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Abstract 

Porous scaffolds manufactured via powder metallurgy and sintering were designed for their 

structure (i.e. pore size and porosity) and mechanical properties (stiffness, strength) to be 

controlled and tailored to mimic those of human bone. The scaffolds were realised to fulfil 

three main objectives: (i) to obtain values of stiffness and strength similar to those of 

trabecular (or spongy) bone, with a view of exploiting these as bone grafts that permit cell 

regeneration, (ii) to establish a relationship between stiffness, strength and density that 

allows tailoring for mass customisation to suit patient’s needs; and (iii) to assess alloy 

cytotoxicity and biocompatibility via in vitro studies. The results obtained using a very low 

stiffness alloy (Ti35Nb4Sn) further lowered with the introduction of nominal porosity (30-70%) 

with pores in the ranges 180-300 µm and 300-500 µm showed compatibility for anatomical 

locations typically subjected to implantation and bone grafting (femoral head and proximal 

tibia). The regression fitting parameters for the linear and power law regressions were similar 

to those found for bone specimens, confirming a structure favourable to capillary network 

formation. Biological tests confirmed non-cytotoxicicity of the alloy. Scaffolds of porosity 

nominal 50%vol and pore range 300-500 µm performed best in the adhesion and 

propagation assays due to a good balance between surface area and pore cavity volume.   
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1. Introduction 

In 2013 the orthopaedic trauma devices market was valued at $5.7 billion and it is expected 

to grow further to $9.4 billion by 2020 at an annual growth rate of 7.2% [1]. An increasing 

aging population, not only in developed countries but also through the urbanisation of 

emerging markets, together with obesity epidemics and advances in clinical research are 

fuelling the demand for these devices. At present patients who carry implants from bone 

grafting in load-bearing locations such as knee, hip, ankle, etc. are outliving them, and 

seniors  >70 years expect a durable implant replacement that will continue maintaining their 

quality of life. Drawbacks to the current existing implants are ‘loosening’ effects due to (i) 

“stress shielding” (i.e. when the implant is stiffer than the bone itself, it bears the load, so 

bone remodelling is hindered and healing retarded as cell count decays [2]) and (ii) lack of 

appropriate osteoconductive paths that allow the bone-forming cells to migrate into the 

porous implant and reside there, with the desired side effect of locking the device in place. In 

order to overcome these limitations to create better performing and longer-lasting implants, 

there is a need for a design and manufacturing strategy that allows engineering of the 

macrostructure of the implant and permits the tailoring of its mechanical properties to match 

that of the patient’s host tissue.  

Solid titanium alloys have been proven to provoke implant loosening due to their high 

stiffness (compared to that of bone) and non-porous interfaces [3], and alloys containing 

vanadium, cobalt, chrome, and nickel have been discarded because the ions eroded from 

the implants enter the blood stream and produce toxic deposits in soft organs such as liver 

and kidneys  [4]. Beta-alloys Ti-Nb-Sn have received much attention recently due to their 
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bone tissue compatibility [5], good corrosion resistance when tested at body-like pH and 

temperature conditions [6], and their lower stiffness when compared to other ternary Ti alloys, 

with Ti35Nb4Sn having one of the lowest Young’s modulus of the group [7, 8]. Low stiffness 

values are achieved by the stabilisation of β-phase Ti at the working temperature (i.e. body 

temperature). Elemental Ti at room temperature presents a α-type crystal (hexagonal) 

configuration and at high temperatures it exhibits an allotropic β-phase (cubic crystal 

configuration) that can become stable at room temperature with the addition of β-phase 

forming and stabilising elements (e.g. Nb, Sn [8-11]), which achieves a reduction in the 

Young’s modulus (i.e. from E ~116 GPa in α-phase Ti alloys [12] to ~40 GPa in β-phase Ti 

alloys [8] – both fabricated by casting or melting and the latter cold rolled). The stiffness can 

be further lowered by introducing a porous structure. Techniques such as foaming or 

sintering with space holders have been reported in literature [13, 14]. Shape holder materials 

such as ammonium hydrogen carbonate, urea, sodium fluoride and chloride, saccharose 

and PMMA have been used in the manufacture of porous materials to control porosity and 

pore size [14-18]. Examples of stabilised beta-alloys of Ti fabricated using powder 

metallurgy coupled with the space holder/sintering method in order to lower their stiffness 

and control their strength are Ti7.5Mo [19], Ti40Nb [20], Ti24Nb4Zr8Sn [21], Ti10Nb10Zr 

[22], and the namely-toxic Ti6Al4V [23] and TiNi [24].  The stiffness- and strength-to-weight 

ratios can thus be optimised to match the mechanical properties of bone and these cavities 

engineered to promote cell proliferation, which results in anchoring the bone graft in place to 

minimise loosening in the mid- to long-term. 

