simulation studies are included to assess the performance of the proposed

schemes.

Finally, techniques for improving the quality of the learning features and

improving the detection accuracy of sensing algorithms are studied and a

novel beamforming based pre-processing technique is presented for feature

realization in multi-antenna cognitive radio systems. Furthermore, using

the beamformer derived features, new algorithms are developed for multiple



ii

hypothesis testing facilitating joint spatio-temporal spectrum sensing. The

key performance metrics of the classifiers are evaluated to demonstrate the

superiority of the proposed methods in comparison with previously proposed

alternatives.
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Chapter 1

INTRODUCTION

1.1 Basic Problem

In many countries around the globe, the electromagnetic spectrum assigned

to wireless networks and services is managed by governmental regulatory

bodies. For example, there is the European Telecommunications Standards

Institute in Europe (ETSI) and the Federal Communications Commissions

(FCC) in United States. These governing bodies are saddled with the re-

sponsibility of allocating spectral frequency blocks to specific groups or com-

panies. More often than not, the allocation process involves (i) partition-

ing of the spectrum into distinct bands, with each band spanning across a

range of frequencies; (ii) assigning specific communication services to spe-

cific bands, and (iii) deciding the licensee for each band who usually is given

the exclusive right over the use of the allocated frequency band. Since the

licensee reserves the right over the assigned spectrum, it can easily manage

interference and the quality of service (QoS) among its users [3].

In the last one decade, there has been unprecedented concern over the

static manner in which the natural frequency spectrum is being allocated.

This concern is further being heightened by the ever increasing demand for

higher data rates as wireless communication technology advances from voice

only communications to data intensive multimedia and interactive services

now being ubiquitously deployed [4]. In order to meet the challenge of spec-

trum crisis thus created, a paradigm shift from the hitherto, command and

1



Section 1.1. Basic Problem 2

control manner of frequency allocation to dynamic spectrum access has be-

come imperative. Interestingly, going by the current allocation technique,

spectrum occupancy measurements have shown that most of the allocated

spectral bands are often underutilized. For example, studies conducted in

the United States have revealed that in most locations, only 15% of spec-

trum is used. More specifically, a field spectrum measurement taken in New

York City showed that the maximum total spectrum occupancy for bands

from 30MHz to 3GHz is only 13.1 % [4], [5]. Similar result was also obtained

in the most crowded area of downtown Washington, D.C., where occupancy

of less than 35 % is recorded for the radio spectrum below 3 GHz [4]. In

addition, it is a well known fact that spectrum usage also varies significantly

at various time, frequency and geographic locations [6].

Figure 1.1. Maximum, minimum, and average received power spectral
density in the frequency band 20 - 1,520 MHz with a 200-kHz resolution
bandwidth of the receiver. Outdoor location: on top of 10 - storey
building in Aachen, Germany [1].

Figure 1.1 shows the maximum, minimum and average spectrum us-

age in an outdoor environment at a typical location in Aachen, Germany,

demonstrating enormous variations of interference power. In Figure 1.2, it

is further shown that in an indoor environment, the spectrum usage is even
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Figure 1.2. Average received power spectral density in the frequency
band 20 - 1,520 MHz with a 200-kHz resolution bandwidth of the
receiver. Indoor location: inside an office building in Aachen, Ger-
many [1].

smaller, and on average, mostly thermal noise is present. From the forego-

ing, it is very clear that radically new approaches are required for better

utilization of spectrum, especially in the face of the current unprecedented

level of demand for spectrum access.

1.2 Cognitive Radio Technology

Cognitive radio (CR) is an emerging technology that can successfully deal

with the growing demand and scarcity of the wireless spectrum [7–11]. It is

a paradigm of wireless communication in which an intelligent wireless sys-

tem utilizes information about the radio environment to adapt its operating

characteristics in order to ensure reliable communication and efficient spec-

trum utilization. Recently, several IEEE 802 standards for wireless systems

have considered cognitive radio systems such as IEEE 802.22 standard [12]

and IEEE 802.18 standard [13].

To exploit limited bandwidth efficiently, CR technology allows unlicensed
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users popularly referred to as the secondary users (SUs) to access licensed

spectrum bands without causing harmful interference to the service of the

licensed users otherwise referred to as primary users (PUs) [8]. In the fol-

lowing sub-section, the basic approaches that facilitate the implementation

of dynamic spectrum access in CR networks will be described.

1.2.1 Cognitive Radio Network Paradigms

There are three main techniques that are being considered for cognitive spec-

trum sharing. These are the overlay, underlay and interweave techniques [3].

In the overlay approach, the SUs coexist with PUs based on the assumption

that the knowledge of the PU’s codebook and message is available to the

SUs. This knowledge can be used to either cancel or reduce the interference

caused by the PUs’ transmission to the SUs thorough sophisticated signal

processing techniques such as dirty paper coding (DPC) [3]. In order to

offset the interference caused by the SUs’ transmissions to the PUs, the SUs

can split up their transmission power and use part of it to relay the PUs’

signals to the intended primary receiver. This will ensure that the PUs’ sig-

nal is received with desired signal-to-noise ratio (SNR). At the same time,

the SUs can use the remaining transmit power for their own communication.

Hence, both the PUs and the SUs benefit by allowing SUs spectrum access.

In the underlay approach, the SUs access the licensed spectrum without

causing harmful interference to PUs’ communications. This requires the

SUs to ensure that interference leakage to the primary users is below an

acceptable threshold. One way the SUs can meet the interference constraint

is by employing multiple antennas to steer their beams away from the PUs.

Alternatively, the SUs may employ spread spectrum technique whereby the

transmitted signal is spread across a wide bandwidth such that the power

level is below the noise floor. At the SU receivers, the signals may then be

recovered through de-spreading. It should be noted that since the constraint
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on the interference is somewhat restrictive under the underlay method, the

transmissions by the SUs may be limited to short range communications.

The underlay approach is illustrated in Fig. 1.3.

Figure 1.3. Underlay spectrum paradigm. Green and red represent
the spectrum occupied by the primary users and the secondary users
respectively.

The third cognitive technique for spectrum sharing is the interweave

method shown in Fig. 1.4, in which case the SUs are permitted to access

the licensed band in an opportunistic manner, i.e. only when and where

it is not being used. The absence of an active PU in a band indicates

that its allocated channel is idle and available for use by SUs while the PU’s

presence indicates otherwise. An idle or unused channel is often described as

a spectrum hole or white space [3], [8]. However, since the PUs have priorities

to use the bands, the SUs need to continuously monitor the activities of the

PU to avoid causing intolerable interference to the PU’s service. To meet

this requirement, once granted permission to utilize unused spectrum, the

SU must be alert to detect the reappearance of the PU and once detected,

it should vacate the spectrum within the shortest possible, permissible time

to minimize the interference caused to the licensed user.

In view of the above consideration, it can be understood that a funda-
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Figure 1.4. Interweave spectrum scheme. Green and red represent
the spectrum occupied by the primary users and secondary users re-
spectively.

mental task that is crucial to the successful implementation of the interweave

cognitive radio system is detecting the presence or absence of the PU. This

is usually referred to as spectrum sensing [4]. Put in another way, without

spectrum sensing, no opportunistic use of the spectrum hole by SUs can take

place. To summarize, the interweave cognitive radio can be described as an

intelligent wireless communication system which requires the SUs to contin-

uously monitor the activities of the PUs and intelligently detect availability

of spectrum holes in order to take advantage of idle band towards achieving

efficient utilization of radio spectrum resources.

There is no gainsaying that identifying spectrum holes in the absence of

cooperation between primary and secondary networks is a very challenging

task [14]. Nevertheless, unlike in overlay and underlay methods, the inter-

weave scheme is non-invasive and there is no restriction in terms of transmit

power and coverage, thus offering tremendous advantages in terms of high

data rate and achievable QoS for the SUs, especially so in the event that the

licensed band is idle for a reasonably prolonged period of time. Hence, the

rest of this thesis is aimed at developing intelligent sensing techniques for



Section 1.3. Motivation for Machine Learning Techniques 7

opportunistic spectrum access.

1.3 Motivation for Machine Learning Techniques

In order for cognitive devices to be really cognizant of the changes in the

activities taking place in their radio frequency (RF) environment, it is im-

perative that they be equipped with both learning and reasoning function-

alities. Little wonder then, that Simon Haykin in [8] envisioned CRs to be

brain-empowered wireless devices that are specifically deigned to improve

the utilization of the electromagnetic spectrum. These capabilities can eas-

ily be embedded in a cognitive engine which coordinates the actions of the

CR by making use of machine learning ∗ algorithms. In wireless communi-

cation and dynamic spectrum access in particular, several parameters and

policies need to be adjusted simultaneously; these include transmit power,

coding scheme, modulation scheme, sensing algorithm, communication pro-

tocol, sensing policy, etc. No simple formula may be able to determine these

parameters simultaneously due to the complex interactions among these fac-

tors and their impact on the RF environment. Learning methods can be

successfully applied to allow efficient adaption of the CRs to their environ-

ment, yet without the complete knowledge of the dependence among these

parameters [16].

In general, learning methods can be classified as supervised, semi-supervised

and unsupervised [17]. Supervised algorithms require training and creating

decision models using labeled data. On the other hand, semi supervised tech-

niques do not require labeled data, however, the knowledge of the statistical

characteristics of the distribution which the training data follows may be

required. The unsupervised classification algorithms do not require labeled

training data and can be classified as either parametric or non-parametric.

∗Machine learning is a bio-inspired field of study which can be described as “the
science of getting computers to act without being explicitly programmed” [15].
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While the supervised and semi-supervised techniques can generally be used

in familiar or known environments with prior knowledge about the charac-

teristics of the environment, these knowledge may not be required for the

implementation of unsupervised learning, thus lending itself readily to au-

tonomous signal detection in alien radio environments. It is particularly of

interest to know that these learning techniques have been applied in solving

many data mining problems involving classification. It is opined that they

can equally be successfully developed into algorithms for proffering solution

to our spectrum sensing problem.

1.4 Structure of Thesis and Contributions

To facilitate the understanding of this thesis and its contributions, the struc-

ture is summarized as follows:

In Chapter 1, the current frequency allocation method as well as the

spectrum scarcity and under-utilization problems is first introduced. This is

followed by a general description of the CR technology as a widely acceptable

panacea. Further, the various possible approaches for implementing CR

systems are described and spectrum sensing is highlighted as a fundamental

process crucial to the successful implementation of CR. In addition, the

motivation for choosing machine learning techniques as the basis for the

various solutions that are proposed in this thesis is provided. The chapter

concludes with an outline of the thesis structure and its contributions.

In Chapter 2, a brief introduction of the spectrum sensing problem for-

mulation is presented. This is followed by a consideration of the existing

local techniques for spectrum sensing that have been proposed for use by

stand alone sensor nodes. The techniques described cover both blind and

semi blind methods such as the matched filtering method, energy detection

based methods and the hybrid schemes. The cooperative sensing method
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for mitigating the effects of channel imperfections and improving detection

performance is also briefly described.

In Chapter 3, supervised classifiers based algorithms are presented and

the performance is evaluated in terms of spectrum sensing capability using

the energy based features. Next, a novel eigenvalue based feature is proposed

and its capability to improve the performance of the support vector machine

(SVM) algorithms under multi-antenna considerations is demonstrated. Fur-

thermore, spectrum sensing under multiple PU scenarios is considered and to

facilitate spatio-temporal spectrum hole detection, the conventional, binary

hypothesis spectrum sensing problem is re-formulated as a multiple signal

detection problem comprising multiple system states. In addition, the perfor-

mance evaluation of the multi-class error correcting output codes (ECOC)

based SVM algorithms is presented using both the energy and eigenvalue

based features. The simulation results indicate that the proposed detec-

tors are robust to both temporal and joint spatio-temporal spectrum hole

detection.

In Chapter 4, two semi-supervised parametric classifier algorithms are

presented for use in sensing scenarios where only partial information about

the PUs’ network is available to the SUs. With these algorithms in mind, the

problem of spectrum sensing in mobile SUs is further considered and a tech-

nique for enhancing the classifiers’ performance is proposed. In particular,

spectrum sensing under slow fading Rayleigh channel conditions due to the

mobility of SUs in the presence of scatterers and the resulting performance

degradation is of concern. To address this problem, the use of Kalman filter

based channel estimation technique for tracking the temporally correlated

slow fading channel is proposed to aid the classifiers to update the decision

boundary in real time.

In Chapter 5, a fully Bayesian, soft assignment unsupervised classifica-

tion algorithms based on the variational learning framework is presented.
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This technique overcomes some of the limitations of supervised and semi-

supervised algorithms in terms of the amount of information about the PU

network that is required for optimal performance. In particular, the problem

of blindly estimating the number of active transmitters and the statistical pa-

rameters that characterize the distribution of the signals from the unknown

number of transmitters is considered. The inference problem is approached

as a blind source separation problem. The proposed algorithm is shown to

be useful for simultaneously monitoring the activities of multiple PU across

multiple sub-bands and for autonomous spectrum sensing in alien radio en-

vironments where the prior knowledge of the exact number of sources is not

available at the SU.

The performance of classification algorithms depends to a large extent

on the quality of the training and prediction data used. In harmony with

this thought, in Chapter 6 a novel, beamformer based pre-processing tech-

nique for feature realization is proposed towards improving the quality of

our features and hence, the performance of our classifier based sensing algo-

rithms particularly in multi-antenna CR networks. Using this novel feature

technique, the ECOC based multi-class SVM algorithms is re-investigated

and a multiple independent model (MIM) alternative is provided for solving

the multi-class spectrum sensing problem. Simulation results are provided

to demonstrate the superiority of the proposed methods over previously pro-

posed alternatives.

Finally, in Chapter 7 this thesis is concluded with a summary of its

contributions and suggestions for possible future research directions.



Chapter 2

REVIEW OF RELEVANT

LITERATURE

2.1 Introduction

Spectrum sensing problem is usually approached in one of two ways. These

are the physical layer (PHY) and the media access control layer (MAC) ap-

proaches [18]. The PHY layer based spectrum sensing is the most common

and typically focuses on the detection of instantaneous primary user sig-

nals. The MAC layer approach on the other hand is essentially a resource

allocation issue, where the concern is how to handle the problem of schedul-

ing when the channel of interest is best sensed. It also involves addressing

estimation problem where the desire is to extract the statistical properties

of the randomly varying PU-SU channel based on the assumption that the

physical layer sensing provides sufficiently accurate results on instantaneous

channel availability [18]. In this chapter, attention is focused primarily on

the physical layer approach and a review of the most common and relevant

methods is presented.

2.2 Local Spectrum Sensing Techniques

As highlighted in the opening chapter of this thesis, the goal in performing

spectrum sensing is to identify the availability of spectrum holes while also

11
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protecting the PU terminals from harmful interference. In general, from

the perspective of local spectrum sensing involving individual SUs, if the

instantaneous signal received at the SU terminal is represented as x(n), the

spectrum sensing problem can be formulated as a binary hypothesis testing

of the form

x(n) =


η(n), under H0

ϕ(n)s(n) + η(n), under H1

(2.2.1)

where H0 denotes the hypothesis that the PU is absent and H1 denotes

the hypothesis that the PU signal is present in the band of interest. Fur-

thermore, η(n) is the additive white Gaussian noise (AWGN), ϕ(n) is the

gain coefficient of the channel between the PU and the SU and s(n) is the

transmitted primary signal. To solve the signal detection problem in (2.2.1),

different techniques have been proposed which are described as follows.

2.2.1 Matched Filtering Detection Method

The match filtering (MF) technique also known as coherent detection is a

method that requires the SU to have perfect knowledge of the PU signal

and the channel between PU and SU so that with accurate synchronization,

the received signal can be correlated with the known signal to determine the

presence or absence of the PU [19]. The MF method has been described as

the optimal detection method because it maximizes the SNR in the presence

of additive noise and also minimizes the decision errors [10], [20]. If the

primary transmitted signal, s(n), is deterministic and known a priori, the

matched filter correlates the known signal s(n) with the received, unknown

signal x(n), and the decision is made using the expression [21], [22]

Υ(x) ,
Ns∑
n=1

x(n)s∗(n)
H1

≷
H0

θt (2.2.2)
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where Υ(x) is the test statistic which is assumed to be normally distributed

under both hypotheses H0 and H1, i.e.,

Υ(x) ∼


N (0, Nsσ

2
sσ

2
η), under H0

N (Nsσ
2
s , Nsσ

2
sσ

2
η), under H1

(2.2.3)

σ2s = ∥s∥2/Ns, represents the average primary signal power while θt is the

decision threshold and Ns is the number of samples used to perform correla-

tion. The probability of false alarm (Pfa) and probability of detection (Pd)

are given by

Pfa = Q
( θt

σησs
√
Ns

)
(2.2.4)

and

Pd = Q
(θt −Nsσ

2
s

σησs
√
Ns

)
(2.2.5)

where Q(z) = 1√
2π

∫ +∞
z e−

τ2

2 dτ is the tail probability of a zero-mean unit

variance Gaussian random variable, also known as Q-function. If we let

SNR , σ2
s
σ2
η
= ∥s∥2

Nsσ2
η
, then the required number of samples, Ns, to achieve

an operating point in terms of Pfa and Pd can be determined by combining

(2.2.4) and (2.2.5), as

Ns = [Q−1(Pfa)−Q−1(Pd)]
2SNR−1 (2.2.6)

The main advantage of MFs is that within a short time, a certain Pd or Pfa

is achievable compared to the other proposed methods [4]. However, in a

situation where the signal transmitted by the PU is unknown to the SU, the

MF technique cannot be used. Also, it is not very useful when synchroniza-

tion becomes very difficult especially at low SNR. Furthermore, owing to

the fact that the CR needs receiver for all types of signal, the implementation

complexity of the sensing unit would be impractically large. Moreover, the

power consumption of the MF is also considerably high since for detection,
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various receiver algorithms need to be executed [4]. Nevertheless, the MF

can be very useful in applications where the pilot signal of the primary signal

is known [23].

2.2.2 Cyclostationary Feature Detection Method

The cyclostationary detector (CD) is one of the feature detectors that take

the advantage of the fact that unique patterns that are peculiar to a spe-

cific signal can be used to detect its presence or absence. Most primary

signals are modulated sinusoidal carriers, have certain symbol periods, or

have cyclic prefixes which constitute built in periodicity. Such periodicity

can distinguish the PU signal from other modulated signals and background

noise, even at a very low SNR [21, 23, 24]. Mathematically, cyclostationary

detection can be realized by analyzing the cyclic autocorrelation function

(CAF) of the received signal or its two-dimensional spectrum correlation

function (SCF) [23]. The modulated signal s(n), can be characterized as a

wide sense second order cyclostationary process because both its mean and

autocorrelation exhibit periodicity [21]. If we let µs = E[s(n)] and Rs(n1, n2)

= E[s(n1)s∗(n2)], then, ∀ n, n1 and n2, it holds that µs(n) = µs(n+T0) and

Rs(n1, n2) = Rs(n1 + T0, n2 + T0), where T0 > 0 is a fundamental period.

For a wide-sense second order cyclo-stationary process, having a non-zero

cyclic frequency (ω ̸= 0), the cyclic autocorrelation function is defined as

Rωs (l) , E[s(n)s∗(n+ l)e−2πωn]. (2.2.7)

Equation (2.2.7) can be described as

Rωs (l) =


finite, if ω = m

T0

0, otherwise

(2.2.8)
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for any non-zero integer m. Thus, for a cyclostationary process {s(n)},

∃ω ̸= 0 such that Rωs (l) ̸= 0 for some value of l. In the frequency domain,

the corresponding representation of Rωs (l), known as the spectral correlation

function can be obtained by using the discrete time Fourier transformation.

This can be expressed as

sωs (e
iς) =

+∞∑
l=−∞

Rωs (l)e
−iςl, (2.2.9)

where ς ∈ [−π, π] is the digital frequency corresponding to the sampling

rate, fs. The binary hypotheses test for the cyclostationary detection can

then be written as

sωx (e
iς) =


sωη (e

iς), under H0

sωs (e
iς) + sωη (e

iς), under H1.

(2.2.10)

Unlike the transmitted primary signal, the noise η(n) is in general not periodic

such that sωη (e
iς) = 0, ∀ω ̸= 0. For Ns available measurements of the re-

ceived signal, at ς = 2πg
D , the spectral correlation function can be obtained

as

ŝωx (g) =
1

Ns

Ns∑
n=1

xD(n, g +
gω
2
)x∗
D(n, g −

gω
2
), (2.2.11)

where

xD(n, g) =
1√
D

n+D
2
−1∑

d=n−D
2

x(d)e−
i2πgd

D (2.2.12)

is the D-point discrete Fourier transform around the n-th sample of the

received signal, and gω = ωD
fs

is known as the index of the frequency bin

corresponding to the cyclic frequency, ω. Suppose that for a single cycle

(sc) the ideal spectral correlation function, sωs (g), is known a priori, the test
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statistic for the cyclostationary detection is given by [21]

Υsc(x) =

D−1∑
g=0

[
ŝωx (g)

][
sωs (g)

]∗ H1

≷
H0

θt, (2.2.13)

and for a multicycle (mc) detector, the test statistics is

Υsc(x) =
∑
ω

D−1∑
g=0

[
ŝωx (g)

][
sωs (g)

]∗ H1

≷
H0

θt. (2.2.14)

where the sum is taken over all ω’s for which sωs (g) is not identically zero

and the vectors, x and s can be defined as: x , [x(1), · · · , x(Ns)]
T and

s , [s(1), · · · , s(Ns)]
T . While the CD is well coveted for its robustness in

the presence of noise uncertainty and low SNR, its drawbacks include the

requirement of having a priori knowledge of the PU signal characteristics

which may not be practical for many frequency reuse applications, long

sensing time and high computational complexity [10], [18]. The detector is

suitable when the period, T0 of the primary signal is known [23].

2.2.3 Energy Detection Method

The energy detection (ED), also known as radiometry or periodogram is the

most common and most investigated spectrum sensing method because of

its low computational and implementation complexity [4, 19, 25–28]. In the

ED method, the a priori knowledge of the characteristics of the PU signal

is not required and as such, it is a non-coherent technique that can be used

to detect the presence or absence of the primary signal based on the sensed

energy. The decision is made by comparing the mean squared accumulation

of the received signal strength in a certain time interval to a pre-determined

threshold [29]. Like the other spectrum sensing techniques, the goal is to

decide between the two hypotheses, H0 and H1. The decision rule in this
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case is given by

Υ(x) =

Ns∑
n=1

|x(n)|2
H1

≷
H0

θt, (2.2.15)

where Υ(x) is the test statistics and θt is the corresponding decision thresh-

old. When the PU is absent, Υ(x) obeys a central Chi-square distribu-

tion with Ns degrees of freedom; otherwise, Υ(x) obeys a non-central Chi-

distribution with Ns degrees of freedom and a non-centrality parameter λ

= σ2sNs [27]. If Ns is large enough (Ns > 20) [30], due to central limit the-

orem, Υ(x) is asymptotically normally distributed, hence the statistics can

be modeled as

Υ(x) ∼


N (Nsσ

2
η, 2Nsσ

4
η), H0

N (Nsσ
2
η +Nsσ

2
s , 2Nsσ

4
η + 4Nsσ

2
ησ

2
s), H1.

(2.2.16)

The Pfa, and the Pd, can be approximated as [21]

Pfa = Q
(θt −Nsσ

2
η

σ2η
√
2Ns

)
(2.2.17)

and

Pd = Q
( θt −Nsσ

2
η −Nsσ

2
s

ση
√
2Nsσ2η + 4Nsσ2s

)
(2.2.18)

respectively. Using (2.2.17) and (2.2.18), the number of samples, Ns required

to attain desired values of Pfa and Pd is given by

Ns = 2[Q−1(Pfa)−Q−1(Pd)
√
1 + 2SNR]2SNR−2. (2.2.19)

The ED is very practical since no information about the primary user is

required. However, the uncertainty of noise degrades its performance [20].

Besides, below an SNR threshold referred to as the SNR wall, a reliable

detection cannot be achieved by increasing the sensing duration [19], [31].

Moreover, the energy detector cannot distinguish the PU signal from the
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noise and other interference signals, which may lead to a high false alarm

probability.

2.2.4 Eigenvalue Based Detection Methods

The eigenvalue-based detection has been proposed for use in spectrum sens-

ing in a multi-antenna system [19]. The technique is found to achieve both

high Pd and low Pfa without requiring much information about the PU sig-

nal and noise power. In the existing methods, the expression for the decision

threshold, Pd and Pfa are calculated based on the asymptotical distributions

of the eigenvalues [32]. The eigenvalue of the signal received at the SU dur-

ing the sensing interval is derived as follows. Let us suppose that the SU

is equipped with M antennas and that the PU is transmitting, the M × 1

observation vector at the receiver can be defined as

x(n) , [x1(n), x2(n), ..., xM (n)]T (2.2.20)

hp(n) , [h1,p(n), h2,p(n), ..., hM,p(n)]
T (2.2.21)

η(n) , [η1(n), η2(n), ..., ηM (n)]T . (2.2.22)

If we assume that there are P transmitting PUs, the received signal vector

can be expressed as

x(n) =

P∑
p=1

Kp∑
k=0

hp(k)sp(n− k) + η(n), n = 0, 1, 2 · · · (2.2.23)

where the vector hp(n) represents the channel gain between PUp and all the

antennas of the SU while Kp is the order of the channel between PUp and

each antenna of the SU. Assuming we also consider N consecutive samples

of the transmitted PU signal, the corresponding signal and noise vectors can



Section 2.2. Local Spectrum Sensing Techniques 19

be defined as

xN (n) , [xT (n),xT (n− 1), ...,xT (n−N + 1)]T

sN (n) , [sT1 (n), s
T
2 (n), ..., s

T
P (n)]

T

ηN (n) , [ηT (n),ηT (n− 1), ...,ηT (n−N + 1)]T

(2.2.24)

where sTp (n) , [sp(n), sp(n − 1), · · · , sp(n −Kp − N + 1)] and N is known

as the smoothing factor [32], [33]. In matrix form, the received signal model

can be expressed as

xN (n) = HsN (n) + ηN (n) (2.2.25)

where the matrix H, of order MN × (K +NP), K =
∑P

p=1Kp is defined as

H , [H1,H2, · · · ,HP] , (2.2.26)

where

Hp ,


hp(0) · · · · · · hp(Kp) · · · 0

. . .
. . .

0 · · · hp(0) · · · · · · hp(Kp)

 , (2.2.27)

and Hp is a MN × (Kp + N) matrix. The statistical covariance matrix of

the received signals can then be written as

Rx = HRsH
H + σ2nIMN , (2.2.28)

where Rs = E[SN (n)S
H
N (n)], IMN is the identity matrix of order MN and

(.)H denotes Hermitian transpose. However, in practice, we have only finite

number of samples, denoted as Ns. This means that instead of the statistical

covariance matrix in (2.2.28), we can only obtain the sample covariance
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matrix which can be written as [32]

Rs(Ns) ,
1

Ns

L−2+Ns∑
n=L−1

x(n)x†(n). (2.2.29)

Based on the matrix in (2.2.29), two blind spectrum sensing algorithms have

been proposed [32]. The first one is called the maximum-minimum eigenvalue

(MME) detection algorithm where as the name suggests, the maximum and

minimum eigenvalue of the matrix denoted as λmax and λmin are computed

and the test statistics for deciding the presence or absence of the PU is the

ratio λmax to λmin. The decision rule is given as

Υ(Rs(Ns)) =
λmax
λmin

H1

≷
H0

θt (2.2.30)

where θt > 1 is a threshold. The second sensing algorithm is known as the

energy with minimum eigenvalue (EME) detection method. In this case,

test statistics for detection is the ratio of energy to minimum eigenvalue,

i.e. T (Ns)
λmin

where the energy, T (Ns), of the received signals in this instance is

computed as [32]

T (Ns) =
1

MNs

M∑
m=1

Ns−1∑
n=0

|xm(n)|2. (2.2.31)

The decision rule is therefore given as

Υ(Rs(Ns)) =
T (Ns)

λmin

H1

≷
H0

θt (2.2.32)

where θt is as defined for the MME method.

2.2.5 Covariance Based Method

In general, the statistical covariance matrices or autocorrelations of signal

and noise are different. Using sample covariance matrix computed over Ns,
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Zeng and Liang [34], proposed to use the difference to perform spectrum

sensing under the assumption that the PU’s signal is correlated. If we denote

the statistical covariance matrix as Rx, and the sample autocorrelations of

the received signal is computed as

r(l) =
1

Ns

Ns−1∑
n=0

x(n)x(n− l), l = 0, 1, ..., N − 1, (2.2.33)

where N is known as the smoothing factor. The sample covariance matrix,

R̂x(Ns), which approximates the statistical covariance matrix can be defined

as

R̂x(Ns) ,



r(0) r(1) · · · r(N − 1)

r(1) r(0) · · · r(N − 2)

...
...

. . .
...

r(N − 1) r(N − 2) · · · r(0)


. (2.2.34)

Under H0, the off-diagonal elements of R̂x(Ns) are theoretically zero since

the noise is usually assumed to be uncorrelated. The diagonal elements

also contain the noise power. On the other hand, under H1, the off-diagonal

elements should be non-zeros due to the correlatedness of the primary signal.

In this case, there are two terms of interest and they are computed as

T1(Ns) =
1

N

L∑
i

N∑
j

|rij(Ns)| (2.2.35)

and

T2(Ns) =
1

N

N∑
i

|rii(Ns)| (2.2.36)

where rij(Ns) are the elements of the matrix in (2.2.34). The test statistics

for determining the presence or absence of PU is given by

Υ(R̂x(Ns)) =
T1(Ns)

T2(Ns)

H1

≷
H0

θt (2.2.37)
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where θt is an appropriate threshold.

2.2.6 Wavelet Method

The wavelet transform is a powerful mathematical tool for analyzing singu-

larities and edges [35]. In wavelet method based spectrum sensing schemes,

the spectrum of interest is usually decomposed as a train of consecutive fre-

quency sub-bands and wavelet transform is then used to detect irregularities

in these bands. An important characteristic of the power spectral density

(PSD) is that it is relatively smooth within the sub-bands and possesses

irregularities at the edges between two neighboring sub-bands. So, wavelet

transform carries information about the locations of these frequencies and

the PSD of the sub-bands. Vacant frequency bands can be obtained through

the detection of the singularities in the PSD of the signal observed, by per-

forming the wavelet transform of its PSD [20].

