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Interdisciplinary research broadens the view of particular 
problems yielding fresh and possibly unexpected insights. This is 
the case of neuromorphic engineering where technology and 
neuroscience cross-fertilize each other. For example, consider on 
one side the recently discovered memristor1-3, postulated in 
19714, thanks to research in nanotechnology electronics. On the 
other side, consider the mechanism known as Spike-Time-
Dependent-Plasticity5-11 (STDP) which describes a neuronal 
synaptic learning mechanism that outperforms the traditional 
Hebbian synaptic plasticity12 proposed in 1949. STDP was 
originally postulated as a computer learning algorithm5, and is 
being used by the machine intelligence and computational 
neuroscience community8-11. At the same time its biological and 
physiological foundations have been reasonably well established 
during the past decade13-20. If memristance and STDP can be 
related, then (a) recent discoveries in nanophysics and 
nanoelectronic principles may shed new lights into 
understanding the intricate molecular and physiological 
mechanisms behind STDP in neuroscience, and (b) new 
neuromorphic-like computers built out of nanotechnology 
memristive devices could incorporate the biological STDP 
mechanisms yielding a new generation of self-adaptive ultra-
high-dense intelligent machines. Here we show that by combining 
memristance models with the electrical wave signals of neural 
impulses (spikes) converging from pre- and post-synaptic 
neurons into a synaptic junction, STDP behavior emerges 
naturally. This result serves to understand how neural and 
memristance parameters modulate STDP, which might bring 
new insights to neurophysiologists in searching for the ultimate 
physiological mechanisms responsible for STDP in biological 
synapses. At the same time, this result also provides a direct 
mean to incorporate STDP learning mechanisms into a new 
generation of nanotechnology computers employing memristors. 
Memristance was postulated in 1971 by Chua4 based on circuit 
theoretical reasonings and has been recently demonstrated in 
nanoscale two-terminal devices, such as certain titanium-dioxide1-2 

and amorphous Silicon3 cross-point switches. Memristance arises 
naturally in nanoscale devices because small voltages can yield 
enormous electric fields that produce the motion of charged atomic 
or molecular species changing structural properties of a device (such 
as its conductance) while it operates. By definition4 a memristor 
obeys equations of the form 
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where w is some physical (structural) parameter, iMR is the current 

 
  

through the device, vMR the voltage drop across it, and g is its 
(nonlinear) conductance. In memristive nanoscale devices, function f 
may describe ionic drift under electric fields. Although a linear 
dependence of f with voltage vMR yields memristive behavior 1, it is 
clear that in reality such dependence is more likely to grow 
exponentially and/or include a threshold barrier vth. For our 
discussions, let’s assume the following generic dependence 
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where A and vo are paramaters which may or may not depend on w. 
The shape of f is shown in Fig. 1. Many other mathematical 
formulations can be used, but the bottom line is to describe a 
thresholding behavior, an exponential behavior beyond threshold, 
and a bidirectional behavior (symmetric or not). 

Spike-time-dependent plasticity (STDP) is a learning mechanism 
originally postulated 5 in the context of artificial machine learning 
algorithms (or computational neuroscience) exploiting spike-based 
computations (as in brains). It has been shown to improve Hebbian 
correlation-based plasticity at explaining cortical phenomena10-11,  
and has been proven successful to learn hidden spiking patterns8 or to 
perform competitive spike pattern learning9. Astonishingly, 
experimental evidences of STDP have been reported by several 
neuroscience groups worldwide during the past decade13-20, so that 
today we can state that the physiological existence of STDP has been 
reasonably well established. However, the ultimate molecular and 
electro-chemical principles behind STDP are still under debate21. 
Before describing STDP mathematically, let us first explain how 
neurons interchange information and what the synaptic connections 
are. Fig. 2 illustrates two neurons connected by a synapse. The pre-
synaptic neuron is sending a pre-synaptic spike Vmem-pre(t) through 
one of its axons to the synaptic junction. Neural spikes are membrane 
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Figure 1 | Memristor characteristic function f(vMR), as defined by eq. (3). 
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voltages from the outside of the cellular membrane Vpre
+ with respect 