There is a comprehensive set of data available on the mechanical properties of bone. 

Caution is advised when cross-comparing from studies undertaken using different measuring 

techniques as these influence the order of magnitude of the results [25, 26]. Comparable 

values of elastic modulus and compressive strength have been reported in the ranges of 3-

20 GPa, and 10-180 MPa, respectively [2, 27]. The elastic modulus of human bone tissue 

has been shown to depend strongly on anatomical location, bone tissue type (e.g. cortical or 
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trabecular) [28], on the health of the individual [29], and to a lesser extent on gender or age 

[30, 31]. These ranges are narrower for properties of trabecular bone in areas typically 

subjected to implantation of devices. Elastic moduli have been reported for femoral heads as 

2.6-11.2 GPa [32], femoral neck 1.5-4.5 GPa [28], and proximal tibia bone 3.27-10.58 GPa 

[33]. Patients affected by osteoporosis or osteoarthiritis have been seen to show a decrease 

of 22% or 14%, respectively [29, 34], in values for elastic moduli in compression. Femoral 

head subchondral bone plate elastic moduli as low as 3-10 GPa have been observed in 

patients more severely affected by these conditions [29]. Compressive strengths on femur 

head are in the range of 4-16 MPa, the lower values corresponding to an aged population 

[27], for femoral neck 11.5-23.6 MPa [35], and for tibial trabecular bone the range has been 

reported as 3-33 MPa [27]. 

Bone ingrowth requires that the bone graft is osteoconductive (i.e. it guides the bone 

ingrowth by providing cells with a structure/scaffold that promotes cell proliferation) so this 

shall lead to successful osseointegration of the implant, that is, sequential cell differentiation 

and maturation to create cells within the scaffold [36]. A definitive pore size value for optimal 

bone growth has not been agreed among researchers because it is not the sole factor for an 

enhanced bone healing effect. Other variables such as mechanical stiffness to provide a 

good mechanical matching between bone and bone graft (i.e. artificial implant), and surface 

chemistry and roughness to anchor and long-term attachment of cells, need also to be 

considered. However, the current consensus is that osteoblast migration into porous spaces 

occurs if the cavities are larger than 50 µm [37]; for non-load bearing condition sizes should 

be 50-125 µm [38], and for load-bearing applications the pore size range should be 50-500 

µm [39].  

The purpose of the present study was to systematically study the effect of porosity and pore 

size on the mechanical properties of a reportedly low-stiffness Ti alloy (Ti35Nb4Sn) so that 

an optimum structure could be defined with a view of pursuing bioengineering applications 

by avoiding mechanical properties mismatching between the scaffold and the host bone 
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tissue. Porous scaffolds spanning a broad range of porosity (30-70 %vol) were 

manufactured in two pore size ranges (a lower range 180-500 µm and a higher range 300-

500 µm) which were created in the sintered scaffolds by a space holder. Biological 

functionality was pursued so the scaffolds had to be non-cytotoxic as well as promoters of a 

good degree of cell adhesion and growth that could indicate promising qualities as 

osteoconductive and osteoinductive substrates.  

 

2. Materials and Methods 

2.1. Porous scaffolds preparation 

Elemental powders of Ti (Alfa Aesar, USA, 99.5% purity, ≤45 µm, -325 mesh), Nb (Aldrich, 

Germany, 99.8% purity, <45 µm, -325 mesh) and Sn (Alfa Aesar, USA, 99.8% purity, ≤45 

µm, -325 mesh) were blended together according to the desired composition of Ti 61 %wt, 

Nb 35 %wt and Sn 4 %wt. This alloy is referred as Ti35Nb4Sn thereafter. Mechanical 

alloying was performed in a planetary ball mill (Fritsch, Germany, Pulverisette 6 Monomill) 

under argon atmosphere and using stainless steel grinding bowl and balls (10 mm diam). 

The ball-to-powder weight ratio was 10:1. The milling was carried out at room temperature 

with a rotation speed of 200 rpm for 12 h. This preparation time was chosen in accordance 

with previous experimental work that focused on the influence of ball milling time and the 

quality of the resulting mechanically alloyed powder material [40]. An additive, 2 %wt stearic 

acid (CH3 (CH2)16 COOH), was included as a process control agent (PCA) to be absorbed on 

the surface of the metal particles and assist the development of a desired fine microstructure 

during ball milling as well as to prevent cold welding to the surface of the vessel and balls 

during milling. Previous studies have shown this %wt to be a good compromised amount to 

promote cold welding without fracturing becoming the dominant effect [13].  

