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Abstract 

This thesis examines the interactions between road users and the factors 

that contribute to the occurrence of traffic accidents, and discusses the 

implications of these interactions with regards to driver behaviour and 

accident prevention measures. 

Traffic accident data is collected on a macroscopic level by local police 

authorities throughout the UK. This data provides a description of accident 

related factors on a macroscopic level which does not allow for a complete 

understanding of the interaction between the various road users or the 

influence of errors made by active road users. Traffic accident data collected 

on a microscopic level analysis of real world accident data, explaining why 

and how an accident occurred, can further contribute to a data driven 

approach to provide safety measures. This data allows for a better 

understanding of the interaction of factors for all road users within an 

accident that is not possible with other data collection methods. 

In the first part of the thesis, a literature review presents relevant research in 

traffic accident analysis and accident causation research, afterwards three 

accident causation models used to understand behaviour and factors leading 

to traffic accidents are introduced. A comparison study of these accident 

causation coding models that classify road user error was carried out to 

determine a model that would be best suited to code the accident data 

according to the thesis aims.  

Latent class cluster analyses were made of two separate datasets, the UK 

On the Spot (OTS) in-depth accident investigation study and the STATS19 

national accident database. A comparison between microscopic (in-depth) 

accident data and macroscopic (national) accident data was carried out. This 

analysis allowed for the interactions between all relevant factors for the road 

users involved in the accident to be grouped into specific accident 

segmentations based on the cluster analysis results. 

First, all of the cases that were collected by the OTS team between the years 

2000 to 2003 were analysed. Results suggested that for single vehicle 

accidents males and females typically made failures related to detection and 
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execution issues, whereas male road users made diagnosis failures with 

speed as a particularly important factor. In terms of the multiple vehicle 

accidents the interactions between the first two road users and the 

subsequent accident sequence were demonstrated. 

A cluster analysis of all two vehicle accidents in Great Britain in the year 

2005 and recorded within the STATS19 accident database was carried out 

as a comparison to the multiple vehicle accident OTS data. This analysis 

demonstrated the necessity of in-depth accident causation data in 

interpreting accident scenarios, as the resulting accident clusters did not 

provide significant differences between the groups to usefully segment the 

crash population. Relevant human factors were not coded for these cases 

and the level of detail in the accident cases did not allow for a discussion of 

countermeasure implications. 

An analysis of 428 Powered Two Wheeler accidents that were collected by 

the OTS team between the years 2000 to 2010 was carried out. Results 

identified 7 specific scenarios, the main types of which identified two 

particular ‘looked but did not see’ accidents and two types of single vehicle 

PTW accidents. In cases where the PTW lost control, diagnosis failures were 

more common, for road users other than the PTW rider, detection issues 

were of particular relevance. In these cases the interaction between all 

relevant road users was interpreted in relation to one another. 

The subsequent study analysed 248 Pedestrian accidents that were collected 

by the OTS team between the years 2000 to 2010. Results identified 

scenarios related to pedestrians as being in a hurry and making detection 

errors, impairment due to alcohol, and young children playing in the roadside. 

For accidents that were initiated by the other road user’s behaviour 

pedestrians were either struck after an accident had already occurred or due 

to the manoeuvre that a road user was making, older pedestrians were over-

represented in this accident type. 

This thesis concludes by discussing how (1) microscopic in-depth accident 

data is needed to understand accident mechanisms, (2) a data mining 

approach using latent class clustering can benefit the understanding of failure 
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mechanisms, (3) accident causation analysis is necessary to understand the 

types of failures that road users make and (4) accident scenario development 

helps quantify accidents and allows for accident countermeasure implication 

discussion. The original contribution to knowledge is the demonstration that 

when relevant data is available there is a possibility to understand the 

interactions that are occurring between road users before the crash, that is 

not possible otherwise. This contribution has been demonstrated by 

highlighting how latent class cluster analysis combined with accident 

causation data allows for relevant interactions between road users to be 

observed. Finally implications for this work and future considerations are 

outlined. 

Keywords: accident causation, driver perception, multivariate analysis 

methods, latent class clustering  
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Glossary 

UK OTS The UK's On the Spot (OTS) accident data collection project was 

an in-depth accident research project that aimed to collect accident data on 

the scene minutes after they were reported as occurring by the police, and 

gather all relevant perishable data with regards to the accident. This project 

was carried out between the years 2000 to 2010. 

STATS19 The STATS19 data is the national data source on traffic accidents 

in Great Britain. It provides detailed information on vehicles involved in 

accidents that are resulting in injuries and can be used for different research 

aims within these contexts. The data is collected yearly by different police 

local authorities and provided by the DfT to researchers. 

SafetyNet was a sixth framework European Union funded project aimed at 

the development of a new European Road Safety Observatory to help in the 

development of safety policies by providing data and knowledge. This 

project was carried out between the years 2006 to 2008. 

TRACE was a sixth framework European Union funded project aimed at 

accident causation analysis and the evaluation of safety benefits of 

technologies in terms of traffic safety. This project was carried out between 

the years 2006 to 2008.
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1 Introduction  

The purpose of this chapter is to clarify the theme of this thesis and prepare 

the reader for the main ideas that follow. An introduction to some of the 

important themes and explanation of the aims and objectives of this thesis 

will be made in this chapter. 

This thesis will look at identifying a novel approach to understand accident 

data using a statistical methodology that will help both further understand 

the nature of a traffic accident compared to past methods and help 

researchers by identifying particular types of traffic accident scenarios within 

the United Kingdom (UK), that are more prevalent and problematic than 

other accident types. This comparison will be demonstrated by developing 

accident scenarios through in-depth and national statistical data analysis for 

the identification of possible traffic safety countermeasures. The introduction 

and literature review that follows aims to develop the research questions 

that this thesis broaches and provide a sound basis to identify the topics that 

will be tackled in the analysis chapters and discussion/conclusion.  

 

1.1 Traffic accidents as a global problem 

A road accident is defined by United Kingdom (UK) law as any occurrence 

on the public highway (including public footway) where at least one vehicle 

collides with another vehicle, another road user, or a stationary roadside 

object (DfT, 2006). A traffic accident is a complex phenomenon which, to 

some level, involves the road user, vehicle, environment (road structures) 

and other individuals that are within the environment (drivers, pedestrians, 

cyclists or riders). Though most elements within the environment are 

constant and unchanging the presence of road users constantly interacting 

with other road users and the road environment creates a continuously 

fluctuating dynamic system. Accidents are usually a result of a combination 

of the above involved participants and system interacting and creating an 

accident situation (Allnutt, 1987).  
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In the year 2004 over 1.2 million people died worldwide as a result of road 

traffic collisions, an average of 3,242 fatalities per day, and an estimated 20 

million to 50 million people were injured or disabled. Traffic accidents were 

estimated to have cost UK £334 billion annually around the world (WHO, 

2009).  

The World Health Organization (WHO) estimates that road traffic injuries 

were the 11th leading cause of death worldwide, accounting for 2.1% of all 

deaths globally and for 23% of all injury deaths in 2006 (WHO, 2006). Figure 

1 shows that road traffic injuries are projected to become the 5th leading 

cause of death by 2030 as mobility increases in emerging economies and 

long standing diseases and other health impacts are mitigated (WHO, 2006) 

(World Health Organization, 2009). In 2007, 91% of fatalities occurred in 

low-income and middle-income countries despite records showing that these 

countries contain only 48% of the worlds registered vehicles (WHO, 2009). 

