
 

 

 

 

 

Investigating the Feasibility of Solar Photovoltaic Systems in 

Kuwait 

 

By 

Abdulla Alrashidi 

Doctoral Thesis 

Submitted in partial fulfilment of the requirements for the award of 

Doctor of Philosophy of Loughborough University 

September 2017 

 

© Abdulla Alrashidi 2017 

 



       i 
 

Abstract 

This thesis presents work undertaken to investigate the feasibility of implementing solar 

photovoltaic (PV) systems in Kuwait. Performance parameters, environmental, and economic 

evaluations and assessments, as well as a numerical modelling study, were conducted as the 

main investigative elements to help judge the feasibility. The effect of using single-axis and 

dual-axis tracking systems was also considered. 

An assessment of the performance parameters of the proposed PV systems at selected 

locations in Kuwait was conducted on a monthly basis, using different tracking systems to 

compare the sites. Moreover, an annual basis analysis was carried out to compare the 

obtained results with those of different studies in the existing literature. An environmental 

assessment was conducted in the form of a Life Cycle Assessment (LCA), estimating the 

levels of greenhouse gas (GHG) emissions that could be avoided. An economic assessment of 

implementing the proposed PV systems at the selected locations, and a cost-benefit analysis 

were conducted. In addition, modelling of a two-axis solar tracker was performed to ensure 

the stability and reliability of the proposed solar tracker in Kuwait.  This was done using a 3D 

finite element model to examine the soil-structure interaction using COMSOL Multiphysics 

software. 

The results show that the performance parameters values obtained by implementing   single-

axis and dual-axis systems are very beneficial to the electricity generation in Kuwait. It was 

also found that using single-axis and dual-axis PV systems can increase the average annual 

production by 24.7% and 29%, respectively. The CO2 emission rates obtained in this study, 

which ranged between 46.38 and 56.94 g-CO2,eq/kWh, were within the range of the results 

obtained in previous studies. Moreover, a large amount of GHGs could be avoided by using 

such a technology.  Furthermore, it was found that utilising the proposed PV systems is 

economically viable compared with conventional power plants when the oil prices are equal 

to or more than $30 (£23) per barrel and a significant amount of oil barrels would be saved by 

using PV systems instead of conventional power plants. 

The modelling showed that the proposed PV solar tracker is stable under the wind design 

speed of Kuwait (40 m/s). The effect of wind speed should not be underestimated, especially 

when wind speed is high and the  solar tracker defence position strategy is need to be applied 

in order  to protect the structure from external forces caused by high wind speeds. 
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Overall, the obtained results of the performance parameters, environmental and economic 

evaluations were encouraging. The main conclusion of this work is that utilising PV systems 

to generate electricity as an alternative to conventional power plants in Kuwait would be 

beneficial. It was also found that the single-axis tracking system is the best choice for use in 

these systems. The implementation of solar PV systems in the State of Kuwait will be a 

significant step in terms of global contribution to increasing the use of renewable energy 

technology. 
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Nomenclature 

 

3D                 Three-Dimensional  

AC                    Alternating Current  

AM                     Air Mass  

ARR                 Accounting Rate of Return  

ASCE        American Society of Civil Engineers  

a-Si                    Amorphous Silicon  

ASTM        International Standards Organization  

BH              Borehole 

BOS                    Balance of System  

BP              British Petroleum 

BS              British Standards 

Btu       British thermal units 

c                Cohesion 

CdTe                  Cadmium Telluride  

CED                Cumulative Energy Demand  

CF                    Capacity Factor  

CFD              Computational Fluid Dynamics  

CIGS                 Copper Indium Gallium Diselenide  

CN                   China 

CO2                Carbon Dioxide 

CPV                  Concentrated Photovoltaic 

CRF               Capital Recovery Factor 

CSP                      Concentrated Solar Power  

DC                    Direct Current  

DHI                      Diffuse Horizontal Irradiance  

DNI                       Direct Normal Irradiance  



       iv 
 

E                Modulus of Elasticity  

 EAC              Energy produced by the PV system 

Enertech           Holding Company of energy in Kuwait 

EPA                   United States Environmental Protection Agency 

EPBT             Energy Payback Time  

EPIA                     European Photovoltaic Industry Association  

EYR              Energy Yield Ratio 

FEM               Finite Elements Method  

FFC                  Fossil Fuel Consumption  

FOS                Factor of Safety  

G                     Reference irradiation  

GCC        Gulf Cooperation Council  

GDP          Gross Domestic Product  

GHG                      Greenhouse Gas  

GHI                     Global Horizontal Irradiance  

GWEC                Global Wind Energy Council  

GWP                Global Warming Potential  

Ht                    Total solar irradiation  

i                     Interest rate 

I                   Importance factor 

ICERD             International Conference on Energy Research & Development  

IEA       International Energy Agency 

IEA-PVPS      International Energy Agency Photovoltaic Power System Programme  

IEEE                    Institute of Electrical and Electronics Engineers 

IRENA                 International Renewable Energy Agency 

ISO                     International Organization for Standardization 

Kd                Wind directionality factor  
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KISR                   Kuwait Institute for Scientific Research 

KPC                   Kuwait Petroleum Corporation 

Kz                 Velocity pressure exposure coefficient  

Kzt                Topographic factor  

LCA                 Life-Cycle Assessment  

LCOE               Levelized Cost of Energy  

MEW                  Ministry of Electricity and Water  

MG-Si             Metallurgical Grade Silicon  

MIGD             Million Imperial Gallons per Day 

MSF                       Multi-Stage Flash 

Mt                           Million tonnes 

n                    Project life 

NA                   Not Available 

NOx                Nitrogen Oxides 

NPV                 Net Present Value  

OM               Operations and Maintenance  

OECD              Organization for Economic Co-operation and Development 

Paci                     Public Authority for Civil Information  

PBT                  Payback Time  

PPV, rated             Rated output power of the used PV system  

PR                    Performance Ratio  

PV                      Photovoltaic  

PVsyst            Commercial software 

Qz                 Velocity pressure 

RE                          Renewable energy  

REN21                   Renewable Energy Policy Network for the 21st Century 

SAM              Solar Advisor Model  
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SC               Clayey sand 

SM             Silty sand 

SMA              Solar Energy Company in Germany 

SO2                 Sulfur Dioxide 

SoG-Si            Solar Grade Silicon  

SP               Poorly graded sand - USCS system 

SP-SM        Poorly graded silty sand - USCS system 

STC                Standard Test Conditions  

SW-SM      Well graded sand with silt 

TMY              Typical Meteorological Year  

UL                    Underwriters Laboratories  

UNFCCC         United Nations Framework Convention on Climate Change  

V                  Basic wind speed  

VLS-PV           Very Large-Scale Photovoltaic power generation  

YF                    Yield Factor  

YR                    Reference yield  

γ                 Unit Weight  

ν                 Poisson's Ratio  

ϕ               Angle of Internal Friction  
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Chapter 1 – Background 

1.1 Introduction 

In recent years, energy demand across the world has increased significantly. It is generally 

expected that global energy consumption will increase by 56% between 2010 and 2040, from 

524 quadrillion Btu (British thermal units) to 820 Btu, as a result of rapid and significant 

economic growth across the globe (U.S. Energy Information Agency, 2013). It is also 

expected by U.S. Energy Information Agency that by 2040, liquid fuels, natural gas, and coal 

will account for the largest percentage of the total energy consumed across the world (more 

than 75% of total energy consumption). Moreover, it is expected that the consumption of 

petroleum and liquid fuels will decrease by 34% from 2010 to 2040, as a result of high oil 

prices.   

A BP Statistical Review (2014) states that global energy demand will increase at an average 

of 1.5% a year until 2035, with stable development during this period – increases are 

expected at an average of 2% per year to 2020, and then by approximately 1.2% per year to 

2035. Moreover, the report states that 95% of this increase is anticipated to come from non-

OECD (Organization for Economic Co-operation and Development) economies, with China 

and India accounting for more than half of the growth by 2035. In addition, energy use in 

non-OECD economies is expected to be around 70% higher than in 2012. The BP Statistical 

Review also states that fossil fuels account for the highest percentage (87%) of the total 

resources used in energy production globally. Fossil fuels, such as oil and natural gas, which 

are one of the main causes of air pollution and global warming, represented approximately 

55.6% of fuels’ share of CO2 (carbon dioxide) emissions in 2012, as shown in Figure 1.1.  

Global CO2 emissions from fuel consumption were equal to 31734 Mt (million tonnes) in 

2012, an increase of 392 Mt (1.25%) from 2011; the OECD was responsible for the largest 

percentage, and Africa the smallest, at 38.3% and 3.3%, respectively (Figure 1.2). The 

increased amount of CO2 emissions, for which there is clear evidence from across the world, 

is a serious problem that must be dealt with carefully and effectively. CO2 is one of the main 

greenhouse gases in the atmosphere, and is emitted in large quantities by various human 

activities taking place on Earth. This gas, and other greenhouse gases (GHG), such as water 

vapour and ozone, play a vital role in help keeping the planet at a stable temperature. 

Recently, the increasing levels of CO2, particularly those resulting from burning fossil fuels 
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to generate electricity over the globe, are directly contributing to raising the temperature of 

the Earth by trapping the emitted heat in the atmosphere, a process that causes global 

warming. 

The Middle East, which includes the Gulf Cooperation Council (GCC) comprised of Bahrain, 

Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates, contributed 5.1% in 

2012, an increase of 0.1% from 2011 (Al-Khouri, 2012). In the last two decades, GCC 

countries have experienced rapid economic development, and a significant increase in 

population. Specifically, the population of GCC countries increased by 12,700,109 (37.57%) 

from 2005 (33,803,177) to 2010 (46,503,286) (Al-Khouri, 2012). 

 

 

 

 

 

 

Figure 1.1 2012  Fuel share of CO2 emissions (IEA, 2014) 
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As a result of the economic expansion, population growth, and high gross domestic product 

(GDP) values for these GCC countries, the demand for energy has increased remarkably. It 

was found that energy consumption in GCC countries increased by 74% during the period 

2000 to 2010, and is expected to increase again by 10-15 % between 2010 and 2020 

(Kinninmont, 2010). From Figure 1.3, it can be seen that the average energy consumption per 

capita in GCC countries is high, with Kuwait and Qatar showing the highest values. GCC 

countries are in possession of 40% of the world’s oil reserves, and 21.7% of its gas reserves 

(Bhutto et al., 2014). Table 1.1 lists the leading crude oil producing countries across the 

world, and Figure 1.4 presents the top proved oil reserves. 

 

 

 

 

 

Figure 1.2 2012 Regional share of CO2 emissions (IEA, 2014) 

Figure 1.3 Per capita primary energy consumption relative to population in GCC countries, and selected country 

comparisons. The bubble size indicates per capita fossil fuel consumption (Bhutto et al., 2014). 
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Rank Country Million Barrels per Day 

1 Russia 10.1 

2 Saudi Arabia 9.8 

3 United States 8.1 

4 China 4.2 

5 Canada 3.5 

6 Iraq 3.3 

7 Iran 3.3 

8 United Arab Emirates 2.8 

9 Kuwait 2.7 

10 Mexico 2.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.1 Leading crude oil producers, first quarter of 2014 (U.S Energy Administration, 2014) 

Figure 1.4 Top proved oil reserves, 2014 (U.S. Energy Administration, 2014) 
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GCC countries use conventional power plants to generate electricity, which mainly use oil 

and natural gas as the fuel source for production. Table 1.2 shows the percentages of natural 

gas and oil used in GCC countries. From the table, it is clear that Kuwait and Saudi Arabia 

are dependent on oil, whereas the other GCC countries are dependent on natural gas. In 2010, 

GCC countries were responsible for approximately 2.4% of global greenhouse gas emissions, 

and all the GCC countries fell within the top 25 countries in terms of carbon dioxide 

emissions per capita (Reiche, 2010). By 2013, this amount had increased to (2.8%). However, 

this level is considered low when compared with levels in other developing countries such as 

China (28.6%) and the United States (14.5%). However, the CO2 emissions per capita of 

GCC countries varies between 16.5 and 37.8 in metric tonnes per capita; these levels are high 

compared with other developing countries such as China (7.6  metric tonnes per capita) and 

the United States (16.4 metric tonnes per capita). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.2 Sources of energy for consumption in the GCC. (Benyahia, 2012) 

State Natural  gas Oil 

Bahrain 84.20 % 15.80 % 

Kuwait 37.40 % 62.60 % 

Oman 69.30 % 30.70 % 

Qatar 75.30 % 24.70 % 

K.S.A 37.60 % 62.40 % 

U.A.E                    

 
82.40 % 17.60 % 
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Figure 1.5 shows that total CO2 emissions increased by 632,818 Mt (Million metric tonnes) 

(178.84%) from 1990 to 2013. Figure 1.6 presents the CO2 emissions per capita of GCC 

countries, and some other selected countries (the United States, United Kingdom, Germany 

and China). Qatar and Kuwait – considered high per capita electricity consumers – have the 

highest CO2 emissions per capita which is attributed to the significant economic growth 

during the last decade supported by the high rates of GDP values and a relative high 

population density of these countries. All GCC countries are signatories of the United 

Nations Framework Convention on Climate Change (UNFCCC), and the Kyoto Protocol 

(Bhutto et al., 2014; Breidenich et al., 1998). The main objective of the Kyoto Protocol is to 

mandate national reductions in greenhouse gas emissions, as the effect of these types of 

agreements clearly manifest in many government policies around the world, encouraging 

investment in all types of renewable resources, and providing incentives for companies 

working in this field. For example, free tax and low interest rates are given to companies as 

incentives for investing in renewable energy. In addition, the large-scale consumption of 

natural resources threatens future generations in terms of the availability, or rather scarcity, of 

natural resources.  

As a result of the above, the need for renewable resources, such as wind and solar, is 

becoming a key concern for researchers and all stakeholders. Renewable energy (RE), which 

is clean and sustainable, is becoming a worthy target and a key goal. In other words, due to 

the need for energy security, the impact of fossil fuel emissions on the environment, and 

fluctuating and high world oil prices, there is significant global interest in renewable energy. 

In addition, most countries, are primarily aiming to begin moving towards the use of 

renewable resources instead of conventional energy sources. 

From another perspective, using renewable energy to achieve energy diversity will help to 

support any future plans related to economic development, and will increase the range of 

options open to the government in the future.  
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Figure 1.5 CO2 total emissions in GCC countries (1990 and 2013). (Data taken from World Development 

Indicators, 2017) 

 

Figure 1.6 CO2 emissions per capita of GCC countries and selected countries. (Data ken from World 

Development Indicators, 2017) 
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Current predictions about how long the Earth’s fossil fuel reserves will last are a subject of 

intense discussion, as such fuels are considered finite resources. In other words, if the 

quantities of fossil fuel were precisely estimated and the anticipated rate of consumption 

estimated fairly, then the time fossil fuels will last could then be effectively approximated. 

However, the estimations regarding the continued availability of fossil fuels are implicitly 

dependent on several complex factors, such as demand and the price of fossil fuels. 

Moreover, the shale oil revolution, which allows oil to be extracted from low permeability 

rock formations, is an important new parameter that should be considered when estimating 

the timeframe in which fossil fuels are likely to run out. According to BP’s annual report 

(2014), the proven global oil reserves are approximately equal to 1.688 trillion barrels of 

crude oil, which represents a 53.3 year supply assuming current rates of extraction and 

consumption. 

It is crucial to reemphasise here that fossil fuels, such as oil and natural gas are finite natural 

resources. It is this fact that is one of the primary drivers for the development of sources of 

renewable energy.  

From Table 1.3, it is clear that Saudi Arabia and Kuwait have the highest solar power values, 

due to the long duration of sunshine they experience, which is an excellent indication of the 

applicability of using solar energy. The use of renewable energy and nuclear power is 

increasing at a fast rate, and it is estimated that approximately 11% of the world’s marketed 

energy consumption is currently derived from renewable energy sources (biofuels, biomass, 

geothermal, hydropower, solar and wind), which is expected to rise to approximately 15% by 

2040 (U.S. Energy Information Administration, 2014). In addition to GCC countries 

possessing the largest amount of natural resources (natural gas and oil), they also benefit 

from a large amount of renewable energy, due to their geographical positioning. The potential 

for renewable energy in GCC countries is thus tremendous, particularly solar energy, as every 

year, each square kilometre of land receives a high amount of solar energy (approximately 

500-600 W/m
2
) (Alnaser and Alnaser, 2011).  

 

 

 

 



9 
 

Country 
Solar energy 

(Wh/m
2
) 

Sunshine duration 

(h) 
Solar power 

(W/m
2
) 

Wind power 

(W/m
2
) 

Solar/wind 

Bahrain 5180 9.2 563 78 7.2 

Saudi Arabia 5670 8.7 683 71 9.6 

Kuwait 5990 8.9 673 140 4.8 

Qatar 5260 9.3 565 85 6.6 

UAE 5078 8.8 577 57 10.1 

Oman 5410 9.6 564 141 4 

 

In order to satisfy the substantial energy demand increases (due to the increasing population, 

and rates of economic and social development), GCC countries are keen to invest in 

renewable energy (El-katiri and Husain, 2014). They have created a road map with a 

timescale in order to measure their progress in implementing and achieving pre-specified 

targets (Table 1.4).  

From the table, it is clear that Saudi Arabia is planning to use 50% renewable energy in 

electricity generation by 2032, through harnessing different types of renewable energy, such 

as solar, wind, and geothermal energy, while the other GCC countries are focusing on solar 

and wind energy, and intend to be generating approximately 5-15% of their electricity this 

way by 2030. 

It is clear that the GCC countries are late in terms of using renewable energy technologies 

and that is due to the high dependency on oil and natural gas as the basic source of the 

countries income. In addition, the high cost of renewable energy projects for electricity 

generation compared with conventional power plants. 

A summary of existing renewable energy projects in the GCC countries is listed in Table 1.5. 

It can be seen that most GCC countries are focussing on solar and wind energy, due to the 

lack of specialist people in renewable energy technologies as well as no clear support from 

governments to the companies in the private sector, in other words, there is no serious 

support from governments in these countries which have a vital role in the private sector. 

Table 1.3 Solar versus wind power in Arabian Gulf countries (W/m
2
) (Alnaser and Alnaser, 2011). 
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Encouragement and support is therefore needed in order to attract people and companies to 

invest in renewable energy technologies. 

It is apparent from Table 1.5 that Saudi Arabia and the United Arabic Emirates are having 

relatively better experiences than other GCC countries in terms of the capacity to exploit and 

implement different renewable energy generation. However, it is apparent that the focus in 

GCC countries is currently on solar and wind energy. This can be explained according to the 

basic mechanisms involved in applying these types of technologies and, as stated above, the 

geographical positioning, which gives them greater opportunities to benefit from high solar 

irradiation. Moreover, the extraordinary decline in the price of PV systems is another 

important factor to consider when comparing solar photovoltaic technology and other 

renewable technologies. 

Table 1.4 Renewable Energy Targets in GCC States (Modified from El-katiri and Husain, 2014) 

Country Renewable Energy Targets 

Bahrain 5% by 2020 

Kuwait 
1% of electricity generation by 2015; 10% by 2020; 15% by 2030 of the country 

electricity demand. 

Oman 10% of electricity generation by 2020 

Qatar At least 2% of electricity generated from solar energy sources by 2020 

Saudi Arabia 

50% of electricity from non-hydrocarbon resources by 2032: 54GW from 

renewables (of which: 41GW from PV and CSP, 9GW wind, 3GW waste-to-

energy, 1GW geothermal), 17.6GW from nuclear. 

UAE 
Dubai: 5% of electricity by 2030 

  Abu Dhabi: 7 % of electricity generation capacity by 2020 
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Existing 

projects 
 

Saudi Arabia  In 2010, Realization of 10 MW of the King Abdullah Initiative for desalination 

plant using solar-generated energy resulted in two solar plants in Al-Khafji and Al-

Oyainah. 

 In 2011, commissioning of 500 kW pilot solar plant by the Saudi Electricity 

Company on the Farasan Islands, which is expandable to 6-8 MW. 

 In 2012, Commissioning of a solar thermal plant in an area of about 36,300 m
2
, in 

addition to the Saudi Aramco King Abdullah Petroleum Studies and Research 

Center (KAPSARC) solar park in Riyadh expanded from 3.5 MW to 5.3  MW. 

United Arabic 

Emirates 
 Installation of 10 MW PV plant at Masdar City in Abu Dhabi. 

 4 small-scale solar PV projects: 1 MW rooftop installation on the Masdar Institute; 

291 kW PV array at the Yas Marina circuit; 204 kW PV parking shade at Masdar 

City; and 200 kW mounted on the Presidential Sea Palace rooftop. 

 100 MW Shams 1 CSP plant, located in Madinat Zayed in Abu  Dhabi, extended 

over an area of  2.5 km 

 Solar PV in Al Qarneed Island (0.75 MW) and Marawah Island (0.49 MW). 

 The first wind project in the GCC under construction in Sir Bani Yas Island of 30 

MW capacity and will be connected to the Abu Dhabi power grid to supply 10% of 

Dubai’s electricity needs. 

 The first geothermal project in Masdar City with two wells being drilled. 

Qatar  Solar testing facility located at Qatar Science and Technology Park (QSTP)  in 

order to work on studies about solar power, air conditioning and lighting 

technologies suited to Qatar’s  buildings and climate. 

 Tarsheed campaign organized by Qatar General Electricity & Water Corporation 

(KAHRAMAA) to reduce electricity consumption. The new laws require the 

installation of water and electricity meters in all new buildings, as well as 

improving the minimum standards fir insulation in the buildings. 

 Opening of Qatar Solar Energy (QSE) in 2014 one of the largest vertically 

integrated PV module production facilities in the Middle East and North Africa 

(MENA) region. The 300 MW facility, located in the Doha industrial zone of 

Qatar, is one of the steps to achieve the goals of Qatar National Vision 2030. 

Kuwait R&D RE demonstration projects in solar pond, passive heating and cooling and PV were 

implemented before the Gulf War 1990. Among the current implemented projects, were: 

 Two projects on solar cooling. 

 Numerous PV systems in street lighting, traffic signs, and communication. 

 Thermal energy storage project to be used during peak load. 

 151 kW installed solar power capacity. 

Bahrain  In 2007, installation of two 225 kW wind turbines at the Bahrain World Trade 

Centre providing an estimated 11-15% of the building’s electricity needs. 

 In 2012, launching of a 5 MW solar PV project with a joint venture between 

BAPCO, NOGA and two U.S.-based firms, Caspian Energy Holdings and Petra 

Solar. 

 Two mobile solar plants produced by  the University of Bahrain’s engineering  

faculty, one for  desalination of water, and a 1.4 kW/100 W hybrid solar/wind 

power generation system, as well as an experimental solar water heating system. A 

solar water heating system installed at Aluminium Bahrain. 

 A solar panel factory in Bahrain in co-operation with a Dutch company. 

Oman  In 2011, award of 7 MW solar thermal project to Glass Point Solar by  Petroleum 

Development Oman, which aims to produce 11 tons/h of  high pressure steam that 

will be used to extract 33,000 barrels of oil  and to provide 24 h heating. 

Table 1.5 Summary of existing renewable energy projects in the GCC countries (Abdmouleh et al., 2015) 
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In addition, clear and flexible regulations will facilitate the processes of such types of 

projects in terms of time and cost which are the most important criteria which taken into 

account for the investors. 

The primary aim of this study is to investigate the feasibility of using solar photovoltaic 

systems (PV) in Kuwait. The study will cover all of the allowed not-military/non-restricted 

sites in Kuwait, including the six Kuwaiti governorates (Al-Asimah, Al-Ahmadi, Al-

Farwaniyah, Al-Jahrah, Hawalli, and Mubarak al-Kabir). In order to reuse the sites, which 

cannot be used for construction purposes in their natural conditions, the study will include 

landfill sites. 

The strategy for selecting sites had to account for Kuwaiti laws, which prevent working in 

certain places for various reasons. For example, there are sites dedicated to the Ministry of 

Oil and the Ministry of Defence. In addition, the solar intensity values of different areas in 

Kuwait needed to be taken into account, as the study will investigate the effects of 

environmental and climatic conditions on the efficiency of photovoltaic (PV) systems. 

Although some research has already been carried out in Kuwait and GCC countries on 

photovoltaic (PV) energy, no study has yet investigated and analysed the effects of external 

loads on both the ground (soil layers) and solar tracker. The effects of using different tracking 

systems (fixed, single-axis, and dual-axis tracking systems) will also be investigated as the 

effects of using these types of solar trackers have not been examined in the GCC countries 

and particularly in Kuwait. The effect of using single-axis and dual axis tracking systems will 

be investigated in this thesis by means of the performance parameters, environmental and 

economic evaluation studies. 
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1.2 Location and Climate of Kuwait 

Kuwait is a GCC country located in the Middle East, and has a population of approximately 

3.96 million (Kuwaitis represent 1.24 million (31%)) (Public Authority for Civil Information 

(Paci), 2015). The country is situated in the north-western region of the Arabian Gulf. Some 

studies refer the Gulf as the Persian Gulf. In this research, it will be considered as the Arabian 

Gulf, and it is surrounded by Iraq on its north-west borders, and Saudi Arabia on its south and 

south-west borders. Kuwait lies between a latitude 28.30
◦
 and 30.05

◦
 of the North, and a 

longitude 46.33
◦
 and 48.30

◦
 of the East (Figure 1.7). The total area of Kuwait is around 

17,600 square kilometres. It has nine islands: Failaka, Bubiyan, Miskan, Warbah, Auhah, 

Umm al Maradim, Umm an Namil, Kubbar, and Qaruh. 

Due to its geographical location, Kuwait is characterised by a hot and arid desert climate. The 

temperature is within the range of 25
◦
C to 45

◦
C in the summer (May - September) and 3

◦
C to 

18
◦
C in the winter (October - April); the extreme temperatures measured in summer and 

winter are 53
◦
c and -3

◦
c, respectively. The average annual total rainfall is around 118mm, and 

the minimum and maximum measured values are 25mm and 336mm, respectively (KISR, 

2015). The main wind direction in Kuwait is north-westerly, with winds blowing from this 

direction for around 60% of the year. North-western winds come from the desert regions of 

Syria, Jordan, and Iraq before reaching Kuwait, and are characterised as hot and dry during 

the summer. The south-eastern winds are usually responsible for the extreme dust storms 

experienced in the region, which can significantly decrease visibility. 

Dust storms are considered one of the main characteristics of the climate in Kuwait; they are 

expected to occur because of low topographic relief, scanty vegetation, light-textured topsoil, 

and recurring strong and turbulent winds (Al-dousari and Al-awadhi, 2012). Figure 1.8 shows 

the monthly average number of dust storm days in Kuwait between 2000 and 2010 and it is 

clear that dust storms occur more frequently between April and August. The efficiency of the 

solar modules is highly affected by dust particles as the accumulated dust particles will 

directly influence the amounts of received solar irradiation. 

The ground in Kuwait slopes gradually from sea level in the east of the Arabian Gulf 

coastline to the west and south-west. The elevation of the south-western corner reaches 300 

metres above sea level. 
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 Figure 1.7 Map of Kuwait (The University of Texas at Austin, 2014) 

Figure 1.8 Average number of dust storm days per month in Kuwait (2000-2010) (Al-dousari and 

Al-awadhi, 2012) 
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1.3 Electricity Demand in Kuwait 

Kuwait is one of the biggest oil producers in the world, and has the largest amount of oil 

reserves which is approximately equal to 102 billion barrels (U.S. Energy Administration, 

2014). The main two resources used to generate electricity in Kuwaiti power plants are oil 

and natural gas. In Kuwait, the Ministry of Electricity and Water (MEW) is responsible for 

producing, transmitting, and distributing electricity and water. The electricity generation 

plants depend on both of these resources, which are controlled by the Kuwait Petroleum 

Corporation (KPC), which is responsible for preparing and outfitting oil to the electricity 

generation plants. The generation technologies used are based on 55% reheated steam, 20% 

non-reheated steam, and 25% open cycle gas turbines (Wood and Alsayegh, 2014). 

One of the most important needs in Kuwaiti daily life is water, which is not readily available 

in terms of natural resources. Kuwait is classified as a poor country in terms of the 

availability of natural water resources, ranking 180
th

 in the world (Darwish et al., 2008). The 

main water resources in Kuwait are fresh and brackish groundwater, desalinated seawater, 

and treated wastewater.  

Wastewater is treated in wastewater plants in Kuwait, and approximately 40% of the treated 

water is reclaimed and used for irrigation, while the rest is discharged into the sea (Hamoda, 

2001). The country is largely dependent on desalinated water; its desalination capacity is 

about 450 MIGD (million imperial gallons per day) using a multi-stage flash (MSF) system 

to produce steam that drives electric generators (Wood and Alsayegh, 2014).  

The demand for electricity is increasing at a significant rate in Kuwait, especially over the 

last decade, which can be seen from Figure 1.9. The percentage increase in electricity 

consumption from 2006 to 2015 was approximately 43%, which is considered a significant 

increase over a relatively short period. The rate of electricity consumption in Kuwait varies 

throughout the year; in the summer (from May to September), electricity consumption 

reaches high levels, approximately double that of winter. Figure 1.10 shows the typical load 

profile of electricity consumption in Kuwait.  

According to the latest projection profile of electricity and water demand (Figure 1.11) 

produced by the Ministry of Electricity and Water (MEW), there will be an approximately 

230% increase (from a 2014 load of approximately 12 GW, to 28 GW in 2030), due to the 
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expected additional loads of new residential, infrastructure, and industrial projects (Wood and 

Alsayegh, 2014).  

In conclusion, a continuous increase in electricity consumption and predicted electricity 

demands has led Kuwait to reach a critical situation, the resolution of which must be carefully 

approached. 

 

Figure 1.9 Total electricity consumption in Kuwait from 2006 to 2015 (data taken from BP Statistical Review, 

2017) 
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Figure 1.10 Typical load profile in Kuwait (example of 2008 load profile) (Wood and Alsayegh, 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11 Projection profile of electricity and water demand in Kuwait (Wood and Alsayegh, 2014). 

 

 

 

 

 

 



18 
 

1.4 Current State of Renewable Energy in Kuwait 

As stated in the background chapter, the continuing high energy demand, specifically in 

terms of electricity consumption, will soon lead the country to a critical situation. In order to 

satisfy the high demand of electricity, Kuwait will face significant challenges in terms of 

economic and environment issues.  

The decision taken by the Kuwaiti government to be generating 15% of its total electricity 

need from renewable sources by 2030 is an extremely important step, and provides a 

benchmark and time scale for the future of renewable energy use in Kuwait. In addition to oil 

and natural gas, it has been identified that Gulf countries, including Kuwait, also have access 

to renewable, sources such as wind and solar (El-katiri, 2014). It should be highlighted here 

that the geographical location of Kuwait means it has high potential to take advantage of free 

and clean energy resources, such as wind and solar energy. As stated in the background and 

introduction, the high amounts of solar irradiation and the relatively long daylight hours 

encourage the implementation of solar energy. Likewise, the high wind speed, especially in 

desert areas, is another important factor that supports the use of wind energy in Kuwait. 

As the suggestion to implement renewable energy in Kuwait is a relatively new one, wind 

and solar energy are the predominant energy resources currently under discussion, and other 

renewable energy sources, such as geothermal energy, have not yet been properly evaluated. 

This can be observed from the lack of relevant research and literature in these fields, where 

most of the research that has been conducted in Kuwait focuses only on solar and wind 

energy. Currently, this can be attributed to the lack of experience and basic information and 

data available on renewable energies in Kuwait, as stakeholders have hitherto been 

uninterested and discouraging of the renewable energy field. Table 1.6 lists the installed and 

upcoming RE projects in Kuwait; it can be seen that the focus is on implementing solar and 

wind technologies. It can be obversed also that the Shagaya Energy Park is considered as the 

most important projects as it include different solar and wind energy and is set to be 

constructed in two phases, in which the first phase a 70 MW capacity will be done and at the 

second phase a 2000 MW capacity will be reached in 2030.  

Al Abdaliya Solar Plant is considered one of the most important RE projects in Kuwait and 

the GCC countries as it is aimed at applying concentrated solar photovoltaic (CPV) 

technology, which is considered the most advanced solar technology. However, this project 

has encountered many problems that have obstructed its implementation. The project has 
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been postponed many times, and a new bid date is expected to be announced (Thienpont, 

2017). 

In fact, any installed and upcoming projects are based on relatively old plans, designed to 

enhance the use of renewable energy in Kuwait. For this reason they do not satisfy the 

minimum requirements for implementing efficient RE projects. For example, these projects 

do not include the use of tracking systems, which will have a significant effect on the 

amounts of electricity produced and the amount of GHG emissions avoided, as will be seen in 

Chapters 4 and 5. In addition, the use of tracking systems will have a direct impact on the 

cost of the project, as will be shown in Chapter 6. 

On the other hand, the majority of the installed and upcoming projects were conducted based 

on relatively weak feasibility studies, which did not take into account accurate metrological 

data in Kuwait. This can be attributed to the lack of information and a related database 

detailing these technologies. One of the advantages of this research is that it will serve as a 

solid reference point for any future works concerning RE energy in Kuwait. 

Table 1.6 Installed and upcoming RE projects in Kuwait 

Project Energy type Location Capacity Status 

Salmi Mini-Wind Farm 

 
Wind 

Salmi (West of Kuwait 

City) 
2.4 MW Completed in 2013 

Shagaya Energy Park 

(Phase 1) 

Wind, solar 

(thermal and 

photovoltaic) 

Shagaya  70 MW Completed in 2016 

Shagaya Energy Park 

(Phase 2) 

Wind, solar 

(thermal and 

photovoltaic) 

Shagaya  1000 MW 
Expected to 

complete by 2020 

Shagaya Energy Park 

(Phase 3) 

Wind, solar 

(thermal and 

photovoltaic) 

Shagaya  2000 MW 
Expected to 

complete by 2030 

Al Abdaliya Solar Plant 
Concentrated 

Solar Power  

Al Abdaliya desert, 

south west Kabad region 
280 MW Postponed
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1.5 Problem Statement and Proposed Solution 

Kuwait, which is considered a rich country, has an economy that is mainly dependent on oil 

export revenues. Gross domestic product (GDP) and export revenues represent approximately 

60% and 94%, respectively, of the nation’s total annual budget (EIA, 2014). As stated in the 

background and introduction to this chapter, the high increase in demand for electricity has 

been largely due to social and economic development, rapid population growth, and a high 

value gross domestic product (GDP). These factors are the primary reasons for the high 

electricity consumption rates in Kuwait and other GCC countries.  In Kuwait, frequent 

electrical blackouts during the summer months is a key challenge facing the government. The 

Kuwaiti government is under significant pressure from parliament to resolve this issue, 

because the Ministry of Electricity and Water (MEW) is the sole utility provider responsible 

for the generation and distribution of electrical power in the country.  

It is generally believed that constructing more new conventional power plants is not an 

appropriate way to overcome the problems in Kuwait, due to the significant variation in 

electrical demand between summer and winter, which is estimated as 50% and 60% (Al-

Otaibi et al., 2015). In addition, constructing new conventional electricity plants will place a 

huge strain on the national budget, as well as generating environmental pollutants in the form 

of increased CO2 emissions. International community pressure, represented by the United 

Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol, is 

another factor that must be taken into account. As a result, seeking a renewable energy source 

has become an essential task for the nation. The preference of the Kuwait government is 

towards using renewable energy, and this was announced by the Amir of Kuwait, Sheikh 

Sabah Al Ahmad Al Sabah, at the United Nations 18th Conference for Climate Change in 

2012. He stated that 15% of the total energy generated in Kuwait will be derived from 

renewable energy sources by the end of 2030.  

Finally, in terms of the diversity of energy sources, seeking alternative sources is a key 

strategic move for any successful country in order to preserve their natural resources, such as 

oil, for future generations, and to benefit from these resources in light of the high price of oil, 

instead of using them to generate electricity whilst there are alternative options available, 

such as wind and solar energy.  

Solar photovoltaic energy was chosen as the renewable energy source to be examined in this 

study because Kuwait has a high solar energy potential. Kuwait has approximately nine hours 
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of sunshine a day, on average, and annual solar irradiation of approximately 2100 

kW/m
2
/year (Ramadhan and Naseeb, 2011). This value is excellent when compared with 

other leading countries in solar technology such as Germany (1040 kW/m
2
/year) 

(Sonnenenergie, 2008). The low levels of rainfall and cloud cover, as well as the large area of 

uninhabited desert, are also important factors affecting the use of solar photovoltaic systems. 

In addition, the significant price declination in PV system components, and in particular the 

solar modules, which represent approximately 60% of the total system cost (Feldman et al., 

2012), will increase the success chances of such projects.  

Solar photovoltaic energy is based on a simple mechanism that converts sunlight into 

electricity using solar cells; it is a promising energy source across the globe, as it is 

dependent on a free, clean, and sustainable fuel: sunlight. The proposed solution to the stated 

problems is to use solar photovoltaic systems as an alternative source of electricity generation 

in Kuwait, in order to satisfy the increased demand for electricity instead of constructing 

more conventional plants.  

Utilisation of solar photovoltaic systems is likely to result in many economic and 

environmental benefits for the country, including: 

 Reduced pressure on limited resources (oil and natural gas). 

 Avoiding dependency on certain sources of energy. 

 Reduced air pollution resulting from burning oil or natural gas to generate electricity 

in conventional power plants. 

 Taking advantage of high oil prices by selling oil instead of using it in power plants to 

generate electricity. 

 Exploitation of high solar irradiation and climate conditions in Kuwait. 

 Using sites that are unsuitable for building, such as landfills. 

 Economic opportunities to invest in clean and free energy. 
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If the proposed implementation proves successful, then it will contribute significantly to 

understanding the feasibility of utilising photovoltaic (PV) energy in Kuwait, not only from 

an economic perspective, but from an engineering perspective, by considering the ground 

(soil) and its behaviour under specific loads (wind and solar structure).  

In terms of sustainability of land use, the sites which cannot be used for construction is 

another important issue; the efficient use of the sites will play an important role in preserving 

different areas for other works. For example, the reuse of landfill sites to generate renewable 

energy will enable other areas to be used for construction purposes, which is particularly 

important for Kuwait, which has a rapidly growing population rate (3.3%) and a remarkable 

increase in housing demand (Alotaibi, 2011).  

In addition, in Kuwait and other GCC countries there will be a solid base of relevant and 

detailed information, which will provide a valuable reference for decision-makers and 

researchers. This can then be used to better understand the applications of solar energy, as 

well as providing the results for loads following the installation of photovoltaic systems, such 

as for the mounting structure and solar modules. 

1.6 Research Aim and Objectives  

The aim of this research is to assess the feasibility of using solar photovoltaic (PV) systems in 

Kuwait as a promising renewable energy source.  

In order to achieve this, the following objectives have been set:  

1. To review the state of photovoltaic (PV) energy in the Middle East, particularly in 

GCC countries (with a particular focus on Kuwait).  

2. To assess & investigate the performance parameters of the proposed PV systems. 

3. To assess the economic effects & benefits of PV systems. 

4. To assess the impact of the PV systems on the environment. 

5. To ensure the proposed PV systems is structurally safe under different surrounding 

loads and surrounding conditions. 

6. To make recommendations regarding the feasibility of photovoltaic (PV) energy 

generation and use in Kuwait. 
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1.7 Organisation of the Thesis 

In this thesis, the detailed work carried out for the study will be presented in eight chapters. 

The current chapter has provided detailed background information on the need for renewable 

energy in the world, and in particular in GCC countries and Kuwait. The rationale for the 

research and background details has been presented. The problem to be addressed has been 

identified, and the proposed solution outlined. The study aim and objectives have been 

delineated, and the forthcoming contents of this thesis presented. The nature of the electricity 

demand in Kuwait and the main problems related to the use of fossil fuels, as well as the 

proposed solution (PV) and its expected impacts have been outlined.  

Chapter two will review the common renewable energy sources, and introduce previous 

studies of solar photovoltaic energy, including a discussion of the most common evaluation 

criteria used in feasibility studies of solar photovoltaic energy.  

Chapter three will describe the methodology used in this research. It will explain the strategic 

methods that have been implemented in the site selection process, and the data acquisition 

phase. The main feasibility elements (performance, environmental, and economic, as well as 

numerical modelling) considered in this research will be presented. 

Chapter four will focus on a performance parameters evaluation of the proposed PV systems 

in Kuwait. The results obtained will then be presented and discussed in detail. 

Chapter five will consist of an environmental evaluation study, including a Life Cycle 

Assessment (LCA) as well as an explanation of the environmental benefits of utilising PV 

systems in Kuwait. 

An economic evaluation of using PV systems in Kuwait will be presented in Chapter six. An 

economic assessment, cost-benefit analysis, and the cost of the CO2 saved by implementing 

PV systems in Kuwait will be presented and discussed in this chapter. 

Chapter seven will describe the numerical modelling of the proposed solar tracker. The 

analysis and discussion of the results will be presented in this chapter. 

Finally, the conclusions drawn from the study findings, and recommendations for further 

research will be given in Chapter eight. 
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Chapter 2 – Literature Review 

2.1 Introduction 

This chapter talks about renewable energy, explaining why its use is increasingly being 

considered essential. It also identifies the most common types of renewable energy: wind, 

hydro, geothermal, biomass, and solar in Section 2.2. A review of photovoltaic (PV) 

technology & research in this area is conducted in section 2.3, providing information about 

the PV system, modules, inverter and balance of system (BOS). Section 2.4 presents previous 

work on photovoltaic System in the Middle East. The commonly used evaluation indices in 

implementing PV Systems are introduced in Section 2.5. The conclusions are presented in 

Section 2.6. 

2.2 Renewable Energy 

Renewable energy resources are required to effectively deal with high global energy demand. 

This demand is a result of fast population growth and economic development, as well as 

increased greenhouse emissions, which are caused by a high consumption of fossil fuels. 

Furthermore, renewable energy is considered a clean, free, and sustainable part of a country’s 

energy policy. 

In the 1990s, there were significant changes in energy policy worldwide due to economic, 

environmental, security, and social concerns, as well as energy regulation. These changes 

greatly contributed to encouraging the use of renewable energy sources (Beck et al., 2004). 

Renewable energy is expected to play a major role in providing sustainable energy to the 

large numbers of people in developing countries who have no current capacity to utilize clean 

energy (Painuly, 2001). Moreover, renewable energy such as solar and wind can be used as 

important alternatives to fossil fuels, to overcome environmental problems (Komor, 2004). 

The use of renewable energy is growing remarkably. In 2010, around 16.6% of the world’s 

total energy consumption was derived from renewable energy sources. This represents an 

increase of 22% between 2000 and 2010, and a further increase by more than 42% is 

expected during the period 2010 to 2020 (Panwar et al., 2011). Three of the world’s leading 

countries responsible for renewable energy generation are Denmark, Germany, and the 

United Kingdom. These countries provide a good example of the policy design and are 
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responsible for the proper use of regulations, which play an important role in achieving 

successful goals (Lipp, 2007).  

Renewable technologies differ in terms of economic feasibility and technical use, and they 

are highly dependent on the environment and the location in which they are to be 

implemented (Gross et al., 2003). The most common renewable energies, such as wind, 

hydro, geothermal, biomass, and solar, are presented in the next section. 

2.2.1 Wind Energy  

Wind is a renewable energy source that is used to generate electricity. Turbines harness 

power from the wind by converting kinetic energy into mechanical energy. The wind power 

market has increased yearly by an average of 28% from 2001 to 2011 (Zhao et al., 2013). At 

the end of 2016, the entire installed wind power capacity was 12.49% higher than at the close 

of 2015. In 2016, more than 90 countries used wind power, and global annual installed wind 

capacity was more than 54.600 MW at the close of 2016 (Global Wind Energy Council 

(GWEC), 2016). 