The ball-milled powders were mixed with the space-holder material, urea (CO(NH2)2) (Fisher, 

UK, 99% purity, in two particle size ranges: 180-300 µm and 300-500 µm). Given the particle 
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size of the urea, the powder-to-space holder volume ratio used was adjusted in order to yield 

a certain porosity ratio value (nominally from 30 % to 70 %). Therefore, both the pore size 

and the porosity ratio could be controlled independently.  The powder/urea mixture was then 

uniaxially cold compacted at a pressure of 250 MPa into cylindrical green compacts with a 

diameter of 16 mm and a height of 8 mm. These were placed in a calcination oven, heated 

at 2 °C/min from room temperature up to 250 °C and kept at that temperature for 2 h to 

sublimate the space holders and leave voids behind. It was important to ensure this process 

did not happen too quickly as it could affect the integrity of the compacted cylinders and 

produce striations. The subsequent sintering took place in an atmosphere-controlled (argon) 

furnace (Lenton Thermal Designs, UK) previously vacuum-flashed thoroughly. The green 

compacts, with only the metal powders in the porous structure, were heated up to 1100 °C at 

a heating rate of 5 °C/min, and held at this temperature for 3 h. The furnace was then 

allowed to cool to room temperature. Samples with no spaceholder were also manufactured 

following the same pressing/sintering process. These will be referred to as non-porous 

sintered scaffolds. All samples were wet ground and polished using a 240-grit silicon carbide 

cloth. Finally they were cleaned using acetone and soapy water in an ultrasonic bath for 5 

min, and left to air dry. The specimen’s surface was examined with a scanning electron 

microscope (FEI, USA, Quanta 3D FEG dual beam, 3.5 nm, 30 kV) and measurements 

performed.  

2.2. Characterisation of the alloy powders and sintered porous scaffolds 

Phase constituents in the ball-milled powders and sintered porous scaffolds were 

characterised using X-ray diffractometry (Bruker, USA, AXS D8 Advance glancing) with 

1.5046 nm wavelength Copper K alpha radiation source. An organic contamination analysis 

(Exeter Analytical Inc, UK, CE440 CHN) was performed on the ball-milled and sintered 

powder to ascertain if any unwanted compound might have been present. A micro-CT (X-

Tek, USA, CT bench-top) system equipped with a 160k eV X-ray source and a 12-bit CCD 

camera was used for inspection of the sintered scaffolds. The samples were scanned at 6 
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µm resolution. VGStudioMax and Simpleware software were used for volumetric 

reconstruction.  

2.3. Mechanical testing 

The compression experiments were conducted at room temperature on a 3367 Instron 

testing machine. Each sample of 16 mm diam and 8 mm height was loaded and unloaded at 

a constant speed of 1 mm/min between a minimum strain of 0% and a strain value which 

increased in 0.1% steps over consecutive loops to a εmax, being this 0.8% or before the yield 

point which initiated microcracking (or plastic deformation), whichever was reached first. 

Finally, the scaffolds were tested at a compressive rate of 1 mm/min until collapse or plastic 

deformation to determine their stiffness in compression (i.e. elastic moduli) as well as their 

compressive strength at the end of their elastic region behaviour. 

2.4.  In vitro studies 

2.4.1. Preparation of the scaffolds and cell culture 

Scaffolds of of 16 mm diam and 8 mm height with nominal porosity 30%, 40%, 50%, 60% 

and 70% and a pore size in the range 300-500 µm were sterilised in an autoclave and 

thoroughly rinsed in deionised sterile water and phosphate-buffered saline (PBS) solution. 

Culture media was prepared using EMEM (Sigma-Aldrich, UK) supplemented with 1% L-

glutamine, 1% non-essential amminoacids and 10% fetal bovine serum (FBS) (Lonza, UK). 

Human osteosarcoma osteoblasts (MG-63) were defrosted and seeded in standard flasks. 

They were incubated in a 5% CO2 atmosphere at 37 °C. 

2.4.2. Cellular attachment and proliferation 

Scaffolds were placed in 24-multiwell plates and soaked in the culture media for 2 h waiting 

on cell seeding. When cells were approximately 70% confluent they were trypsinised and 

concentrated by centrifugation. 30 µL cell solution was pipetted onto each scaffold surface at 

2.3x104 cells/sample seeding density. Cells were let to adhere for 2 h and then scaffolds 
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were moved into a new multiwell plate and soaked with 1 ml of fresh medium. One scaffold 

per type was left unseeded. Wells of a 24-multiwell tissue culture plate (Nunc, Thermofisher 

Scientific, UK) were chosen as a positive control and were seeded with the same cell density. 