The first report on road casualties in Great Britain carried out by the 

Department for Transport (DfT) recorded I4.7 million licensed vehicles and 

178,000 injuries accidents in the year 1951 (DfT, 2006). In 2005 32.9 million 

vehicle and 268,000 injury accidents were reported and in 2007 182,000 

traffic accidents occurred in the UK, 3,307 of these resulting in fatalities, 

28,000 resulting in serious injuries and 217,000 in slight injuries (DfT, 2008). 

Despite the number of vehicles increasing by 700%, the number of 

accidents increased by 20% between these years (DfT, 2008).  

Of the accidents occurring in the UK in 2013 the three Vulnerable Road User 

(VRU) groups (pedestrians, pedal cyclists and motorcyclists) between them 

accounted for almost 50% of all deaths and 60% of all seriously injured 

casualties (DfT, 2013). This is similar to the figures reported by the WHO, 

VRU groups made up 46% of all global fatalities in road safety throughout the 

world in 2004 (WHO, 2009).  

According to UK figures motorcycle users, are roughly 35 times more likely to 

be killed and over 50 times more likely to be seriously injured per mile ridden, 

in a road traffic accident than car occupants. Pedestrians and pedal cyclists 

are roughly 11 times more likely to be killed and cyclists are 30 times more 
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likely to be seriously injured per mile walked and cycled respectively in a road 

accident than car occupants (DfT, 2013). Improvements in terms of safety for 

these groups are important in order to significantly drop Killed and Seriously 

Injured (KSI) casualty figures. 

 

 

Figure 1: Leading causes of death, 2004 and 2030 (estimated) (adapted from 

WHO, 2009) 

 

1.2 The road user in the traffic environment 

The safe and successful operation of the roadway system is influenced by a 

number of user factors, including (1) physical or physiological factors, (2) 

psychological or behavioural factors and (3) cognitive factors. The road 

user’s limitations in terms of experience, impairment, physical and mental 

skills, motivation and other characteristics are factors in the safe and efficient 

functioning of the roadway system (Olson, 2002).  
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Risk awareness is fundamental for safe driving. A driver can plan ahead if 

they are aware of present and potential risks to eliminate or reduce them 

(Lidestam, Lundqvist, & Rönnberg, 2010). The visual sense is the main 

channel of sense in operation during a driving behaviour for the road user, 

and is used in order to correctly identify the traffic situation, make a decision 

and perform the required behaviour (Riemersma, 1979). Drivers focus on 

objects in their visual field by routinely moving their eyes in order for that 

object to come onto the centre of the retina (Herslund & Jørgensen, 2003). 

In complex scenarios this may prove impossible and relevant information 

may not be perceived leading to an incorrect manoeuvre or behaviour and in 

turn to a potential crash situation. 

Large scale accident studies have focused on identifying human error in the 

accident environment since the 1960’s onwards (Carsten, Tight, Southwell, 

& Plows, 1989; Ljung, 2007; Sabey & Staughton, 1975; SafetyNet, 2009; 

Treat et al., 1979; Van Elslande & Fouquet, 2007); Historically human errors 

were found to be the main factor in 70-80% of accidents in in-depth accident 

causation studies (Sabey & Staughton, 1975; Treat et al., 1979). Human 

causes are historically viewed as the triggering variable that influences 

accidents. They are interpreted with regards to the prominence of specific 

risk factors within the traffic environment.  

Human error research currently takes a systematic approach to observe the 

errors that road users make to consider the latent conditions that contribute 

to these errors within the system (Delhomme, Dobbeleer, Forward, & 

Simões, 2009). The nature of these errors and conditions are tied to the 

attributes within the traffic environment. Reason (1990) contributed that 

human error is inevitable thus it is necessary to understand the steps that 

lead to the errors occurrence, this can only be done by understanding the 

latent factors present during the behaviour and drawing conclusions from 

the relationship between these factors.  
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1.3 Accident causation research 

The aim of accident causation research is to identify the source of accidents 

and ultimately reduce or eliminate them (Lehto & Salvendy, 1991). This type 

of research is used to understand how an accident happened by placing the 

features in a causal chain link creating a timeline from pre-event to the post-

event, by analysing the accident data after the event has happened. In 

traffic accident research accident causation analysis aims to understand the 

interactions that occurred between the human road user and the other 

elements within the traffic environment in order to understand the main 

failure sequence that occurred. 

Accident causation analysis requires the analyst to relate causal 

relationships by using an accident causation model to infer the different 

failures and contributory factors that are present for a road user during the 

build-up to and occurrence of an accident. A main failure is the main reason 

that an accident occurred, whereas a contributory factor can be defined as 

all factors that contributed to an accident occurring. This analysis requires 

the accident investigator to interpret the data and group the different factors 

that are both present and also inferred by the analyst. This requires a level 

of subjectivity to be included in the analysis despite the best wishes of the 

analyst. 

Azencott et al. (2007) reviewed the use of causality in accident research and 

how statistical relationships can be understood underneath this umbrella. 

The subjective nature of the coding makes the step from statistical 

association to causal relationship a question of interpretation. Criteria need 

to be found in order to distinguish causal from non-causal associations. The 

method used to gather data is particularly important as the causal 

relationships between the factors depends on its validity and applicability. 

Azencott et al. (2007) identified two essential points in the interpretation of 

causation data:  

1. There should be a strong correlation/association between the 

possible cause and the possible effect.  
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2. The causation must precede the impact. In terms of accident 

research: There should be clear evidence that exposure to the risk 

factor preceded the accident. Another important aspect is that there 

should be a plausible explanation. 

One of the main aspects of analysing accident data is interpreting interaction 

(between people variables). Due to the large number of variables present 

within the data and the different types of data fields it is necessary to 

understand how the factors interact and interpret the analysis within the 

scope of how multiple factors are interacting. 

It is also important that the relationships presented are plausible. As 

causation is an explanation of a process as relationships are uncovered and 

deduced from the data. As the nature of causation data is subjective it is 

necessary to take these features into consideration and make the data 

collection process as objective and uniform as possible. 

 

1.4 Real world accident data 

Historically, different types of study methodologies have been used to 

understand the behaviour of the road-user in an accident – more specifically 

how road user behaviour may have contributed to the accident.  

The different approaches include; 

1. In-depth accident investigations conducted at the scene of the 

accident (within a few minutes of crash occurrence) 

2. In-depth accident investigations conducted retrospectively (within a 

few days of the accident occurrence) 

3. Studies using self-report follow-up techniques with those involved 

4. Observation studies/Naturalistic driving studies 

In-depth accident investigations conducted at the scene of an accident aim 

at obtaining all relevant data at the scene of an accident, these studies 

provide information that is otherwise not available in other studies (Hill & 

Cuerden, 2005). In-depth on scene accident investigation studies send a 
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team of crash investigators to the crash site as soon as possible to examine 

and collect volatile data from the site, as well as information regarding the 

environment and interview data from the individuals involved within the 

crash. Although the data acquisition process has been considered excessive 

considering the research findings (Grayson & Hakkert, 1987), the amount of 

data obtained is quite large and suitable for a number of different analysis 

possibilities. 