to the inside Vpre
- (see inset at Fig. 2(b)). Thus Vmem-pre = Vpre

+ - Vpre
-  

and Vmem-pos = Vpos
+ - Vpos

-. The large membrane voltages during a 
spike (in the order of hundreds of mV) cause a variety of selective 
molecular membrane channels to open and close allowing for many 
ionic and molecular substances to flow or not through the membrane. 
At the same time, synaptic vesicles inside the pre-synaptic cell 
containing “packages” of neurotransmitters fuse with the membrane 
in such a way that these “packages” are released into the synaptic 
cleft (the inter cellular space between both neurons at the synaptic 
junction). Neurotransmitters are collected in part by the post-synaptic 
membrane contributing to a change in its membrane conductivity. 
The cumulative effect of pre-synaptic spikes (coming from this or 
other pre-synaptic neurons) will eventually trigger the generation of a 
new spike at the post-synaptic neuron. Each synapse is characterized 
by a “synaptic strength” (or weight) “w” which determines the 
efficacy of a pre-synaptic spike in contributing to this cumulative 
action at the post-synaptic neuron. This weight w could well be 
interpreted as the size and/or number of neurotransmitter packages 
released during a pre-synaptic spike. However, for our analyses, we 
will interpret w more generally as some structural parameter of the 
synapse (like the amount of one or more substances) that controls 
directly the efficacy of this synapse per spike (like the amount of 
neurotransmitter released per spike). The synaptic weight w is 
considered to be non-volatile and of analog nature, but changes in 
time as a function of the spiking activity of pre- and post-synaptic 
neurons. This phenomenon was originally observed and reported by 
Hebb in 1949, who introduced his hebbian learning postulate12: 
“When an axon of cell A is near enough to excite a cell B and 
repeatedly or persistently takes part in firing it, some growth process 
or metabolic change takes place in one or both cells such that A's 
efficiency, as one of the cells firing B, is increased”. Traditionally, 
this has been described by computational neuroscientists and 
machine learning computer engineers as producing an increment in 
synaptic weight Δw proportional to the product of the mean firing 
rates of pre- and post-synaptic neurons. STDP is a refinement of this 
1949 rule which takes into account the precise relative timing of 

individual pre- and post-synaptic spikes, and not their average rates 
over time. In STDP the change in synaptic weight Δw is expressed as 
a function of the time difference between the post-synaptic spike at 
tpos and the pre-synaptic spike at tpre. Specifically, Δw = ξ(ΔT), with 
ΔT = tpos - tpre  (see Fig. 3). The shape of the STDP function ξ can be 
interpolated from experimental data from Bi and Poo as shown in 
Fig. 4(a)14-15. For positive ΔT (which means, the pre-synaptic spike 
has a highly relevant role in producing the post-synaptic spike) there 
will be a potentiation of synaptic weight Δw > 0, which will be 
stronger as |ΔT| reduces. For negative ΔT (which means, the pre-
synaptic spike is highly irrelevant for the generation of the post-
synaptic spike), there will be a depression of synaptic weight Δw < 0, 
which will be stronger as |ΔT| reduces. Bi and Poo concluded they 
observed an asymetric critical window for ΔT of size about 40ms for 
synaptic modification to take place. 

How can one relate STDP with memristance? The key is to consider 
carefully the shape of the electric neural spikes. The exact shape of 
neural spikes, usually called “action potentials” among 
neuroscientists, is difficult to measure precisely since the 
experimental setup influences strongly. Furthermore, different action 
potential shapes have been recorded for different types of neurons, 
although in general they keep a certain resemblance among them.  
For our discussion it suffices to assume a generic action potential 
shape with the following properties (see Fig. 2(c)). During spike on-
set, which happens during a time tail

+, membrane voltage increases 
exponentially until a positive peak amplitude Amp

+. After this, it 
changes quickly to a peak negative amplitude -Amp

- and returns 
smoothly to its resting potential during a time tail

-. A shape of the 
type shown in Fig. 2(c) can be expressed mathematically, for 
example, as 
 

  

Figure 2 | Illustration of synaptic action. a. A synapse is where a pre-synaptic neuron “connects” with a post-synaptic neuron. The pre-synaptic neuron sends 
an action potential Vmem-pre travelling through one of its axons to the synapse. The cumulative effect of many pre-synaptic action potentials, generates a post-
synaptic action potential at the membrane of the post-synaptic neuron, which propagates through all neuron’s terminations. b. Detail of synaptic junction. The 
cell membrane has many membrane channels of varying nature which open and close with changes of the membrane voltage. During a pre-synaptic action 
potential vesicles containing neurotransmitters are released into the synaptic cleft. c. Details of membrane voltage action potential, as by eq. (4). 
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(4) 

 
Parameters τ+ and τ- control the curvature of the on-set and off-set 
sides of the action potential. Consider the case of pre- and post-
synaptic neurons in Fig. 2 being of the same type, and thus 
generating the same action potential shape, spk(t) of eq. (4), when 
they fire. Axons and dendrites operate as transmission lines, so it is 
reasonable to expect some attenuation when the spikes arrive at the 
respective synapses. Let αpre be the attenuation for the pre-synaptic 
spike Vmem-pre(t) = αpre spk(t-tpre), and αpos for the post-synaptic spike 
Vmem-pos(t) = αpos spk(t-tpos). When both spikes are more or less 
simultaneously present at the two cell membranes of the synapse, 

then channels on both membranes are open. Consequently, in 
principle, it makes sense to assume that during such time there could 
be a path for substances in the inside of one cell to move directly to 
the inside of the other cell and vice versa. Furthermore, let us assume 
now that such motion of substances obeys a memristive law similar 
to those described by eqs. (1-3). This means, that we would have a 
two-terminal memristive device between the inside sides of the two 
cells. More specifically, between Vpos

- and Vpre
-  in Fig. 2(b). 