The process for the wavelet detection methods can be described as fol-

lows [35]. First, let us assume that we have a total of B Hz spread across

the frequency range [f0, fN ] for a wideband wireless system. Further, we

assume that the entire band is divided into N sub-bands where each sub-

band is occupied by individual PU and all sub-bands are being simulta-

neously monitored. The sensing task involves detecting the locations and

PSD within each sub-band. Let us suppose that the sub-bands lie consec-

utively within [f0, fN ], such that there are frequency boundaries located at

f0 < f1 < · · · fN . The n-th band may thus be defined by Bn : {f ∈ Bn :

fn−1 ≤ f < fn}, n = 1, 2, · · · , N . Under H1, the normalized, unknown

power shape within each band, Bn is denoted by Sn(f) and satisfies the

conditions [35]

Sn(f) = 0, ∀f /∈ Bn; (2.2.38)∫ fn

fn−1

Sn(f)df = fn − fn−1. (2.2.39)
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If it is assumed that the PSD within each band, Bn is smooth and almost

flat but exhibits discontinuities from its neighboring bands Bn−1 and Bn+1,

such that irregularities in PSD appears only at the edges of the bands, Sn(f)

may be approximated as

Sn(f) =


1, ∀f ∈ Bn.

0, ∀f /∈ Bn.
(2.2.40)

The PSD of the observed time domain signal, x(t), can then be written as

Sx(f) =

N∑
n=1

ᾱ2
nSn(f) + Sw(f), f ∈ [f0, fN ] (2.2.41)

where it is assumed that the noise is additive and white with two sided

PSD, Sw(f) =
N0
2 , ∀f , and ᾱ2

n indicates the n-th band signal power density.

Furthermore, the corresponding time domain equivalent of (2.2.41) can be

written as

x(t) =
N∑
n=1

ᾱnpn(t) + w(t) (2.2.42)

where Sn(f) is the signal spectrum of pn(t) and w(t) is the additive noise

whose PSD is Sw(f). Furthermore, if we assume a pulse shaper, ht of band-

width fn − fn−1 , and the center frequency is denoted by fc,n = fn−1+fn
2 ,

the spectral shape, Sn(f) is proportional to |F{ht}|2, where F{.} denotes

the Fourier transform (FT). It is desired that x(t) with PSD Sx(f) be used

to estimate {fn}N−1
n=1 and {ᾱ2

n}Nn=1, which characterize the wideband spec-

tral environment under consideration. If we let κ(f) be a wavelet smoothing

function, for example, the Gaussian function with a compact support, g van-

ishing moments and g times continuously differentiable, the dilation of κ(f)

by a scale factor s is given by [35]

κs(f) =
1

s
κ(
f

s
) (2.2.43)
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where for dyadic scales, s takes values from powers of 2, i.e. s = 2j , j =

1, · · · , J . The continuous wavelet transform (CWT) of Sx(f) in (2.2.41) is

given by

WsSx(f) = Sx ∗ κs(f) (2.2.44)

where ∗ denotes the convolution operation. It is worth noting here that

CWT in (2.2.44) is implemented in the frequency domain and Sx(f) is re-

lated to x(t) via the FT. For the Sx(f) under consideration, the edges and

irregularities at scale s are defined as local sharp variations points of Sx(f)

smoothed by κ(f). Furthermore, since the edges of a function are often

indicated in the shapes of its derivatives, by using the CWT, the first and

second order derivatives of Sx(f) smoothed by the scaled wavelet, κ(f), can

be written as [35]

W ′
sSx(f) = s

d

df
(Sx ∗ κs)(f)

= Sx ∗ (s
dκs
df

)(f) (2.2.45)

and

W ′′
s Sx(f) = s2

d2

df2
(Sx ∗ κs)(f)

= Sx ∗ (s2
d2κs
df2

)(f) (2.2.46)

respectively. According to [36], the signal irregularities is characterized by

the local extrema of the first derivative and the zero crossings of the second

derivative. However, for spectrum purposes, the local maxima of the wavelet

modulus are sharp variation points which yields better detection accuracy

than local minima points. Therefore, the edges or boundaries corresponding

to the spectral content, {fn}N−1
n=1 , in the received signal, x(t), of interest can

be obtained in terms of the local maxima of the wavelet modulus in (2.2.45)
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with respect to f as

f̂n = maximaf{|W ′
sSx(f)|}, f ∈ [f0, fN ] (2.2.47)

or from the zero crossing points of (2.2.46) as

f̂n = zerosf{W ′′
s Sx(f)}, subject to W ′′

s Sx(f̂n) = 0. (2.2.48)

In searching for the presence of frequency, f̂n, only those modulus maxima

or zero crossings that propagate to large dyadic scale, s are retained while

others are simply regarded and removed as noise [36].

After determining the frequencies present in x(t), i.e. {fn}N−1
n=1 , the next

task is to estimate the PSD level, {ᾱ2
n}Nn=1. The average PSD within the

band Bn, ∀n can be computed as

βn =
1

fn − fn−1

∫ fn

fn−1

Sx(f)df. (2.2.49)

Based on the earlier assumption that the PSD within each band is smooth

and almost flat, but exhibiting discontinuities from the neighboring band,

βn is related to the required ᾱ2
n according to βn ≈ ᾱ2

n +N0/2. However, in

an empty band, i.e. where the PU is absent, say the n′-th band, ᾱ2
n′ = 0 so

that βn′ = N0/2 for f ∈ Bn′ . Therefore, the estimate of spectral density, ᾱ2
n

denoted as α̂2
n′ can be obtained from Sx as [35]

α̂2
n′ = βn −min

n′
βn′ , n = 1, · · · , N (2.2.50)

where {fn} used for computing {βn} in (2.2.49) can be replaced by their

estimates derived via the wavelet method.
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2.2.7 Moment Based Detection

The moment-based spectrum sensing is a blind technique that has been

found to be useful when accurate noise variance and PU signal power are

unknown. These unknown parameters are often estimated from the constel-

lation of the PU signal [37]. In the event the SU does not have knowledge of

the PU constellation, an approach had been developed that approximates a

finite quadrature amplitude modulation constellation by a continuous uni-

form distribution [38].

2.2.8 Hybrid Methods

Apart from the stand alone schemes described in the preceding subsections,

research efforts have also been geared towards developing systems that ex-

ploit the advantages offered by combining two or more sensing schemes,

although, in most cases such systems are complicated for most practical re-

alizations. These kinds of systems are known as the hybrid systems. Dhope

et al in [20] considered a hybrid detection method that combines the ED and

the covariance based detection methods. The proposed system utilized the

ED in low correlation and covariance method in high correlation. In [39], a

two stage spectrum sensing technique based on combining the ED and first

order CD was proposed. These are referred to as coarse and fine detection

stages respectively, in the ensuing hybrid system. The energy based coarse

detection stage is first used to search the band of interest for the presence

of the PU signal. The cyclostationary feature sensing is then performed to

identify the type of the incoming signal. Another form of the latter sensing

scheme was also introduced in [40] which utilized two levels of threshold. In

the first stage and for a given channel, ED is performed and the channel is

declared occupied if the energy received is above a certain threshold, θt. If

the energy received is below the threshold, however, CD is performed in the

second stage. If the test statistics in this stage exceeds a certain threshold,
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θ′t, the channel is declared occupied, else, the presence of a spectrum hole

is declared. It should be noted that in all cases of hybrid systems reviewed,

the proposed systems are reported to outperform systems where stand alone

detection methods are employed.

2.3 Cooperative Spectrum Sensing

Fading and shadowing are inherent characteristics of the wireless channels

and can significantly affect the performance of local sensors (stand alone

system). One very viable solution to this challenge is collaboration among

users through cooperative spectrum sensing (CSS). It has been established

that CSS can also decrease sensing time and solve the hidden node problem,

where the PU signal experiences deep fading or is blocked by obstacles such

that the power of the PU signal received at the SU may be too weak to be

detected [4], [41], [42]. With the collaboration of several SU’s for spectrum

sensing, the detection performance of a sensing system can be improved by

taking advantage of spatial diversity [19].

2.4 Summary

In this chapter, an overview of the various spectrum sensing methods for

cognitive radio wireless networks that are of interest to this thesis was pre-

sented. From this consideration, it can be noted that different detector

can be applied under different scenarios, depending on the amount of in-

formation about the PU that is available to the SU. In the succeeding four

chapters, the focus will be on machine learning algorithms based solutions

to spectrum sensing problem. In particular, supervised, semi supervised and

unsupervised techniques are investigated and their performance is demon-

strated by simulations.



Chapter 3

SUPERVISED LEARNING

ALGORITHMS FOR

SPECTRUM SENSING IN

COGNITIVE RADIO

NETWORKS

3.1 Introduction

Supervised learning is one of the fundamental machine learning approaches

that has been successfully applied in solving many pattern recognition and

classification problems in the field of data mining [17]. Essentially, it is the

task of inferring a decision function from labeled data which usually consist of

a set of training examples known as the training features [43]. In supervised

learning, more often than not, each training example is a pair (typically

a vector) consisting of an input object and a desired output value (label)

which plays the role of supervisory signal. A supervised learning algorithm

is required to analyze the training data and generate an inferred function

for the purpose of classifying new examples. The ultimate goal is to produce

an optimal algorithm which minimizes the training and generalization errors

28
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[44].

In this chapter, five prominent supervised learning algorithms are con-

sidered, namely; artificial neural network (ANN) algorithm, the naive Bayes

(NB) algorithm, Fisher’s discriminant analysis (FDA) methods, the K-nearest

neighbor (KNN) algorithm and the SVM algorithm. However, without loss

of generality, to demonstrate how these learning methods can be used to

solve the CR spectrum sensing problem at hand and the associated benefits,

the SVM technique is used as an example.

3.2 Artificial Neural Networks

The concept of ANN is borne from attempts to replicate the biological neural

systems, particularly, the structure of the human brain which consists of

nerve cells commonly referred to as neurons [45]. In humans, neurons are

connected together by means of axons which can be compared to strands of

fiber. When a neuron receives sufficient stimulation, it transmits impulses

to other neurons via axons. The axons of a neuron are connected to other

neurons through dendrites which essentially are extensions from the cell

body of a neuron. The point of contact between an axon and a dendrite is

known as synapse. It is of interest to know that the human brain learns

by adjusting the strength of the synaptic connection between neurons when

acted upon repeatedly by the same impulse. Similarly, the ANN is comprised

of an assembly of nodes that are interconnected by directed links. A simple

example of the ANN based learning algorithms is the perceptron which will

be described in the next sub-section to illustrate how the ANN technique

can be applied to solve our signal detection problem.

3.2.1 The Perceptron Learning Algorithm

The perceptron is a single layer, feed-forward ANN network whose archi-

tecture consists of two types of nodes as shown in Fig. 3.1. These are the
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Figure 3.1. A three input single layer perceptron

input nodes through which the training examples are fed into the learning

machine and an output node which performs necessary mathematical oper-

ations and from where the model output (decision) is obtained. The input

nodes and the output node are connected by weighted links that represents

the synaptic connections strength. The main goal of the perceptron model

is to determine the set of weight that minimizes the total sum of square

of the error, i.e., the difference between the desired output and the actual

prediction made by the model. During the training process, this is accom-

plished by adapting the synaptic weight until the input-output relationship

of the underlying data is matched. For example, given a set of labeled data,

S = {(xi, yi)}Ni=1 ∈ {H0,H1}, where xi ∈ RK is the i-th training feature

vector, yi is the corresponding supervisory signal or the actual class label

for xi and K is the number of input nodes, the perceptron output, ŷ for the

i-th training example is computed as

ŷ = sgn(wTx− t) (3.2.1)
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where w = [w1, · · · , wK ] is the vector of synaptic weight parameters, t is the

bias factor which is more or less a decision threshold, ŷ is the output value

computed as the difference between the weighted sum of the input training

data and the bias factor and sgn is the signum function which acts as an

activation function for the output neuron.

By learning the perceptron model, the desire is to minimize the total

sum of squared prediction errors over all training data, e(w), given by

e(w) =
1

N

N∑
i=1

(yi − ŷi)2 (3.2.2)

which is accomplished by adjusting w iteratively using the expression

wj+1
k = wjk + ρ(yi − ŷji )xi,k (3.2.3)

where wjk is the weight parameter for the k-th input link after the j-th itera-

tion, ρ ∈ {0, 1} is the learning rate parameter used to control the amount of

adjustment per iteration and xi,k is the k-th component of the i-th training

vector, xi. To predict the class of a new feature vector, x′ the set of opti-

mal weight parameters, wopt, obtained through the training are used in the

decision function similar to (3.2.1) defined as

ŷ = sgn(wT
optx

′ − t) . (3.2.4)

It should be noted that in the case of a linearly separable training set, the

perceptron algorithm is guaranteed to converge on some solution. However,

it is possible for the algorithm to pick any solution and as a result, the

learning algorithm may admit many solutions of varying quality [46]. In

Algorithm 3.1, an algorithm that summarizes the perceptron learning and

classification process for a simple, single layer network is presented.
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Algorithm 3.1: Perceptron ANN learning spectrum sensing algorithm

i. Given the training set S = {xi, yi}Ni=1 ∈ {H0,H1}, where xi ∈ RK ,

ii. Initialize the weight vector, w0 = [w0
1, · · · , w0

K ] with random values

iii. do repeat

iv. for each training example (xi, yi) ∈ S

v. Compute the predicted output ŷji

vi. for each weight, wk do

vii. Update the weight, wj+1
k in (3.2.3)

viii. end for

ix. end for

x. until convergence or stopping criterion is met

xi. Classify each new data point, x′ to decide the corresponding PU status,

H0 or H1.

3.3 The Naive Bayes Classifier

Naive Bayes (NB) is a probabilistic method for constructing models that can

be used for classification purpose [47]. It is a learning technique that has

been demonstrated to be very useful in solving many complex, real world

problems such as text categorization, document classification (for example

as authorized or spam) and automatic medical diagnosis [48]. Unlike other

conventional classifiers, though, the NB is built on the assumption that

different value of the attributes (elements) constituting a feature vector are

independent of one another regardless of whether they are correlated or

not. As such, NB relies on the assumption that each attribute contributes

independently to the probability that a given feature belongs to a particular

class where each class is a member of a finite set of classes. A very interesting
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characteristic of the NB method is that only a small amount of training

data is required to obtain an estimate of the model parameters needed for

classification.

3.3.1 Naive Bayes Classifier Model Realization

Suppose x = [x1, · · · , xK ] is a feature vector that is to be classified into

one out of J classes, where xk, xl ∀k, l ∈ K is assumed to be independent

continuous random variable, the conditional probability, p(Cj |x1, · · · , xK),

is evaluated for all J classes using the Bayes’ theorem which is described

by [48]

p(Cj |x) =
p(Cj) p(x|Cj)

p(x)
(3.3.1)

where p(Cj |x) is the posterior probability, p(Cj) is the prior, p(x|Cj) is

the likelihood and p(x) is the model evidence. Since p(x) is independent

of class, Cj , and the values of each attribute xk ∈ x is known, the model

evidence is effectively a constant so that it is fixed for all classes. It follows

therefore, that essentially the concern is to evaluate the numerator of (3.3.1)

which is equivalent to the joint probability model over all attributes and the

class of interest, p(Cj , x1, · · · , xK). By applying the chain rule of probability

described by

p(

K∩
k=1

xk) =

K∏
k=1

p(xk|
k−1∩
q=1

xq) , (3.3.2)

p(Cj , x1, · · · , xK) may be re-written as

p(Cj , x1, · · · , xK) = p(x1, · · · , xK |Cj) p(Cj)

= p(xK |xK−1, · · · , x1, Cj) · · · p(x2|x1, Cj) p(x1|Cj) p(Cj).

(3.3.3)

Furthermore, following from the conditional independence assumption adopted

in NB where it is naively assumed that xk is conditionally independent of
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xl, k ̸= l ∀k, l ∈ K, we can infer that

p(xk|xl, Cj) = p(xk|Cj) (3.3.4)

for k ̸= l where the influence of the independent attribute, xl is subsumed

by the presence of the class identifier, Cj . Therefore, (3.3.3) may be re-

expressed as

p(Cj , x1, · · · , xK) ≡ p(x1, · · · , xK |Cj)

≡ p(x1|Cj) p(x2|Cj) · · · p(xK |Cj) p(Cj)

≡ p(Cj)
K∏
k=1

p(xk|Cj) (3.3.5)

and from (3.3.1)

p(Cj |x) =
p(Cj) p(x|Cj)

p(x)

=
p(Cj)

p(x)

K∏
k=1

p(xk|Cj). (3.3.6)

In the spectrum sensing problem, if we assume that each attribute of the

feature vector is a continuous random variable as it is in the case of energy

values computed at the SUs terminals (sensor nodes), in sub-section 3.3.2,

how the probability model given in (3.3.6) can be used to solve the sensing

problem under this scenario is described.

3.3.2 Naive Bayes Classifier for Gaussian Model

To derive the NB classifier for solving the sensing problem, the probability

model in (3.3.6) is combined with an appropriate decision rule such as the

one based on maximum a posteriori (MAP). In this case, the predicted class

for a feature vector, x′, depends on the most probable hypothesis, i.e., the

class j ∈ {1, · · · , J} that maximizes the posterior probability in (3.3.6). The



Section 3.4. Nearest Neighbors Classification Technique 35

decision function of the NB classifier based on the MAP can be derived as

ĵ = argmax
j∈{1,··· ,J}

p(Cj)

K∏
k=1

p(x′k|Cj) (3.3.7)

where ĵ is the predicted class of the feature vector, x′, and the prior, p(Cj),

may be assumed to be equiprobable for a two-hypothesis spectrum sensing

problem where for example, p(H0) may be set equals to p(H1) = 0.5 or may

be determined from the prior knowledge of the number of training examples

belonging to a particular class. Finally, the remaining term in (3.3.7) is

the likelihood function, p(x′k|Cj), which for a Gaussian random variable is

expressed as

p(x′k|Cj) =
1

σ2j
√
2π

exp(−
(x′k − µj)2

2σ2j
) (3.3.8)

where the mean, µj , and variance, σ2j , ∀ j ∈ {1, · · · , J}, can be obtained

from the labeled training examples.

3.4 Nearest Neighbors Classification Technique

Nearest neighbor classification technique is an instance-based learning method

which does not require maintaining an abstraction or building a model

from training data. It uses specific training instances or examples to pre-

dict the class of a test instance based on a chosen proximity measure [49].

The assumption here is that if we are able to find all the training exam-

ples in the neighborhood (nearest neighbors) of a test example, whose at-

tributes are relatively similar to that of the test instance, these nearest neigh-

bors can be used to predict the class to which the test example belongs.

The justification for the assumption is illustrated by the saying that [43]

“if it walks like a duck, quacks like a duck, and looks like a duck, then

it is probably a duck.”

Given a test instance, x, which is assumed to be a continuous random
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variable, its proximity to other training data points is computed by using

proximity measures such as the Mahalanobis or Euclidean distance. The

k nearest neighbors are the k training examples that are closest to x in

the feature space whose class labels are used to classify x. However, if the

neighbors have more than one label such as could occur when spectrum

sensing data are obtained under low SNR regime, the test point is assigned

to the class of the majority of the nearest neighbors. In the situation where

there is a tie between classes, the test instance is randomly assigned to one

of the classes.

3.4.1 Nearest Neighbors Classifier Algorithm

In Algorithm 3.4, the summary of the nearest neighbor classifier is presented

whereby the distance between a test example, x = (z̃, ỹ), that belongs to an

unknown class, ỹ and all training examples, (zi, yi), ∀i ∈ S, with respective

class label, yi are first computed to obtain a list of its nearest neighbors, Sx.

After generating the list of the nearest-neighbors, the test example will be

classified using the majority voting (MV) rule described by [43]

MV : ỹ = argmax
j

∑
(zi,yi)∈Sx

I(j = yi) , (3.4.1)

where j = {1, · · · , J} is a class label and I(.) is an indicator function defined

as

I(.) =


1, if j = yi

0, otherwise .

It should be noted that the majority voting based k-NN algorithm is sensitive

to the choice of k due to the fact that every neighbor is allowed to have the

same influence on classification decision regardless of how close or far they

may be to the test example. To reduce the impact of k, one approach is

to assign appropriate weight to the influence of each nearest neighbor, zi
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such that training examples that are far away from x have weaker impact

on classification compared to those that are close to x. The weighting factor

for each neighbor is determined as wi =
1

d(z̃,zi)2
, where d(., .) is the distance

between z̃ and zi as computed by a metric of choice. Subsequently, the

class label for z̃ using the distance-weighted voting (DWV) approach can be

derived by using

DWV : ỹ = argmax
j

∑
(zi,yi)∈Sx

wi × I(j = yi) . (3.4.2)

Algorithm 3.4: Weighted k-NN classification based spectrum sensing algorithm

i. Given the training set S = {zi, yi}Ni=1 ∈ {H0,H1}, where zi ∈ RK ,

let k be the number of nearest neighbors.

ii. for each test example, x = (z̃, ỹ) do

iii. Compute d(z̃, zi)
2, the distance between x and every training

example, (z, y) ∈ S.

iv. Choose Sx ⊆ S, the set of k training examples closest to x.

v. Calculate the weights, wi =
1

d(z̃,zi)2
, ∀zi ∈ Sx.

vi. Evaluate ỹ = argmax
j

∑
(zi,yi)∈Sx

wi × I(j = yi).

vii. Infer PU’s status, H0 or H1 from ỹ.

viii. end for

3.5 Fisher’s Discriminant Analysis Techniques

Fisher’s discriminant analysis (FDA) is a machine learning technique used

to find combination of features that characterizes or separates two or more

classes of object [50], [51]. There are two closely related forms of FDA,

namely; the linear and quadratic discriminant analysis. The linear dis-
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criminant analysis (LDA) attempts to find linear combination of features

that models the difference between classes of data [49]. To describe how

the LDA is implemented, let us consider that we have a training data set,

S = {xi, yi}Li=1, xi ∈ Rd. Let us also assume that S ∈ {H0,H1} so that

there are two classes of data, Ck and Cl in S that we wish to be able to dis-

criminate. Suppose we further assume that p(x|Ck) is the class-conditional

density of x in class k, and also let the prior probability of Ck be represented

by πk where
∑K

k=1 πk = 1. By applying the Bayes theorem, we simply obtain

p(Ck|x) =
p(x|Ck) p(Ck)∑K
l=1 p(x|Cl) p(Cl)

(3.5.1)

where the denominator of the entity on the right hand side, i.e., the sum

over k of the product of the likelihood and the prior, is a normalization

constant. It is straightforward to see from (3.5.1) that the ability to clas-

sify a data point or the posterior probability essentially depends on knowing

the likelihood, p(x|Ck). If we assume that the data points under considera-

tion takes the form of continuous random variables, the probability density

characterizing each class can be modeled as multivariate Gaussian of the

form

p(x|Ck) =
1

(2π)d/2|Σk|1/2
exp(−1

2
(x− µk)TΣk−1(x− µk)) . (3.5.2)

In LDA, it is usually assumed that all classes, Ck and Cl, have the same

covariance matrix such that Σk = Σ,∀k, l ∈ K and the hyperplane separating

both classes is a straight line. Therefore, to compare the two classes it is

sufficient to take the logarithm of the ratio since the logarithm is a monotonic
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function. By doing this we obtain

log
p(Ck|x)
p(Cl|x)

= log
p(x|Ck)
p(x|Cl)

+ log
πk
πl

= log
πk
πl
− 1

2
(µk + µl)

TΣ−1(µk − µl) + xTΣ−1(µk − µl) .

(3.5.3)

It is easy to see that (3.5.3) is a linear function of x, where the normalization

factors as well as the quadratic part in the exponents have been eliminated

due to the equality constraints on the covariance matrix, Σ. It should be

noted that at the decision boundary, (3.5.3) equals zero. Furthermore, if we

apply the optimal Bayes classification method based on the MAP, the linear

discriminant function can be defined as

δk(x) = log πk −
1

2
µTkΣ

−1µk + xTΣ−1µk (3.5.4)

and the decision rule is described by

Ĉk(x) = argmax
k

δk(x) (3.5.5)

where the prior πk, mean µk, and covariance Σ, ∀k ∈ K can be estimated

from the training data as

π̂k = Nk/L (3.5.6)

where Nk is the number of training data vector belonging to class k,

µ̂k =
1

Nk

Nk∑
i=1

xi (3.5.7)

and

Σ̂ =
1

L−K

K∑
k=1

Nk∑
i=1

(xi − µ̂k)(xi − µ̂k)T . (3.5.8)
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Conversely, if the covariances are not assumed to be equal i.e. Σk ̸= Σl,

the eliminations in (3.5.3) do not occur and the quadratic elements in x are

retained, thus leaving us with the quadratic discriminant analysis (QDA)

classifier. The quadratic discrimination function in this case is therefore

given by

δk(x) = log πk −
1

2
log |Σk| −

1

2
(x− µk)TΣ−1

k (x− µk) (3.5.9)

and the classification of a data vector can be done by adopting the decision

rule given in (3.5.5).

3.6 Support Vector Machines Classification Techniques

The SVM is a non-parametric, learning technique that has been successfully

applied to many real world problems involving data classification [2], [52]. It

is a statistical pattern recognition technique that is based on the principle

of structural risk minimization and is known to generalize well. Rooted in

the concepts of geometry and convex optimization [53], it has the ability to

find global and non-linear classification solutions and as a result it is widely

used in the fields of data mining and machine learning [52].

In this section, the SVM algorithms is described. Furthermore, how it

can be applied to solve both temporal and spatio-temporal spectrum sensing

problems is demonstrated in multi-antenna CR networks under single and

multiple PUs considerations. To show the efficacy of the SVM classifier, an

algorithm for realizing a novel blind feature that is based on the eigenvalues

of the sample covariance matrix of the received primary signals which has the

capability to enhance the performance of the SVM for signal classification

is first presented. Next, the spectrum sensing problem under multiple PUs

scenario is formulated as a multiple class signal detection problem where in-

tuitively, each class is comprised of one or more sub-classes and generalized
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expressions for the possible classes are provided. Then, the eigenvalues fea-

tures and error correcting output codes (ECOC) based multi-class ∗ SVM

(MSVM) algorithms is investigate for solving the multiple class spectrum

sensing problem using two different coding strategies. Finally, the perfor-

mance of the proposed SVM based detectors is shown in terms of probabil-

ity of detection, probability of false alarm, receiver operating characteristics

curves and overall classification accuracy.

3.6.1 Algorithm for the Realization of Eigenvalues Based Feature

Vectors for SUs Training

In this sub-section, the procedure for extracting the eigenvalue based feature

for training the SUs is described. During the training interval, given that

the PU(s) operate at a carrier frequency fc and the transmitted signal of

the p-th PU is sampled at the rate of fs by the SU, the M × 1 observation

vector at the receiver can be defined as [32]

x(n) = [x1(n), x2(n), ..., xM (n)]T . (3.6.1)

If we assume that there are P transmitting PUs, the received signal vector

can be expressed as

x(n) =
P∑
p=1

ϕpsp(n) + η(n), (3.6.2)

where

ϕp = [ϕ1,p, ϕ2,p, ..., ϕM,p]
T (3.6.3)

η(n) = [η1(n), η2(n), ..., ηM (n)]T (3.6.4)

∗In this context, the term multi-class denotes more that two classes.
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where the vector ϕp represents the channel gain between the p-th PU and

the antennas of the SU. If we take N consecutive samples of the transmitted

PU signal for the eigenvalue computation, the corresponding signal and noise

vectors can be defined as

X = [xT (n),xT (n− 1), ...,xT (n−N + 1)]T

S = [sT1 (n), s
T
2 (n), ..., s

T
P (n)]

T

η = [ηT (n),ηT (n− 1), ...,ηT (n−N + 1)]T

(3.6.5)

where sp(n) = [sp(n), sp(n−1), ..., sp(n−N +1)]. If we let the matrix of the

channel coefficients for the N consecutive samples of the p-th PU’s signal be

represented by ΦpMN , then we can write

ΦpMN =



ϕ1
p

ϕ2
p

...

ϕNp


and the channel coefficient matrix when all the P PUs are simultaneously

transmitting, Φ = [Φ1
MN ,Φ

2
MN , ...,Φ

P
MN ], of order MN × P can be repre-

sented as

Φ =



ϕ1
1 ϕ1

2 · · · ϕ1
P

ϕ2
1 ϕ2

2 · · · ϕ2
P

...
...

. . .
...

ϕN1 ϕN2 · · · ϕNP


.

The PUs’ signals jointly received by all the antennas of the SU during

the sampling interval can therefore be expressed in a matrix form as

X = Φ S+ η. (3.6.6)

Furthermore, the statistical covariance matrix of the received signals can be
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written in terms of the PU (source) signals and the noise at the receiver as

Rx = ΦRsΦ
H + σ2nIMN , (3.6.7)

where Rs = E[SSH ] is the statistical covariance matrix of the transmitted

primary signal, IMN is the identity matrix of order MN and (.)H denotes

Hermitian transpose. However, in blind spectrum sensing being considered,

the primary signal and the PU-SU channel is not known at the SUs, as such

it is difficult to determine Rs in isolation as required by (3.6.7). For most

practical realization therefore, it is easier to derive the eigenvalues features

by using the received signals’ covariance matrix that is computed over finite

samples yielding an approximated form of (3.6.7) expressed as

R̃x = XXH . (3.6.8)

In general, R̃x is a symmetric and Toeplitz matrix which under H0, fol-

lows an uncorrelated complexWishart distribution such that R̃x ∼WM (N,Σ)

with M dimensions over finite samples N known as the degrees of freedom

and Σ is the population covariance matrix described by [54], [55]

Σ =
1

N
E[XXH ] = σ2nIM · (3.6.9)

Similarly, under H1 R̃x follows a correlated complex Wishart distribution

with population covariance matrix, Σ described by

Σ = ΦRsΦ
H + σ2nIM (3.6.10)

where the correlation in this case is due to the presence of the PU signal,

Rs. To derive the required training features for the learning machine, the

eigenvalues of the matrix in (3.6.8) is computed [56]. It is pertinent to state
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here that if M > P , the eigenvalues thus derived not only has the capability

to increase the feature space for support vector machines both also provides

the SUs additional information about the number of active PUs under the

hypothesis H1, albeit not their locations.