When an in-depth accident investigation occurs evidence is gathered in 

three ways, either factual evidence is obtained on the spot, interview based 

evidence is obtained from the road users, or an assessment is made by the 

road safety professional on the spot (Sabey & Staughton, 1975). Interview 

based data is the least reliable of the three methods of data acquisition as 

individuals are not necessarily inclined to give truthful information in regards 

to the accident occurring though the interviewer is able to make 

observations on the road users reliability due to their experience in 

interviewing individuals in these types of situations (Sabey & Staughton, 

1975). Road users that participated in the accident can reprocess memories 

and come up with a different interpretation of the accident which would put 

themselves in the position of the non-contributory road user to the crashes 

occurrence. 

The advantage of in-depth accident data is that the level of detail collected 

is relatively high compared to other methods and the factors can be related 

to the crash outcome in detail. In-depth data is usually collected by 

independent research teams consisting of expert investigators that use a 

strict methodology collecting key variables with regards to the accident, 

human road user (including interviews), vehicles involved, injury data, road 

infrastructure and scene environment information, accident reconstructions 

and accident causation analysis, this data is in turn analysed (Hagstroem et 

al., 2010). The disadvantages for this data is the high cost of obtaining the 

data, possible issues in sampling and representivity of the data, and the 

relatively small size of the data collected in many cases. 
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The data collection process by the in-depth collection activities is aimed to 

be independent, compared to national accident data collection procedures 

which are influenced by judicial investigation aims and procedures, although 

impartial in nature these investigations will be carried out with the judicial 

system in mind and will aim at assigning blame to certain vehicles. In-depth 

accident data collection aims at improving safety, not who was to blame 

(Hagstroem et al., 2010). This data can be used in a multitude of areas such 

as vehicle design and crashworthiness, policy and legislation, child occupant 

safety and road infrastructure (Hagstroem et al., 2010). 

In-depth accident investigations conducted retrospectively help supplement 

already available reports through analysing the accident and/or vehicles to 

have a more detailed view of the accident (Langweider, Hummel, & Mueller, 

1997). In-depth retrospective studies researchers go to recovery yards and 

take data from vehicles that have been involved in a crash usually a few 

days after the event. They then use this data as well as police reports to 

reconstruct the accident. This data can be used to understand driver error 

as long as the police data contains relevant information related to the drivers 

behaviour as well as trip data where possible, though retrospective data is 

found to develop less statistically significant findings compared to on the 

spot data (Ranney, 1994). 

Self-reports are methods that are designed to gather self-reported 

information from road users in terms of their traffic behaviours. They can 

include methods, including questionnaires and inventories, interviews, focus 

groups and driving diaries (Lajunen & Özkan, 2011; Tivesten, Jonsson, 

Jakobsson, & Norin, 2012). Questionnaire studies aim at gathering 

retrospective information from the road users that were involved in the 

accident. Accident data from insurance reports provide self-reported 

information from the individuals that are involved in the crash. This data is a 

representation of the accident according to the individual’s perception. In 

both surveys and insurance data the recollection of the accident is 

particularly important as this is the base of the information that is provided. 

According to Lajunen & Özkan (2011) basic motor and perceptual processes 
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are difficult to measure with self-report methods since the driver is unaware 

of most of the automated processes that are carried out while driving.  

Social desirability is another source of bias in self-reported data (af 

Wåhlberg, 2010; Lajunen & Özkan, 2011), which can be described as "a 

tendency to give answers that make the respondent look good" (Lajunen & 

Özkan, 2011, p. 55). A distinction can be made between impression 

management (lying) and self-deception. Impression management tend to 

increase in public compared to anonymous settings, while self-deception is 

more linked to personality (Lajunen & Özkan, 2011). Interview data, survey 

data and insurance data is likely to be influenced by the perception and 

retrieval of the original event by the road user.  

Observation studies aim to document the frequency or occurrence of 

behaviour while driving, rather than to understand the direct cause of 

behaviour (Eby, 2011). These types of studies are particularly useful when 

researchers are aiming to observe a behaviour that is directly observable 

such as seat belt use in a population. Naturalistic driving studies are forms of 

experimental studies that collect data from instrumented vehicles by using 

video recordings and computers to acquire information about road user’s 

behaviours while using their vehicles. A number of data sources can be used 

such as simple accelerometers as well as more advanced systems such as 

eye tracking devices (Dozza, Bärgman, & Lee, 2013).  

This can be done by taking videos of the road user for each specific trip 

and/or by collecting data about the physical behaviours that the road user is 

making and how the vehicle is reacting. These studies have been used to 

collect data on the safety aspects of different in-vehicle systems or to better 

understand the driver behaviours that result in crashes, near misses or 

conflict situations in the road system. The driver is placed in real-world 

conditions and instrumented vehicle studies are conducted to assess driver 

behaviour under natural conditions where the driver is facing normal traffic 

conditions on their normal routes (Klauer, Perez, & McClafferty, 2011). 

Though this data is very rich in nature the amount of crashes collected are 

relatively small. In Dingus et al.’s (2006) 100-Car Study continuous data were 
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collected on 109 vehicles for a minimum of 12 months and the resulting data 

set included 69 crashes, 761 near-crashes, and 8295 incidents. This data 

source is rich in providing multiple levels of information with regards to the 

driver’s behaviour during driving but in terms of accident data the cost is 

relatively large for a small number of accident cases. 

National accident statistics provide information on what type of vehicles are 

involved in different types of accidents and other crash characteristics. This 

data is usually obtained from police reports and put on a national database 

(Langweider et al., 1997). This information is used to monitor national 

progress from year to year and to understand the different type of accidents 

that occur on national roadways. The detail level is below that of in-depth 

retrospective and on scene in-depth accident studies.  

Table 1 demonstrates the type of information collected by different types of 

data collection methods and the cost of each case. In-depth on scene 

accident studies are quite expensive to conduct though the level of data 

collected is higher compared to the other methodologies. Retrospective in- 

depth accidents are less costly than in-depth on scene studies but still 

require a large amount of man power to collect all relevant data. Studies 

using self-report data have quite a low cost but have limitations in terms of 

validity.  

 

Table 1: Traffic accident studies data analysis types and data 

Analysis type 
On 

Scene 
Self-

report 

Interview 
relating to 
accident 

Volatile 
data 

Cost of 
data per 

case 

On scene in-depth 
accident investigations 

Yes No 
Yes where 
possible 

Yes High 

Retrospective     
In-depth accident 

investigations 
No No 

Retrospective if 
possible 

No High 

Studies using self-
report data 

No Yes No No Low 

Observation studies/ 
Naturalistic driving 

studies. 
Yes No No 

If 
possible 

Low to 
Medium/ 
Medium 
to High 
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Observation studies also can have a lower cost compared to other study 

types and provide more valid data than self-report studies, while naturalistic 

driving studies have a higher cost and provide very detailed data for a 

smaller sample size. 

 

1.5 Methods used to analyse accident causation data on 

driver behaviour 

When analysing a large number of accident cases it is possible to draw 

inferences using different statistical methods. There are three types of 

procedures used in data analysis, these are (1) frequency distributions to 

understand the numerical values for the collection, (2) using exploratory data 

analysis methods to get to know the data and (3) inferential statistics to 

understand what relationships and conclusions can be made from the data 

(Howell, 2009).  