This 24-multiwell plate was chosen because the well’s diameter matched that of the 

scaffolds (16mm). Culture medium was changed once every two days. Experiments were 

performed in triplicate. 

2.4.3. Alamar Blue assay for cell viability 

Alamar blue solution was prepared by adding 10% Alamar blue dye (Life Technologies, UK) 

to the culture media to assess cell viability on days 1, 3 and 7. At each time point culture 

medium was removed from the scaffolds and control plates and replaced with the Alamar 

blue solution. Samples were incubated for 4 h at 37 °C and 5% CO2 atmosphere. Three 100 

µL samples were taken from each well and pipetted into a 96-multiwell plate. The change in 

Alamar blue hue was detected using a fluorescence (544 nm ex., 590 nm em.) microplate 

reader (LabTech, Germany, FLUOstar Omega, BMG). For cells seeded in the wells and on 

the scaffolds the (mean) signal of blanks (i.e. Alamar blue solution incubated with unseeded 

samples) was subtracted from the fluorescence values. In this way any effect of the alloy on 

the assay could be identified. 

2.4.4. Toluidine Blue assay for cell adhesion   

Toluidine blue active solution was prepared by diluting Toluidine blue dye (Sigma-Aldrich, 

UK) in 1% deionised water. After the Alamar blue test was concluded at day 7, scaffolds 

were washed in PBS twice or until removing any trace of Alamar blue solution. Scaffolds 

were submerged in the Toluidine solution, incubated for 10 min at room temperature and 

then soaked in PBS twice to remove excess of Toluidine solution. The scaffold surfaces 

were photographed with a metallographic optical microscope (Olympus, Japan, BX60M).  

2.4.5. Statistical analysis 
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Statistical analysis was performed using a two-way ANOVA with a Bonferroni correction 

post-hoc test. Differences at p<0.05 were considered statistically significant.  

 

3. Results  

The constituent elements, the powder after ball milling and after sintering were tested to 

identify the components in the sintered alloy (Figure 1). It can be observed in Figure 1d that 

the PCA (i.e. stearic acid) was completely removed from the mixing powders by the end of 

the ball milling process, so there was no organic contamination present in the powders. This 

was confirmed with a further CHN analysis. The results showed virtually no contamination 

(0 %C ±0.1% error, 0 %H ±0.1% error, 0 %N ±0.3% error) in all the samples. The 

transformation from hexagonal α-phase Ti into its cubic β-phase occurred during the 

sintering process due to the complete dissolution of the Nb and Sn elements into the β-

phase. Some α-phase Ti still remained, as can be seen in Figure 1e. This is thought to be 

due to the slow cooling rate in the sintering oven, which impeded the full retention of the β-

phase deriving in an α+β alloy formed. 

 

Figure 1: XRD patterns acquired from: constituent elements (a) Ti, (b) Nb and (c) Sn, (d) mixed 
powders after ball-milling for 12 h; (e) after sintering at 1100 °C for 3 h 
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SEM images were used to measure actual pore sizes (Figure 2). Samples fabricated with 

urea crystals in the range 180-300 µm presented pores of average values 257.44 µm by 

356.24 µm (standard deviation 71.84 and 93.99, respectively), and those in the range 300-

500µm, 348.39 µm by 489.78 µm (standard deviation 106.71 and 148.52, respectively. 

These results were confirmed with microCT studies and volumetric reconstructions (Figure 

3). 

 

Figure 2: SEM images of scaffold surfaces for 30 (a, b), 40 (c, d), 50 (e, f), 60 (g, h), 70 (i, j) % 
nominal porosity fraction in the two space-holder size ranges: 180-300 µm (a, c, e, g, i) and 300-500 

µm (b, d, f, h, j) and detailed pores (adjacent images). Scale bar: overall view 1mm; pore view 200 µm  
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Figure 3: MicroCT slice of nominal 30 (a, d), 50 (b, e) and 70 (c, f) % porosity with pore range 300-
500 µm and a corresponding reconstructed cube section of side 100 voxels. Scale bar 1 mm 

 

The mechanical properties obtained from the tests (i.e. modulus of elasticity in compression, 

E* and compressive strength at the end of the elastic region, σ*) were compiled along with 

the experimental values of density and apparent porosity (% vol) (Table 1). The density (ρ) 

was determined by the ratio of mass to volume and the apparent porosity as (1- ρ*/ ρs), 

being ρ* the density of a porous sample and ρs that of a non-porous sintered sample. The 

compressive elastic moduli were calculated from the linear region of the destructive tests 

stress-strain plots, and the maximum compressive strength was read as the yield strength 

obtained using the 0.2% offset approach. Figure 4 shows the relationship between 

compression elastic moduli and maximum compressive strengths. 
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Table 1: Results from scaffolds manufactured with a designed porosity and pore size to control mechanical properties 