Consequently, the memristor voltage would be vMR = Vpre
- - Vpos

- . On 
the other hand, since the outside nodes of both membranes Vpos

+ and  
Vpre

+  are very close together, both voltages will be approximately 
equal, yielding 

 
)'()'()'()'()'( prepreposposprememposmemMR ttspkttspktVtVtv −−−=−≈ −− αα (5) 

 
Doing a simple change of variables t = t’ – tpos and recalling that ΔT 
= tpos - tpre , results in 
 

)()(),( Ttspktspkttv preposMR Δ+−=Δ αα  (6) 

   

Figure 3 | Membrane and memristor waveforms. Pre- and post-synaptic membrane voltages for the situations of positive ΔT (a) and negative ΔT (b). The 
voltage at the memristor vMR is the difference between the post-synaptic membrane voltage Vmem-pos and the pre-synaptic membrane voltage Vmem-pre. When the 
signs are opposite, voltages add up, and may exceed the memristor threshold voltage vth of function f( ). When this happens, the area in red (amplified 
exponentially) contributes to a change in synaptic efficacy. If ΔT is positive synaptic efficacy is increased, while if it is negative synaptic efficacy will be 
decreased. 

    

(a) (b) 
 

Figure 4 | STDP function ξ(ΔT). a. Measured experimentally on biological synapses (data from Bi and Poo14-15). b. Predicted using the memristance-
based model and spike shapes from eqs. (1-7). 
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This memristor voltage is shown in Fig. 3 for the cases of ΔT being 
positive or negative. According to eq. (3), memristive action will 
take place only if vMR exceeds threshold vth , as indicated by the red 
shaded area in Fig. 3. As we postulated before, during this 
memristive action some amount of synaptic structural substance(s) 
Δw would be interchanged among both sides of the synapse. This 
amount of substance Δw will ultimately affect the synaptic strength 
of this synapse. If this amount of synaptic structural substance 
interchanged between the two synaptic terminations obeys a 
memristive law as in eqs. (1-3), then 

 

∫ Δ=ΔΔ dtTtvfTw MR )),(()(  (7) 

 
Which is the red area of the shaded regions in Fig. 3, previously 
amplified exponentially through function f( ) of eq. (3). Positive areas 
(above vth , when ΔT > 0) yield increments for w (Δw > 0), while 
negative areas (below -vth , when ΔT < 0) result in decrements for  w 
(Δw < 0). As |ΔT| approaches zero, the peak of the red area in vMR is 
higher. Since this peak is amplified exponentially, the contribution 
for incrementing/decrementing w will be more pronounced as |ΔT| is 
reduced. The resulting function Δw(ΔT) , computed using the 
memristor model through eq. (7) is shown in Fig. 4(b). It follows 
indeed the behavior of the STDP function ξ obtained by Bi and Poo 
from physiological experiments, which is shown in Fig. 4(a). For this 
numerical computation we used the following parameters: αpos = 1, 
αpre = 0.9, vth = Amp

+ = 1, Amp
- = 0.25, vo = 1/7, tail

+ = 5ms, tail
- = 

75ms, τ+ = 40ms, τ- = 3ms. Making αpos ≠ αpre breaks the symmetry 
of function ξ(ΔT), and making them very distinct removes one of the 
branches in ξ(ΔT). 
This result shows that a memristive type of mechanism could be 
behind the biological STDP phenomenon. On the other hand, for a 
neuromorphic engineer, this result provides clear hints on how STDP 
learning rules could be implemented in nanotechnology based neuro-
inspired computers using memristors.  For example, one can fabricate 
very high density memristor crossbar structures1-2 which connect 
neural layers, as shown in Fig. 5. Memristive crossbars can be 
fabricated using very dense nanowire fabric, while inter-synaptic 
neurons can be made using conventional CMOS technology 
underneath the memristor fabric. In order to equip the system with 
STDP learning, CMOS neurons could generate fully asynchronous 
action potentials similar to those shown in Fig. 2(c) and not only 
propagate them forward but also backwards with some attenuation. 

Other proposals have been made recently where sequences of square 
voltage pulses are propagated forward and backward within precise 
synchronous global time windows22. 
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Figure 5 | Neuromorphic memristive computer equipped with STDP.  
Neuromorphic computing structure with three layers of neurons (made in 
CMOS technology) and two fully-connected inter-layer meshes of memristors 
(made with nanowires on top of a CMOS substrate). STDP is implemented by 
having neurons generate action potentials with shapes similar to that of Fig. 
2(c), and sending them forward without attenuation and backward with a 
slight attenuation. 
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