According to the GWEC, almost 486.75 GW of installed wind capacity is located in Asia, 

whereas Europe had 161.33 GW and North America had 97.61 GW of wind power installed 

at the end of 2016. Global wind power capacities have been calculated as follows: Asia 

(41.84%), Europe (33.14%), and North America (20.05%). These percentages indicate that 

Asia’s wind power usage is increasing at a rapid pace that might place it in the top rank of 

global use of the energy source. 

China, the United States, Germany, India, and Spain are the top five countries in terms of 

total capacity or energy generation (REN21, 2014). At the end of 2016, they contributed 

more than 72.5% of the installed wind power capacity worldwide. Table 2.1 demonstrates the 

installed capacity and share of global wind capacity of these countries in 2016. The table 

shows that China used the highest capacity of wind power by an amount of 169 GW, which 

represents about 34.7% of global wind power usage.  

The largest offshore wind farm in the world is Walney Wind Farm in the United Kingdom, 

which has a capacity of approximately 367 MW. China has two offshore wind farms with a 

total capacity of 232 MW, and aims to install 30 GW offshore wind farms by 2020 (IRENA, 

2012). 
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Table 2.1 Installed capacity and share of global wind power in 2016 (data taken from GWEC, 2016). 

 

 

 

 

 

 

 

2.2.2 Hydro Energy  

Hydro energy is a source of renewable energy, which depends on the movement of water 

through turbines, as when water runs through turbines at the site of a dam. At the end of 

2016, global hydroelectricity energy production was about 3500 TWh, contributing about 

16.4% of the world’s electricity and 71% of the world’s renewable electricity (Word Energy 

COUNCIL, 2016). There are around 160 countries worldwide that use this technology to 

produce electricity (Word Energy Council, 2016). Word Energy Council states that the total 

global hydropower energy was around 1,064 GW in 2016. Table 2.2 clearly demonstrates that 

China has the highest global hydrostatic power usage, with an amount of 1,126 TWh (26%). 

In addition, it can be observed that four countries combined (China, USA, Brazil, and 

Canada) comprise approximately 48% of the world’s total use. 

Table 2.2 Hydroelectric generation status in 2016 (data taken from Word Energy Council, 2016) 

country Production (TWh) 

China 1,126 

USA 250 

Brazil 382 

Canada 376 

India 120 

Russia 160 

Country Wind power capacity (GW) % Share of global wind power 

China 169 34.7 

United States 82,184 16.9 

Germany 50,018 10.3 

India 28,700 5.9 

Spain 23,074 4.7 
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2.2.3 Geothermal Energy               

Geothermal energy is a renewable resource drawn from the Earth’s natural heat, in which 

steam taken from below the Earth’s surface runs turbines that generate electricity. 

Geothermal energy piles are another commonly used technique in geothermal technology. it 

is basically rely on the fact that ground temperatures at shallow depths below the earth 

surface is constant throughout the year and therefore steel piles could be used as a heat 

exchangers (Faizal et al., 2016).  

In 2013, the total global capacity of geothermal energy use was approximately 11.765 GW, 

and it is expected to reach 20 GW in 2024 (Pazheri et al., 2014). The countries with the 

highest installed geothermal power capacities are the United States, the Philippines, 

Indonesia, Mexico, Italy, New Zealand, Iceland, and Japan (Figure 2.1). It can be observed 

that the United States uses the largest amount, at around 3.389 GW (28.88%), and the above 

countries combined (excluding the USA) contribute around 7.19 GW (61.44%) of the world’s 

total capacity, while the combined geothermal energy capacities of all eight countries 

contribute around 10.579 GW (89.92%) of global capacity. 

 

 

 

 

 

 

 

Figure 2.1 Global geothermal power status (Pazheri et al., 2014) 
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2.2.4 Biomass Energy  

Biomass energy is ranked number four in the sources of world energy demand. It is produced 

by burning biomass resources to generate heat. The most common materials used to produce 

biomass energy are wood products, crops, dried vegetation, and some rubbish (Figure 2.2). It 

is estimated that most of the current biomass demand is used for heating and cooling 

purposes, while the resource makes up approximately 10% of overall energy supply 

worldwide.  Over the last two decades biomass energy has become a widely used renewable 

source of energy due to its low costs. It makes up around 15% of the world's total energy 

supply (35% in developing countries) for cooking and heating purposes (Pazheri et al., 2014). 

In 2012, the largest biomass plant in the world was constructed in Poland, with a total 

capacity of 200 MW, and about 410 MW biomass power generation has been installed in the 

United States.  

According to REN21 (2012), the global operating biomass capacity was around 72 GW at the 

end of 2011, with most global biomass plants existing in Europe and in North and South 

American countries. On average, around 90% of biomass power is produced from solid 

biomass fuels with that figure being slightly lower (80%) for European biomass energy 

(IRENA, 2012). Figure 2.3 shows global biomass power capacity at the end of 2011 and it 

can be seen that Europe has the highest amount (26.2 GW). 

 

 

 

 

 

 

 

Figure 2.2 Biomass Sources (Zafar, 2015) 
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2.2.5 Solar Energy 

Solar energy is a free and clean renewable source of energy that is generally considered 

environmentally friendly. It is based on collecting energy from the sun’s radiation to generate 

electricity, either by a solar photovoltaic (PV) systems– in which solar panels are used to 

collect solar radiation and convert it directly to electricity – or by using a concentrated solar 

power system (CSP), where solar radiation is collected and then concentrated to heat a liquid 

used to produce electricity. 

Electricity production using solar energy is increasing rapidly in every region around the 

globe. It is estimated that global demand for CSP systems will be around 7% and 25% by the 

years 2030 and 2050, respectively (Pavlovic et al., 2012). The United States of America, 

Spain, the United Arab Emirates, India, and China are the top five countries for installed 

capacity (REN21, 2012). 

Photovoltaic is one of the fastest developing technologies, with a growth rate of 35%-40% 

per year, and the global cumulative installed capacity of PV plants in 2013 was 138.9 GW. 

European countries have the biggest amount of installed capacity and China has the largest 

amount of PV cell production (Green, 2007; Tyagi et al., 2013).  

In the last decades, the installed capacity of solar plants has increased at a very high rate 

(Figure 2.4). In 2012, Europe had the largest amount of installed photovoltaic (PV) systems 

at around 17 GW, while the rest of the world had approximately 13.9 GW.  

Figure 2.3 Global biomass power capacity in 2011 (Pazher et al., 2014). 
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It is estimated that the cumulative capacity installed in Europe in 2012 reached more than 70 

GW (European Photovoltaic Industry Association (EPIA), 2013). Table 2.3 lists the top 10 

grid-connected countries with PV installed in 2011 and 2012. From this, it is clear that China 

increased its installed capacity significantly, by 127%: from 2.2 GW in 2011 to 5 GW in 

2012. 

 

 

 

 

 

 

 

 

 

 

Table 2.3 Top 10 grid-connected PV installed countries in 2011 and 2012 (Pazheri et al., 2014) 

countries 

Installed capacities (GW) 

2011 2012 

Germany 7.484 7.604 

China 2.2 5 

Italy 9.284 3.438 

USA 1.855 3.346 

Japan 1.296 2 

France 1.671 1.079 

 

 

 

Figure 2.4 Global annual and cumulative installed capacities of solar plants (2005-2012). (a) PV 

plants and (b) CSP plants (Pazheri et al., 2014). 
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2.2.6 Types of Renewable Energy in GCC Countries 

Besides the fact that implementing renewable energies as an alternative source for producing 

energy will reduce GHG emissions, the use of renewable energies is considered as an 

important step toward creating a solid economic growth for any country using free and 

sustainable resources (Abdmouleh et al. , 2015).  

Although the GCC countries have started applying renewable energies, there is a clear 

variation in the level of the adoption of renewable energy technologies between these 

countries. This variation in implementing renewable energy technologies in GCC countries is 

mainly attributed to the policy transfer methods applied in each country (Atalay et al. , 2016). 

Despite that the GCC countries are characterized by harsh climate weather and vulnerable to 

high temperature in summer and frequent dust storms, which is negatively affecting the 

performance of such renewable technologies such as solar and wind technologies, the GCC 

countries are keen to investing in renewable energies (Abdmouleh et al. , 2015). 

As stated in Chapter 1, due to the geographic locations of the GCC countries and willingness 

to invest in renewable technologies to gain environmental and economic benefits, these 

would positively increase the chances of successes of such types of technologies. However, it 

can be seen that the focus is primary on only two main technologies (solar energy and wind 

energy). These technologies have been widely utilised in all GCC countries and that could be 

explained to their high potential in GCC countries. The geographic locations of the GCC 

countries give them high potential to gain energy from solar and wind energy which is 

estimated around 6 kWh/m
2
/day for solar irradiation and approximately more than 1,400 

h/year of wind (Alnaser and Alnaser, 2009).  

In Kuwait, there is a high potential to utilise the Concentrated Solar Power (CSP) and 

Photovoltaic Systems (PV systems) due to the high amounts received of solar irradiation 

which have been estimated as 2,100 kWh/m
2
/year  and 1,900 kWh/m

2
/year for the direct 

normal irradiance and global horizontal irradiance, respectively (Bachellerie, 2013). 

However, it should  be noted here that CSP technology requires high amounts of water for 

cooling purposes as well as cleaning mirrors; this would be considered as a main barrier of 

implementing this technology as Kuwait and other GCC countries suffer from the scarcity of 

water (Gastli, 2014). 
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On the other hand, Concentrated Photovoltaic (CPV) is considered one of the most advanced 

technologies in solar energy. CPV systems collect direct solar irradiation and concentrate it 

on solar cells using optical devices, such as lenses and mirrors (Khamooshi et al., 2014). A 

high level of efficiency (38.9%) has been achieved through the use of the CPV technology 

(Messenger and Abtahi, 2017). Although CPV systems have reached a high level of 

efficiency for converting solar irradiation into electricity, they are still considered expensive 

compared to PV systems. Moreover, the performance of such technology has not yet been 

examined in the context of GCC countries.   

An important advantage of utilising CPV systems is that a high amount of solar irradiation 

can be focused onto a small area of the used solar cells; however, this type of technology 

requires a high amount of direct solar irradiation (minimum of 2000 kWh/m
2
/year) in order to 

perform effectively (Messenger and Abtahi, 2017). Moreover, CPV systems are highly 

sensitive to high temperatures and dust particles, which cause a significant drop in system 

efficiency. This point is important to consider for hot and arid desert climates as occur in 

Kuwait and other GCC countries.   

Overall, other renewable technologies, such as geothermal and hydropower, are not very well 

investigated, as there is a lack of basic information about these technologies, as is easily 

realised from the dearth of literature.  As mentioned previously, the high solar irradiation in 

Kuwait (2100 kW/m
2
/year), relatively long hours of sunshine (nine hours per day), low level 

of rainfall and cloud, combined with the fall in the price of PV systems, would be considered 

a main motivating factor when utilising PV systems in Kuwait. 

The focus of this research will be on investigating the use of photovoltaic technology as an 

alternative option to meet the rising demand for electricity in Kuwait. This research will be a 

benchmark for any future work concerning PV systems in Kuwait and other GCC countries 

and it will also inform on-going research into wind energy. 
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2.3 Photovoltaic (PV) Technology  

2.3.1 Introduction 

There is no doubt that continued growth of electricity demand worldwide will cause a variety 

of serious problems. For example, it will increase the use of energy resources such as fossil 

fuels, which will cause high amounts of greenhouse emissions (such as carbon dioxide) and 

increase the complexity of environmental pollutants that threaten the world in many different 

ways, such as global warming.  

Recently, a global focus has emerged on the efficacy of using renewable technologies to 

generate electricity instead of conventional power plants, or in parallel with them to satisfy 

energy requirements. PV energy is one of the most promising technologies and has grown at 

a remarkable rate. Table 2.4 shows the advantages and disadvantages of using photovoltaic 

systems. The technology depends on sunlight which the PV panels convert into electricity 

(Sonnenenergie, 2008).  

The sun – the source of solar energy – provides energy in the form of radiation. Due to the 

long distance between the Earth and the Sun, only a small proportion of the Sun's radiation 

hits the Earth's surface. However, it is estimated that the amount of energy that reaches the 

Earth’s surface is about 10,000 times the world’s energy consumption. Therefore, it is clear 

that only a tiny amount (around 0.01%) of the energy from sunlight would be needed to meet 

global energy demands (Sonnenenergie, 2008). 

Table 2.4 Advantages and disadvantages of using photovoltaic systems (Duffie and Beckman, 2013; Messenger 

and Abtahi, 2017; Sonnenenergie, 2008) 

Advantages Disadvantages 

Environmentally friendly 
Efficiency is highly affected by climate 

conditions 

No noise High initial costs 

Operates even in cloudy weather Large area needed for large scale applications 

Long lifetime 
Additional appliances are required (inverter, 

battery) 

Minimal maintenance requirements Cannot operate without sunlight 
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Solar irradiance (sunlight) which reaches the Earth's surface is comprised of two shortwave 

radiations, Direct Normal Irradiance (DNI) and Diffuse Horizontal Irradiance (DHI) (Figure 

2.5). The total amount of shortwave radiation received is called Global Horizontal Irradiance 

(GHI). The GHI, which is the sum of DNI and DHI, is the most important parameter in 

photovoltaic technology when calculating PV electricity, while Direct Normal Irradiance 

(DNI) is most important in concentrated solar power (CSP) and concentrated photovoltaic 

systems (CPV). It is generally accepted that DNI reaches the Earth's horizontal surface 

without any loss, while DHI reaches the Earth's surface after scattering or absorption by air 

molecules, aerosol particles, cloud particles, or other particles.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Solar Irradiance from sun (National Vet Content, 2015) 
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PV technology consists of three different systems: stand-alone, grid-connected, and hybrid 

(Figure 2.6). It is classified based on the method of use and implementation. In stand-alone 

systems, additional storage systems (batteries) are needed, while grid-connected systems do 

not require batteries because the electricity generated is simply feeding into the general grid 

or loads directly. Hybrid systems are implemented when the PV technology is supported by 

an additional power source, such as wind or a diesel generator.  

In cold weather countries, most electricity consumption occurs in the evening and especially 

in winter, whereas hot weather countries consume most electricity in the morning and 

afternoon, especially in summer. The peak energy production of grid-connected systems 

occurs at the same time as peak demand for hot countries.  

Kuwait is characteristic of a hot weather country, thus this study proposes that the grid-

connected system would be implemented. This kind of systems is considered as cost-

effectiveness as it feeds the grid with produced electricity directly, in other words, there is no 

need to use storages systems (batteries) and that will save a lot of money. The basic 

components for all the PV types are PV modules, an inverter and a balance of system (BOS) 

(Figure 2.7).  
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Figure 2.6 Types of PV systems (Sonnenenergie, 2008) 

Figure 2.7 Basic components of PV systems (Olis et al., 2013) 



37 
 

2.3.2 System Components 

2.3.2.1 PV Modules 

PV panels (also known as PV modules) are the most important element in PV technology, as 

they receive the solar radiation and convert it to electricity. In the most standard production 

design, each panel consists of 36 cells. One of the main characteristics of PV modules is their 

efficiency. This is calculated as the ratio between the total electricity generated and the 

amount of irradiation on the modules’ surface in standard test conditions (STC). Here, the 

temperature of a module is 25°C, the irradiation is 1000 W/m
2
, and air mass (AM) is equal to 

1.5 (Wirth, 2013). 

Crystalline silicon (mono-crystalline or poly-crystalline) and thin film are the most common 

materials used in PV technology in different fields (commercial and utility-scale projects) 

(Olis et al., 2013). The efficiency of crystalline silicon PV modules varies between 12% and 

19%, and is significantly affected by several parameters such as temperature and shade 

(Mekhilef et al., 2011; Nagae et al., 2006; Sanchez Reinoso et al., 2010). The efficiency of a 

thin-film solar module, which is formed from amorphous silicon, is lower than that of 

crystalline cells, at around 6% to 12% (Olis et al., 2013). Table 2.5 shows current commercial 

module efficiency. 

The standard warranties for most PV modules are 80% of the system’s power production for 

25 years. After this, the PV modules will continue generating electricity but at lower 

performance values (Olis et al., 2013). 
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Table 2.5 Commercial module efficiency (Boxwell, 2015; Duffie and Beckman, 2013; Messenger and Abtahi, 

2017; Sonnenenergie, 2008). 

Technology Commercial Module Efficiency 

Crystalline Silicon  

Polyrystalline silicon 13-18% 

Monocrystalline silicon 15-24% 

Thin film  

Cadmium Telluride (CdTe) 8% 

Amorphous Silicon (a-Si) 6% 

Alloys of copper indium gallium 

diselenide (CIGS) 
8% 

Concentrated Photovoltaic (CPV) 20-43% 
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2.3.2.2 Inverter 

As mentioned previously, a solar module is the main component in the photovoltaic system 

because it generates electricity by converting the received solar irradiation into direct current 

(DC). Most electricity used in buildings or even the connected grids is an alternating current 

(AC). As a result, electricity generated by solar modules must be converted from DC to AC, 

and the inverter is responsible for this operation. 

Inverters are a vital part of photovoltaic systems and have three important functions. Firstly, 

the conversion from DC to AC. Secondly, inverters enable solar modules to harness all the 

available amount of solar radiation by using the maximum power point tracking technique 

(MPPT). This technique is used to allocate the point, at the voltage-current graph, at which 

the PV system produces the maximum power (Reza et al. , 2013). Thirdly, in line with safety 

standard UL 1741 and system intersection standard IEEE 1547 (Underwriters Laboratories 

INC, 2010), it is required that all inverters used for grid connection must disconnect from the 

grid if the AC line voltage or frequency values are not within the standard range limits (Ted, 

2011). 

2.3.2.3 Balance of System (BOS) 

The third component of the photovoltaic system is a balance of system (BOS), which 

includes a mounting system and all technical and electrical parts. The mounting system, a 

structure holding the PV modules, is used to install and orientate the PV modules in the 

optimal direction in order to obtain the largest amount of energy from the Sun. It can be 

installed on a fixed-tilt or tracking system (Olis et al., 2013).  

A tracking system is generally used to increase the amount of solar radiation received 

annually, and it is estimated that PV modules can obtain 30%-40% more solar irradiation 

than fixed tilt mounting systems (Bayod-Rujula et al., 2011). In other words, tracking 

systems will enable solar modules to be kept perpendicular to the solar irradiation as the sun 

location is varying throughout the day (Eldin et al., 2016). A 30% increase of the produced 

energy have been achieved as result of applying dual-axis tracking systems in a study 

conducted by Eke and Senturk (2012). However, sun-tracking systems require bigger and 

deeper footings because they are heavier than fixed tracking mounted systems (Sampson, 

2009).  
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Moreover, the initial and running cost of such tracking systems is another important factor 

which should be taken into account. This is mainly due to the basic principle of tracking 

systems that relies on the movement of solar modules to follow the optimum position as well 

as the frequent maintenance of the solar trackers, particularly the moving parts.  

There are two main different tracking systems; a single-axis tracking system in which the 

solar tracker could have vertical or horizontal rotation in one direction, or the dual-axis 

tracking systems, which rotate in two directions (see Figure 2.8). 

In this research, the utilisation of single-axis and dual-axis solar trackers will be considered 

and an investigation of their effectiveness on the performance of the proposed PV systems 

will be conducted in terms of performance, environmental and economic evaluations, in 

Chapters 5 and 6. Furthermore, the behaviour of these trackers against the external loads will 

be investigated by means of numerical modelling in Chapter 7. 

 

Figure 2.8 Different tracking systems (Nithya, 2017) 
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2.3.3 Factors Affecting Module Performance 

The most important characteristic of the modules used in photovoltaic systems is their 

efficiency. Despite the fast growth and development of photovoltaic technology, focus 

remains on increasing the efficiency of solar modules in terms of manufacturing materials 

and design parameters. However, there are other important factors (Figure 2.9) that must be 

taken into account. Location, climate, type of tracking system and ground properties are 

elements that directly affect solar module efficiency. Selecting an appropriate location for a 

photovoltaic system is an important step towards harnessing high levels of solar radiation, 

which increases the chances of creating energy. It is highly recommended that the selected 

location of the proposed PV systems should not have a history of environmental disaster, 

such as flooding, high winds, snow, and extreme temperatures. Marion et al. (2014) studied 

the energy output of PV modules for three different locations (Florida, Oregon, and 

Colorado). They found that there is a remarkable variation in energy production caused by 

site differences. Climate conditions such as temperature, wind, humidity, and dust are the 

most common influential elements. 

Figure 2.9 Factors affecting module Performance 
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Kaldellis et al. (2014) studied the impact of temperature and wind speed on the efficiency of 

PV installations in Greece. They found that temperature has a significant influence on the 

process whereby PV modules convert the received solar radiation into electricity. Solar 

module performance decreases as temperature increases. Thus, the efficiency of PV modules 

depends on the operating temperature (Dubey et al., 2013; Meneses-Rodríguez et al., 2005). 

Dabou et al. (2016) investigated the performance of a 1.75 kW grid-connected PV system 

installed in Algeria. Data was collected over one year (2010), which was reported under 

different climatic conditions. They obtained information on the final yield, reference yield, 

performance ratio and system efficiency. Results showed that the lowest values of reference 

yield, array yield, and final yield were due to the low levels of solar radiation during 

sandstorms, and the lowest values of performance ratio and efficiency were due to high 

module temperature. Thus, changes in solar irradiance are caused by changes in the weather. 

Investigating the performance parameters of the PV systems will be a main part of this thesis 

and this will be explained in detail in Chapter 4.  

Furthermore, a finite element thermal analysis of a solar photovoltaic module was conducted 

by Lee and Tay (2012). The highest temperature of the cells was 66.0°C under a solar 

irradiation of 1000 W/m
2
 and PV efficiency was 12.2%, while it was 15% at the reference 

temperature of 25°C. 

Photovoltaic systems are vulnerable to the wind, which will directly affect the efficiency of 

solar modules. Wind can impact the modules in different ways: high speed winds may 

increase dust deposits on solar panels, which would impede the ability of the panels to 

effectively receive the target amount of solar radiation and cause the efficiency of the solar 

system to be decreased. However, high speed winds may also be helpful in decreasing the 

humidity that would negatively affect the modules’ efficiency (El-shobokshy and Hussein, 

1993). This would be accounted for in this thesis by means of conducting a numerical 

modelling to examine the effects of different wind load magnitudes, blowing from different 

directions, on the proposed solar tracker. This would be shown in details in Chapter 7.   

Sulaiman et al. (2011) studied the effects of dust on the performance of PV panels. They 

found that efficiency decreased by around 50% due to the accumulated dust on the surface of 

the modules. Al-Sabounchi et al. (2013) evaluated the design and performance of a 

photovoltaic system in Abu Dhabi, (UAE). The purpose of the study was mainly to assess the 
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effects of temperature and dust on the photovoltaic system. The results showed that dust 

deposits on the top of the solar panels significantly reduce the efficiency of the solar system. 

It is generally accepted that the glass transmittance is directly affected by the accumulated 

dust on the solar panels and the plate tilt angle (Elminir et al., 2006). 

Furthermore, Ndiaye et al. (2013) investigated the effects of dust on the performance of 

monocrystalline and polycrystalline PV modules installed at Dakar University in Senegal for 

one year without cleaning. The results demonstrate a loss in the output power of between 

18% and 78% across solar modules.  

In their research on the impact of accumulated dust on the surface of photovoltaic modules, 

El-shobokshy and Hussein (1993) used five types of dust with different physical properties 

(three limestone and two cement and carbon). They found that fine particles have a more 

pronounced effect than coarser ones in terms of reducing the efficiency of solar panels. 

Moreover, in the study, cement decreased the efficiency of the system when it was deposited 

onto the surface of photovoltaic panels. Finally, they found that carbon particles, which are 

produced by the combustion of diesel engines, have the most significant impact on module 

efficiency, because they are the smallest in diameter. Mani and Pillai (2010) reviewed the 

impact of dust on PV systems performance. They found that dust is an important factor that 

has direct effects of the PV systems efficiency. Moreover, they suggested applying 

appropriately a cleaning cycle for PV systems in order to deal with environmental conditions. 

Sulaiman et al. (2014) analysed the impacts the accumulation of dirt such as dust on the 

performance of solar photovoltaic panel. They found that significant reduction in the output 

performance of the solar modules have been obtained due to the obstruction of the light 

reaching the solar panels. 

Al-Sabounchi et al. (2013) evaluated a 36 kW PV grid-connected system in Abu Dhabi. They 

studied the impact of ambient temperatures on power and energy production, conversion 

efficiency, consistency of voltage, and frequency and the impact of accumulated dust on the 

production of the system. Results showed that dust has a significant effect on system 

performance and a comprehensive cleaning programme should be established in order to 

avoid the accumulated effects of the dust. 
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A performance study of amorphous thin film and mono-Si technologies in Chile was 

conducted by Ferrada et al. (2015), who observed a significant difference in energy yield 

between the technologies during the summer, caused by dust accumulation, which impacted 

the performance ratio values.  

Another concern is the effect of humidity (the water-vapour content of the air), when 

designing a PV system. Humidity on the module surface or in the atmosphere will affect the 

efficiency of solar modules by preventing solar radiation from reaching the modules in large 

amounts (Mekhilef et al., 2012). Ettah et al. (2012) investigated the effect of relative 

humidity on the performance of solar panels in Nigeria. They found that the efficiency of 

solar modules is significantly impacted by relative humidity. They also identified that at low 

relative humidity, the solar panel’s efficiency is high, whereas it is low at high relative 

humidity. 

2.4 Photovoltaic Systems in the Middle East 

Photovoltaic systems are used globally and achieve encouraging results. Europe has the 

highest percentage of PV system usage. In order to have a better understanding of 

implementing PV systems in Kuwait, the focus of this study will be in the Middle Eastern 

countries with more focus on the GCC countries. 

There is no doubt that the location of the Middle East countries provides a high potential and 

opportunities to implement the PV energy systems. In this regard, China is a good example in 

both manufacturing and utilizing large amounts of PV modules. China, one of the developing 

countries which is characterised by a large and strong economy, is suffering from 

environmental pollution resulting from the massive use of fossil fuels, for instance, large 

amounts of coal are consumed in order to satisfy its needs of energy (Gan, 1998; Liu and 

Wang, 2009; Wang et al., 2011). 

Japan is also playing a vital role in the PV systems production field and a promising future of 

implementing PV systems is expected in coming years. It is characterised by using well-

functioning PV systems by the means of industry and marketing for PV (Vasseur et al., 

2013). A remarkable development and diffusion of PV solar energy have been seen in Japan. 

This could be attributed to applying a subsidy program which has significant effects by the 

means of implementing PV systems. According to the National Survey Report of PV Power , 
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Japan is aiming to increase its annual installed capacity by 2020 (YAMAMOTO and IKKI, 

2010). 

Pakistan and Bangladesh represent a good example of the orientation of implementing PV 

systems in Asia in order to benefit from their geographical locations which give them more 

opportunity to collect a high amount of solar irradiation. Although Pakistan has insufficient 

experience in implementing PV systems, recently a significant development has been seen by 

means of a renewable energy policy and creating large scale power plants (Sher et al., 2015). 

In Bangladesh, the scarcity of electricity in the country is one of the main causes of any 

industrial development. However, the government has set up serious steps to use the 

renewable energy in generating electricity (Hil Baky et al., 2017).   

As stated in the introduction Chapter, the GCC countries have also taken serious steps and 

procedures in utilising PV systems. However, the undertaken renewable energies projects are 

still under the normal required level. This would open a wide range of questions such as why 

the GCC countries are late and relatively not so highly interested or focused on the use of the 

renewable energies. In addition to the fact that these countries are rich in fossil fuels 

resources, there is relatively high support of the electricity and fuel cost to their citizens and 

residents (Al-maamary et al., 2017). This would be definitely considered as an important 

issue in this regard as the people would be busier in other daily life issues such as the political 

and social aspects more than energy issues such as the cost and the environmental effects.  

For Kuwait, it should be emphasized here that after the Iraqi invasion in 1990, the political 

situation and the security of the country has been of high priority rather than other issues. It 

can be seen that the increased rate of illness and patients as well as the spread of very 

dangerous diseases, such as cancer, is being remarkably increased. This would be attributed 

to many factors; one of them is the air pollution (Nicolson, 1999).  

It is clear that constructing more conventional power plants in order to satisfy the high 

demand of electricity as well as the huge numbers of cars in Kuwait as a result of high 

economic development and relatively low fuel prices are also contributing in increasing air 

pollution. There is no doubt that the fuel subsidy from the government in terms of low prices 

of fuels is definitely considered one of the main causes of a lot of problems such as air 

pollution. However, as the focus of this research is the use of PV systems to generate 

electricity in Kuwait, other issues such as economic and political /social issues whether 

directly or indirectly caused by excessive use of energy will not be discussed here. 
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As stated previously, the low prices of electricity resulting from the high governmental 

subsidy will not give any fair chance for investors by means of competition with conventional 

power plants. The scarcity and the high cost of land in Kuwait are also other important 

barriers as these types of projects require a large area of land. Limited awareness of the basic 

principles of this technology of the decision makers would also directly affect the relevant 

legislation and regulation related to the deployment and implementation of such renewable 

technologies in the country. In fact, GCC countries have begun with serious steps in 

developing their projects in the renewable energy field in order to benefit from abundant 

renewable energy resources such as solar and wind (Mondal et al., 2016). 

In Saudi Arabia, the King Abdullah City for Atomic and Renewable Energy is a good 

forward step for the use of renewable energy such as solar energy. It provides important 

options for electricity generation and water desalination for the country; the King Abdullah 

City is aiming to produce  41 GW from solar energy ( 16 GW from photovoltaic energy)(Al-

maamary et al., 2017). 

In the United Arab of Emirates, there are ambitious and encouraging projects, such as Masdar 

City in Abu Dhabi. It is considered as a good example for the design of zero- carbon city 

(Lee et al., 2016). The Masdar City will be a good view for the use of renewable energy in 

the country and will be as a tangible development measure in the contribution of reducing the 

greenhouse emissions resulting from the burning of fossil fuels.  

A significant advance and development has been noticed in Qatar. In terms of encouraging 

the implementing of solar energy, Qatar Science and Technology Park, a part of Qatar 

Foundation Research and Development, is providing good opportunities to investors as this 

project is basically considered as a free zone with zero taxes (Atalay et al., 2016).  

Many solar energy targets have been set in Bahrain and Oman in order to benefit from the 

high solar irradiation in generating electricity (Mondal et al., 2016). The siting of large 

photovoltaic farms, using different PV technologies, in the Al-Batinah region of Oman was 

investigated by Gastli and Charabi (2010). Results showed that a photovoltaic system is an 

appropriate source of renewable energy in terms of technical performance. They found also 

that using the free land in in the country will help provide large amounts of electricity to 

satisfy the electric energy demand in Oman. 
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Kuwait has been involved in the renewable energy relatively earlier than the GCC countries 

and that was mainly activated by the purpose of creating the Kuwait Institute for Scientific 

Research (KISR).  

As stated previously, the Iraqi invasion of Kuwait in 1990 was a main cause of the delaying 

of the development of all fields in the country such as the research in the renewable energy. 

The optimization of the electrical load pattern in Kuwait using grid-connected PV systems 

was investigated by Al-Hasan et al. (2004). They evaluated the performance of grid-

connected photovoltaic systems in the Kuwait climate and found that the peak load matches 

the maximum solar irradiation allowed. They also identified this as a credible value which 

will encourage the use of photovoltaic systems in the state of Kuwait. 

Al-Enezi et al. (2011) investigated the feasibility and potential of solar energy on the 

horizontal surface of the Kuwait Area. The findings of their research showed that Kuwait is 

facing a significant increase in the demand for electricity, but there is a lack of electrical 

energy and load peaking. Moreover, the country has an abundance of solar energy potential, 

and average daily global and monthly solar irradiation is around 3 kWh/m
2
 in winter and 8 

kWh/m
2
 in summer.  

As stated above, the high solar radiation amounts striking the country and the fact that high 

electricity demand coincide with the high production time of solar panels; these will provide 

high chance of successful of the implementation of the photovoltaic energy in Kuwait.  

Overall, there have been some attempts and projects in the country to generate electricity 

using photovoltaic energy. Al-Shagaya project is mainly the most important step toward the 

use of renewable energy in Kuwait. The capacity of this project is 70 MW and the 

photovoltaic energy is accounting 10 MW (KISR, 2014a). However, this project is being 

implemented based on relatively old feasibility studies in which a lot of updated and new 

technological features are not included such as utilising tracking systems to increase the 

amount of produced energy. 

2.5 Commonly Used Evaluation Indices in Implementing PV Systems 

2.5.1 Introduction 

In order to efficiently evaluate the feasibility of PV systems in Kuwait, this study will focus 

on the most important methods and criteria by which the PV systems are investigated. From a 
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review of previous work and literature related to solar energy projects, the following studies 

will be conducted: 

o Performance parameters study 

o Environmental evaluation study 

o Economic evaluation study 

These are the most important elements used to help judge the feasibility of any proposed 

project in the PV system field. Furthermore, investigating the behaviour of the solar trackers 

and the ground against the external loads will be an important procedure in order to have a 

complete understanding of implementation of PV systems in Kuwait. The performance 

parameters evaluation of any proposed type of renewable energy is extremely important, in 

order to estimate or even predict the amount of energy that would be produced by 

implementing such technologies. 

As mentioned in the background introduction, it is vital to consider the environmental 

pollution and global warming caused by fossil fuels when investigating the impacts of PV 

systems on the environment. The feasibility of any proposed technology for both private and 

government sectors cannot be determined without an economic evaluation study. Therefore, 

in this chapter, the literature review covers the relevant research in more detail. Finally, in 

order to establish a better understanding of implementing PV solar trackers, the previous 

research conducted in this field will be reviewed.  

2.5.2 Performance Parameters of PV systems  

The International Energy Agency (IEA) stated that the main components of the performance 

parameters of PV systems consist of the total energy generated by the PV system; Final Yield 

(YF); Reference Yield (YR); Performance Ratio (PR); Capacity Factor (CF); and system 

efficiency (Marion et al., 2005). YF (also known as the yield factor) is defined as the daily, 

monthly or yearly alternating current (AC) energy produced by the PV system, divided by the 

rated output power of the used PV system (Ayompe et al., 2011; Marion et al., 2005). It is 

given by: 

YF =EAC / PPV, rated                                              (2.1) 
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The ratio of total solar irradiation (Ht) in (kWh/m
2
) to the reference irradiation G (1 kW/m

2
) 

is known as YR (Ayompe et al., 2011; Marion et al., 2005). It is given by: 

YR = (Ht) (kWh/m
2
) / G (1 kW/ m

2
)                 (2.2) 

Performance ratio (PR) is given as: 

PR = YF / YR                     (2.3)  

CF is determined as the ratio of the annual energy output of the PV system to the rated power 

of the PV system (Ayompe et al., 2011). It is given as: 

CF = EAC / (PPV, rated x 8760)                             (2.4) 

Marion et al. (2005) observed that the final yield, reference yield, and performance ratio are 

the most commonly used performance parameters of grid-connected PV systems, and they 

are important measures when comparing different PV systems. The long term assessment of 

the PV systems is an important measure which will give the best understanding of the 

performance of any proposed system in the future. Ma et al. (2013) studied a 19.8 kW stand-

alone PV system in Hong Kong and analysed its performance parameters. Results showed 

that long term assessment is vital for achieving a better understanding of system 

performance; it would also provide a useful framework for future studies and applications. 

A performance ratio is an important measure of any proposed PV system as it provides an 

initial indication about the technical behaviour. A performance analysis study of a mini-grid-

connected PV System was conducted by Cherfa et al. (2015). The average daily energy 

obtained was 30 kWh and the performance ratio ranged between 62% to 77%, while the 

yearly performance ratio was 71%, to 82% is the maximum value which could be achieved in 

May, June, and July, when the PV system is most efficient. 

El Fathi et al. (2014) conducted a study of performance parameters in a 7.2 kW photovoltaic 

power plant, and discovered that the performance ratio of the PV system ranged from 33% to 

70.2%. Thus, they concluded that performance ratio is significantly affected by the rate of 

energy demand during the day, as well as the state of battery charge. Ayompe et al. (2011) 

investigated the performance of a 1.72 kW PV system installed on the flat roof of a building 

in Dublin. Results showed that low final yield values were achieved due to poor solar 

insolation in winter, while the performance ratios ranged between 72.3% and 91.6%. The 

capacity factor ranged between 10.1% and 15.5%. 
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Al-Otaibi et al. (2015) evaluated the performance of 85.05 kW and 21.6 kW thin film, grid-

connected PV systems on the rooftops of two schools. They determined that the performance 

ratio was maintained between 74% and 85%, and that the minimum monthly energy yield of 

the PV systems was about 104 kWh/kW. The average daily yield of the photovoltaic systems 

annually was 4.5 kWh/kW/day. In addition, the rooftops of the school buildings were 

identified as a good location because they are large, unused areas. 

In India, a lot of research has been conducted in photovoltaic energy and the performance of 

PV systems has been investigated. Sharma and Chandel (2013) investigated the performance 

parameters of a 190 kW solar photovoltaic power plant using PVsyst software. The results of 

their investigation were encouraging. They found that the annual average performance ratio 

of the implemented systems is equal to 74% and the capacity factor is equal to 9.27%. Shukla 

et al. (2016) conducted a technical performance study of a 110 kW grid-connected 

photovoltaic system in India, in which performance ratio and energy yield were obtained for 

four different types of PV module. They found that the performance ratio of the PV systems 

varied between 70% and 88%, while the energy yield varied between 2.67 kWh/kW and 3.36 

kWh/kW. Therefore, they proposed that all types of PV system are appropriate for use in 

tropical weather conditions with regard to annual energy yield. 

Hajiah et al. (2012) also conducted an assessment of the electricity generated by a 100 kW 

PV grid-connected systems in two sites in Kuwait, Al-Wafra and Mutla. Results showed that 

the selected sites have high energy productivity with an annual capacity factor of 22.25% and 

21.6%, respectively. Furthermore, the annual yield factors for both sites are 1861 and 1922.7 

kWh/kW/year, respectively.  

The orientation and the tilt angle of the solar panels are important parameters that directly 

affect the performance of the PV systems. Al Otaibi and Al Jandal (2011) assessed the local 

optimum tilt angle and the annual power output of four photovoltaic modules of different 

types. The study focused on the amount of power generated by photovoltaic systems in hot 

weather conditions in Kuwait, as well as the effect of using different tilt angles on system 

performance. Results indicated that the PV modules perform well in Kuwait’s climate. 

Emziane and Al Ali (2015) evaluated the performance of rooftop PV systems in Abu Dhabi, 

using two different PV systems (multi-crystalline silicon and single-crystalline silicon solar 

modules). The multi-crystalline silicon modules achieved higher yield factors and lower 
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efficacy, due to the use of different inclination angles and inverter types. Furthermore, a 

performance comparison study between low concentration and fixed angle PV systems was 

conducted by Famoso et al. (2015). They found that although the low concentration 

photovoltaic system performed better during the summer, the fixed angle system was more 

efficient during other months. 

2.5.3 Environmental Evaluation 

An environmental evaluation is an extremely important part of any proposed renewable 

project, as the main reason for implementing renewable energy is to help reduce the amount 

of emissions caused by fossil fuel resources. Reductions in greenhouse gases (GHGs) and the 

life-cycle assessment (LCA) are the most common methods used to evaluate PV systems 

from an environmental perspective. Several environmental studies have been conducted on 

PV systems using the LCA approach (Alsema, et al., 2006; Alsema, et al., 2005; Fthenakis 

and Kim, 2011; Hong et al., 2016; Kim et al., 2014; Stoppato, 2008). 

Kim and Alsema (2008) researched the life-cycle of greenhouse gas emissions from four 

types of major commercial PV systems: multi crystalline silicon, mono crystalline silicon, 

ribbon silicon, and thin-film cadmium telluride, in Europe and the United States. They found 

that the pollutant emissions generated by PV systems are significantly less than that the ones 

generated by conventional power plants. 

Fthenakis and Kim (2011) conducted a life-cycle analysis of a high concentration PV system 

using a tracker and lenses to receive more solar irradiation. Results showed that the emissions 

from PV systems are very small compared to emissions from conventional power plants. In 

addition, the environmental issues associated with silicon-based PV systems in Korea were 

examined by Kim et al. (2014). The LCA results, based on global warming potential (GWP) 

and fossil fuel consumption (FFC) values, indicated that single and multi-crystalline silicon 

module systems are the most suitable for use in Korea. 

The impacts of implementing PV systems on the environment could be seen obviously by 

estimating the greenhouse emissions that would be avoided. Zhai et al. (2012) investigated 

the potential for avoiding emissions from photovoltaic electricity. The emissions avoided per 

solar PV capacity (g/W) for the selected states ranged from 670 to 1500 for CO2, 0.01e7.80 

for SO2, and 0.25e2.40 for NOx. The researchers concluded that more emissions could be 
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avoided in the locations with a larger proportion of coal, higher emissions from existing fossil 

fuel plants, and a higher PV capacity factor. 

The environmental impacts of PV systems used to generate electricity were evaluated by 

Alsema et al. (2006), who discovered that the potential of using the systems as clean energy 

is great, and the hazardous emissions from PV systems are caused during the manufacturing 

process. Furthermore, Adam and Apaydin (2016) investigated the possibility of using a 500 

kWp solar PV system to reduce GHGs. They found that the reduction of the amount of CO2 

emissions was credible and proposed that a government subsidy is necessary to encourage the 

use of PV systems. 

The environmental effects of multi crystalline silicon cells were explored by Hong et al. 

(2016). Results of the study showed that multi-crystal solar PV technologies have 

significantly fewer negative environmental impacts. The researchers recommend increasing 

the amount of renewable energy sourced used for producing electricity. 

The life cycle assessment (LCA) is another important measure in any environmental 

evaluation study. It provides a complete assessment of the product from the beginning of the 

production stage and ends with recycling stage.  Stoppato (2008) conducted a life-cycle 

assessment of photovoltaic electricity generation. He found that the transformation of 

metallic silicon into solar silicon and panel assembly are the most critical phases in the life-

cycle analysis, which is due to the use of high amounts of energy.  

Alsema et al. (2006) evaluated the environmental impacts of crystalline silicon photovoltaic 

module production and found that crystal solar PV systems are more competitive than the 

other energy technologies. They also found that the Energy Pay-Back Times for southern 

European locations are 1.7-2.7 years, and life-cycle CO2 emissions are in the 30-45 g/kWh 

range. 

Furthermore, a life-cycle assessment of multi-crystalline PV systems in China was performed 

by Fu et al.,(2015), who also discovered that the process of changing the metallic silicon into 

solar silicon is a vital stage in which more energy is used. Yu et al. (2013) conducted a cost 

benefit analysis of a newly constructed 10 MW solar photovoltaic power plant in China. They 

determined that 18,000 tons of CO2 emissions could be saved each year. Although the LCOE 

of the photovoltaic energy is twice that of fossil fuel electricity, the use of photovoltaic 

energy will be increased in China in order to minimize CO2 emissions. 
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It can be observed that the amounts of emissions that can be avoided by the implementing of 

PV systems and the amounts of GHG emission are the common and dominant criterions that 

have been investigated in the existing literature. 

2.5.4 Economic Evaluation 

One important aspect of assessing the feasibility of a photovoltaic system is financial 

assessment. Thus, an economic evaluation of the proposed PV system is an essential part of 

this thesis as it attempts to study the feasibility of using PV technology in Kuwait.  