Pore agent 
size 

Nominal 
porosity, 

%vol 

ρ*, 
g/cm3 
(SD) 

E*, MPa 
(SD) 

σ*, MPa 
(SD) 

Apparent 
porosity, 
%vol (SD) 

Linear regression (y=a•x+b), a, b, 
(R2) 

Power regression (y=a•xn), a, n, 
(R2) 

none 0 4.133 
(0.053) 

12280.87 
(109.119)  

164.960 
(8.845) inherent     

180-300 μm 

30 3.281 
(0.084) 

8629.87 
(978.64) 

140.053 
(31.031) 

20.982 
(2.013) 

E: 1.350, -0.368, 
(0.952) 
 
 
σ: 1.988, -0.7924, 
(0.962) 

E: 1.268, -0.313, 
(0.926) 
 
 
σ: 1.959, -0.749, 
(0.915) 

E: 1.192, 2.034, 
(0.916) 
 
 
σ: 1.815, 3.239, 
(0.974) 

E: 1.123, 1.829, 
(0.895) 
 
 
σ: 1.576, 2.808, 
(0.929) 

40 2.791 
(0.092) 

6138.13 
(1067.03) 

78.050 
(25.853) 

32.796 
(2.205) 

50 2.531 
(0.127) 

6277.37 
(610.43) 

65.797 
(13.874) 

39.950† 
(3.057) 

60 2.056 
(0.125) 

4108.77 
(1116.52) 

37.123 
(8.498) 

50.486 
(3.016) 

70 1.845 
(0.126) 

2399.20 
(297.11) 

19.48 
(4.001) 

57.600† 
(3.033) 

300-500 μm 

30 3.269 
(0.248) 

9300.87 
(934.91) 

155.390 
(19.225) 

23.500† 

(5.969) 

E: 1.229, -0.261, 
(0.921) 
 
 
σ: 1.929, -0.706, 
(0.891) 

E: 1.008, 1.659, 
(0.917) 
 
 
σ: 1.645, 3.043, 
(0.989) 

40 2.972 
(0.093) 

6721.07 
(476.72) 

101.060 
(15.050) 

28.422 
(2.242) 

50 2.499 
(0.102) 

5960.93 
(802.82) 

56.213 
(10.977) 

39.400† 

(2.448) 

60 2.101 
(0.245) 

5139.63 
(741.13) 

42.510 
(8.934) 

49.399 
(5.900) 

70 1.740 
(0.128) 

2796.13 
(1161.93) 

32.477 
(10.182) 

58.500† 

(3.075) 
† Confirmed with micro-CT results 
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Figure 4: Compression elastic modulus versus compressive strength at yield point; blue dots for pore 
size range 180-300 µm and orange for pore size range 300-500 µm; dot size is proportional to sample 

density 

The ratios elastic modulus of the porous sample (E*) to that of the solid sintered sample (Es) 

and compressive strength of the porous sample (σ*) to that of the solid sintered sample (σs) 

and the ratio of the porous sample density (ρ*) to that of the solid sintered sample (ρs) were 

calculated and plotted (Figure 5).  

 

 

Figure 5: Elastic modulus ratio versus density ratio (left) and compressive strength ratio versus 
density ratio (right): blue dots for pore size range 180-300 µm and orange for pore size range 300-500 

µm 
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Both a linear and a power relationship were studied between elastic modulus and density 

ratios. The results are listed in Table 1. Apparent porosity was measured by the ratio 

between the density of the porous scaffold and the density of the sintered sample with no 

incurred porosity. Results were confirmed via micro-CT studies. The set of results from the 

increasing strain test showed a higher elasticity for the samples with low nominal porosity 

and a low residual strain at the end of the final cycle can be observed (Figure 6). As porosity 

increased, the compressive stresses achieved were reduced for the same value of strain. 

Specimens of larger porosity and pore size presented a significant accumulated residual 

strain which indicated failure by microfracturing (Figure 6h and j).  
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Figure 6: Increasing strain cycling tests from 0% at 0.1% intervals until εmax (0.8% or until plastic 
deformation or microfracturing): nominal 30-70% porosity with pore range 180-300 µm (a, c, e, g, i) 

and 300-500 µm (b, d, f, h, j) 

Cell viability results via the Alamar blue assay are shown in Figure 7. Cells grown in the 

control wells showed a significant higher viability when compared to cells seeded on the 

scaffold at time point day 1. On day 3, although viability on control wells was larger than that 

on scaffolds, cells cultured on the scaffolds presented a two-fold proliferation rate compared 

to the control. No significant difference between the scaffolds was identified. On day 7 cell 

viability results surpassed the value of the control in all cases. All samples except 30 and 70% 

exhibited significant difference (p<0.05) with the control sample. Lower performance was 

detected for the (nominal) 30% scaffold compared to the other scaffolds, and (nominal) 70% 
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scaffold performed worse than (nominal) 40, 50 and 60% porosity scaffold (p<0.05). The 

(nominal) 50% scaffolds performed best on day 7.  