3.6.2 Binary SVM Classifier and Eigenvalue Based Features for

Spectrum Sensing Under Single PU Scenarios

Under single PU scenario, similar to (2.2.1), the spectrum sensing problem

is simply a binary classification problem of the form

xm(n) =

 ηm(n) H0 : PU absent

ϕ(sum)s(n) + ηm(n) H1 : PU present.
(3.6.11)

∀m ∈M

where xm(n) is the instantaneous signal received at the m-th antenna of

the SU. Suppose that D independent but identically distributed samples

of vector of eigenvalues are collected for training purposes so that S =

{(x1, y1), (x2, y2), · · · , (xD, yD)} is the set of training examples where xi ∈

RM is an M -dimensional feature vector and yi ∈ {−1, 1} is the correspond-

ing class label. If the training samples are linearly separable, the desire is

to use the data set S to find the hyperplane that optimally separates the

positive and the negative classes as depicted by Figure 3.2. However, if the

training data are obtained under low SNR condition, overlapping would oc-

cur between the classes and consequently the training samples would not be

linearly separable in their original feature space. To counteract the effect of

overlapping, an appropriate non-linear mapping function (kernel function),

β(x), is introduced with careful choice of kernel parameters in order to trans-

form the non-linearly separable data to a higher dimensional feature space

where it could become linearly separable.
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Figure 3.2. Support vector machines geometry showing non-linearly sep-
arable hyperplane [2]

The implicit objective is to minimize the actual error on the training data

set {xi}Di=1, denoted by 1
D

∑D
i=1 yif(xi) < 0, where f(x) is the prediction

on x and an error is considered to have occurred if f(xi) ̸= yi. In order

to achieve the goal, the margin between the supporting hyperplanes of the

two classes given by 2
∥w∥ is maximized where w is the weight vector which

is normal to the separating hyperplane. Furthermore, to avoid over-fitting

the data, minimum misclassification is allowed through the introduction of a

slack variable ξi, to produce a soft margin classifier [46] so that data points

for which ξi = 0 are correctly classified and are either on the margin or on

the correct side of the margin while those for which 0 < ξi ≤ 1 lie inside the

margin but are on the correct side of the decision boundary. Therefore, for

an error to occur it follows that the corresponding ξi must exceed unity so

that
∑

i ξi is an upper bound on the number of training errors. A natural

way to assign an extra cost for errors is to incorporate it into the objective
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function for the optimization problem as [46], [57]

minimize
w,b,ξ

⟨w.w⟩+ Γ

D∑
i=1

ξi

subject to yi(⟨w.β(xi)⟩+ b) ≥ 1− ξi,

ξi ≥ 0, i = 1, 2, ..., D.

(3.6.12)

where ⟨w.w⟩ denotes inner product otherwise written as wTw, b is the bias

describing the perpendicular distance between the origin and the separating

hyperplane and Γ is a soft margin parameter sometimes referred to as the

box constraint [46], [58].

To solve the resulting convex optimization problem, the Langrangian

function, L is introduced so that (3.6.12) can be written in the primal form

as

Lp = L(w, b, ξ, α, ψ) =
{
1

2
⟨w.w⟩+ Γ

D∑
i=1

ξi −
D∑
i=1

ψiξi

−
D∑
i=1

αi[yi(⟨w.β(xi)⟩+ b)− 1 + ξi]

} (3.6.13)

where αi and ψi are positive Langrangian multipliers and the training data

for which αi > 0, are the support vectors. By applying the Karush-Kuhn-

Tucker (KKT) conditions [53] which essentially requires that the derivatives

of (3.6.13) with respect to w, b and ξ vanish, we obtain

∂Lp
∂w

= 0 =⇒ w =

D∑
i=1

yiαiβ(xi) (3.6.14)

∂Lp
∂b

= 0 =⇒
D∑
i=1

yiαi = 0 (3.6.15)

∂Lp
∂ξ

= 0 =⇒ αi + ψi = Γ (3.6.16)
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Since ψi ≥ 0, it implies that 0 ≤ αi ≤ Γ where the value of Γ sets an upper

limit on the Langrangian optimization variable αi. It should be noted that

the value of Γ offers a trade-off between accuracy of data fit and regulariza-

tion and as such, it must be chosen carefully. For most practical realization,

it is easier to solve the dual form of the problem defined in (3.6.13) which

can be obtained by plugging (3.6.14), (3.6.15) and (3.6.16) into (3.6.13) as

L(w, b, ξ, α, ψ) = 1

2
⟨w.w⟩+ Γ

D∑
i=1

ξi −
D∑
i=1

ψiξi −
D∑
i=1

αi[yi(⟨w.β(xi)⟩+ b)− 1 + ξi]

=

{
1

2

D∑
i=1

D∑
j=1

yiyjαiαj⟨β(xi).β(xj)⟩+ (αi + ψi)

D∑
i=1

ξi −
D∑
i=1

ψiξi

−
D∑
i=1

D∑
j=1

yiyjαiαj⟨β(xi).β(xj)⟩ − b
D∑
i=1

yiαi +
D∑
i=1

αi −
D∑
i=1

αiξi

}

=

D∑
i=1

αi −
1

2

D∑
i=1

D∑
j=1

yiyjαiαj⟨β(xi).β(xj)⟩. (3.6.17)

Thus, equivalently, the solution to the original minimization problem ex-

pressed in the primal form in (3.6.13) is found by maximizing the dual form

(3.6.17) over α as [59]

maximize
α

D∑
i=1

αi −
1

2

D∑
i=1

D∑
j=1

yiyjαiαj⟨β(xi).β(xj)⟩

subject to
D∑
i=1

yiαi = 0 , 0 ≤ αi ≤ Γ, ∀i

(3.6.18)

Finally, using the quadratic programming algorithm [53], the convex opti-

mization problem in (3.6.18) can be solved for optimal value of α, denoted

as α∗ which in turn can be used to obtain optimal weight vector, w∗ from

(3.6.14) as

w∗ =

D∑
i=1

yiα
∗
i β(xi). (3.6.19)

What remains now is to calculate the bias, b. It is known that any train-

ing example satisfying (3.5.15) is a support vector, denoted as xs and also
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satisfies the KKT complementarity condition given by

ys(w
∗.β(xs) + b) = 1. (3.6.20)

If we substitute (3.6.19) into (3.6.20) and let α∗ be the set of Langrangian

multiplier, α corresponding to the set of support vectors for which α > 1,

we obtain

ys(
∑
j∈S

yjαj⟨β(xj).β(xs)⟩+ b) = 1 (3.6.21)

where S denotes the set of indices of the support vectors. Multiplying

(3.6.21) through by ys, we will have

y2s(
∑
j∈S

yjαj⟨β(xj).β(xs)⟩+ b) = ys (3.6.22)

and since ys ∈ {−1, 1}, it follows that, y2s = 1 so that the bias, b is computed

as

b = ys −
∑
j∈S

yjαj⟨β(xj).β(xs)⟩. (3.6.23)

It is noteworthy that instead of using an arbitrary support vector, xs, a

better approach is to take an average over all support vectors in S and by

so doing we derive our optimal b, i.e. b∗ as

b∗ =
1

Ns̃

∑
s∈S

(
ys −

∑
j∈S

yjαj⟨β(xj).β(xs)⟩
)

(3.6.24)

where Ns̃ is the number of support vectors. The relevant kernel based SVM

classifier can then be derived and used to predict the status of the PU via

the class of the new observed data vector, xnew, as

y(xnew) = sgn

( Ns∑
j=1

yjαjK(xj ,x
new) + b∗

)
. (3.6.25)

where the inner product in the feature space, ⟨β(xj).β(xk)⟩, is replaced by
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an appropriate kernel function, K(xj ,xk) which is used for mapping the

data to high dimensional space. Potential candidates for kernel are linear,

polynomial and the Gaussian radial basis functions. Suffice to say at this

point that the exact form of the mapping function need not be known or

explicitly calculated because the inner product itself is sufficient to provide

the required mapping and thus significantly reduces the computational bur-

den [46]. The SVM based spectrum sensing algorithm for single PU scenario

is presented in Algorithm 3.6.

Algorithm 3.6: SVM classifier based sensing algorithm for single PU

i. Given the training set, S = {xi, yi}Di=1 ∈ {H0,H1}, where xi ∈ RN , select

appropriate mapping function, β(x) and associated kernel parameters.

ii. Generate matrix H, where Hij = yiyj⟨β(xi), β(xj)⟩.

iii. Select suitable value for the box constraint parameter, Γ.

iv. Solve the optimization problem in (3.6.18) for the optimal values, α∗

such that
∑D

i=1 αi − 0.5αTHα is maximized, subject to 0 ≤ αi ≤ Γ,

and
∑D

i=1 αiyi = 0, ∀i .

v. Evaluate w∗ using (3.6.19).

vi. Determine the set of support vectors, S for which α∗ > 0.

vii. Calculate b∗ using (3.6.24).

viii. Classify each new data vector, xnew using (3.6.25) to infer PU’s status,

H0 or H1 .

3.6.3 Multi-class SVM Algorithms for Spatio-Temporal Spectrum

Sensing Under Multiple PUs Scenarios

One significant limitation of the conventional SVM (CSVM) algorithm de-

scribed in subsection (3.6.2) is that it is designed to solve binary classification
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(two class) problems and as a result, it is directly applicable for performing

temporal spectrum sensing such as in scenarios with only one operating PU.

In this sub-section, the focus is on spectrum sensing under multiple PUs

scenarios.

3.6.4 System Model and Assumptions

A PU-SU network where the SUs are operating in the coverage areas of P

PU transmitters is considered. The PUs are assumed to be geographically

separated but operating within the same frequency band such as in a cellular

network where the possibility of frequency re-use in nearby cells is offered

as depicted in Figure 3.3. Here, the SUs are assumed to be cooperating in

order to jointly detect the availability of spectrum holes both in time and

space in conjunction with the secondary base station (SBS). It is further

assumed that the PUs activities are such that when all PUs are inactive,

spectrum holes are available both temporally and spatially at the PUs’ lo-

cations. However, when there are p < P active PUs, spatial spectrum holes

will be available in time at some p′ = P − p PUs’ geographical locations

(the coverage areas of the p′ inactive PUs) which if detected can be utilized

by the SUs during the p′ PUs’ idle period. It is thought that such spatially

available bands could be used for base-to-mobile communications as well as

mobile-to-mobile communications that is being proposed as an integral part

of the next-generation cellular networks [60].

In general, if we let S(P, p) denote a particular class in which p out of P

PUs are active during any sensing interval, the spectrum sensing task under

this scenario can be formulated as a multiple hypothesis testing problem

H0 : xm(n) = ηm(n) (3.6.26)
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Figure 3.3. Cognitive radio network of primary and secondary users.

H
S(P,p)
1 : xm(n) =

p∑
p̃=1

ϕp̃(su
m)sp̃(n) + ηm(n), p = {1, · · · , P} (3.6.27)

whereH0 implies that all PUs are absent andH
S(P,p)
1 means that at least one

PU is present. Furthermore, xm(n) is the instantaneous signal received at

the m-th antenna of the SU over bandwidth ω of interest within which

the PUs operate, p̃ is the index of the active PU(s) for a specific state in

the p-th class and ϕp̃(su
m) is the gain coefficient of the channel between

the p̃-th PU and the m-th antenna of the SU. The remaining parameters in

(3.6.27) are sp̃(n) which is the instantaneous PU signal assumed to be BPSK

modulated with variance, E|sp̃(n)|2 = σ2sp̃ , and ηm(n) which is assumed

to be circularly symmetric complex Gaussian noise with mean, zero and

variance, E|ηm(n)|2 = σ2η. Under H0, all PUs are inactive, so no primary

signal is detected and it corresponds to the null hypothesis. On the other

hand, H
S(P,p)
1 corresponds to composite alternative hypothesis where in this

consideration it is assumed that at any given time there is/are p ∈ {1, ..., P}

active PUs during the sensing interval indicated by p in the superscript,

S(P, p). It is apparent that under multiple PUs scenarios, intuitively there

are P classes of alternative hypothesis each of which may comprise of one or
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more sub-classes that may be viewed as different system state. The goal is to

develop a system that is able to learn the peculiar attributes that uniquely

characterize each of the states under the composite alternative hypothesis in

order to be able to distinguish them from one another using this knowledge.

From the foregoing, it can be seen that H
S(P,p)
1 represents each of the P

classes of alternative hypothesis resulting from the multiple PU spectrum

sensing problem formulation and may thus be re-written as

H
S(P,p)
1 =



H
S(P,1)
1

H
S(P,2)
1

...

H
S(P,P )
1

(3.6.28)

where for an arbitrarily large P (P ≫ 1), H
S(P,1)
1 describes the possible

independent occurrences of the PUs where only one PU is active during the

sensing duration. This can be written as

H
S(P,1)
1 = Hp

1 : ϕp(su
m)sp(n) + ηm(n), ∀p ∈ {1, · · · , P}. (3.6.29)

If we let
(
P
p

)
= P !

(P−p)! p! denote the total number of possible combinations in

the p-th class, then it is easy to see that H
S(P,1)
1 class comprises of

(
P
1

)
states

as shown in (3.6.29). Similarly, the second class, H
S(P,2)
1 which corresponds

to the case where any two PUs are active simultaneously can be described

as comprising of
(
P
2

)
states which can be expressed as

H
S(P,2)
1 =



H1,p
1 : ϕ1(su

m)s1(n) + ϕp(su
m)sp(n) + ηm(n), ∀p = 2, · · · , P

H2,p
1 : ϕ2(su

m)s2(n) + ϕp(su
m)sp(n) + ηm(n), ∀p = 3, · · · , P

...

HP−1,P
1 :

∑P
P−1 ϕp(su

m)sp(n) + ηm(n)

(3.6.30)
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Furthermore if we consider every possible states in the H
S(P,3)
1 class where

there are three simultaneously active PUs, we will have
(
P
3

)
states which can

be described as

H
S(P,3)
1 =



H1,2,p
1 :

∑2
i=1 ϕi(su

m)si(n) + ϕp(su
m)sp(n) + ηm(n),

∀p = 3, ..., P

H1,3,p
1 :

∑
i=1,3 ϕi(su

m)si(n) + ϕp(su
m)sp(n) + ηm(n),

∀p = 4, ..., P

H1,4,p
1 :

∑
i=1,4 ϕi(su

m)si(n) + ϕp(su
m)sp(n) + ηm(n),

∀p = 5, ..., P

...

H1,P−1,P
1 :

∑P
p=1,P−1 ϕp(su

m)sp(n) + ηm(n)

H2,3,p
1 :

∑3
i=2 ϕi(su

m)si(n) + ϕp(su
m)sp(n) + ηm(n),

∀p = 4, ..., P

H2,4,p
1 :

∑
i=2,4 ϕi(su

m)si(n) + ϕp(su
m)sp(n) + ηm(n),

∀p = 5, ..., P

...

H2,P−1,P
1 : ϕ2(su

m)s2(n) +
∑P

p=P−1 ϕp(su
m)sp(n) + ηm(n)

H3,4,p
1 :

∑4
i=3 ϕi(su

m)si(n) + ϕp(su
m)sp(n) + ηm(n),

∀p = 5, ..., P

H3,5,p
1 :

∑
i=3,5 ϕi(su

m)si(n) + ϕp(su
m)sp(n) + ηm(n),

∀p = 6, ..., P

...

H3,P−1,P
1 : ϕ3(su

m)s3(n) +
∑P

p=P−1 ϕp(su
m)sp(n) + ηm(n)

...

HP−2,P−1,P
1 :

∑P
p=P−2 ϕp(su

m)sp(n) + ηm(n).

(3.6.31)

By following similar line of reasoning, the expressions for all classes of alter-

native hypothesis that describe every possible PU states in the network can

be generated. The
(
P
P

)
combination where all PUs are simultaneously active
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during the sensing interval is only one state and it corresponds to the P -th

class of alternative hypothesis which can be expressed as

H
S(P,P )
1 = H1,··· ,P−1,P

1 :

P∑
p=1

ϕp(su
m)sp(n) + ηm(n). (3.6.32)

For any given network comprising P PUs, from (3.6.28) to (3.6.32) it

is apparent that there are 1 +
∑P

p=1

(
P
p

)
distinguishable hypotheses whose

attribute has to be learnt by the SUs in order to be able to efficiently detect

available spectrum opportunities and fully optimize the usage of the spec-

trum resources. It should be noted though, that each one of the j ∈
∑P

p=1

(
P
p

)
alternative hypotheses states not only indicates the presence of the PU ac-

tivity in the network but also provides additional information about the spe-

cific location(s) of the active PUs. It is opined that if the SUs are properly

trained, they will be able to determine the geographical location(s) where

spatial spectrum hole is/are available at any given point in time which can be

utilized by employing appropriate interference mitigating transmit technique

such as beamforming.

Furthermore, in the multiple hypotheses sensing problem, the SUs’ detec-

tion performance metrics, probability of detection (Pd) defined as p(H1|H1),

also describes the ability of the detector to classify the frequency band being

monitored as busy (occupied) when one or more PU is active. Similarly, the

probability of false alarm (Pfa) defined as p(H1|H0), describes classifying

the band of interest as being used when in reality all PU(s) are inactive.

In addition, since the interest is to determine the actual status of every PU

during any sensing duration, it is important that a more pertinent metric re-

ferred to as classification accuracy (CA) be introduced which can be defined

as, CA , p(Hy|Hy) where Hy represents the true network’s state including

the idle state. In the context of the multi-class problems, it is possible for

one or more states in a given class to be classified more accurately than oth-
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ers within the same class, or in another class. Therefore, if i and q denote

the class and state index respectively, the overall classification accuracy over

all hypotheses is defined as

CAovr =
1

(YP + 1)

{ P∑
i=1

Qi∑
q=1

p(Hi|Hi) p(Hq|Hq) + p(H0|H0)

}
(3.6.33)

where P is the total number of classes, Qi is the number of states in the ith

class, YP = card(
P∪
i=1

Qi) is the total number of states present in all classes

being considered under H1, and card(G) implies cardinality. For the sake

of emphasis, it should be noted here that if Qi = card(Qi), ∀ i, j ∈ P, ∃j :

Qi ̸= Qj . It is also worth reiterating that CAovr is a performance metric that

describes the capability of the spectrum sensing scheme to correctly indicate

the number of active PUs and their respective geographical locations during

the sensing interval. A good spectrum sensing scheme should be designed

to maximize CAovr so as to avoid causing intolerable interference to the

PUs’ transmissions and to minimize Pfa in order to optimize use of radio

resources.

3.6.5 Multi-class SVM Algorithms

In reality, due to mutual interference the number of active transmitters that

can simultaneously transmit in the same spectral band within a given ge-

ographical area is limited [61]. It follows therefore that for large P , the

actual number of PUs to be considered is far smaller than P . To describe

the application of the proposed MSVM algorithm based technique, let us

consider a simple multiple user scenario where there are two PUs in the

network (i.e. P = 2) so that in addition to the null hypothesis, there are

2P−1 alternative hypotheses for consideration in our spectrum sensing prob-

lem. In this case, the vector of possible states that describe the activities

of the PUs is represented as [x, y] ∈ {[0, 0], [0, 1], [1, 0], [1, 1]} where x, y = 0
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and x, y = 1 implies PU is absent and present respectively. The multiple

hypothesis testing problem (3.6.26) and (3.6.27) in this scenario, translates

to a four-hypothesis testing problem comprising of one null hypothesis and

three alternative hypotheses defined as

xm(n) =



ηm(n) H0 : both PUs absent

ϕ1(su
m)s1(n) + ηm(n) H1

1 : only PU1 present

ϕ2(su
m)s2(n) + ηm(n) H2

1 : only PU2 present∑K
k=1 ϕk(su

m)sk(n) + ηm(n) H1,2
1 : both PUs present

(3.6.34)∀m ∈M.

Under this operating condition, it is assumed that only one of the four states

defined in (3.6.34) can exist during any sensing duration while the PUs are

also assumed to be geographically located such that a spatial spectrum hole

can be declared within the operating environment of any inactive PU and in

the coverage areas of both PUs in the event that both PUs are inactive. To

address this multi-class signal detection problem, the approach is to learn

the attributes of the received PU(s) signals using the MSVM algorithms.

In general, the implementation of the MSVM classification technique

can be approached in two ways. One way is the direct approach where

multi-class problem is formulated as a single, large, all-in-one optimization

problem that considers all support vectors at once [62]. However, the number

of parameters to be estimated through this method tends to increase as the

number of classes to be discriminated increases. Besides, the method is

less stable which affects the classifier’s performance in terms of classification

accuracy [2]. The alternative approach which was adopted in this study is

to treat the multi-class problem as multiple binary classification tasks and

requires the construction of multiple binary SVM models from the training

data by using one-versus-all (OVA) or one-versus-one (OVO) methods [62],

[63], [64]. In this application, the data set that were collected under each of
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the four hypotheses represents each system state respectively and can also

be viewed as the unique classes that we seek to be able to distinguish.

In the one-versus-all (OVA) otherwise known as the one-versus-rest ap-

proach, J = 2P binary SVM models are constructed for J classes where

the jth SVM, ∀j ∈ J is trained on two classes of labeled data set. This

pair of classes are realized by assigning positive labels to all the data points

in the jth class while negative labels are assigned to all remaining train-

ing data points. So, given D training data points in the data set, S =

{(x1, y1), (x2, y2), · · · , (xD, yD)}, where xi ∈ Rn, i = 1, · · · , D and yi ∈

{1, · · · , J} is the class to which xi belongs, the j
th SVM solves the optimiza-

tion problem defined in the primal form as

minimize
wj ,bj ,ξj

⟨wj .wj⟩+ Γ+
D∑

i|yi=j

ξji + Γ−
D∑

i|yi ̸=j

ξji

subject to (⟨wj .β(xi)⟩+ bj) ≥ 1− ξji , if yi = j

(⟨wj .β(xi)⟩+ bj) ≤ −1 + ξji , if yi ̸= j

ξji ≥ 0, i = 1, · · · , D.

(3.6.36)

where as in (3.6.12) the labeled training examples are mapped into high di-

mensional feature plane via appropriately selected non-linear kernel function

β(x), Γ+ and Γ− remain as penalty parameters and
∑

i ξ
j
i is an upper bound

on the number of training errors. It should be noted that in the problem

formulation of the original binary SVM, the soft margin objective function

in (3.6.23) assigns equal cost, Γ to both positive and negative misclassifica-

tions in the penalty component. Here, this has been modified in order to

accommodate the imbalance in the number of training examples in the two

classes arising under the OVA scheme, as a cost sensitive learning approach

which addresses the sensitiveness of the SVM algorithm to class imbalance
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training data [52]. In addition, by assigning different cost in a way that

takes the imbalance into consideration, the overall misclassification errors

is reduced owing to the fact that the tendency for the decision hyperplane

to skew towards the class that has smaller number of training examples is

considerably mitigated. Appropriate values for the penalty parameters can

be obtained by setting the ratio Γ+

Γ− to the ratio
card(Cmaj)
card(Cmin)

where Cmaj and

Cmin refers to the majority and minority class respectively.

As in the case of the CSVM, during the training, a classifier model that

maximizes the margin, 2
∥wj∥ between any given pair of classes is desired by

minimizing 1
2⟨w

j .wj⟩ where the constant term 1
2 is introduced for math-

ematical convenience. However, this is easier to achieve if the procedure

outlined in (3.6.13) to (3.6.18) is followed and (3.6.36) is transformed to the

dual form expressed as

maximize
αj

D∑
i=1

αji −
1

2

D∑
i=1

D∑
l=1

yji y
j
l α

j
iα

j
l ⟨β(xi).β(xl)⟩

subject to
D∑
i=1

yjiα
j
i = 0 , 0 ≤ α+,j

i ≤ Γ+, 0 ≤ α−,j
i ≤ Γ−, ∀i

(3.6.37)

where α+,j
i and α−,j

i are the Langrangian multipliers of the positive and neg-

ative training examples for the jth model, respectively. By solving (3.6.37)

∀j, J decision functions described by

Nj
s∑

i=1

yjiα
j
iK(xji ,x

new) + bj , ∀j ∈ J (3.6.38)

are obtained for classifying new data point, xnew and determining the actual

state of the PU network.

Another coding strategy that can be used to address the multi-class

spectrum sensing problem via the MSVM algorithm is the one-versus-one

(OVO) scheme where each binary learner trains only on a pair of classes,

jj , jq ∈ J at a time. In this technique, all training examples in class jj are
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considered to be the positive class whereas those in the jq class are treated

as the negative class. All remaining examples, J\j̄ where j̄ = {jj ∪ jq}

are simply ignored. Therefore, similar to (3.6.36), the formulation of the

optimization problem in the primal form using the OVO method can be

described by [62]

minimize
wjq ,bjq ,ξjq

⟨wjq.wjq⟩+ Γ
D̄∑
i=1

ξjqi

subject to (⟨wjq.β(xi)⟩+ bjq) ≥ 1− ξjqi , if yi = j

(⟨wjq.β(xi)⟩+ bjq) ≤ −1 + ξjqi , if yi = q

ξjqi ≥ 0, i = 1, ..., D̄.

(3.6.39)

where D̄ = card(j̄). The dual form of (3.6.39) expressed as

maximize
αjq

D̄∑
i=1

αjqi −
1

2

D̄∑
i=1

D̄∑
j=1

yjqi y
jq
l α

jq
i α

jq
l ⟨β(xi).β(xl)⟩

subject to
D̄∑
i=1

yiα
jq
i = 0 , 0 ≤ αjqi ≤ Γ, ∀i

(3.6.40)

is solved for every possible jq pair and
(
J
2

)
SVM decision functions

Njq
s∑

i=1

yjqi α
jq
i K(xjqi ,x

new) + bjq, ∀jq pair (3.6.41)

are obtained for classifying new data point, xnew.

3.6.6 Predicting PUs’ Status via ECOC Based Classifier’s Decod-

ing

The ECOC scheme is a framework that enables us to design how the pairs

of classes that we train on using the OVO or OVA methods are selected. It
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also allows us to take advantage of the dependencies among different labels

and the predictions made by the individual SVM classifier model towards

minimizing the overall classification error [64], [65]. From the perspective of

the ECOC, spectrum sensing task may be viewed as a typical telecommu-

nication problem where the source is the PU-SU channel being sensed, the

transmitted information is the true state of the PU activities encoded in the

actual class of the new observations that we wish to predict, the commu-

nication channel is comparable to both the training feature as well as the

MSVM learning algorithms and with the aid of ECOC scheme the errors

that may be introduced through the choice of the training features and the

learning machines can be corrected at the SU receiver.

For the OVA model in (3.6.36), to implement the ECOC scheme a coding

matrix, M ∈ {+1,−1}J×L is simply constructed where J is the number of

classes in the entire training data set and L is the number of binary learners

that are required to solve the multi-class problem. It should be noted that for

the OVA method, J = L, and a straightforward approach for constructing

the coding matrix M is to choose a square, symmetric matrix with +1s

on the leading diagonal only so that Tr(M) = J . The coding matrix for

implementing the OVA scheme where J = L = 4 is designed as shown in

Table 3.1.

Table 3.1. One-versus-all coding matrix

l1 l2 l3 l4

j1 +1 -1 -1 -1

j2 -1 +1 -1 -1

j3 -1 -1 +1 -1

j4 -1 -1 -1 +1 .
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To apply the OVAmatrix above to solve the four-class problem in (3.6.34),

during the learning phase for deriving the decision model, the first binary

learner l1 in the first column is trained by assigning the positive label to all

the training examples in the j1 class (row 1) while all the training examples

in the remaining j2 through j4 classes (rows 2 to 4) are assigned the nega-

tive label as shown. For the second learner, l2 in column 2, positive label

is assigned to all the training examples in the j2 row and negative label is

assigned to all the training examples in the remaining rows. So in general,

for the n-th learner, we assign positive label to all the examples in the n-th

row and negative label to training examples in the rest rows to obtain all

required J = 4 decision models.

Similarly, in the implementation of the OVO scheme sometimes referred

to as the all pairsmethod, the coding matrix,M∈ {+1,−1, 0}J×L is chosen

in such a way that the l-th learner trains on two classes only. Assuming

that this learner is used to train on the j-th and q-th classes, the rows of

M that corresponds to the j-th and q-th classes of interest are labeled +1

and -1 respectively while all remaining rows are ignored by assigning 0s to

them. This procedure is repeated until all required
(
J
2

)
decision functions

are realized. Table 3.2 shows the OVO scheme coding matrixM for solving

the four-class problem in (3.6.34)

Table 3.2. One-versus-one coding matrix

l1 l2 l3 l4 l5 l6

j1 +1 +1 +1 0 0 0

j2 -1 0 0 +1 +1 0

j3 0 -1 0 -1 0 +1

j4 0 0 -1 0 -1 -1 .
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It is pertinent to mention at this juncture that while the OVO and OVA

coding strategies appear to have gained popularity, the multiple SVM mod-

els approach to multi-class problem can also be implemented by using a

coding matrix that is chosen in a way that the positive and negative labels

are randomly assigned to the classes during the training phase [63]. One

advantage of this approach is the flexibility of employing variable number of

binary learners, doing so with very minimal performance loss.

It could be observed that in the two popular ECOC strategies described

above, each class of the training data in the multiple hypothesis problem

is associated with a row of M thereby resulting in a unique codeword for

each class. One way of decoding the class for a new (test) data point is by

comparing the codeword that is formed by merging the predictions of all the

learners with the ECOC unique codeword for each class and the test data is

classified as belonging to the class with the smallest Hamming distance. This

is very similar to the class prediction in CSVM, where to classify new data

point, xnew, the sign of (3.6.25) is used. However, this approach entirely

ignores the confidence level that the actual score produced by each binary

classifier attaches to its prediction. To overcome this disadvantage, the loss-

weighted decoding strategy can be employed which takes into account every

predictor’s score for the test point as calculated from the decision function

in (3.6.25).

In the loss-weighted decoding, if the set of predicted scores for a new

observation xnew, jointly returned by the MSVM learners’ decision models

is denoted by

Θ(xnew) = {θl1(xnew), · · ·, θlL(x
new)} (3.6.42)

for L learners, where θll is the actual predicted score produced by the margin-

based decision model of the l-th learner, then a test data point is classified

as belonging to the class ĵ ∈ {1, ...J} that offers the minimum sum of binary
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losses over all learners. This is obtained by using the expression [65]

ĵ = argmin
j

∑L
l=1 |mjl|g(mjl,θll

)∑L
l=1 |mjl|

(3.6.43)

where ĵ is the predicted class for the test data point,mjl refers to the element

jl ofM, (i.e. the label for class j of learner l) and g(., .) is an appropriate

binary loss function specifically chosen for the classifier. In general, for the

SVM classifier, a good choice for the binary loss is the hinged function whose

score domain lies in (−∞,∞), and is defined by

g(yl, θl) =
max(0, 1− ylθll)

2
(3.6.44)

where yl is the class label for the l-th binary learner of the class being

considered. In this study, (3.6.43) is used to obtain the class of the new test

data point which corresponds to the true state of the PU activities that we

wish to predict during the spectrum sensing interval.