Encouraging the private sector in photovoltaic energy will create large opportunities of new 

jobs and will also provide alternative tools for producing electricity. Borah et al. (2014) 

evaluated the technical, financial, and institutional aspects of photovoltaic programmes in 

four common solar lighting technologies used in India, with regard to the social impact of 

these programmes on rural households. They found that private photovoltaic projects perform 

better than subsidy projects. In addition, they concluded that financial support, technical 

innovations, and training programmes are the main factors that encourage photovoltaic 

system projects.  

A study of a 100 MW large-scale photovoltaic power generation (VLS-PV) system to be 

installed in the Sahara, Negev, Thar, Sonora, Great Sandy and Gobi deserts, was conducted 

by Kurokawa et al. (2002). They found that generation costs in the Sahara desert and the 

Gobi desert are 5.3 cent/kWh (0.041 £/kWh) and 6.4 cent/kWh (0.049 £/kWh), respectively, 

based on a PV module price of $1.0/W (0.77 £/W), system lifetime of 30 years, and an 

interest rate of 3%. They concluded that VLS-PV systems are economically feasible when 

there are high irradiation solar values and the cost of photovoltaic modules equals or is less 

than $1 per watt. It should be highlighted her that this study is relatively old; however, it 

gives an indication of the importance of applying large scale PV systems. In addition, it refers 

also to the installation cost of the PV systems and that is an important point. Recently, a 

significant decline in the installation costs that have been seen, would affect positively on the 

potential of using PV systems from an economic viewpoint. It is assumed that 1$ = 0.7768£ 

at the time of writing this thesis. 

In Saudi Arabia , The feasibility of the design and construction of a solar power plant using 

photovoltaic cells in Saudi Arabia was investigated by Al-Ammar and Al-Aotabi (2010). 
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They stated that the implementation of photovoltaic systems is crucial to meeting the 

increasing demands for electricity in Saudi Arabia as it would reduce fossil fuel consumption. 

An analysis of energy production and an economical evaluation of a 5 MW installed capacity 

photovoltaic-based grid-connected power plant for electricity generation was conducted by 

Rehman et al.(2007). They found that global solar radiation varies between a minimum of 

1.63 MWh/m
2
/y and a maximum of 2.56 MWh/m

2
/y for Tabuk and Bisha, respectively. The 

calculated duration of sunshine in Saudi Arabia was between 7.4 hours and 9.4 hours. The 

economic indicators of their study highlight that Bisha was a more appropriate site for a 

photovoltaic power plant than Tabuk. In addition, they found that around 8,182 tons of 

greenhouse gases can be saved per year through the use of photovoltaic technology. 

A feasibility study of utilising stand-alone and grid-connected photovoltaic systems in the 

UAE was conducted by Allaham et al. (2015). They found that the payback time for the 

systems decreased by 14% and 15%, respectively, with an inflation rate in the electricity 

price equal to the general inflation rate in the country. They recommended the use of PV 

systems in the UAE to gain the benefits of using renewable energy from both an 

environmental and economic perspective. In addition, they stated that governmental 

incentives are essential due to the high initial cost of the PV systems. 

An assessment of the potential benefits of implementing solar energy in the UAE was 

completed by Mokri et al. (2013). They focused on the production and consumption of the 

energy as well as the local operating conditions of solar installations. They reviewed the 

progress of solar energy in the UAE and concluded that although the price of generating 

electricity using photovoltaic systems is high compared with the electricity sold in the UAE, 

it is easy to encourage the use of this new technology by offering governmental incentives to 

use these systems, such as a feed-in tariff. 

Some research has been conducted to investigate the feasibility of using PV systems in 

Kuwait. Ghoneim and Abdullah (1994) also studied the performance and economic feasibility 

of solar heating and cooling systems in Kuwait, using a conventional flat plate collector and 

modified flat plate collector (equipped with transparent insulation material). The results 

demonstrated a remarkable increase in the performance of the modified flat plate collector, 

caused by a reduction of the optimum collection area. Furthermore, they found that the cost 
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of energy when using the modified flat plate collector is equal to around 64% of the energy 

cost when using conventional fuel systems. 

Hasan and Sayigh (1996) conducted a cost and sensitivity analysis for a photovoltaic station 

in the state of Kuwait. They compared the cost of kWh generated from a PV station with the 

kWh generated from conventional units. They concluded that the capital (investment) cost of 

any proposed photovoltaic station should be less than that of conventional power plants. 

Abdullah et al. (2002) explored the feasibility of installing grid-connected PV systems 

(crystalline solar modules installed on the building roof) in Kuwait’s climate. They concluded 

that the electricity tariff would have a significant impact on the photovoltaic system in terms 

of cost effectiveness. 

The levelized cost of energy (LCOE) method which is the widely used measure when 

comparing between different electricity generation technologies as an evaluation tool. The 

economic feasibility and viability of implementing PV solar energy in Kuwait was studied by 

Ramadhan and Naseeb (2011). They found that the high levels of solar radiation in Kuwait 

are crucial to enhancing the use of solar panel systems in the country. Moreover, the cost of 

energy (LCOE) of a 1 MW station was determined to be approximately $0.20/kWh (0.15 

£/kWh) (assuming the present price of $5/W (3.83 £/W) and 15% efficiency). Finally, they 

stated that the LCOE value $0.20/kWh (0.15 £/kWh) is feasible when the cost of oil is around 

$100/barrel (£76.68/barrel). Hajiah et al. (2012) also found in their study, an assessment of 

the electricity generated by a 100 kWp PV grid-connected systems in two sites in Kuwait that 

the levelized cost of energy (LCOE) is around 0.1 USD/kWh (0.77 £/kWh), which is similar 

to the amount of energy taken from the Ministry of Electricity and Water (MEW) in Kuwait. 

It can be observed from most of the existing literature relevant to Kuwait that the 

investigation studies have been conducted based on the comparison criterion between the 

proposed PV systems in Kuwait and the conventional power plants in term of LCOE value. 

This can be attributed to the fact that the only available source of electricity is produced from 

the conventional plants. In addition, the country is relatively late in implementing different 

renewable energies; in other words, there is no available data of implemented projects in 

different renewable energies.  
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2.5.5 Numerical Modelling 

Numerical modelling is vital for solving the complex problems in different engineering 

disciplines. It is generally considered an important part of most structural integrity research 

and is used in the design and analysis of the behaviour of different types of structures. 

PV modules are secured by a mounting structure, and its type depends on the type of system 

designed (for example, a system sited on the roof of a building). In cases of a farm/park 

photovoltaic system in which a ground mounting structure is used, foundations are 

established to install the mounting structure in the ground. The support structure of the solar 

modules should be properly designed, with complete knowledge of the forces that the 

supports will be subjected to, such as wind. It is extremely important to understand the 

mechanism of transferring forces from the support structure to the foundations, and it can be 

assumed that the weight of the modules and the wind are the major forces that act on the 

supports for the solar modules (Annavarapu et al. , 2009). 

The ground mounted system is an important part of the photovoltaic system because it is not 

only responsible for securing the solar modules, which represent approximately 50%-60% of 

the total cost of the system; it also keeps the whole structure stable. The stability of the 

structure of a photovoltaic system, whether it is a fixed tilt, single axis or dual axis tracker, is 

crucial to achieving the best possible system efficiency. This can be ensured by using an 

effective foundation that remains stable against environmental factors such as wind speed 

(Miller, 2009). 

Selecting the appropriate foundations for photovoltaic systems relies on understanding 

environmental factors, such as wind speed, and the geotechnical properties of a site. Each of 

these factors should be taken into account when designing solar systems in order to avoid any 

possible failures (Miller, 2009).  

Since there are no clear codes or standards used in the design of the solar PV structures and 

foundations, the improper design of a structure and foundations of a solar system will cause 

adverse conditions (excessive settlement or collapse of the support structure in a worst case 

scenario), thereby affecting the production and performance of the system used (Kibriya, 

2013). 
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Driven piles, helical piles, earth-screws, and ballasted foundations (Figure 2.9) are the main 

types of foundations used. The selection of the foundation type used for any project depends 

on the site and the mechanical properties of the ground (Worden, 2014). Helical pile 

foundations and ballasted foundations, which are precast concrete or concrete poured in 

place, are used on sites that are characterized by cohesionless soil such as sand, while driven 

foundations are widely used on sites characterized by cohesive soils such as clay and dense 

sand (Worden, 2014). Earth-screws foundations are used when there is difficulty penetrating 

piles due to tough soils or rocks, and ballasted foundations is the preferred option in landfills. 

Therefore, site investigation is extremely important for selecting the appropriate type of 

foundation (Worden, 2014).  

Steel piles are commonly used in solar panel systems, especially in large scale utility systems 

(5 MW or more), because the structures require a large amount of piles. For instance, a 10 

MW solar PV system consists of around 5,000 piles in a typical design. Moreover, steel piles 

can be installed quickly (Kibriya, 2013). The most widely used steel piles have a diameter of 

114mm to 125mm and an embedment depth of 2.75m to 3.5m, so they can be driven into soil 

or pre-drilled in cases of hard soils (Kibriya, 2013). The basic standard tests for deep 

foundations (steel piles) are ASTM D3689/D3689M (Standard Test Methods for Deep 

Foundations Under Static Axial Tensile Load), ASTM D1143/D1143M (Standard Test 

Methods for Deep Foundations Under Static Axial Compressive Load) and ASTM 

D3966/D3966M (Standard Test Methods for Deep Foundations Under Lateral Load) (ASTM, 

2013), and they should be conducted in order to achieve a successful design criteria. 

The typical soil profile in Kuwait is mainly consisted of windblown dune sand in surface 

layers with varying depths up to 7 m, underlined by fine to medium sand deposits known as 

Gatch, locally name for cemented sand and at depths below this, approximately 80 to 100 m 

depth of limestone bedrock (Al-Sanad and Shaqour, 1991; Ismael and Jeragh, 1986; Ismael et 

al., 1986). The majority of soil in Kuwait is is within SP to SM classification system (poorly 

graded sand to silty sand) according to the Unified Soil Classification System (Ismael et al., 

1986). 
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Sprince and Pakrastinsh (1991) investigated the behaviour of helical screw piles in four 

different soils (fine sand, floating loam, sandy loam, and hard loam) using finite element 

software (Lira 9.2). They found that screw piles have different capacity values with different 

soil types and the capacity of the screw pile is directly proportional to the embedment depth 

of the screwed plate. Two helical pile load testing was conducted by Sakr (2011) in Canada. 

He stated that helical piles are an effective foundation system for solar plants due to the speed 

of installation and their high tensile capacities. 

Recently, a concern has emerged to achieve the maximum efficiency of solar panels by 

modifying the design methods of the supporting structures (GadhaviAkash and Kundaliya, 

2015). A solar tracker is basically a system which is used to fit and orientate solar panels and 

thermal collectors to gain the maximum amount of the sunlight (Mohammad and Karim, 

2012; Parmar et al., 2015). There are three main types of solar trackers and they are 

categorized according to their movements: fixed solar tracker, single-axis tracker, and dual-

axis tracker (Gil et al. , 2009). 

Figure 2.9 Types of PV foundation (Worden, 2014) 
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Most previous and current research in this field has been focused on increasing the 

performance of the solar panels, either by constructing highly efficient modules or reducing 

the losses caused by several reasons such as using improper tilt angles of the solar panels. 

The optimal tilt angle is a function of time. In other words, it is dependent on the movement 

of the sun. Thus, solar tracking systems have been designed to follow the sun in order to 

maintain an optimum tilt angle throughout the day.  

Many researchers have investigated the effects of using solar trackers (Abdallah, 2004; Abu-

Khader et al. , 2008; Dakkak and Babelli, 2012; Eke and Senturk, 2012; Koussa et al. , 2011; 

Helwa et al. , 2000). They have found that the effects can be clearly noticed when comparing 

the energy output obtained from fixed tracking system with the energy obtained from single-

axis or dual-axis solar trackers. Furthermore, that the two-axis solar trackers have the highest 

increase in obtained energy compared to other solar tracking systems. In addition, it is 

generally accepted that the gained energy would be increased by approximately 30% when 

implementing dual-axis solar (Bayod-Rujula et al., 2011; Eldin et al., 2016). However, 

although a larger amount of energy can be produced by tracking systems compared with fixed 

mounting systems, solar trackers are considered expensive and require more maintenance.  

In this thesis, the effect of using different tracking systems will be evaluated by technical 

performance. Economic and environmental evaluations will also be conducted to investigate 

the different tracking systems in five different sites in Kuwait. 

From the existing literature, it can be observed that most researchers have focused on 

investigating the effects of wind load and self-weight of the solar tracker as main external 

loadings. Naik et al. (2013) analysed a solar panel supporting structure by using ANSYS 

software. They focused on analysing and optimizing the solar structure and found that, based 

on the initial analysis results that showed stresses and deflections in the support structure, 

optimization can be carried out in particular locations. In addition, they found that a weight 

reduction of around 14% can be achieved, which will have a positive impact on production 

and manufacturing costs. Mihailidis et al. (2009) conducted a study into solar panel support 

structures. The main tasks of the study were load calculation, analysing the structure, and 

identifying critical structural points. They concluded that solar support structures should be 

tested to withstand wind load even when they are properly designed. Moreover, they 

recommended that analysis of the aerodynamic loads should be carried out for many wind 

directions. The design and stability of a supporting structure in India subjected to wind force 
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was assessed by Mathew et al. (2013). They concluded that a reaction force created by the 

weight of the structure itself is a key element in terms of the stability of the whole structure. 

The effects of self-weight and wind load on structural deformation were studied by Cao et al. 

(2013). They considered two different wind speeds blowing from different directions. Results 

indicated that there was no failure in the structure and that displacement of solar modules is 

affected by the elevation angles of the solar tracker. Aly and Bitsuamlak (2013) performed a 

study to investigate the impact of wind loads on ground-mounted solar panels. They found 

that the model size does not affect the mean loads, whereas the peak loads are significantly 

affected by the geometric scale. Baetu et al. (2013) created a numerical model in order to 

analyse the effect of the wind on solar panels. They applied computational fluid dynamics 

and used different wind directions. They found that the amount of stress on the solar panels is 

influenced by the wind direction. In their study, the highest pressure occurred at an angle of 

180
◦
. 

Stathopoulos et al. (2014) investigated the distribution of wind pressure on the solar panels of 

stand-alone PV systems sited on the roof of a building. A wind direction of 135º had a 

significant effect on the pressure coefficients. The researchers also found that building height 

has a slight impact on the load created, and the highest load is created at the corners of the 

solar panels. Giorges et al.(2014) created a numerical model of wind loads on residential 

roof-mounted PV arrays. They investigated the wind-induced pressure on the solar panels. 

Complex flow types were obtained through changes in wind angles. They also found that the 

clearance between the solar panels and the roof has significantly impacts the induced pressure 

on the solar panels. 

Recently, as the need of using tracking systems has increased in order to maximise the 

produced energy by the solar panels, studies have begun investigating the behaviour of 

single-axis and dual-axis tracking systems. The conducted studies, in this regard, are not so 

different as they still considering the wind load and the self-weight as the primary loads. 

However, using different inclination angles and using different direction in which the wind 

load is blowing the surfaces of the solar panels has become essential in order to evaluate the 

effects of the external loads.  

Ferroudji et al. (2013) modelled a two-axis solar tracker using finite element software. They 

used a 130 km/h wind speed and demonstrated that the maximum stress is equal to 74.43 
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MPa and the maximum settlement of the structure is 1.2mm. A design and analysis study of a 

dual axis solar tracker was conducted by Bezawada et al. (2014). Results showed that a 15% 

higher yield can be achieved as a result of using the dual-axis tracker, and the wind loads are 

the most important parameters to be taken into account when designing solar trackers. 

Solar tracker is just like any construction in which it is vulnerable to failure or destruction 

when it is exposed to excessive loading. In order to avoid failure of the solar trackers, it is 

important to have more knowledge about the behaviour of the solar trackers when it is loaded 

by external forces such as wind. In other words, determining the maximum induced stresses 

and strains will provide important information about the weak areas at the solar trackers.  

Lates (2008) conducted a mechanical behaviour study of a solar tracking system. He looked 

at the critical position of the system using the finite elements method. Results showed that the 

rotational joints of the structures are critical sites, where the maximum stresses have 

occurred. 

As the direction of the solar tracker is changing during the day to follow the sun in order to 

maintain the optimal orientation to harvest the highest solar irradiation, it is necessary to 

investigate the behaviour of the solar tracker using different wind directions. A wind load 

analysis of a dual-axis solar tracker was conducted by Vellcu and Lates (2014). They 

evaluated the stresses on the solar trackers based on different wind load directions. They 

recommended that the materials of any proposed solar trackers should be designed based on 

the strength criteria. 

In this research, numerical modelling through finite element methods will be utilised to 

investigate the behaviour of solar trackers in Kuwait, with fixed, single-axis and dual-axis 

tracking systems, against the external loadings. The effect of different wind magnitudes and 

directions will be considered. In addition, different tilt angles will be investigated with 

different wind directions. 

2.6 Conclusions 

The solar modules are highly influenced by climatic conditions, such as temperature. Thus, 

the high temperature in summer and frequent dust storms in Kuwait are extremely important 

variables which need to be assessed. Results are likely to recommend frequent cleaning to 

avoid the deposition of dust particles on the surfaces of the PV modules.  
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It can be concluded that solar module efficiency is greatly affected by the climate conditions 

in a proposed location. Hence, it is vital to consider the metrological data from any proposed 

to determine the most appropriate location. In addition, from an economic perspective, this 

would avoid the need for a lot of maintenance work, such as frequent surface cleaning of the 

solar modules.  

It was found from the literature review that the majority of the conducted works and research 

in Kuwait based on the following assumptions:  

- Using only one constant value for solar irradiation throughout the whole year. 

- Using empirical equations, with inaccurate assumptions, to calculate the energy 

produced by PV systems. 

- Using one source of data for the metrological data. 

It was also found that the performance parameters of the PV systems, environmental and 

economic evaluations are the most important investigative elements of any feasibility study in 

solar energy field.  
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Chapter 3 – Methodology 
3.1 Introduction 

This chapter describes the methods and techniques used to investigate the feasibility of using 

solar photovoltaic systems (PV) in Kuwait. As stated in the introduction chapter, there is a 

growing need to use renewable energy sources instead of fossil fuels such as oil and natural 

gas in order to satisfy the high energy demand.  Environmental concerns related to global 

warming support the switch to renewable energy such as wind and solar energy.  

The stakeholders in this case are the people involved in the solar energy field, who can also 

act as important reference points or sources of information that may be missing or unclear. 

With regard to stakeholders, it is important to highlight the fact that solar energy is not an 

independent discipline, such as civil or mechanical engineering; that is, the science behind 

and use of solar energy is not taught as a comprehensive curriculum spanning  two to four-

years like structural or geotechnical engineering which is taught as a complete programme. 

The study of solar energy is multi-disciplinary and comprises fundamental science and 

engineering principles together principles of physics and electrical engineering (Gevorkian, 

2014).  

In order for the researcher to gain a better understanding of the research area, as part of the 

PhD plan, it was agreed with the supervisor that the researcher follows a parallel programme 

that mostly comprises attendance at relevant courses and conferences, as follows: 

 Renewable Energy Management & Finance course at the University of London. 

 Solar Photovoltaic course at the University of London. 

 International Conference on Energy Research & Development (ICERD – 6). 

 Participating in relevant conferences and journals. 

The objectives of this research study will be determined on the basis of the findings of the 

literature review and the information gained at the conferences and courses outlined above. In 

addition, this research will consider the outcomes of the following studies in order to judge 

the feasibility of using PV systems in Kuwait (see Figure 3.1): 

 Performance evaluation study. 

 Environmental evaluation study. 

 Economic evaluation study. 

 Numerical modelling study. 
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Section 3.2, introduces the site selection process which consisted of three stages, namely: 

Stage 1 that involved the selection of all available sites on the map and, Stage 2 and 3 which 

involved the screening out and final selection process, respectively. The selected (proposed) 

sites are listed in Section 3.3, the data collection process is presented in Section 3.4 and the 

technical evaluation is presented in Section 3.5. The environmental and economic evaluations 

are presented in Sections 3.6 and 3.7, respectively, while Section 3.8 presents the numerical 

modelling. 
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Figure 3.1 The main feasibility elements used in this research 
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3.2 Site Selection Process 

According to the literature site selection is the most important step when it comes to setting 

up solar systems. The feasibility of PV systems is highly dependent upon the location of the 

site. Feasibility can be evaluated in different ways, including on the basis of solar resources 

and climate conditions of the selected location.  

The main objective of the site selection process for the purposes of this thesis is to identify all 

the suitable and available sites in Kuwait and assess them in terms of productivity and cost 

effectiveness. The site selection process (Figure 3.2) is divided into the three stages described 

below.  

3.2.1 Site Selection – Stage 1 

The first stage was to select all available sites in Kuwait (that is sites that are not being used 

for anything in particular) using the map of the state of Kuwait. The initial goal was to 

include the most suitable sites even if there was some doubt about their availability; this 

could be checked out as part of the next task.  

Kuwait consists of six governorates (Figure 3.3) and nine islands (Figure 3.4). The 

governorates are Jahra (11,230 Km
2
), Al Asimah (200 Km

2
), Farwaniya (190 Km

2
), Hawalli 

(80 Km
2
), Mubarak Al-Kabeer (100 Km

2
) and Ahmadi (5,120 Km

2
). The islands are Failaka 

(48 Km
2
), Bubiyan (683 Km

2
), Miskan (around 1.21 Km

2
), Warbah (37 Km

2
), Auhah (4 

Km
2
), Umm al Maradim, Umm an Namil, Kubbar (29 Km

2
) and Qaruh. Failaka, Bubiyan and 

Warbah represent around 4.4% of the total area of the country and this large area could be 

investigated for the setting up of photovoltaic systems. Field visits confirmed that there are a 

good number of available sites within the Kuwait governorates, such as in Jahra and Al-

Ahmadi. Dump sites (landfills) and the islands were also included in the study. 
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Figure 3.2 Site selection process 
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Figure 3.3 Kuwait governorates (Sunbelt, 2014) 

Figure 3.4 Kuwait islands (Maps of World, 2014) 
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3.2.2 Site Selection – Stage 2 

Since Kuwait is a relatively small country, the effect of solar radiation is not a primary factor 

to be taken into account in the selection of the site; however, it is taken into account in this 

research when assessing sites in terms of annual production in order to have more detailed 

results which may be used in future or even for different purposes.  The second step was to 

analyse and screen out the selected sites based on the following factors: 

• Kuwait Government Laws 

Certain Kuwaiti laws do not allow construction or the use of any land without permission 

from the relevant ministry. Some sites cannot be developed, such as, for examples sites near 

land allocated to the Defence Ministry, Oil Ministry and Dewan Al-Ameri sites. Therefore, 

this is a key factor of consideration in the selection of a site even when it is the most 

appropriate site for a solar energy installation. This results in a number of free (unused) sites 

not being available for potential projects. 

The biggest Kuwaiti islands, Failaka (48 Km
2
) and Bubiyan (683 Km

2
), are initially chosen 

as potential sites for a photovoltaic solar system.  

Although there are no clear laws preventing the use of Kuwaiti islands for renewable energy 

projects, the political situation in the country renders the use of these islands for these types 

of projects a sensitive issue. This is because, following Kuwait’s liberation from the Iraqi 

invasion of 1990, these islands retained the status of protected areas and can only be used for 

military purposes. 

• Field visits  

An important part of the engineering process is to obtain a complete set of data and 

information from maps, reports and field visits. The field visit (as part of the site selection 

exercise) is an important task because the given data and maps may not be fully up-to-date. 

Some changes on the ground might not be easily captured on a map or even in updated 

reports. The field visit included visits to private companies that are interested in solar energy. 

Following an intensive survey and visits to companies and people interested in solar energy, 

in both the private and the government sector, it was found that: 
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 Since Kuwait is a small country with a high rate of population growth (about 3.3%) 

(Alotaibi, 2011), there is a need for new residential areas,  preferably at or close to the 

city centre.  

 Large projects will lead to the renewal and construction of new highways and bridges to 

solve or minimise traffic problems, and sometimes there is a need to partially or 

completely remove some existing buildings (whether new or old) in order to carry out on-

going and long-term projects.  

Therefore, it can be concluded that it would be wiser not to site the solar energy installation 

within the Kuwaiti governorates. In addition, it was found that the best way to use solar 

energy in governorates in Kuwait is to use small scale solar panels, where the solar panels are 

put on the roofs of buildings.  

 

 

 

 

 

 

 

 

 

 

 

 

 



71 
 

• Landfill in Kuwait 

It was established from literature review and field visits that landfills in Kuwait are used only 

for the dumping of waste. In other words, there is no evidence that they can or have been 

used for other purposes, such as renewable energy projects that would capitalise on their 

relatively large areas. 

In Kuwait, sites earmarked for landfilling are not selected using engineering methods or even 

on the basis of long-term strategic goals; they are usually sand and aggregate quarries that 

can be filled in. Landfill is the main disposal system used in Kuwait, although prior to 1970, 

burning dumps were the most commonly used method to dispose of waste (Koushki et al., 

2004). In 1970 the government started to use particular sites (dumping sites) as landfills. The 

daily average municipal waste production per capita is around 1.4 kg/person, which is high 

when compared to other countries (AL-Meshan and Mahrous, 2002).  

The landfill sites selected were mostly quarries from which sand and gravel was extracted to 

be used in construction projects. Such quarries could be from 5m to 18m deep and could be 

found anywhere, not necessarily far away from residential areas. Kuwait has 16 landfill or 

dumping sites making up a total area of 29.5 Km
2
, which is around 0.166 % of the total area 

of the state of Kuwait (AL-Fares et al., 2010); Table 3.2 shows the landfill sites in Kuwait. 

The landfill sites are distributed across the six governorates of the state (Figure 3.5). Only 

three of the sites, al Jahra, the Ring Road and the Meena Abdullah site, are still in operation; 

the rest are closed.  The total area of the closed sites adds up to 8.35 Km
2
 (28.12 %) while the 

total area of the sites which are still in operation adds up 21.35 Km
2
 (71.88 %) (Figure 3.6). 

These sites do not satisfy the minimum requirements of environmental standards for site 

design and site selection. In conclusion, given the general lack of data on the soil properties 

of landfills and the lack of engineering designs, the Landfill will not be included in this study. 
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Table 3.1 Landfill sites in Kuwait 

Serial Site Name Waste Type 
Start 

year 

End 

Year 
Status 

Depth 

(m) 

Area 

(km²) 

1 Kabd 
Animal Waste + 

Household Waste 
1999 2001 Closed NA 0.37 

2 Al Qurain Construction Waste 1975 1985 Closed 
Up to 

20 
0.7 

3 Jleeb Al Shuyoukh 

Construction Waste + 

Household Waste + 

Liquid Waste 

1970 1993 Closed >15 5.498 

4 East Sulaibiya  Construction Waste  -  - Closed  - 0.17 

5 Sabhan Military 
Construction Waste + 

Household Waste 
1984 1991 Closed 

Up to 

20 
1.798 

6 Sabhan  Construction Waste 1980 1986 Closed 
Up to 

13 
0.499 

7 Al Egaila Construction Waste NA NA Closed NA 0.11 

8 Al-Shuaiba 
Construction Waste + 

Liquid Waste 
1982 2005 Closed 

Up to 

15 
0.13 

9 Al Yarmouk Construction Waste NA 2004 Closed 
Up to 

10 
0.5 

10 Al Wafra Construction Waste NA NA Closed NA 0.2 

11 Failaka 
Construction Waste + 

Household Waste 
NA 1990 Closed NA 2.71 

12 Al Jahra 
Construction Waste + 

Liquid Waste 
1986 

Till 

date 
Open >15 1.983 

13 Al-Sulaibiyah 
Construction Waste + 

Liquid Waste 
1982 2005 Closed 

Up to 

15  
2.76 

14 Seventh Road (N) 
Construction Waste + 

Liquid Waste 
1986 2005 Closed 

Up to 

15 
5.91 

15 Seventh Road (N) 
Construction Waste + 

Liquid Waste 
1992 

Till 

date 
Open >15 4.475 

16 Mina Abdullah 
Construction Waste + 

Liquid Waste 
1992 

Till 

date 
Open >15 1.896 
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Figure 3.5 Dumping site locations in Kuwait (AL-Fares et al., 2010) 

Figure 3.6 Percentage of open and closed landfills in Kuwait 
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• Availability of Data 

When selecting a site for any proposed project, having access to the full set of data about the 

site, in addition to relevant legislation and any other information obtained on the site visits, is 

extremely important as it saves considerable time and effort. The lack of data, for any reason, 

could be a main cause of hindrance as it could lead to a waste of time, increased costs and 

even exclusion of the most appropriate sites. 

Data is a major component of any research study, as it aids the investigation, whether this be 

experimentation in the field or the lab or numerical investigation. Data provides the solid 

foundation on which to design engineering works. After selecting the proposed sites in Stage 

2, obtaining the required data for each site, such as solar irradiation, became essential. In 

other words, the availability of site data is extremely important in order to start the study and 

obtain the results to meet the proposed objectives. 

3.2.3 Proposed (Selected) Sites 

As a result of the site selection process carried out in Stages 1 to 3, the following sites were 

selected: Shagaya, Kabd, Sabria, Mutribah and Umm Gudair. The location of the selected 

sites are listed in Table 3.3. Figure 3.7 shows the selected sites on the Kuwait solar map. 

Incidentally, the sites selected represent the different regions in Kuwait, specifically: the 

Mutribah site represents the northern part of the country; the Umm Gudair site represents the 

southern part; and, the Shagaya and Kabd sites represent the western and eastern parts of 

Kuwait, respectively. In addition, the Sabria site is the closest to the biggest Kuwaiti islands 

(Failaka and Bubiyan) and, as such, could be considered to best represent these islands. 

Table 3.2 Selected sites 

 

 

 

 

 

 

Site Name Latitude (N) Longitude (E) 

Shagaya 29.2
◦
 47.1

◦
 

Kabd 29.2
◦
 47.7

◦
 

Sabria 29.6
◦
 47.9

◦
 

Mutribah 29.9
◦
 47.4

◦
 

Umm Gudair 28.7
◦
 47.8

◦
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Figure 3.7 Selected sites on the Kuwait solar map (KISR, 2014b) 
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3.3 Data Collection  

3.3.1 Introduction 

The next step after selecting the proposed sites is data collection. It is important to generate 

all of the required data for each site in order to determine the research tasks and objectives 

within the planned methodology in order to achieve the objectives of this study. For the 

purposes of this study three types of data, namely, meteorological, geotechnical and 

structural, were collected. 

3.3.2 Meteorological Data 

In order to perform a simulation study of the performance of the PV systems by means of 

generating electricity by the solar modules, the meteorological data, PV solar modules, and 

inverters will be the main input data that would be used. 

The meteorological data for the proposed sites were collected from KISR (Kuwait Institute 

for Scientific Research) and were used to assess the sites, that is to calculate relevant 

parameters and values (monthly and annual electricity production rate, performance ratio, 

capacity factor, and the amount of CO2 savings). This data included basic meteorological data 

used in analysing and designing photovoltaic systems, such as solar irradiance, temperature 

and wind speed. The meteorological data used in this study pertained to the five sites 

identified in the selection stage in different locations in Kuwait, namely Shagaya, Kabd, 

Sabriya, Mutribah and Umm Gudair. The available data comprised satellite data for the five 

sites over long periods ranging from 1994 to 2012. Ground station data for one complete year 

(September 2012 to August 2013) were also collected. The ground station data was used to 

validate the use of the satellite data. This data are the only available data in Kuwait.  

3.3.3 Structural and Geotechnical Data 

For the purposes of this study a Si-poly model (S255P60 Professional) PV module made in 

Germany by Centro Solar and Sunny Central 630CP-JP inverters manufactured by SMA 

Solar Technology AG were used. These particular solar modules and inverters were chosen 

as they are suited to the hot desert climate in Kuwait (Rashed, 2014). Moreover, they are used 

for experimentation in a small scale project at top roof of the Water and Electricity Ministry 

as they are heavy duty, durable and have a high-performance (Rashed, 2014). The dimensions 

and material properties of the solar modules are shown in Table 3.4.  
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Table 3.3 Dimensions and material properties of  the Si-poly model S255P60 Professional solar modules 

(Centro Solar, 2014). 

Weight 20 kg 

Module width 1,660 mm 

Module height 990 mm 

Frame thickness 40 mm 

Material Copper 

Front side material 
Structured low-iron glass 

(antireflex) 

Rear side material White foil 

Frame material Anodised aluminium 

 

There are many factors involved in the processes of selecting a solar tracker type, for 

instance, the power station size, location and land area. There is a range of solar trackers on 

the market manufactured by different companies across the world. Most manufacturing 

companies focus on the design stage and the stability of the solar structure against external 

loads, such as wind. In addition to these external loads, one important factor to be taken into 

consideration when choosing a solar tracker type is Kuwait’s extremely hot weather climate 

(characterised by the desert climate). Therefore, the Patriot Solar Group’s ground mount solar 

tracker, which is known for its durability and ability to work in such harsh environments, was 

chosen for use in this study. 

As previously stated, the behaviour of the dual-axis solar tracker and ground against the 

external loads will be investigated and therefore data pertaining to the ground properties (soil 

layers) will be used in the study of the proposed PV systems. Information on basic soil 

properties, such as unit weight, and some advanced geotechnical properties such as the 

cohesion, will be required.  

The Shagaya site, located at the South West of the Kuwaiti capital, is the only site out of the 

selected sites for which geotechnical data is available and, therefore, was selected as the site 

on which to conduct the numerical modelling study of the proposed PV solar tracker.  
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The Gulf Inspection International Company, a private company, carried out investigations 

and soil tests on the Shagaya site in 2013. The detailed results of this investigation were 

provided by KISR in a report on ground investigation works for the Shagaya Renewable 

Energy Power Plant KUWAIT.  

3.4 Performance Parameters Evaluation  

A performance parameters evaluation will be conducted to determine the performance 

parameters of the proposed sites in the selected sites. The International Energy Agency (IEA) 

has identified the following performance parameters for photovoltaic systems (Marion et al., 

2005): 

o total energy generated by the PV system; 

o final yield (YF); 

o reference yield (YR); 

o performance ratio (PR); 

o capacity factor (CF); and 

o system efficiency. 

The most effective way to obtain the performance parameters of the proposed sites is through 

the use of simulation software. There are several simulation software tools that are widely 

used to simulate renewable energy systems, the most commonly used for PV systems being 

RETScreen, PV F-Chart, Solar Design Tool, INSEL, TRNSYS, NREL Solar Advisor Model 

(SAM). The choice of software to be used depends on the purpose of the study; for instance, 

the TRNSYS software is most suitable for energy simulations (Frontini et al., 2013). The 

Solar Advisor Model (SAM) is another recommended software tool which is widely used in 

different renewable energy projects. SAM software is a commonly used program in solar 

energy fields for both grid-connected and stand-alone systems (Frontini et al., 2013; 

Kandasamy et al., 2013; Lee et al., 2011; Siraki and Pillay, 2010). For the purposes of this 

research, however, it is not the ideal choice as it is not uploaded with Kuwaiti metrological 

data. Moreover, the single-axis and dual-axis tracking systems that are an integral part of this 

study are not easy to simulate in this program. 

Although SAM software allows the user to enter metrological data, this requires a special 

data format, called a typical meteorological year (TMY) data. TMY data represents the 

metrological data for a period of 30 years or more for a specific location on a reasonable 
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annual data set, including the type of data that is mostly used by building designers and in 

other renewable energy conversion systems (Wilcox and Marion, 2008).  

After contacting the relevant ministries and organisations in the state of Kuwait, the 

researcher was only able to identify one site with a TMY file, is Kuwait’s international 

airport, which is not relevant to this study.  

PVsyst software is used only on photovoltaic applications and, as such, is more focused on 

photovoltaic energy principles (Mermoud, 1995). It will be used in this study as it allows the 

user to import data. In addition, it has a valuable online database that is updated with all the 

related specifications of the modules and inverters on the market produced by different 

companies across the world. After obtaining the results from the PVsyst program, the 

performance of the PV system for each site will be assessed according to the parameters set 

and the effect of using single-axis and dual-axis tracking systems will also be investigated.  

The monthly data relating to each selected site will be compared on the basis of the energy 

output and performance ratio. In addition, an annual base analysis will also be conducted 

based on the performance parameters to obtain a more effective analysis and enable 

comparison of the results with similar results reported in the literature. 

3.5 Environmental Evaluation  

As stated in the literature review and the introduction, the increased rate of use of fossil fuels 

is a serious danger that threatens the future of the human race. This danger is manifested in 

different ways, for example, global warming. Global warming is attributed to the high 

amounts of greenhouse gases (GHG) that are emitted as result of using fossil fuels, such as 

oil and natural gas, to generate electricity. The environmental evaluation study will be 

conducted at all the proposed sites and the influence of using single-axis and dual-axis 

tracking systems will also be evaluated.  

It is evident in the literature review that the most commonly used method in environmental 

studies is the life cycle assessment (LCA) method. According to this method, any product, 

such as the solar modules for the PV systems which are being considered in this study, is 

assessed on the basis of its life cycle. In other words, the assessment will include all the life 

stages of the product, starting from the point of acquisition of the material and ending at the 

recycling stage. All the energy used in the life cycle will be estimated including the energy 
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used in installation, maintenance and even recycling. This will give a detailed, accurate and 

complete picture about the role of PV systems in environment pollution.  

It should be emphasised here that, although PV systems are known as being environmentally 

friendly technology as no emissions are emitted when this technology is implemented, a large 

amount of emissions is emitted in the production stage which uses a large amount of energy 

for instance, in refining and purifying the silicon material used in PV systems. 

The evaluation study will be conducted in two ways; first, the LCA will be conducted which 

will evaluate PV systems in terms of the Energy Payback Time (EPBT), the energy yield 

ratio (EYR) and the GHG emissions rate. At this stage, the total energy used in the life cycle 

of the PV system will be estimated together with the total amount of emissions generated. 

The evaluation indices (EPBT, EYR and GHG emissions rate) will be calculated based on the 

annual produced energy which will be obtained from the performance parameters study. 

Second, in order to gain a better understanding of the environmental benefits of using PV 

systems, the amount of avoidable GHGs as a result of implementing PV systems in Kuwait 

will be estimated together with the effect of using different tracking systems. 

3.6 Economic Evaluation 

An economic evaluation study of the proposed sites will be conducted to meet another main 

objective of this research. Various methods are used to evaluate the feasibility of renewable 

energy projects, such as payback time (PBT), accounting rate of return (ARR), net present 

value (NPV), and levelized cost of electricity (LCOE). 

PBT is the time that the project will take to cover the cost of the investment. It is a simple and 

easy method to apply. However, it does not take into account the time value of the money and 

revenues after including payback time. ARR is the ratio between the average profits and the 

initial investment. It is also considered an easy to use method, but once again it does not 

include the effect of time value. 

NPV is a widely used method on which the decision of accepting or rejecting the proposed 

projects can be based. It is simply the summation of all cash flow values including the initial 

investment cost. A positive NPV value (NPV>0) means the proposed project may be 

accepted, while a negative NPV value (NPV<0) means the project should be rejected.  
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The levelized cost of electricity (LCOE) is another common method used to compare 

different techniques and technologies for producing electricity, such as comparing the cost of 

electricity generated by a renewable technology and conventional power plants (Bakhshi and 

Sadeh, 2016). LCOE is an important measure that can be used in evaluating the financial 

aspect of many energy generation technologies. A lot of solar technology projects are 

economically evaluated based on the LCOE methodology, which focuses on the lifetime of 

generated energy and the total cost of the installed system (Branker et al., 2011). The main 

inputs of LCOE are the installation cost, and operations and maintenance (OM) costs. It is 

generally agreed that photovoltaic solar module efficiency and the levels of solar radiations at 

the installation site are the most important factors of PV technology (Smestad, 2008). 

In this study the LCOE method will be used in investigate the proposed PV systems in 

Kuwait. An economic evaluation of the proposed sites will be conducted to investigate the 

feasibility of using PV systems in Kuwait. In order to effectively evaluate the proposed PV 

systems by the means of a complete study from economic perspectives, the focus will be 

applied on the following stages: 

o An economic assessment of implementing PV systems; 

o Cost-benefit analysis; and 

o Cost of CO2 saved. 

The economic assessment of the implementation of PV systems in Kuwait will be conducted 

by determining the LCOE for each individual site using different tracking systems. The 

results obtained will be compared with the LCOE values of conventional power plants in the 

State of Kuwait. In this comparison, the key parameter of the comparison between the 

proposed PV systems and the conventional power plants will be considered to be 0.12 $/kWh 

(0.09 £/kWh). 

In addition, as stated in the literature review, in order to overcome the uncertainty and the 

lack of the data related to Kuwait to be used by generated using the LCOE method, a 

sensitivity analysis of the most important factors involved in the LCOE calculations, such as 

the installation costs, interest rates, and the lifetime of PV system components, will be 

conducted. 

A cost-benefit analysis of using the proposed PV systems will be carried out to determine the 

amount of money that would be saved by using PV systems to generate electricity instead of 

using conventional power plants. In this study, the effect of oil price fluctuation will be 
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considered by assuming a wide range of oil prices, from $20 (£15.34) to $100 (£76.68)   per 

barrel.  

Finally, the amount of CO2 emissions avoided as a result of using PV systems at the proposed 

sites will be determined in monetary terms to add value to the economic analysis of the use of 

PV systems.  

3.7 Numerical Modelling  

The numerical modelling of the proposed solar trackers is an important objective in this 

research as it will support and complement the previous methods used to assess the feasibility 

of using PV systems in Kuwait. Moreover, the numerical modelling will be conducted to 

investigate the behaviour of the solar tracker and the ground will significantly address a gap 

in the knowledge identified in the literature review.  

Numerical modelling using the finite element method will investigate the use of a fixed, 

single-axis and dual-axis solar tracker in Kuwait. The process will help check the stability of 

the solar tracker against its self-weight and the wind load. The effects of the wind load from 

different directions will be taken into account.  

It should be highlighted here that another important reason for carrying out numerical 

modelling in this research is the fact that the efficiency of the solar modules is dependent 

upon the orientation and tilting angle of the solar modules, and thus, any changes to either 

caused by unexpected soil settlement due to stresses and strain on the soil particles can have 

an impact on their efficiency. Therefore, the study of the behaviour of the solar tracker and 

the ground as a whole model is very helpful in order to increase the efficiency of the solar 

modules.  

It bears pointing out here that previous research did not generally include the ground (soil 

layers) when analysing and designing the solar tracker structure against external loads 

including wind load. 

The basic principle behind the use of solar trackers is to increase the efficiency of the solar 

modules by tracking sunlight. In other words, the solar modules should be positioned towards 

sunlight in order to receive the highest amount of solar radiation. Thus, the sunlight is tracked 

by changing the solar tracker elevation (inclination angle) and orientation position. It is clear 

that the movement of the solar tracker and the wind load are the main parameters in this study 
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and there is no clear correlation between them. Moreover, the thermal loads from high 

temperature are included in this study.  

In this study, in order to study the effects of aerodynamic loads and self-weight of the tracker, 

equivalent stress, displacement, equivalent strain and factor of safety will be determined. The 

effects of inclination angles of the solar tracker and of different wind directions will be also 

investigated. 

Selecting the appropriate software is an extremely important step in order to meet the 

predetermined goals and objectives of any proposed study. There is no doubt that the purpose 

of the study is the most important measure to select the software; however, in large scale 

studies with changing variables or objectives. 

 It is very useful to use the software that has the highest reliability and is flexible enough to 

cater for any unexpected changes even in the objectives or the main aim of the proposed 

study. In this research, the numerical modelling study will be conducted based on the finite 

elements method (FEM) using COMSOL Multiphysics software.  