When analysing traffic accident causation data traditionally, each individual 

case is collected and analysed coding the qualitative information and 

contributory factors according to a classification scheme (Sandin, 2009). A 

case study examining accident records provides insight into the traffic safety 

situation using information from accident cases but is considered more in line 

with an intuitive rather than a data-driven approach (Kweon, 2011). These 

results are then analysed using frequency analysis and correlations. A large 

number of accident causation studies have combined individual accident 

cases into aggregate cases to identify particular types of accident scenarios 

(Sandin, 2009; Ljung Aust, 2010; Treat et al., 1979, Sabey & Staughton, 

1975). 

A scenario can be named as a prototype or model of an accident process 

characterised by a sequence of events that contribute to damage either to 

individuals or their property/environment (see, for example (Cicioni, Giuliano, 

Castellano, & Lattanzi, 1994; di Marzo, Almenas, & Gopalnarayanan, 1995; 

Karwat, 1992)). This studying of the past experiences can be used to develop 

prevention strategies to chains of events (Fleury & Brenac, 2001). 
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A typical scenario of an accident is defined by Van Elslande and Fouquet 

(2007) as “the typical progress with which we can connect a group of 

accidents which present resemblances from the point of view of the chain of 

the phenomena, whether they are analysed from an historical, a functional or 

a causal point of view” (p. 4). These constructions can be considered as a 

prototype, as they are attained from a number of similar accidents rather than 

only one accident (Fleury & Brenac, 2001).  

If we consider the process of an accidents occurrence as the presence of 

factors that are different from the norm, then the prevention of these 

behaviours will stop an accidents occurrence. When taking the factors into 

consideration it is necessary to attribute the factors to not just the accident 

that has happened but to the traffic environment and infrastructure as a 

whole. The introduction of countermeasures to broach these effects can then 

contribute to traffic safety benefits.  

 

1.6 Countermeasures 

A road safety measure is a device, program or tool whose main purpose is to 

improve road safety (Elvik, Hoye, Vaa, & Sorensen, 2004). The theoretical 

approach that is used to collect and analyse road safety data determines the 

countermeasures that will be provided and applied. We can divide the use of 

countermeasures according to the three main proponents within the traffic 

environment. 

1. The road user 

2. The vehicle 

3. The environment/infrastructure 

The countermeasures that have been used to address these proponents 

have historically counted on the three E’s. According to Damon (1958) the 

then director of the Kansas City Safety Council gave a presentation where he 

presented a drawing of a triangle with sides labelled education, enforcement 

and engineering (as cited in Groeger, 2011). Through the years a number of 
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E’s have been added to this model, most notably emergency medical 

response. 

The road user is the interactee in the traffic system that suffers the 

consequences of any conflicts in said system. Countermeasures aimed at 

road users focus on education, enforcement and measures to reduce 

accident risk. 

Elvik et al. (2004) identified 124 countermeasures according to studies that 

listed their effectiveness. The studies that were included either provided 

numerical estimates or stated the number of accidents that the study was 

based upon. 

With regards to vehicle countermeasures the main methods of precautionary 

measures during the 70’s, 80’s and 90’s were concentrated on secondary 

safety and passive safety measures (airbags, seatbelts) that are aimed at 

reducing or preventing injury after a crash has occurred (Evans, 1991). The 

active safety approach has been incorporated during the latter 90’s and 00’s 

and in present day integrated safety measures are aimed to be incorporated 

in vehicles. The ‘active safety’ approach is traditionally associated with 

technologies that are likely to result in crash avoidance (e.g. Intelligent 

Speed Adaptation (ISA), Enhanced Stability Programmes (ESP) and Lane 

Departure Warnings (LDW)) (Morris et al., 2006).  

The 21st century has seen the development of advanced driver assistance 

systems (ADAS) that aim to improve comfort, safety and convenience by 

either assisting the driver or by taking over certain driving tasks (Richardson, 

Barber, King, Hoare, & Cooper, 1997; Young, Birrell, & Stanton, 2011). 

These systems are aimed at influencing vehicle control and either 

monitoring the vehicle performance and providing assistance, or monitoring 

the driver’s performance and providing a warning of impending 

danger/dangerous driving. The system works by providing a reactionary 

driving behaviour either fully or by adding to the driver’s behaviour. However, 

these kinds of automation may actually cause an increase in reaction time 

and situation awareness (Brookhuis, de Waard, & Jannsen, 2001). 

According to Lee (2004) the limitations, preferences and conditions of the 
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driver needs to be taken into account for the collision warning system to be 

successful. In the future with further development of a multitude of systems 

these issues will be arising furthermore and the manner in which these 

systems interact with the driver will be of critical value. Another issue of note 

is how to train older drivers in the use of these systems.  

At the fundamental level the two critical traffic elements that can be 

influenced by roadside objects are the traffic (vehicle) speed and lateral 

positioning (De Ridder et al., 2006). Engineering countermeasures aim at 

providing improvements in terms of the vehicle (build, performance, 

occupant protection, passive safety) and improvements to the environment 

through providing clues to the road user that signal appropriate driving 

speeds and lane positioning for the type of road and indicate expected 

behaviours within the traffic environment (for other road users) 

Safety technologies that have been developed to help road users with 

regards to crash avoidance and/or mitigation currently fall under four 

possible headings (Atalar et al., 2012). These technologies aim at tackling 

the issues discussed above: 

1. Passive safety measures: These measures reduce the consequences 

of an accident by managing the crash forces. Passive safety refers to 

the vehicles protective measures when involved in an accident (e.g. 

seat belts, airbags). 

2. Active safety measures: These measures reduce the possibility of 

accidents occurring by taking preventative measures. Active safety 

normally involves the implementation of safety technology within the 

vehicle which is specifically designed to reduce the risk of a crash 

occurring (e.g. vehicle braking and stability, electronics). 

3. Integrated safety measures: These measures aim at integrating 

active and passive safety systems within a vehicle to allow the 

vehicle to adapt to a pre-crash situation and either stop the crash 

from occurring or reducing the crash consequences by reacting to the 

crash appropriately. 
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4. Rescue safety measures: also known as tertiary technologies. These 

measures optimise the rescue phase by supplying information on 

crash severity and location to rescue services. 

 

1.7 Summary 

In this chapter a brief description of traffic accidents as a global problem was 

identified, with an overview of the current and future projected rate of traffic 

accidents in terms of injury and monetary loss. The role of the road user in 

this environment and a brief identification of how human failure occurs were 

carried out. The collection procedures of accident causation data was 

explained as a data source for understanding driver behaviour. 

The different ways of collecting accident data on scene and retrospectively 

(in-depth on scene accident data, on scene national accident data, 

retrospective accident data, insurance data, questionnaire studies and 

observation studies/naturalistic driving studies) and their uses were explained 

and compared.  