3.7 Numerical Results and Discussion

In this section, the performance of the proposed schemes is evaluated for

both the single and multiple PU scenarios. The CSVM algorithm was ap-

plied to the single PU case while for the multiple PU scenario the MSVM

algorithm was implemented. The results are quantified in terms probabil-

ity of detection, probability of false alarm, receiver operating characteristics

curves (ROC), area under ROC (AuC) and overall classification accuracy.

3.7.1 Single PU Scenario

Under this scenario, the aim is simply to detect the presence or absence of

the PU. So for the purpose of simulation, under H1, it is assumed that the

PU signal is BPSK modulated, with transmit power equals one Watt. It is
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further assumed that the PU-SU channel is complex additive white Gaussian

noise with ϕ(sum) modeled as a Rayleigh distributed random variable and

the noise power is denoted by η2m. The noise and the PU’s signal are assumed

to be uncorrelated. By cross-validation, the CSVM kernel width parameter,

σ is 64 and the box constraint, Γ is 0.8. A total of 2000 set of eigenvalues was

generated through 2000 random realizations of the channels, out of which

400 were used for training and the rest for testing purpose. To demonstrate

the robustness of the eigenvalue derived features, comparisons are made with

energy † based features. The performance of the scheme is evaluated under

different values of the number of received signal samples, SU antenna number

and operating SNR.
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EVSVM, SNR = -18dB, Ns = 1000, M = 5, AuC = 0.9401
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Figure 3.4. ROC performance comparison showing EV based SVM and
ED based SVM schemes under different SNR range, number of antenna,
M = 5, and number of samples, Ns = 1000 .

Figure 3.4 shows the performance of the proposed eigenvalue feature

based SVM binary classifier (EVSVM) in terms of the ROC curves for fixed

†The procedure for the realization of the energy based features and associated
statistical properties is described in Chapter four of this thesis.
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Figure 3.5. ROC performance comparison showing EV based SVM and
ED based SVM schemes with different number of antenna, M , SNR = -18
dB, and number of samples, Ns = 1000 .
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Figure 3.6. ROC performance comparison showing EV based SVM and
ED based SVM schemes with different number of samples, Ns, number of
antenna, M = 5, and SNR = -20 dB .
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Figure 3.7. Performance comparison between EV based SVM and ED
based SVM schemes showing probability of detection and probability of false
alarm versus SNR, with samples number, Ns = 1000, number of antenna,
M = 3, 5 and 8.

number of received signal samples, Ns = 1000 and number of SU anten-

nas, M = 5 when the SNR = -15 dB, -18 dB and -20 dB. As seen, EV

based SVM outperforms the ED based SVM. For example, at the Pfa =

0.1, the Pd of 0.9 is achieved by the EVSVM scheme whereas the EDSVM

achieves 0.85 at SNR of -18 dB. Additionally, for the EVSVM scheme, as

the SNR is increased from -20 dB to -18 dB, the Pd is raised correspond-

ingly from 0.6 to 0.9 providing a 30% gain in performance. The various

cases of SNR conditions considered indicates that the new EVSVM scheme

outperforms the EDSVM method which demonstrates the strength of the

feature derived from eigenvalues to enhance the capability of the SVM bi-

nary classifier. In particular, within the SNR range of interest, it can noted

that the EVSVM scheme offers significant improvement in the detection of

spectrum holes. This is in addition to the fact that it provides the SU useful

information about the number of active PUs through the presence of non-
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repeating eigenvalues in the derived features. Furthermore, the performance

improvement of the EVSVM scheme is discernible at SNR of -15 dB by

computing the AuC where it is seen that the EVSVM scheme yields an AuC

of 0.9915 against 0.9888 yielded by the EDSVM.

In Figure 3.5, the effect of varying number of SU antenna, M is shown

on the performance of the proposed scheme with fixed number of received

signal samples, Ns = 1000 while SNR is kept at -18 dB. As seen, when M

is increased from 3 to 5, 30% improvement in performance is observed when

Pfa is 0.1, that is, Pd is increased from 0.6 to 0.9. On the other hand,

the EDSVM methods yields only 25% improvement, where Pd is increased

from 0.6 to 0.85. Figure 3.6 shows the impact of varying the number of

attributes of the feature vector has on the performance for a fixed number of

SU antennas, M = 5 and operating SNR = -20 dB. As we increase Ns from

500 to 2000, the EVSVM scheme is seen to yield a rise in Pd from 0..42 to

0.82. The EDSVM however, achieve an increase in Pd from 0.43 to 0.8 when

the Pfa is kept at 0.1. This indicates that a more accurate detection result

is obtained when a considerably high number of received signal samples are

processed.

Figure 3.7 depicts the Pd and Pfa performance for the EVSVM and

EDSVM schemes over an SNR range of -20 dB to -6 dB. For the inves-

tigation, the number of samples, Ns is 1000 and the antenna number, M

considered are 3, 5 and 8. Here, for the proposed EVSVM method, it can

be seen that when M is 8, Pd increased from 0.86 to 0.96 as the SNR is

increased from -20 dB to -18 dB while the Pfa dropped correspondingly

from 0.12 to 0.03 over the same SNR range. It can further be observed that

at SNR of -18 dB, with the same antenna number, M = 8, the EVSVM

scheme attains Pd of 0.96 while the Pfa is kept well below 0.1. In the case

of the EDSVM method, we observe a trend similar to that exhibited by the

EVSVM in terms of Pd and Pfa versus SNR. However, the EVSVM tech-
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nique outperforms the EDSVM which is evident if we consider for instance

the performance of both methods where they both meet the CR IEEE 802.22

requirement at SNR = -18 dB and SU antenna number, M = 8. Here, we

observe a margin of about 2 % in Pd (0.93 to 0.95) and Pfa (0.05 to 0.03).

Furthermore, with increase in M from 3 to 8 and when SNR = -20 dB the

EVSVM offers a rise in Pd from 0.7 to 0.88 (about 18% gain) and a drop

in Pfa from 0.29 to 0.11 which corresponds to a 18% fall whereas for the

EDSVM the rise in Pd is from 0.72 to 0.88 (about 16% gain) and drop in

Pfa is from 0.28 to 0.12 (about 16% drop). From the foregoing, it is evi-

dent that the SVM technique exhibits a robust performance even when prior

knowledge of the feature’s underlying distribution is lacking or not taken into

consideration. In addition, the eigenvalue based scheme exhibits a very good

performance in comparison with the EDSVM scheme and its strength is seen

to especially lie in relatively high number of antennas and sample number.

However, the performance improvement accrue credibly makes up for its rel-

atively high implementation complexity. The increased performance of the

EVSVM method indicates a significant potential for improving the usage of

the radio spectrum resources.

3.7.2 Multiple PUs Scenario

To validate the multi-class algorithms described in this chapter, in our simu-

lation we consider a PU-SU network comprising of two operating fixed PUs

whose activity is to be monitored. The geographical location of the PUs are

assumed to be known by the SBS and the PUs are assumed to be operating

at SNR of 0 dB and -3 dB respectively. Under H1, it is assumed that the

PUs’ signal is BPSK modulated and the channel gain between the PUs

and the individual SU, ϕ(sum) is modeled as a Rayleigh distributed, zero

mean complex random variable. The PU-SU channel is assumed to be quasi-

static during the training and testing period and characterized by complex



Section 3.7. Numerical Results and Discussion 69

additive white Gaussian noise with power, η2m. Furthermore, the PUs’ sig-

nals and the noise are assumed to be uncorrelated. By cross-validation, the

MSVM kernel scale parameter, σ is 10 and the box constraint, Γ is 1. For

the implementation of the OVA scheme though, the corresponding values

for box constraint parameters, Γ+ and Γ− are obtained from the ratio of

the pair of classes being considered as discussed in sub-section (3.6.4). For

easy comparison with other supervised schemes discussed in this chapter we

used the energy based feature and generated 2000 set of feature vectors out

of which 400 were used for training and the rest for testing purpose. The

performance of the scheme is evaluated through 1000 random realizations of

the PU-SU channels under different values of the number of received signal

samples, cooperating SUs, and operating SNR.
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Figure 3.8. ROC curves for CSVM with number of PU = 2, number of
antennas, M = 2 and 5, number of samples, Ns = 500,1000 at SNR = -15dB.

In Figure 3.8, the performance of linear kernel based CSVM classifier is

shown when used for temporal spectrum sensing under multiple PUs sce-

narios using the roc. Due to the class imbalance we applied cost sensitive
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Figure 3.9. Comparison between OVO and OVA coding Schemes with
number of PU = 2, number of sensors, M = 5, number of samples, Ns =
200, 500 and 1000.

learning technique and investigated the effect of the number of cooperating

sensors, by increasing M from 2 to 5 while we vary the number of sensing

samples, Ns, of the PUs’ signal from 200 to 1000 at a fixed SNR of -15 dB.

It can be seen that the system’s performance improves when the number of

sensors, M is increased. For example, given that Ns is 1000, at a consider-

ably low false alarm probability of 0.1, the detection probability achieved by

the scheme is about 0.73 when M = 2 while at M = 5, the Pd is attained

is about 0.9 indicating a detection probability gain of approximately 17%.

Similarly, given the same operational Pfa of 0.1, as Ns is increased from 200

to 1000, a rise in Pd from 0.56 to 0.73 is observed when M = 2 and from 0.7

to 0.9 when M = 5 yielding a detection probability gain of about 17% and

20% respectively. It is worth reiterating here, however, that the ROC only

provides us information about the detector’s performance when the target is

to determine temporal available of spectrum hole. To evaluate the capabil-
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Figure 3.10. Comparison between OVO-MkNN and OVO-MSVM, with
number of PU = 2, number of sensors, M = 5, number of samples, Ns = 500
and 1000.

ity of the proposed SVM detector considering spatial-temporal detection of

unused bands, we resort to using CA as a more appropriate metric of choice.

In Figure 3.9, the comparison between the OVO and OVA coding schemes

is shown under different Ns given M = 5 cooperating sensors. Here, an

agreement between the performance of the two schemes in terms of CA is

observed over the entire SNR range considered. This leaves us with the

understanding that any of the two schemes may be used without any sig-

nificant performance loss. However, the implementation complexity of the

each of the schemes as highlighted in sub-section (3.6.4) is worth consid-

ering. Figure 3.10 shows the comparison between the performance of the

proposed MSVM classifier and the multi-class kNN (MkNN) classifier with

5 neighbors, evaluated atM = 5 and Ns = 500 and 1000. It can be seen here

that the MSVM scheme has an advantage over the MkNN scheme especially

in the low SNR regime. For instance, at the SNR of -20 dB, the MkNN
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Figure 3.11. Comparison between OVO-MkNN and OVO-MSVM, with
number of PU = 2, number of sensors, M = 5 at SNR = -10 dB, -16 dB and
-20 dB.
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Figure 3.12. Comparison between OVO-MNB and OVO-MQDA, with
number of PU = 2, number of sensors, M = 5, number of samples, Ns =
200, 500 and 1000.



Section 3.7. Numerical Results and Discussion 73

scheme attains the CA of about 59% while the MSVM yields 64% at Ns =

500 and when Ns = 1000, MkNN scheme provides CA of 65% against 69%

obtained from MSVM scheme. Both schemes are however observed to yield

an increase in CA as the SNR is increased.

The effect of increasing Ns is seen in Figure 3.11 where the CA of the

proposed MSVM method is evaluated over different choices of Ns at the

SNR of -10 dB, -16 dB and -20 dB respectively. As expected, it can be

seen that CA increases as Ns is increased from 200 to 2000. Figure 3.12,

the performance comparison between two parametric classifiers considered

at the outset this chapter is shown, namely, the naive Bayes and quadratic

discriminant analysis classifiers under multi-class consideration using the

OVO scheme. Here, M is fixed at 5 while Ns is varied between 200 and

1000. It can be seen that the performance of the two schemes are essentially

identical over the entire SNR range considered. For instance, at SNR = -24

dB, CA rises from about 52% to approximately 57% when Ns is increased

from 200 to 1000. Similarly, as SNR is increased from -24 dB to -10 dB, CA

is seen to to rise from 57% to about 93% at Ns equals 200 and from 57% to

99% when Ns is raised to 1000. Furthermore, by comparing Figure 3.9 and

Figure 3.12, it can be observed that the performance of these two parametric

techniques approaches that of the two non-parametric classifiers considered.

However, the parametric methods require that we have the knowledge of the

dataset’s underlying statistical distribution. These results bring to the fore

the viability of the proposed methods for spatial spectrum hole detection

while also demonstrating the robustness of the SVM classifier in comparison

with other supervised non-parametric classifier widely applied in data mining

applications.



Section 3.8. Summary 74

3.8 Summary

In this chapter, the performance of supervised classifier based methods for

spectrum sensing in cognitive radio networks was investigated. Using both

energy features as well as features derived from the eigenvalues of sample co-

variance matrix of the primary signals which are computed in finite time and

the error correcting output code techniques, the key performance metrics of

the classifiers are evaluated. Simulations shows that the proposed detec-

tors are robust to temporal and joint spatio-temporal detection of spectrum

holes in scenarios with single and multiple primary users. In particular, it

is demonstrated that the SVM, which is a non-parametric technique can be

successfully applied even in scenarios where the prior knowledge of the un-

derlying statistical distribution of the data samples may not be available.

In the next chapter, semi-supervised learning algorithms will be presented.

These will be considered with a view to deploying them in mobile SUs to per-

form spectrum sensing. A novel channel tracking techniques for improving

their classification performance under this condition will also be examined.



Chapter 4

ENHANCED SEMI

SUPERVISED PARAMETRIC

CLASSIFIERS FOR

SPECTRUM SENSING

UNDER FLAT FADING

CHANNELS

4.1 Introduction

Semi-supervised learning techniques in general do not require labeling in-

formation. This is in contrast to the supervised learning methods discussed

in Chapter 3 where completely labeled data set are required to derive deci-

sion functions that are needed for classifying unseen data points. However,

in some cases, it may be necessary that these algorithms be provided su-

pervisory signal for few training examples. In most of the semi-supervised

learning algorithms, typically, the only supervisory information required is

the knowledge of the number of clusters represented in the training data

75
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and a valid assumption of the underlying probability distribution that mod-

els the training data. In some instances, the algorithms are able to make

use of the partially labeled or unlabeled data to capture the shape of the

underlying distribution and generalize to new samples [43]. In the spectrum

sensing problem, a very important motivation for adopting semi supervised

algorithms is the significant saving in memory requirements for storing ad-

ditional supervisory signal information for all training examples.

In this chapter, two prominent semi-supervised learning algorithms are

studied, namely; the K-means and Expectation-Maximization (EM) para-

metric classifiers and their capability for solving our spectrum sensing prob-

lem is evaluated. Furthermore, SUs that are depending on these classifiers

for spectrum sensing under slow fading Rayleigh channel conditions are con-

sidered and a novel technique for enhancing their performance under this

scenario is proposed. In particular, mobile SUs that are operating in the

presence of scatterers are considered and the performance degradation of

their sensing capability is examined. To improve the performance under this

condition, the use of Kalman filter based channel estimation technique is

investigated for tracking the temporally correlated slow fading channel and

aiding the classifiers to update the decision boundary in real time. In the

following two sections, the procedure for implementing the K-means and

Expectation-Maximization (EM) semi supervised classification algorithms

for addressing our spectrum hole detection problem is first described.

4.2 K-means Clustering Technique and Application in Spectrum

Sensing

The K-means clustering technique otherwise referred to as the Lloyds al-

gorithm is known as one of the workhorses of machine learning [66]. It is

a prototype-based, partitional clustering method designed to find a user-
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specified number of clusters, K represented by their centroids in a dataset

[44]. A cluster is a set of objects in which all objects are very similar to

the cluster’s representative, usually the centroid or mean (average of all the

points in the cluster). To describe how the K-means algorithm works and

demonstrate the applicability in solving spectrum sensing problem, let us

again consider a simple sensing network comprising a PU and M SUs as de-

picted in Figure 4.1. The SU system is such that the secondary base station

(SBS) is located at the cell center and it is assumed that the SUs are coop-

erating to detect the presence or absence of the PUs. For spatial diversity,

during the training interval, the SUs performs sensing at their respective

locations and report their measurements to the SBS where clustering can

easily be performed due to the enormity of the data involved. Following

from (2.2.1), the spectrum sensing under this scenario can be expressed as

a binary hypothesis testing problem of the form

SU2

PU-RX

PU-TX
SBS

PU-RX

PU-RX

PU-RX

PU-RX

SU1

SU3

SU4

SU M

Figure 4.1. Cooperative spectrum sensing network of single PU and mul-
tiple SUs.

H0 : xm(n) = ηm(n) (4.2.1)

H1 : xm(n) = ϕ(sum)s(n) + ηm(n) (4.2.2)
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where all parameters are as previously defined. In this study, it is assumed

that the PU-SU channel modeled by ϕ(sum) is quasi-static throughout the

training and testing interval and the sensing energy measurements obtained

by the SUs under each state of the PU’s activity, H0 and H1 are considered

to belong to the respective cluster. The SUs are further considered to be

single antenna devices and the sensing results transmitted by each SU is

treated as an attribute of the M dimensional feature vector.

4.2.1 Energy Features Realization

During the training interval, given that the PU operates at a carrier fre-

quency fc and bandwidth ω, if the received PU signal is sampled at the rate

of fs by each SU, the energy samples sent to the SBS for training purpose

can be estimated as

xi =
1

N s

Ns∑
n=1

|xm(n)|2 (4.2.3)

where n = 1, 2, · · · , Ns and Ns = τfs is the number of samples of the re-

ceived PU signal used for computing the energy sample at the SU while τ is

the duration of sensing time for each energy sample realization. When the

PU is idle, the probability density function (PDF) of xi follows Chi-square

distribution with 2Ns degrees of freedom and when Ns is large enough (say,

Ns ≃ 250) [30], this PDF can be approximated as Gaussian through the

central limit theorem (CLT) with mean, µ0 = σ2η and variance, σ20 expressed
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as [67]

σ20 = E[(xi − µ0)2]

= E[(
1

N s

Ns∑
n=1

|xm(n)|2 − σ2η)2]

=
1

N s
E[(|ηm(n)|2 − σ2η)2]

=
1

N s
E[(|ηm(n)|4 − 2σ2η|ηm(n)|2 + σ4η]

=
1

N s
E[(|ηm(n)|4 − 2σ4η + σ4η]

=
1

N s
E[(|ηm(n)|4 − σ4η]. (4.2.4)

However, for an additive white Gaussian noise, E|η(n)|4 = 2σ4n so that we

have

σ20 =
1

Ns
σ4η,m, ∀m ∈M. (4.2.5)

Similarly, when the PU is active, the distribution of xi can be approxi-

mated as Gaussian with mean, µ1 = |ϕ(xmsu)|2σ2s+σ2η and variance, σ21 derived

as

σ21 = E[(xi − µ1)2] (4.2.6)

For simplicity, if we momentarily drop the channel effect, ϕ(xmsu), (4.2.6) can

be written as

σ21 = E[(
1

N s

Ns∑
n=1

|xm(n)|2 − (σ2s + σ2η))
2]

=
1

N s
E[(|s(n) + ηm(n)|2 − (σ2s + σ2η))

2]. (4.2.7)

If it is assumed that the primary signal, s(n) is complex modulated inde-

pendent and identically distributed (i.i.d) random process, sr(n) + si(n),

where the additional subscript, r and i denotes the real and imaginary
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components, with mean zero and variance, E[|s(n)|2] = σ2s , and the noise,

ηm(n) ∼ CN (0, σ2η), is circularly symmetric complex Gaussian i.i.d random

process, ηm,r(n) + ηm,i(n), with mean zero and variance, E[|ηm(n)|2] = σ2η.

Further, if we assume that the primary signal, s(n) is independent of noise,

ηm(n) such that E[s(n)ηm(n)] = 0, E[s2r(n)] = E[s2i (n)] =
σ2
s
2 , E[sr(n)si(n)] =

0, E[s2(n)] = 0, E[s(n)] = 0, E[η2m,r(n)] = E[η2m,i(n)] =
σ2
η

2 , E[ηm,r(n)ηm,i(n)]

= 0, E[ηm(n)] = 0, then (4.2.7) can be re-expressed as

σ21 =
1

N s
E
[(([

sr(n) + ηm,r(n)]
2 + [si(n) + ηm,i(n)

]2)− (
σ2s + σ2η

))2]
=

1

N s
E
[(
|s(n)|2 + |ηm(n)|2 + 2sr(n)ηm,r(n) + 2si(n)ηm,i(n)− σ2s − σ2η

)2]
=

1

N s
E
[
|s(n)|4 + |s(n)|2|ηm(n)|2 + 2|s(n)|2sr(n)ηm,r(n) + 2|s(n)|2sp,i(n)

ηm,i(n)− |s(n)|2σ2s − |s(n)|2σ2η + |s(n)|2|ηm(n)|2 + |ηm(n)|4 + 2sr(n)ηm,r(n)

|ηm(n)|2 + 2si(n)ηm,i(n)|ηm(n)|2 − |ηm(n)|2σ2s − |ηm(n)|2σ2η + 2sr(n)ηm,r(n)

|s(n)|2 + 2sr(n)ηm,r(n)|ηm(n)|2 + 4s2r(n)η
2
m,r(n) + 4sr(n)si(n)ηm,r(n)ηm,i(n)

− 2sr(n)ηm,r(n)σ
2
s − 2sr(n)ηm,r(n)σ

2
η + 2si(n)ηm,i(n)|s(n)|2 + 2si(n)ηm,i(n)

|ηm(n)|2 + 4sr(n)si(n)ηm,r(n)ηm,i(n) + 4s2i (n)η
2
m,i(n)− 2si(n)ηm,i(n)σ

2
s−

2si(n)ηm,i(n)σ
2
η − σ2s |s(n)|2 − σ2s |ηm(n)|2 − 2sr(n)ηm,r(n)σ

2
s − 2si(n)ηm,i(n)

σ2s + σ4s + σ2ησ
2
s − σ2η|s(n)|2 − σ2η|ηm(n)|2 − 2sr(n)ηm,r(n)σ

2
η − 2si(n)ηm,i(n)

σ2η + σ2ησ
2
s + σ4η

]
=

1

N s

[
E[|s(n)|4] + σ2sσ

2
η − σ4s − σ2sσ2η + σ2ησ

2
s + E[|ηm(n)|4]− σ2ησ2s − σ4η+

4σ2sσ
2
η

4
+

4σ2sσ
2
η

4
− σ4s − σ2sσ2η + σ4s + σ2ησ

2
s − σ2ησ2s − σ4η + σ2ησ

2
s + σ4η

]
=

1

N s

[
E[|s(n)|4] + E[|ηm(n)|4] + 2σ2sσ

2
η − σ4s − σ4η

]
=

1

N s

[
E[|s(n)|4] + E[|ηm(n)|4]− (σ2s − σ2η)2

]
. (4.2.8)

At this point if we restore the channel effect on the received primary signal,
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s(n), we obtain

σ21 =
1

Ns
[|ϕ(xmsu)|4E|s(n)|4 + E|η(nm)|4 − (|ϕ(xmsu)|2σ2s − σ2η)2], ∀m ∈M.

(4.2.9)

4.2.2 The K-means Clustering Algorithm

Let us suppose that by using (4.2.3) we collect energy feature vector set,

S = {xi}Di=1 ∈ {H0,H1}, xi ∈ RM , whereM in this instance is the dimension

of our feature vector which also corresponds to the number of cooperating

SUs, the K-means problem is to minimize the within cluster sum of squares

error, for a pre-determined and fixed number of clusters in S. Let K be the

fixed number of clusters and Sk ⊂ S, where k = 1, · · · ,K is the subset index

such that S = {Sk}Kk=1. If a feature vector, xj belongs to cluster k ∈ S, the

K-means problem formulation can be written as [68]

minimize
S

k∑
k=1

∑
j∈Sk

∥xj −Ck∥2

subject to Ck =
1

card(Sk)

∑
j∈Sk

xj ,

K∪
k=1

Sk = S. (4.2.10)

where card implies the cardinality function. The K-means clustering algo-

rithm which finds a partition in which objects within each cluster are as close

to each other as possible, and as far as possible from objects in other clusters

and that can be used for computing the cluster centroids at the SBS is pre-

sented in Algorithm 4.1. Although the algorithm will converge to a point,

it is important to note that this may not necessarily be the minimum of the

sum of squares. This is owing to the fact that the optimization problem

in (4.2.10) is non-convex and thus the algorithm is a heuristic, which con-

verges to a local minimum. The algorithm moves objects between clusters

and stops when there is no change in assignments from one iteration to the
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next such that the sum cannot be decreased further. The result, however, is

a set of clusters that are as compact and well-separated as possible for every

sensor.

After the training process, let C∗
k denote the M dimensional vector of

centroids obtained for the k-th cluster by K-means clustering algorithm, if

the classifier thereafter receives a test feature vector, xnew, the classifier uses

the decision rule described by

Ĉk(x
new) = argmin

k
δk(x

new) (4.2.11)

where δk(x
new) = ∥xnew −C∗

k∥22, ∀k ∈ {1, · · · ,K}, to determine the cluster,

Ĉk to which xnew belongs and hence, the status of the PUs’ activities.

Algorithm 4.1: K-means Clustering Algorithm for Cooperative Spectrum

Sensing in CR Networks

1. ∀ m = 1, ...,M , initialize cluster centroids

C1, ...,CK , ∀ k = 1, ...,K given S, K.

2. do repeat

3. for k ← 1 to K

4. do Sk ← { }

5. for i ← 1 to D

6. do k ← argmink∥Ck − xi∥2

7. Sk ← Sk ∪ {xi}

8. do Ck ← |Sk|−1
∑

xi∈Sk
xi,∀ k

9. until convergence

10. C∗
H0 ← min{|C∗

1|, ..., |C∗
K |}
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4.3 Multivariate Gaussian Mixture Model Technique for Cooper-

ative Spectrum Sensing

A mixture model is a probabilistic model for representing the presence of

subset of data within a set of observations, without requiring that a set

of label be used to identify the subset to which an individual observation

belongs [69]. Conventionally, a mixture model is considered as the mixture

distribution which represents the probability distribution of observations in

an entire set. The goal in mixture model problems is essentially to make

statistical inferences about the properties of the subset and to derive the

properties of the overall set from those of the subset given only observations

contained in the superset, while the identity information about the subset

may be hidden (unknown).

Mixture models can take different forms depending on the underlying

probability distribution that models the observation data in the set under

consideration. A Gaussian mixture model (GMM) for example, is a weighted

sum of multivariate Gaussian probability densities of the form [70]

f(x|θ) =
K∑
k=1

πk ψ(x|µk,Σk), (4.3.1)

where θ is the collection of all governing GMM parameters comprising πk,

µk, and Σk, ∀k ∈ K, πk : 0 ≤ πk ≤ 1, is the mixing coefficient or weighting

factor normalized over all k so that
∑K

k=1 πk = 1, and ψ(x|µk,Σk) is the

Gaussian density function defined as

ψ(x|µk,Σk) =
1

(2π)M/2|Σk|1/2
exp

{
− 1

2
(x− µk)

TΣ−1
k (x− µk)

}
. (4.3.2)

Out the outset, it was established that the energy features can be modeled

as Gaussian variable via the CLT, thus the M dimensional energy samples

vector realized using (4.2.3) under both network states in (4.2.1) and (4.2.2)
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for all sensors in the network may be treated as a mixture of Gaussian.

For the set of training energy vector S, the Gaussian PDF may be ex-

pressed as

p(S|θ) = p(x1, · · · ,xD|θ) (4.3.3)

which following from the i.i.d nature of xi ∈ S, ∀i may be re-expressed as

p(S|θ) = p(x1|θ) · · · p(xD|θ)

=
D∏
i=1

p(xi|θ) (4.3.4)

whose log-likelihood may be written as

ln

[
p(S|θ)

]
= ln

[ D∏
i=1

p(xi|θ)
]

=
D∑
i=1

ln

{ K∑
k=1

πkψ(xi|µk,Σk)
}
. (4.3.5)

At this point, it could be noted that due to the presence of the summa-

tion over k term, appearing inside the logarithm in (4.3.5), it is impossible

to obtain close form analytical solutions to our distribution parameters of

interest via the maximum likelihood estimator. Nevertheless, there exist

a number of iterative methods for maximizing the likelihood function and

one such method that is widely adopted is the EM which will now consid-

ered [17], [46].

4.3.1 Expectation Maximization Clustering Algorithm for GMM

The EM algorithm introduced by Dempster et al in [71] is an elegant and

powerful method that allows us to obtain maximum likelihood solutions

to the parameter estimation problem in (4.3.5). Here, it is considered that

maximizing the likelihood function requires that the derivatives with respect

to the mixture distribution parameters of interest, πk, µk and Σk vanish. By
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adopting this informal approach, to derive µk, we simply differentiate (4.3.5)

with respect to the means as

∂

∂µk
ln

[
p(S|θ)

]
=

∂

∂µk

[ D∑
i=1

ln

{ K∑
k=1

πkψ(xi|µk,Σk)
}]

=
D∑
i=1

πk ψ(xi|µk,Σk)∑K
j=1 πj ψ(xi|µj ,Σj)

Σ−1
k (xi − µk) (4.3.6)

If we define a parameter, rik as the posterior probability or responsibility

which the k-th cluster takes for explaining data point xi, and let this be

represented as

rik =
πk ψ(xi|µk,Σk)∑K
j=1 πj ψ(xi|µj ,Σj)

. (4.3.7)

By setting the derivative in (4.3.6) to zero, we obtain

D∑
i=1

rik Σ−1
k (xi − µk) = 0 (4.3.8)

and if we multiply through by Σk, the mean, µk is derived as

µk =
1∑D

i=1 rik

D∑
i=1

rik xi

=
1

Dk

D∑
i=1

rik xi (4.3.9)

where it is taken that Dk =
∑D

i=1 rik. From the general understanding of

mean, Dk may be viewed as the actual number of data points assigned to

cluster k whose weighted mean is µk. Similarly, the responsibility term, rik

may be seen as the respective weights associated with each data point, xi.