This software is commonly considered to be one of the most robust and effective finite 

elements programs in benchmark studies (Hickey and Gottsmann, 2014), which can be used 

to solve multi-physics problems. Moreover, it allows the user to import geometry from other 

software.  One additional important advantage of using COMSOL Multiphysics software is 

the ability to use more analytical or constitutive equations; in other words, the user can add or 

change the mathematical equations.  

Stability analysis is an important aspect of geotechnical engineering analysis. In addition, 

solar trackers must be able to withstand wind loads. This 3 D soil-structure interaction study 

will place a great deal of emphasis on the stability of the soil and the proposed foundations as 

the solar modules efficiency is highly affected by the inclination angle and the orientation of 

the solar tracker.  

It is generally accepted in the geotechnical engineering scientific field that soil behaviour is 

not linear and, therefore, effective modelling of the soil behaviour by means of selecting the 

best constitutive model was an important step in this study. Table 3.5 lists the common 

constitutive models that are used in numerical modelling applications (El-Hamalawi, 2002). 
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In order to investigate the behaviour of both the PV solar tracker and the soil against the 

external loads, the following parameters, which are the commonly used parameters, will be 

considered (Ferroudji et al., 2014): 

o von Mises stress; 

o equivalent strain; 

o factor of safety (FOS); and  

o displacement. 

 

Table 3.4 Constitutive Models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Description 

Linear-Elastic Relationship 

 

- simple. 

- based upon Hooke’s theory. 

 

Elastic-Plastic Relationships 

 

Defines two stress states 

- the elastic domain  

- the material yield surface. 

  

Tresca Yield Criterion 

- Suited for metals yield criterion.  

 

- States that the onset of yielding occurs when 

the maximum shear stress in the material 

reaches a critical value. 

 

Von Mises Yield Criterion 

- Suited for modelling the behaviour of metals 

yield criterion 

 

-  States that plastic yielding occurs when the 

second deviator stress reaches a critical 

value. 

Mohr-Coloumb Yield Criterion 

- Suited for materials soils and concrete 

whose behaviour is highly dependent upon 

the hydrostatic pressure within the material. 

Drucker Prager Yield Criterion 

- The Drucker-Prager yield surface forms a 

smooth approximation of the Mohr-

Coulomb criterion making a pressure 

sensitivity modification to the previously 

discussed Von Mises surface. 
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Chapter 4 – Performance Parameters of Photovoltaic Systems in 

Kuwait 

4.1 Introduction 

The performance of solar modules depends on the type of technology employed (i.e. the 

efficiency of the modules) and is also considerably influenced by environmental conditions, 

e.g. temperature and dust (Fuentealba et al., 2015).  

As stated in the introduction chapter, Kuwait has a desert climate, which is primarily dry and 

hot in summer and cold in winter, with some humidity and instances of dusty weather during 

the year. This type of weather influences the performance of the solar modules, in particular 

the very hot conditions during the summer months, when the temperature varies between 

25⁰C and 45⁰C in the shade, which in the sun can reach higher values. These effects can 

clearly established in a technical manner by determining energy output throughout the year.  

The performance assessment is an important criterion, investigating the performance of any 

proposed photovoltaic (PV) system in accordance with all relevant input data, e.g. the 

metrological data of the proposed site. Such technical assessments are generally conducted 

through the use of performance parameters.  

In feasibility studies of PV systems, inaccurate data is primarily attributed to the 

measurement of the values of solar irradiation and electrical power (Fuentealba et al., 2015). 

These errors were therefore taken into consideration during the current research, enabling the 

acquisition of accurate data, i.e. Section 4.2, in which two sources of data were used: (1) 

satellite data for the long term study and (2) ground station data for a single year. 

This chapter discusses the performance parameters investigating the potential use of PV 

systems to generate electricity in Kuwait. The study focussed on five different sites in 

Kuwait, obtaining relevant data and using two sources of data for validation purposes. 

Commercial software (PVsyst) was employed to analyse data (e.g. metrological data and 

additional input parameters) and compute the performance parameters.  

An investigation was also undertaken into the effect of using single-axis and dual-axis PV 

systems on the performance parameters. Firstly, Section 4.2 introduces the selected sites and 

metrological data in which the study is applied; secondly, Section 4.3 outlines the proposed 
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PV system; thirdly, Section 4.4 outlines the performance parameters; fourthly Section 4.5 

discusses the results: and finally, the conclusions are discussed in Section 4.6. 

4.2 Selected Sites and Metrological Data 

As stated in Section 3.2, the proposed sites for implementing PV systems in Kuwait were 

selected through the site selection process undertaken in Chapter 3. Five different sites were 

selected to conduct the performance parameters of the proposed systems: (1) Shagaya; (2) 

Kabd; (3) Sabria; (4) Mutribah; and (5) Umm Gudair (Figure 3.6). The location and elevation 

of the selected sites are listed in Table 4.1.  

 

Table 4.1 Location and elevation of the selected sites  

 

 

 

 

 

 

 

As stated in Section 3.5, PVsyst, PC software package for the design and analysis of PV 

systems, will used to compute the performance parameters of the PV systems at the selected 

sites. Many researches in photovoltaic energy field have been conducted using PVsyst 

software (Kumar and Sudhakar, 2015). PVsyst is basically simulation software that is 

commonly used in feasibility studies to evaluate the performance of any proposed PV system. 

This software is supplemented by a metrological database in numerous parts of the world, 

such as global irradiation, wind speed, and temperature (Muñoz et al., 2016). Moreover, one 

important advantage of this software is that personal data can be imported as well.   

The simulation processes passes through simple procedures; starting with defining the 

location and metrological input data for the proposed site, the orientation and the type of 

tracking systems and the type of proposed solar modules and inverters (SolarEdge, 2016).The 

key data inputs required by this software to estimate the energy production from the proposed 

sites are: (1) meteorological data; (2) location; (3) PV module type; (4) inverter type; and (5) 

Site Name Latitude (N) Longitude (E) Elevation (m) 

Shagaya 29.2⁰ 47.1⁰ 240 

Kabd 29.2⁰ 47.7⁰ 76 

Sabria 29.6⁰ 47.9⁰ 74 

Mutribah 29.9⁰ 47.4⁰ 88 

Umm Gudair 28.7⁰ 47.8⁰ 201 
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the electrical and mechanical specifications of the PV modules. Inverters are required to 

perform the design and the analysis process of the proposed PV systems.  

It is important to emphasise that solar irradiation values are not constant throughout the year, 

but change as a result of the sun’s declination over both a single day and due to seasonal 

variation. The literature review identified that a considerable proportion of previous research, 

and in particular that focussed on Kuwait, has employed a constant solar radiation, termed the 

average solar radiation. However, using an average value of the solar irradiation throughout 

the year can lead to highly inaccurate results, leading to inappropriate decisions.  

Therefore, this aspect was addressed by acquiring the solar irradiation data for each site on a 

daily basis. The meteorological data for the proposed sites were collected from KISR, and 

used in assessing the sites by calculating the performance parameters. This included basic 

meteorological data employed in analysing and designing PV systems, e.g. solar irradiance, 

temperature and wind speed.  

The data employed consisted of satellite data for all the selected sites over the long term, i.e. 

from 1994 to 2012. There was also a collection of ground station data for one complete year 

(i.e. September 2012 to August 2013). Each of the meteorological ground stations is based on 

a 10 m tower, consisting of four wind speed cup-type sensors at 1, 4, 6, and 8 m heights to 

derive the wind speed profile (KISR, 2014). In addition, a combined wind speed and 

direction sensor at a height of 10 m was employed, along with one solar radiation sensor 

(pyranometer), with an uncertainty of 5% (Figure 4.1). A pyranometer is a common 

measurement tool of global solar irradiation, placed horizontally over a flat surface, in order 

to receive solar radiation from all directions (Lysko, 2006). 

In this current study, the ground station data validates the use of the satellite data. Tables 4.2-

4.6 demonstrate the average daily and monthly solar irradiation of the ground stations for 

Shagaya, Kabd, Sabriya, Mutribah, and Umm Gudair from September 2012 to August 2013. 

The average annual solar irradiation for the ground and satellite data are listed in Tables 4.7 

and 4.8, respectively. The data employed is relatively matching, and therefore provide an 

effective indication of the quality of the collected data (Table 4.9).  
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Figure 4.1 A typical meteorological station (KISR, 2014b) 
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Table 4.2 The average daily and monthly data for Shagaya from September 2012 to August 2013. The data was 

collected from KISR. 

Month 
Average daily solar irradiation 

(kWh/m
2
) 

Average monthly solar 

irradiation (kWh/m
2
) 

September 6.728 201.83 

October 5.156 159.83 

November 3.77 113.11 

December 3.198 99.14 

January 3.545 109.89 

February 4.849 135.77 

March 5.772 178.92 

April 6.775 203.26 

May 7.572 234.72 

June 8.08 242.39 

July 8.123 251.81 

August 7.652 237.20 

 

Table 4.3 The average daily and monthly data for Kabd from September 2012 to August 2013. The data was 

collected from KISR. 

Month 
Average daily solar irradiation 

(kWh/m
2
) 

Average monthly solar 

irradiation (kWh/m
2
) 

September 6.426 192.77 

October 4.970 154.06 

November 3.633 109.00 

December 3.051 94.57 

January 3.449 106.93 

February 4.787 134.04 

March 5.694 176.53 

April 6.506 195.18 

May 7.248 224.68 

June 7.817 234.50 

July 7.832 242.81 

August 7.345 227.70 
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Table 4.4 The average daily and monthly data for Mutribah from September 2012 to August 2013. The data was 

collected from KISR. 

Month 
Average daily solar irradiation 

(kWh/m
2
) 

Average monthly solar 

irradiation (kWh/m
2
) 

September 6.485 194.56 

October 4.819 149.38 

November 3.509 105.26 

December 2.960 91.75 

January 3.344 103.65 

February 4.597 128.73 

March 5.510 170.80 

April 6.404 192.11 

May 7.278 225.62 

June 7.940 238.19 

July 7.904 245.03 

August 7.441 230.68 

 
Table 4.5 The average daily and monthly data for Sabreya from September 2012 to August 2013. The data was 

collected from KISR. 

Month 
Average daily solar irradiation 

(kWh/m
2
) 

Average monthly solar 

irradiation (kWh/m
2
) 

September 6.496 194.89 

October 4.952 153.52 

November 3.530 105.91 

December 3.049 94.51 

January 3.296 102.19 

February 4.672 130.81 

March 5.539 171.71 

April 6.569 197.06 

May 7.256 224.94 

June 7.843 235.28 

July 7.887 244.50 

August 7.441 230.68 
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Table 4.6 The average daily and monthly data for UmmGhdair, from September 2012 to August 2013. The data 

was collected from KISR. 

Month 
Average daily solar irradiation 

(kWh/m
2
) 

Average monthly solar 

irradiation (kWh/m
2
) 

September 6.728 201.83 

October 5.337 165.44 

November 3.970 119.10 

December 3.378 104.71 

January 3.744 116.05 

February 5.046 141.29 

March 5.939 184.10 

April 6.684 200.51 

May 7.470 231.56 

June 7.824 234.72 

July 7.734 239.75 

August 7.668 237.71 

 

Table 4.7 Average annual solar irradiation of the ground stations for Shagaya, Kabd, Sabriya, Mutribah, and 

Umm Gudair, from September 2012 to August 2013. The data was provided by the Kuwait Institute for 

Scientific Research. 

Site Solar irradiation (kWh/m
2
/year)  

Umm Ghdair  2176.8 

Shagaya 2167.9 

Kabd  2092.8 

Sabreya  2086 

Mutribah 2075.8 
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Table 4.8 Average annual solar irradiation of the satellite data for Shagaya, Kabd, Sabriya, Mutribah, and Umm 

Gudair. The data was collected from KISR. 

Site Solar irradiation (kWh/m
2
/year)  

Umm Ghdair  2123.4 

Shagaya 2054 

Kabd  2119.5 

Sabreya  2072.7 

Mutribah 2059 

 

Table 4.9 Solar irradiation (kWh/m
2
/year) for satellite data and ground station data for Shagaya, Kabd, Sabriya, 

Mutribah and Umm Gudair. The data was collected from KISR. 

Site Ground Stations Satellite data % (Satellite/Ground) 

Umm Ghdair 2176.8 2123.4 97.55 

Shagaya 2167.9 2054 94.75 

Kabd 2092.8 2119.5 101.28 

Sabreya 2086 2072.7 99.36 

Mutribah 2075.8 2059 99.19 

 

 

 

The potential use of PV systems on the proposed sites can be initially determined from the 

solar irradiation data of each site. Figures 4.2 to 4.6 show the monthly solar irradiation of the 

proposed sites, which varies between 91.75 and 251.81 kWh/m
2
 throughout the year. The 

minimum value was recorded in December at the Mutribah site, and the maximum value was 

recorded in July at the Shagaya site.  

In general, high rates of solar irradiation were reported between June and August. This is the 

peak of summer in Kuwait, during which there is sunlight for a considerable proportion of 

each day, giving the solar modules the most effective opportunity to harvest a higher amount 
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of solar irradiation. The opposite is true for the period between November and February, 

during which days are relatively short. Thus, the variation in daily solar irradiation is 

attributable the earth’s rotation around its axis every twenty-four hours, while the data also 

reveals monthly variations in solar irradiation, and between summer and winter, due to the 

variation in hours of sunshine. 

The location of the proposed site (i.e. the country) needs to be taken into consideration, 

including whether it is situated in the northern or southern hemisphere. This is due to the 

earth revolving round the sun in 365 days, leading to a variance in the hours of sunshine, and 

thus the inclination and orientation of the solar modules are affected by the sun’s movement, 

both during a single day and an entire year. This ensures the vital role of solar tracking 

systems, including methods of maximising the amount of solar irradiation received. The 

importance of implementing solar trackers is discussed below, during the comparison of the 

amount of energy received by both fixed and tracking PV systems. At the same time, the 

variation in the recorded data of the selected sites (i.e. from site to site) is considered normal, 

as the selected sites are distributed in different locations in the country, i.e. this variation in 

data is fairly limited.  

 

Figure 4.2 Solar irradiation for the Shagaya site 
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Figure 4.3 Solar irradiation for the Kabd site 

  

 

Figure 4.4 Solar irradiation for the Mutribah site 
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Figure 4.5 Solar irradiation for the Sabreya site 

  

 

Figure 4.6 Solar irradiation for the UmGudair site  
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4.3 The Proposed PV System 

The selected sites are located in open areas, where there is no indication of projects being 

undertaken by either private or government sectors in the near future. Therefore, this study 

considers the most effective option to be large-scale PV systems. In addition, large-scale 

capacity systems (i.e. generally larger than 5 MW) tend to be the most effective systems in 

terms of long-term investment and environmental benefits. However, the most common 

disadvantages of large scales PV systems include the need for a considerable amount of land 

and a relatively high degree of investment. This is addressed in the current study by locating 

the selected PV sites in uninhabited open areas, at a sufficient distance from residential and 

commercial areas.  

The energy produced by PV systems is highly influenced by the technical specifications of 

the systems applied, e.g. PV modules and inverters; climate conditions; and the type of 

mounting structure (Aste and Del Pero, 2010). As stated in the literature review, the solar 

modules convert the sunlight into electricity (DC), and therefore the efficiency of the solar 

modules is taken with great interest weather in the production stage of these modules or the 

power production stage. However, it is important to emphasise that the efficiency value of the 

any single module is computed at the standard test conditions (STC). This needs to be 

considered when designing a new PV system, in which the main base output consists of the 

amount of electricity required. The subsequent design step consists of the selection of the 

type of PV modules, as this determines their number, as well as the configuration of the 

proposed PV system. 

In this present study, a 100 MW grid connected power station is proposed for all selected 

sites, with each power station divided into eight arrays, of 12.5 MW for each array. A PV 

module type Si-poly model (S255P60 Professional) and Inverter type Sunny Central 630CP-

JP Manufacture (SMA) were used in this study. The PV module specifications and the design 

configuration for each array are provided in Table 4.10. 
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Table 4.10 Design array configuration and PV module specifications (Centro Solar, 2014; SMA, 2014) 

Total number of PV modules 
49020 modules 

In series: 20 modules; In parallel: 2451 strings 

PV module type Si-poly model (S255P60 Professional) 

Maximum Power (Pmax) 255 Wp 

Voltage at Maximum Power (Vmpp) 29.87 V 

Current at Maximum Power (Impp) 8.54 A 

Open Circuit Voltage (Voc) 37.69 V 

Short Circuit Current (Isc) 8.99 A 

Efficiency 15.50 % 

Inverter Model 
Sunny Central 630CP-JP 

Manufacture: SMA Solar Technology AG 

Operating Voltage 500-850 V 

 

4.4 Performance Parameters of the Proposed PV Systems 

This section analyses the results for each single site, based on the results obtained from 

simulations using PVsyst software of the proposed PV systems, with different tracking 

systems. The main objective of this chapter is to determine the performance parameters of the 

proposed PV systems in the selected site, using different tracking systems.  

As stated in Section 2.5.2, the International Energy Agency (IEA) stated that the main 

components of the performance parameters of PV systems consist of the total energy 

generated by the PV system; Final Yield (YF); Reference Yield (YR); Performance Ratio 

(PR); Capacity Factor (CF); and system efficiency (Marion et al., 2005).  
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The equations 2.1 to 2.5 were introduced in Section 2.5.2 to explain the performance 

parameters. These equations have been reproduced below: 

YF =EAC / PPV, rated                                              (2.1) 

YR = (Ht) (kWh/m
2
) / G (1 kW/ m

2
)                 (2.2) 

PR = YF / YR                     (2.3)  

CF = EAC / (PPV, rated x 8760)                             (2.4) 

The performance parameters of the proposed PV system can be established by computing all 

performance parameters recommended by EIA, and comparing the results with separate 

results, i.e. from the literature. A detailed analysis will be undertaken of the performance 

parameters of each site, based on the above definitions and equations. The effect of using 

different tracking systems is discussed in the following section. 

4.5 Results and Discussion 

A crucial step in this research is the performance evaluation of the proposed PV systems in 

Kuwait. It forms the solid base of this research, which focuses on a detailed analysis of the 

feasibility of PV systems in Kuwait. Thus, the results of the performance evaluation clarify 

the need to continue seeking further feasibility components, including the economic and 

environmental parts previously selected for investigation. The environmental and economic 

evaluation studies are dependent on the performance evaluation study, and therefore the 

results of the technical study will form a primary input for both the environmental and 

economic evaluation studies. This is clarified in detail in the next chapters (i.e. chapters 5 and 

6). 

The feasibility study was undertaken in Kuwait, leading to considerable focus on selecting 

appropriate sites in which to undertake the study. It is important to ensure the selection of the 

most representative sites, in order to ensure effective coverage of the entire country. This is 

demonstrated in the site selection process contained in the methodology of this current 

research. At the same time, considerable focus has been placed on methods of acquiring the 

metrological data, i.e. the type and period. Two different sets of data were employed (i.e. 

satellite and ground station data) for validation purposes for all the selected sites. It is 

important to use high quality data for these types of renewable energy projects, in order to 

ensure accuracy and so obtain precise and realistic results. The main input data employed in 
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the simulation software included the metrological data and the specifications of the proposed 

PV system components, e.g. solar modules and inverters. 

It should also be noted that considerable effort was made to ensure a complete and robust 

performance evaluation study through the use of a preliminary stage. This study focussed on 

covering most of the identified gaps, or underestimated parameters, identified in the 

literature, as can be seen in: (1) the type of data collected; (2) the process of site selection (i.e. 

the selection of the most appropriate sites) and (3) the use of specialised software. The 

literature review identified that only a small number of authors have investigated the 

performance of the solar photovoltaic systems in Kuwait. This current study also identified a 

lack of investigation in Kuwait into the effect of using tracking systems with a complete 

technical view, which can be attributable to a lack of interest in the use of renewable energy. 

The performance evaluation study was conducted by determining the performance parameters 

recommended by EIA. The investigation took place in two parts: (1) the first part was based 

on a monthly basis analysis, in which the most important two parameters for each site were 

computed, i.e. the monthly production and the performance ratio. (2) The second part 

focussed on an investigation undertaken on an annual basis, in which all the performance 

parameters were determined. The importance of the second part was subsequently identified 

when comparing the results with relevant works in the field of PV energy, in order to 

effectively evaluate the obtained results. 

As noted in the literature review, one of the challenges negatively affecting or delaying 

utilising PV systems in Kuwait (and other countries with hot and arid climates) is the high 

summer temperatures in such regions. It should be further noted that, alongside the increase 

in temperature during the summer months, there is also an increase in the number of hours of 

sunshine, i.e. between nine hours in December and eleven hours in August (see Table 4.11.). 

This ensures additional sunshine hours for the production of energy.  
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Table 4.11 The monthly average duration of sunshine in Kuwait. (data taken from KISR, 2014b) 

 

 

  

 

 

 

 

 

 

Any increase in production time (i.e. sunshine hours) will have positive results for large scale 

projects in terms of the total energy produced. A holistic analysis is important when 

evaluating such conditions with dependent variables, i.e. the efficiency of the solar modules 

is inversely proportional to the temperature. It is therefore important to balance both the 

expected advantages and disadvantages of the proposed project prior to decisions being taken 

in projects highly affected by several parameters. 

A detailed study was conducted at the selected sites, based on a monthly data analysis for the 

energy output and the performance ratio. In addition, the annual basis analysis was also 

considered (i.e. by means of performance parameters), in order to obtain a more focused 

analysis and a comparison of the results with those found in the literature. The output energy 

and the performance ratio of each site, with different tracking systems, are listed in Tables 

4.12 to 4.16. The monthly energy output for fixed tracking systems varies between 12001 and 

16513 MWh, and between 13252 and 21978 MWh for single-axis tracking systems, and 

14677 and 22540 MWh for dual-axis tracking systems.  

The minimum energy output of the proposed fixed tracking systems was obtained at the 

Mutribah site, while the maximum value was observed at the UmGudair site. The minimum 

energy output values of single-axis and dual-axis tracking systems were obtained at the 

Month Sunlight (hours) 

January 8 

February 8.55 

March 9 

April 8 

May 10 

June 10 

July 10 

August 11 

September 10 

October 10 

November 8 

December 7 

Year 9.1 
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Mutribah and Kabd sites, respectively, while both maximum obtained values of the energy 

output were observed at the Sabria site. The performance ratios for the proposed systems 

varied between 69.92% and 86.41% for the fixed proposed tracking systems and between 

67.85% and 86.79% and 67.62% and 85.60% for the single-axis and dual-axis tracking 

systems, respectively. The minimum performance ratios were found at the Kabd site, and the 

maximum values at the Mutribah site. 

Overall, the average energy output per month was equal to 14257 MWh for fixed tracking 

systems, with an average performance ratio of 78.17%. An average output energy of 17615 

and 18608.5 MWh was also established, with an average performance ratio of 77.32% and 

76.61% for both the single-axis and dual-axis tracking systems. This variation in the results 

obtained was not unexpected, as the selected sites were in different locations and subject to 

different metrological data. 

 

Table 4.12 The energy output in MWh and the performance ratio in % for the Shagaya site. 

Month 

Energy output (MWh) Performance ratio (PR) % 

Fixed Single-axis Dual-axis Fixed Single-axis Dual-axis 

January 13301 15061 16489 86.03 86.41 85.17 

February 13371 15723 16405 83.94 83.81 83.02 

March 16148 20081 20400 81.56 81.56 81.53 

April 14497 18611 18789 79.22 78.76 78.95 

May 15199 19945 20399 76.38 75.75 75.80 

June 15332 20522 21156 73.64 72.18 71.79 

July 15676 20864 21390 72.51 71.04 70.76 

August 15834 20740 20986 71.84 70.42 70.52 

September 15857 20044 20195 73.65 72.81 72.75 

October 14985 18165 18629 77.36 77.17 76.47 

November 12327 13971 14994 82.51 82.67 81.53 

December 12511 14109 15672 86.16 86.51 85.17 

Year 175038 217836 225504 78.06 77.16 76.91 
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Table 4.13 The energy output in MWh and the performance ratio in % for the Kabd site. 

Month 

 

Energy output (MWh) Performance ratio (PR) % 

Fixed Single-axis Dual-axis Fixed Single-axis Dual-axis 

January 12994 14564 15889 85.77 86.08 84.88 

February 13216 15344 16042 84.18 84.12 83.51 

March 16349 20260 20562 81.58 81.43 81.37 

April 14676 18488 18638 79.29 78.81 79.04 

May 15514 20217 20664 76.16 75.55 75.61 

June 15787 20641 21200 72.25 70.18 69.65 

July 16351 21664 22144 70.48 68.10 67.62 

August 16376 21135 21342 69.92 67.85 67.88 

September 16191 20042 20152 72.02 70.84 70.68 

October 15490 18536 19079 77.14 77.04 76.38 

November 12443 14142 15093 82.57 82.70 81.72 

December 12132 13257 14677 85.38 85.69 84.45 

Year 177519 218290 225482 77.16 75.91 75.64 

 

 

Table 4.14 The energy output in MWh and the performance ratio in % for the Sabria site. 

Month 

Energy output (MWh) Performance ratio (PR) % 

Fixed Single-axis Dual-axis Fixed Single-axis Dual-axis 

January 12719 14299 15653 85.77 86.14 84.93 

February 12909 15090 15758 83.99 83.88 83.20 

March 16116 20109 20446 81.72 81.68 81.62 

April 14486 18472 18639 79.77 79.35 79.55 

May 15333 20333 20817 76.55 76.04 76.14 

June 15622 21329 21986 72.83 71.14 70.69 

July 16080 21978 22540 71.40 69.53 69.18 

August 16159 21650 21913 70.59 68.93 69.00 

September 16099 20424 20578 72.39 71.39 71.23 

October 15293 18502 19094 77.39 77.38 76.68 

November 12499 14205 15288 82.61 82.83 81.84 

December 12061 13380 14843 85.72 86.10 84.87 

Year 175376 219771 227555 77.54 76.46 76.21 
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Table 4.15 The energy output in MWh and the performance ratio in % for the Mutribah site. 

Month 

Energy output (MWh) Performance ratio (PR) % 

Fixed Single-axis Dual-axis Fixed Single-axis Dual-axis 

January 12832 14451 15853 86.41 86.79 85.60 

February 13060 15242 15944 84.53 84.44 83.74 

March 16414 20569 20962 82.11 82.14 82.08 

April 14452 18688 18879 79.63 79.49 79.73 

May 15113 19921 20366 75.91 75.23 75.29 

June 15455 21281 21951 72.39 70.87 70.45 

July 15935 21911 22485 70.70 68.77 68.45 

August 15979 21448 21706 69.96 68.20 68.26 

September 15922 20227 20380 72.27 71.42 71.23 

October 14850 17887 18388 77.63 77.67 76.94 

November 12335 13982 15044 83.29 83.52 82.57 

December 12001 13252 14748 86.40 86.78 85.59 

Year 174348 218859 226706 77.51 76.41 76.18 

 

Table 4.16 The energy output in MWh and the performance ratio in % for the UmGudair site. 

Month 

Energy output (MWh) Performance ratio (PR) % 

Fixed Single-axis Dual-axis Fixed Single-axis Dual-axis 

January 13556 15347 16705 85.63 85.93 84.75 

February 13553 15895 16568 83.82 83.70 83.05 

March 16513 20616 20934 81.47 81.33 81.27 

April 14767 18949 19127 79.01 78.46 78.68 

May 15389 20214 20676 76.26 75.57 75.57 

June 15464 21148 21822 72.70 71.04 70.51 

July 16080 21888 22439 71.21 69.09 68.62 

August 16204 21815 22089 70.70 68.95 68.99 

September 16179 20507 20651 72.52 71.38 71.28 

October 15822 19218 19783 77.26 77.09 76.47 

November 12757 14465 15441 82.36 82.37 81.31 

December 12560 13872 15328 85.62 85.95 84.73 

Year 178844 223934 231563 77.47 76.28 76.00 
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The literature review established that the efficiency of solar modules is highly influenced by 

climate conditions, and in particular high temperatures, i.e. one of the most common 

characteristics of Kuwait. A comparison based on the energy output and performance 

parameters of different tracking systems can be seen in Figures 4.7 to 4.16, which also 

include the effect of temperature, based on the average monthly temperature in Kuwait.  

Figures 4.7 to 4.16 reveal that the maximum energy output values were obtained in March for 

the fixed tracking systems, and in July for the single-axis and dual-axis tracking systems, 

while, for all tracking systems, the minimum energy output values were observed in 

December. The highest performance ratios were observed in January for all tracking systems, 

while the minimum values occurred in August for both fixed and single-axis tracking 

systems, and in July for dual-axis tracking systems.  

The energy output of the proposed PV systems was impacted in two ways for all tracking 

systems: firstly, the increase in temperature (commencing in April and reaching its peak 

values in July, then subsequently decreasing); and secondly, the increase in hours of sunshine 

during this period. As a result, the figures reveal that the combined effect of the increase in 

temperature and the length of sunshine was insignificant. However, an examination of the 

performance ratio of the proposed systems is the most effective way of understanding the 

correlation between the temperature and performance of the PV systems. It was observed that 

the performance ratio of all the proposed systems decreases with an increase in temperature. 

This is primarily attributable to the heating of the solar modules as the temperature increases 

during summer, leading to a decrease in the efficiency of the solar modules.  

In addition, the fixed tracking systems demonstrated the most effective average performance 

(78.17 %) and the dual-axis tracking systems the lowest average performance ratio (76.61 %), 

while the single-axis tracking systems demonstrated an average performance value of (77.32 

%), due to the high amount of energy lost. This can be observed in the behaviour of the dual-

axis tracking systems, which move in two separate directions to follow the sun with the 

optimum inclination and orientation of the solar modules, in order to collect the maximum 

amount of solar irradiation. Although the highest amount of output energy was observed to 

originate from the dual-axis solar trackers, they also have the highest degree of energy loss, 

as observed in the performance ratios. The highest performance ratios were achieved by the 

fixed tracking systems, in which the amount of collected energy was less than the single-axis 

and dual-axis tracking systems, but less energy was also lost. 
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Figure 4.7 The monthly energy output with different tracking systems for the Shagaya site.  

 

 

Figure 4.8 The monthly performance ratio with different tracking systems for the Shagaya site. 
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Figure 4.9 The monthly energy output with different tracking systems for the Kabd site. 

 

Figure 4.10 The monthly performance ratio with different tracking systems for the Kabd site. 
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Figure 4.11 The monthly energy output with different tracking systems for the Sabria site. 

 

Figure 4.12 The monthly performance ratio with different tracking systems for the Sabria site. 
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Figure 4.13 The monthly energy output with different tracking systems for the Mutribah site. 

 

Figure 4.14 The monthly performance ratio with different tracking systems for the Mutribah site. 
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Figure 4.15 The monthly energy output with different tracking systems for the UmGudair site. 

 

Figure 4.16 The monthly performance ratio with different tracking systems for the UmGudair site. 

0

5

10

15

20

25

30

35

40

0

5000

10000

15000

20000

25000

T
e
m

p
e
r
a

tu
r
e
 ◦

C
 

E
n

e
r
g

y
 o

u
tp

u
t 

(M
W

h
) 

Month 

Fixed Single-axis Dual-axis Temperature(◦c) 

0

5

10

15

20

25

30

35

40

0

10

20

30

40

50

60

70

80

90

100

T
e
m

p
e
r
a

tu
r
e
 ◦

C
 

P
R

 (
%

) 

Month 

Fixed Single-axis Dual-axis Temperature(◦c) 



110 
 

The yearly basis analyses were considered to obtain a more focused analysis and compare the 

obtained results of this current research with those found in the literature. The detailed results 

of the performance parameters study for the proposed sites can be seen in Table 4.17. 

Annual energy production varies between 17434 and 178843 MWh, with an average of 

176232.4 MWh for fixed tracking systems, and 217835 and 223935 MWh and 225481 and 

231563 MWh, with an average of 219738.4 MWh and 227361.6 MWh for the single-axis and 

dual-axis tracking systems, respectively. The minimum values of annual production were 

achieved at the Mutribah, Shagaya and Kabd sites, while the highest values for all tracking 

systems were obtained at the UmGudair site.  

The performance ratios varied between 77.1% and 78.1% for the fixed tracking systems, and 

between 75.6% and 77.2%, and 75.6% and 76.9 %, for the single-axis and dual-axis tracking 

systems, respectively. The highest performance ratios were recorded at the Shagaya site and 

the lowest at the Kabd site.  

It is generally understood in the field of PV energy that the performance ratio of PV systems 

range between 75% and 85% (Aste and Del Pero, 2010). Moreover, a number of performance 

ratio values for a number of selected countries have been collected from the literature are 

listed in Table 4.18. 

The average annual production gained from using fixed tracking system was 176232.4 MWh 

while 219738.4 MWh and 227361.6 MWh were obtained through the use of single-axis and 

dual-axis tracking systems, respectively. This increase in annual production (i.e. 

approximately 24.7% and 29%) forms a key element, and therefore needs to be taken in 

consideration.  

Table 4.17 reveals that the capacity factor (CF) for all sites for the fixed tracking system 

varied between 19.9% and 20.42%, while single-axis and dual-axis systems varied between 

24.87 % and 25.56 %, and between 25.74 % and 26.43 %, respectively. These values are 

within the typical capacity factor range for PV systems (15-40%) (Hajiah et al., 2012).  
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     Table 4.17 Performance parameters for the selected sites (Al-Rashidi and El-Hamalawi, 2016) 

Site 

Annual 

production 

(MWh/year) 

Yield factor 

(kWh/kW/year) 

Yield 

reference 

Performance 

ratio (%) 

Capacity 

factor (%) 

Shagaya      

Fixed 175075 1750.75 2242.3 78.1 19.99 

Single-axis Tracking System 217835 2178.35 2822.9 77.2 24.87 

Dual-axis Tracking System 225503 2255.03 2932.1 76.9 25.74 

Kabd      

Fixed 177519 1775.19 2301 77.1 20.26 

Single-axis Tracking System 218291 2182.91 2875.5 75.9 24.92 

Dual-axis Tracking System 225481 2254.81 2980.6 75.6 25.74 

Sabriya      

Fixed 175378 1753.78 2261.7 77.5 20.02 

Single-axis Tracking System 219772 2197.72 2874.6 76.5 25.09 

Dual-axis Tracking System 227556 2275.56 2985.9 76.2 25.98 

Mutribah      

Fixed 174347 1743.47 2249.3 77.5 19.90 

Single-axis Tracking System 218859 2188.59 2864.4 76.4 24.98 

Dual-axis Tracking System 226705 2267.05 2976 76.2 25.88 

UmmGudair      

Fixed 178843 1788.43 2308.7 77.5 20.42 

Single-axis Tracking System 223935 2239.35 2935.3 76.3 25.56 

Dual-axis Tracking System 231563 2315.63 3046.7 76.0 26.43 

 

 

 



112 
 

Table 4.18 Selected different performance values for multi-Si PV from literature. 

Location Mounting type Performance ratio (%) Reference 

Western Europe Ground mounted 75 (Alsema, 2000) 

North Africa Rooftop 85 (Pehnt et al., 2003) 

Japan Rooftop 77 (Hondo, 2005) 

Southern Europe Ground mounted 87 (Frankl et al., 2005) 

Europe Rooftop 75 
(Fthenakis and Alsema, 

2006) 

Turkey Ground mounted 83 (Stoppato, 2008) 

Gobi desert Rooftop 75 (Ito et al., 2010) 

Southern Europe Rooftop 75 (De Wild-Scholten, 2013) 

China LS-PV 75 (Hou et al., 2016) 

 

CF is a main element to be considered when assessing the usage of a power source, with its 

maximum value being theoretically equal to 100%. In practice, this value cannot be achieved, 

due to this requiring an operational rate of twenty-four hours per day, and it is impossible to 

obtain such an availability of sunlight. Thus, if sunlight is assumed to be available for twelve 

hours a day, the ideal CF value is 50%. However, in reality, the maximum CF is slightly 

lower than 50%, as a result of the energy conversion losses, while the typical CF for PV 

systems varies between15% and 40%.  

YF values range between 1743.47 and 1813.27 kWh/kW/year for fixed tracking systems. 

These results are excellent when compared with the leading countries using PV systems 

(Table 4.19).  

A significant increase was achieved in CF and YF values, these being approximately 24% 

and 28.8% in relation to the use of single-axis and dual-axis tracking systems, respectively. 

The average values of PR for fixed, single-axis and dual-axis systems were 77.5 %, 76.4 % 

and 76.2 %, respectively. These values are important indicators in establishing the causes of 

the large amounts of energy lost due to the solar energy conversion processes and the hot 

climate during the summer months in Kuwait.  
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Figures 4.17 to 4.20 compare the selected sites, based on: (1) the annual energy production; 

(2) yield factor; (3) yield reference; and (4) the performance ratio. This reveals that the most 

effective results were from UmmGudair. This was anticipated, due to the site having the 

highest annual solar irradiance (2176.8 kWh/m
2
/year).  

Moreover, although the Mutribah site had the lowest solar irradiance value (2075.8 

kWh/m
2
/year), its results were identical (or slightly improved) in comparison to the Shagaya 

and Kabd sites, which had improved solar irradiance values. From this, it can be observed 

that it is important to analyse processes for all available metrological data to obtain realistic 

results, in particular when selecting sites stage in solar projects. 

Table 4.19 YF (kWh/kW/year) of different countries (data taken from Hajiah et al., 2012)  

Country 
Yield factor (YF) 

(kWh/kW/year) 

Germany 400-1300 

Japan 470-1230 

Netherlands 400-900 

Italy 450-1250 

Switzerland 450-1400 
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Figure 4.17 Annual production of the selected sites (Al-Rashidi and El-Hamalawi, 2016) 

 

Figure 4.18 Yield factor of the selected sites (Al-Rashidi and El-Hamalawi, 2016) 
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Figure 4.20 Yield Reference of the selected sites (Al-Rashidi and El-Hamalawi, 2016) 

Figure 4.19 Yield Reference of the selected sites (Al-Rashidi and El-Hamalawi, 2016) 

Figure 4.20 Performance Ratio of the selected sites (Al-Rashidi and El-Hamalawi, 2016) 
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4.6 Conclusions 

In this current study, a technical evaluation was undertaken of the use of PV systems at five 

different sites in Kuwait, in order to determine the performance parameters, along with an 

examination of the effect of using fixed, single-axis and dual-axis tracking systems.  

The amount of produced energy ranged between 174347 and 178843 MWh for the fixed 

tracking systems, and from 217835 and 223935 MWh and 225481 and 231563 MWh for the 

single-axis and dual-axis tracking systems, respectively. It was established that the variance 

in the annual production energy between the proposed sites was 2.58 % for the fixed tracking 

systems, and 2.80 and 2.70 % for the single-axis and dual-axis tracking systems, respectively. 

This indicates that the effect of location is insignificant for the state of Kuwait, as the country 

is relatively small in area. This conclusion is also found in the literature for relevant research 

conducted in Kuwait, due to the majority of the studies considering the whole country as one 

site. However, these small degrees of variation in the results have a significant influence 

when it comes to accuracy and research undertaken in a professional manner, in particular for 

large-scale projects.  

The implementation of solar tracking systems led to this increasing by 24.7% and 29%. In 

addition, there was a significant increase in CF and YF values of approximately 24% and 

28.8%, related to the use of single-axis and dual-axis systems, respectively. However, despite 

the encouraging results gained by the use of single-axis and dual-axis PV systems, lower 

performance values were obtained for tracking systems, due to the high energy loss resulting 

from overheating of PV modules as a result of high summer temperatures. This current study 

established that the performance parameters values obtained by using tracking systems are 

highly beneficial to electricity generation in Kuwait, as an alternative source to conventional 

power plants. 
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Chapter 5 – Environmental Evaluation 

5.1 Introduction 

An environmental evaluation study is one of the most important elements of feasibility 

studies of renewable energy projects. It is also considered that renewable energy sources, 

such as photovoltaic technology, will play a vital role, whether directly or indirectly, in 

minimising the serious effects of global warming.  

From another perspective, the final decision with regard to accepting or rejecting renewable 

energy projects is strongly affected by the results of the environmental evaluation study. For 

example, the need to meet the requirements of pressure from the international community, 

represented by the United Nations Framework Convention on Climate Change (UNFCCC) 

and the Kyoto protocol, could be prioritised over other issues, such as financial concerns. 

It is important to carefully include all of the stages that PV systems have passed through, 

from the acquisition of the raw materials to the final stage, when used materials are recycled 

instead of becoming waste materials. Moreover, it is also important to look at the amounts of 

greenhouse gas (GHG) emissions that would be avoided by implementing PV systems. In this 

chapter, the environmental impacts of utilising PV systems, with different tracking systems, 

in Kuwait will be assessed by conducting two different studies, as follow: 

o Life cycle assessment 

o Environmental benefits 

In other words, this chapter will investigate the negative impact of GHG emissions on the 

environment resulting from conventional power plants, and will then show how this is 

avoidable through the use of PV systems. The amount of GHG emissions that can be avoided 

at selected sites will be investigated, as well as the effect of using different types of tracking 

system. To this end, the effects of using fixed, single-axis, and dual-axis tracking systems 

will be evaluated. Section 5.2 will present a brief overview of the life cycle assessment 

(LCA). The specific aspects of LCAs related to PV systems will be described in in Section 

5.3, and the life cycle assessment of the proposed PV sites will be presented in Section 5.4. 

The environmental benefits evaluation will be introduced in Section 5.5, and the conclusions 

presented in Section 5.6. 
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5.2 Life Cycle Assessment (LCA) - Overview 

PV systems technology is often called an environmentally friendly technology, as it generates 

electricity by converting solar irradiation into electricity without producing emissions 

throughout its operation over time. In the operation stage, this is almost true, ignoring the 

very small amount of energy that is used for maintenance purposes. 

The fact that PV technology is a source of free and clean energy does not mean that such 

technology makes no contribution to environmental issues such as global warming. It seems 

likely that there has been a misunderstanding in the use of the term ‘environmentally friendly 

technology’. It is essential to include the total life cycle of each component of any proposed 

system in order to properly evaluate its impact on the environment.  

LCA is a widely-used measure in environmental evaluations of PV systems. The assessment 

includes all of the life stages of the product, from the acquisition of the materials (through 

multiple stages of manufacture and use) to the recycling stage (see Figure 5.1). It is generally 

considered a ‘cradle to grave’ approach, as it includes all of the emissions from the different 

life cycle phases of a product, from manufacturing to recycling. 

LCA studies of PV systems are carried out according to ISO standards (ISO 14040, 2006; 

ISO 14044, 2006) and any change or addition to the basic terms should be clearly stated 

(Fthenakis et al., 2011). It is generally agreed that it is important to carry out a LCA, as 

emissions into the environment may occur at different life cycle stages (Fthenakis and Kim, 

2011). 

It has been found that most GHG emissions (approximately 85%) occur in the production 

stage of solar modules (Dones and Frischknecht, 1998). This is due to the high use of 

electrical energy by the tools and machines used for this purpose. Moreover, this is one of the 

important advantages of using life cycle assessments (LCA), in which the production 

processes of all PV system components are taken into account. This approach, which will be 

applied in this study, is most appropriate and most commonly used in the renewable energy 

field, particularly in relation to photovoltaic energy, and will facilitate a detailed 

understanding of the effects that PV systems have on the environment.  
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The amount of GHG emissions will be estimated for each individual stage, and then a sum 

total given. The process of manufacturing solar modules, from the initial acquisition of the 

material, is a very long one, as the primary material, silicon, is not available in a pure form. 