A review of the problems in relation to road traffic accidents has been carried 

out and discussed with a brief description of countermeasures with regards to 

traffic accident data and the different types of safety technologies available.  
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2 Literature review 

 

2.1 Introduction 

The aim of this thesis is to identify the most prominent human failures that 

occur in a traffic accident by identifying the human, vehicular and 

environmental/infrastructural factors that contribute to an accident, in order 

to develop a better understanding of how traffic accidents occur. Previous 

work has concentrated on identifying risk factors that have been linked to 

increased accident risk. This thesis aims to take a holistic approach, to 

identify the interactions between risk factors and focuses on the interaction 

between driver failure and other factors present in the traffic system. This 

process will also investigate the links between different risk factors and 

identify these links in different accident scenarios. Human error has been 

historically quoted as the main accident cause of up to 90% of accidents 

(Treat et al., 1979; Sabey & Staughton 1975), but a more thorough 

understanding of how these errors occur concurrently with other factors is 

not currently available. In order to understand the interactive nature of traffic 

accidents an interactive ergonomics model was used within this thesis, 

guided by a human factors perspective. This approach helped develop a 

unique way to analyse risk factors that are present during traffic accidents.  

The review of the literature is based on the following assumptions: 

 A detailed understanding of human behaviour and failure in traffic 

accidents can contribute to a better understanding of accident 

causation.  

 There are four main possible types of factors that can cause or 

contribute to a traffic accident occurring. These factors are human 

factors, vehicular factors, environmental factors and infrastructure 

factors.  

 Accident causation methods are the most systematic way of 

understanding human failure within traffic accidents. 
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 A need to use statistical analysis methods with in-depth and national 

data is necessary to form a better understanding of accident 

sequences 

 

2.2 Acquisition of driving skills  

In order to understand how a road user interacts with the road environment 

a detailed understanding of both the acquisition of the driving skills as well 

as a model to understand how driving behaviours occur is beneficial. The 

acquisitions of skills related to driving are acquired over time. Fitts and 

Posner (1967, as cited in Evans 1991, 101) identified three stages during 

the acquisition of driving skills (learned through trial and error); An early 

(cognitive) stage, an intermediate (associative) phase and a final 

(autonomous) stage. These stages can be viewed in figure 2. When 

transferred to a perspective considering driving in the early stage the road 

user learns to understand the components that are necessary for the driving 

behaviour to take place, similar to a way a toddler learns to walk. The 

individual is acquiring connections within the brain to form a cohesive map 

of individual components to the driving task (Evans, 1991).  

In the intermediate stage strategies are employed so that the individual is 

aware of outputs from other drivers and individuals within the traffic 

environment, though still giving a high level of attention to the driving task 

(Evans, 1991). In the autonomous phase the attention level to detail is 

lessened and a lot of the reactions are now done without extra thought 

being given to the action (Evans, 1991). The driver accumulates knowledge 

which in turn leads to drivers forming expectations of how to react to specific 

driving situations, and as these expectations increase visual search patterns 

and behaviours become automatic. Progress through these three stages or 

changes in the knowledge on which performance directly occurs as a result 

of practice, virtually all of the skills that have been systematically studied 

show a gradual slowing of improvement as task experience increases.  
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Figure 2: Fitts and Posner’s three stage model (Adapted from Fitts & Posner, 

1967) 

 

Research carried out in a driving simulator has shown that novice drivers 

scanning behaviours are less complex than experienced drivers 

(Underwood, Chapman, Bowden, & Crundall, 2002), and they are also less 

able to remember events other than central driving events (Underwood, 

Chapman, Berger, & Crundall, 2003). However when they received training 

in terms of visual search patterns their performance gradually increased 

though not to the level of more experienced drivers (Chapman, Underwood, 

& Roberts, 2002). Traffic behaviours need to be learned gradually, as 

drivers experience different driving situations their experience and skill will 

increase which in turn lessens the amount of unconscious errors that they 

make (Bjørnskau & Elvik, 1992; Underwood et al., 2003). 

The rate of improvement will slow faster for easy tasks than for hard tasks 

(Groeger, 2002). This in turn allows drivers to concentrate on the aspects of 

the specific driving situation that they are confronted with in terms of what is 

most relevant (Koustanaï, Boloix, Van Elslande, & Bastien, 2008). As the 

driving environment is extremely complex, drivers can only gather a limited 

amount of information from what is occurring around them. Each driver will 

select what is significant to them depending on knowledge, the situation and 

trip objectives (Van Elslande & Fouquet, 2007).  

While road users move along a route they continuously perceive the 

environment and in turn relate these movements in a general setting. The 

individual’s route direction depends on the understanding that individuals 
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develop as they move along this path. The level of detail with which they 

describe their surroundings will be determined by how well they have 

perceived their environment (P. E. Michon & Denis, 2001). According to 

Michon and Denis (2001), the three most important reasons why landmarks 

are required during navigation are: 1) signalling where an action should be 

executed, 2) creating the link to the next section of the route, and 3) 

reassuring navigators that they are still on track. This understanding of the 

navigation of what they have experienced allows road users to map these 

reasons onto any network graph that represent route navigators. The 

objective of a person generating route directions is to deliver these 

descriptions in such a way as to allow a high level of understanding of the 

environment described. The nature of information acquisition and learning in 

the traffic environment follows a similar pattern.  

In order for the driving behaviour to be carried out appropriately a driver 

needs to select the most relevant information from the traffic environment, in 

order to make the necessary driving actions. After selecting the necessary 

information, then an interpretation of the information needs to be made in 

order for a decision process to be carried out. These decisions are based on 

previous knowledge of different situations the road user has been 

confronted with (Van Elslande & Fouquet, 2007).  

 

2.3 Models related to driving  

Historically in road safety a number of models have been proposed to explain 

the process of how a human failure occurs. The two main ways of identifying 

driving behaviours can be grouped into descriptive models and functional 

models. The descriptive models describe what the driver does while the 

functional model describes the motivational and situational factors that lead 

to the driver making their decision (Oppenheim & Shinar, 2011). 

 Descriptive models are analytical rather than predictive, and aim to describe 

what the driver has to do either as a part of what they do or as a whole 
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(Carsten, 2007). They can be divided into hierarchical models and control 

loop models (Oppenheim & Shinar, 2011).  

The hierarchical task model of Michon is one of the main types of descriptive 

models (Carsten, 2007). Driving as a task is a skilled activity with several 

hierarchies (Summala, 1996). The generalized problem-solving task of the 

user can be further divided in three levels of skills and control: strategical 

(planning), tactical (manoeuvring), and operational (control) respectively (J. 

A. Michon, 1985).  

The driver can also engage in other activities besides the driving task (e.g., 

talking on the phone, daydreaming) that can be described according to the 

three task levels as well. Risk is related to in terms of driver’s non-

performance of a manoeuvre leading to a problem occurring rather than in 

terms of the quality of the driving task (Carsten, 2007). 

We can describe the driving task according to control loop models by using 

inputs, outputs, and feedback (Oppenheim & Shinar, 2011). These models of 

driving have traditionally been expressed either in terms of guidance and 

control or in terms of human factors. There is difficulty in using these models 

to understanding driver behaviour with regards to complex behaviours with 

modern cars (Oppenheim & Shinar, 2011). 

Functional models focus on the cognitive state of the driver and 

psychological functions to help understand it (Oppenheim & Shinar, 2011). 