Next we consider the derivation of the expression for the covariance ma-
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trix, Σk. We proceed by differentiating (4.3.5) with respect to Σk as

∂

∂Σk
ln

[
p(S|θ)

]
=

∂

∂Σk

[ D∑
i=1

ln

{ K∑
k=1

πkψ(xi|µk,Σk)
}]
. (4.3.10)

By assuming that Σk is non-singular and symmetric, and invoking the matrix

derivative, ∂|Σ|k
∂Σ = k|Σ|kΣ−T , and also setting the right hand side (R.H.S)

of (4.3.10) to zero we will have

0 =
D∑
i=1

{
πk

[{
ψ(xi|µk,Σk)(xi − µk)(xi − µk)TΣ−1

k

}
−

{
ψ(xi|µk,Σk)

}]∑K
j=1 πj ψ(xi|µj ,Σj)

}

=

D∑
i=1

{
πk ψ(xi|µk,Σk)(xi − µk)(xi − µk)TΣ−1

k∑K
j=1 πj ψ(xi|µj ,Σj)

}
−

D∑
i=1

{
ψ(xi|µk,Σk)∑K

j=1 πj ψ(xi|µj ,Σj)

}

=
D∑
i=1

{
rik (xi − µk)(xi − µk)T

}
Σ−1
k −

D∑
i=1

{
rik

}
(4.3.11)

where the responsibility, rik has used as defined in (4.3.7). Further, by

multiplying both sides of (4.3.11) by Σk, and re-arranging, we obtain

Σk

D∑
i=1

rik =

D∑
i=1

rik (xi − µk)(xi − µk)T (4.3.12)

so that the covariance matrix, Σk can be derived as

Σk =
1

Dk

D∑
i=1

rik (xi − µk)(xi − µk)T . (4.3.13)

Finally, we will consider extracting the expression for the mixing coefficient,

πk. This is achieved by maximizing with respect to πk subject to the con-

straint,
∑K

k=1 πk = 1. By applying Langrangian method of multiplier, the

optimization problem is solved by differentiating the expression

ln
[
p(S|θ)

]
+ α

[ K∑
k=1

πk − 1
]

(4.3.14)
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with respect to, πk and setting the result to zero, yielding

0 =
∂

∂πk

{
ln

{
p(S|θ)

}
+ α

{ K∑
k=1

πk − 1
}}

=
∂

∂πk

[ D∑
i=1

ln

{ K∑
k=1

πkψ(xi|µk,Σk)
}
+ α

{ K∑
k=1

πk − 1
}}]

=

D∑
i=1

ψ(xi|µk,Σk)∑K
j=1 πj ψ(xi|µj ,Σj)

+ α (4.3.15)

If we apply (4.3.7), (4.3.15) becomes

−α =

∑D
i=1 rik
πk

(4.3.16)

so that if we multiply through by πk, and sum both sides over k, we obtain

−α
K∑
k=1

πk =
K∑
k=1

D∑
i=1

rik. (4.3.17)

Further, by substituting
∑K

k=1 πk = 1 and Dk =
∑D

i=1 rik, in (4.3.17), we

will arrive at

α = −
K∑
k=1

Dk = −D, (4.3.18)

the total number of data points in all K clusters. Finally, if we substitute

(4.3.18) into (4.3.16), we have

D =

∑D
i=1 rik
πk

⇒ πk =
Dk

D
. (4.3.19)

From (4.3.19), it is obvious that the mixing coefficient for the k-th compo-

nent is given by the average responsibility it takes o explain all data points

associated with it. Furthermore, it should be noted that all our parameters

of interest for the k-th component, πk, µk and Σk, depend in some way on

the responsibility, rik, which in turn depends on all other components, as

indicated in (4.3.7). In view of this interlocked nature, the optimal solutions
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derived in (4.3.9), (4.3.13) and (4.3.19) are not in closed form so that we will

have to resort to an iterative technique to solve our spectrum sensing prob-

lem via the EM algorithm. An iterative EM algorithm used in this study is

presented in Algorithm 4.2.

As could be seen in Algorithm 4.2, the first step in the implementation

of the EM technique for solving the mixture model problem is to set ini-

tial values for the cluster parameters of all components and use them to

compute the log-likelihood. These initial values are also used to compute

the responsibility (posterior probability) for all clusters in the expectation

step. In the maximization step, the responsibility values derived from the

expectation step are in turn used to obtain the values for mixing coefficient,

mean and covariance matrix for all components. Then, the log-likelihood is

re-compute again and convergence is checked for. The process of computing

the responsibility, mixing proportion, mean and covariances is then repeated

until convergence is achieved and optimal cluster parameters are obtained

for all components in the mixture. It should be noted, though, that the EM

algorithm is known to converge to a local optimal solution [71].
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Algorithm 4.2: EMGMM Clustering Algorithm for CR Spectrum Sensing

1. Initialization: Choose the initial estimates π
(1)
k , µ

(1)
k , Σ

(1)
k , ∀k ∈ K and

using (4.3.5), compute the initial log-likelihood,

ln
[
p(S|θ(1)

]
= 1

D

[∑D
i=1 ln

{∑K
k=1 π

(1)
k ψ(xi|µ(1)

k ,Σ
(1)
k

}]
.

2. l← 1

3. do repeat

4. Expectation step: Using (4.3.7) compute responsibility, r
(l)
ik ,

r
(l)
ik =

π
(l)
k ψ(xi|µ

(l)
k ,Σ

(l)
k )∑K

j=1 π
(l)
j ψ(xi|µ

(l)
j ,Σ

(l)
j )

, i = 1, · · · , D, ∀k ∈ K,

and

D
(l)
k =

∑D
i=1 r

(l)
ik , ∀k ∈ K.

5. Maximization step: Using (4.3.19), (4.3.9) and (4.3.13), compute

the mixing coefficients, π
(l+1)
k , means, µ

(l+1)
k and covariances, Σ

(l+1)
k ,

π
(l+1)
k =

D
(l)
k
D , ∀k ∈ K,

µ
(l+1)
k = 1

D
(l)
k

∑D
i=1 r

(l)
ik xi, ∀k ∈ K,

Σ
(l+1)
k = 1

D
(l)
k

∑D
i=1 r

(l)
ik (xi − µ(l+1)

k )(xi − µ(l+1)
k )T , ∀k ∈ K.

6. Convergence check: Re-compute the log-likelihood,

ln
[
p(S|θ(l+1)

]
= 1

D

[∑D
i=1 ln

{∑K
k=1 π

(l+1)
k ψ(xi|µ(l+1)

k ,Σ
(l+1)
k

}]
.

7. l← l + 1

8. until convergence

9. µ∗
H0 ← min{|µ∗

1|, ..., |µ∗
K |}

If the set of optimal parameters derived from the algorithm is denoted by

{π∗k}Kk=1, {µ∗
K}Kk=1 and {Σ∗

k}Kk=1, given a test energy vector xnew, the cluster

Ĉk to which the test point belongs is determined by first computing the

log-likelihood for all clusters using ln{π∗k ·ψ(xnew|µ∗
k,Σ

∗
k)}, and then making

a decision according to

Ĉk(x
new) = argmax

k

{
ln{π∗k ·ψ(xnew|µ∗

k,Σ
∗
k)}, ∀k = {1, · · · ,K}

}
. (4.3.20)
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From the foregoing, in comparison with K-means, which models the data

set as a collection of K spherical regions and does deterministic assignment

of data points to clusters in which case every data point belongs exactly to

a one cluster, thus viewed as a hard assignment technique, the EMGMM

employs a probabilistic approach which models the data as a collection of

K Gaussians with each data point having a degree of membership in each

cluster, and thus may be viewed as a form of soft assignment technique.

The demerits of EMGMM however, lies in that like K-means, the number of

clusters has to be known beforehand, the solution depends strongly on the

initialization and the fact that it can only model convex clusters [72].

4.3.2 Simulation Results and Discussion

In this sub-section, the performance of the K-means and EMGMM algo-

rithms for spectrum sensing is investigated. In particular, for simplicity a

scenario whereby the SUs experience near LOS propagation from the PU is

assumed such that the magnitude of the PU-SU channel coefficient, |ϕ(xmsu)|,

is considered to be fairly the same for the sensors. It is also assumed that

the PU-SU channel is quasi-static throughout the learning and testing dura-

tion. Furthermore, a two-SU, single-PU network is considered and the data

set, S = {xi}Di=1 ∈ {H0,H1}, xi ∈ R2 is assumed to be collected across the

active and idle states of the PU. The PU is also assumed to switch states in

a predetermined manner known to the SUs so that there is no overlapping in

the data collection process. Under this setting, the underlying distribution

of S may be characterized by GMM, essentially as a linear combination of

two Gaussian components with different means and covariances. The PU

transmit power is assumed to be one Watt and the noise is complex AWGN

with power, σ2η.

In Figure 4.2, the constellation plot of the K-means classifier’s input and

output at SNR of -13 dB, the sample number, Ns = 2000 and sensor num-
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ber, M = 2 is shown. Under the operating condition shown, the clusters can

be seen to be overlapping and by examining the output of the algorithm, we

notice how all data points are strictly assigned to one of the two classes as

described. It is clear to see here that K-means algorithm made some cluster-

ing error on both clusters which invariably affects the overall classification

performance in terms of the spectrum hole detection.
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Figure 4.2. Constellation plot showing clustering performance of K-means
algorithm, SNR = -13dB, number of PU, P = 1, number of sensors, M =
2, number of samples, Ns = 2000.

In Figure 4.3, the performance of the K-means algorithm in terms of

ROC curve is shown. Antenna number, M is set to 2 while SNR and Ns

are both varied. Given Pfa of 0.1, it can be seen that as Ns is increased from

1000 to 2000, Pd rises from 0.82 to 0.95 at SNR of -13 dB and from about

0.52 to 0.78 when SNR equals -15 dB, thus suggesting an improvement of

about 13% and 26% respectively. Similarly, at the same Pfa, when Ns is

fixed at 1000, Pd rises from 0.52 to 0.81 (about 29 % gain) and 0.78 to

0.95 (about 17% gain) at Ns equals 2000 when SNR is raised from -15 dB
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Ns = 2000, SNR = −13dB, M = 2
Ns = 1000, SNR = −13dB, M = 2
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Figure 4.3. ROC curves showing the sensing performance of the K-means
algorithm, number of PU, P = 1, number of sensors, M = 2, number of
samples, Ns = 1000 and 2000, SNR = -13 dB and -15 dB.

to -13 dB. As expected, this also suggests that the scheme offers significant

performance gain with increase in SNR. Using the same PU-SU operating

scenario, the performance of the GMM scheme is investigated in Figure 4.4 at

SNR of -13 dB and sample number, Ns = 2000 where the constellation plot

of Gaussian mixture with two components is shown as well as the contours

of its corresponding probability density as obtained using the EM algorithm.

Here, the capability of the EM algorithm to recognize and capture the user

specified Gaussian components that are present in the mixture is also clearly

seen. Although, the two bivariate normal components overlap, it is seen here

that their peaks are reasonably distinguishable, thereby making clustering

feasible. In Figure 4.5, the constellation plot of the training data is shown

along with the estimated posterior probability for every data points which

is used for deriving other underlying statistical properties of the clusters

that are represented in the training data. In performing clustering, the data
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points are assigned to one of the two components in the mixture distribution

corresponding to the highest posterior probability as shown in Figure 4.6.
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Figure 4.4. Constellation plot showing probability distribution of mixture
components, SNR = -13dB, number of PU, P = 1, number of sensors, M
= 2, number of samples, Ns = 2000.

Figure 4.7 shows the roc of the EM based GMM spectrum sensing scheme

where we investigated the performance of the scheme using Ns of 1000 and

2000 while the SNR is set to -13 dB and -15 dB. It can be seen here that at

the Pfa of 0.1, detection probability increases from 0.4 to 0.7 (about 30%

gain in Pd) when M = 2, SNR = -15 dB and Ns is increased from 1000

to 2000. Similar trend in performance improvement can be observed when

the SNR is adjusted from -15 dB to -13 dB, given M = 2 and Ns equals

1000 where Pd rises rapidly from about 0.4 to 0.8, corresponding to a gain

of about 40%.

These observable improvements indicate that in the low SNR regime, as

the sample number is increased (more time is spent in sensing) or the receive

SNR improves, the clusters become more distinct and identifiable and at the
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Figure 4.5. Constellation plot showing the mixture components’ posterior
probability derived from the E-M algorithm, number of PU, P = 1, number
of sensors, M = 2, number of samples, Ns = 2000, SNR = -13 dB .
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Figure 4.6. Constellation plot showing the clustering capability of the
E-M algorithm, number of PU, P = 1, number of sensors, M = 2, number
of samples, Ns = 2000, SNR = -13 dB.
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Figure 4.7. ROC curves showing the sensing performance of the E-M
algorithm, number of PU, P = 1, number of sensors, M = 2, number of
samples, Ns = 1000 and 2000, SNR = -13 dB and -15 dB.

same time the representative components are more clearly separable, thus

benefiting the GMM based sensing algorithm.

4.4 Enhancing the Performance of Parametric Classifiers Using

Kalman Filter

As evident from the above consideration, well trained parametric classifiers

such as the one based on K-means and EMGMM are capable of generating

excellent decision boundary for data classification. However, their perfor-

mance could degrade severely when deployed under time varying channel

conditions such as when SUs are mobile in the presence of scatterers. In

this section, the aim is to address this problem by employing the Kalman

filter based channel estimation technique for tracking the temporally corre-

lated slow fading channel and aiding the classifiers to update the decision

boundary in real time. In the succeeding sub-sections, the sensing problem



Section 4.4. Enhancing the Performance of Parametric Classifiers Using Kalman Filter 96

under flat fading channel conditions and the proposed solution is investi-

gated. The performance of the enhanced classifiers is quantified in terms of

average probabilities of detection and false alarm.

4.4.1 Problem Statement

A spectrum sensing network consisting of a fixed PU transmitter (PU-TX), a

collaborating sensor node (CSN) co-locating with the PU, a secondary base

station (SBS) which plays the role of a data clustering center as well as the

SUs’ coordinator and M SUs as illustrated in Figure 4.8 is considered. It is

assumed that the PU’s activity is such that it switches alternately between

active and inactive states allowing the SUs to be able to opportunistically

use its dedicated frequency band and operate within the PU’s coverage area.

During the training phase, all SUs sense the energy of the PU-SU channel at

their respective locations during both states and report it to the SBS where

clustering is performed and appropriate decision boundary is generated. It

is assumed that the training data from individual SU is independent but

identically distributed.

Let us suppose that based on the decision boundary that is generated

from the training data, the PU has been declared to be inactive while all the

SUs are stationary. Consider also that SU-c3 that is initially at point ‘A’ is

using the PU’s band while having to transit to another location designated

point ‘B’ as shown. The channel condition characterizing the SU’s trajectory

is assumed to be flat fading (e.g. traveling through a heavily built-up urban

environment). This description equally applies where multiple mobile SUs

share the PU’s band and are able to cooperate. Since the training process

of a learning technique normally takes a long time, under this scenario it

is impractical for the mobile SU(s) to undergo re-training while in motion

owing to the dynamic nature of the channel gain and if sensing information

is exchanged among SUs, it could be received incorrectly due to the channel
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Figure 4.8. A spectrum sensing system of a primary user and mobile
secondary users networks.

fading and noise resulting in performance loss [73], [74]. In addition, sig-

nificant amount of energy and other resources are required to communicate

sensing results periodically to other users and in a bid to conserve resources,

SUs may prefer not to share their results [75]. To be able to detect the sta-

tus of the PU activities correctly and efficiently, the onus is therefore on the

individual mobile SU as it travels to cater to making well informed decision

by dynamically adjusting its decision boundary at the SBS in a manner that

the changes in channel conditions are taken into consideration, doing so with

minimal cooperation overhead.

To address this challenge, in this study a framework is proposed whereby

each SU incorporates a channel tracking sub-system that is based on the

Kalman filtering algorithm which enables the SU to obtain an online, unbi-

ased estimate of the true channel gain as it travels. The estimated channel

gain can then be used to generate energy features for updating its decision

boundary in real time. To investigate the capability of the proposed scheme,

without loss of generality, let us adopt the energy vectors based K-means

clustering platform earlier described in subsection 4.2.2 due to its simplicity.
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4.4.2 System Model, Assumptions and Algorithms

Consider that the PU transmitter is located at a coordinate xpu as shown in

Figure 4.8 and the mobile SU of interest SU-c3, is located initially at xmsu.

During the training period, all SUs carry out sensing of the PU’s channel

at their respective locations and collectively report the estimated energy to

the SBS where K-means clustering is performed and the cluster centroids

are computed. The jointly reported sensing data can be used to obtain a

‘high-dimensional’ decision plane at the SBS and can enable immobile SUs

to be able to take advantage of space diversity which helps contain hidden

node problem. Prior to SU-c3 being in motion, let ϕ(xmsu, n) represent the

channel gain between the PU-TX and SU-c3 at a time instant n. Given that

the PU signals are statistically independent, an estimate of the discrete-time

signal received at the SU-c3 terminal can be written as

xm(n) =

 s(n)ϕ(xmsu, n) + ηm(n), H1 : PU present

ηm(n), H0 : PU absent
(4.4.1)

where the channel coefficient ϕ(xmsu, n) is assumed to be zero-mean, unit-

variance complex Gaussian random variable whose magnitude squared is

the power attenuation P attxpu→xm
su
, between PU-TX and SU-c3 which can be

described by

P attxpu→xm
su

= |ϕ(xmsu, n)|2

= Lp(∥xpu − xmsu∥2) · δxpu→xm
su
· γxpu→xm

su
, (4.4.2)

where ∥ · ∥2 implies Euclidean norm, Lp(ρ) = ρ−d is the path loss compo-

nent over distance ρ, d is the path loss exponent, δxpu→xm
su

is the shadow

fading component and γxpu→xm
su

represents the small scale fading factors.

The remaining parameters in (4.5.1) are s(n) which is the instantaneous
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PU signal assumed to be complex Gaussian with mean zero and variance

E|s(n)|2 = σ2s and ηm(n), which is assumed to be an independent and iden-

tically distributed circularly symmetric complex zero-mean Gaussian noise

with variance E|ηm(n)|2 = σ2η. Throughout this consideration, the shadow

fading effect is assumed to be quasi-static and the channel gain, ϕ(xmsu, n)

is assumed to be time-invariant while SU-c3 is stationary at point ‘A’ dur-

ing training and becomes a fading process as it transits from point ‘A’ at

coordinate xmsu to point ‘B’ at coordinate xjsu. It is further assumed that

in order to reduce cooperation overhead, although the traveling SU is to be

aided by the SBS and other collaborating device within the network, it is

primarily responsible for the continuous monitoring of the PU’s activities

while using the PU’s band and would vacate the band immediately when

the PU becomes active.

4.4.3 Energy Vectors Realization for SUs Training

During the training interval, given that the PU operates at a carrier fre-

quency fc and bandwidth ω, if the transmitted PU signal is sampled at

the rate of fs by each SU, the energy samples sent to the SBS for training

purpose can be estimated as [67]

xi =
1

N s

Ns∑
n=1

|xm(n)|2 (4.4.3)

where n = 1, 2, · · · , Ns and Ns = τfs is the number of samples of the re-

ceived PU signal used for computing the training energy sample at the SU

while τ is the duration of sensing time for each energy sample realization.

Let S = {x1, ...,xL} be the set of training energy vectors obtained at the

SBS during the training period where xi ∈ Rq, and q is the dimension of

each training energy vector which corresponds to the number of collabo-

rating SUs and antenna per SU. If xi ∈ {H0,H1} is fed into the parametric
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classifier, the output of the classifier is the cluster centroids (means) that can

be used to generate the decision boundary which optimally separates the two

clusters, H0, H1. This decision boundary can then be used for the classifi-

cation of new data points when the classifier is deployed in an environment

similar to where it has been trained given any desired false alarm proba-

bility. However, in the realistic deployment scenario under consideration

involving a mobile SU which travels through a fading channel environment

where frequent re-training is impractical, relying on the hitherto, optimal

decision threshold obtained at the initial point of training would result in

detection error. Therefore, in order to achieve high probability of detection

and low false alarm, the cluster centroids computed at the SBS have to be

continuously updated and the decision boundary adjusted correspondingly.

4.4.4 Tracking Decision Boundary Using Kalman Filter Based

Channel Estimation

In order to be able to track the changes in the cluster centroids under slow

fading channel condition occasioned by the mobility of the SU, the Kalman

filtering technique is introduced to enable the mobile SU to obtain an online,

unbiased estimate of the temporally correlated fading channel gain. Since

the PU is assumed to be alternating between the active and inactive states, a

collaborating sensor node (CSN) that is co-locating with the PU is activated

during the SU’s travel period. The sensor node’s duty is to broadcast a

signal known to the SUs (e.g. pilot signal) periodically during the PU’s

idle interval for the benefit of the mobile SUs to enable centroid update

and avoid causing harmful interference to the PU’s service. The role of

the CSN in the proximity of the PU is similar to that of the helper node

used for authenticating the PU’s signal in [76] and the rationale behind

incorporating a sensor node co-locating with the PU is to ensure that the
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channel between the PU and the mobile SU is captured by the CSN-to-mobile

SU channel. It should be noted that our model is equally applicable in the

case where there are multiple and/or mobile PUs and can accommodate

any other collaborating sensor node selection method. The mobile SU on

the other hand makes a prediction of the dynamic channel gain based on

its speed of travel and combines this prediction with the noisy observation

from the collaborating node via the Kalman filtering algorithm to obtain an

unbiased estimate of the true channel gain.

Let the discrete-time observation at the mobile SU terminal due to the

transmitted signal by the CSN be described by

z(t) = s(t)ϕ(t) + ϱ(t) (4.4.4)

where s(t) is a known pilot signal, ϱ(t) is a zero mean complex additive

white Gaussian noise at the receiver with variance, σ2ϱ and ϕ(t) is a zero

mean circularly complex Gaussian channel gain with variance σ2ϕ, t is the

symbol time index. If we let Ts be the symbol period of the pilot signal, the

normalized Doppler frequency of the fading channel is fdTs where fd is the

maximum Doppler frequency in Hertz defined by fd = v
λ , v is the speed of

the mobile and λ is the wavelength of the received signal. The magnitude

of the instantaneous channel gain, |ϕ| is a random variable whose PDF is

described by

pϕ(ϕ) =
2ϕ

ν
exp(

−ϕ2

ν
), ϕ ≥ 0 (4.4.5)

where ϕ is the fading amplitude and ν = ϕ2 is its mean square value. Fur-

thermore, the phase of ϕ(t) is assumed to be uniformly distributed between 0

and 2π. It should be noted, though, that by virtue of the location of CSN in

the network, it is assumed that ϕ(t) also captures the channel gain between

the PU-TX and SU-c3 during every observation interval. For the flat fading
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Rayleigh channel, the following Jake’s Doppler spectrum is often assumed

Sϕ(f) =


1

πfd
√

1−(f/fd)2
, |f | ≤ fd

0, |f | > fd

(4.4.6)

where f is the frequency shift relative to the carrier frequency. The cor-

responding autocorrelation coefficient of the observation signal, z(t) under

this channel condition is given by [77]

Rϕ(ϵ) = E[ϕ(κ) · ϕ∗(κ− ϵ)]

= σ2ϕJ0(2πfdϵ) (4.4.7)

for lag ϵ where J0(·) is the zeroth order Bessel function of the first kind. It

should be noted that in the actual deployment for cognitive radio, the idle

time of the PU is long enough so that it is possible to periodically obtain

the noisy observation (measurement) of the channel gain, z(t) during the

PU’s idle time [61]. The mobile SU can apply the Kalman filter algorithm

described in subsection (4.5.3) to obtain an unbiased estimate ϕ̃, of the true

fading channel gain ϕ which can then be used to update the cluster centroids

at the SBS and also for tracking the temporally dynamic optimal decision

boundary.

Since the target is to use the Kalman filtering to realize the best estimate

ϕ̃ of ϕ, a prediction of the dynamic evolution of the channel gain is required

in addition to the noisy observation z(t). For simplicity, it is proposed that

the first order autoregressive model (AR−1) be used since it has been shown

to be sufficient to capture most of the channel tap dynamics in Kalman filter

based channel tracking related problems [77]. It should be noted too, that

the AR− 1 model is widely acceptable as an approximation to the Rayleigh

fading channel with Jake’s Doppler spectrum [78], [79]. The AR − 1 model

for approximating the magnitude of time varying complex channel gain can
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be expressed as

ϕAR−1
t = α · ϕAR−1

t−1 + ζ(t) (4.4.8)

where t is the symbol index, 0 < α < 1 and ζ(t) is complex additive white

Gaussian noise with variance σ2ζ = (1 − α2)σ2ϕ. When α = 1, the AR − 1

model for the dynamic evolution of ϕ in (4.5.8) becomes a random walk

model [77]. One way of obtaining the coefficient of the AR − 1 model, α

expressed as

α =
RAR−1
ϕ [1]

RAR−1
ϕ [0]

(4.4.9)

is by using correlation matching criterion whereby the autocorrelation func-

tion of the temporally correlated fading channel is matched with the autocor-

relation function of the approximating AR model for lags 0 and 1 such that

RAR−1
ϕ [0] = Rϕ[0] and R

AR−1
ϕ [1] = Rϕ[1]. However, if the evolution of the

dynamic channel gain is modeled by a higher order AR process, the required

coefficients can be obtained by solving the Yule-Walker set of equations [79].

Remarks: The optimal estimate of the channel gain that is obtained via

the Kalman filter is sufficient to enable the mobile SU avoid frequent and

total dependence on the CSN or other SUs for information regarding the

status of PU-TX and the associated overhead.

4.4.5 Kalman Filtering Channel Estimation Process

At this point having obtained α, the observation equation (4.5.4) is com-

bined with the state evolution equation (4.5.8) to form a Kalman filter set

of equations as [22]

ϕ̂t|t−1 = αϕ̂t−1|t−1 (4.4.10)

Mt|t−1 = α2Mt−1|t−1 + σ2ζ (4.4.11)

Kt =
Mt|t−1

Mt|t−1 + σ2ϱ
(4.4.12)
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ϕ̂t|t = ϕ̂t|t−1 +Kt(z(t)− αϕ̂t|t−1) (4.4.13)

Mt|t = (1−Kt)Mt|t−1 (4.4.14)

where Kt is the Kalman gain ,Mt|t is the variance of the prediction error and

ϕ̂t|t is the desired optimal estimate of ϕt. It is pertinent to mention here that

in the rare event that the PU is active for an unexpectedly prolonged period

of time so that it becomes impossible to obtain an observation, the situation

can be treated as missing observation. Suppose this occurs at a time t, the

Kalman filtering prediction step described by (4.5.10) and (4.5.11) remains

the same while the correction step in (4.5.13) and (4.5.14) will become

ϕ̂t|t = ϕ̂t|t−1 (4.4.15)

Mt|t =Mt|t−1 (4.4.16)

and if the period of missing observation is extremely prolonged, the signif-

icance on the detection of PU status is that the mobile SU loses its ability

to track the fading channel for that period so that the only effect taken into

consideration is the path loss. Consequently, it could be seen that even under

this situation the proposed scheme does not perform worse than the alterna-

tive where the channel tracking is not considered (path loss only model). A

simple algorithm for implementing the proposed enhanced classifier is pre-

sented in Algorithm 4.3.
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Algorithm 4.3: Kalman Filter Enhanced Parametric Classifier

Based Spectrum Sensing Algorithm

1. Generate cluster centroids, Ck ∀ k = 1, ...,K at the

SBS using Algorithm 4.1.

2. Initialize parameters α, Mt−1|t−1 and σ2ζ at the SUs.

3. if SU begins motion, t ← 1

4. repeat

5. SU obtains z(t) in (4.5.4) during PU’s idle interval and

computes ϕ̂t|t and Mt|t using (4.5.10) to (4.5.14).

6. Compute new energy samples at SU using ϕ̂t|t in

step 5 and update cluster centroids at the SBS.

7. Use updated centroids from step 6 to decide the PU

status, H0 or H1.

8. t ← t+ 1

9. until SU ends motion

10. end if

4.5 Simulation Results and Discussion

For simulation purpose, the average power of the fading process is normal-

ized to unity and the mobile SU under consideration (SU-c3) is assumed to

be equipped with an omnidirectional antenna while traveling at a constant

velocity of 6 km/hr. A single PU is considered which operates alternately

in the active and inactive modes, so that the number of clusters, K is 2.

The symbol frequency of the PU is 10 ksymbol/s transmitted at the central

carrier frequency of 1.8 GHz. As the SU travels, to model the effects of

the scatterers, it is assumed that a total of 128 equal strength rays at uni-

formly distributed angles of arrival impinge on the receiving antenna, so that

we have a normalized Doppler frequency of 1e-3. During training the path
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loss exponent, d is assumed equals to 3 while the shadow fading component

δxpu→xm
su

and the small scale fading factor, γxpu→xm
su

are both assumed equal

to 1, the PU signal is BPSK and transmit power is 1 Watt. The training

energy samples at the SUs are computed using Ns = 1000. When SU is in

motion, the waveform of the temporally correlated Rayleigh fading process

to be tracked is generated using the modified Jake’s model described in [80].

To test the enhanced classifier, it is assumed that the mobile SU-c3’s trajec-

tory is at an approximately constant average distance to PU-TX throughout

the duration of travel and energy samples for updating the centroids are

computed using Ns = 1000.
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Figure 4.9. Time varying channel gain (CG) tracked at [a] SNR = 5 dB
and [b] SNR = 20 dB.

In Figure 4.9, the ability of the Kalman filter is shown in tracking the

true channel gain when the pilot signals are received from the CSN at SNR

of 5 dB and 20 dB respectively over an observation window of 1000 symbol

duration. It could be seen that as the pilot’s SNR is increased, the perfor-

mance of the tracker also improves. The mean square error performance of

the AR-1 based Kalman filter is shown in Figure 4.10 at normalized Doppler
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Figure 4.10. Mean square error performance of the AR-1 based Kalman
filter at normalized Doppler frequency = 1e-3, tracking duration, Ts = 100,
500 and 1000 symbols.

frequency of 1e-3 where at the same SNR the tracking error reduces for

different duration of tracked pilot symbols (tracking duration). This shows

that the longer the tracking duration the better the overall performance of

the tracker. It is also seen that the average error reduces from 5e-2 to 16e-

5 with increase in tracking SNR from 0 dB to 40 dB when the tracking

duration, Ts = 1000. The effect of the number of PU’s signal samples, Ns

used for computing the energy features for training, tracking and testing

on the average probabilities of detection (PdAv) and false alarm (PfaAv) is

shown in Figure 4.11. Here, a considerable improvement in PdAv is observed

as Ns is increased from 1000 to 2000. In Figure 4.12, the performance of

the enhanced classifier is shown in terms of PdAv and PfaAv and compared

with the path loss only model. Here, the pilot symbols from the CSN are

assumed to be received at the SNR of 5 dB each time the decision boundary

is updated. When the PU’s signal is received at SNR of 20 dB, it could be

seen that the enhanced classifier attains PdAv of unity at zero PfaAv while

at PU’s operating SNR of 0 dB, PdAv of about 0.91 is achieved at PfaAv
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equals 0.07 in spite of the degradation in sensing path. This is in contrast

to what obtains from the path loss only model where at the SNR of 20 dB,

PdAv is only about 0.83 at a non-zero PfaAv. In summary, a performance

improvement of about 20 percent is observable in the enhanced scheme.
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Figure 4.11. Average probabilities of detection and false alarm vs SNR,
tracking SNR = 5 dB, number of samples, Ns = 1000 and 2000, tracking
duration = 1000 symbols.