 

Figure 7: Viability of the osteoblasts evaluated with Alamar blue assay showing their adhesion to the 
substrates (4 h) and their proliferative capacity on days 1, 3 and 7. (*) denotes p<0.05  

 

Cell presence on the samples surface was assessed by the Toluidine blue test (Figure 8) 

and presented large blue-stained portions of their surface on the low porosity scaffolds, 

indicating cells growing on top of the scaffolds (Figure 8 a, b, d, e). Conversely, pore staining 

dominated in high porosity scaffolds (namely nominal 50, 60 and 70%) (Figure 8 h, k, n) 

leaving the surfaces with a similar hue of those scaffolds treated with toluidine blue but not 

seeded with cells (Figure 8 j, l, m and o). Figure 8h and Figure 8k show cell invasion into the 

pores (red arrows). Cells were difficult to observe with the microscope in scaffolds of nominal 

porosity 70% because of the short penetration distance of the light into the pores (Figure 8n). 

Generally (nominal) 50% scaffolds exhibited an intermediate performance between those of 

lower and higher porosities.   
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Figure 8: Toluidine blue assay results for cells cultured for 7 days. (a, d, g, j and m) show the surfaces 
of the scaffolds. Error bar 100 µm. (b, e, h k, and n) show the cells filter-highlighted. Error bar 200 µm. 

(c, f, I, l and o) show unseeded scaffolds. Error bar 100 µm. Rows 1-5 correspond to nominal 
porosities 30-70%, respectively 

4. Discussion 

In addition to using a namely “soft” TiNbSn alloy (i.e. Ti35Nb4Sn) for the manufacture of 

these scaffolds, the stiffness of the material was further decreased by introducing a 

volumetric porosity fraction. Both the porosity and the pore sizes were controlled with the 

presence of space-holders (i.e. urea) in different proportions and particle size range. Urea is 

a practical material as a space holder because it sublimates at approximately 133-135 °C 

during a calcination stage, unlike other space holders, e.g. NaCl, NaF or saccharose, which 
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require extra handling with dissolution in warm water for a number of hours. The voids left 

behind during calcination and the consolidated struts during sintering created the final 

porous architecture of the scaffold. The apparent porosity measured was lower than the 

theoretical nominal porosity which is explained by the presence of inherent closed porosity 

probably associated with the small pores present between partially densified green powders, 

which were of the size ≤45 μm. It was expected that pores would shrink during sintering 

leaving smaller spaces in the scaffold, however that effect did not occur. The expansion was 

even more pronounced in the smaller urea crystals range, exhibited by the larger-than-

expected dimensions of the pores at that range. It is suggested that the urea gas removal at 

calcination stage creates ‘chimneys’ for the gas to escape, enlarging in this way the existing 

cavities created.  

The values obtained for the elastic moduli (2.3 – 8.6 GPa) and the compressive strengths 

(19-155 MPa) match well to the data reported on trabecular bone, in particular those in 

anatomical locations where load-bearing bone grafting are typically performed (i.e. femoral 

heads and neck and proximal tibia). It is worth noting that comparisons to results obtained in 

other studies require caution because manufacturing processes may differ.  Once the 

disparity between different measuring techniques is taken into account [41], the porous 

scaffolds manufactured via arc melting [8], laser melting [2] or electrical induction heating 

applying a load while sintering [42], which reduces the intrinsic porosity, are bound to exhibit 

higher elastic properties than those reported here via a purely thermal sintering process. 

Comparable studies on β+α Ti-based alloys manufactured via powder metallurgy and the 

spaceholder/sintering route have reported similar results. For example, reported values of 

elastic modulus and compressive strength, respectively, in porous scaffolds were: Ti7.5Mo 

(61-67% porosity) 0.55 – 1.72 GPa and 8.51 – 25.02 MPa [19], Ti40Nb (36-80% porosity) 

1.5 – 3 GPa and 10 – 35 MPa [20], Ti6Al4V (43-64% porosity) 1.42 – 14.76 GPa and 28.2 – 

150 MPa [23], Ti24Nb4Zr8Sn (17.6-46.8% porosity) 1.54 – 6.66 GPa and 30-325 MPa [21],  
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Ti10Nb10Zr (porosity 59%) 5.6 GPa and 137 MPa [22], and TiNi (59-81% porosity), 0.5 – 9 

GPa and 5.8 – 93.2 MPa [24].      