Even though silicon is the second most abundant element (making up 28% of the Earth's 

crust), a large amount of energy is needed to access it in its pure form. High energy, in the 

form of heating, is applied to the raw materials quartz and sand, in order to produce 

metallurgical grade silicon (MG-Si), which is characterised by a high level of purity. Further 

purification processes are conducted using different methods, such as Czochralski and 

Siemens processes (Sonnenenergie, 2008), to produce solar grade silicon (SoG-Si). Finally, 

the silicon ingots are sawed into columns. Figure 5.2 shows the manufacturing process of 

silicon photovoltaic (Si-PV) modules, from raw acquisition to manufacturing stages. 

Figure 5.1 Flow of the lifecycle stages, energy, materials, and waste from PV systems (Fthenakis and Kim, 

2011) 
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Figure 5.2 Flow diagram from raw acquisition to manufacturing stages of Si-PV modules (Yue et al., 2014). 

The manufacturing technology used is another important factor, which is evident in Figure 

5.3, which shows that different amounts of energy are needed, even when using the same 

technology, for example, in China and in Europe. Furthermore, the variance in the results 

obtained by the same technology is arguably significant, and can be attributed to many 

factors, such as applying different boundary conditions.  

In addition, the amount of energy used to produce solar modules is not a fixed quantity. It is 

dependent on a number of factors, such as the type of solar module and the efficiency level of 

the proposed modules. For instance, the energy needed to produce ribbon-Si, polycrystalline-

Si, and mono-Si modules is 2300, 3700 and 4200 MJ/m
2
, respectively (Fthenakis and Kim, 

2011). Figure 5.4 presents the different energy requirements during the lifecycles of different 

PV systems. 

Moreover, the variance in CO2 emissions rates between the different LCA studies that have 

been conducted, is an important issue. For instance, when comparing Polycrystalline-Si and 

mono-Si, modules, which are the most dominant in the PV system market, it can be seen that 

although the mono-Si modules have higher efficiency than polycrystalline-Si modules, a 

higher amount of energy is consumed in their production, and more GHGs are emitted (Peng 

et al., 2013).  
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However, the complexity of LCA studies mainly results from uncertainties in the input data, 

and the method and scope of the study. These complexities are to be expected, as 

photovoltaic technology is not yet a mature technology. Therefore, with the greater 

experience that will be gained with time, more accurate results will be achieved. 

As previously mentioned, the majority of GHG emissions from PV systems result from 

manufacturing processes, and typically due to the use of energy in refining and purifying 

metallurgical grade silicon (MG-Si) to be used for the production of crystalline silicon solar 

cells. Based on several studies carried out in the United States, Europe, and Japan, it has been 

concluded that GHG emissions produced in this process range from 40 to 180 g-CO2,eq./kWh 

(Wong et al., 2016).  

 

Figure 5.3 Cumulative energy demand (CED) results (CN: China, RER: Europe) (Yue et al., 2014) 
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Figure 5.4 Review of energy requirements during the lifecycle of various PV systems (Peng et al., 2013) 

5.3 LCA Specific Aspects of PV Systems 

As mentioned previously, the LCA is known to be a comprehensive approach, in which all 

the lifecycle stages of any proposed product are covered, from manufacturing to recycling. 

However, depending on the purposes of the study, or perhaps a lack of information, one or 

more stages could be excluded from an assessment. Therefore, the goal and the boundaries of 

any proposed LCA study should be clearly stated, in order to avoid or minimise variance in 

LCA studies’ results, as was discussed in Section 5.2. In this study, all of the LCA stages 

mentioned will be considered, and the amount of energy used in each, or assumed values, will 

be clarified.  

It is vital to have robust and basic reference data for use when there is a lack of input data, in 

order to carry out an effective LCA study. Currently, reference data is not fully available for 

PV technology, as it takes a long time to properly evaluate each component with adequate 

testing. Photovoltaic energy, which is considered a highly promising technology, is not yet 

fully mature in comparison to other technologies.  However, the International Energy Agency 

Photovoltaic Power System Programme (IEA-PVPS) provides very useful guidelines 

(Fthenakis et al., 2011), which can serve as an important reference point to all stakeholders in 

PV systems technology. According to these guidelines, lifetime expectancy, solar irradiation 

data, performance ratio, and degradation rate are all important parameters in an LCA 

assessment. Solar irradiation data and performance ratio were discussed in Chapter 2; 
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however, lifetime expectancy and degradation rate will be briefly discussed in the following 

subsections. 

5.3.1 Lifetime Expectancy of PV Components 

Lifetime, or lifespan, is an important parameter of different energy technologies, such as PV 

systems technologies, and is essential to economic and environmental evaluations. The 

evaluation indices, such as the energy payback time (EPBT), which will be used in this 

research, are functionally and directly dependent on the used lifetime of the PV system. The 

sole or most important reference of PV systems components is the specifications and 

warranties that are provided with the products. However, the IEA-PVPS provides good 

recommendations that can be used as a reference when lifetime data for different PV systems 

components is required. Table 5.1 lists the lifetimes of different PV systems. 

Table 5.1 Lifetime of different PV systems (data taken from Basu, 2011) 

Modules 

30 years for mature module technologies, assuming module warranties (25 years - 

80% degradation or less after 25 years). 

Inverters 

15 years for small plants (residential PV); 30 years with 10% part replacement every 

10 years; 15 years for small plants (residential PV); 30 years with 10% part 

replacement for large size plants utility PV. 

Transformers 30 years. 

Structure 

 

30 years for roof-top, and between 30 to 60 years for ground-mount installations on 

metal supports. 

Cabling 30 years. 

 

5.3.2 Degradation Rate 

Even though solar modules play a substantial role in converting solar irradiation into 

electricity, the other PV components, such as inverters, also play a vital role in ensuring that 

the whole process of converting solar irradiation into electricity is achieved successfully. 

Hence, any performance failure of any PV system component will systematically affect the 

performance of the whole PV system. Furthermore, because photovoltaic energy is known as 

a long-term technology, in that it is implemented over long periods, the time parameter 
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should also be taken into account. The term ‘degradation’ is used here to represent the effect 

of different parameters, such as climate, on the performance of the PV system components. In 

order to accurately predict the amount of power that will be generated by PV systems, an 

accurate estimation of the degradation rate of PV system components is first required (Jordan 

and Kurtz, 2013).  

The power production capacities of PV systems throughout their lifetimes are highly 

dependent on their degradation rate. An inappropriate degradation rate value will lead to 

incorrect financial evaluation results, as well as failure of the system (Jordan and Kurtz, 

2013). The recommended degradation rate of PV systems is 0.5% per year for crystalline 

silicon PV modules, and it is assumed that mature module technologies will operate at 

approximately 80% of their initial efficiency at the end of their 30-year lifetime (Basu, 2011; 

Fthenakis and Kim, 2011). 

5.3.3 Evaluation Indices for PV Systems 

The LCA approach essentially computes the amount of energy used for and throughout each 

individual stage of the whole lifecycle of any product, as well as the amount of emissions 

produced. It is primarily concerned with the amount of energy that has been used, and is 

expected to be used. A LCA study provides a wide range of information and data in the form 

of input and output data, whereby the proposed PV system is analysed and the environmental 

evaluation then conducted. The literature review identified that evaluating PV systems using 

an LCA study involves the following measures: 

o Energy Payback Time (EPBT) 

o Energy yield ratio (EYR) 

o CO2 emission rate 

The above measures are widely used in the photovoltaic field, and are the ways in which PV 

systems and conventional power plants can be most effectively and clearly evaluated and 

compared. In addition, a comparison of the feasibility studies relating to renewable energy 

could also be investigated using these measures. 

Energy Payback Time (EPBT), which is the point at which PV systems begin to produce the 

same amount of energy as is used in production throughout their lifecycle, as well as the 

GHG emission rate, are the most common indices used in LCAs (Fthenakis et al., 2011).  
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EPBT is calculated using the following equation (Basu, 2011): 

EPBT [year] = total energy throughout the life cycle / annual power generation                (5.1) 

The EPBT value depends on the type of PV system used. The efficiency and expected 

lifetime of solar modules are the main inputs for the EPBT equation. In addition, location is 

another important parameter, as irradiation data varies from one site to another. Figure 5.5 

shows the EPBT values of different types of solar technologies, in other words the point in 

the lifecycle at which the PV systems recover the used energy, which ranges from 2 to 3 

years. 

The energy yield ratio (EYR) is another measure that is commonly used in environmental 

evaluations of renewable technologies, such as solar power technologies. This is the ratio 

between the total energy output in operation throughout the lifecycle and the total energy 

used over the complete lifecycle of the system. This ratio can be calculated using the 

following equation (Hou et al., 2016): 

EYR = lifecycle output energy / total consumed energy                                                (5.2) 

 

 

Figure 5.5 Energy Payback Time (EPBT) of VLS-PV systems (Komoto et al., 2009) 
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The EYR provides a clear overview, as it includes the total lifecycle of the proposed system. 

It compares the amount of energy produced throughout the expected lifecycle of the proposed 

system to the amount of energy used over the same period. It is a useful measure to use when 

comparing different technologies. 

In addition to the EPBT and EYR, the CO2 emission rate is another important indicator in 

LCA studies, especially when investigating the impact of PV systems on the environment, in 

terms of global warming.  

The vital role of GHGs in global warming is mainly due to the absorbing energy and 

decreasing rate of energy to be expelled (EPA, 2016b). The different GHGs have different 

effects; these can be identified using the Global Warming Potential (GWP) indicator.  

Table 5.2 lists the global warming potentials of greenhouse gases. In general, the CO2 

emission rate for different PV systems ranges from 51.5 to 71 g-CO2,eq/kWh (Figure 5.6). It 

is calculated as an equivalent of CO2, using the following equation (Basu, 2011): 

CO2 emission rate [g-CO2,eq/kWh] =  

Total CO2 emission during lifecycle [g CO2] / annual power generation [kWh/year] x lifetime 

[year]                                 (5.3) 

This study seeks to determine the amount of GHG emissions that could be avoided by 

implementing PV systems at the proposed sites. In addition, the effects of using single-axis 

and dual-axis solar trackers will be examined.  

Table 5.2 Global warming potentials of greenhouse gases (data taken from EPA, 2016b) 

Greenhouse Gas GWP 

Carbon Dioxide (CO2) 1 

Methane (CH4) 28-36 

Nitrous Oxide (N2O) 265-298 

Chlorofluorocarbons (CFCs) 
Thousands, or tens of 

thousands 
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5.4 LCA for the Proposed PV Systems 

A LCA study was conducted for all of the proposed sites (Shagaya, Kabd, Sabria, Mutribah, 

and Umm Gudair); the effect of using a tracker system, specifically fixed, single-axis and 

dual-axis tracking systems, was also examined. As stated in Section 5.3.3, the most 

commonly used indices (EPBT, EYR, and CO2 emission rate) in the photovoltaic energy field 

were the main criteria of the LCA studies carried out for this research.  

The technical data, which includes all of the input data for the proposed PV systems, is 

shown in Table 5.3. It should be emphasized here again the importance of the inputs used in 

order to give stakeholders and decision-makers in the renewable energy field a complete 

understanding of these types of studies. For example, the efficiency of the solar modules is a 

key point that researchers and stakeholders in photovoltaic technology have been focusing on 

in order to increase the amount of power that is generated by PV systems. Its importance can 

also be observed in the different PV module technologies available, where many companies 

are competing in the production and manufacturing of photovoltaic components. 

Currently, monocrystalline PV modules are more efficient than polycrystalline modules, and 

both are more efficient than thin films. The point here is that different amounts of energy are 

used by each of the aforementioned technologies. It is generally estimated that the amount of  

energy used to produce silicon crystalline-based PV modules ranges between 2,400 and 

Figure 5.6 CO2 emission rates of VLS-PV systems (Komoto et al., 2009) 



128 
 

16,500 MJ/m
2
, whereas a relatively small amount of energy, between 710 and 1980 MJ/m

2
, is 

needed for the production of thin film modules (Alsema, 2000).  

The literature review identified that the energy consumed in the production of multi-Si 

modules varies between 2699 and 5150 MJ/m
2
; however, for this study, the amount of energy 

used in the production stage was taken as 2876 MJ/m
2
 (799 kWh/m

2
), which is the five-year 

average from 2009 to 2014 (Wong et al., 2016). This energy is consumed over a long period 

of time, from the point at which the raw material is collected, through manufacturing and 

fabricating the solar modules, and ending finally with the energy used in the recycling stage. 

In addition, as determining the effect of using single-axis and dual-axis tracking systems in 

Kuwait is one of the aims of this study, as previously stated, the amount of energy used in the 

production of these tracking systems was also included. This amount was estimated at 4 and 

12 kWh/kW for the single-axis and dual-axis tracking systems, respectively (Perpinan et al., 

2008). This technical data is also included in Table 5.3. The total annual energy produced for 

each site was identified in Chapter 4.  

Equations 5.1 and 5.2 were used to calculate the EPBT and EYR, respectively; Table 5.4 lists 

the EPBTs and EYRs for the proposed PV systems at the selected sites, for fixed, single-axis, 

and dual-axis tracking systems. It can be seen that the EPBT results vary between 1.74 to 

1.79 year, 1.40 to 1.43 year, and 1.35 to 1.39 year for the fixed tracking system, single-axis 

tracking system, and dual-axis tracking system, respectively. These variations in the obtained 

results between the selected sites were expected, and can be attributed to the different 

amounts of energy produced, as discussed above. It can also be observed from Table 5.4 that 

the EYR values varied between 13.97 and 14.33 year, with an average of 14.15 year for the 

fixed tracking systems, whereas the EYR values for the single-axis and dual-axis tracking 

systems ranged between 17.43 and 17.92, and between 18.00 and 18.48 year, with an average 

of 17.675 year and 18.24 year, respectively. 
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Table 5.3 Technical input data for the proposed PV systems 

Energy Value Reference 

Total energy for production ( MJ/m
2
) 2876 (Wong et al., 2016) 

Multi-Si module efficiency (%)  15.5 
 

Module lifetime (year) 25 
 

Single-axis tracker (kWh/kW) 4 

(Perpinan et al., 2008) 

Dual-axis tracker (kWh/kW) 12 

Total energy (kWh/kW)  
 

For fixed tracking system 3.120 
 

For single-axis tracking system 3.124 
 

For dual-axis tracking system 3.132 
 

 

The EPBT and EYR values listed above show that the effect of using tracking with the 

proposed PV systems at all of the selected sites in Kuwait was tremendous. Utilising the 

single-axis and dual-axis tracking systems, the EPBT values decreased by 19.66% and 

22.145% respectively, and the EYR increased by 24.53% and 28.53% respectively. The 

effectiveness of using tracking systems can clearly be seen from Figures 5.7 and 5.8, in which 

a comparison between the EPBT and EYR values for the proposed sites is given.  

In general, the Umm Gudair site was shown to have the lowest EPBT values: 1.74 year for 

the fixed tracking system, and 1.4 and 1.39 year for the single-axis and dual-axis tracking 

systems respectively. This site also had the highest solar irradiation and the highest produced 

energy for all of the different tracking systems, compared with the other proposed sites. On 

the other hand, the Mutribah site had the highest EPBT value for the fixed tracking system, 

and the Kabd site had the highest EPBT value for the dual-axis tracking system.  

In terms of the EYR measure, the Umm Gudair site was again the best of the proposed sites. 

It had the highest values, at 14.33 for the fixed tracking system, and 17.92 and 18.48 for the 

single-axis and dual-axis tracking systems, respectively. The Mutribah site had the lowest 

EYR value for the fixed tracking system, and the Shagaya site had the lowest EYR values for 

the single-axis and dual–axis tracking systems, respectively.  



130 
 

The effect of different locations, as determined by meteorological data, is clear from the 

obtained results by the EPBT and EYR indices. Though the obtained results varied between 

the selected sites, the results of this study provide stakeholders and decision-makers with 

more alternatives when selecting the most appropriate locations for future proposed projects. 

It is important to again highlight that the feasibility of large-scale PV systems, from an 

environmental perspective, is strongly influenced by EPBT and EYR indices. These measures 

are typically compared with those of other renewable technologies, such as wind energy. 

Thus, the importance of the EPBT and EYR indices is at least equal to that of the third index 

(CO2 emissions rate), which will be discussed in more detail later in this section. 
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Table 5.4 EPBT and EYR values for the proposed PV systems at the selected sites 

Site 
Annual energy 

(kWh/W) 

Total energy 

(kWh/W) 

Energy 

consumption 

(kWh/W) 

EPBT 

(Year) 

EYR 

(Year) 

Shagaya           

Fixed tracking system 1.75 43.77 3.120 1.78 14.03 

Single-axis tracking system 2.18 54.46 3.124 1.43 17.43 

Dual-axis tracking system 2.26 56.38 3.132 1.39 18.00 

Kabd      

Fixed tracking system 1.78 44.38 3.120 1.76 14.22 

Single-axis tracking system 2.18 54.57 3.124 1.43 17.47 

Dual-axis tracking system 2.25 56.37 3.132 1.39 18.00 

Sabriya      

Fixed tracking system 1.75 43.84 3.120 1.78 14.05 

Single-axis tracking system 2.20 54.94 3.124 1.42 17.59 

Dual-axis tracking system 2.28 56.89 3.132 1.38 18.16 

Mutribah      

Fixed tracking system 1.74 43.59 3.120 1.79 13.97 

Single-axis tracking system 2.19 54.71 3.124 1.43 17.51 

Dual-axis tracking system 2.27 56.68 3.132 1.38 18.10 

UmmGudair      

Fixed tracking system 1.79 44.71 3.120 1.74 14.33 

Single-axis tracking system 2.24 55.98 3.124 1.40 17.92 

Dual-axis tracking system 2.32 57.89 3.132 1.35 18.48 
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Figure 5.7 EPBTs for the selected sites 

 

Figure 5.8 EYRs for the selected sites 
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As mentioned in Section 5.1, the CO2 emission rate was used in this study as another LCA 

assessment index. This is an important measure that can be used to determine the 

effectiveness of the proposed systems, in terms of global warming.  

It is important to recall that the scope of the LCA study includes the transportation stage; as 

such, the amounts of GHGs that will be emitted as a result of transporting the PV components 

from Germany (the proposed supplier) to Kuwait were included in this study.  

According to Sea-Distances (2016), the distance from Germany (Hamburg port) to Kuwait 

(AL-Shwaikh port) is approximately 6,833 nautical miles (12,655km) via the Suez Canal. It 

is assumed that the shipping route is by sea with 10 g CO2/tonne-km and by road 62 g CO2 

(Eickmann and Halder, 2003). 

The weight of the solar modules was the most important parameter in reference to which the 

calculations of CO2 emissions rates in the transportation stage were computed. The solar 

modules consist of four components: one acrylic glass top, two ethylene vinyl acetate layers, 

solar cells in the middle, and Tedlar-Aluminium sheets at the base and the frames. Figure 5.9 

shows an exploded view of a solar module. 

A Si-poly model (S255P60 Professional) PV module type was selected to be used in this 

study, and the weight of equivalent 1 kW modules was estimated as 80kg (Centro Solar, 

2014). The transportation emissions were calculated using the following equation (Eickmann 

and Halder, 2003):  

Emission [g] = emission factor [g / (tons. km)] x mass [tons] x distance [km]                   (5.4) 

The results for the total emissions produced in the transportation stage are shown in Table 

5.5. These values will be included in the total lifecycle. It can be seen that, in terms of LCA, 

the transportation of PV system has an insignificant effect on the total CO2 emissions rate; 

this is also evident in much past LCA research, where many authors have not included the 

transportation stage in their studies. However, for this research, the transportation stage was 

investigated in order to provide a better understanding in terms of the complete lifecycle 

stages.  
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Figure 5.9 An exploded view of a solar module (El Amrani et al., 2007) 

In Germany, the amount of CO2 emitted as a result of using electricity in the production of 

silicon based solar cells is estimated at approximately 672 g-CO2,eq/kWh (Brander et al., 

2011). This value was used to calculate the total amount of CO2 during the lifecycle. In 

addition, the amount of CO2 resulting from the PV station operation, PV electricity 

transmission, and PV station recycling were set as 8.97 g-CO2,eq/kWh (Hou et al., 2016). 

The total CO2 emission rates were calculated using Equation 5.1. Table 5.6 shows the total 

CO2 emissions rate for all of the proposed sites. The effect of using single-axis and dual-axis 

tracking systems on the total CO2 emissions at the selected sites can be seen in Figure 5.10. 

It can be seen from the results presented in Table 5.6 that the total CO2 emission rate varied 

between 56.17 and 57.48 g-CO2,eq/kWh, with an average of 56.94 g-CO2,eq/kWh for the 

fixed tracking systems, and from 46.47 to 47.87 g-CO2,eq/kWh, and 45.63 to 46.66 g-

CO2,eq/kWh with an average of 47.56 g-CO2,eq/kWh and 46.38 CO2,eq /kWh for single-axis 

and dual-axis tracking systems, respectively.  

It is also very important to highlight here the effect of using tracking systems. These tracking 

systems play an important role in minimizing total CO2 emissions rates. The total CO2 

emissions rate decreased by 19.72% and 22.78% respectively when using single-axis and 

dual-axis tracking systems. 

The total CO2 emission rate of the Umm Gudair site was the lowest of the selected sites, for 

all proposed solar tracking system types. The low CO2 rates for this site were due to the 

relatively large amount of energy production at this site compared with the other sites. On the 
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other hand, the opposite was true for the Mutribah site, which had the highest total CO2 

emission rate for the fixed tracking system. The Shagaya site had the highest total CO2 

emission rate for both the single-axis and dual-axis tracking systems.  

In general, the influence of the total amount of energy generated by the PV systems was 

significant. This is explained simply by the fact that CO2 is a function of the generated energy 

of the proposed PV system.  

From an environmental viewpoint, it is very useful to compare the results of the present study 

with other relevant studies, in order to provide a realistic reference point to be used for 

evaluation or validation purposes. Thus, in order to have a better understanding of the 

environmental impact of using PV systems in Kuwait, the results of this study will be 

compared with those of other relevant studies of photovoltaic energy.  
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Table 5.5 CO2 emissions (g-CO2,eq/kWh) produced in the transportation stage for the proposed sites 

Site  Distance   

Shagaya 

from Alsuwake port to 

the site (km) 

from the factory to 

Kuwait (km) 

CO2 (g-CO2,eq 

/kWh) 

Fixed tracking system 
70 12655 0.355 

Single-axis tracking system 
70 12655 0.354 

Dual-axis tracking system 
70 12655 0.353 

Kabd    

Fixed tracking system 
40 12655 0.203 

Single-axis tracking system 
40 12655 0.202 

Dual-axis tracking system 
40 12655 0.202 

Sabriya    

Fixed tracking system 
120 12655 0.609 

Single- axis tracking system 
120 12655 0.606 

Dual-axis tracking system 
120 12655 0.606 

Mutribah    

Fixed tracking system 
80 12655 0.406 

Single-axis tracking system 
80 12655 0.404 

Dual-axis tracking system 
80 12655 0.404 

Umm Gudair    

Fixed tracking system 
60 12655 0.304 

Single-axis tracking system 
60 12655 0.303 

Dual-axis tracking system 
60 12655 0.303 

 



137 
 

Table 5.6 Total CO2 emissions (g-CO2,eq/kWh) for the proposed sites 

Site 
CO2 emissions (g-CO2 g, eq 

/kWh) 

Shagaya 
 

Fixed tracking system 57.23 

Single-axis tracking system 47.87 

Dual-axis tracking system 46.66 

Kabd 
 

Fixed tracking system 56.42 

Single-axis tracking system 47.64 

Dual-axis tracking system 46.51 

Sabriya 
 

Fixed tracking system 57.40 

Single-axis tracking system 47.79 

Dual-axis tracking system 46.57 

Mutribah 
 

Fixed tracking system 57.48 

Single-axis tracking system 47.74 

Dual-axis tracking system 46.51 

Umm Gudair 
 

Fixed tracking system 56.17 

Single-axis tracking system 46.77 

Dual-axis tracking system 45.63 
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 Figure 5.10 The total CO2 emissions at the selected sites 

Table 5.7 shows the CO2 emissions associated with the implementation of the PV systems 

proposed in previous literature. It should be emphasised here that a large number of studies 

were reviewed for this purpose; however, differences in the specified boundary conditions 

and the type of technology used are important parameters that should be taken into account 

when comparing previous studies.  

In addition, the accelerated rate of development in the photovoltaic field is another important 

factor. The fast development in this field is evidenced by higher efficiency manufacturing and 

more durable solar modules. Figure 5.11 shows a comparison between the present study and 

previous studies in terms of GHG emissions.  

It can be seen from Table 5.7 that the CO2 emissions rate measured in the selected studies 

varied between 44 and 62 g-CO2,eq/kWh, where the CO2 emissions rate obtained in the 

present study ranged from 46.38 to 56.94 g-CO2,eq/kWh. The results obtained in the present 

study were thus within the range of those achieved in previous studies. In addition, the effect 

of using tracking systems, both single-axis and dual-axis, was significant. 
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It is also important to compare the obtained results with different results achieved using 

different technologies, such as wind energy, in order to provide a better understanding of the 

impact of PV systems on the environment compared with other available technology. Table 

5.8 presents the average emissions of different technologies. From Figure 5.12, it is clear that 

the emissions produced by fossil fuel based technologies, such as coal, are the highest, with a 

relatively high percentage among the other listed technologies. Nuclear, hydroelectric, and 

wind energies have the lowest emissions.  

The emissions produced by photovoltaic solar energy production are relatively low compared 

with fossil fuel based technologies, such as coal and oil, but high in comparison with other 

renewable technologies, such as wind energy. As previously stated in this chapter, this can be 

attributed to the large amounts of energy used in the manufacturing and fabrication of solar 

modules. 

 

Table 5.7 CO2 emissions measured in previous selected studies 

Location Mounting type 
CO2 emission  

(g-CO2,eq/kWh) 
Reference 

Western Europe Ground mounted 60 (Alsema, 2000) 

North Africa Rooftop 57 (Pehnt et al., 2003) 

Japan Rooftop 53 (Hondo, 2005) 

Southern Europe Ground mounted 44 (Frankl et al., 2005) 

Gobi Desert Rooftop 62 (Ito et al., 2010) 

China LS-PV 60.1 (Hou et al., 2016) 
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Figure 5.11 The CO2 emissions measured in selected studies 

 

Table 5.8 The average emissions of different technologies (World Nuclear Association, 2011) 

Technology Average Emissions  

(g-CO2,eq/kWh) 

Coal 888 

Oil 733 

Natural Gas 499 

Solar PV 85 

Biomass 45 

Nuclear 29 

Hydroelectric 26 

Wind 26 
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Figure 5.12 The total CO2 emissions of different renewable energy 

5.5 Environmental Benefit Evaluation  

‘Global warming’ or ‘climate change’ are the best descriptive terms for what most 

researchers in the environmental field are focusing on currently. As stated in the literature 

review, the increasing rate of the industrial revolutions in many different fields, such as 

manufacturing, in addition to the increasing population, is causing an increase in the demands 

of everyday life.  

In this context, the reliance on natural fossil fuels to produce energy is driving an increase in 

GHG emissions. It is generally accepted that the conversion of forests to agricultural land, 

and the GHG emissions produced by industrial factories, are the main causes of air pollution 

(Gevorkian, 2014). 

In this section, the role of implementing PV systems in minimising GHG emissions caused 

by conventional power plants will be investigated. Specifically, the amount of GHG 

emissions that would be avoided by utilising PV systems in Kuwait to generate electricity 

will be evaluated, and the effect of using tracking systems will also be investigated. 
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The importance of this study is clear, and the State of Kuwait, which is almost entirely 

dependent on conventional power plants for electricity generation, is a good example due to 

environmental evaluation criteria being comparatively more important than economic 

evaluation criteria. Conventional power plants consume fossil fuels, and Kuwait is one of the 

largest oil exporting countries, with the country’s annual budget almost completely 

determined by oil export revenues. 

In addition to the LCA study, it is very useful to estimate the environmental benefits of 

reducing or avoiding GHG emissions, which have a direct harmful effect on the environment, 

in terms of both global warming and human life.  

The implementation of the proposed PV systems at the selected sites will generate electricity 

with zero emissions. In this study, the amount of GHG emissions that would be avoided was 

calculated based on the expected amount of energy that would be introduced by the proposed 

PV systems, and the equivalent amount of emissions produced by conventional power plants 

in Kuwait.  

Notably, most previous studies have not investigated the amount of SO2 and NOx saved. In 

other words, these studies focused solely on determining the equivalent CO2, rather than all 

GHGs (SO2, NOx, and CO2); this is reasonable, as the percentage of CO2 emissions is very 

high in comparison to other GHGs.  

However, in this study, the effects of all GHGs were investigated, as the capacities of the 

proposed PV stations were relatively large. Therefore, the total emissions rates for Kuwait 

power plants were taken into consideration in this study (see Table 5.9). 

In order to gain a better understanding of the potential benefit of utilising PV systems in 

Kuwait, an environmental benefits study was conducted on the selected sites. The amounts of 

GHG emissions were determined based on the expected annual production for each site 

(annual energy production data was given in Chapter 4).  Table 5.10 shows the CO2, SO2, and 

NOx emissions (in tons) for the selected sites. The results were obtained using fixed, single-

axis and dual-axis tracking systems.  

 

 



143 
 

The avoided emissions, for all of the proposed sites, ranged from 104,608 to 107,306 tons, 

with an average of 105,739.4 tons, of CO2; from 174.35 to 178.84 tons, with an average of 

176.23 tons, of SO2; and from 26.15 to 26.83 tons, with an average of 26.43 tons, of NOx, for 

the fixed tracking systems. 

The avoided emissions when using single-axis and dual-axis tracking systems ranged 

between 130,701 and 134,361 tons of CO2, with an average of 131,843 tons; and between 

135,289 and 138,938 tons of CO2, with an average of 136,417.2 tons, respectively. The 

avoided SO2 emissions when using the single-axis and dual-axis tracking systems varied 

between 217.84 and 223.94 tons, with an average of 219.74 tons, and between 225.48 and 

231.56 tons, with an average of 227.362 tons, respectively. The avoided NOx emissions 

ranged from between 326.75 and 335.9 tons, with an average of 329.61 tons, and between 

338.22 and 347.34 tons, with an average of 341.04 tons, respectively.  

The effects of using single-axis and dual-axis tracker systems are clearly apparent from 

Figures 6.13 to 6.15. The amount of avoided CO2, SO2 and NOx emissions increased, on 

average, by 24.4% and 28.8% with the use of single-axis and dual-axis tracker systems, 

respectively. Figures 5.13 to 5.15 present a comparison between the selected sites based on 

the amounts of avoided CO2, SO2 and NOx emissions, and also the type of tracking system 

used.  

The findings of the environmental benefits analysis has shown that large amounts of GHG 

emissions could be avoided by implementing PV systems to generate electricity in Kuwait. 

This would constitute a positive contribution to helping minimize certain environmental 

issues, such as global warming. 

Table 5.9 Total emissions rates for power plants in Kuwait (Alhaddad et al., 2011) 

Parameter Value Units 

SO2 1 kg/MWh 

NOX 0.15 kg/MWh 

CO2 600 kg/MWh 
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Table 5.10 Total amounts of CO2, SO2 and NOx emissions avoided for the selected sites 

 

Site Annual Production (MWh/year) CO2 (tons) SO2 (tons) NOx (tons) 

Shagaya 
    

Fixed tracking system 175075 105045 175.08 26.26 

Single-axis tracking system 217835 130701 217.84 32.68 

Dual-axis tracking system 225503 135302 225.50 33.83 

Kabd 
    

Fixed tracking system 177519 106511 177.52 26.63 

Single-axis tracking system 218291 130975 218.29 32.74 

Dual-axis tracking system 225481 135289 225.48 33.82 

Sabriya 
    

Fixed tracking system 175378 105227 175.38 26.31 

Single-axis tracking system 219772 131863 219.77 32.97 

Dual-axis tracking system 227556 136534 227.56 34.13 

Mutribah 
    

Fixed tracking system 174347 104608 174.35 26.15 

Single-axis tracking system 218859 131315 218.86 32.83 

Dual-axis tracking system 226705 136023 226.71 34.01 

Umm Gudair 
    

Fixed tracking system 178843 107306 178.84 26.83 

Single-axis tracking system 223935 134361 223.94 33.59 

Dual-axis tracking system 231563 138938 231.56 34.73 
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Figure 5.13 Reduction in CO2 for the selected sites 

 
Figure 5.14 Reduction in SO2 for the selected sites 
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Figure 5.15 Reduction in NOx for the selected sites 

 

5.6 Conclusions 

The manufacturing stage of PV system components is a critical stage in this regard, as a high 

volume of emissions are produced due to the large amounts of energy consumed in 

manufacturing and fabricating PV systems components.  

The average EPBTs obtained in the present study were 1.765 year, 1.415 year and 1.37 year 

for the fixed tracking system, single-axis tracking system and dual-axis tracking system, 

respectively. These EPBT results are encouraging, and show that shorter periods can be 

achieved by using single-axis and dual-axis tracking systems. The average EYR values 

obtained in this study were 14.15 year for the fixed tracking system, and 17.675 year and 

18.24 year for the single-axis and dual-axis tracking systems, respectively. The EYRs 

obtained are also propitious, and show that better values can be achieved using single-axis 

and dual-axis tracking systems. 

It was found that the transportation stage, which has been included as a boundary condition in 

this study, had an insignificant effect on the total CO2 emission rate of the proposed PV 

systems at the selected sites, compared with other stages. However, including the emissions 

produced in the transportation stage in the LCA provided more realistic results.  
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It was found that the CO2 emission rates obtained in this study, which ranged between 46.38 

and 56.94 g-CO2,eq/kWh, were within the range of the results obtained in previous studies. 

Comparing the obtained results with other relevant studies conducted in the photovoltaic 

fields is important, in order to get more trusted values for both the input data and the obtained 

results. In addition, the results obtained in this study were compared with the data for other 

energy technologies, such as renewable energy. It was found that the emissions from fossil 

fuel based technologies, such as coal, were the highest, with a relatively high percentage 

compared to other listed technologies, where nuclear, hydroelectric and wind energy had the 

lowest emissions. It was also found that the emissions resulting from photovoltaic solar 

energy are relatively low compared with fossil fuel based technologies such as coal and oil, 

but are relatively high when compared with other renewable technologies, such as wind 

energy. This was attributed to the large amounts of energy consumed in the manufacturing 

and fabrication of the solar modules. 

Based on the environmental benefits analysis, a large amount of GHG emissions, as stated 

above, would be avoided by implementing PV systems to generate electricity in Kuwait. This 

would constitute a positive contribution to helping minimise certain environmental issues, 

such as global warming. 
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Chapter 6 - Economic Evaluation 

6.1 Introduction 

One important criterion when evaluating the feasibility of PV systems is the financial 

assessment. An economic evaluation of the proposed PV system is an essential part of this 

thesis, as it will help determine the feasibility of using solar PV technology in Kuwait. 

There is no doubt that most renewable energy have the shared advantage of the continuing 

decrease in the cost of implementing different renewable technologies, such as wind energy. 

This could be attributed to many possible causes, such the extensive interest in this field of 

both specialists and investors seeking to benefit from clean and fuel-free technologies. 

For solar photovoltaic technology, in particular, as shown in the literature review, there are 

many factors that make it distinct from other renewable energy technologies. One of its 

advantages is the rapidly decreasing cost of PV system components, particularly the solar 

modules, which represent approximately 60% of the total cost (Feldman et al., 2012). It is 

extremely important to emphasise again the rapid development in photovoltaic technology 

that has occurred in the past decade. The development and improvement in this field has led 

to a significant reduction in the installation cost of photovoltaic systems. 

As such, solar photovoltaic energy is becoming relatively more attractive than other 

renewable energy technologies. One likely explanation for this is simply the basic principle 

of the technology, the key point of which is converting solar irradiation into electricity using 

solar modules. Moreover, the importance of solar modules can also be deduced from the 

highly competitive solar market across the world. This can be seen in different ways, such as 

the increased focus on improving the efficiency and durability of solar modules, whereby 

warranties are provided with high standards specifications, as well as more competitive 

prices. 

Photovoltaic technology is a silicon-based technology; this is a key point, which will be 

discussed further. Photovoltaic energy is substantially influenced by the performance of the 

solar modules, more so than any other factor. It is generally agreed that solar photovoltaic 

module efficiency and solar irradiation at the installation site are the two most important 

factors in PV technology (Smestad, 2008).  
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Solar photovoltaic technology is different to other renewable energy in terms of their 

conventional working systems. For example, other renewable energy technologies are created 

based on complete systems in which many materials, such as steel and concrete, are needed. 

Moreover, safety and security systems are an important and necessary element of the whole 

system, throughout both the installation and operation stages, and require a team of 

specialists and labourers as well as equipment. Any change in the cost of the materials, 

equipment, or workers’ wages will directly affect the total cost of using the technologies. 

Conversely, PV system technology is primarily dependent on solar modules, which have 

benefitted from an accelerated rate of development. The remarkable decrease in the 

installation cost of PV systems technology has resulted mainly from the significant evolution 

and improvement of the solar module properties over a short period of time.  

The installation cost of any proposed PV system is a primary input for any economic 

assessment study, as it will be used to calculate the levelized cost of electricity (LCOE); this 

will be explained in detail in the next section.  

In this chapter, an economic evaluation will be conducted for the selected sites, using the 

LCOE approach. The LCOE values will be computed for the proposed PV systems, and the 

effects of using single-axis and dual-axis solar PV solar trackers will also be investigated. 

Moreover, the effects of the fluctuation of oil prices, as an important variable, will be 

considered.  

Section 6.2 will present an economic assessment of implementing PV systems in Kuwait. A 

sensitivty analysis will be conducted in Section 6.3. In Section 6.4, a cost-benefit analysis of 

using the proposed PV systems will be carried out, and the cost of CO2 that would be saved 

by implementing the proposed PV systems will be calculated in Section 6.5. Finally, the 

study conclusions will be presented in Section 6.6.  
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6.2 Economic Assessment of Implementing PV Systems in Kuwait 

The results obtained from the performance parameters evaluation of the proposed systems at 

the selected sites, presented in Chapter 4, are encouraging; hence, the economic evaluation is 

a crucial step in order to build a complete picture of the potential for implementing PV 

systems in Kuwait, which is the primary aim of this research. An economic evaluation will be 

conducted for all of the proposed sites (Shagaya, Kabd, Sabria, Mutribah and Umm Gudair), 

and three different tracking systems (fixed, single-axis and dual-axis tracking systems) will 

be examined at each individual site. 

As stated in the methodology chapter (Chapter 3), the levelized cost of electricity (LCOE) 

approach will be used in the economic assessments of the proposed PV systems. It is 

generally agreed that the levelized cost of electricity is the most appropriate method for 

comparing the feasibility of different electricity generation technologies, such as PV systems 

and conventional power plants (Hernández-Moro and Martínez-Duart, 2013; IRENA, 2012). 

The LCOE is an important measure that can be used to evaluate the economic viability of 

many energy generation technologies.  

A lot of solar technology projects have been economically evaluated using the LCOE 

approach, which calculates the lifetime of generated energy and the total cost of the installed 

system (Branker et al., 2011). Moreover, the LCOE method is widely used to measure the 

cost effectiveness of PV systems, which is defined as the levelized cost per unit of energy 

produced (Kang and Rohatgi, 2016). The main inputs of LCOE are the installation cost and 

operation and maintenance costs (OM). 

The levelized cost of electricity can be calculated using the following equation (Smestad, 

2008): 

LCOE = (Annual cost + OM)/Annual Output                   (6.1) 

Annual Cost = (Installation Cost x CRF) + OM               (6.2) 

CRF is the capital recovery factor, and is given as the following equation: 

CRF = i x (1+i)
 n

 / (1+i)
 n

-1                                         (6.3) 

Where i and n are the interest rate and the project life, respectively.     

Installation Cost = Capital Cost x Station Capacity                                               (6.4) 
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As shown in the above equations, the installation cost is an important input, as it is used to 

estimate the annual cost of the proposed system. Calculating an accurate installation cost is 

important in order to determine the LCOE values; however, due to some uncertainty in the 

data, such as the price of solar modules (normally represented in $/W), which is dependent on 

the global market price, it is not easy to determine a specific value for the installation cost of 

a PV system. This is clear from the literature review of past research, in which different 

values were used in different countries across the world. In addition, a few studies have taken 

account of the effect of tracking systems in the installation cost. 

It is extremely important to note here that the installation cost of the proposed PV systems in 

Kuwait was one of the main challenges encountered in this study. This was due to a lack of 

information and relevant data regarding the implementation of photovoltaic technology in 

Kuwait. For example, although some research has been carried out on photovoltaic energy in 

Middle East, and in Kuwait in particular, no study has investigated the single-axis and dual-

axis tracking systems in this context. Furthermore, most of the recently published research on 

the state of Kuwait references relied on older studies when calculating the installation cost. 

Unfortunately, this will definitely lead to inaccurate results. However, a sensitivty analysis 

will be conducted in Section 6.4 in order to deal with such a situation with a high level of 

caution.   

The installation cost of a PV system has decreased from approximately $5 (£3.83)/kW in 

2005, and is expected to be approximately $1 (£0.77)/kW in 2020. This significant reduction 

in the installation cost, along with the rapid development of photovoltaic technology itself, 

meaning that this technology is one of the most interesting and competitive alternatives for 

producing electricity across the world. Moreover, it is generally agreed that the significant 

decline in prices of the PV systems will play a vital role in implementation of this technology 

(Nemet et al., 2017).  

In this study, the installation cost is set as $1.77 (£1.36)/kW for a fixed tracking system, and 

$1.91 (£1.46)/kW and $2.05 (£1.57)/kW for single-axis and dual-axis tracking systems, 

respectively (Chung et al., 2015; Kang and Rohatgi, 2016; NREL, 2016). The operation and 

maintenance (OM) cost is assumed to be 3% of the investment cost per year (Ramadhan and 

Naseeb, 2011; Zweibel, 1999). Table 6.1 lists the input data used for the LCOE calculation. 

The annual energy production of the proposed PV systems was calculated in detail in Chapter 

4. 
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Table 6.1 Input data used for the LCOE calculations 

Input Parameter Value Unit 

Station Capacity 100 MW 

Installation Cost 
 

1.77 (1.36) 

 

1.91 (1.46) 

 

2.05 (1.57) 

 

Fixed tracking 
 

Single-axis tracking $/W (£/W) 

Dual-axis tracking 
 

OM 3% of installation cost per year $ (£) 

Interest Rate 5 % 

Project Life 25 year 

Based on the input parameters listed in Table 6.1 above, the LCOE values were obtained for 

the proposed PV systems at each single site, and the effect of using single-axis and dual-axis 

tracking systems was also investigated (detailed results are presented in Table 6.2.) 

The obtained LCOE values varied from 0.071 to 0.073 $/kWh (0.054 to 0.056 £/kWh) for the 

fixed tracking systems, and from 0.062 to 0.063 $/kWh (0.0475 to 0.0483 £/kWh), and 0.064 

to 0.066 $/kWh (0.0491 to 0.0506 £/kWh) for the single-axis and dual axis-tracking systems, 

respectively.  

From Table 6.2, it is apparent that the Umm Gudair site had the best values, as it showed the 

lowest LCOE for all of the proposed tracking systems – an LCOE of 0.071 $/kWh (0.054 

£/kWh) for a fixed tracking system, and 0.062 $/kWh (0.048 £/kWh)  and 0.064 $/kWh 

(0.049 £/kWh) for single-axis and dual-axis systems, respectively. As the Umm Gudair site 

showed the highest amount of energy generated by the PV system, and in light of the fact that 

LCOE is directly inversely to the amount of generated energy, these values were expected in 

advance.  