4.6 Summary

In this chapter, the use of semi-supervised learning algorithms for spec-

trum sensing in CR networks is considered. In particular, the K-means

and GMM based EM algorithms were investigated. Simulation reveals that

the classifiers possess excellent classification capabilities which make them

appealing for detecting unused spectrum holes especially in scenarios with

fixed-located PUs and SUs. Furthermore, the use of these parametric clas-

sifiers for spectrum sensing was investigated under slow varying flat fading

conditions involving mobile SUs and a novel, Kalman filter based channel

estimation technique was proposed to enhance their performance. Again,
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Figure 4.12. Average probabilities of detection and false alarm vs SNR,
tracking SNR = 5 dB, number of samples, Ns = 2000, tracking duration =
1000 symbols.

simulation results show that under this spectrum sensing condition and by

utilizing few collaborating secondary devices, the proposed scheme offers sig-

nificant performance improvement with minimal cooperation overhead. In

the following chapter, an unsupervised learning algorithm that overcomes

some of the limitations of the semi-supervised algorithms will be presented.



Chapter 5

UNSUPERVISED

VARIATIONAL BAYESIAN

LEARNING TECHNIQUE FOR

SPECTRUM SENSING IN

COGNITIVE RADIO

NETWORKS

5.1 Introduction

One of the limitations of the K-means and EM algorithms presented in Chap-

ter 4 is that they are both known to converge to locally optimal solution. The

K-means algorithm in particular, is sensitive to initialization and as a result

it is possible for two different initializations to yield considerably different

clustering results [68]. In a similar vein, the EM algorithm is susceptible

to singularity problem which may occur if a Gaussian component collapses

onto a particular data point [46]. They also require a priori knowledge of the

number of signal classes or clusters represented in the training data, thereby

110
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making them unsuitable in spectrum sensing applications where such a priori

information is not available or where the number of PU is not fixed.

In this chapter, the variational Bayesian learning for GMM (VBGMM)

is proposed and investigated. This technique provides a framework that

overcomes some of the weaknesses of the semi-supervised methods previously

considered. In addition, the VBGMM offers a robust clustering technique

which can enable the CR device to autonomously learn the characteristics

of its operating environment and adapts its actions accordingly [81]. First,

the principle of factorized approximation to true posterior distribution on

which the VBGMM learning is based is described via the consideration of

variational inference technique for univariate Gaussian. Next, building on

this premise an extension to the mixture model will be considered. Finally,

how the VBGMM method can be adopted to solve our spectrum sensing

problem will be demonstrated.

5.2 The Variational Inference Framework

Let us consider a fully Bayesian model comprising of a set of observed (mea-

sured) and latent (hidden) continuous variables as well as parameters where

it is assumed that all variables and parameters are assigned prior distri-

butions. If we let the set of all observed variables be represented by X

and the set of all latent variables and parameters be denoted by Θ, where

X =
{
X1,X2, · · · ,XN

}
and Θ =

{
θ1,θ2, · · · ,θN

}
, are sets of N, i.i.d ran-

dom variables, the joint distribution over all observed and latent variables

and parameters, p(X ,Θ) constitutes the probability model to be considered.

Since it is intractable to estimate the posterior directly, the desire is to ob-

tain an approximation for the posterior distribution, p(Θ|X ) and the model

evidence, p(X ) such that

p(Θ|X ) ≈ q(Θ) (5.2.1)
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where over all the latent variables, a variational distribution, q(Θ) is de-

fined so that for any choice of q(Θ), the decomposition of the log marginal

probability can be expressed as [46], [82], [83]

ln p(X ) = L(q) +KL(q∥p). (5.2.2)

The first term on the R.H.S of (5.2.2) is known as the variational free energy

and it can be defined as

L(q) =
∫
q(Θ) ln

{
p(X ,Θ)

q(Θ)

}
dΘ (5.2.3)

and the second term is given by

KL(q∥p) = −
∫
q(Θ) ln

{
p(Θ|X )

q(Θ)

}
dΘ. (5.2.4)

The second term, KL(q∥p) is known as the Kullback-Leibler divergence be-

tween q(Θ) and the true posterior distribution, p(Θ|X ) which satisfies the

condition, KL(q∥p) ≥ 0 (i.e. must be non-negative) and equals to zero when

q(Θ) = p(Θ|X ). Since the log of evidence, ln p(X ) is fixed with respect to

q, it follows from (5.2.2) that L(q) is a lower bound on ln p(X ) and that

L(q) ≤ ln p(X ). In performing inference, the goal then becomes making

q(Θ) as close as possible to the true posterior by selecting the distribution

q(Θ) that minimizes KL(q∥p).

However, it is difficult to deal with the posterior p(Θ|X ), hence instead

of minimizing KL(q∥p), an option is to maximize L(q) by restricting q(Θ) to

a family of distribution that offer tractable solutions [82], [84]. It should be

noted, though, that it is unrealistic to make KL(q∥p) = 0, so this technique

will not provide exact result but an approximation. In practice, to generate

the required family of approximating distribution, factorized distributions

approach is often used where it is assumed that the elements of the latent
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variables, Θ can be partitioned into different groups Θi where i = 1, ...,M

such that [46]

q(Θ) =

M∏
i=1

qi(Θi). (5.2.5)

If we substitute (5.2.5) into (5.2.3), and for the sake of simplicity, also let

qj = qj(Θj), we will obtain

L(q) =
∫
qj ln p̃(X ,Θj)dΘj −

∫
qj ln qj dΘj

+ constant

(5.2.6)

where the joint distribution, p̃(X ,Θj) is defined by the relation

ln p̃(X ,Θj) = Ei ̸=j [ln p(X ,Θ)] + constant. (5.2.7)

In (5.2.7), Ei ̸=j [· · · ] implies taking the expectation with respect to factorized

distribution q, over all variables Θi for i ̸= j. If we rearrange (5.2.6), it

can be seen that the lower bound function, L(q) becomes a negative KL

divergence between p̃(X ,Θj) and qj(Θj), i.e.

L(q) =
∫
qj ln

p̃(X ,Θj)

qj
dΘj + constant

= − KL(qj∥p̃j).
(5.2.8)

It is worth noting here, that minimizing KL divergence is equivalent to max-

imizing the lower bound given by (5.2.8) and thus, we have the minimum

when

qj(Θj) = p̃(X ,Θj). (5.2.9)

Hence, by combining (5.2.7) and (5.2.9), the optimal solution q∗j (Θj) is ob-

tained as

ln q∗j (Θj) = Ei̸=j [ln p(X ,Θ)] + constant (5.2.10)

where the constant term can be taken care of by taking the exponential of
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both sides and normalizing the distribution q∗j (Θj) as

q∗j (Θj) =
exp(Ei̸=j [ln p(X ,Θ)])∫

exp(Ei̸=j [ln p(X ,Θ)]) dΘj
. (5.2.11)

For practical realization, it is more convenient to work with the form in

(5.2.10), where it can be observed that the optimal solution for a factor

qj(Θj) depends on the joint distribution over all observed and hidden vari-

ables by taking the expectation with respect to all other factors qi(Θi) for

i ̸= j. As matter of fact, the expression, Ei ̸=j [ln p(X ,Θ)] can be simplified

into a function of the fixed hyperparameters of the prior distribution over

the latent variables and of expectations of latent variables that are not in

the current partition, Θj . This invariably, points to an interlocked, EM-like

iterative evaluation in which the solution of one factor depends on the other.

However, with proper choice of the distribution, qi(Θi) and initialization of

parameters and hyperparameters, convergence is guaranteed [53].

5.3 Variational Inference for Univariate Gaussian

In this section, a simple case is considered of the application of variational

Bayesian inference technique to learn the statistical properties of a set of

univariate, normally distributed spectrum sensing data obtained at a par-

ticular sensor. Given that we obtain the data set, S = {xi}Ni=1 under the

hypothesis, H1, where xi ∈ S, ∀i is assumed to be i.i.d Gaussian random

variable, the likelihood function of S is given by

p(S|µ, τ) =
( τ
2π

)N/2
exp

{
−τ
2

N∑
i=1

(xi − µ)2
}

(5.3.1)

where τ = 1
σ2 is known as precision and our desire is to estimate from S,

the distribution parameters, µ and τ . The joint probability of the observed
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data and parameter can be factorized as

p(S, µ, τ) = p(S|µ, τ)p(µ|τ)p(τ) (5.3.2)

and the task is to obtain the functional form for each of the factorized prob-

ability components. We place conjugate prior distribution on the hidden

parameters, µ and τ so that [46], [85]

p(τ) = Gam(τ |a0, b0)

=
1

Γ(a0)
ba00 τ

a0−1e−b0τ , (5.3.3)

p(µ|τ) = N (µ|µ0, (λ0τ)−1), (5.3.4)

and

p(S|µ, τ) =
N∏
i=1

N (xi|µ, τ−1) (5.3.5)

where µ0, λ0, a0 and b0 are hyperparameters with fixed, given values, spec-

ifying conjugate priors on the distribution parameters and N (x|µ, σ2) =

1
σ
√
2π
e

−(x−µ)2

2σ2 . Usually, the hyperparameters are initialized with small, pos-

itive numbers to indicate lack of knowledge about the prior distributions of

µ and τ . It should be noted from (5.3.3) and (5.3.4) that the mean and the

precision are assumed to follow Gaussian and Gamma distribution respec-

tively. This choice of the distributions from the exponential family is very

key for the variational Bayesian inference technique to converge to globally

optimal solution [82]. Following from the factorized distribution in (5.2.5),

the variational distribution that approximates the true distribution over the



Section 5.3. Variational Inference for Univariate Gaussian 116

unknown parameters can be expressed as

q(µ, τ) = q(µ)q(τ) (5.3.6)

By using (5.2.10) and (5.3.2) to (5.3.5), the optimal solution for the mean,

µ, can be expressed as

ln q∗(µ) = Eq(τ)[ln p(S, µ, τ)] + constant

= Eq(τ)
[
ln

N∏
i=1

N (xi|µ, τ−1) + lnN (µ|µ0, (λ0τ)−1)+

ln
1

Γ(a0)
ba00 τ

a0−1e−b0τ
]
+ constant

= Eq(τ)
[
ln

{ N∏
i=1

( τ
2π

)1/2
exp{−τ

2

(
xi − µ

)2}}
+ ln

{(λ0τ
2π

)1/2
exp{−λ0τ

2

(
µ− µ0

)2}}]
+ constant (5.3.7)

where the third term has been factored into the constant term since it is

independent of µ. Further evaluation of (5.3.7) yields

ln q∗(µ) = Eq(τ)
[
− τ

2

N∑
i=1

(xi − µ)2 −
λ0τ

2
(µ2 − 2µµ0)

]
+ constant (5.3.8)

where expectation over components whose value does not depend on µ has

again been factored into the constant term. We can further re-express (5.3.8)
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as

ln q∗(µ) = −1

2
Eq(τ)[τ ]

[ N∑
i=1

(xi − µ)2 + λ0(µ
2 − 2µµ0)

]
+ constant

= −1

2
Eq(τ)[τ ]

[ N∑
i=1

x2i − 2µ
N∑
i=1

xi +Nµ2 + λ0µ
2 − 2λ0µ0µ)

]
+ constant

= −1

2
Eq(τ)[τ ]

[
(N + λ0)µ

2 − 2(λ0µ0 +

N∑
i=1

xi)µ

]
+ constant

= −(N + λ0)

2
Eq(τ)[τ ]

[
µ2 − 2

(λ0µ0 +
∑N

i=1 xi)

N + λ0
µ

]
+ constant.

(5.3.9)

At this point, if we let µN =
λ0µ0+

∑N
i=1 xi

N+λ0
and λN = (N+λ0)

2 Eq(τ)[τ ], (5.3.9)

can be written as [85]

ln q∗(µ) = −λN
2

[
µ2 − 2µµN

]
+ constant

= −λN
2

[
(µ− µN )2 − µ2N

]
+ constant

= −λN
2

(µ− µN )2 + constant. (5.3.10)

By taking the exponential of both sides of (5.3.10), it is apparent that q∗(µ)

is a Gaussian distribution which can be expressed as

q∗(µ) = N (µ|µN , λN ), (5.3.11)
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which is functionally dependent on the first moment, Eq(τ)[τ ]. By following

similar approach, for the precision, τ , we have

ln q∗(τ) = Eq(µ)[ln p(S, µ, τ)] + constant

= Eq(µ)
[
ln

N∏
i=1

N (xi|µ, τ−1)+

lnN (µ|µ0, (λ0τ)−1) + ln
1

Γ(a0)
ba00 τ

a0−1e−b0τ
]
+ constant

= Eq(µ)
[
N

2
ln

τ

2π
− τ

2

N∑
i=1

(xi − µ)2 +
1

2
ln
λ0τ

2π
− λ0τ

2
(µ2 − 2µµ0 + µ20)

]
+ (a0 − 1) ln τ − b0τ + a0 ln b0 + constant

= Eq(µ)
[
τµ

N∑
i=1

xi −
τ

2
Nµ2 − λ0τ

2
µ2 + µµ0λ0τ

]
− τ

2

N∑
i=1

x2i −
λ0τµ

2
0

2

+
N

2
ln

τ

2π
+

1

2
ln
λ0τ

2π
+ (a0 − 1) ln τ − b0τ + constant

(5.3.12)

where the terms whose expectation is independent of τ has been factored

into the constant term. By re-arranging (5.3.12), we obtain

ln q∗(τ) =

(
τ

N∑
i=1

xi + µ0λ0τ

)
Eq(µ)[µ]−

(
τ

2
N +

λ0τ

2

)
Eq(µ)[µ2]−

τ

2

N∑
i=1

x2i−

λ0τµ
2
0

2
+
N

2
ln

τ

2π
+

1

2
ln
λ0τ

2π
+ (a0 − 1) ln τ − b0τ + constant

= τ

{( N∑
i=1

xi + µ0λ0

)
Eq(µ)[µ]−

(
N

2
+
λ0
2

)
Eq(µ)[µ2]−

1

2

N∑
i=1

x2i−

λ0µ
2
0

2
− b0

}
+

{
N + 1

2
+ (a0 − 1)

}
ln τ − N

2
ln 2π +

1

2
(lnλ0−

ln 2π) + constant

= −τ
2

{
− 2

( N∑
i=1

xi + µ0λ0

)
Eq(µ)[µ] + (N + λ0)Eq(µ)[µ2] +

N∑
i=1

x2i+

λ0µ
2
0 + 2b0

}
+

{
N + 1

2
+ a0 − 1

}
ln τ + constant (5.3.13)



Section 5.3. Variational Inference for Univariate Gaussian 119

If we take the exponential of both sides of (5.3.13) and compare with (5.3.3),

it could be observed that (5.3.13) is a Gamma distribution which could be

described by [46]

q∗(τ) = Gamma(τ |aN , bN ) (5.3.14)

where the parameters, aN and bN are given by

aN =
N + 1

2
+ a0 (5.3.15)

and

bN =
1

2

{
− 2

( N∑
i=1

xi + µ0λ0

)
Eq(µ)[µ] + (N + λ0)Eq(µ)[µ2] +

N∑
i=1

x2i + λ0µ
2
0 + 2b0

}
(5.3.16)

respectively. From (5.3.16), it clear that q∗(τ) is functionally dependent on

µ through the first and second moments, Eq(µ)[µ] and Eq(µ)[µ2]. The first

moment of the precision can be extracted from (5.3.14) as [85]

Eq(τ)[τ ] =
aN
bN

. (5.3.17)

For simplicity, if we initialize the hyperparameters with zero i.e. if we set

µ0 = λ0 = a0 = b0 = 0 and N →∞, the expectation can be written as [85]

Eq(τ)[τ ] =
N + 1

−2(
∑N

i=1 xi)Eq(µ)[µ] +NEq(µ)[µ2] +
∑N

i=1 x
2
i

≈ 1

−2( 1
N

∑N
i=1 xi)Eq(µ)[µ] + Eq(µ)[µ2] + 1

N

∑N
i=1 x

2
i

. (5.3.18)
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If we also let the first moment of the mean, Eq(µ)[µ] be represented as

Eq(µ)[µ] = µN

≈
∑N

i=1 xi
N

= x̄, (5.3.19)

then, (5.3.18) becomes

Eq(τ)[τ ] =
1

−2x̄Eq(µ)[µ] + Eq(µ)[µ2] + x̄2
. (5.3.20)

Further, if we use µN and λN as previously defined, we can write

Eq(µ)[(µ− µN )2] =
1

λN
(5.3.21)

such that

Eq(µ)[(µ2 − 2µµN ) + µ2N ] =
1

NEq(τ)[τ ]
(5.3.22)

from where the second moment, Eq(µ)[µ2] can be derived as [85]

Eq(µ)[µ2] = 2µNEq(µ)[µ]− µ2N +
1

NEq(τ)[τ ]

= x̄2 +
1

NEq(τ)[τ ]
. (5.3.23)

These moments can now be substituted into (5.3.20) to obtain

Eq(τ)[τ ] =
1

−x̄2 + 1
NEq(τ)[τ ]

+ x̄2
(5.3.24)

from where the expected value of the precision, Eq(τ)[τ ] is derived as

Eq(τ)[τ ] =
N − 1

N(x̄2 − x̄2)

=
N − 1∑N

i=1(xi − x̄)2
. (5.3.25)
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It is clearly seen from (5.3.25) that the Bayesian solution yields an unbiased

estimate of the sample variance (recall that, τ = 1
σ2 ) as against the biased

estimate produced by the maximum likelihood approach. In the following

section, an extension of this variational inference technique to multivariate

Gaussian is considered to demonstrate its applicability for solving the GMM

spectrum sensing problem. In particular, the focus is on scenarios involving

multi-antenna SUs and multiple PUs.

5.4 Variational Bayesian Learning for GMM

The problem of detecting spectrum holes under multiple PU conditions is

considered. In particular, wideband spectrum sensing problem is considered

where the entire band is sub-divided into multiple sub-bands, each sub-

band is occupied by individual PU and all sub-bands are being monitored

simultaneously. In this case, the task is to determine the actual number

of active PUs at any point in time. Let us assume that there are P PUs

in the network and that the SU device is equipped with M antennas while

operating in the coverage areas of the PUs. When the PUs are transmitting,

the received signal vector for the p-th sub-band can be expressed as

x(n) = ϕpsp(n) + η(n), n = 0, 1, 2 · · · (5.4.1)

where the vector ϕp represents the channel gain between the p-th PU and all

the antennas of the SU and is assumed to be different for each PU. During

the sensing interval, the energy of the signal received at the m-th antenna

of the SU can be estimated as

xem =
1

N s

Ns∑
n=1

|xm(n)|2, (5.4.2)
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where xm(n) is n-th sample of the signal received at the m-th antenna.

The joint probability distribution of the M dimensional energy vector of

continuous random variables, xei = [xe1 , xe2 , · · · , xeM ]T at the terminal of

the SU during the sensing interval, can be treated as a multivariate Gaussian

whose PDF can be written as

f(xe1 , xe2 , · · · , xeM ) = N (x|µ,Σ)

=
1

(2π)M/2

1

|Σ|1/2
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

) (5.4.3)

withM dimensional mean vector, µ andM×M covariance matrix, Σ whose

determinant is |Σ|.

5.4.1 Spectrum Sensing Data Clustering Based on VBGMM

Based on the premise established above, if we assume that there are N

realizations of the observed energy vector, xei comprising of individual en-

ergy measurement at the SU antennas under hypotheses H1 and H0 for all

sub-bands, the data set can be represented as a M × N matrix, X whose

elements are mixture of Gaussians and each column belongs to a partic-

ular Gaussian component (cluster). The aim is to blindly determine the

number of clusters present in X and also estimate the Gaussian parame-

ters of each cluster for the purpose of classifying new data points. Now,

the VBGMM learning framework will be applied by constructing an analyt-

ical approximation to the posterior probability of the set of latent variables

and parameters, given some observed data, X. For simplicity, let xei =

x ∈ RM such that X = {x1, · · · ,xN} with corresponding latent variables

K × N matrix, Θ = {θ1, · · · ,θN}, mixing proportion, α = {α1, · · · , αK},

means, µ = {µ1, · · · ,µK} and covariances, Σ = {Σ1, · · · ,ΣK}, assum-

ing X contains K Gaussian components. The distribution of X takes the
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form [46], [86]

p(X) =
K∑
k=1

αkN (X|µk,Σk) (5.4.4)

where 0 ≤ αk ≤ 1 and
∑K

k=1 αk = 1.

In general, the conditional distribution of Θ given parameter α can be

expressed as

p(Θ|α) =
N∏
i=1

K∏
k=1

αθikk (5.4.5)

where for every data point xi, there is a latent variable θi consisting a 1−of−

K binary vector whose elements are θik, k = 1, · · · ,K, while the conditional

distribution of observed data X given latent variables Θ and parameters µ

and Λ is given as

p(X|Θ,µ,Λ) =

N∏
i=1

K∏
k=1

N (xi|µk,Λ−1
k )θik (5.4.6)

where the precision, Λk = Σ−1
k has been used for mathematical conveniences.

Next, appropriate priors have to be chosen for the model parameters µ, Λ

and α and also distributions have to be carefully assign to these priors. So,

for the mixing proportion α, the Dirichlet distribution is assigned so that [46]

p(α) = Dir(α|ψ) =
Γ(

∑K
k=1 ψk)∏K

k=1 Γ(ψk)

K∏
k=1

αψk−1
k (5.4.7)

where the hyperparameters ψ control the influence of the prior on the pos-

terior distribution and the term Γ(·) implies the Gamma function, Γ(z) =∫∞
0 tz−1 exp(−t)dt. For the mean and precision of each Gaussian component,

a Gaussian-Wishart prior is assigned defined by [46], [82]

p(µ,Λ) = p(µ|Λ)p(Λ)

=

K∏
k=1

N (µk|m0, (τ0Λk)
−1)W(Λk|W 0, ξ0)

(5.4.8)
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where

W(Λ|W , ξ) = B(W , ξ)|Λ|(
ξ−M−1

2
) exp

(
− 1

2
Tr(W−1Λ)

)
(5.4.9)

B(W , ξ) = |W |−
ξ
2 (2

ξM
2 α

M(M−1)
4

M∏
i=1

Γ(
ξ + 1− i

2
))−1 (5.4.10)

and m0, τ0, W 0 and ξ0 are the parameters of the prior. It should be noted,

though, that the conjugate prior distribution in (5.4.8) captures models with

unknown mean and precision and the choice in both cases is done in such a

way that the resulting posterior distributions would have the same functional

form as the priors, thereby making the analysis simpler.

By using the priors defined above, the joint probability distribution of

the entire model can be written as

p(X,Θ,α,µ,Λ) = p(X|Θ,µ,Λ)p(Θ|α)p(α)p(µ|Λ)p(Λ) (5.4.11)

and at this point it is convenient to consider a variational approximation so-

lution to the model for our spectrum sensing problem. To do this, similar to

(5.3.6) we will use factorized distribution approach such that the variational

distribution of the latent variables and parameters can be factorized as

q(Θ,α,µ,Λ) = q(Θ)q(α,µ,Λ). (5.4.12)

From (5.2.10), the optimal solution for q(Θ) can be obtained as

ln q∗(Θ) = Eα,µ,Λ

[
ln p(X,Θ,α,µ,Λ)

]
+ constant. (5.4.13)

If we let the terms not dependent on Θ be factored into the constant term,
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(5.4.13) can be written as

ln q∗(Θ) = Eα,µ,Λ

[
ln p(X|Θ,µ,Λ) + ln p(Θ|α)p(α)

]
+ constant

= Eα,µ,Λ

[ N∑
i=1

K∑
k=1

θik{lnN (xi|µk,Λ−1
k ) + lnαk}

]
+ constant

= Eα,µ,Λ

[ N∑
i=1

K∑
k=1

θik

{
1

2
ln |Λk| −

M

2
ln 2α− 1

2
(xi − µk)TΛk(xi − µk)

+ lnαk

}]
+ constant

=
N∑
i=1

K∑
k=1

θik

{
1

2
Eα,µ,Λ[ln |Λk|]−

M

2
ln 2α− 1

2
Eα,µ,Λ[(xi − µk)T

Λk(xi − µk)] + Eα,µ,Λ[lnαk]

}
+ constant

=
N∑
i=1

K∑
k=1

θik

{
1

2
EΛk

[ln |Λk|]−
M

2
ln 2α− 1

2
Eµk,Λk

[(xi − µk)T

Λk(xi − µk)] + Eαk
[ln |αk|] + constant.

(5.4.14)

At this point, if we let

lnφik = Eαk
[lnαk]+

1

2
EΛk

[ln |Λk|]−
M

2
ln(2α)−1

2
Eµk,Λk

[(xi−µk)TΛk(xi−µk)],

(5.4.15)

then, (5.4.14) may be re-written as

ln q∗(Θ) =
N∑
i=1

K∑
k=1

θik lnφik + constant (5.4.16)

so that if we take the exponential of both sides,

q∗(Θ) ∝
N∏
i=1

K∏
k=1

φθikik . (5.4.17)

If rik =
φik∑K
j=1 φij

is the responsibility that cluster k takes for explaining data

point xi subject to the requirement that the parameters, θik sum up to one
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over all k = 1, · · · ,K, then we can write

q∗(Θ) =

N∏
i=1

K∏
k=1

rθikik (5.4.18)

and

q∗(θi) =

K∏
k=1

rθikik (5.4.19)

and the expectation of q∗(θi) can be extracted as [86]

Eq∗(θik)[θik] = rik. (5.4.20)

By following similar approach, the optimal value of the second term q(α,µ,Λ),

in (5.4.12) can be derived as

q∗(α,µ,Λ) = EΘ

[
ln p(X,Θ,α,µ,Λ)

]
+ constant

= EΘ

[
ln p(X|Θ,α,µ,Λ) + ln p(Θ|α)

]
+ ln p(α) + ln p(µ|Λ)+

ln p(Λ) + constant

= EΘ

[ N∑
i=1

K∑
k=1

θik{lnN (xi|µk,Λ−1
k ) + lnαk}

]
+ ln p(α) + ln p(µ|Λ)

+ ln p(Λ) + constant

=

N∑
i=1

K∑
k=1

Eθik [θik] lnN (xi|µk,Λ−1
k ) +

N∑
i=1

K∑
k=1

Eθik [θik] lnαk+

lnDir(α|ψ0) +
K∑
k=1

lnN (µk|m0, (τ0Λk)
−1) +

K∑
k=1

W(Λk|W 0, ξ0)

+ constant. (5.4.21)

However, the variational posterior distribution, q(α,µ,Λ), whose optimal

value is given in (5.4.21) can also be factorized as

q(α,µ,Λ) = q(α)

K∏
k=1

q(µk,Λk) (5.4.22)
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which means that

q∗(α,µ,Λ) = ln q∗(α) +

K∑
k=1

ln q∗(µk,Λk). (5.4.23)

Therefore, by comparing (5.4.21) and (5.4.23), and extracting the terms

containing α, we can write

ln q∗(α) = lnDir(α|ψ0) +

N∑
i=1

K∑
k=1

Eθik [θik] lnαk

=
K∑
k=1

(ψ0 − 1) lnαk +
N∑
i=1

K∑
k=1

Eθik [θik] lnαk + constant

=
K∑
k=1

[
(ψ0 − 1) +

N∑
i=1

rik

]
lnαk + constant (5.4.24)

If we take the exponential of both sides of (5.4.24), the optimal value of

variational distribution over the mixing ratio can then be written as

q∗(α) ∝
K∏
k=1

lnα
ψ0+

∑N
i=1 rik−1

k . (5.4.25)

Thus, the optimal solution for q(α) is obtained as

q∗(α) = Dir(α|ψ) = Dir(α|ψ1, ψ2, · · · , ψK) (5.4.26)

where each component, ψk ∈ ψ is defined as ψk = ψ0 + Nk, where Nk =∑N
i=1 rik. The remaining factor in the variational posterior distribution of

(5.4.21) is q(µk,Λk) and its optimal value can be obtained by comparing
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(5.4.21) and (5.4.23), and extracting the terms containing µk and Λk as

ln q∗(µk,Λk) = lnN (µk|m0, (τ0Λk)
−1)+

lnW(Λk|W 0, ξ0) +
N∑
i=1

Eθik [θik] lnN (xi|µk,Λ−1
k ) + constant

= −1

2
(µk −m0)

T τ0Λk(µk −m0) +
1

2
ln |τ0Λk| −

M

2
ln(2α)

+
ξ0 −M − 1

2
ln |Λk| −

1

2
Tr(W−1

0 Λk)+

N∑
i=1

Eθik [θik]
{
− 1

2
(xi − µk)TΛk(xi − µk)+

1

2
ln |Λk| −

M

2
ln(2α)

}
+ constant

= −τ0
2
(µk −m0)

TΛk(µk −m0)−

1

2

N∑
i=1

Eθik [θik](xi − µk)
TΛk(xi − µk) +

1

2
ln |Λk|+

ξ0 −M − 1

2
ln |Λk|+

1

2

N∑
i=1

Eθik [θik] ln |Λk| −
1

2
Tr(W−1

0 Λk)−

M

2
ln(2α) +

1

2
ln |τ0| −

M

2
Eθik [θik] ln(2α) + constant

= −τ0
2

[
µTkΛkµk − 2µTkΛkm0 +m

T
0 Λkm0

]
− 1

2

N∑
i=1

Eθik [θik]

[
xTi Λkxi − 2xTi Λkµk + µ

T
kΛkµk

]
+

1

2
ln |Λk|+

ξ0 −M − 1

2

ln |Λk|+
1

2

N∑
i=1

Eθik [θik] ln |Λk| −
1

2
Tr(W−1

0 Λk) + constant.