Studies on the mechanical response to cyclic loading were conducted up to a 0.8% strain 

through a stepwise increasing regime. The physiological yield strain on trabecular bone has 

been shown to be independent from anatomical site but dependant on individuals (i.e. (0.55-

0.97%) [28] and more typically 0.7% [35]). Specimens of normal porosity 30%, 40% and 50% 

showed good performance although the maximum stress reached decreased and residual 

strain accumulated with an increasing volumetric porosity. Specimens of 70% nominal 

porosity could not withstand applied strains beyond 0.4% without undergoing plastic 

deformation or microfracturing observed during and after the tests (i.e. local ‘stepping’ in the 

stress-strain plots and cracking or crumbling of some walls).    

Theoretical research on porous materials provides correlations between porosity (or density) 

and mechanical properties of the porous materials with respect to those of the solid phase 

[43]. The main benefit offered by these relationships is the possibility of informing the design 

and manufacture of the porous scaffolds when specific strength and/or stiffness values are 

sought. In this way adjustable mechanical properties become feasible for the bioengineer. In 

this study properties of the non-porous sintered specimens have been considered to allow 

for a more representative ratio to the porous scaffold. With both manufactured through the 

same route and therefore inheriting the same continuum characteristics, they possess more 

in common than with an alloy fabricated through a very different approach (e.g. via casting). 

In [43], the elastic modulus is linked to the density through the following equation 
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The ratio between the elastic modulus of the porous specimen (E*) and that of the sintered, 

non-porous (Es) specimen is proportional to the relative density of the porous specimen (ρ*) 
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to the non-porous specimen (ρs), with constants c1 and n as material characteristics. In 

particular n is an index in the range 1-3, being 1 for axially loaded channels, 2 for open cells, 

and 3 for cells loaded transversally [43].  Table 1 shows the results when fitting to linear and 

power correlations. The n index was in the range (1.3-1.8) which is indicative of an 

interconnected porous structure with a dominant network of channels in an open architecture. 

These structures are desired in scaffolds because they promote osteoconduction of cells 

and vascularisation (i.e. formation and connection of new blood vessels). These results are 

in agreement with other studies on porous scaffolds [14, 44] and on bone specimens [28, 45]. 

More specifically the n index was (1.4-2.0) for the lower pore range and (1.2-1.6) for the 

larger pore range. This can be explained because, in addition to the creation of cavities per 

se, during the removal of space holders the material escaped from the solid creating 

channels, which are preferential paths when it comes to load transfer and liquid flow. The 

smaller pores presented a more tortuous architecture in which cell wall/strut bending 

dominates (n index closer to 2), and larger pores presented a less intricate open channel 

layout, ideal for flow and more favourable to axial deformations.  

The correlation between compressive elastic moduli and the ‘yield’ strength (i.e. the 

compressive strength displayed at the end of the elastic behaviour region) shows a power-

law correlation in which the strength reached a plateau at a rate of approx. ½ of the elastic 

modulus (i.e. E*= 58.188 (σ*)0.558, R2=0.856) instead of the expected linear correlation of an 

elastic behaviour under uniaxial compression, as per Hooke’s law. This indicates that the 

strength in the specimens was lower for the level of stiffness exhibited. This is further 

demonstrated when comparing the porous/non-porous ratio of compressive strength (σ*/σs) 

against the corresponding ratio for densities (ρ*/ρs). The power trend returned a better fit. As 

per [43],  
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The m index was in the range (1.9-2.8). Although this experimental range is in agreement 

with others’ work [44], m should have been 1.5 as in an open pore axially loaded structure 

behaving within a linear-elastic regime, in agreement with the elastic moduli and densities 

correlation. Power law correlations in trabecular bones have been found to report an m index 

in the range (1.49-2.18) [28, 35], which is lower than the values obtained in this study. This 

means that for the same E* obtained here there should be a corresponding stronger σ*. 

Weaknesses in the inter-particle surfaces (e.g. particle contamination by oxidation or other 

surface contaminant from the powder fabrication process (for instance C) would hinder 

effective particle bonding) are suspected to be the reason for the lower-than expected values 

for compressive strength given the levels of E*. As already reported by other authors, it is 

difficult to achieve low elastic modulus simultaneously with high mechanical strength via 

powder metallurgy and sintering.  