The achieved LCOEs for the other sites were almost identical, at 0.073 $/kWh (0.056 £/kWh) 

for a fixed tracking system, and 0.063 $/kWh (0.048 £/kWh) and 0.066 $/kWh (0.051 £/kWh) 

for single-axis and dual-axis systems, respectively.   
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It can be seen also that the average LCOE was $0.072 (£0.055)/kWh for fixed tracking 

systems. This value decreased by 13.10% and 9.72% as a result of using single-axis and dual-

axis tracking systems, respectively.  

On the other hand, although using a dual-axis tracking system increased the amount of 

produced energy by 28.8% and 4.8% over the fixed and single-axis tracking systems, 

respectively, the single-axis tracking system had better LCOE values. This is due to dual-axis 

solar tracking systems being more expensive in terms of installation and maintenance costs. 

Since the LCOE for the conventional power plants in Kuwait is the key comparison measure 

used in this study, the obtained LCOE values will be compared with its value, which is 

estimated at $0.12 (£0.092)/ kWh  (Ramadhan and Naseeb, 2011). Accordingly, the proposed 

PV systems achieved lower LCOE values at all selected sites, and with all different tracking 

systems.       

In addition, the significant impact of utilising tracking systems  can be clearly observed from 

Figure 6.1, in which the LCOE values decreased significantly through the use of the single-

axis and dual-axis tracking systems. Moreover, the single-axis tracking system appears to be 

the best choice for all of the selected sites in the State of Kuwait.  

It can be seen also that all sites produced very close values for all the different tracking 

system types, which is due to the fact that the country is relatively small in terms of 

geographical area and the distances between the sites are thus not far. In addition, the 

variation in solar irradiation and climate data between the different sites is insignificant. This 

can be easily deduced from most studies in the solar energy field in the State of Kuwait, 

which have been conducted under the assumption that data for one location can be used for 

the whole country.  

This assumption is helpful to a certain extent, for instance, for the purpose of preliminary 

analysis, in which only a brief understanding of PV systems is required. However, this 

research aims to determine the feasibility of using PV systems in Kuwait according to a more 

holistic view, and therefore a comprehensive analysis is required. 
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Table 6.2 Detailed results for the proposed systems at the selected sites 

  

Annual production 

(MWh/year)  
Installation  

cost  ($/W) 
Installation 

cost (million $) 

Total annual 

cost (million $) 

LCOE 

($/kWh) 

Shagaya           

Fixed 175075 1.77 177 12.77 0.073 

Single-axis Tracking System 217835 1.91 191 13.78 0.063 

Dual-axis Tracking System 225503 2.05 205 14.79 0.066 

Kabd     

 
  

 

Fixed 177519 1.77 177 12.77 0.072 

Single-axis Tracking System 218291 1.91 191 13.78 0.063 

Dual-axis Tracking System 225481 2.05 205 14.79 0.066 

Sabriya     

 
  

 

Fixed 175378 1.77 177 12.77 0.073 

Single-axis Tracking System 219772 1.91 191 13.78 0.063 

Dual-axis Tracking System 227556 2.05 205 14.79 0.065 

Mutribah     

 
  

 

Fixed 174347 1.77 177 12.77 0.073 

Single-axis Tracking System 218859 1.91 191 13.78 0.063 

Dual-axis Tracking System 226705 2.05 205 14.79 0.065 

Umm Gudair     

 
  

 

Fixed 178843 1.77 177 12.77 0.071 

Single-axis Tracking System 223935 1.91 191 13.78 0.062 

Dual-axis Tracking System 231563 2.05 205 14.79 0.064 
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Figure 6.1 LCOE for the selected sites with different tracking systems 
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6.3 Sensitivity Analysis 

In order to effectively account for the possible effects of the most changeable parameters in 

the LCOE approach, such as the installation cost of the PV systems, and to best understand 

the effects of these parameters, an LCOE sensitivity analysis with the following input 

parameters was conducted: 

o Installation cost  

o Interest rate 

o Lifetime  

As mentioned above, the prices of PV system components have decreased significantly over 

the last decade. This can clearly be seen, from an economic perspective, in the decrease in 

installation costs of PV systems from approximately $5.0 (£3.83)/kW in 2008 to 

approximately $2.0 (£1.53)/kW  in 2016, moreover, this decrease is expected to continue, and 

reach $1.0 (£0.77)/kW  in 2020  (Chung et al., 2015; GTM Research, 2016). 

The significant development of PV technology in terms of efficiency and the lifetime of PV 

modules is another important parameter that should be taken into account when conducting 

an economic assessment of such a technology. Based on the above, and on the uncertainty of 

the input data for the LCOE method, the main LCOE inputs suggest high installation cost, 

interest rates, over their lifetime.  

A LCOE sensitivity analysis is useful for covering all possibilities related to a change in 

certain input parameters, as described above, and can also be extended for use over a longer 

time and a large area. In the following section, installation costs, interest rates and lifetime 

will be considered in detail in regard to conducting a sensitivity analysis of LCOE with a 

view to implementing PV systems in Kuwait. 
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6.3.1 Installation Cost 

As mentioned in the literature review, one of the disadvantages of photovoltaic technology, 

and the primary barrier facing all investors, is the high initial cost, whereby all of the PV 

system components must be sourced in order to start running the proposed system. From an 

economic viewpoint, this will require high financial liquidity, which is typically provided by 

investors.   

In this study, five different cost scenarios, ranging from 1$/kW to 3 $/kW in increments of 

0.5 $/kW, were used to determine the LCOE for the selected sites, and the effect of 

implementing single-axis and dual-axis tracking systems was considered. Table 6.3 lists the 

assumed installation rates used in this study. In this analysis, the fixed tracking system will be 

considered in order to make the analysis more clear, and also to compare the results with 

different LCOEs from relevant literature. 

Table 6.3 Assumed installation rates  

Scenario (No.) 
Fixed 

($/W) 
Single-axis 

($/W) 
Dual-axis 

($/W) 

1 1 1.08 1.16 

2 1.5 1.62 1.74 

3 2 2.16 2.32 

4 2.5 2.70 2.90 

5 3 3.24 3.47 

 

Scenario No.1 represents the best case scenario, and scenario No. 5 represents the worst. As 

stated above, and in the literature, scenario No.1 is likely to become the reality in the coming 

five years, due to the on-going and significant development and evolution in solar 

technology. In addition, solar energy, and particularly PV systems, are becoming more 

mature with time. Undoubtedly, this will lead to a significant decline in the cost of PV system 

components over time. However, the selected scenarios above were used to provide a 

complete and solid base of data taking all future probabilities into account. Table 6.4 shows 

the computed LCOEs for the selected sites with different assumed scenarios.  
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Table 6.4 LCOEs for different installation cost values 

Site 

Scenario No. 

1 2 3 4 5 

Shagaya           

Fixed 0.041 0.062 0.082 0.103 0.124 

Single-axis Tracking System 0.036 0.054 0.072 0.089 0.107 

Dual-axis Tracking System 0.037 0.056 0.074 0.093 0.111 

Kabd           

Fixed 0.041 0.061 0.081 0.102 0.122 

Single-axis Tracking System 0.036 0.054 0.071 0.089 0.107 

Dual-axis Tracking System 0.037 0.056 0.074 0.093 0.111 

Sabriya           

Fixed 0.041 0.062 0.082 0.103 0.123 

Single-axis Tracking System 0.035 0.053 0.071 0.089 0.106 

Dual-axis Tracking System 0.037 0.055 0.074 0.092 0.11 

Mutribah           

Fixed 0.041 0.062 0.083 0.103 0.124 

Single-axis Tracking System 0.036 0.053 0.071 0.089 0.107 

Dual-axis Tracking System 0.037 0.055 0.074 0.092 0.11 

Umm Gudair           

Fixed 0.04 0.061 0.081 0.101 0.121 

Single-axis Tracking System 0.035 0.052 0.07 0.087 0.104 

Dual-axis Tracking System 0.036 0.054 0.072 0.09 0.108 
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It can be seen that the LCOE varied between 0.0408 and 0.1228 $/kWh (0.031 and 0.094 

£/kWh) for the fixed tracking systems. The LCOE varied between 0.036 and 0.106 $/kWh 

(0.027 and 0.081 £/kWh) for the single-axis tracking systems and varied between 0.037 and 

0.110 $/kWh (0.028 and 0.084 £/kWh) for the dual-axis tracking systems. Therefore, the 

proposed PV systems with single-axis and dual-axis PV systems in all assumed scenarios 

showed LCOEs of less than 0.12 $/kWh (0.092 £/kWh), where the fixed tracking systems 

showed LCOEs of less than 0.12 $/kWh for all scenarios, except scenario No. 5.  

Figure 6.2 shows a comparison between the selected sites with different tracking systems 

based on the LCOE. From Figure 6.2, it is apparent that the LCOE increased alongside an 

increase in installation costs for all types of tracking system, and for all assumed scenarios. 

Notably, the single-axis tracking system had the lowest LCOEs, whereas the highest LCOEs 

were found in the fixed tracking systems. Table 6.5 presents the computed average LCOEs 

for the fixed, single-axis and dual-axis tracking systems.   
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Figure 6.2 The LCOE for the selected sites with different tracking systems for different scenarios. 
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Table 6.5 Average LCOEs for different tracking systems indifferent scenarios 

Installation cost ($/W) 

Scenario No. 

1 2 3 4 5 

Fixed Tracking System     1 1.5 2 2.5 3 

Single-axis Tracking System  1.08 1.62 2.16 2.7 3.24 

Dual-axis Tracking System  1.16 1.74 2.32 2.9 3.47 

LCOE for Fixed Tracking System ($/kWh) 0.041 0.061 0.082 0.102 0.123 

LCOE for Single-axis Tracking System ($/kWh) 0.035 0.053 0.071 0.089 0.106 

LCOE for Dual-axis Tracking System ($/kWh) 0.037 0.055 0.074 0.092 0.110 

 

Figure 6.3 shows a comparison between the different tracking systems used based on their 

average LCOEs in different scenarios. The comparison shows that the single-axis tracker is 

the best choice for implementing PV systems in Kuwait. It had an LCOE range from $0.035 

(£0.027)/kWh for the best case scenario, and $0.106 (£0.081)/kWh for the worst case 

scenario. Thus, if the average scenario is considered (Scenario 3), the LCOE value will be 

$0.071 (£0.054)/kWh for single-axis tracking systems. When generating electricity through 

PV systems, this value would be considered feasible when compared with the cost of 

producing electricity via conventional power plants in Kuwait, which is 0.12 $/kWh 

(Ramadhan and Naseeb, 2011). 
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Figure 6.3 Average LCOEs for different tracking systems in different scenarios 
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6.3.2 Interest Rate 

There is no doubt that the interest rate plays a vital role in terms of the feasibility of any 

project, from an economic perspective. Although there is increased motivation to support 

investment in renewable energy projects, as governments typically provide financial 

incentives to do so, the effect of different interest rate values requires investigation in order to 

understand the range of authentic data.  

PV system projects should be approached in the same way as any other type of industrial 

project, as they will succeed or fail depending on several factors. The risk of investing in 

solar technology should not be ignored; therefore, estimation of the main input parameters 

should be estimated within an acceptable range, in order to gain a full picture of the relevant 

financial factors, such as interest rates. This will help investors and/or decision-makers to 

effectively evaluate any proposed projects in reference to a good range of alternatives. 

As the LCOE method is directly influenced by the mount of selected interest rates, a proper 

estimation of these values are important in order to have a realistic results for any kind of 

feasibility’ studies. It is generally accepted in the public investments in the power sector in 

Kuwait that a 5% interest rate, which has been estimated based on the governmental 

development plan and the assets of the sovereign wealth funds of Kuwait, is the commonly 

used value in the feasibility studies (Ramadhan et al., 2013). 

In order to have a better understanding of the impacts of the interest rate on the LCOE, a 

wide range of interest rate values (from 0 to 10%) were selected. Table 6.6 presents the 

computed LCOE values for the selected sites with different interest rate cost values. A 

comparison between the selected sites based on different interest rates is shown in Figure 6.4. 
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Table 6.6 LCOEs for different interest rate cost values 

Site 
Interest rate (%) 

0  3 5 7 10 

Shagaya           

Fixed 0.042 0.059 0.073 0.088 0.113 

Single-axis Tracking System 0.036 0.051 0.063 0.076 0.098 

Dual-axis Tracking System 0.037 0.053 0.066 0.079 0.101 

Kabd           

Fixed 0.041 0.058 0.072 0.087 0.111 

Single-axis Tracking System 0.036 0.051 0.063 0.076 0.097 

Dual-axis Tracking System 0.037 0.053 0.066 0.079 0.101 

Sabriya           

Fixed 0.042 0.059 0.073 0.088 0.112 

Single-axis Tracking System 0.036 0.051 0.063 0.076 0.097 

Dual-axis Tracking System 0.037 0.053 0.065 0.078 0.1 

Mutribah           

Fixed 0.042 0.06 0.073 0.088 0.113 

Single-axis Tracking System 0.036 0.051 0.063 0.076 0.097 

Dual-axis Tracking System 0.037 0.053 0.065 0.079 0.101 

Umm Gudair           

Fixed 0.041 0.058 0.071 0.086 0.11 

Single-axis Tracking System 0.035 0.05 0.062 0.074 0.095 

Dual-axis Tracking System 0.037 0.052 0.064 0.077 0.099 
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Figure 6.4 LCOEs for the selected sites with different interest rates  
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Table 6.7 presents the average LCOEs for the different tracking systems with different 

interest rates. Figure 6.5 shows a comparison between the applied tracking systems with 

different interest rates based on the LCOEs.  

It can be seen that the LCOE values varied between 0.041 and 0.122 $/kWh (0.031 and 0.094 

£/kWh) for the fixed tracking systems, and between 0.036 and 0.097 $/kWh (0.028 and 0.072 

£/kWh), and 0.037 to 0.100 $/kWh (0.028 and 0.077 £/kWh) for the single-axis and dual-axis 

tracking systems, respectively.  

The results obtained are considered feasible compared with the LCOEs of the conventional 

power plants in Kuwait (0.120 $/kWh), except for the scenario where the interest rate is 10%. 

The LCOE values varied between 0.036 and 0.097 $/kWh (0.028 and 0.074 £/kWh) for the 

single-axis tracking systems, and between 0.037 and 0.100 $/kWh (0.028 and 0.077 £/kWh) 

for the dual-axis tracking systems. These values are considered feasible for both systems at 

all of the selected sites.  

The effect of a high interest rate is clear, and more than double when comparing interest rates 

of 5% and 10%, for instance. However, all of the obtained results were economically feasible 

(less than 0.12 $/kWh). Based on the results, it can be concluded that the single-axis tracking 

systems are still the best choice for implementing PV systems in Kuwait. 

 

Table 6.7 Average LCOEs for the different tracking systems with different interest rates 

Interest rate 0 % 3 % 5 % 7 % 10 % 

LCOE for Fixed Tracking System ($/kWh) 0.041 0.059 0.072 0.087 0.112 

LCOE for Single-axis Tracking System ($/kWh) 0.036 0.051 0.063 0.076 0.097 

LCOE for Dual-axis Tracking System ($/kWh) 0.037 0.053 0.065 0.078 0.100 
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Figure 6.5 Average LCOEs for different tracking systems with different interest rates 

 

 

 

 

 

 

 

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0 1 2 3 4 5 6 7 8 9 10

L
C

O
E

 (
$

/K
W

h
) 

Interest rate (%) 

Fixed Tracking System Single-axis Tracking System Dual-axis Tracking System



168 
 

6.3.3 Lifetime  

A common way of determining the lifetime of PV components is to consult the warranty 

sheets included with products, and data produced by specialised organizations (see Section 

5.3.1). However, these recommendations do not represent the real values, which will have a 

significant impact on the results of a feasibility study (Hernández-Moro and Martínez-Duart, 

2013).  

For instance, the same products have different lifetime values in different regions. Kuwait is a 

good example of this, as most of the studies conducted in the country assume a twenty year 

lifetime for the PV systems due to the harsh weather, specifically the dusty and hot weather 

in the summer months. On the other hand, the rapid development in PV technology should 

not be ignored; a number of researchers have suggested frequent cleaning of systems and 

more technical ways of reducing or preventing the accumulation of dust. This can be 

observed from relatively high values of lifetimes in different countries, for example, 30 years 

in Switzerland (Peng et al., 2013).  

In this study, five different lifetime values (between 20 and 40 years) were tested. These 

selected values were chosen to gain a better understanding of the effect of this parameter in 

both the worst and the best case scenarios.  

The obtained LCOEs results of the selected sites with different lifetime periods are shown in 

Table 6.8 and the effect of using different lifetime periods can be seen in Figure 6.6. It is 

clear that the LCOE decreases as the lifetime increases. This result was expected, as the 

LCOE is a function of the lifetime value, and an increase in lifetime thus means that more 

power will be produced. In addition, the average LCOE for fixed tracking varied between 

0.082 and 0.060 $/kWh (0.063 and 0.047 £/kWh), and the LCOE for single-axis and dual-

axis varied between 0.071 and 0.054 $/kWh (0.054 and 0.041 £/kWh) (Table 6.9). The 

obtained average LCOEs for different tracking systems with different lifetime periods are 

shown in Figure 6.7. Based on the results of the analysis, the lifetime parameter will not 

affect the feasibility of the proposed systems, even in the worst case scenario. However, 

increasing the lifetime value through using high quality materials and greater caution will 

conserve the materials and PV components, and thus will contribute to achieving excellent 

results. The results found in this study are encouraging, and the single-axis tracking system 

still clearly is the best option for utilising PV systems in Kuwait.  
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Table 6.8 Computed LCOEs for the selected sites with different lifetime periods 

Site 

Lifetime (year) 

20 25 30 35 40 

Shagaya           

Fixed 0.042 0.059 0.073 0.088 0.113 

Single-axis Tracking System 0.036 0.051 0.063 0.076 0.098 

Dual-axis Tracking System 0.037 0.053 0.066 0.079 0.101 

Kabd           

Fixed 0.041 0.058 0.072 0.087 0.111 

Single-axis Tracking System 0.036 0.051 0.063 0.076 0.097 

Dual-axis Tracking System 0.037 0.053 0.066 0.079 0.101 

Sabriya           

Fixed 0.042 0.059 0.073 0.088 0.112 

Single-axis Tracking System 0.036 0.051 0.063 0.076 0.097 

Dual-axis Tracking System 0.037 0.053 0.065 0.078 0.1 

Mutribah           

Fixed 0.042 0.06 0.073 0.088 0.113 

Single-axis Tracking System 0.036 0.051 0.063 0.076 0.097 

Dual-axis Tracking System 0.037 0.053 0.065 0.079 0.101 

Umm Gudair           

Fixed 0.041 0.058 0.071 0.086 0.11 

Single-axis Tracking System 0.035 0.05 0.062 0.074 0.095 

Dual-axis Tracking System 0.037 0.052 0.064 0.077 0.099 
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Figure 6.6 LCOEs for the selected sites with different lifetime periods 

 

Table 6.9 Average computed LCOEs for different tracking systems  

Lifetime (year) 20 25 30 35 40 

LCOE for Fixed Tracking System ($/kWh) 0.082 0.072 0.067 0.063 0.060 

LCOE for Single-axis Tracking System ($/kWh) 0.071 0.063 0.058 0.054 0.052 

LCOE for Dual-axis Tracking System ($/kWh) 0.073 0.065 0.060 0.056 0.054 
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Figure 6.7 Average LCOEs for different tracking systems with different lifetime periods 
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6.4 Cost-benefit Analysis of Using PV Systems at the Proposed Sites 

The cost-benefit analysis of proposed renewable energy projects, such as solar energy, is a 

crucial step that should not be ignored. In order to compare the economic feasibility of PV 

systems and conventional power plants, which are fossil fuel consumers, it is important to 

include the effect of oil prices on LCOE values. 

Over the last decade, the fluctuation in oil prices – from $30 (£23)/ barrel in 2001 to $110 

(£84.35)/ barrel in 2011 (see Figure 6.8) – has been significant, and must be taken into 

account. Although this change in oil prices occurred over a relatively small period, the 

percentage increase is considered high. It has more than doubled, for instance, from $40 

(£30.67)/ barrel in 2000 to $80 (£61.34)/ barrel in 2007 (EIA, 2017). The opposite is also 

true, whereby the change in oil prices could go up or down, as can be clearly seen in the 

graph as well.  

  

Figure 6.8 Oil prices from 2000 to 2016 ( data taken from EIA, 2017) 
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In this study, the amount of money saved as a result of using PV systems at the selected sites 

instead of using conventional power plants was calculated based on the assumption that the 

cost of electricity generated in Kuwait by conventional power plants is $0.12 (£0.092)/ kWh, 

based on an estimated cost of $50 (£38.34) per barrel of oil (Ramadhan and Naseeb, 2011). 

Moreover, the effect of using single-axis and dual-axis tracking systems at the selected sites 

was also evaluated. 

In this analysis, a wide range of oil prices, from $20 (£15.34) to $100 (£76.68) per barrel, 

were used to investigate the effects of using PV systems in Kuwait to generate electricity, in 

terms of the amount of money saved. The analysis was simplified by calculating the saved 

$/kWh. 

It can be observed from Table 6.10 that the oil price of $30 (£23)/barrel is the critical 

parameter. In other words, when the oil price is higher than $30/barrel, then it can be 

concluded, based on the analysis carried out in Section 6.2, that the proposed PV systems at 

all selected sites are economically feasible. Moreover, as the electricity generation from 

conventional power plants cost $30/kWh, this means any less than this price (less than 

$30/barrel) when selling a barrel of oil means PV systems is more expansive and any higher 

prices (more than $30/barrel) means that the net will be a profit when using PV systems for 

energy. It can also be concluded that when oil prices are higher than $30/barrel, the feasibility 

level increases dramatically.  

On the other hand, when oil prices fall below 30 $/barrel, negative savings values will be 

obtained (see Figure 6.9). From an economic perspective, this means that the proposed PV 

systems are not feasible, and therefore more serious procedures should be applied to resolve 

the problem, or the project should be stopped. The results obtained for the saved $/kWh 

increased by 18.75% and 14.6% as a result of using single-axis and dual-axis tracking 

systems. It can also be deduced from the results that the single-axis tracking system is again 

the most appropriate choice for implementing PV systems in Kuwait. 
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Table 6.10 Savings ($/kWh) made with different oil prices 

Oil price 

($) 

Saving ($/kWh) 

Fixed tracking system Single-axis tracking system Dual-axis tracking system 

100 0.168 0.177 0.175 

90 0.144 0.153 0.151 

80 0.120 0.129 0.127 

70 0.096 0.105 0.103 

60 0.072 0.081 0.079 

50 0.048 0.057 0.055 

40 0.024 0.033 0.031 

30 0.000 0.009 0.007 

20 -0.024 -0.015 -0.017 
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Figure 6.9 Total saved $/kWh for different oil prices 

In this analysis, the amount of energy cost ($/kWh) saved correlates to the number of oil 

barrels saved in the generation of electricity by the proposed PV systems. It is generally 

accepted that the production of one kWh requires approximately 0.00061 of a barrel of oil. In 

other words each barrel of oil is equivalent to 1628 kWh (Al-rashed et al., 2016; Juggler, 

2016). Table 6.11 shows the average number of oil barrels that would be saved by 

implementing PV systems at the selected sites. It can also be observed that the number of oil 

barrels saved would increase by 24% and 29% when utilising single-axis and dual-axis 

tracking systems, respectively. In order to determine the amount of money that would be 

saved as a result of implementing the proposed PV systems, oil price must be considered. 

Therefore, different oil prices were tested. Table 6.12 presents the amount of money saved in 

the case of several different oil prices for each individual site. A comparison between the 

selected sites based on the average amount of money saved is presented in Figure 6.10.   

Table 6.11 Average number of oil barrels saved using different tracking systems 

 

Type of tracking system Number of oil barrels saved 

Fixed tracking system 108251 

Single-axis tracking system 134974 

Dual-axis tracking system 139657 
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Table 6.12 Amount of money saved with different oil prices 

  

Number 

of oil 

barrels 

saved 

Oil price (million $) 

Shagaya   20 30 40 50 60 70 80 90 100 

Fixed 107540 2.15 3.23 4.30 5.38 6.45 7.53 8.60 9.68 10.75 

Single-axis Tracking System 133805 2.68 4.01 5.35 6.69 8.03 9.37 10.70 12.04 13.38 

Dual-axis Tracking System 138515 2.77 4.16 5.54 6.93 8.31 9.70 11.08 12.47 13.85 

Kabd                     

Fixed 109041 2.18 3.27 4.36 5.45 6.54 7.63 8.72 9.81 10.90 

Single-axis Tracking System 134085 2.68 4.02 5.36 6.70 8.05 9.39 10.73 12.07 13.41 

Dual-axis Tracking System 138502 2.77 4.16 5.54 6.93 8.31 9.70 11.08 12.47 13.85 

Sabriya                     

Fixed 107726 2.15 3.23 4.31 5.39 6.46 7.54 8.62 9.70 10.77 

Single-axis Tracking System 134995 2.70 4.05 5.40 6.75 8.10 9.45 10.80 12.15 13.50 

Dual-axis Tracking System 139776 2.80 4.19 5.59 6.99 8.39 9.78 11.18 12.58 13.98 

Mutribah                     

Fixed 107093 2.14 3.21 4.28 5.35 6.43 7.50 8.57 9.64 10.71 

Single-axis Tracking System 134434 2.69 4.03 5.38 6.72 8.07 9.41 10.75 12.10 13.44 

Dual-axis Tracking System 139254 2.79 4.18 5.57 6.96 8.36 9.75 11.14 12.53 13.93 

Umm Gudair                     

Fixed 109854 2.20 3.30 4.39 5.49 6.59 7.69 8.79 9.89 10.99 

Single-axis Tracking System 137552 2.75 4.13 5.50 6.88 8.25 9.63 11.00 12.38 13.76 

Dual-axis Tracking System 142238 2.84 4.27 5.69 7.11 8.53 9.96 11.38 12.80 14.22 
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Figure 6.10 Number of oil barrels saved for the selected sites with different tracking systems 
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6.5 Cost of CO2 Reduction by Implementing the Proposed PV Systems  

In order to get more focus in this chapter on the economic part of this research, the amount of 

CO2 saved will be represented in numeric language, in terms of money saved. CO2 emissions 

have an associated cost, which ranges widely depending on several factors (Martín-Cejas, 

2010).  

In scientific economics, the related parameters are matched to values in order to carry out 

both basic and advanced analyses. In this chapter, the monetary value of the avoided CO2 will 

be investigated. It is generally accepted that the CO2 cost ranges between $24 (£18.4)/ton and 

$40 (£30.64)/ton; thus, in this study a value of $30 (£23)/ton was used (Chel et al., 2009; 

Hadi et al., 2013; Johnson and Keith, 2004; Ramadhan and Naseeb, 2011). The cost of 

reduction in CO2 emissions in monetary value is equal to approximately $0.022/kWh (Hadi et 

al., 2013). 

The amount of CO2 emissions prevented through the use of solar energy can be calculated 

(EPA, 2016a) as follows: 

Annual amount saved of CO2 per kWh = 7.18 x 10
-4

 metric tons CO2/kWh            (6.5) 

Cost of CO2 saved per kWh = Annual cost of CO2 / PV system annual output power        (6.6) 

The calculated costs of CO2 for each site with different tracking systems are listed in Table 

6.13. The average cost of CO2 saved when using a fixed tracking system was $3,796,046 

(£2,910,808) at each site, and the average cost of CO2 saved when using single-axis and dual-

axis tracking systems was $4,733,165.136 (£3,629,391) and $4,897,368.864 (£3,755,302) for 

each site, respectively.  

In terms of the amount of money saved by reducing CO2 emissions as a result of utilising PV 

systems, the Umm Gudair site has the highest values for all of the proposed tracking systems. 

The Mutribah site showed the least amount of money saved ($3,755,434.38) for the fixed 

tracking system, and the Shagaya site showed the least amount of money saved 

($4,692,165.9) for the single-axis tracking system. Figure 6.11 presents a comparison 

between the proposed sites, with different tracking systems, based on the cost of CO2 saved 

by the PV system.        
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Table 6.13 The cost of reduction in CO2 saved by the PV system 

 

Annual production 

(kWh/year) 
Annual amount of CO2 

reduction per kWh 

Cost of CO2 reduction by                                                                                                                                                                                                                                            

the PV system ($) 

Shagaya 
   

Fixed 175075000 125703.85 3771115.5 

Single-axis Tracking System 217835000 156405.53 4692165.9 

Dual-axis Tracking System 225503000 161911.154 4857334.62 

Kabd 
   

Fixed 177519000 127458.642 3823759.26 

Single-axis Tracking System 218291000 156732.938 4701988.14 

Dual-axis Tracking System 225481000 161895.358 4856860.74 

Sabriya 
   

Fixed 175378000 125921.404 3777642.12 

Single-axis Tracking System 219772000 157796.296 4733888.88 

Dual-axis Tracking System 227556000 163385.208 4901556.24 

Mutribah 
   

Fixed 174347000 125181.146 3755434.38 

Single-axis Tracking System 218859000 157140.762 4714222.86 

Dual-axis Tracking System 226705000 162774.19 4883225.7 

Umm Gudair 
   

Fixed 178843000 128409.274 3852278.22 

Single-axis Tracking System 223935000 160785.33 4823559.9 

Dual-axis Tracking System 231563000 166262.234 4987867.02 
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Figure 6.11 Cost of reduction in CO2 by implementing PV systems at the selected sites 

 

6.6 Conclusions 

In this chapter, an economic evaluation of the proposed sites was conducted as a main step in 

this research investigating the feasibility of using solar PV systems in Kuwait. A holistic 

study was carried out, focusing on the following stages: 

o An economic assessment of implementing PV systems 

o Cost-benefit analysis 

o Cost of CO2 reduction  

It was found that implementing PV systems in Kuwait is feasible, as the obtained LCOE 

value was less than the LCOE value for the conventional power plants in Kuwait. This was 

true for all types of tracking systems when the oil price was greater than $30 per barrel. It 

was also found that the single-axis tracking system is the best choice for all the selected sites 

in this study (which cover most of the country).    

The average obtained LCOE value was $0.072 (£0.055) /kWh for the fixed solar tracking 

systems, and the average LCOE values for the single-axis and dual-axis tracking systems 

were $0.0625 (£0.0479) /kWh, and $0.065 (£0.050) /kWh, respectively.  
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The Umm Gudair site had the best values, with the lowest LCOE for all proposed tracking 

system types; this was expected, as the site had the highest amount of energy generated by 

the PV systems.  

The implementation of single-axis and dual-axis tracking systems were significant. This can 

be clearly seen in the obtained LCOE values for the single-axis and dual-axis tracking 

systems, which decreased by 13.10% and 9.72%, respectively.  

The single-axis tracking systems showed the best LCOE values. It should be noted that the 

dual-axis tracking systems increased the amount of energy produced by 28.8% and 4.8% over 

the fixed and single-axis tracking systems, respectively. However, the high initial costs of the 

dual-axis tracking systems increased the total cost, in terms of LCOE value in $/kWh. 

The results of the sensitivity analysis were also encouraging, and suggest very optimistic 

expectations regarding the successful implementation of PV technology in Kuwait. In 

addition, based on the expected decrease in the cost of PV system components, and the 

significant development in photovoltaic technology itself, excellent results are expected.  

The cost-benefit analysis found that the proposed PV systems at all selected sites are 

economically feasible when the oil prices are above $30 /barrel. In addition, money will be 

saved as a result of avoiding large amounts of CO2 emissions. When represented in monetary 

values, the CO2 savings were estimated to be $0.022 /kWh. 

Overall, from an economic point view, the implementation of PV systems to generate 

electricity in Kuwait is feasible when oil prices are above $30 /barrel. In addition, the single-

axis tracking system is the best choice for use in these systems.  
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Chapter 7 – Numerical Modelling 

7.1 Introduction  

As stated in the introduction to this thesis, the use of solar trackers in PV systems is very 

beneficial in terms of increasing the amount of solar irradiation that is received, by optimally 

following the movement of the sun. In order to determine the feasibility of using PV systems 

in Kuwait, which is the aim of this research, and in addition to performance parameters, 

environmental and economic evaluations, investigating the behaviour of the proposed solar 

tracker relative to varying external loads is crucial in order to obtain a holistic view of the 

possible implementation of such a technology for the first time in Kuwait, in which there is 

no previous experience or background in this field. 

As identified in the literature review, although a lot of research has investigated the stability 

of solar trackers against wind loads, no study has yet investigated how solar trackers and 

ground interact with external loads. Thus, the present study will consider the ground (soil 

layers) in order to develop a better understanding of the behaviour of the whole proposed 

structure (solar tracker and foundation) in relation to external loadings. In this way, the 

present study will fill an identified knowledge gap, and will provide a solid base of 

information that can be drawn upon for future works in relevant fields.  It is also important to 

emphasise here that the sites at which PV solar trackers are proposed to be utilised are located 

in free and desert areas, which typically experience frequent wind storms. Therefore, the 

effect of wind pressure must be taken into consideration. The wind load is a major external 

load that the solar tracker will be exposed to, in addition to the weight of the solar tracker 

structure. As stated in the introduction background, Kuwait is characterised by a desert 

climate which is very hot in summer and cold in winter. High temperature is an important 

parameter which should be considered when modelling solar trackers. The thermal loads 

resulting from high temperature were implicitly added in the proposed modelling as 

COMSOL Multiphysics software allows using multi features such as thermal stress. 

In general, the purpose of design is to ensure that a proposed structure, under the worst 

loading conditions, will be safe. It is important to highlight here that this study will be the 

first study to investigate the potential use of solar trackers in Kuwait. In addition, it will be 

the first study in which the ground (soil layers) is included in an investigation of solar 

trackers.  
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Furthermore, this study will also investigate the problems associated with implementing PV 

solar trackers in Kuwait in reference to the structural and geotechnical design of both the 

whole structure (solar tracker and foundation), and the ground.  

In order to investigate the behaviour of both the PV solar tracker and the soil in relation to the 

external loads, the following parameters will be considered: 

o von Mises stress 

o equivalent strain 

o factor of safety (FOS) 

o displacement 

For this study, a model of dual-axis solar tracker was created to test the stability and 

reliability of PV solar trackers in Kuwait. The tracker was equipped with sixteen panels 

distributed in a 4 x 4 array (four rows and four columns). It was made by the Patriot Solar 

Group, and had an area of 27.4 m². A three-dimensional (3D) finite element model was 

created and simulated using the COMSOL Multiphysics 5.0 software.  

As explained in the methodology chapter, the modelling study was carried out based on the 

finite elements method (FEM), using COMSOL Multiphysics software. The weight of the 

solar tracker itself and the design speed of the wind (40 m/s) were the main external loads 

examined in this study.  

The effects of inclination angles of the tracker were investigated, as well as the effect of 

different wind directions. The elastic–perfectly plastic constitutive model (Mohr-Coulomb 

Model) was used to study the behaviour of the soil, where a linear elastic model has been 

applied for the solar structure. The validation of the FEM model will be presented in Section 

7.2, and the validation of the numeric model will be presented in Section 7.3. The proposed 

model will be introduced in Section 7.4. The effect of wind speed on the solar tracker will be 

presented in Section 7.5 and finally the conclusions will be introduced in Section 7.6.  

7.2 Numeric Model for Validation  

7.2.1 Introduction 

Validation of the proposed model is an important stage of the modelling process. In this 

stage, the proposed model structure is investigated and the model results, based on the given 

input data, are investigated to ascertain whether or not the model outputs are appropriate, and 
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then the model results are validated using the same or similar models. In order to create an 

effective model in this study, the proposed model was validated using a study conducted by 

Lin et al. (2013).  

7.2.2 Validation Case Study 

Lin et al. (2013) studied the structural integrity and deformation-induced misalignment of 

solar radiation in a 2 kW tracking photovoltaic (PV) system using a commercial FEA code, 

ANSYS. The authors investigated the effects of self-weight and wind loads, using two 

different wind speed values (7 m/s and 12 m/s), on the structural deformation and 

misalignment of solar radiation. They found that the structure was stable under the applied 

loads, and no failure was recorded for any structural components, according to the von Mises 

failure criterion. The modelling simulation was carried out under a static mode.  

7.2.3 Static Model 

7.2.3.1 Geometry and Boundary Conditions 

A 2 kW PV system was used in this study, which consisted of a 3X3 array (Figure 7.1). The 

PV system was 3 m in length, 2.2 m in height, and 5 m in width. Due to a lack of detail in the 

paper, the author of the paper was contacted, but declined to provide further details (Lin, 

2016). A literature search was not able to identify the relevant details. As such, the post 

diameter was assumed to be 20 cm, and a square concrete foundation of 2 m in length and 1m 

in depth was also assumed.  A fixed constraint at the bottom of the solar tracker was the main 

constraint of this study. 

 

 

 

 

 

 

 

 

Figure 7.1 Geometry for the case study (Lin et al., 2013) 
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7.2.3.2 Materials 

The material properties of the PV panels and mounting structure are given in Table 7.1. 

Table 7.1 The material properties of the PV panels and mounting structure (Lin et al., 2013) 

Material 
Young’s 

modulus (GPa) 
Poisson’s 

ratio 

Yield stress 

(MPa) 
Density 

(kg/m
3
) 

Solar glass 70 0.22 - 2500 

A5052 aluminium 70.3 0.33 193 2680 

A6063-T6 aluminium 68.9 0.33 214 2700 

AISI 1053 steel 205 0.29 610 7850 

AISI 4140 steel 205 0.29 415 7850 

SUJ2 steel 205 0.29 2035 7850 

SS400 steel 205 0.29 250 7750 

 

7.2.3.3 Loading and Meshing 

In the first case, only the effect of gravity was examined; in the other cases, the effects of 

both gravity and wind load were measured. Wind load was applied to PV modules at different 

inclination angles (0
◦
, 15

◦
, 30

◦
, 45

◦
, 60

◦
, 75

◦
); the wind direction varied from 0

◦
 to 180

◦
 with an 

interval of 30
◦
, and was applied to each wind speed. The wind pressure was calculated using 

computational fluid dynamics (CFD) code. The wind load was based on two wind speeds, 7 

m/s and 12 m/s. The mesh was created from an 8-node hexahedral and 4-node tetrahedral, 

with a total of 715,000 elements and 1,780,000 nodes. 

7.3 Validation of the FEM Model  

7.3.1 Static Model 

The static model was applied in this study due to the very slow rotation of both azimuth and 

elevation axes. In order to validate the COMSOL Multiphysics 5.0 software, the static model 

created by Lin et al. (2013) was reconstructed and modelled using COMSOL Multiphysics 

5.0. Due to the complexity of the geometry and the lack of certain details in the model, 
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simplifications and assumptions were applied, taking into account that the results of the 

model used would not be affected.  

7.3.1.1 Geometry and Boundary Conditions 

A 3D model was constructed using COMSOL Multiphysics 5.0 (Figure 7.2); the solar tracker 

was 5 m in width, 3 m in length, and 2.2 m in height, at an elevation angle of 75
◦
.  The solar 

tracker consisted of nine PV panels with the following dimensions: 1668 mm x 1000 mm x 

40 mm. The PV panels were supported by six aluminium beams, in turn supported by the 

main beam. The main beam was supported by a post. As stated above, some details were not 

available, such as the foundation details, and certain assumptions were made in order to 

conduct the study, such as the use of a square concrete foundation of 2 m in length and 1m in 

depth. 

A fixed constraint (to prevent horizontal and vertical movement) was applied to the bottom of 

the foundation, while horizontal constraint roller constraints (to prevent horizontal 

movement) were applied to the rest of the foundation. 

 
Figure 7.2 Geometric configuration created using COMSOL software 

  

 

7.3.1.2 Materials 

For simplicity, the material properties applied for the solar modules were assumed to be 3.5 

GPa for the modulus of elasticity, and 0.33 for the Poisson’s ratio (COMSOL, 2013). 

Identical material properties were used for the remainder of the model components. 
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7.3.1.3 Loading and Meshing 

Self-weight and wind load were the main loading components in this study. Two different 

wind loads using wind speeds of 7 m/s and 12 m/s were applied as a boundary load affecting 

the solar tracker on the Y-axis from a southern direction. The wind direction for each wind 

load, and the elevation angles of the PV modules, were applied in an identical fashion to the 

validation study. The self-weight of the whole structure was applied using the gravity feature 

of the COMSOL software. Wind loads were calculated based on the American Society of 

Civil Engineers (ASCE) 7-05, Minimum Design Loads for Buildings and other Structures. 

The wind load induced on the structure was calculated using the following equation (ASCE, 

2013): 

 qz = 0.613 Kz Kzt Kd V
2
 I  (N/m

2
)                 (7.1)                        

Where, qz: velocity pressure 

            Kz = the velocity pressure exposure coefficient  

            Kzt= the topographic factor  

            Kd = the wind directionality factor  

            V = basic wind speed (m/s) 

            I   = importance factor 

 

Second order displacement tetrahedral elements were used for the proposed model, and the 

complete mesh consisted of 32,561 elements, especially with some of the assumptions has 

made on the properties used within the paper as the author (Lin, 2016) declined to provide 

any further information.   

7.3.2 Results 

After reconstructing the model using COMSOL Multiphysics software and setting up the 

complete modelling process, from defining the materials and the physics of the validating 

problem and ending with the run process, the obtained results were reported. It should be 

noted here that three different scenarios were created and tested, in order to compare the 

results based on the maximum von Mises stress criteria at different elevation angles (0
◦
, 15

◦
, 

30
◦
, 45

◦
, 60

◦
, 75

◦
).  In the first scenario, the effect of gravity only was tested, and in the second 

and third scenarios the effect of wind load, calculated based on 7 m/s and 12 m/s wind 

speeds, respectively, was tested. The obtained results are shown in Figures 7.3 and 7.4.  
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Figure 7.3 Maximum von Mises stresses for wind speed of 7 m/s 

  

 

Figure 7.4 Maximum von Mises stresses for wind speed of 12 m/s  
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7.3.3 Validation 

As stated earlier in this chapter, the validation of any proposed model or program is an 

important stage of the modelling process, as it provides an initial indication of the accuracy of 

the conducted works.   

The results obtained from the validated model created using COMSOL software showed 

close results, in both the shape of the obtained graph and the obtained values. Three cases 

were then chosen for detailed comparison purposes. Tables 7.2-7.4 present a comparison of 

the validation study and the numerical model based on the maximum von Mises stress for the 

gravity only case, the 7 m/s wind speed case, and the 12 m/s wind speed case for a wind 

direction of 0
◦
. 

The results obtained in the present study were found to be in good agreement with the case 

study. In addition, the deviation of the results computed varied from between 2 and 14%, 

which is considered an acceptable range. 

 

 

Table 7.2 Validation results for gravity load only 

 

 

 

Angle 

Case study 

Maximum von Mises stresses 

(Mpa) 

COMSOL 

Maximum von Mises stresses 

(Mpa) 
Deviation % 

0 135 143 -5.93 

15 155 147 5.16 

30 145 150.3 -3.66 

45 160 152.9 4.44 

60 115 131 -13.91 

75 135 119.53 11.46 
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Table 7.3 Validation results for wind speed of 7 m/s 

Angle Case study COMSOL Deviation % 

0 135 126.72 6.13 

15 150 146.1 2.6 

30 140 150 -7.14 

45 160 153.45 4.09 

60 117.5 132.8 -13.02 

75 125 121.2 3.04 

 

 

 

Table 7.4 Validation results for wind speed of 12 m/s 

 

 

 

 

 

 

 

 

 

 

 

Angle Case study COMSOL Deviation % 

0 135 123 8.89 

15 155 143.7 7.29 

30 140 149.4 -6.71 

45 160 154.5 3.44 

60 120 135.6 -13 

75 130 126.67 2.56 
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7.4 Proposed Model for the PV Solar Tracker  

7.4.1 Site Conditions 

The proposed site for the numerical modelling study is Shagaya, which is located 60 km to 

the southwest of the city of Kuwait; Table 7.5 provides a site surface description of the 

Shagaya site location and topography. In general, the land of Kuwait is characterized by a 

flat, desert landscape, tilting towards the northeast from 270 m above sea level in Salmi, to a 

few metres Bubian Island (KISR, 2014). The site investigation and soil tests were performed 

by a private company (Gulf Inspection International Company), and the final work was 

submitted to KISR in the form of a report on ground investigation works for Shagaya 

Renewable Energy Power Plant Kuwait. Field and lab tests were performed in order to 

investigate the soil properties; the types and numbers of field and laboratory tests are shown 

in Table 7.6. 