(5.4.27)

To simplify (5.4.27), we will factorize the optimal solution for the joint vari-

ational posterior, q∗(µk,Λk) as

q∗(µk,Λk) = q∗(µk|Λk)q∗(Λk) (5.4.28)

and draw comparison between the terms and (5.4.27). If we first deal with
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ln q∗(µk|Λk) by considering all terms that contain µk, we will have

ln q∗(µk|Λk) = −
τ0
2

[
µTkΛk(µk −m0)−mT

0 Λkµk

]
−

1

2

N∑
i=1

Eθik [θik]
{
− µTkΛk(xi − µk)− xTi Λkµk

}
+ constant

= −β0
2

[
µTkΛkµk − µTkΛkm0 −mT

0 Λkµk

]
−

1

2

N∑
i=1

Eθik [θik]
{
µTkΛkµk − µTkΛkxi − xTi Λkµk

}
+ constant

= −τ0
2

[
µTkΛkµk − 2µTkΛkm0

]
−

1

2

N∑
i=1

Eθik [θik]
{
µTkΛkµk − 2µTkΛkxi

}
+ constant

= −1

2
(τ0 +

N∑
i=1

Eθik [θik])µ
T
kΛkµk+

µTkΛk

{
τ0m0 +

N∑
i=1

Eθik [θik]xi
}
+ constant

= −1

2
(τ0 +

N∑
i=1

rik)µ
T
kΛkµk + µ

T
kΛk

{
τ0m0 +

N∑
i=1

rikxi

}
+ constant

= −1

2
(τ0 +

N∑
i=1

rik)

{
µTkΛkµk − 2µTkΛk

{
τ0m0 +

N∑
i=1

rikxi
}

(τ0 +

N∑
i=1

rik)
−1

}
+ constant

= −1

2
(τ0 +

N∑
i=1

rik)
{
(µk −mk)

TΛk(µk −mk)−mT
kΛkmk

}
+ constant

= −1

2
(µk −mk)

T (τ0 +

N∑
i=1

rik)Λk(µk −mk)+

1

2
mT

k (τ0 +

N∑
i=1

rik)Λkmk + constant

= −1

2
(µk −mk)

T τkΛk(µk −mk) + constant. (5.4.29)
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By taking the exponential of both sides of (5.4.29), we can infer that

q∗(µk|Λk) = N (µk|mk, (τkΛk)
−1) (5.4.30)

where

τk = τ0 +Nk (5.4.31)

mk =
{
τ0m0 +

N∑
i=1

rikxi
}
(τ0 +

N∑
i=1

rik)
−1

=
1

τk
(τ0m0 +Nkx̄k) (5.4.32)

and in (5.4.32), x̄k = 1
Nk

∑N
i=1 rikxi has been used. Similarly, from (5.4.27)

we can extract the terms corresponding to q∗Λk as

ln q∗Λk = ln q∗(µk,Λk)− ln q∗(µk|Λk)

= −τ0
2
(µk −m0)

TΛk(µk −m0)−
1

2

N∑
i=1

Eθik [θik](xi − µk)
TΛk(xi − µk)

+
1

2
ln |Λk|+

ξ0 −M − 1

2
ln |Λk|+

1

2

N∑
i=1

Eθik [θik] ln |Λk| −
1

2
Tr(W−1

0 Λk)

+
1

2
(µk −mk)

T τkΛk(µk −mk)−
1

2
ln |Λk|+ constant

= −τ0
2
(µk −m0)

TΛk(µk −m0)−
1

2

N∑
i=1

Eθik [θik](xi − µk)
TΛk(xi − µk)

+
1

2
(µk −mk)

T τkΛk(µk −mk) +
1

2

(
(ξ0 −M − 1) +

N∑
i=1

Eθik [θik]
)
ln |Λk|

− 1

2
Tr(W−1

0 Λk) + constant

= −1

2
Tr[τ0(µk −m0)(µk −m0)

TΛk]−
1

2
Tr[

N∑
i=1

Eθik [θik](xi − µk)(xi − µk)
T ]

+
1

2
Tr[τk(µk −mk)(µk −mk)

TΛk] +
1

2

( N∑
i=1

Eθik [θik] + ξ0 −M − 1
)
ln |Λk|

− 1

2
Tr(W−1

0 Λk) + constant. (5.4.33)
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Further simplification of (5.4.33) leads to

ln q∗Λk = −
1

2
Tr[{W−1

0 + τ0(µk −m0)(µk −m0)
T+

N∑
i=1

Eθik [θik](xi − µk)(xi − µk)
T − τk(µk −mk)(µk −mk)

T }Λk]+

1

2

( N∑
i=1

Eθik [θik] + ξ0 −M − 1
)
ln |Λk|+ constant

=
1

2

(
ξk −M − 1) ln |Λk| −

1

2
Tr[W−1

k Λk] + constant (5.4.34)

and by taking the exponential of both sides, we readily see that q∗Λk is

Wishart distribution described as

q∗Λk =W(Λk|W k, ξk) (5.4.35)

where

ξk =
N∑
i=1

Eθik [θik] + ξ0

= Nk + ξ0, Nk =

N∑
i=1

rik (5.4.36)
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and

W−1
k =W−1

0 + τ0(µk −m0)(µk −m0)
T+

N∑
i=1

Eθik [θik](xi − µk)(xi − µk)
T − τk(µk −mk)(µk −mk)

T

=W−1
0 + τ0µkµ

T
k − τ0µkmT

0 − τ0m0µ
T
k + τ0m

T
0m0+

N∑
i=1

Eθik [θik](x
T
i xi − xiµ

T
k − µkxTi + µTkµk)−

τkµ
T
kµk + τkµkm

T
k + τkmkµ

T
k − τkmT

kmk

=W−1
0 + (τ0 +

N∑
i=1

Eθik [θik]− τk)µ
T
kµk+

µk

(
τ0m

T
0 −

N∑
i=1

Eθik [θik]x
T
i + τkm

T
k

)
+

µk

(
− τ0mT

0 −
N∑
i=1

Eθik [θik]x
T
i + τkm

T
k

)
+

µTk

(
− τ0m0 −

N∑
i=1

Eθik [θik]xi + τkmk

)

+ τ0m
T
0m0 +

N∑
i=1

Eθik [θik](x
T
i xi)− τkmT

kmk. (5.4.37)

However, we have that τ0+
∑N

i=1 Eθik [θik]−τk = 0 and−τ0mT
0−

∑N
i=1 Eθik [θik]xTi +

τkm
T
k is zero vector. Therefore, (5.4.37) becomes

W−1
k =W−1

0 + τ0m
T
0m0 +

N∑
i=1

rik(x
T
i xi)− τkmT

kmk. (5.4.38)

It should be noted that both Nk and x̄k depend on rik which in turn depends

on φik. Therefore, it becomes necessary that φik be known. Recall from

(5.4.15) that φik is defined logarithmically by [46], [86]

lnφik = Eαk
[lnαk]+

1

2
EΛk

[ln |Λk|]−
M

2
ln(2α)−1

2
Eµk,Λk

[(xi−µk)TΛk(xi−µk)]

(5.4.39)

which requires the knowledge of three expectations. Commencing with the
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first expectation, Eαk
[lnαk], we know from (5.4.35) that q∗Λk =W(Λk|W k, ξk),

then we can write that

EΛk
[ln |Λk|] =

M∑
m=1

z(
ξk + 1−m

2
) +M ln 2 + ln |W k|

≡ ln Λ̃k (5.4.40)

where M is the dimensionality of each data point in X (number of SU’s

antennas) and z(y) is the digamma function ≡ d
dy ln Γ(y).

Similarly, the second expectation in (5.4.39) can be derived by employing

the trace trick expressed as [86]

q̄TV q̄ = Tr(q̄TV q̄)

= Tr(V q̄q̄T ) (5.4.41)

and

E[q̄TV q̄] = E[Tr(V q̄q̄T )]

= Tr(V E[q̄q̄T ]). (5.4.42)

Using (5.4.41) and (5.4.42),

Eµk,Λk
[(xi − µk)T ·

Λk(xi − µk)] =
∫ ∫

(xi − µk)TΛk(xi − µk)q∗(µk|Λk)q∗(Λk)dµkdΛk

=

∫ ∫
Tr[(xi − µk)TΛk(xi − µk)]q∗(µk|Λk)q∗(Λk)dµkdΛk

=

∫ ∫
Tr[Λk(xi − µk)(xi − µk)T ]q∗(µk|Λk)q∗(Λk)dµkdΛk

= Tr

[
Λk

∫ {∫
(xi − µk)(xi − µk)T q∗(µk|Λk)

}
dµkdΛk

]
.

(5.4.43)



Section 5.4. Variational Bayesian Learning for GMM 134

By using the trace trick, (5.4.43) can also be re-expressed as

Eµk,Λk
[(xi − µk)TΛk(xi − µk)] = Tr{EΛk

[ΛkEµk|Λk
[(xi − µk)(xi − µk)T ]]}.

(5.4.44)

Now in (5.4.43), we first deal with the inner expectation with respect to

µk|Λk which can be expressed as

∫
(xi − µk)(xi − µk)T ·

q∗(µk|Λk)dµk =
∫

(xi − µk)(xi − µk)TN (µk|mk, (τkΛk)
−1)dµk

=

∫
[xix

T
i − xiµ

T
k − µkxTi + µkµ

T
k ]

N (µk|mk, (τkΛk)
−1)dµk

= xix
T
i − xim

T
k −mkx

T
i +mkm

T
k + (τkΛk)

−1

= (xi −mk)(xi −mk)
T + (τkΛk)

−1. (5.4.45)

It should be noted here that Eµk|Λk
[µk] =mk and Eµk|Λk

[µkµ
T
k ] =mkm

T
k +

(τkΛk)
−1. Next, we substitute (5.4.45) into (5.4.44) and evaluate the outer

expectation on the R.H.S with respect to Λk to obtain

Eµk,Λk
[(xi − µk)TΛk(xi − µk)] = Tr{EΛk

[Λk(xi −mk)(xi −mk)
T + τ−1

k I]}

= Tr{(xi −mk)EΛk
[Λk](xi −mk)

T + τ−1
k I}

= (xi −mk)
TEΛk

[Λk](xi −mk) +Mτ−1
k

= ξk(xi −mk)
TW k(xi −mk) +Mτ−1

k .

(5.4.46)

Now, we consider the remaining expectation term in (5.4.39), i.e. E[ln |αk|],
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which can be calculated as

Eαk
[ln |αk|] = z(ψk)−z(ψ̂k)

≡ ln α̃k (5.4.47)

where ψ̂ =
∑

k ψk. At this point, if we substitute (5.4.40), (5.4.46) and

(5.4.47) into (5.4.39), we obtain the expression for φik as

lnφik = Eαk
[lnαk] +

1

2
EΛk

[ln |Λk|]−
M

2
ln(2α)− 1

2
Eµk,Λk

[(xi − µk)TΛk(xi − µk)]

= ln α̃k +
1

2
ln Λ̃k −

M

2
ln(2α)− 1

2
[ξk(xi −mk)

TW k(xi −mk) +Mτ−1
k ]

(5.4.48)

and if we take the exponential of both sides, we will have

φik =
α̃kΛ̃

1/2
k

(2α)−M/2
exp

{
− M

2τk
− ξk

2
(xi −mk)

TW k(xi −mk)

}
. (5.4.49)

Thus, the responsibilities, rik can be written as

rik ∝ α̃kΛ̃
1/2
k exp

{
− M

2τk
− ξk

2
(xi −mk)

TW k(xi −mk)
}
. (5.4.50)

From the foregoing, it can be observed that similar to the univariate

Gaussian case, the optimization of the variational posterior distribution that

solves our GMM problem is an iterative process that involves alternating

between two steps. These are the VB E-step (Expectation-step) where the

initial values of all the parameters, ψ0, τ0, m0, W 0 and ξ0 are used to com-

pute the initial responsibilities, rik, ∀ i, k via the expectations in (5.4.40)

to (5.4.46) and (5.4.47) and the VB M-step (Maximization-step) where the

values of rik are used to re-compute the variational distribution over the pa-

rameters using (5.4.26) and (5.4.28) via the Gaussian-Wishart distribution

given by (5.4.30) and (5.4.35) which are in turn used to recompute the re-
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sponsibilities, rik, until the algorithm converges and optimal solutions, q∗(α)

and q∗(µk,Λk) are obtained.

At this point, it should be noted that the value of K used to initialize

the VBGMM algorithm is usually far greater than the true number of com-

ponents present. Hence, upon convergence, there will be components such

that the expected values of the mixing components can not be numerically

distinguishable from their prior values (i.e. do not grow). These components

essentially takes no responsibility for explaining the data points which means

that they are irrelevant, and thus are deleted.

To classify new data point, xnew, a rule is proposed that is based on the

likelihood function as

α∗
k. N (xnew|µ∗

k, (Λ
∗
k)

−1)

α∗
l,∀l ̸=k. N (xnew|µ∗

l,∀l ̸=k, (Λ
∗
l,∀l ̸=k)

−1)
> πth (5.4.51)

where πth is the threshold for trading-off misclassification errors and xnew

belongs to cluster k ⇐⇒ (5.4.51) is true. The algorithm for the implemen-

tation of the proposed VBGMM scheme is shown in Algorithm 5.1.
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Algorithm 5.1: VBGMM Based Spectrum Sensing Algorithm

1. Generate the N ×D data matrix X of the energy samples from all

sub-bands over a fixed sensing interval using (5.4.2).

2. Initialize the parameters ψ0, τ0, m0, W 0 and ξ0.

3. for n = 1, · · · , N do

for k = 1, · · · ,K do

Compute the initial responsibilities, rnk using (5.4.50)

end for

for k = 1, · · · ,K do

Normalize the responsibilities.

end for

end for

4. repeat

for k = 1, · · · ,K do

Use the result in step (3) to compute Nk, x̄k, ψk, τk,

mk, W
−1
k and ξk.

end for

Recompute responsibilities, rnk ∀ n, k using step (3)

until convergence

5. Delete irrelevant clusters.

6. Use the optimal results from step (4) to classify each new data point,

xnew using (5.4.51) to decide the corresponding PU’s status, H0 or H1.

5.5 Simulation Results and Discussion

For investigation purpose cases of SU assumed to be equipped with M = 2

and 3 antennas are considered and the PU’s transmitted signal is assumed

as BPSK with unity power. The noise is complex additive white Gaussian

with variance, σ2η. Furthermore, the noise and signals are assumed to be

uncorrelated and the antennas of the SU are assumed to be spatially sepa-
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Figure 5.1. Constellation plot of three Gaussian components blindly iden-
tified, number of PUs, P = 2, number of samples, Ns = 3000, the number
of antennas, M = 3, SNR = -12dB.

rated from each other while the SU is located within the PU detection area.

The channel gain is assumed to be approximately constant during the pe-

riod of training and testing. All results are averaged over 1000 Monte Carlo

realizations where for each realization, random noise and BPSK signals were

generated. There were 3000 realizations of M dimensional data points i.e.

N = 3000, out of which 1200 were used for training and the rest for testing

purpose. Furthermore, the system’s performance was evaluated using Pd,

Pfa, ROC and clustering accuracy as metrics, over different SNR range.

Figure 5.1 shows the constellation plot of three Gaussian components

blindly identified by the proposed VBGMM scheme. Two PUs are considered

transmitting with a specific power such that their SNR as received at the

SU is 0 dB and -2 dB respectively. Two sets of data streams representing

the PUs’ signals generated with Ns = 3000 under H1 and a set of data

stream corresponding to H0, were fed to the classifier. The SU is assumed
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Figure 5.2. Probabilities of detection and false alarm versus SNR with Ns

= 5000, 7000, 10000, P = 1, M = 3.

Probability of false alarm
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
s
 = 2500

N
s
 = 2000

N
s
 = 1500

N
s
 = 1000

Figure 5.3. ROC curves showing the performance of VBGMM algorithm,
at SNR = -15 dB, Ns = 1000, 1500, 2000 and 2500, P = 1, M = 2.
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to be operating at the SNR = -12 dB. Although the number of components

(i.e. number of PUs) was unknown to the classifier, it is of interest that the

correct number of Gaussian components was detected and the clusters were

separated as shown, even when there is an overlapping. Figure 5.2 shows

the plot of clustering accuracy against SNR where the performance of the

scheme was evaluated under multiple PUs detection. It can be seen that as

expected, clustering accuracy improves as Ns is increased and an accuracy

of about 93% is achievable at -15dB when Ns is 5000.
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Figure 5.4. Clustering accuracy versus SNR, P = 2, M = 3, Ns = 2000
and 5000.

In Figure 5.3, the ROC performance of the proposed scheme is shown at

SNR = -15 dB using different Ns. It can be observed that the performance

of the scheme is improved as more samples of PU’s signals are obtained for

the feature realization. It can be seen that at Pfa of 0.1, Pd rises from about

0.5 to about 0.83 as Ns is increased from 1000 to 2500. Figure 5.4, show the

plots of Pd and Pfa against SNR for Ns = 5000, 7000 and 10000. Here, the

Pd is seen to improve as Ns in increased from 5000 to 10000. Furthermore,
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Figure 5.5. Probabilities of detection and false alarm versus SNR with
different Ns, P = 1, M = 3, showing comparison between VB and K-means
Clustering.

at SNR of -15 dB for all cases considered, Pd ≥ 90% and at -18 dB, Pd of

90% can be seen to be achievable when Ns = 10000. Similarly, the Pfa falls

below 10% for all cases at -15 dB and drops from 28% to 10% as Ns goes

from 5000 to 10000 at SNR = -18 dB. It can be further observed that the

miss-detection probability (1-Pd) equals Pfa at SNR = -18 dB when Ns =

10000, affording us the possibility of designing the learning machine for a

given false alarm requirement.

In Figure 5.5, the investigation is concluded by considering how the pro-

posed VB-based scheme compares with the K-means classifier using Pd and

Pfa metrics over an SNR range of -8 dB to -18 dB. It can be seen that

when Ns = 5000, the K-means scheme outperforms the VB scheme between

-15 dB and -18 dB. However, as Ns is increased to 10000, the performance

of the VB scheme closely matches that of K-means, despite the fact that

K-means method requires a prior knowledge of the exact number of clusters,
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over the entire range of SNR considered. In general, the proposed technique

is found to exhibit a robust behavior and lends itself readily for autonomous,

blind spectrum sensing application in cognitive radio networks.

5.6 Summary

In this chapter, a novel fully Bayesian parametric variational inference tech-

nique was proposed for autonomous spectrum sensing in cognitive radio net-

works. The underpinning theories are discussed in detail. The scheme does

not suffer from over-fitting problem, it avoids the singularity problem of EM

algorithm and yields globally optimal solution. Simulation results show that

with few cooperating secondary devices, the scheme offers overall correct de-

tection rate of 90% and above with the false alarm rate kept at 10% when the

number of collected signal samples approaches 10000. An attractive feature

of the proposed VB algorithm is that it does not require a priori knowledge of

the exact number of PUs unlike in supervised and semi-supervised learning

algorithms. In Chapter 6 which is the last contribution chapter, a novel pre-

processing technique for enhancing the detection accuracy of classification

algorithms in multi-antenna systems will be presented.



Chapter 6

BEAMFORMER-AIDED SVM

ALGORITHMS FOR

SPATIO-TEMPORAL

SPECTRUM SENSING IN

COGNITIVE RADIO

NETWORKS

6.1 Introduction

The accuracy of classification algorithms in general depends on the quality of

the features that are used for training and prediction [87]. In this chapter, a

novel, beamformer aided feature realization strategy is proposed for enhanc-

ing the capability of the learning algorithms. Without loss of generality, the

aim is to address the problem of spatio-temporal spectrum sensing in multi-

antenna CR systems using SVM algorithms. For completeness, under single

PU scenario, the performance of the proposed feature and binary SVM for

solving the temporal spectrum sensing problem is re-evaluated. However,

143
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under multiple PUs scenario, the ECOC based multi-class SVM algorithms

is re-visited and the performance is re-evaluated. In addition, a multiple

independent model (MIM) alternative is provided for solving the multi-class

spectrum sensing problem. The performance of the proposed beamformer

aided detectors are quantified in terms of Pd, Pfa, ROC, area under ROC

curves (AuC) and overall classification accuracy.

6.2 System Model and Assumptions

A scenario similar to the one described in sub-section (3.6.4) is adopted

where the SUs are multi-antenna devices equipped with M antennas and

operating in the coverage areas of P PU transmitters. The PUs, however in

this case might be high power macro cell base stations while the SU might be

a low power micro cell base station (SBS) located at the cell edge of multiple

macrocells. This offers the possibility of frequency re-use within nearby cells

and with appropriate transmission strategies such as beamforming and user

location based power allocation, can result in more efficient utilization of

spectrum resources. Under this scenario, as shown earlier in this thesis, the

ensuing spatio-temporal spectrum sensing problem can be formulated as a

multiple hypothesis testing problem where there are multiple classes and

ecah class comprises of one or more states. A more compact form of the

multi-class sensing problem now presented.

First, a class in the classification problem is defined as the number of

active PUs in the network at any given point in time. Hence, the set of all

possible classes can be defined as

P = {C1, C2, · · · , CP } = {Ci}Pi=1. (6.2.1)

Within each class, there is a set of possible states. Each state indicates the

various, different combinations of PUs that are active. For example, for class
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3, i.e. for C3, three PUs are active. Hence, out of P possible PUs, there are

C(P, 3) combinations that are referred to as states where C(P, i) =
(
P
i

)
=

P !
(P−i)! i! . In general, for the i-th class, we will have Q(i) = C(P, i) possible

states which is written as

Ci = {Si1,Si2, · · · ,SiQ(i)} = {S
i
q}
Q(i)
q=1 (6.2.2)

where Siq is a particular selection of PUs in class Ci. The spectrum sensing

problem is therefore formulated as determining not only the availability of

spectrum hole but also the state of the network, i.e. to determine which

primary user(s) are active. Hence, the received signal model under this

scenario is writen as a multiple hypothesis testing of the form

H0 : y(n) = η(n) (6.2.3)

Hi,q : y(n) =
∑
p∈Si

q

ϕ̄psp(n) + η(n), ∀Siq ∈ Ci,∀Ci ∈ P (6.2.4)

where H0 implies that all PUs are inactive and Hi,q, means that i number

of PUs corresponding to the q-th state are active. Therefore, the alternative

hypothesis for H0 is

H1 =
∪

i={1,··· ,P}
q={1,··· ,Q(i)}

Hi,q. (6.2.5)

Furthermore, y(n) = [y1(n), y2(n), · · · , yM (n)]T is the vector of instanta-

neous signal received at the SU over bandwidth ω of interest within which

the PUs operate, ϕ̄p = [ϕ̄1,p, ϕ̄2,p, · · · , ϕ̄M,p]
T is the vector of channel coeffi-

cients between the p-th PU and the SU. The remaining parameters in (6.2.4)

are sp(n) which is the instantaneous PU signal, assumed to be BPSK modu-

lated with variance, E|sp(n)|2 = σ2sp , and η(n) = [η1(n), η2(n), · · · , ηM (n)]T ,

which is the vector of noise, ηm(n), assumed to be an i.i.d circularly sym-

metric complex zero-mean Gaussian with variance, E|ηm(n)|2 = σ2η.
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Under H0, all PUs are inactive and it corresponds to the null hypothe-

sis. On the other hand, H1 corresponds to composite alternative hypothesis

where at any given time, at least one PU is active during the sensing interval.

It is apparent that this composite hypothesis intuitively embeds P classes of

alternative hypothesis each of which may comprise of one or more possible

network states. The goal is to learn the peculiar attributes that uniquely

characterize each state under H1, and to use this knowledge to discriminate

them.

6.3 Beamformer Design for Feature Vectors Realization

In this section, a beamforming technique is presented for enhancing the re-

ceive SNR and hence, the quality of received PU(s) signals used for realizing

the feature vectors of the spectrum sensing scheme. Let us assume that the

M antennas of the SU are identical and equally spaced so that they form a

uniform linear array (ULA). Let sm(n) denote the discrete time PU’s signal

arriving at the m-th antenna of the array at an angle of arrival (AOA), θ,

assumed to be uniformly distributed within the interval [θmin, θmax]. The

total azimuth coverage of the array is restricted to 180◦ so that the array

scans the entire range, Θ ∈ [−90◦, 90◦] for θ [88]. In this beamformer design,

the entire range of the ULA’s azimuth coverage, Θ is partitioned into K

= 9 sectors denoted as {θ̄k}Kk=1, where each sector θ̄k has a width of 20◦

within which we assume the AOA of the PU signals, θ lies. For example,

θ̄1 ∈ [−90,−70), θ̄2 ∈ [−70,−50), and so on. The overall goal is to design a

unique beamformer for each sector θ̄k ∈ Θ such that for every beamformer,

the array gain is maximized within θ̄k and minimized elsewhere, that is,

throughout the remaining sectors of the azimuth angles, θ̄j ∈ Θ \ θ̄k.

Let the sector of interest θ̄k be further represented as a set of K̄, fine

angular sub-partitions described by {θ̃k̄}K̄k̄=1
. Additionally, let the desired
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beampattern for the sector be represented by ϕ(θ̄k) and the array response

vector associated with AOA, θ be written as a(θ) = [1 e−jθ · · · e−j(M−1)θ]T ,

θ = (2πdλ ) sinϕ, where ϕ is the actual angle of incidence of the plane wave

relative to the array broadside, d = λ
2 is the antenna spacing, λ is the

wavelength of the impinging PU signal transmitted at the carrier frequency.

If the required beamformer to obtain the beampattern, ϕ(θ̄k) is denoted by

wθ̄k
, the goal is to determine a rank one matrix, R = wθ̄k

wH
θ̄k

that minimizes

the difference between the desired beampattern, ϕ(θ̄k) and the actual receive

beampattern, a∗(θ̄k)Ra(θ̄k) in the least squares sense. The operation, (·)∗

denotes the conjugate transpose. Hence, the beampattern matching problem

can be formulated mathematically as an optimization problem of the form

minimize
α̃,R

t

subject to
K̄∑
k̄=1

[
α̃ϕ(θ̃k̄)− a∗(θ̃k̄)Ra(θ̃k̄)

]2
< t,

R ≽ 0, rank(R) = 1 (6.3.1)

where α̃ is a scaling factor whose optimal value can be obtained jointly

as part of the solution of the optimization problem. However, due to the

matrix rank constraint in (6.3.1) the problem is rendered non-convex. So,

the equality restriction imposed on R is relaxed and (6.3.1) is recast into

a semi-definite optimization problem which can be solved with the aid of

semi-definite programming algorithm to obtain optimal R (Ropt

θ̄k
) [89]. The

desired beamformer weights, wθ̄k
can be extracted from Ropt

θ̄k
. Ideally, the

rank of Ropt

θ̄k
should be one and if this is the case, wθ̄k

can be obtained as the

eigenvector of Ropt

θ̄k
which corresponds to the principal eigenvalue multiplied

by the square root of the principal eigenvalue. On the other hand, if the rank

of Ropt

θ̄k
is greater than one, to derive wθ̄k

we have to resort to randomization

technique.
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6.4 Beamformer-Aided Energy Feature Vectors for Training and

Prediction

In this section, the applicability of the designed beamformers is demon-

strated. Without loss of generality, two practical cognitive radio deploy-

ment scenarios are considered and the algorithms for deriving our training

and prediction energy features using the beamformers are described. The

scenarios considered are that the PU(s) signals are received by the SU via

(a) clear line-of-sight and (b) strong multipath components (overlapping and

non-overlapping cases).

6.4.1 Reception of PU Signals with Clear Line-of-Sight

Here, spectrum sensing scenarios where a clear line-of-sight (LOS) can be

established between the PU(s) and SU is considered. Typically, this kind

of scenario occurs when the PU antenna is located at a high altitude such

as a base station tower and LOS can be established up to the vicinity of

the SU. Although there may be presence of local scatterers, it is possible for

the multipath signals to arrive at the SU within close range of angles that

fall within one sector, θ̄k as described in section 6.3. To perform spectrum

sensing, the implementation of the SVM based learning is considered as a

two-phase process. The first phase is termed the qualification phase during

which the SU tries to learn the range of azimuth angles or direction of arrival

(DOA) of the impinging PU signals with the aid of beamformers. The main

objective is to identify the sole beamformer under single PU case or set

of beamformers in the case of multiple PUs whose output is/are capable

of providing the required, high quality training energy features and where

future test energy samples can also be derived. The qualification process

is implemented using the following procedure. Let the discrete time signal
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received at the M -element array of the SU receiver be represented as

y(n) =


a(θ)s(n) + η(n), if P = 1∑P

i=1 a(θi)si(n) + η(n), if P > 1

(6.4.1)

where y(n) ∈ CM . If the beamformer designed for the kth sector is wθ̄k
, the

beamformer output can be expressed as

xk(n) = wH
θ̄k
y(n). (6.4.2)

Suppose we collect N samples of xk(n), the qualifying energy feature is

computed from the beamformer output as

ϑk =
1

N

N∑
n=1

|xk(n)|2. (6.4.3)

If the vector of energy samples computed for the set of all beamformers is

denoted as ϑ , [ϑ1, ϑ2, · · · , ϑK ], where ϑ ∈ RK , (K is the number of sectors

in Θ), the desire is to determine the set of qualified beamformer(s) which

would produce the actual SVM’s feature vector. To accomplish this objec-

tive, the decision threshold, ζ1 defined for a target false alarm probability,

P̄fa as [67]

ζ1 = σ2spγ
−1

(
1 +

√
2

N
Q−1(P̄fa)

)
(6.4.4)

is applied where γ =
σ2
sp

σ2
η

is the receive SNR of the PU(s) signal measured

at the SU under hypothesis Hi,q that corresponds to the state, SPQ(P ) (i.e.

when all PUs are active) and Q−1 denotes the inverse Q-function,

Q(x) =
1

2π

∫ +∞

x
exp (−t2/2)dt. (6.4.5)

By applying (6.4.4), the dimension of the SVM feature vector, S̄ ≪ K given

by card(ϑ) such that ϑk > ζ1, ∀k ∈ K can be determined. In addition, since
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S̄ ≪M it follows that after the qualification phase, we will have succeeded in

significantly reducing the dimension of the feature vector in the input space

and thereby reduce the computational complexity of the sensing algorithm

compared to the non beamformer based alternative. Furthermore, under

multiple PUs, by correctly identifying the PU(s) responsible for the energy

sample at each qualified beamformer, ϑk, ∀k ∈ S̄, it will be possible to use

independent binary SVM classifier to monitor the activities of individual PU

without recourse to multi-class learning algorithms. In the following sub-

section, the process for associating the energy samples with their respective

sources will be discussed. Meanwhile, having identified the DOA of the

PU’s signal via the qualified beamformers set, during the second phase of

the learning process which is referred to as the training phase, the SU

derives the required training energy features from the qualified beamformers

set only while other beamformers’ output are simply ignored.