Informational processing models include the driver as a passive information 

channel that performs different acts within capacity limitations. The driver is 

shown to go through different stages based on perception, decision and 

response selection (Wickens, 1992). Two of the crucial components within 

this model are attention allocation mechanisms and the feedback loop 

(Oppenheim & Shinar, 2011). Individual differences in relation to behaviours 

have been shown to affect future performance parameters. The feedback 

loop implies that data processing is a continuous process and as new 

stimulus is entered new modifications and processes are made (Shinar, 

2007). 
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Motivational models of driving aim to describe how the driver manages risk or 

task difficulty (Carsten, 2007). Theories that determine risk in regards to 

behaviours undertaken are most commonly used in this model. Drivers are 

assumed to take the amount of risk that they are willing to endure for each 

behaviour (Gibson, 1966; Oppenheim & Shinar, 2011).  

When interpreting these behaviours accident rates and measures of injuries 

are used, though it is necessary to understand this process in terms of 

drivers’ behaviours and performance measures (Oppenheim and Shinar, 

2011). Driver behaviour is usually measured by response time. Response 

time is typically composed of at least three components: (1) perception 

reaction time – how long the driver needs to perceive input and decide on a 

response, (2) movement time – how long the physical movement takes, and 

(3) how long the device requires to carry out its response (Oppenheim & 

Shinar, 2011). If we consider an individual pressing a brake, they first will 

perceive that a situation arises that requires the brake pedal to be pressed, 

they then motion to press the brake pedal and once they have performed this 

movement the machinery will move to cause the vehicle to brake. 

 

2.4 Crash sequences and accidents  

2.4.1 Theoretical approaches to accident investigation 

(Historical) 

When analysing accidents investigation practices have historically relied on 

a number of different methodological and practical perspectives to help 

determine and distinguish accident causes, and tie them together with 

possible countermeasure considerations. Accident investigation practices 

usually provide a model to frame the way that an accident happened and 

how they can be prevented. Benner jr. (1985) found differences in the 

performance of 17 evaluated US accident investigation methodologies. 

Benner jr. (1985) stated that accident models should be realistic, definitive, 

satisfying, comprehensive, disciplining, consistent, direct, functional, non-

casual, and visible.  
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This analysis type mirrors the types of traffic accident investigation that has 

been carried out throughout the years. Lundberg, Rollenhagen & Hollnagel 

(2009) grouped previous accident investigation into four possible areas 

based on investigation types through the years and broadening complexity. 

These models are; 

1. Simple linear system models (cause–effect models): These models 

approximated on preventing the most obvious cause. Looking for 

actions that seemed incorrect and correcting those. 

2. Complex linear system models (epidemiological models): These 

models highlighted factors that may not be observable immediately 

and contributed to the occurrence of said accident. Best known today 

as the Swiss Cheese model (Reason, 1997). 

3. Complex interactions: Which Reason (1997) described as the 

discrepant casual chains where managerial activities at the ‘‘blunt 

end” could lead to latent conditions at the ‘‘sharp end”. 

4. Performance variability: When the environment and the system itself 

changes in a system performance the variability of performance is 

required and may lead to negative effects. To avoid these it is 

necessary to concentrate on a new equilibrium for the system 

(Sundström & Hollnagel, 2006). 

(Elvik et al., 2004) identified five different theories that have been historically 

used to try to explain accidents, particularly with reference to road safety 

analysis. They are; 

1. The theory of accidents as purely random events 

2. Statistical accident theory and accident proneness theory 

3. Causal accident theory 

4. Systems theory and epidemiological accident theory 

5. Behavioural accident theory 

The timeline in relation to these theories prominence and use can be viewed 

in figure 3. The theory of accidents as random events aimed to explain why 

there is variation within a group of individuals when accidents should be 
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completely random (Elvik et al., 2004). The human participant was viewed 

as taking part in the accident on a completely random basis. The likelihood 

of an accidents occurrence was viewed as not being related to the 

behaviours of the participant. 

The view of accidents as random events was shaken when Greenwood and 

Yule (1920) discovered that certain workers were responsible for most of the 

accidents in munitions factories. As this could not be due to randomness 

they put forward the idea that certain people were more prone to accidents 

compared to others. This theory was predominant between the years 1920-

1950 and pertained that certain individuals contributed to most of the 

accidents that occurred (Elvik et al., 2004). 

Causal accident theory aims to find the real causes of accidents which in turn 

it identified as being multi-causal events with multiple factors leading to the 

accident rather than having one single cause (Elvik et al., 2004). This model 

uses a holistic approach to integrate all possible factors and events leading 

up to an accidents occurrence. 

Systems theory aims to modify the technical components of the road 

transport system in order to match the road environment requirements to 

human capabilities (Elvik et al, 2004). A system can be considered in the 

context as a group of activities that are constantly interacting. Any type of 

breakdown in this interaction will lead to an accident occurring.  

Behavioural accident theory in turn concludes that human risk assessment 

and acceptance is what determines how many accidents happen and this 

can only be altered by changing the target risk (Elvik et al., 2004).  

Human assessment and risk assessment determines the number of 

accidents that each society has. The only way of lowering this number is by 

having a target of a lower number.  
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1900 1920 1940 1960 1980 2000 

Accidents as random 
events 

        

  Accident proneness theory       

    Causal accident theory     

                   Systems theory   

        Behavioural theory 

 

Figure 3: The heyday periods of various accident theories (Adapted from 

Elvik et al., 2004) 

 

In concordance with the above models road safety management has 

become progressively more ambitious over time, and in the results desired. 

Breen (2012) identified four phases in road safety management as evident 

since the 1950’s: 

 Phase 1: During the 1950’s it was assumed that direct educational 

and training approaches could more or less solve the problem. As the 

WHO states, these measures provide general support, but there is 

little or no evidence to indicate casualty reduction effects for this 

approach. It is notable how easy it seems to be to slip back into this 

emphasis through political expediency, industrial demand or lack of 

professional challenge. 

 Phase 2:1960’s-1970’s focused on system-wide interventions guided 

by the ‘Haddon Matrix’. William Haddon Jr. developed a model based 

on a public health perspective model, dividing a multitude of topics 

into factor areas (personal factors, vector or agent factors, physical 

and environmental factors and social environmental factors) and 

categorizes groupings (pre-event, event, and post event) to explain 

different phases of a typical crash situation. Using this methodology it 

is easier to determine during which crash phase a factor relating to a 

crash occurs, and to in turn take necessary precautions. This 



 

25 

 

framework for road safety aimed for intervention on infrastructure, 

vehicles and users in the pre-crash, crash and post-crash stages but 

did not yet bring in institutional management (Breen,2012). Table 2 

demonstrates a typical Haddon matrix model.  

 

Table 2: Haddon Matrix 

Crash phase Human Vehicle Environment 

Pre-Crash 

Physiological 
factors, 

Psychological 
factors 

Active safety 
systems 

Road conditions, 

Traffic laws, 

Environmental 
conditions 

Crash 
Physical stature, 

Seat belt use 

Impact type, 
Passive safety 

systems 

Roadside 
characteristics 

Post-Crash 

Physical stature, 

Medical 
condition 

Passive safety 
systems 

Rescue safety 
performance 

 

 Phase 3:1980’s-1990’s focused on system-wide interventions, 

targeted results and institutional leadership. Lead agencies in good 

practice countries used action plans with headline targets to be 

achieved with evidence-based packages of measures. 