It can be noted from the results of the lab and field tests that the site is characterised by 

granular soil at the subsurface, and dense and very dense soil layers. The soil is mainly 

composed of fine sand, varying from 60 to 88%. It can be seen also that the coefficient of the 

permeability of the soil varied from between 5.33 x 10
-8

 and 22.0 x 10
-8

 cm/s, which indicates 

the low level of permeability of the soil layers, due to the high cementation bonding between 

the soil particles. The soil profile and the soil parameters are shown in Tables 7.7 and 7.8, 

respectively. It was found that the subsurface layer contains granular soil, which is classified 

as SP-SM/SP/SW-SM/SM/SC-SM/SC. 

 

Table 7.5 Site surface description of the Shagaya site 

Location 

 

- Southwest of Kuwait. 

- The investigation site is located at approximately 60 km southwest of 

the city of Kuwait, and is accessible via Highway 70. 

 

The topography 

 

- The terrain is primarily sandy, gently undulating flat desert without any 

vegetation. 

 

- The area is not inhabited and has no industrial facilities. 

 

Groundwater 

 

 

- Not encountered in any of the boreholes during investigations up to a 

depth of 30 m. 
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Table 7.6 Types and number of field and laboratory tests (KISR, 2014b) 

A. Field Tests 

Boreholes 

Standard Penetration Tests 

Trial Pits 

Field Permeability Test 

Electrical Resistivity Test 

Plate Load Test 

Cone Penetration Test 

 

50 BHs x 30.0 m 

 

30 

4 

6 

20 

10 

 

 

ASTM D-1586 

 

  1377 

ASTM G-57 

ASTM D-1194 

ASTM D-5778 

B. Laboratory Tests 

Sieve Analysis 

Moisture Content 

Atterberg Limits 

Direct Shear 

Bulk Density 

Chemical Tests 

 

51 

51 

30 

11 

11 

15 

 

ASTM D-422 

ASTM D-2216 

ASTM D-4318 

ASTM D-3080 

 

BS-1377 Part 3 

  
 

 

Table 7.7 Soil profile (KISR, 2014b) 

Layer No. Description 

Layer 1 Up to 0.3 m: top soil 

Layer 2 0.3 to 2.0 m: medium dense, sand with silt 

Layer 3 2.0 to 10.0 m: dense to very dense sand with silt 

Layer 4 > 10.0 m: very dense sand with silt/clay 

 

Table 7.8 Soil parameters (KISR, 2014b) 

Layer No. Depth  Unit Weight (γ) Angle of Internal  Modulus of Elasticity (E) 

  (m) (KN/m
3
) Friction (Φ) (KN/m

2
) 

Layer 1 0.0 - 0.3 Top soil 

Layer 2 0.30 - 2.0 19 32 10000 

Layer 3 2.0 - 10.0 20 36 40000 

Layer 4 > 10.0 21 40 100000 
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7.4.2 Geometry 

The model consisted of four parts: solar tracker, post, foundation, and the soil (which 

consisted of three layers, as shown in Figure 7.5). The solar tracker had an active area of 27.4 

m
2
. The tracker was supported by a post with a diameter of 30 cm and a length of 3 m. The 

post was supported by a square concrete foundation (2 m x 2 m) with a depth of 1 m. 

In order to maintain the soil behaviour with proper boundary conditions and to minimise the 

effects of the boundries, the soil layers were modelled as 22 m x 22 m x 12 m cube, 22 m x 

22 m x 8 m cube, and 22 m x 22 m x 2 m cube. In other words, a distance of five times the 

foundation length from all directions was applied, which is considered a minimum distance in 

the FEM (El-Hamalawi, 2002).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7.5 Geometric configuration 
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7.4.3 Material Properties 

In order to conduct an efficient modelling study, the main elements of the proposed design, 

such as the soil layers, should be represented by the most appropriate constitutive model. As 

one aim of this study was to investigate the soil behaviour under the external loads, 

simulating the behaviour of the soils layers in this study was vital to the analysis.  

As stated in the methodology chapter, the Mohr-Coulomb constitutive model, a widely used 

material model, was used to model the soil behaviour in this study. The required parameters 

when using the Mohr-Coulomb model are: Young’s modulus, Poisson’s ratio, angle of 

internal friction and cohesion. For the solar tracker structure and the foundation which have 

been modelled by linear elastic model, the density and the Young’s modulus are the main 

inputs. 

The material properties of the solar tracker, foundation, post and soil are shown in Table 7.9. 

It should be stated here that, due to the complexity of the solar module in terms of the 

constituted materials, and for the sake of simplicity, the material properties applied for the 

solar modules were assumed to be 3.5 GPa for modulus of the eleasticity and 0.33 for 

Poisson’s ratio (COMSOL, 2013). 

Table 7.9 Material properties 

Material 
Density 

(Kg/m
3
) 

Young's modulus 
(MPa) 

Poisson's 

Ratio (ν) 
Cohesion 

(C) (KPa) 
Angle of internal 

friction(Φ) 

Steel 7850 2.00E+05 0.33 - - 

Concrete 2300 2.50E+04 0.33 - - 

Soil_layer_1
*
 2140.7 100 0.3 19 39 

Soil_layer_2
**

 2038.7 40 0.3 14.4 37 

Soil_layer_3
***

 1963.8 10 0.3 5 32 

 *     Layer_1 = medium dense, sand with silt. 

 **   Layer_2 = dense to very dense, sand with silt. 

 *** Layer_3 = very dense sand with silt/clay. 
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7.4.4 Loading 

Self-weight and wind load were the main loading elements in this study. The wind load was 

applied as a boundary load affecting the solar tracker. There was no code for designing wind 

speed available in a Kuwaiti context (Neelamani and Al-awadi, 2011).  

A design wind speed is an important parameter that must be considered when evaluating solar 

tracker system stability. Based on the available data from KISR, and some literature 

specifically relating to Kuwait, this research used a design wind speed of 40 m/s (Awida, 

2011; KISR, 2015; Neelamani and Al-awadi, 2011).  

The wind load was applied to PV modules at different elevation angles (15
◦
, 30

◦
, 45

◦
, 60

◦
, 

75
◦
), and the wind direction varied from 0

◦
 to 180

◦
 with an interval of 30

◦
. Wind loads were 

calculated based on the American Society of Civil Engineers (ASCE) 7-05. Table 7.10 shows 

the parameter values used in the wind load calculations. 

7.4.5 Boundary Conditions 

A key part of the modelling process is setting up the boundary conditions in order to ensure 

the proper simulation of the proposed problem. In this case, a fixed constraint (to prevent 

horizontal and vertical movement) was applied to the bottom of the soil layer, while a roller 

constraint (to prevent horizontal movement) was applied to the rest of the soil. 

Table 7.10 Parameter values used in wind load calculation 

 

Basic wind speed 

 

 

V = 40 m/s 

 

3 second gust wind speed for Kuwait 

Velocity pressure exposure 

coefficient 

 

Exposure D 

 
Open area 

Topographic factor Kzt = 1.0 ASCE standard (Section 6.5.7.2) 

Wind directionality Kd = 0.85 
ASCE standard (Section 6.5.4.4), Table 

6.4 

Velocity pressure exposure 

coefficient 
Kz = 0.85 

ASCE standard (Section 6.5.6.6), Table 

6.3 

Importance factor I = 1.0 
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7.4.6 Meshing 

A second order displacement tetrahedral type mesh was used for the proposed model, and the 

complete mesh consisted of 32,561 elements; the finite element mesh is shown in Figure 7.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.4.7 Discussion and Results 

As the main purpose of this study is to investigate the behaviour of the proposed solar tracker 

as well as the soil layers in response to external loads in the State of Kuwait, the wind load 

and the self-weight of the solar trackers were identified as the main parameters to be included 

in the analysis. In addition, the angle of inclination and the wind direction were also 

important parameters considered in this study. Thus, thirty-five different case scenarios were 

considered, and consequently thirty-five models were constructed using COMSOL 

Multiphysics software.  

Figure 7.6 Finite elements mesh 



197 
 

In this chapter, the behaviour of the proposed solar tracker and the soil layers were 

investigated in reference to the following criteria: von Mises stress, equivalent strain, 

displacement and the factor of safety (FOS).  

The maximum von Mises stress and the maximum displacements are the most important 

criteria in this study, as the main purpose of conducting the numerical modelling of the solar 

tracker was to check its reliability and stability.  

The maximum von Mises stress values varied between 57.68 and 105.74 MPa at inclination 

angles of 15
◦
 and 75

◦
, respectively, with a wind direction of 0

◦ 
(the south). The south direction 

(wind direction of 0
◦
) was the critical case, in which the highest amount of stress was 

developed; this is logical, as the total wind load is assumed to affect the solar tracker from 

one direction, in other words, the total wind load was assumed to be a whole amount axial 

component.  

Therefore, as the wind speed magnitude is the most important parameter in this study; in the 

following section (Section 7.5), further investigation will be carried out testing different wind 

speed magnitudes.  

It can be also noted that the amount of stress increased with an increase in the inclination 

angles, due to the larger area exposed to wind loads. The opposite was true for the north 

direction (wind direction of 180
◦
), and the east direction (wind direction of 90

◦
) represented 

the lowest stresses, as a result of the relatively small areas of the solar tracker that were 

directly exposed to the wind load.  

It can also be seen that the maximum displacement values ranged between 15.4 and 19.9 mm 

at inclination angles of 15
◦
 and 75

◦
, respectively, for the wind direction of 0

◦ 
(south). It can be 

clearly observed also that an increase in stress magnitude was represented (in the 

displacement criterion) as an increase in the displacement values. The variation in the 

displacement values can be attributed to the different stresses created as a result of assuming 

different inclination angles and wind directions. It can be noted that the von Mises stresses 

and displacements also increased with an increase in inclination angle.  

Tables 7.11-7.14 present detailed results for all wind directions with five different inclination 

angles (15
◦
, 30

◦
, 45

◦
, 60

◦
, 75

◦
) based on the von Mises stress, displacement, equivalent strain, 

and the factor of safety criteria, respectively.  
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Figures 7.7 and 7.8 show a comparison between the wind direction and the angle of 

inclination of the solar tracker, based on the maximum von Mises stress and the total 

displacements criteria. 

In addition, the equivalent strain and the factor of safety (FOS) criteria were used in order to 

obtain a better understanding of the material behaviours. the factor of safety (FOS) which is 

an important measure of the stability of structures, was calculated using the following 

equation (Beer et al., 2005): 

Factor of safety (FOS) = Ultimate load / Allowable load                                                    (7.2) 

The maximum obtained values of the equivalent strain varied between 1.36x10
-3

 and 

1.71x10
3
 for all different assumed angles of inclination and wind load directions. In terms of 

the factor of safety criterion, the solar tracker was stable for all of the assumed cases; the 

obtained factor of safety values ranged from 1.89 to 3.47. The lowest factor of safety value 

occurred at an angle of inclination of 75
◦
, and the highest was at an angle of inclination of 

15
◦
. It can be observed that these obtained results are in complete agreement with the 

obtained results for the von Mises stress criterion; this was expected, as the FOS is a function 

of the applied stress and the maximum ultimate stress of the material. Figures 7.9 and 7.10 

show a comparison between the wind direction and the angle of inclination of the solar 

tracker, based on the equivalent strain and the factor of safety (FOS) criteria. 

It can be observed also that the behaviour of the solar tracker against the wind blowing from 

the south (at 0
◦
) and north (at 180

◦
) was similar, as both incur a high wind load. This was 

expected as a result of the highly exposed area of the solar trackers in these cases, whereas 

the opposite can been seen in the case of wind blowing from an easterly direction (at 90
◦
); 

this was also expected, as only a small area is exposed in this case.  

The critical direction of wind blowing against the solar tracker is from the south (at 0
◦
), as 

indicated by the higher values of von Mises stresses and maximum displacements for this 

case.  This is due to the large area that is exposed to the wind, which leads to large stresses in 

critical regions. In this study, the focus is on analysing the results of the cases where the wind 

is blowing from the south, based on the following criteria: von Mises stress displacement, 

equivalent strain, and factor of safety.  

From a structural engineering perspective, it is commonly known that joints are the critical 

regions in which the maximum stress values occur. This fact can be observed in the results of 
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this study, also; in the proposed model, with all different solar tracker inclination angles, the 

maximum von Mises stresses occurred at joints at the main connections and intersections 

between the post and the main beam. Figures 7.11-7.15 show the maximum von Mises 

stresses at different inclination angles where the wind is blowing from a southern direction (at 

0
◦
). 

The maximum equivalent strain value was 1.71 x10
-3

. This value is much less than 1.0, which 

refers to the elastic hypothesis (Ferroudji et al., 2014). The factor of safety of the solar 

trackers was calculated for different inclination angles. It is found that the factor of safety 

values were within a range of 1.9 to 3.5. These values indicate that the proposed structure is 

safe, and that the low FOS values are related to the high increase in stress induced as a result 

of a large area being exposed to the wind, such as where the inclination angle is equal to 75
◦
.  

On the other hand, the maximum obtained stresses and displacements in the soil layers were 

39.85 kPa and 1.95 mm, respectively. These values were obtained at the south direction, with 

an inclination angle of 75
◦
, which was identified above as the critical direction. These 

obtained results provide an important indication of the stability of the ground against the 

external loads induced by the self-weight of the structure and the wind loads.  

It can be concluded that the effect of wind load should not be underestimated, especially 

when wind speed is high. Therefore, a strategy called a ‘defence position’ is generally applied 

in most solar trackers, in which the solar tracker is installed in a horizontal position in order 

to protect the structure from external forces induced by high wind speeds. This position is 

used to avoid very strong winds, defined by the Euro code standard as 140 km/h (Meca Solar, 

2009). 
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Table 7.11 Maximum von Mises stress (MPa) 

Wind direction Angle of inclination Max. von Mises stress (MPa) 

Wind direction: (0
◦
) 

15 57.68 

30 76.5 

45 90.89 

60 101.34 

75 105.74 

Wind direction: (30
◦
) 

15 50.11 

30 68.84 

45 78.71 

60 87.77 

75 91.57 

Wind direction: (60
◦
) 

15 28.93 

30 39.74 

45 45.44 

60 50.67 

75 52.87 

Wind direction: (90
◦
) 

15 28.025 

30 38.77 

45 44.42 

60 49.615 

75 51.835 

Wind direction: (120
◦
) 

15 27.12 

30 37.8 

45 43.4 

60 48.56 

75 50.8 

Wind direction: (150
◦
) 

15 46.96 

30 65.47 

45 75.16 

60 84.1 

75 88 

Wind direction: (180
◦
) 

15 54.24 

30 75.61 

45 86.79 

60 97.11 

75 101.61 
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Table 7.12 Maximum displacements (mm) 

Wind direction Angle of inclination Maximum displacements (mm) 

Wind direction: (0
◦
) 

15 15.4 

30 16.6 

45 18.4 

60 18.9 

75 19.9 

Wind direction: (30
◦
) 

15 13.3 

30 14.4 

45 16 

60 16.4 

75 17.2 

Wind direction: (60
◦
) 

15 7.69 

30 8.3 

45 9.21 

60 9.46 

75 9.94 

Wind direction: (90
◦
) 

15 7.425 

30 8.025 

45 8.925 

60 9.195 

75 9.695 

Wind direction: (120
◦
) 

15 7.16 

30 7.75 

45 8.64 

60 8.93 

75 9.45 

Wind direction: (150
◦
) 

15 12.4 

30 13.4 

45 15 

60 15.5 

75 16.4 

Wind direction: (180
◦
) 

15 14.3 

30 15.5 

45 17.3 

60 17.9 

75 18.9 
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Table 7.13 Equivalent strains 

Wind direction Angle of inclination Equivalent strain 

Wind direction: (0
◦
) 

15 1.36E-03 

30 1.41E-03 

45 1.71E-03 

60 1.64E-03 

75 1.36E-03 

Wind direction: (30
◦
) 

15 1.17E-03 

30 1.22E-03 

45 1.48E-03 

60 1.42E-03 

75 1.18E-03 

Wind direction: (60
◦
) 

15 6.78E-04 

30 7.04E-04 

45 8.56E-04 

60 8.19E-04 

75 6.79E-04 

Wind direction: (90
◦
) 

15 7.23E-04 

30 7.07E-04 

45 7.89E-04 

60 7.37E-04 

75 6.78E-04 

Wind direction: (120
◦
) 

15 7.68E-04 

30 7.09E-04 

45 7.22E-04 

60 6.54E-04 

75 6.76E-04 

Wind direction: (150
◦
) 

15 1.33E-03 

30 1.23E-03 

45 1.25E-03 

60 1.13E-03 

75 1.17E-03 

Wind direction: (180
◦
) 

15 1.54E-03 

30 1.42E-03 

45 1.44E-03 

60 1.31E-03 

75 1.35E-03 
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Table 7.14 Factor of safety (FOS) 

Wind direction Angle of inclination Factor of safety (FOS) 

Wind direction: (0
◦
) 

15 3.47 

30 2.61 

45 2.20 

60 1.97 

75 1.89 

Wind direction: (30
◦
) 

15 3.99 

30 2.91 

45 2.54 

60 2.28 

75 2.18 

Wind direction: (60
◦
) 

15 6.91 

30 5.03 

45 4.40 

60 3.95 

75 3.78 

Wind direction: (90
◦
) 

15 7.14 

30 5.16 

45 4.50 

60 4.03 

75 3.86 

Wind direction: (120
◦
) 

15 7.37 

30 5.29 

45 4.61 

60 4.12 

75 3.94 

Wind direction: (150
◦
) 

15 4.26 

30 3.05 

45 2.66 

60 2.38 

75 2.27 

Wind direction: (180
◦
) 

15 3.69 

30 2.65 

45 2.30 

60 2.06 

75 1.97 
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Figure 7.7 Maximum von Mises stress with different inclination angles for different wind speed magnitudes 

 

 

Figure 7.8 Maximum displacements with different inclination angles for different wind speed magnitudes 
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Figure 7.9 Equivalent strains with different inclination angles for different wind speed magnitudes 

 

 

Figure 7.10 Factor of safety with different inclination angles for different wind speed magnitudes 
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Figure 7.11 Maximum von Mises stress in MPa at inclination angle of 15
◦
 

Figure 7.12 Maximum von Mises stress in MPa at inclination angle of 30
◦
 

Figure 7.13 Maximum von Mises stress in MPa at inclination angle of 45
◦
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Figure 7. 14 Maximum von Mises stress in MPa at inclination angle of 60
◦
 

Figure 7.15 Maximum von Mises stress in MPa at inclination angle of 75
◦
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7.5 Effect of Wind Speed on the Proposed Solar Tracker 

As mentioned in the previous section, the wind speed magnitude is the most important 

parameter in this study and, therefore, further analysis based on different wind speed 

magnitudes was undertaken in order to produce a complete picture of the effects of this 

parameter on the solar tracker structure.  

Four different wind speed magnitudes of (30-40-50-60 m/s) were considered in the analysis. 

The investigation was based on the same criteria used in the main proposed solar tracker (von 

Mises stress, displacement, equivalent strain, and factor of safety (FOS)). The results 

obtained for total displacements, von Mises stress, equivalent strain, and the FOS for 

different wind speed magnitudes are shown in Table 7.15. 

Figures 7.16 and 7.17 present a comparison between different wind speed magnitudes with 

different inclination angles, based on the von Mises stresses and displacements criteria.  It 

can clearly be seen that an increase of wind speed increased the von Mises stress and 

displacement values for all the inclination angles. The effect of high wind speed magnitudes 

was significant, and can be observed in the increase in induced stresses and displacements.  

It is important to recall here that the base case for this study was designed based on 40 m/s, 

and the results of the analysis conducted in Section 7.4 showed that the proposed solar 

trackers are stable and safe. In addition, it is extremely important to recall here that all solar 

trackers must be set up in a stationary position (safe mode) in case of high wind speed, which 

is estimated to be approximately 140 km/h (Meca Solar, 2009). In the safe mode, the solar 

tracker is applied to stow position (parallel to the ground) in order to avoid the effects of high 

wind speeds (Rohr et al., 2015). 

The purpose of this analysis was to provide a detailed explanation of the situation in which 

solar trackers are exposed to high wind speed magnitudes. Failure or damage of the solar 

tracker is the normal expected result for this situation. From a structural point view, when the 

loads applied on the solar trackers exceed certain limits (the ultimate loads) the structure will 

be unsafe and unstable. This can be clearly observed from certain terms such as the factor of 

safety (FOS). From Table 7.15, it can be seen that the FOS of the solar trackers decreased to 

1.2 for the case where the wind speed was 50 m/s (180 km/s), and decreased to 0.84 for a 

wind speed of 60 m/s and an angle of inclination of 75
◦
 and this case the solar tracker will 

fail.  



209 
 

The obtained results suggest that the use of the solar tracker becomes dangerous when the 

wind speed exceeds 50 m/s (215 km/s), and therefore using the safe mode is crucial in order 

to conserve the solar tracker and protect all of the installed PV system components, such as 

solar modules, from damage.    
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Table 7.15 Total displacement, von Mises stress, equivalent strain, and FOS for different wind speed 

magnitudes  

Wind speed 
Angle of 

inclination 

Total displacement 

(mm) 

von Mises stress 

(MPa) 

Equivalent 

strain 
FOS 

30 m/s 

15 8.6504 32.562 9.94E-04 6.1 

30 9.3405 44.733 0.001042 4.5 

45 10.366 51.149 0.0012262 3.9 

60 10.652 57.034 0.0011326 3.5 

75 11.188 59.507 9.61E-04 3.4 

40 m/s 

15 15.4 57.68 1.36E-03 3.5 

30 16.6 76.5 1.41E-03 2.6 

45 18.4 90.89 1.71E-03 2.2 

60 18.9 101.34 1.64E-03 2.0 

75 19.9 105.74 1.36E-03 1.9 

50 m/s 

15 24.029 90.451 0.0027613 2.2 

30 25.946 124.26 0.0028945 1.6 

45 28.796 142.08 0.003406 1.4 

60 29.589 158.43 0.0031462 1.3 

75 31.078 165.3 0.0026689 1.2 

60 m/s 

15 34.602 130.25 0.0039763 1.54 

30 37.362 178.93 0.004168 1.12 

45 41.466 204.60 0.0049047 0.98 

60 42.609 228.14 0.0045306 0.88 

75 44.752 238.03 0.0038432 0.84 
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Figure 7.16 A comparison between different wind speed magnitudes with different inclination angles, based on 

displacement   

 

 

Figure 7.17 A comparison between different wind speed magnitudes with different inclination angles, based on 

von Mises stress  
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7.6 Conclusions 

The location and the orientation of the solar tracker are important parameters in 

implementing PV systems.  Kuwait is located in the northern hemisphere, and the PV solar 

trackers will need to face south in order to receive solar radiation. However, in this study, the 

effect of wind direction was investigated for five different inclination angles, and 35 

scenarios were analysed. 

In order to increase the amount of electricity produced by the proposed PV systems at the 

selected sites in Kuwait, single-axis and dual-axis PV solar trackers were investigated in this 

study. This study modelled a two-axis solar tracker in order to test the stability and the 

reliability of PV solar trackers in Kuwait. The proposed solar tracker was equipped with 

sixteen panels distributed in a 4 x 4 array (four rows and four columns). 

The effect of wind direction was investigated for five different inclination angles, and thirty 

five scenarios were analysed. 

The average von Mises stress was 86.43 MPa, which was less than the yield stress (200 MPa) 

noticed by the FOS values, which were between 1.89 (for an inclination angle of 75
◦
) and 

3.47  (for inclination angle of 15
◦
). The average displacement was 17.84 mm, where the 

minimum and maximum displacement values were 15.4 mm and 19.9 mm, respectively.  

From a geotechnical engineering perspective, the maximum stresses and displacements 

obtained revealed that the ground is safe and stable in response to external loads (self-weight 

of the solar tracker and wind load) except for the 60 m/s wind speed. This can be seen in the 

results of conducted studies in this regard that focused their analysis on the stability of solar 

trackers. In addition, it can be observed that solar trackers structures are more likely to suffer 

damage caused by high wind pressure than by other issues, such as ground failure. However, 

in order to determine the provisional performance of solar trackers in terms of efficiency, the 

movement of the solar trackers in order to follow the sun to harvest the maximum available 

solar irradiation will definitely be affected by the ground settlement.  

The lack of past studies of solar trackers in which the ground is included as a variable may be 

attributed to the relatively small amounts of stresses induced in the soil layers, as these types 

of structures are considered relatively small in area.  
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It can be concluded that the effect of wind speed should not be underestimated, especially 

when wind speed is high. Therefore, the defence position strategy is generally applied in most 

solar trackers, in which the solar tracker is installed at a horizontal position in order to protect 

the structure from external forces induced by high wind speeds. This position is used to avoid 

very strong winds, defined by the Euro code standard as 140 km/h (Meca Solar, 2009). 
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Chapter 8 - Conclusions and Recommendations 

8.1 Introduction 

This chapter will present the findings and results of this research, and recommendations for 

future related work will also be given. 

The aim of this study was to investigate the feasibility of using solar PV systems to generate 

electricity in Kuwait. The overall approach is shown in Figure 8.1. In order to achieve the 

aim of this study, the following tasks were set: 

 To investigate the performance feasibility of proposed PV systems, by determining 

the following performance parameters for each site when using different tracking 

systems (fixed, single-axis and dual-axis): 

o Total energy generated  

o Final yield 

o Reference yield 

o Performance ratio 

o Capacity factor 

o System efficiency  

 To conduct an environmental evaluation study including: 

o Life Cycle Assessment 

o Environmental benefits  

 To conduct an economic evaluation of the proposed PV systems using LCOE to 

compare the proposed systems with conventional power plants in terms of electricity 

generation. 

 To investigate the behaviour of the proposed solar tracker against the external loads 

using finite element software (COMSOL Multiphysics). 

 To make recommendations based on the findings. 
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To review the state of photovoltaic 

(PV) energy in the Middle East, 

particularly in GCC countries (with 

a particular focus on Kuwait) 

To assess & investigate the 

performance parameters of the 

proposed PV systems 

To assess the impact of the PV 

systems on the environment 

To assess the economic effects & 

benefits of PV systems 

To ensure the proposed PV systems 

is structurally Safe under different 

surrounding loads and surrounding 

conditions 

To make recommendations 

regarding the feasibility of 

photovoltaic (PV) energy generation 

and use in Kuwait 

Objectives 

Computing Performance parameters 

 Monthly basis Analysis 

 Annual basis Analysis    

 

Methodology 

Two different studies were conducted 

 Life cycle assessment(LCA) 

 Environmental benefits   

Three different studies were conducted 

 Levelized Cost Of Electricity 

(LCOE) 

 Cost-benefit analysis 

 Cost of CO2 reductions 

Investigating the behaviour of both the 

PV solar tracker and the soil in relation to 

the external loads  

  

Exploring relevant works and research 

conducted  

 

Analysis of Results 

 

Chapters 

Chapter 2 

Chapter 4 

Chapter 5 

Chapter 6 

Chapter 7 

Chapter 8 

Figure 8.1 The overall approach 
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8.2 Summary 

8.2.1 Data Collection 

In order to investigate the feasibility of using solar PV systems in Kuwait, establishing the 

availability of data was an extremely important step. Data is a crucial part of any proposed 

study, as the analysis and design stages will be discussed based on the obtained results. In this 

thesis, four main specific tasks were set. These tasks (as stated in chapter 3) can be 

summarised as follows: 

o Performance parameters evaluation 

o Environmental evaluation 

o Economic evaluation 

o Numerical modelling study  

In order to carry out the aforementioned tasks, metrological, structural, and geotechnical data 

was required. Two types of metrological data, satellite and ground station data, were 

collected from KISR. This was done in order to validate the data used, and also to ensure a 

greater range of referenced data sources for Kuwaiti sites. Detailed geotechnical data was 

also collected from KISR. The data for the proposed PV system components and the 

proposed solar trackers was collected from the relevant companies via their official websites.  

8.2.2 Selected Sites 

In order to investigate the feasibility of using solar PV systems in Kuwait, it was extremely 

important to select not only the most appropriate locations, but also to study a minimum 

number of sites that would be most representative of the whole country. In addition to 

recommending the best locations for implementing the PV systems in Kuwait, this study 

aimed to build up a solid base of information, whereby the whole country was included in the 

scope of the research. Based on the site selection process, which consisted of three stages (see 

Chapter 3), the following sites were selected:  

o Shagaya 

o Kabd 

o Sabria 

o Mutribah  

o Umm Gudair  



217 
 

The selected sites are located in different areas of the country; the Mutribah site in northern 

Kuwait; Umm Gudair in the southern region, Shagaya in the west, and Kabd in the east. The 

Sabria site is the nearest to the largest islands in Kuwait, and was considered to be the best 

representative site for the islands. As mentioned in the discussion of the site selection process 

(see Section 3.2), the availability of data was an important parameter in the site selection. The 

selected sites consequently represent the whole country, and the Shagaya site was used for 

the numerical modelling study, due to site investigation data availability.  

8.2.3 Results 

At the end of each chapter, detailed results and discussions of the main findings of each task 

have been presented. 

Some background introduction regarding the need for renewable energy was presented in 

Chapter 1. It also introduced important information about the location, climate, the electricity 

demand and the current state of renewable energy in the State of Kuwait. In addition, the 

main problems associated with a large increase in the use of fossil fuels were explained, 

along with the expected contribution of this research to resolving these issues. 

The need for renewable resources, which is clean and sustainable, is becoming a worthy 

target and a key goal in order to satisfy the high increase rate of electricity demand in Kuwait 

and in order to minimise the impact of fossil fuel emissions on the environment  

Solar photovoltaic energy was chosen as the renewable energy source to be implemented in 

because Kuwait has a high solar energy potential. Kuwait has approximately nine hours of 

sunshine a day, on average, and annual solar irradiation of approximately 2100 kW/m
2
/year. 

Moreover, the low levels of rainfall and cloud cover, as well as the large area of uninhabited 

desert, are also important factors affecting the use of solar photovoltaic systems.  

Chapter 2 presented studies conducted in the photovoltaic energy field, focusing on the 

evaluation indices of this technology, such as performance and environmental evaluation 

studies. It was concluded from the literature review that there is a lack of research conducted 

in GCC countries, and in Kuwait in particular, investigating the feasibility of implementing 

PV systems in detail, covering all the areas related to this technology.  
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It was identified that no studies of PV systems using single-axis and dual-axis tracking 

systems in Kuwait have been conducted. Moreover, in most of the conducted studies, the 

method used to calculate the output energy was imperfect, for various reasons, including:  

o Assuming the whole country as similar to one site, and hence using non-

representative data leading to inaccurate results.    

o Few studies used specialist PV system programs; most applied a very simple 

mathematical equation for calculation purposes. 

o No studies considered tracking systems. 

o No study took into account the ground (soil layers) when modelling the behaviour of 

the solar trackers against external loads. 

The methodology followed in this research was discussed in Chapter 3, which introduced in 

detail the site selection and data collection processes used in this study. The main specified 

tasks and objectives (performance, environmental, economic evaluations, as well as the 

numerical modelling of the proposed solar trackers) were also described in this chapter. 

In Chapter 4, in order to evaluate the performance of the proposed PV systems, the 

performance parameters of the proposed PV systems at the selected sites were determined. 

The investigation was conducted based on monthly basis for the selected sites, and then an 

investigation was carried out based on an annual basis in order to compare the obtained 

results with different studies from the literature.  

The amount of produced energy ranged between 174347 and 178843 MWh for the fixed 

tracking systems, and from 217835 and 223935 MWh and 225481 and 231563 MWh for the 

single-axis and dual-axis tracking systems, respectively. It was established that the variance 

in the annual production energy between the proposed sites was 2.58 % for the fixed tracking 

systems, and 2.80 and 2.70 % for the single-axis and dual-axis tracking systems, respectively. 

This indicates that the effect of location is insignificant for the state of Kuwait, as the country 

is relatively small in area. However, these small degrees of variation in the results have a 

significant influence when it comes to accuracy and research undertaken in a professional 

manner, in particular for large-scale projects. 

The implementation of solar tracking systems led to this increasing by 24.7% and 29%. In 

addition, there was a significant increase in CF and YF values of approximately 24% and 

28.8%, related to the use of single-axis and dual-axis systems, respectively. However, despite 
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the encouraging results gained by the use of single-axis and dual-axis PV systems, lower 

performance values were obtained for tracking systems, due to the high energy loss resulting 

from overheating of PV modules as a result of high summer temperatures. This current study 

established that the performance parameters values obtained by using tracking systems are 

highly beneficial to electricity generation in Kuwait, as an alternative source to conventional 

power plants. 

Chapter 5 presented the environmental evaluation study. The study consisted of two main 

parts; the first part was the Life Cycle Assessment (LCA), in which the main LCA evaluation 

indices, such as the energy payback time (EPBT), were determined. The second part was the 

environmental benefits evaluation, in which the amounts of GHGs saved were computed. 

Although photovoltaic technology itself produces zero emissions, some emissions, which 

should not be underestimated, are produced throughout its lifecycle. It was identified that the 

manufacturing stage of PV system components is a critical stage in this regard, as a high 

volume of emissions are produced due to the large amounts of energy consumed in 

manufacturing and fabricating PV systems components.  

The average EPBTs and EYR s obtained in the present study are encouraging, and show that 

shorter periods can be achieved by using single-axis and dual-axis tracking systems. It was 

found that the transportation stage, which has been included as a boundary condition in this 

study, had an insignificant effect on the total CO2 emission rate of the proposed PV systems 

at the selected sites, compared with other stages. However, including the emissions produced 

in the transportation stage in the LCA provided more realistic results.  

The average total CO2 emission rate was estimated at 56.94 g-CO2,eq/kWh for the fixed 

tracking system, and 47.56 g-CO2,eq/kWh and 46.38 g-CO2,eq/kWh for single-axis and dual-

axis tracking systems, respectively. The importance of implementing tracking systems can be 

clearly seen in the percentage reduction in total CO2 emission rates, which was calculated at 

19.72% and 22.78% when using single-axis and dual-axis tracking systems, respectively.  

It was also found that the emissions resulting from photovoltaic solar energy are relatively 

low compared with fossil fuel based technologies such as coal and oil, but are relatively high 

when compared with other renewable technologies, such as wind energy. This was attributed 

to the large amounts of energy consumed in the manufacturing and fabrication of the solar 

modules. 
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Based on the environmental benefits analysis, a large amount of GHG emissions, as stated 

above, would be avoided by implementing PV systems to generate electricity in Kuwait. This 

would constitute a positive contribution to helping minimise certain environmental issues, 

such as global warming. 

The economic evaluation was presented in Chapter 6, using the levelized cost of electricity 

(LCOE) approach. A sensitivity analysis of the main LCOE approach, with input parameters 

such as installation cost, was performed in order to ensure that the study covered a wide 

range of different variables, which are highly dependent on market prices as well as financial 

issues related to this technology. 

The average obtained LCOE value was $0.072 (£0.055) /kWh for the fixed solar tracking 

systems, and the average LCOE values for the single-axis and dual-axis tracking systems 

were $0.0625 (£0.0479) /kWh, and $0.065 (£0.050) /kWh, respectively.  

The results of the sensitivity analysis were also encouraging, and suggest very optimistic 

expectations regarding the successful implementation of PV technology in Kuwait. In 

addition, based on the expected decrease in the cost of PV system components, and the 

significant development in photovoltaic technology itself, excellent results are expected.  

The implementation of single-axis and dual-axis tracking systems were significant. This can 

be clearly seen in the obtained LCOE values for the single-axis and dual-axis tracking 

systems, which decreased by 13.10% and 9.72%, respectively. The single-axis tracking 

systems showed the best LCOE values. It should be noted that the dual-axis tracking systems 

increased the amount of energy produced by 28.8% and 4.8% over the fixed and single-axis 

tracking systems, respectively. However, the high initial costs of the dual-axis tracking 

systems increased the total cost, in terms of LCOE value in $/kWh. 

The cost-benefit analysis found that the proposed PV systems at all selected sites are 

economically feasible when the oil prices are above $30 /barrel. In addition, money will be 

saved as a result of avoiding large amounts of CO2 emissions. When represented in monetary 

values. 

In Chapter 7, a numerical modelling study was conducted in order to investigate the 

behaviour of the proposed solar models against the external loads. The study was carried out 

by means of the FEM, using the COMSOL Multiphysics software.  It also identified that the 

wind load is the most important criteria applied in this study. The foundation and soil layers 
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were included in the numerical modelling, in order to gain a better understanding of the 

interaction between the solar tracker and soil. The average von Mises stress was 86.43 MPa, 

which was less than the yield stress (200 MPa) noticed by the FOS values, which were 

between 1.89 (for an inclination angle of 75
◦
) and 3.47  (for inclination angle of 15

◦
). The 

average displacement was 17.84 mm, where the minimum and maximum displacement 

values were 15.4 mm and 19.9 mm, respectively.  

From a geotechnical engineering perspective, the maximum stresses and displacements 

obtained revealed that the ground is safe and stable in response to external loads (self-weight 

of the solar tracker and wind load) except for the 60 m/s wind speed.  

It can be concluded that the effect of wind speed should not be underestimated, especially 

when wind speed is high. Therefore, the defence position strategy is generally applied in most 

solar trackers, in which the solar tracker is installed at a horizontal position in order to protect 

the structure from external forces induced by high wind speeds. This position is used to avoid 

very strong winds. 

8.3 Discussion 

As stated in the background and introduction, the continuing population increase, economic 

and social development, as well the large-scale and unbalanced use of natural resources are 

serious indications of a future crisis in terms of both energy use and environmental issues. In 

addition to the fact that oil, which is one of the finite natural resources, will eventually finish.  

The need to utilise sustainable energy resources such as wind and solar is essential to satisfy 

the accelerating energy demand across the world. Recently, there has been more interest in 

using renewable energy, which is clean and free.  

The location of Kuwait means there is a high potential to implement solar technology in the 

country. This is clearly evident from the high rate of annual solar irradiation the country 

receives, which is estimated to be approximately 2100 kW/m
2
/year. In addition, the relatively 

long daylight hours (approximately nine hours) and the low levels of rainfall and cloud cover 

are further advantages that suggest the chances of success of using such technology will be 

high.  

Solar photovoltaic energy was chosen as the renewable energy source to be implemented in 

this study. The author strongly recommends the use of solar photovoltaic systems, as a 
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promising technology for generating electricity in Kuwait, instead of increasing the capacity 

of the existing conventional power plants. 

It is extremely important to explain the decision-making process integrating the identified 

criteria in this research. It was previously stated in the aim and objectives sections of this 

research that the feasibility of using PV systems in Kuwait would be investigated based on 

the following main tasks: 

o Performance parameters assessment of the proposed PV systems; 

o Environmental evaluation; 

o Economic evaluation; and 

o A numerical modelling study of the proposed PV systems. 

These tasks are vital, and have a considerable influence on the final results of the feasibility 

study of this research; Table 8.1 lists the significance of the criteria used in this research.  

Based on the methodology of this research, the first objective consists of the performance 

parameters of the proposed PV systems, as it is pointless to continue to evaluate a proposed 

system that is not technically feasible, or able to satisfy the minimum range of the required or 

expected results. This is particularly so when the proposed project gives clear initial 

indications that the expected power production will not satisfy the minimum standards 

required of this type of technology.  It is therefore more effective, from the basic principle of 

feasibility, to focus on improving the proposed system with a detailed re-assessment, or 

simply rejecting the proposal and seeking different alternatives.  

The economic and environmental evaluation tasks are highly dependent on the results 

obtained from the study of the performance parameters, i.e. these results determine the 

assessment of the lifecycle and amount of avoidable greenhouse gas emissions undertaken in 

the environmental evaluation study. Alternatively, the political and health factors are 

important as Kuwait signed many international agreements such as the Kyoto protocol. The 

physical stability of the proposed solar tracker is extremely important as based on it, the site 

would be prepared, and the underlying soil treated accordingly, in addition the structure 

supporting the tracker being appropriately designed and built. This would also affect the 

feasibility analysis through the economic criterion. 

Overall, it can be concluded that the performance parameters criteria is the most critical 

factor compared with the other criteria. However, a proper evaluation by means of comparing 
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all the set criteria would be recommended based on the main purpose of the proposed solar 

PV system. 

Table 8.1 Significance of the criteria used in this research 

Criteria Importance 

Performance Parameters 

Determines the technical performance of the proposed PV systems 

in generating electricity. 

 

Environmental Evaluation 

Implementing solar PV systems in Kuwait would be a significant 

step towards increasing the use of renewable energy to minimise 

the effects of global warming, especially that Kuwait has signed 

relevant international agreements. 

Economic Evaluation 
Compares the cost of the proposed PV systems with conventional 

power plants in generating electricity. 

Numerical Modelling Study 
Check the stability and reliability of the proposed solar tracker 

against the external loads. 

 

The performance parameters stated by the International Energy Agency (IEA) were 

employed in order to investigate the technical feasibility of the proposed PV systems. For the 

fixed tracking systems, the average energy output per month and performance ratio were 

14,257 MW and 78.17%, respectively. These values provide some indication of the 

performance of the proposed PV systems in terms of the amount of energy that would be 

introduced, and the amount of energy that would be lost by implementing these systems. 

The effect of using tracking systems is significant. The amounts of energy produced 

increased by 23.55% and 30.52% by implementing single-axis and dual-axis tracking 

systems, respectively. However, the performance ratios decreased by 1.09% and 2.0%. This 

decrease in performance ratio values is due to the amount of energy lost, and can be primarily 

attributed to high temperatures in the summer. 

In the second part of the performance parameters evaluation, the calculations and the results 

were done on an annual basis in order to provide a better understanding of the performance of 

the proposed PV systems, by comparing them with different countries that are mature and 

leading in the photovoltaic energy field, such as Germany and Italy. 
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The average annual production of the proposed PV systems was 176,232.4 MW with a 

performance ratio of 77.5%. This is a good indication of the amount of solar irradiation that 

was harvested at the selected sites. 

The capacity factors of the selected sites ranged from 19.9% to 20.42%, and the obtained 

yield factor values ranged from 1,743.47 and 1,813.27 kWh/kW/year. These values are 

encouraging when compared with leading countries in the photovoltaic energy field across 

the world. 

In addition, the effect of using tracking systems was considerable; the annual produced 

energy increased by 24.7% and 29%  as a result of implementing single-axis and dual-axis 

tracking systems, respectively. Moreover, the capacity factors and the yield factors also 

increased by 24% and 28.8%, respectively. However, the performance ratios decreased to 

76.4% and 76.2% as a result of using single-axis and dual-axis tracking systems, respectively. 

This can be attributed to the high loss of energy resulting from the excessive heating of solar 

modules in high temperatures, particularly in the summer. 