6.4.2 Reception of PU Signals via Strong Multipath Components

In certain practical sensing scenarios, the presence of heavily built struc-

tures may result in the PU(s) signals arriving the SU receiver via multiple

strong paths. Under this scenario, it is possible that reflections from multi-

ple sources arrive at the SU receiver within a range of azimuth angles that

are covered by the same sector, θ̄k. This is treated as a case of overlapping

reflections. On the other hand, the reflections may be received by the SU at

widely separated AOAs corresponding to different sectors, thus, considered

as a non overlapping case. To take advantage of multipath propagation to

improve sensing performance, using the beamformers to aid the SVM clas-

sifier is considered. During the qualification phase, as in the LOS case,

the beamformers are used to determine the number of significant PU’s sig-

nal components at the SU and their DOAs. Under single PU, the task is

essentially to determine the actual beamformers set whose output are suf-
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ficient to provide the required training energy features and could also be

used for predicting the PU’s status. However, under multiple PUs scenarios,

in addition to determining the qualified beamformers set, we also need to

know the particular beamformer(s) to which respective PU signal is associ-

ated, thereby identifying the sources responsible for the signals received at

each beamformer. This will enable us to employ multiple, independent SVM

models (MIMSVM) to simultaneously monitor the activities of all PUs as a

viable alternative to multi-class SVM (MSVM) algorithms.

In general, let the set of qualified beamformers be represented by B =

{b1, b2, · · · , bS̄} ∈ {wθ̄1
,wθ̄2

, · · · ,wθ̄K
}. Further, let the corresponding se-

quences of samples of PU signal derived at these beamformers output be

described as X = [x1,x2, · · · ,xS̄ ] where xs̄ , [xs̄(1), xs̄(2), · · · , xs̄(N)]T , N

is the number of samples, ∀s̄ ∈ S̄. To solve the beamformer association

problem, it is assumed that at least one of the multipaths is from the LOS

indicating the known direction of the PUs. The beamformer corresponding

to the LOS signal of the i-th PU (PUi) is denoted as biref , where b
i
ref ∈ B.

However, we need to associate the other mutipaths to each of the PU. This is

performed by determining the cross correlation of the known beamformer’s

output to other beamformers’ output and comparing it to a threshold, ζ2.

The cross correlation between the sequences derived at the output of any

two beamformers, xi and xj is computed for various delays as

Rxixj (τ) = E[xi(n)x∗j (n+ τ)]

=
1

N

N∑
n=1

[xi(n)x
∗
j (n+ τ)], n = 1, · · · , N. (6.4.6)

The test statistic for comparison is therefore derived as

0d =

τd∑
τ=−τd

|Rxrefxs̄(τ)|2, (6.4.7)
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where Rxrefxs̄(τ) denotes the τ -lag cross correlation between xref and xs̄ and

0d is the sum of square of the magnitude of cross correlation returns over

the search interval, [−τd, τd]. The search interval must be carefully chosen

to capture the likely delay, τ ′, between xref and the reflected version which

may be present in xs̄. It should be noted here, that the exact amount of the

delay, τ ′, may not be known a priori, so τd should be sufficiently large. To

determine the presence of xref in xs̄, 0d is compared to ζ2 defined by

ζ2 = ϱ̃|Rxrefxref
(0)|2 (6.4.8)

where ϱ̃ is an appropriate scalar. If 0d ≥ ζ2, we conclude that xref is present

in xs̄ and vice versa. In the following sub-sections, the performance of the

proposed beamformer aided SVM algorithm to solve the temporal spectrum

sensing problem is investigate under single and multiple PU scenarios re-

spectively.

6.4.3 Spectrum Sensing Using Beamformer-derived Features and

Binary SVM Classifier Under Single PU Condition

Under single PU scenario, our beamforming based spectrum sensing problem

can be formulated as a binary hypothesis testing problem of the form

xk(n) = wH
θ̄k
y(n) (6.4.9)

where y(n) = η(n) under H0 and y(n) = a(θk)s(n) + η(n) under H1,

∀k ∈ B and xk(n) is the instantaneous signal at the output of the k-th

beamformer. Without loss of generality, if we assume non-overlapping mul-

tipath scenario and collect D independent energy vectors, each compris-

ing energy samples realized according to (6.4.3) for training purpose. Let

S = {(ϑ1, l̄1), (ϑ2, l̄2), · · · , (ϑD, l̄D)} represent the training data set where
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ϑi ∈ RS̄ is an S̄-dimensional feature vector and l̄i ∈ {−1, 1} is the corre-

sponding class label. Following from sub-section (3.6.12), the classification

task is solved by using the soft margin SVM which can be formulated as an

optimization problem. The PU’s status, H0 or H1 is determined in terms of

the class of a new observed data vector, ϑnew, as

l̄(ϑnew) = sgn

( Ns∑
i=1

l̄iαiβ(ϑ
new,ϑi) + b

)
(6.4.10)

where Ns is the number of support vectors. In Algorithm 7.1, a summary

of the proposed beamformer-aided spectrum sensing technique under single

PU scenarios is presented.

Algorithm 7.1: Beamformer Aided SVM Algorithm for Spectrum
Sensing Under Single PU Scenarios

Learning stage:
Qualification phase
i Load pre-designed beamformer’s weight, wθ̄k , ∀k ∈ K.
ii. Scan entire look directions, Θ, and compute qualifying

energy set, ϑ ∈ RK , under H1 using (6.4.3).
iii. Apply threshold, ζ1 in (6.4.4) to ϑ in (ii) to determine

qualified beamformer set, B.
Training phase

iv. Compute D training energy vectors, ϑ ∈ RS̄, from the
output of set B in (iii) under H0 and H1 using (6.4.3).

v. Generate SVM decision model in (6.4.10) from the set in (iv).
Prediction stage:
vi. Obtain test energy samples during prediction interval.
vii. Classify each new test sample in (vi) using (v) to decide

the corresponding PU’s status, H0 or H1.
viii. Repeat steps (vi) and (vii).

6.4.4 ECOC Based Beamformer Aided Multiclass SVM for Spec-

trum Sensing Under Multiple PUs Scenarios

The application of the proposed beamformer aided ECOC MSVM algorithm

is described by considering a scenario with two PUs operating under LOS

condition. For example, let us assume that the signals from PU1 and PU2
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are received by the SU at AOAs corresponding to θ1 ∈ θ̄3 and θ2 ∈ θ̄6 respec-

tively, in this case, the multiple hypotheses problem defined in (6.2.3) and

(6.2.4) translates to four hypotheses testing problem. If we let the indexes, i

and q in Hi,q indicate the class and state respectively, these hypotheses can

be written as

H0 : x(n) = [wH
θ̄3
η(n) wH

θ̄6
η(n)]T (6.4.11a)

H1,1 : x(n) = [wH
θ̄3
y1(n) wH

θ̄6
η(n)]T ,

y1(n) = a(θ1)s1(n) + η(n) (6.4.11b)

H1,2 : x(n) = [wH
θ̄3
η(n) wH

θ̄6
y2(n)]

T ,

y2(n) = a(θ2)s2(n) + η(n) (6.4.11c)

H2 : x(n) = [wH
θ̄3
y1(n) wH

θ̄6
y2(n)]

T ,

y1(n) = a(θ1)s1(n) + η(n),

y2(n) = a(θ2)s2(n) + η(n). (6.4.11d)

where x(n) is the instantaneous received signal vector derived at the output

of B. Under this operating condition, it is assumed that only one of the four

states in (6.4.11) can exist during any sensing duration and the goal is to

declare spatial spectrum hole in the operating environment of any inactive

PU(s). To address this multi-class signal detection problem, the peculiar

attribute(s) of each state is to be learnt using the beamformer aided features

and the MSVM techniques described in section (3.6.5). A summary of the

procedure for solving the multiple PUs sensing problem using beamformer

derived feature based ECOC multi-class algorithm is presented in Algorithm

7.2. An alternative approach based on the described MIMSVM method is

also presented in Algorithm 7.3.
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Algorithm 7.2: Beamformer Aided ECOC MSVM Algorithm for Spectrum
Sensing Under Multiple PU Scenarios

Learning stage:
Qualification phase
i Load pre-designed beamformer’s weight, wθ̄k , ∀k ∈ K.
ii. Scan entire look directions, Θ, and compute qualifying energy

set, ϑ ∈ RK , under SPQ(P ) using (6.4.3).

iii. Apply the threshold, ζ1 in (6.4.4) to ϑ in (ii) to determine qualified
beamformers set, B.

Training phase

iv. Obtain D set of training energy vector, ϑ ∈ RS̄ from the output
of B in (iii) under H0 and Hi,q, i.e. ∀S iq ∈ Ci,∀Ci ∈ P using (6.4.3).

v. Generate J decision models in (3.6.38) or (3.6.41) from the set in (iv).

Prediction stage:

vi. Obtain test energy samples during prediction interval using (6.4.3).
vii. Classify each new data point in (vi) using (v) to decide the

corresponding system state, H0 or Hi,q.
viii. Repeat steps (vi) and (vii).

6.5 Numerical Results and Discussion

The performance of the proposed beamformer-aided SVM algorithms is eval-

uated for single and multiple PUs’ scenarios. The CSVM algorithm was

applied under the single PU considerations while the MSVM and MIMSVM

algorithms were implemented under the multiple PU scenarios. The results

are quantified in terms of Pd, Pfa, ROC, area under ROC curve (AuC) and

overall classification accuracy (CAovr).

6.5.1 Single PU Scenario

Under this scenario, the aim is simply to detect the presence or absence of

the PU. For the purpose of simulation, under H1, it is assumed that the

signal of the PU is BPSK modulated. It is further considered that during

the sensing interval, the transmission is multipath propagated and received

at the SU via two strong components at AOAs, θ1 ∈ [−45◦,−35◦] and θ2 ∈
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Algorithm 7.3: Beamformer Aided MIMSVM Algorithm for Spectrum
Sensing Under Multiple PU Scenarios

Learning stage:
Qualification phase
i Load pre-designed beamformer’s weight, wθ̄k , ∀k ∈ K.

ii. Scan entire look directions, Θ, and compute qualifying
energy set, ϑ ∈ RK , under SPQ(P ) using (6.4.3).

iii. Apply the threshold, ζ1 in (6.4.4) to ϑ in (ii) to determine
qualified beamformers set, B.

iv for i = 1 to P , do
v. Perform source search by computing 0d in (6.4.7) for every

beamformer pair {biref , bs̄},∀bs̄ ∈ B, biref ̸= bs̄.
vi. Associate {biref , bs̄} ⊂ B with PUi if 0d(b

i
ref , bs̄) ≥ ζ2

in (6.4.8).
vii. end for
Training phase
viii. for i = 1 to P , do
ix. Obtain D set of training energy vectors from the output of

the beamformer set in (vi) under H0 and H1 using (6.4.3).
x. Generate independent SVM decision model in (6.8.10) from the

training set in (ix)
xi. end for

Prediction stage:
xii ∀i ∈ P , do repeat
xiii. Obtain test samples during prediction interval using (6.4.3).
xiv. Classify each new data point in (xiii) using corresponding

decision model in (x) and decide the PUs’ state, H0 or H1.

[15◦, 20◦] corresponding to reception at two different sectorial partitions, θ̄3

and θ̄6 in Θ. The delay between the arrival of the multipath components

is assumed to be 5 symbols and the total received power is normalized to

unity. It is further assumed that the noise is circularly symmetric complex

additive white Gaussian with power, η2n. The PU’s signal and the noise are

assumed to be uncorrelated. To investigate the performance of the resulting

two-dimensional, beamformer derived feature vector, the target false alarm

probability, P̄fa was set to 0.01 and γ = 0 dB, the CSVM is applied with

linear kernel and the box constraint, Γ is 0.9. Some 2000 set of energy vectors

were generated through random realizations of the channels, out of which



Section 6.5. Numerical Results and Discussion 157

Probability of false alarm
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BFSVM, SNR = -15 dB, AuC = 0.9933
NBFSVM, SNR = -15 dB, AuC = 0.9149
BFSVM, SNR = -18 dB, AuC = 0.8991
NBFSVM, SNR = -18 dB, AuC = 0.7420
BFSVM, SNR = -20 dB, AuC = 0.7926
NBFSVM,  SNR = -20 dB, AuC = 0.6606

Figure 6.1. ROC performance comparison between beamformer based and
non-beamformer based SVM schemes under different SNR, number of PU,
P = 1 and number of samples, Ns = 500.
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Figure 6.2. ROC performance comparison between beamformer based and
non-beamformer based SVM schemes with different number of samples Ns,
and SNR = -20 dB.

400 were used for training and the rest for testing purpose. The number of

antennas, M at the SU is assumed to be 8 with spacing d = 0.5λ.

Figure 6.1 shows the performance of the proposed beamformer based
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SVM binary classifier (BFSVM) in terms of the ROC curves for fixed number

of received signal samples, Ns = 500 when the SNR = -15 dB, -18 dB and

-20 dB in comparison with the alternative in which the use of beamformers

is not considered, that is, the non-beamformer based scheme (NBFSVM).

As expected, the BFSVM scheme takes advantage of the beamforming array

gain of 10 log10M dB and thus exhibits significant performance improvement

compared to the NBFSVM scheme. Specifically, at Pfa = 0.1, the Pd

achieved by the BFSVM scheme is about 0.99 whereas the NBFSVM achieves

about 0.74 when SNR is -15 dB. In terms of AuC, the BFSVM scheme yields

0.9933 while NBFSVM offers 0.9149 at SNR of -15 dB. Similar trend can

be observed through all cases of SNR considered. The proposed BFSVM

scheme consistently outperforms the NBFSVM scheme which demonstrates

the potential of the beamformer derived features to enhance the capability

of the SVM binary classifier. It is strikingly interesting to note that the

dimension of the feature vector of the BFSVM scheme in the input space is

far less than that of the NBFSVM scheme which indicates that the proposed

scheme offers significant reduction in implementation complexity.

In Figure 6.2, the effect of varying the number of PU signal samples,

Ns is shown on the performance of the proposed scheme where the SNR is

kept at -20 dB. As seen, when Ns is increased from 500 to 2000 and Pfa

is 0.1, about 40% improvement in performance is observed for the BFSVM

scheme, where Pd is increased from 0.45 to 0.85. On the other hand, the

NBFSVM method yields only about 24% improvement, i.e. Pd is increased

from 0.25 to 0.49. Furthermore, given the same Pfa and where Ns =

2000, the proposed scheme attains the Pd of 0.85 against 0.49 yielded by

the NBFSVM alternative. Similarly, from the AuC perspective, an increase

from 0.7926 to 0.9487 and from 0.6635 to 0.8094 is observed for the BFSVM

and NBFSVM respectively for fixed SNR of -20 dB as Ns is increased.

The investigation on the single PU scenario is concluded in Figure 6.3
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where the impact of receive SNR on Pd and Pfa is evaluated and both met-

rics are compared under the BFSVM and NBFSVM schemes. As expected,

the performance of both schemes improves as SNR is increased. However,

the proposed BFSVM scheme outperforms the NBFSVM scheme as seen for

example at SNR of -20 dB where the BFSVM scheme attains Pd of about

0.88 when Ns = 2000 and Pfa ≈ 0.1. On the other hand, the NBFSVM

only attains Pd of about 0.72 and Pfa of about 0.28. Furthermore, as Ns

is increased from 500 to 2000 and at SNR of -20 dB, Pd rises in the case of

BFSVM scheme from 0.7 to 0.88 (about 18% gain) while Pfa reduces from

0.28 to 0.12 (about 16% drop) whereas, for the NBFSVM, rise in Pd is from

0.6 to about 0.72 (12 % gain) and Pfa reduces from 0.39 to 0.28 (about 11%

drop). The performance of the proposed BFSVM scheme at Ns equals 500

almost matches that of the NBFSVM scheme at Ns equals 2000 indicating

some savings in sensing time for the same performance level. From the fore-

going, it is evident that the proposed beamformer based scheme exhibits a

superior performance in terms of improving the usage of the radio spectrum

resources and reduced implementation complexity in comparison with the

non beamformer based alternative.

6.5.2 Multiple PUs Scenario

The performance of the beamformer-aided scheme is investigated using the

ECOCMSVM andMIMSVM algorithms with energy features and the results

are quantified in terms of CAovr. A network comprising two PUs operating

in the frequency band of interest and transmitting with a specific power such

that the SNR at the receiver is 0 dB and -2 dB respectively is considered.

The channel coefficients have also been normalized to one. Further, two

scenarios are considered for the angle of arrival signals. In the first scenario,

the signal from PU1 is received from two paths, the first one arrives with

an AOA, θ1 ∈ [−45◦,−35◦] ∈ θ̄3 and the second path comes with an AOA,
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Figure 6.3. Performance comparison between beamformer based and non-
beamformer based SVM schemes showing probabilities of detection and false
alarm versus SNR, with different sample number, Ns.
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Figure 6.4. Performance comparison between OVO and OVA ECOC
MSVM schemes under non-overlapping transmission scenario with different
number of samples Ns, and number of PU, P = 2.

θ2 ∈ [15◦, 20◦] ∈ θ̄6. Similarly, the two multipath components of PU2 arrive

at angles θ3 ∈ [−20◦,−15◦] ∈ θ̄4 and θ4 ∈ [40◦, 45◦] ∈ θ̄7 respectively. In the

second scenario, a situation is considered where the multipath components
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Figure 6.5. Performance comparison of OVOMSVM, MIMSVM and OVO
NBMSVM schemes under LOS transmission scenario with different number
of samples Ns, and number of PU, P = 2.
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Figure 6.6. Performance comparison of OVO-MSVM, MIMSVM and
OVO-NBMSVM schemes under non-overlapping reflection scenario with dif-
ferent number of samples Ns, and number of PU, P = 2.

of the first PU arrive with AOAs, θ1 ∈ [−45◦,−35◦] ∈ θ̄3 and θ2 ∈ [15◦, 20◦]

∈ θ̄6. However, for the second PU, they arrive at θ3 ∈ [15◦, 20◦] ∈ θ̄6 and

θ4 ∈ [40◦, 45◦] ∈ θ̄7. It means that the beamformer corresponding to θ̄6
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Figure 6.7. Performance comparison of OVOMSVM, MIMSVM and OVO
NBMSVM schemes under overlapping reflection scenario with different num-
ber of samples Ns, and number of PU, P = 2.

picks up signals from both PUs. This scenario is called the overlapping

multipath case. Hence, the first scenario is non overlapping. For each PU,

the multipath components received via the two distinct paths are assumed

to arrive the receiver with a delay of 5 symbols.

Furthermore, by cross-validation the SVM box constraint parameter, Γ

is 1 and Gaussian kernel scaling factor, σ is 10. However, when implementing

the OVA scheme, the corresponding values for box constraint parameters,

Γ+ and Γ− are obtained as the ratio of the pair of classes as discussed in

section V-B. Some 2000 set of energy vectors were generated through ran-

dom channel realization, out of which 400 were used for training and the

rest were used for testing. In Figure 6.4, the suitability of the OVO and

OVA coding techniques was investigated by evaluating their performance

in terms of CAovr at different receive SNR using the ECOC MSVM algo-

rithm. The performance evaluation under the non-overlapping transmission

scenario indicates that for both schemes, the CAovr improves as the SNR

is increased. For example, when Ns is 1000, CAovr increases from about
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Figure 6.8. Performance comparison between OVO ECOC and DAG
based MSVM under non-overlapping reflection scenario with different num-
ber of samples Ns, and number of PU, P = 2.

58% to 100% as SNR is raised from -24 dB to -8 dB. Similar trend can

be observed for various Ns values. The OVO scheme appeared to slightly

outperform the OVA scheme especially in the very low SNR regime. At

any rate, in deciding which coding scheme to use, the system’s complex-

ity in terms of the number of classifiers required to be constructed by each

method, the memory requirement and the training as well as testing time

should be considered. In Figure 6.5, under the LOS transmission scenario,

the performance of our beamformer aided MIMSVM and ECOC MSVM al-

gorithms were investigated over a range of SNR and these were compared

with the non beamformer based alternative (NBMSVM). As seen, the beam-

former aided schemes significantly outperform the NBMSVM. For instance,

when Ns = 1000, for the beamformer aided schemes, CAovr improves from

about 60% to 100% when the SNR is increased from -24 dB to -12 dB,

whereas for the NBMSVM scheme, CAovr only increased from about 48%

to 90% for the same SNR increment. In addition, the OVO ECOC MSVM

is seen to slightly outperform its MIMSVM counterpart over a considerable
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portion of the SNR range and for all cases of Ns.

In Figure 6.6 and Figure 6.7, the performance of the MIMSVM, ECOC

MSVM and NBMSVM schemes were examined under non-overlapping and

overlapping transmission scenarios. Both results show that the performance

of the three schemes is similar to that seen for the LOS scenario where CAovr

is observed to improve as the receive SNR is increased. It could however

be noticed in these two cases, that in addition to offering far less computa-

tional complexity, the MIMSVM slightly outperforms the OVO based ECOC

MSVM scheme especially in the very low SNR regime. This may largely

be due to the fact that the MIMSVM scheme benefits from increase in the

dimension of its feature space under these two scenarios. Furthermore, it

can be seen that both the MIMSVM and ECOC MSVM schemes perform

equally well and consistently outperform the NBMSVM under the cognitive

radio deployment scenarios described in section 6.4, thereby further lending

credence to the robustness of the proposed beamformer based learning ap-

proach. Next, in Figure 6.8 the comparison between the OVO ECOC MSVM

and the DAG SVM methods is shown. It is observable here that the ECOC

MSVM performs better than the DAGSVM in the low SNR regime. This

can be seen for instance at the SNR of -24 dB where as Ns is increased

from 200 to 1000, we see that the CAovr rises from about 52% to 60% for

the ECOC MSVM whereas in the case of DAGSVM, the rise in CAov is

approximately from 46% to 55%.

Finally, to conclude the investigation under the multiple PU case, the

comparison between the SVM and kNN classification techniques is shown in

Figure 6.9 where both non-parametic methods are considered under beam-

former based multiclass OVO ECOC scheme over a range of SNR and dif-

ferent Ns. As seen, the SVM consistently outperforms the kNN. In sum-

mary, all simulation results indicate that the proposed, beamformer aided

scheme offers significant advantage for SVM classifier in solving spectrum
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Figure 6.9. Performance comparison of OVO based MSVM and MkNN
techniques with different number of samples Ns, number of neighbor = 5,
and number of PU, P = 2.

sensing problem given both single and multiple primary user scenarios in

multi-antenna CR networks.

6.6 Summary

In this chapter, beamformer aided SVM is proposed for spectrum sensing

in multi-antenna cognitive radio networks. In particular, new algorithms

have been developed for multiple hypothesis testing facilitating joint spatio-

temporal spectrum sensing. Using the energy features and the ECOC tech-

nique, the key performance metrics of the classifiers were evaluated which

demonstrate the superiority of the proposed methods over previously pro-

posed alternatives. In the next chapter, the contributions of this thesis and

the conclusions that can be drawn from them is summarized. Research di-

rection for possible future work is also included.



Chapter 7

CONCLUSIONS AND

FUTURE WORK

This chapter summarizes the contributions of this thesis and the conclu-

sions that can be drawn from them. In addition, it includes a discussion on

research direction for possible future work.

7.1 Conclusions

The focus of this thesis has been on the development of machine learning al-

gorithms for spectrum sensing within the context of cognitive radio wireless

networks. In particular, supervised, semi-supervised and unsupervised learn-

ing algorithms have been proposed and investigated for interweave spectrum

sharing. Furthermore, novel eigenvalue based features have been proposed

and shown to possess the capability to improve the performance of SVM

classifiers for spectrum sensing under multi-antenna consideration. In addi-

tion, novel beamformer based pre-processing technique has been developed

for improving the quality of the features and enhancing the performance

of the learning algorithms. For the investigation, probability of detection,

probability of false alarm, receiver operating characteristics (ROC) curves

and area under ROC curves have been used to evaluate the performance of

the proposed schemes. Considering the chapters in detail:

In Chapter 1, the current command and control approach to frequency

166
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allocation was described. The spectrum scarcity and under-utilization prob-

lems was also introduced. Furthermore, a general description of CR technol-

ogy and various paradigms as viable solutions to spectrum scarcity problem

were discussed. In addition, the role of spectrum sensing in the successful

implementation of CR systems was highlighted. This is followed by rationale

behind the choice of machine learning techniques for the schemes proposed

in this thesis was provided. The chapter is concluded with an outline of the

thesis structure and brief discussion of contributions made.

In Chapter 2, an overview of the various local spectrum sensing method-

ologies in CR networks that are of interest to the thesis was presented. In

particular, we reviewed blind and semi blind methods suitable for both sin-

gle and multi-antenna conditions. These include methods such as matched

filtering, cyclostationary detection, energy detection and hybrid schemes.

Cooperative sensing methods which enables multiple SUs take advantage

of spatial diversity for improving detection performance and containing the

effects of channel imperfections is also briefly described.

In Chapter 3, various supervised classification algorithms were proposed

and investigated for spectrum sensing application in CR networks. Multi-

antenna CR networks was considered and a novel, eigenvalue based feature

which has the capability to enhance the performance of SVM algorithms was

proposed. Furthermore, spectrum sensing under multiple PU scenarios was

given attention and a new re-formulation of the sensing task as a multiple

hypothesis problem comprising multiple classes where each class embeds one

or more states was presented. Generalized expressions for the various possi-

ble states was also provided. In addition, the ECOC based multi-class SVM

algorithms for solving the ensuing multiple class signal detection problem

was investigated using two different coding strategies. Finally, simulation

studies was included which lends credence to the robustness of the proposed

sensing schemes.
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In Chapter 4, scenarios where the secondary network has only partial

knowledge about the PU’s network was considered. Two semi-supervised

parametric classifier that are based on the K-means and the EM algorithms

were proposed for spectrum sensing purpose. Furthermore, it was recognized

that the performance of the classifiers can degrade severely when they are

deployed for sensing under slowly fading channel resulting when mobile SUs

operate in the presence of scatterers. To address this problem, a Kalman

filter based channel estimation strategy was proposed for tracking the fading

channel and updating the decision boundary of the classifiers in real time.

Simulation studies was presented which confirmed that the proposed scheme

offers significant gain in performance.

In Chapter 5, the unsupervised classification algorithms based on the soft

assignment, variational Bayesian learning framework was presented. Unlike

the supervised and semi-supervised methods, the technique does not require

any prior knowledge about the number of active PUs operating in the net-

work and can successfully estimate this and other statistical parameters that

are required for decision making. The proposed inference algorithm is thus

blind in nature and lends itself readily for autonomous spectrum sensing ap-

plication making it useful when an SU finds itself in alien RF environment.

Simulation studies reveals that with few cooperating secondary devices, an

overall correct detection rate of about 90% and above can be achieved, with

the false alarm rate kept at 10% when the number of collected signal samples

approaches 10000.

In Chapter 6, a novel beamforming based pre-processing technique for

feature realization was presented for enhancing the performance of classi-

fication algorithms under multi-antenna consideration. Furthermore, new

algorithms were developed for multiple hypothesis testing facilitating joint

spatio-temporal spectrum sensing. Using energy features and the error cor-

recting output codes technique, the key performance metrics of the classifiers
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were evaluated which demonstrate the superiority of the proposed methods

in comparison with previously proposed alternatives.

In summary, in this thesis, firstly the practicality of adopting and apply-

ing machine learning algorithms for spectrum sensing purpose in CR net-

works was clearly demonstrated. Particularly, supervised, semi-supervised

and unsupervised classification based sensing algorithms were developed.

The proposed schemes are blind in the sense that the exact knowledge of the

PU signal, noise or the channel gain is not required. Secondly, the problem

of spectrum sensing under time varying channel condition occasioned by the

mobility of SUs in the presence of scatterers was considered and a Kalman

filter estimation based technique was proposed for channel tracking and for

updating the decision boundary in real time towards enhancing the classi-

fiers performance. Finally, a novel feature realization strategy was proposed

for improving the performance of learning algorithms deployed for spectrum

sensing application in CR networks.

7.2 Future Work

The research presented in this thesis could be extended in several directions.

Firstly, the cooperating sensing problem in Chapter 3 can be extended

by considering the application of game theoretic techniques such as the over-

lapping coalitional game [90]. In this case, the SUs may first be clustered

based on certain criteria so that instead of having all SUs send their sensing

results to the SBS, only cluster heads do. Under this situation, it is possible

to have one or more SUs located in overlapping regions of multiple clusters

and SUs have to decide where to report. In addition, we have assumed that

the reporting channel between the SUs and SBS is error free. In practical CR

deployment, such channels may exhibit some imperfections. The impacts of

this imperfection on the overall system performance should be analyzed and
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ways of mitigating these effects be investigated.

Secondly, in Chapter 4, tracking PU-SU channel gain under Rayleigh

distributed, flat fading environment was assumed and considered. A wider

class of fading channel conditions could also be considered, which could be

modeled by for example the Nakagami-m distribution [91]. It is of interest

to know that this fading distribution has gained much attention lately owing

to the fact that the Nakagami-m distribution gives a better model for land-

mobile and indoor mobile multi-path propagation environments as well as

scintillating ionospheric radio links [92]. Furthermore, the ideas presented in

Chapter 4 and Chapter 5 could be combined by considering the use of multi-

target tracking methods such as the probability hypothesis density (PHD)

filter [93] to simultaneously track the activities of multiple PUs under SUs’

mobility scenarios.

Another possible research problem is how to ensure cooperation among

SUs. In this work and almost all the related works on cooperative spectrum

sensing, it is assumed that the SUs are trustworthy and well-behaved, which

may not always be the case in reality. There may exist some dishonest

users, even malicious ones in the system, corrupting or disrupting the normal

operation of the CRN [94], [95]. Consequently, the system’s performance

can be compromised. Thus, this security issue needs to be considered for

emerging CRNs and a possible way of addressing this is to use mechanism

design [96] which is an important concept in game theory.

Finally, the solutions presented in this thesis are for interweave approach

to dynamic spectrum access, the other two methods, namely; underlay and

overlay approaches briefly described at the outset could also be considered.
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