 Phase 4: From the mid-1990’s onwards focused on system-wide 

interventions; long-term elimination of serious health loss, supported 

by interim targets, shared responsibility and strengthened institutional 

delivery. This is the perspectives of 'zero vision' or 'durable safety' 

(Rumar & Wegman, 1999) which underline the notion of responsibility 

shared between the road users, the society that builds and maintains 

roads, as well as the industry that conceives and sells the means of 

transportation. 

These interventions have renewed emphasis on speed management; better 

road, and vehicle crash protection; the present day theories concentrate on 
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using the Safe System approach and behavioural models as to identify and 

rectify issues in traffic safety. 

The Safe System approach for the management of road safety have evolved 

over the last few decades in developed countries. This approach recognises 

that mistakes and errors will be made by the human road user in the 

transport system. The Safe System approach aims to provide a road system 

design that accounts for these human errors to stop any serious or fatal 

injuries to the road user from occurring. A Safe System approach (OECD, 

2008) has the following characteristics: 

 It recognises that prevention efforts notwithstanding, road users will 

remain fallible and crashes will occur.  

 It stresses that those involved in the design of the road transport 

system need to accept and share responsibility for the safety of the 

system, and those that use the system need to accept responsibility 

for complying with the rules and constraints of the system.  

 It aligns safety management decisions with broader transport and 

planning decisions that meet wider economic, human and 

environmental goals.  

 It shapes interventions to meet the long term goal, rather than relying 

on “traditional” interventions to set the limits of any long term targets. 

A number of countries have adopted Safe System measures, or measures 

that are similar to a Safe System approach. Vision Zero based in Sweden, 

The Netherlands Sustainable Safety Strategy, The Australian Safe Systems 

strategy and the UN decade of action for road safety all used similar 

vernacular.  

Salmons, McClure and Stanton (2012) suggested that rather than using a 

completely systems theory based approach the methods adopted need to 

be shifted towards a more detailed approach to the transport system. They 

further suggest that human factors based approaches to accident analysis 

provide the basis for a detailed system based approach that is necessary.  
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2.5 Accident causation research 

The aim of accident causation research is to identify the source of accidents 

and ultimately reduce or eliminate them (Lehto & Salvendy, 1991). This type 

of research is used to understand how an accident happened by placing the 

features in a causal chain link creating a timeline from pre-event to the post-

event, by analysing the accident data after the event has happened. It is 

used in a diverse number of disciplines with closed environment settings, 

such as construction work and nuclear plants, and allows for investigators to 

understand the specific factors that lead to an accident happening. This 

understanding is aimed to lead to a formulation of a plan or way to stop the 

accident from happening in the same manner in the future.  

As the traffic environment is a large open environment it is difficult to directly 

transfer the same methodology used within closed environments without 

making fundamental changes to the analysis methods. Most research in 

terms of traffic accidents looks at factors in a very detailed manner by 

identifying the types of effects these factors have in terms of an accident or 

specific traffic manoeuvres occurring.  

As traffic accidents are partly random events there is difficulty analysing 

traffic accidents before they happen or as they happen, so in-depth accident 

studies are used to analyse crashes after they occur, using physical data 

acquired after the crash as well as interviews and questionnaire data to 

reproduce events leading to the crash. 

In order to understand crashes it is necessary to put them into the context of 

a theory. Accident causation models aim to provide a theoretical framework 

to identify the source of accidents and ultimately reduce or eliminate them 

(Lehto & Salvendy, 1991). Figure 4 demonstrates an analysis of accidents 

that leads to solutions and the variables that are included in this analysis 

according to both a top down and a bottom up procedure. This type of 

analysis takes the road users’ needs into account and uses empirical study 

based data to estimate and evaluate the effectiveness of different 

countermeasures used. 
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The two general approaches that have been used in the study of causation 

in traffic crashes are the expert/clinical method and the statistical method 

(Blower & Craft, 2005). The clinical method relies on the expert to determine 

the cause of a particular crash, involving a team of multidisciplinary experts 

studying crashes using the members expertise in all relevant disciplines of 

road safety to analyse the primary and contributing causes for each specific 

case, the data of which can then be examined using case review and 

statistical methods (Blower & Craft, 2005). 

 

 

Figure 4: Accident analysis and solution situations (Adapted from Hermitte, 

2012) 

 

The statistical method defines the cause of a crash not by assigning it but by 

demonstrating how it changes with regards to risk. In this approach a cause 

is a factor that increases risk (Blower & Craft, 2005). Expected risk in the 

statistical method can be measured in either absolute or relative terms. 

When exposure measures are available the absolute risk of a crash can be 

calculated. For example, if travel estimates for vehicles and trucks are 

available, the absolute rates of crashes can be calculated, and the crash 

risks per mile travelled for the two different vehicles can be compared. When 

exposure information is not available, conditional or relative risk is calculated 

using the acquired crash data (Blower & Craft, 2005). When aiming to 
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identify countermeasure solutions, it is necessary to use a systems 

perspective as the basis of identification. 

 

2.6 Human error 

Human error can be identified in a number of different ways. The most 

common ways of identifying human error is to identify the types of errors that 

road users can make. Three main perspectives are currently prevalent with 

regards to understanding human error in traffic behaviours: Norman’s (1981) 

error categorization; Reason’s (1990) slips, lapses, mistakes, and violations 

classification; and Rasmussen’s (1982) skill, rule, and knowledge error 

classification (Oppenheim & Shinar, 2011). Norman (1981) broke down slips 

into three major categories; (a) error in the formation of the intention (falsely 

classifying the situation or not specifying the situation), (b) faulty activation 

of schemas (actions intruding when not expected), and (c) faulty triggering 

(by blending the components of actions or false triggering of behaviours).  

Reason’s (1990) ‘Swiss Cheese’ model differentiates between active failures 

and latent failures during transport accidents. Any failures related to 

deficiencies in the management system are referred to as latent failures (e.g. 

poor road design). Latent failures require psychological precursors to be 

present to turn into active failures. Unsafe acts or active failures errors are 

identified as slips, mistakes and violations. Slips were identified as 

behaviours that road users make without meaning to, such as taking a turn 

automatically towards your house even though your path is different, 

mistake are behaviours that you did not mean to make, such as taking a 

wrong turn and violations are behaviours that are meant to break a safety 

rule on purpose, such as running a red light or speeding. 

Rasmussen (1982) identified human error as either man-machine or man-

task misfits, system or frequent misfits being system errors and occasional 

misfits either related to man or the system being either human error or 

system failures. Rasmussen (1982) further identified three levels of 

knowledge for the human behaviour as rule based, knowledge based or skill 

based.   
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Rasmussen defined these behaviours with regards to their complexity and 

regarded them as being hierarchical. The first level are those related to the 

skills that the road user needs to learn in order to put this into action, certain 

skills are more important for driving than others. These behaviours are 

smooth and automated and do not take place with conscious control 

(Rasmussen, 1982). The second level is related to the rule based 

complexity, it is controlled by the middle level of the hierarchy. The 

behaviour that is carried out is based on goal oriented behaviour and 

requires understanding and analysis of the environment and behaviour 

(Ramussen, 1983). The third level is knowledge based and is the highest 

level of hierarchy and requires a mental model for this process to work. The 

individual develops a useful plan for an action to carry out the behaviour, 

particularly when faced with unfamiliar situations (Rasmussen, 1983). 