The impact of implementing PV systems in Kuwait on the environment is an important 

consideration that has been investigated in this research. It is very important to emphasise 

here that the claim that photovoltaic energy is clean and environmentally friendly requires 

some clarification. It is true that PV systems generate electricity with zero emissions, and this 

is achieved simply by converting solar irradiation into electricity. However, as stated in 

Chapter 5, a large amount of energy is used in the manufacturing of the PV system 

components; for instance,  a lot of energy is consumed in the process of refining and 

purifying of the raw material (silicon). This is clearly evident from the results of the Life 

Cycle Assessment (LCA) study that was conducted in Chapter 5. It can be observed that 

GHG emissions occur at different stages (production stage, installation and maintenance 

stage, transportation and recycling stage). Most of GHG emissions are reported at the 

production stage, and this can be attributed to the large amount of energy used in this stage, 

whereas an insignificant amount was reported at the transportation stage.  

As stated in the literature review, photovoltaic energy is a relatively immature technology, 

and there is no available data on the recycling processes of PV systems. 

The LCA study evaluation indices (EPBT, EYR, and CO2 emission rate) were computed in 

order to provide a complete understanding of the impact of the proposed PV systems on the 
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environment. The average EPBT and EYR values for the proposed sites using fixed tracking 

systems were 1.77 year and 14.12 year, respectively, and the average CO2 rate was 56.94 g-

CO2,eq/kWh.  

The importance of utilising tracking systems is significant and can be clearly seen from the 

decrease in EPBT values, by 19.66% and 22.145% as a result of implementing the single-axis 

and dual-axis tracking systems, respectively. Moreover, an increase of 24.53% and 28.53% in 

the EYR values was obtained through the use of single-axis and dual-axis tracking systems, 

respectively. The effect of using tracking systems can also be observed in the 16.47% and 

18.55% decrease in the CO2 rate that was achieved by implementing single-axis and dual-axis 

tracking systems, respectively. 

Large amounts of GHG emissions, estimated at 105,739.4 tons of CO2, 176.234 tons of SO2 

and 264.348 tons of NOx would be avoided by implementing the PV systems in the selected 

sites in Kuwait. In addition, these estimated amounts would increase to 131,843 and 

136,417.2 tons of CO2, 219.74 and 227.362 tons of SO2 and 329.61 and 341.04 tons of NOx if 

utilising single-axis and dual-axis tracking systems, respectively. 

From an economic perspective, the implementation of PV systems in Kuwait will constitute a 

significant contribution to saving the money consumed by burning fossil fuels to generate 

electricity in conventional power plants in Kuwait. The results of the LCOE show that the 

values of the selected sites were less than the LCOE values for the conventional power plants. 

In other words, a large amount of money will be saved as a result of using PV systems to 

generate electricity in Kuwait.  

The amount of money saved depends on the tracking system used. For example, although 

more electricity is generated using the dual-axis tracking systems, the results revealed that 

single-axis tracking systems are more appropriate for use in Kuwait. This can be seen by 

comparing the amount of energy that would be introduced with each tracking system with the 

LCOE value of each system. The amount of electricity that would be generated by 

implementing single-axis and dual-axis systems increases by 24.7% and 29%, respectively, 

where the single-axis tracker produces better LCOE values. This can mainly be attributed to 

the expense of the dual-axis solar tracking systems. 

It should be emphasised here that the LCOE approach is highly dependent on the parameters 

used to calculate the LCOE values, such as installation cost and lifetime cycle of PV system 
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components. This can be observed from the results of the sensitivity study, in which a wide 

range of different variables were tested in order to understand the effect of each variable on 

the LCOE value.  

The cost-benefit study that was conducted focused on the amount of money that would be 

saved by implementing PV systems in Kuwait. The price of oil was an important factor in 

this study, and the equivalent cost of the amount of oil saved was computed. Fluctuation in 

oil prices was considered by assuming wide range of oil prices in order to cover all possible 

situations that might occur in the future. Based on the obtained results, the oil price of $30 

(£23) per barrel was identified as a critical point, and single-axis tracking systems produced 

the lowest LCOE values at all of the selected sites.  

The behaviour of the proposed solar trackers can be observed in the numerical modelling 

study that was conducted in Chapter 7. The behaviour of the solar tracker and the soil can be 

seen in the equivalent stress, displacement, equivalent strain, and factor of safety results that 

were achieved.  

It was found that the proposed PV solar tracker would be stable under the design speed (40 

m/s), and the critical case of the proposed model occurs when the inclination angle of the 

solar tracker was at 75
◦
 with the wind blowing from a southern direction. It was also found 

that all the minimum factor of safety (FOS) values for the models were greater than 1.89, and 

relatively small displacement values varied from 15.4 to 19.9 mm, for the solar structure and 

the foundation. There was relatively small equivalent strains, between 1.36 x10
-3

 and 1.71 

x10
-3

, and von Mises stress values varied between 58 and 107 MPa, which was less than the 

yield values of the solar tracker materials, for the critical case. 

It can be concluded that the effect of wind speed should not be underestimated, especially 

when wind speed is high. Therefore, the defence position strategy is generally applied in most 

solar trackers, in which the solar tracker is installed at a horizontal position in order to protect 

the structure from external forces produced by high wind speeds. 

8.4 Overall Conclusion 

There is no doubt that renewable energy will play a substantial role in helping to minimize 

the currently high reliance on fossil fuels based technology, such as conventional power 

plants. Since the peak time in terms of electricity demand in Kuwait coincides with the peak 
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production time of PV systems, this is another clear reason why solar PV systems would be 

the best choice amongst other renewable energy technologies. 

The main findings of this study (Figure 8.2), which has considered four elements of the 

‘feasibility’ of using PV systems in Kuwait, encourage the use of PV systems in Kuwait to 

produce electricity. Single-axis tracking systems are recommended as the better option to be 

implemented in the state of Kuwait. 

In terms of the performance evaluation, a large amount of energy would be generated by such 

systems, which would significantly contribute to minimizing the pressure resulting from the 

high demand for electricity, especially in the summer months. The results related to the 

performance of the proposed PV systems were excellent by the means of achieved results of 

the performance parameters. The effect of utilising tracking systems, either single-axis or 

dual-axis tracking systems, is significant, as these increased the amount of energy produced, 

as well as reducing the amount of greenhouse emissions produced.  

The results of the environmental analysis showed that a large volume of greenhouse gases 

would be avoided, which will contribute significantly to minimizing environmental problems, 

such as global warming. It was found also that the proposed PV systems are economically 

feasible compared with conventional power plants when oil prices are greater than $30 

(£23)/barrel. The implementation of PV systems in Kuwait will save a lot of money, as it will 

be possible to sell fossil fuels instead of using them as fuel for conventional power plants.  

The numerical modelling study found that the behaviour of the proposed solar tracker and the 

ground against the external loads would be safe and stable under the used design criteria. 

However, the effects of high wind speed magnitudes should not be ignored, and solar trackers 

should be put into a defence state in high wind speeds. 

Overall, based on the results of this research, the implementation of PV systems in Kuwait is 

recommended. Utilising PV systems will contribute significantly to addressing economical 

and environment concerns. Use of a single-axis tracking system is also recommended; Figure 

8.3 shows the road map of the research and the overall conclusion. 
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To review the state of photovoltaic 

(PV) energy in the Middle East, 

particularly in GCC countries (with 

a particular focus on Kuwait) 

To assess & investigate the 

performance parameters of the 

proposed PV systems 

To assess the economic effects & 

benefits of PV systems 

To assess the impact of the PV 

systems on the environment 

To ensure the proposed PV systems 

is structurally safe under different 

surrounding loads and surrounding 

conditions 

To make recommendations 

regarding the feasibility of 

photovoltaic (PV) energy 

generation and use in Kuwait 

Objectives 

The performance   parameters   values obtained   by   

implementing   single-axis   and   dual-axis systems are 

very beneficial to the electricity generation in Kuwait.  

 

The main Achieved Conclusions 

The implementation of PV systems to generate 

electricity in Kuwait is economically feasible when oil 

prices are above $30 /barrel.  

The single-axis tracking system is the best choice for 

use in the proposed systems in Kuwait. 

The CO2 rates obtained in the proposed sites were 

within the range of the results obtained in previous 

studies. 

A large amount of GHG emissions would be avoided 

by implementing PV systems to generate electricity in 

Kuwait. 

The proposed PV solar tracker is stable under the wind 

design speed of Kuwait (40 m/s). 

The effect of wind speed should not be underestimated, 

especially when wind speed is high and the  defence 

position strategy is need to be  to protect the structure 

from external forces induced by high wind speeds. 

The location and climate of the proposed site is an 

important issue when implementing solar PV systems 

as that will have a direct impact on the solar modules’ 

efficiency. 

The main conclusion of this work is that utilising PV 

systems to generate electricity as an   alternative to 

conventional power plants in Kuwait would be 

beneficial. 

The single-axis tracking system is the best choice for 

use in these systems. 

Figure 8.2 The main achieved conclusions 
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To make recommendations regarding the feasibility of photovoltaic (PV) energy generation and use in 

Kuwait 

The main conclusion of this work is that utilising PV systems 

to generate electricity as an   alternative to conventional power 

plants in Kuwait would be beneficial. 

The single-axis tracking system is the best choice for use in 

these systems. 

Figure 8.3 The road map of the research and the overall conclusion 



230 
 

8.5 Contributions to Knowledge 

This thesis provides an important contribution to knowledge in terms of understanding the 

feasibility of solar photovoltaic energy in Kuwait from technical, environmental and 

economic perspectives. Moreover, from engineering perspective, it will provide a better 

understanding of the behaviour of the solar tracker and the ground against the external loads 

such as wind. 

This study would be considered as a solid base of information and a benchmark for any future 

implementation of solar energy in Kuwait and GCC countries. This research has investigated 

the utilisation of solar energy in terms of the high data quality and covers all of Kuwait by 

selecting the most representative sites.  

This high quality data was obtained by means of using two different sources; satellite and 

ground station data. The performance parameters have been analysed and computed using 

well-researched software for photovoltaic systems (PVsyst). Moreover, the effect of using 

tracking systems (single-axis and dual-axis) has been examined and is the first time this has 

been done in depth. 

The study significantly contributed in filling the knowledge gap by including the ground (soil 

layers) in the numerical modelling which will give a clear and better understanding of the 

soil-structure interaction under external loads, in addition to the effects of a self-weight of the 

solar tracker on the soil. This is especially important as any expected or unexpected 

settlement will have a direct effect on the efficiency of the PV system by means of the 

orientation and the inclination angle of the solar trackers.  

8.6 Recommendations for Future Work 

It is crucial to increase the awareness and perceived importance of sustainable energy 

systems in terms of the vital role that renewable energy technologies can play in overcoming 

a number of economic and environmental issues. In order to enhance and encourage all 

stakeholders in the use of renewable energy, and in particular solar photovoltaic technology, 

more specialized programmes and workshops are needed. This will enable investors and 

decision-makers to have a better understanding of the technology, and will provide a solid 

base of reference information related to investment in the solar photovoltaic field. 
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Although much effort was made to select appropriate site locations, some sites were excluded 

from this study, such as landfill sites, due to a lack of information related to security issues, 

such as gas leakages, fire incidents, and also the unavailability of the soil properties of these 

sites. It would be beneficial to conduct more detailed investigations, including a full site 

survey study to provide details regarding soil properties and gas leakage at these sites.     

As stated in Chapter 4, a large amount of energy is lost as a result of heating solar modules, 

especially in the summer months; hence, it would be beneficial to investigate new 

recommended techniques, such as frequent cleaning, for the purpose of both cleaning and 

cooling the solar modules.  

As the economic perspective is most important to investors, serious effort is needed from the 

government in Kuwait to support and encourage the use of such technology, by offering 

incentives and more reliable and flexible financial credit sources. 

The focus of this research was on implementing large-scale PV systems, which require large 

land areas in the State of Kuwait; it would be very beneficial for a future study to investigate 

small-scale PV systems in order to provide useful background data for smaller companies or 

even individuals who might be interested in this technology.  

As stated in the introduction, Kuwait has high potential for utilising both solar and wind 

energy, and as there is on-going research on wind energy, it would be beneficial to evaluate 

the use of a combined system, what is known as a combination solar-wind power system, 

which could increase the amount of energy generated and would also be the best option for 

generating electricity in rainy weather (when there is little or no sunlight). 

Finally, the decision-making process integrating the identified criteria is an important concept 

that has to be considered by means of conducting further studies in order to combine the 

effect of each individually used criterion with all other criteria. 
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A Sample Report for one Case of the Conducted Studies in this Thesis 

Global  

Global settings 

Name 21_2_2017.mph 

Path C:\Users\Abdulla\Desktop\21_2_2017.mph 

Program COMSOL 5.0 (Build: 243) 

Unit system SI 
 

Used products 

COMSOL Multiphysics 

CAD Import Module 

Structural Mechanics Module 
 

Definitions 
Parameters 1 

Parameters 

Name Expression Value Description 

theta 30[deg] 0.52360 rad  
 

Component 1  

Component settings 

Unit system SI 

Geometry shape order automatic 
 

Definitions 
Coordinate Systems 

Chapter 2 Boundary System 1 

Coordinate system type Boundary system 

Tag sys1 
 

Settings 

First (t1) Second (t2) Third (n) 

t1 t2 n 
 

 

 

http://www.comsol.com/
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Settings 

Name Value 

Create first tangent direction from Global Cartesian (spatial) 
 

Geometry 1 

 

Geometry 1 

 

 

Units 

Length unit m 

Angular unit deg 
 

Geometry statistics 

Property Value 

Space dimension 3 

Number of domains 34 

Number of boundaries 277 

Number of edges 541 

Number of vertices 294 
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Block 1 (Soil Layer_1) 

Position 

Name Value 

Position {0, 0, 0} 

 

Axis 

Name Value 

Axis type z - axis 
 

Size and shape 

Name Value 

Width 22 

Depth 22 

Height 12 
 

Block 2 (Soil Layer_2) 

Position 

Name Value 

Position {0, 0, 12} 
 

Axis 

Name Value 

Axis type z - axis 
 

Size and shape 

Name Value 

Width 22 

Depth 22 

Height 8 
 

Block 3 (Soil Layer_3) 

Position 

Name Value 

Position {0, 0, 20} 
 

Axis 

Name Value 

Axis type z - axis 
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Size and shape 

Name Value 

Width 22 

Depth 22 

Height 2 
 

Work Plane 1  

Plane definition 

Name Value 

Plane type Face parallel 
 

Unite objects 

Name Value 

Unite objects On 
 

Chapter 3 Foundation (wp1) 

 

Foundation 

Foundation (r1) 

Position 

Name Value 

Position {0, 0} 

Base Center 
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Size 

Name Value 

Width 2 

Height 2 
 

Extrude 1 (ext1) 

Settings 

Name Value 

Work plane Work Plane 1 
 

Distances from plane 

Name Value 

Distances 1 
 

Scales 

Scales xw Scales yw 

1 1 
 

 

Displacements 

Displacements xw (m) Displacements yw (m) 

0 0 
 

Twist angles 

Name Value 

Twist_angles 0 
 

Post (wp2) 

Plane definition 

Name Value 

Plane type Face parallel 
 

Unite objects 

Name Value 

Unite objects On 
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Plane Geometry (wp2) 

 

Plane Geometry 

Circle 1 (c1) 

Position 

Name Value 

Position {0, 0} 
 

Size and shape 

Name Value 

Radius 0.15 
 

Extrude 2 (ext2) 

Settings 

Name Value 

Work plane Post 
 

Distances from plane 

Name Value 

Distances 2.7 
 

Scales 

Scales xw Scales yw 

1 1 
 

Displacements 

Displacements xw (m) Displacements yw (m) 

0 0 
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Twist angles 

Name Value 

Twist_angles 0 
 

Move 1 (mov1) 

Selections of resulting entities 

Name Value 

x 0 

y 0 

z -0.7 

 
 
Cylinder 1  

Position 

Name Value 

Position {10.80, 11, 25.1} 
 

Rotation angle 

Name Value 

Rotation 90 
 

Axis 

Name Value 

Axis type x - axis 
 

Size and shape 

Name Value 

Radius 0.15 

Height 0.4 
 

Block 4 (blk4) 

Position 

Name Value 

Position {11, 11, 25.3} 

Base Center 
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Axis 

Name Value 

Axis type z - axis 
 

Size and shape 

Name Value 

Width 6.3 

Depth 0.15 

Height 0.15 
 

Work Plane 4 (wp4) 

Plane definition 

Name Value 

Plane type Face parallel 
 

 

Unite objects 

Name Value 

Unite objects On 
 

Plane Geometry (wp4) 

 

Plane Geometry 
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Rectangle 1 (r1) 

Position 

Name Value 

Position {-3.02, 0} 

Base Center 
 

Size 

Name Value 

Width 0.06 

Height 4.16 
 

Rectangle 2 (r2) 

Position 

Name Value 

Position {-1.96, 0} 

Base Center 
 

Size 

Name Value 

Width 0.06 

Height 4.16 

 

Extrude 4 (ext4) 

Settings 

Name Value 

Work plane Work Plane 4 
 

Distances from plane 

Name Value 

Distances 0.06 
 

Scales 

Scales xw Scales yw 

1 1 
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Displacements 

Displacements xw (m) Displacements yw (m) 

0 0 
 

Twist angles 

Name Value 

Twist_angles 0 
 

Work Plane 5 (wp5) 

Plane definition 

Name Value 

Plane type Face parallel 
 

Unite objects 

Name Value 

Unite objects On 
 

Plane Geometry (wp5) 

 

Plane Geometry 
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Rectangle 1 (r1) 

 

Position 

Name Value 

Position {0.53, 1.5} 

Base Center 
 

 

Size 

Name Value 

Width 1.66 

Height 0.99 
 

Array 1 (arr1) 

Settings 

Name Value 

Size {1, 4} 

Full size {1, 4} 

Displacement {0, -0.99} 

 

Extrude 5 (ext5) 

Settings 

Name Value 

Work plane Work Plane 5 
 

Distances from plane 

Name Value 

Distances 0.04 
 

Scales 

Scales xw Scales yw 

1 1 
 

Displacements 

Displacements xw (m) Displacements yw (m) 

0 0 
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Twist angles 

Name Value 

Twist_angles 0 
 

Array 1 (arr1) 

Selections of resulting entities 

Name Value 

Size {4, 1, 1} 

Full size {4, 1, 1} 

Displacement {-1.66, 0, 0} 
 

Rotate 1 (rot1) 

Selections of resulting entities 

Name Value 

Rotation 30 

Point on axis of rotation {11, 11, 25.1} 

Axis type x - axis 
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Materials 
Soil Layer_1 
 
 

 

Soil Layer_1 

Selection 

Geometric entity level Domain 

Selection Domain 1 
 

Material parameters 

Name Value Unit 

Young's modulus 1e8 Pa 

Poisson's ratio 0.3 1 

Density 2140.7 kg/m^3 
 

Basic Settings 

Description Value 

Young's modulus 1e8 

Poisson's ratio 0.3 

Density 2140.7 
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Concrete 

 

Concrete 

Selection 

Geometric entity level Domain 

Selection Domain 16 
 

Material parameters 

Name Value Unit 

Density 2300[kg/m^3] kg/m^3 

Young's modulus 25e9[Pa] Pa 

Poisson's ratio 0.33 1 
 

Basic Settings 

Description Value 

Coefficient of thermal expansion {{10e-6[1/K], 0, 0}, {0, 10e-6[1/K], 0}, {0, 0, 10e-6[1/K]}} 

Density 2300[kg/m^3] 

Thermal conductivity {{1.8[W/(m*K)], 0, 0}, {0, 1.8[W/(m*K)], 0}, {0, 0, 
1.8[W/(m*K)]}} 

Heat capacity at constant pressure 880[J/(kg*K)] 
 

Young's modulus and Poisson's ratio Settings 

Description Value 

Young's modulus 25e9[Pa] 

Poisson's ratio 0.33 
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Structural steel 

 

Structural steel 

Selection 

Geometric entity level Domain 

Selection Domains 8–10, 15, 17–22, 27–28, 33–34 
 

Material parameters 

Name Value Unit 

Heat capacity at constant pressure 475[J/(kg*K)] J/(kg*K) 

Thermal conductivity 44.5[W/(m*K)] W/(m*K) 

Coefficient of thermal expansion 12.3e-6[1/K] 1/K 

Density 7850[kg/m^3] kg/m^3 

Young's modulus 200e9[Pa] Pa 

Poisson's ratio 0.33 1 
 

Basic Settings 

Description Value 

Relative permeability {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} 

Heat capacity at constant pressure 475[J/(kg*K)] 

Thermal conductivity {{44.5[W/(m*K)], 0, 0}, {0, 44.5[W/(m*K)], 0}, {0, 0, 
44.5[W/(m*K)]}} 

Electrical conductivity {{4.032e6[S/m], 0, 0}, {0, 4.032e6[S/m], 0}, {0, 0, 
4.032e6[S/m]}} 

Relative permittivity {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} 

Coefficient of thermal expansion {{12.3e-6[1/K], 0, 0}, {0, 12.3e-6[1/K], 0}, {0, 0, 12.3e-
6[1/K]}} 
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Description Value 

Density 7850[kg/m^3] 
 

Young's modulus and Poisson's ratio Settings 

Description Value 

Young's modulus 200e9[Pa] 

Poisson's ratio 0.33 
 

Murnaghan Settings 

Description Value 

Murnaghan third-order elastic moduli -3.0e11[Pa] 

Murnaghan third-order elastic moduli -6.2e11[Pa] 

Murnaghan third-order elastic moduli -7.2e11[Pa] 
 

Lamé parameters Settings 

Description Value 

Lamé parameter λ 1.5e11[Pa] 

Lamé parameter μ 7.5e10[Pa] 
 

Solar modules 

 

Solar modules 

Selection 

Geometric entity level Domain 

Selection Domains 4–7, 11–14, 23–26, 29–32 
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Material parameters 

Name Value Unit 

Young's modulus 3.5e9[Pa] Pa 

Poisson's ratio 0.33 1 
 
 

Young's modulus and Poisson's ratio Settings 

Description Value 

Young's modulus 3.5e9[Pa] 

Poisson's ratio 0.33 
 

Soil layer_2 

 

Soil Layer_2 

Selection 

Geometric entity level Domain 

Selection Domain 2 
 

Material parameters 

Name Value Unit 

Young's modulus 4e7 Pa 

Poisson's ratio 0.3 1 

Density 2038.7 kg/m^3 
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Basic Settings 

Description Value 

Young's modulus 4e7 

Poisson's ratio 0.3 

Density 2038.7 
 

Soil Layer_3 

 

Soil Layer_3 

Selection 

Geometric entity level Domain 

Selection Domain 3 
 

Material parameters 

Name Value Unit 

Young's modulus 1e7 Pa 

Poisson's ratio 0.3 1 

Density 1963.8 kg/m^3 
 

 

 

Basic Settings 

Description Value 

Young's modulus 1e7 

Poisson's ratio 0.3 

Density 1963.8 
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Solid Mechanics 

 

Solid Mechanics 

Selection 

Geometric entity level Domain 

Selection Domains 1–34 
 

 

 
Settings 

Description Value 

Displacement field Quadratic 

Compute boundary fluxes Off 

Value type when using splitting of complex variables Complex 

Structural transient behavior Quasi - static 

Reference point for moment computation, x component 0 

Reference point for moment computation, y component 0 

Reference point for moment computation, z component 0 

Typical wave speed for perfectly matched layers solid.cp 
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Variables 

Name Expression Unit Description Selection 

solid.nX nX 1 Normal vector, X 
component 

Boundaries 6, 9, 19, 23, 
27, 40–43, 45, 58–61, 
63, 72, 76–77, 80–81, 
84–85, 93–96, 98, 109, 
116–119, 121, 133–138, 
141–143, 146–151, 154, 
158–159, 162–163, 166, 
168, 170–171, 175–176, 
178, 184–187, 189, 
203–206, 208, 217, 
221–222, 225–226, 
229–230, 238–241, 243, 
256–259, 261 

solid.nY nY 1 Normal vector, Y 
component 

Boundaries 6, 9, 19, 23, 
27, 40–43, 45, 58–61, 
63, 72, 76–77, 80–81, 
84–85, 93–96, 98, 109, 
116–119, 121, 133–138, 
141–143, 146–151, 154, 
158–159, 162–163, 166, 
168, 170–171, 175–176, 
178, 184–187, 189, 
203–206, 208, 217, 
221–222, 225–226, 
229–230, 238–241, 243, 
256–259, 261 

solid.nZ nZ 1 Normal vector, Z 
component 

Boundaries 6, 9, 19, 23, 
27, 40–43, 45, 58–61, 
63, 72, 76–77, 80–81, 
84–85, 93–96, 98, 109, 
116–119, 121, 133–138, 
141–143, 146–151, 154, 
158–159, 162–163, 166, 
168, 170–171, 175–176, 
178, 184–187, 189, 
203–206, 208, 217, 
221–222, 225–226, 
229–230, 238–241, 243, 
256–259, 261 

solid.nX dnX 1 Normal vector, X 
component 

Boundaries 1–5, 7–8, 
10–18, 20–22, 24–26, 
28–39, 44, 46–57, 62, 
64–71, 73–75, 78–79, 
82–83, 86–92, 97, 99–
108, 110–115, 120, 
122–132, 139–140, 
144–145, 152–153, 
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Name Expression Unit Description Selection 

155–157, 160–161, 
164–165, 167, 169, 
172–174, 177, 179–183, 
188, 190–202, 207, 
209–216, 218–220, 
223–224, 227–228, 
231–237, 242, 244–255, 
260, 262–277 

solid.nY dnY 1 Normal vector, Y 
component 

Boundaries 1–5, 7–8, 
10–18, 20–22, 24–26, 
28–39, 44, 46–57, 62, 
64–71, 73–75, 78–79, 
82–83, 86–92, 97, 99–
108, 110–115, 120, 
122–132, 139–140, 
144–145, 152–153, 
155–157, 160–161, 
164–165, 167, 169, 
172–174, 177, 179–183, 
188, 190–202, 207, 
209–216, 218–220, 
223–224, 227–228, 
231–237, 242, 244–255, 
260, 262–277 

solid.nZ dnZ 1 Normal vector, Z 
component 

Boundaries 1–5, 7–8, 
10–18, 20–22, 24–26, 
28–39, 44, 46–57, 62, 
64–71, 73–75, 78–79, 
82–83, 86–92, 97, 99–
108, 110–115, 120, 
122–132, 139–140, 
144–145, 152–153, 
155–157, 160–161, 
164–165, 167, 169, 
172–174, 177, 179–183, 
188, 190–202, 207, 
209–216, 218–220, 
223–224, 227–228, 
231–237, 242, 244–255, 
260, 262–277 

solid.nx nx 1 Normal vector, x 
component 

Boundaries 6, 9, 19, 23, 
27, 40–43, 45, 58–61, 
63, 72, 76–77, 80–81, 
84–85, 93–96, 98, 109, 
116–119, 121, 133–138, 
141–143, 146–151, 154, 
158–159, 162–163, 166, 
168, 170–171, 175–176, 
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Name Expression Unit Description Selection 

178, 184–187, 189, 
203–206, 208, 217, 
221–222, 225–226, 
229–230, 238–241, 243, 
256–259, 261 

solid.ny ny 1 Normal vector, y 
component 

Boundaries 6, 9, 19, 23, 
27, 40–43, 45, 58–61, 
63, 72, 76–77, 80–81, 
84–85, 93–96, 98, 109, 
116–119, 121, 133–138, 
141–143, 146–151, 154, 
158–159, 162–163, 166, 
168, 170–171, 175–176, 
178, 184–187, 189, 
203–206, 208, 217, 
221–222, 225–226, 
229–230, 238–241, 243, 
256–259, 261 

solid.nz nz 1 Normal vector, z 
component 

Boundaries 6, 9, 19, 23, 
27, 40–43, 45, 58–61, 
63, 72, 76–77, 80–81, 
84–85, 93–96, 98, 109, 
116–119, 121, 133–138, 
141–143, 146–151, 154, 
158–159, 162–163, 166, 
168, 170–171, 175–176, 
178, 184–187, 189, 
203–206, 208, 217, 
221–222, 225–226, 
229–230, 238–241, 243, 
256–259, 261 

solid.nx dnx 1 Normal vector, x 
component 

Boundaries 1–5, 7–8, 
10–18, 20–22, 24–26, 
28–39, 44, 46–57, 62, 
64–71, 73–75, 78–79, 
82–83, 86–92, 97, 99–
108, 110–115, 120, 
122–132, 139–140, 
144–145, 152–153, 
155–157, 160–161, 
164–165, 167, 169, 
172–174, 177, 179–183, 
188, 190–202, 207, 
209–216, 218–220, 
223–224, 227–228, 
231–237, 242, 244–255, 
260, 262–277 

solid.ny dny 1 Normal vector, y Boundaries 1–5, 7–8, 
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Name Expression Unit Description Selection 

component 10–18, 20–22, 24–26, 
28–39, 44, 46–57, 62, 
64–71, 73–75, 78–79, 
82–83, 86–92, 97, 99–
108, 110–115, 120, 
122–132, 139–140, 
144–145, 152–153, 
155–157, 160–161, 
164–165, 167, 169, 
172–174, 177, 179–183, 
188, 190–202, 207, 
209–216, 218–220, 
223–224, 227–228, 
231–237, 242, 244–255, 
260, 262–277 

solid.nz dnz 1 Normal vector, z 
component 

Boundaries 1–5, 7–8, 
10–18, 20–22, 24–26, 
28–39, 44, 46–57, 62, 
64–71, 73–75, 78–79, 
82–83, 86–92, 97, 99–
108, 110–115, 120, 
122–132, 139–140, 
144–145, 152–153, 
155–157, 160–161, 
164–165, 167, 169, 
172–174, 177, 179–183, 
188, 190–202, 207, 
209–216, 218–220, 
223–224, 227–228, 
231–237, 242, 244–255, 
260, 262–277 

solid.nXmesh root.nXmesh 1 Normal vector (mesh), X 
component 

Boundaries 6, 9, 19, 23, 
27, 40–43, 45, 58–61, 
63, 72, 76–77, 80–81, 
84–85, 93–96, 98, 109, 
116–119, 121, 133–138, 
141–143, 146–151, 154, 
158–159, 162–163, 166, 
168, 170–171, 175–176, 
178, 184–187, 189, 
203–206, 208, 217, 
221–222, 225–226, 
229–230, 238–241, 243, 
256–259, 261 

solid.nYmesh root.nYmesh 1 Normal vector (mesh), Y 
component 

Boundaries 6, 9, 19, 23, 
27, 40–43, 45, 58–61, 
63, 72, 76–77, 80–81, 
84–85, 93–96, 98, 109, 
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Name Expression Unit Description Selection 

116–119, 121, 133–138, 
141–143, 146–151, 154, 
158–159, 162–163, 166, 
168, 170–171, 175–176, 
178, 184–187, 189, 
203–206, 208, 217, 
221–222, 225–226, 
229–230, 238–241, 243, 
256–259, 261 

solid.nZmesh root.nZmesh 1 Normal vector (mesh), Z 
component 

Boundaries 6, 9, 19, 23, 
27, 40–43, 45, 58–61, 
63, 72, 76–77, 80–81, 
84–85, 93–96, 98, 109, 
116–119, 121, 133–138, 
141–143, 146–151, 154, 
158–159, 162–163, 166, 
168, 170–171, 175–176, 
178, 184–187, 189, 
203–206, 208, 217, 
221–222, 225–226, 
229–230, 238–241, 243, 
256–259, 261 

solid.nXmesh root.dnXmesh 1 Normal vector (mesh), X 
component 

Boundaries 1–5, 7–8, 
10–18, 20–22, 24–26, 
28–39, 44, 46–57, 62, 
64–71, 73–75, 78–79, 
82–83, 86–92, 97, 99–
108, 110–115, 120, 
122–132, 139–140, 
144–145, 152–153, 
155–157, 160–161, 
164–165, 167, 169, 
172–174, 177, 179–183, 
188, 190–202, 207, 
209–216, 218–220, 
223–224, 227–228, 
231–237, 242, 244–255, 
260, 262–277 

solid.nYmesh root.dnYmesh 1 Normal vector (mesh), Y 
component 

Boundaries 1–5, 7–8, 
10–18, 20–22, 24–26, 
28–39, 44, 46–57, 62, 
64–71, 73–75, 78–79, 
82–83, 86–92, 97, 99–
108, 110–115, 120, 
122–132, 139–140, 
144–145, 152–153, 
155–157, 160–161, 
164–165, 167, 169, 
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Name Expression Unit Description Selection 

172–174, 177, 179–183, 
188, 190–202, 207, 
209–216, 218–220, 
223–224, 227–228, 
231–237, 242, 244–255, 
260, 262–277 

solid.nZmesh root.dnZmesh 1 Normal vector (mesh), Z 
component 

Boundaries 1–5, 7–8, 
10–18, 20–22, 24–26, 
28–39, 44, 46–57, 62, 
64–71, 73–75, 78–79, 
82–83, 86–92, 97, 99–
108, 110–115, 120, 
122–132, 139–140, 
144–145, 152–153, 
155–157, 160–161, 
164–165, 167, 169, 
172–174, 177, 179–183, 
188, 190–202, 207, 
209–216, 218–220, 
223–224, 227–228, 
231–237, 242, 244–255, 
260, 262–277 

solid.nxmesh root.nxmesh 1 Normal vector (mesh), x 
component 

Boundaries 6, 9, 19, 23, 
27, 40–43, 45, 58–61, 
63, 72, 76–77, 80–81, 
84–85, 93–96, 98, 109, 
116–119, 121, 133–138, 
141–143, 146–151, 154, 
158–159, 162–163, 166, 
168, 170–171, 175–176, 
178, 184–187, 189, 
203–206, 208, 217, 
221–222, 225–226, 
229–230, 238–241, 243, 
256–259, 261 

solid.nymesh root.nymesh 1 Normal vector (mesh), y 
component 

Boundaries 6, 9, 19, 23, 
27, 40–43, 45, 58–61, 
63, 72, 76–77, 80–81, 
84–85, 93–96, 98, 109, 
116–119, 121, 133–138, 
141–143, 146–151, 154, 
158–159, 162–163, 166, 
168, 170–171, 175–176, 
178, 184–187, 189, 
203–206, 208, 217, 
221–222, 225–226, 
229–230, 238–241, 243, 
256–259, 261 
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solid.nzmesh root.nzmesh 1 Normal vector (mesh), z 
component 

Boundaries 6, 9, 19, 23, 
27, 40–43, 45, 58–61, 
63, 72, 76–77, 80–81, 
84–85, 93–96, 98, 109, 
116–119, 121, 133–138, 
141–143, 146–151, 154, 
158–159, 162–163, 166, 
168, 170–171, 175–176, 
178, 184–187, 189, 
203–206, 208, 217, 
221–222, 225–226, 
229–230, 238–241, 243, 
256–259, 261 

solid.nxmesh root.dnxmesh 1 Normal vector (mesh), x 
component 

Boundaries 1–5, 7–8, 
10–18, 20–22, 24–26, 
28–39, 44, 46–57, 62, 
64–71, 73–75, 78–79, 
82–83, 86–92, 97, 99–
108, 110–115, 120, 
122–132, 139–140, 
144–145, 152–153, 
155–157, 160–161, 
164–165, 167, 169, 
172–174, 177, 179–183, 
188, 190–202, 207, 
209–216, 218–220, 
223–224, 227–228, 
231–237, 242, 244–255, 
260, 262–277 

solid.nymesh root.dnymesh 1 Normal vector (mesh), y 
component 

Boundaries 1–5, 7–8, 
10–18, 20–22, 24–26, 
28–39, 44, 46–57, 62, 
64–71, 73–75, 78–79, 
82–83, 86–92, 97, 99–
108, 110–115, 120, 
122–132, 139–140, 
144–145, 152–153, 
155–157, 160–161, 
164–165, 167, 169, 
172–174, 177, 179–183, 
188, 190–202, 207, 
209–216, 218–220, 
223–224, 227–228, 
231–237, 242, 244–255, 
260, 262–277 

solid.nzmesh root.dnzmesh 1 Normal vector (mesh), z 
component 

Boundaries 1–5, 7–8, 
10–18, 20–22, 24–26, 
28–39, 44, 46–57, 62, 
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64–71, 73–75, 78–79, 
82–83, 86–92, 97, 99–
108, 110–115, 120, 
122–132, 139–140, 
144–145, 152–153, 
155–157, 160–161, 
164–165, 167, 169, 
172–174, 177, 179–183, 
188, 190–202, 207, 
209–216, 218–220, 
223–224, 227–228, 
231–237, 242, 244–255, 
260, 262–277 

solid.refpntx 0 m Reference point for 
moment computation, x 
component 

Global 

solid.refpnty 0 m Reference point for 
moment computation, y 
component 

Global 

solid.refpntz 0 m Reference point for 
moment computation, z 
component 

Global 

solid.cref solid.cp m/s Typical wave speed for 
perfectly matched layers 

Domains 1–34 

xt d(x,TIME) m/s Mesh velocity, x 
component 

Global 

yt d(y,TIME) m/s Mesh velocity, y 
component 

Global 

zt d(z,TIME) m/s Mesh velocity, z 
component 

Global 
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Linear Elastic Material 1 

 

Linear Elastic Material 1 

Selection 

Geometric entity level Domain 

Selection Domains 1–34 
 

 

 

 
Settings 

Description Value 

Solid model Isotropic 

Force linear strains Off 

Nearly incompressible material Off 

Specify Young's modulus and Poisson's ratio 

Calculate dissipated energy Off 

Young's modulus From material 

Poisson's ratio From material 

Elasticity matrix {{0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 
0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}} 

Elasticity matrix, Voigt notation {{0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 
0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}} 

Density From material 
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Properties from material 

Property Material Property group 

Young's modulus Material 1 Basic 

Poisson's ratio Material 1 Basic 

Density Material 1 Basic 

Young's modulus Concrete Young's modulus and Poisson's 
ratio 

Poisson's ratio Concrete Young's modulus and Poisson's 
ratio 

Density Concrete Basic 

Young's modulus Structural steel Young's modulus and Poisson's 
ratio 

Poisson's ratio Structural steel Young's modulus and Poisson's 
ratio 

Density Structural steel Basic 

Young's modulus Si - Polycrystalline Silicon Young's modulus and Poisson's 
ratio 

Poisson's ratio Si - Polycrystalline Silicon Young's modulus and Poisson's 
ratio 

Density Si - Polycrystalline Silicon Basic 

Young's modulus Material 5 Basic 

Poisson's ratio Material 5 Basic 

Density Material 5 Basic 

Young's modulus Material 6 Basic 

Poisson's ratio Material 6 Basic 

Density Material 6 Basic 
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Free 1 

 

Free 1 

Selection 

Geometric entity level Boundary 

Selection Boundaries 10, 14–15, 17–18, 21–22, 25–26, 29–39, 44, 46–57, 62, 
64–71, 73, 75, 79, 83, 87–92, 97, 99–107, 110–115, 120, 122–132, 
139–140, 145, 152–153, 155, 157, 161, 165, 169, 173–174, 177, 179–
183, 188, 190–202, 207, 209–216, 218, 220, 224, 228, 232–237, 242, 
244–255, 260, 262–274 

 

Initial Values 1 

 

Initial Values 1 
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Selection 

Geometric entity level Domain 

Selection Domains 1–34 
 

Settings 

Description Value 

Displacement field {0, 0, 0} 

Structural velocity field {0, 0, 0} 
 

Variables 

Name Expression Unit Description Selection 

solid.uInitx 0 m Initial value of displacement, x 
component 

Domains 1–34 

solid.uInity 0 m Initial value of displacement, y 
component 

Domains 1–34 

solid.uInitz 0 m Initial value of displacement, z 
component 

Domains 1–34 

solid.utInitx 0 m/s Initial value of structural velocity, x 
component 

Domains 1–34 

solid.utInity 0 m/s Initial value of structural velocity, y 
component 

Domains 1–34 

solid.utInitz 0 m/s Initial value of structural velocity, z 
component 

Domains 1–34 

 

Roller 1 

 

Roller 1 
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Selection 

Geometric entity level Boundary 

Selection Boundaries 1–2, 4–5, 7–8, 11–13, 275–277 
 

 

Settings 

Description Value 

Apply reaction terms on All physics (symmetric) 

Use weak constraints Off 

Constraint method Elemental 
 

Shape functions 

Constraint Constraint force Shape function Selection 

-solid.nX*u-solid.nY*v-
solid.nZ*w 

test(-solid.nX*u-
solid.nY*v-solid.nZ*w) 

Lagrange (Quadratic) Boundaries 1–2, 4–5, 
7–8, 11–13, 275–277 

 

Fixed Constraint 1 

 

Fixed Constraint 1 

 

Selection 

Geometric entity level Boundary 

Selection Boundary 3 
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Shape functions 

Constraint Constraint force Shape function Selection 

-u test(-u) Lagrange (Quadratic) Boundary 3 

-v test(-v) Lagrange (Quadratic) Boundary 3 

-w test(-w) Lagrange (Quadratic) Boundary 3 
 

Boundary Load 1 

 

Boundary Load 1 

Selection 

Geometric entity level Boundary 

Selection Boundaries 16, 20, 24, 28, 74, 78, 82, 86, 108, 144, 156, 160, 164, 
167, 172, 219, 223, 227, 231 

 

 

 

 Settings 

Description Value 

Load type Load defined as force per unit area 

Load User defined 

Load {0, 614, 0} 
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Mesh 1 

Mesh statistics 

Property Value 

Minimum element quality 0.0 

Average element quality 0.0 
 

 

Mesh 1 

Size (size) 

Settings 

Name Value 

Maximum element size 2.11 

Minimum element size 0.264 

Curvature factor 0.5 

Resolution of narrow regions 0.6 

Maximum element growth rate 1.45 

Predefined size Fine 
 

 

Free Tetrahedral 1 (ftet1) 

Selection 

Geometric entity level Remaining 
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Study 1 
Parametric Sweep 
Parameter name Parameter value list 

theta range(0,15,75) 
 

Stationary 

Study settings 

Property Value 

Include geometric nonlinearity Off 
 

Physics and variables selection 

Physics interface Discretization 

Solid Mechanics (solid) physics 

Heat Transfer in Solids (ht) physics 
 

Mesh selection 

Geometry Mesh 

Geometry 1 (geom1) mesh1 
 

Solver Configurations 
Solution 1 

Compile Equations: Stationary (st1) 

Study and step 

Name Value 

Use study Study 1 

Use study step Stationary 
 

Dependent Variables 1 (v1) 

General 

Name Value 

Defined by study step Stationary 
 

Initial values of variables solved for 

Name Value 

Solution Zero 
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Values of variables not solved for 

Name Value 

Solution Zero 
 
 

Displacement field (Material) (comp1.u) (comp1_u) 

General 

Name Value 

Field components {comp1.u, comp1.v, comp1.w} 
 

Stationary Solver 1 (s1) 

General 

Name Value 

Defined by study step Stationary 
 

Results while solving 

Name Value 

Probes None 
 

Results 
Data Sets 
Study 1/Solution 1 

Solution 

Name Value 

Solution Solution 1 

Component Save Point Geometry 1 
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Data set: Study 1/Solution 1 

Study 1/Parametric Solutions 1 

Solution 

Name Value 

Solution Parametric Solutions 1 

Component Save Point Geometry 1 
 

 

Data set: Study 1/Parametric Solutions 1 
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Derived Values 
Surface Maximum 1  

Selection 

Geometric entity level Boundary 

Selection Boundary 10 
 

Data 

Name Value 

Data set Study 1/Parametric Solutions 1 
 

Expression 

Name Value 

Expression solid.mises 

Unit kPa 

Description von Mises stress 
 

 