Specimens with a pore range 300-500 µm were selected for the in vitro studies because the 

effect of pore size on osteointegration has been widely reported and concluded that typically 

cells do not span directly across gaps of less than 200 µm [46], some indicated this is the 

lower threshold for in vivo osteoblasts proliferation [47], and gap lengths of approx. 400 µm 

have been reported as most favourable [48].   

In the viability study the cells seeded on the scaffolds for day 1 presented a lower 

fluorescence value, which is likely due to the low adherence onto the scaffolds at that time 

point. It was observed that some cells dropped from the scaffold to the bottom of the well 

after seeding. To avoid those cells’ contribution to the overall signal, scaffolds were moved 

to new empty plates after 2 h of seeding and prior to the Alamar blue test. The viability rate 

increased two-fold and three-fold for days 3 and 7 respectively, when compared to the 

control. The slow propagation rate at early stages has also been studied as a function of 
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locomotory parameters and the spatial distribution [49], which certainly affected the seeded 

cells in this study. This phenomenon can be explained by the low cell seeding density in 

which the cells required some time to activate physical contact signalling and after which 

they sustained standard exponential growth. This situation is thought to mimic in vivo 

implantation conditions and hence was preferred in this study. The (nominal) 50% porosity 

scaffolds present the highest levels of cell viability, with 30% being the lowest and 70% the 

second lowest (Figure 7). This result indicates that surface area, i.e. the true area created by 

the pores in the 3-dimensional space, is not the only driver at work when cells are 

proliferating and propagating. If that was the case, cell viability levels would correlate 

positively with apparent porosity (Table1). It appears as if in this case high levels of porosity 

(e.g. that measured in the nominal 70%: 58.500±3.075% vol, ref Table 1) are unfavourable 

to the attachment of the cells, which could be washed off the very porous scaffold. On the 

contrary, the lowest level of porosity (e.g. nominal 30%) exhibited the lowest level of cell 

viability, and incidentally it possessed the lowest surface area, cavity volume and also had 

the lowest value of measured apparent porosity (i.e. 23.500±5.969% vol, ref Table 1). An 

intermediate level of porosity (i.e. nominal 50%) offered a favourable macrostructure for the 

cells to proliferate and attach, with sufficient surface area and cavity volume for a high 

population to be reached by day 7 and an apparent porosity measured at 39.400±2.448% 

vol, to support neighbourhoods of cells penetrating into the structure without percolating 

through the structure and out of the scaffold.  This hypothesis is supported by the results 

from cell staining, as discussed next. From the Toluidine blue tests it can be concluded that 

cells grew on top of the scaffolds, mainly on 30 and 40% nominal porosity scaffolds (Figure 8 

a, b, d, e), and preferred to migrate into pores when porosity was higher (i.e. 50, 60, 70%) 

(Figure 8h). For the latter groups (i.e. higher porosity scaffolds) surfaces were found to be 

similar to those seeded with no cells (Figure 8 j, l, m and o), which reinforces the argument 

that the majority of cell growth took place inside of the pores.  This result agrees with other 

studies in which this porosity level is preferred for cell proliferation [50].  
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5. Conclusions 

A good scaffold needs appropriate mechanical properties paired with good biological 

performance to ensure long-term successful implantation. The impact of the porous structure 

(i.e. porosity and pore size) on the mechanical behaviour was studied. Their porosity fraction 

was in this case controlled independently from pore size. Elastic modulus and compressive 

strengths were within range of those reported for trabecular bone in load-bearing anatomical 

sites (e.g. femur head and neck and proximal tibia). Linear and power law correlations 

confirmed an open pore structure that exhibited a combination of cell wall/strut bending and 

axial deformations when subjected to compression, and similar architecture and behaviour to 

those of trabecular bones. Fitting parameters that correlated the elastic modulus and the 

compressive strength to the relative density were experimentally determined. This is an 

important aspect for both the design and manufacturing processes because it adds an extra 

feature of flexibility in the tailoring of successful bone grafts for a receiving patient. In this 

way scaffolds’ architecture can be designed by knowing the target values of the mechanical 

properties (i.e. those that match the host tissue).   

The effect of the porous structure (i.e. porosity and pore size range) on cell response in the 

low stiffness biocompatible titanium alloys was tested via in vitro assays. The specimens 

were assessed for biological viability of the material, i.e. cytotoxicity, and its suitability for cell 

growth, which was studied in terms of cell uptake (i.e. whether cells have an affinity for the 

surface or pores in the structure). The cytotoxicity study confirmed that no toxic material 

leached from the scaffolds. Adhesion results showed scaffolds of nominal porosity 50% and 

pore size in the range 300-500 µm as the most preferred architecture for cells that show an 

optimum viability value at the longest time point (i.e. 7 days) of the study.   
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