Rasmussen (1982) determined that as technical systems are designed for 

very definite reasons, the ultimate aim of the human in man-made systems 

is as important as causal explanations based on engineering analysis. 

 

2.7 High risk factors 

Accident precursors that are in place within the traffic environment, 

contribute to an accident by making it possible for them to occur. When 

considering accident causation, systems approach and behavioural 

approaches, all of these models have factors interacting with one another 

with regards to the triggering and cause of the accident. The assumption of 

risk in the traffic environment is one that is commonly studied in road traffic 

safety studies. Some of the main factors that are considered to affect drivers 

adversely are fatigue, drugs, age, gender and in car distractions (Hole, 

2007). 

When identifying the human road user within the traffic environment it is 

necessary to make a distinction between the different senses and possible 

errors that can be attributed to a change in these senses or a failure to 

comprehend these senses. Drivers need to be aware of what is taking place 

in the road and the surrounding traffic (Merat, Jamson, Lai, & Carsten, 
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2012). Situational awareness is defined by Endsley (1995) as the operator 

(driver) being aware at an advanced level of the situational understanding 

and projecting future system states. Though identifying danger depends on 

the situation that a driver is confronted with, if a driver is confronted with a 

single vehicle on a deserted road this is easier to process and react to than 

a group of vehicles on a busy road (Koustanaï et al., 2008).  

The expectation of a driver also influences visual search patterns, for 

example when a road user has right of way they pay less attention to 

vehicles that are coming from the direction that does not have right of way 

and this, at least theoretically, brings a possibility that a crash can occur 

from that direction. Certain driving behaviours require different expectations 

and reaction times, for example an overtaking manoeuvre requires the driver 

to both understand the speed of the vehicle ahead, the distance needed for 

an overtaking behaviour to occur and also the time before the arrival of a 

vehicle that is coming in the opposite direction. The same manoeuvre 

occurring on a motorway though is less complex as there is no need to 

make the calculations on the approaching vehicle, it is only necessary to 

identify whether the lane on the right (or left) is free for this manoeuvre to 

take place. 

The visual sense is particularly important during driving and when 

considering the road user it is necessary to understand the different types of 

stimulation that can either cause s/he to guide their attention away from the 

task at hand (lose vigilance). These can be identified as either inattention or 

distraction. 

An important factor that requires a deep level of understanding is distraction 

of the road user. Regan, Hallett and Gordon (2011) identified the different 

types of distraction as relating to our senses and also to our thought 

process; diversion of attention toward things we see, things we hear, things 

we smell, things we taste, things we feel, and toward things we think about 

(internal distraction). 

Yannis, Laiou, Papantoniou, and Gkartzonikas (2013) further identified the 

difference between inattention (lack of attention, insufficient attention, 
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cursory attention selection of irrelevant information, orienting of attention on 

internalised thoughts and daydreams, engagement in activities secondary to 

driving, symptoms of drowsiness, looking away from the forward roadway) 

and distraction (diversion of attention away from driving, or safe driving, 

competing activity, inside or outside the vehicle, driving-related or not the 

competing activity may compel or induce the driver to divert attention toward 

it; safe driving is adversely effected).  

Stutts et al. (2005) analysed data coded as distraction and inattention in the 

US Crashworthiness Data System (CDS), and reported that in terms of 

overall event durations the most common distractions were eating and 

drinking (including preparations to eat or drink), distractions inside the 

vehicle (reaching or looking for an object, manipulating vehicle controls, 

etc.), and distractions outside the vehicle (often unidentified). Distractions 

decreased driving performance and were found to have a relationship, as 

measured by longer periods of no hands on the steering wheel, with 

distraction towards the outside of the vehicle, and not staying in lane. 

Staubach (2009) identified distraction and reduced activities as an influence 

on all cases in causing error in an in-depth investigation carried out on 474 

cases in Germany using GIDAS data.  

Studies show that the driver groups at highest risk of crash involvement are 

younger (17-25) and older drivers (65 years and older) (Clarke, Ward, 

Truman, & Bartle, 2007; Clarke, Ward, & Truman, 2005; Lardelli-Claret et 

al., 2011). Younger drivers tend to have 2.5 times the rate of accidents 

compared to older drivers when all variables (relative number in the 

population, amount of drivers on the road) are controlled for (Clarke et al., 

2007). Lardelli - Claret et al. (2011) detected that compared to middle age 

drivers (45-49 years) youngest (18–20 years) and oldest drivers (60–64 

years) had a higher crash risk. The main issues with young road users was 

identified as risk-taking and lack of skill and with older drivers it was 

perceptual problems and difficulty judging and responding to traffic flow. 

Using a sample of police reported traffic accidents in the US state of 

Alabama and the Crash Analysis Reporting Environment (CARE), McGwin 

Jr. and Brown (1999) identified that with respect to crash characteristics, 
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older drivers were less likely to have crashes involving driver fatigue, during 

the evening and early morning, on curved roads, during adverse weather, 

involving a single vehicle, and while traveling at high speeds. Older drivers 

were over-represented in crashes at intersections and/or involving failure to 

yield the right of way, unseen objects, and failure to heed stop signs or 

signals. Crashes occurring while turning and changing lanes were also more 

common among older drivers. Alcohol was less likely to be a factor in traffic 

crashes involving older adults. 

Speeding as a factor in accidents has been well-researched and attributed to 

an increase in the injury severity level of road users (Elvik et al., 2004; 

Taylor, 2000). Using multivariate logistic regression on the US Fatal Accident 

Reporting System (FARS) data Bédard, Guyatt, Stones, & Hirdes (2002) 

found that “travelling at a speed of 112 kph (70 miles per hour (mph)) or more 

was independently associated with an 164% increase in the odds of a fatality 

compared with speeds of less than 56 kph (35 mph)” (p. 725). Bédard et al. 

(2002) also pointed out that the larger the deceleration of the vehicle the 

higher the likelihood of post-injury medical complications, independent of age 

and injury severity.  

Analysing 3,437 UK police accident reports (including 1,296 in detail) Clarke 

et al. (2005) found that underlying factors in regards to younger driver 

accidents are risk taking factors rather than skill factors. Despite having good 

driving skills they take unnecessary risks, this causes them to be confronted 

with more dangerous situations which in turn leads to more accidents 

occurring. They also found that 50.4% of young driver’s accidents came in 

the hours of darkness, accidents involving aggressive driving, driving while 

over the alcohol limit, and inappropriate or illegal speed all show an increase 

for young drivers, especially males, during night driving hours (Clarke et al., 

2005). 

 

2.8 Previous real world studies to gather real world 

accident data 
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In-depth accident studies have been carried out from the 1960’s onwards in 

the UK and throughout the world. In the UK, the first study that included on 

scene work was carried out by Starks and Miller in 1961 at the Road 

Research Laboratory (RRL) and continued with Mackay in 1964 who formed 

a multi-disciplinary team working closely with the Birmingham Accident 

Hospital. These studies investigated issues related to passive safety, vehicle 

design and accident causation throughout the 1960’s (Morris, Smith, 

Chambers, & Thomas, 2005). 

Transport and Research Road Laboratory (TRRL) studies 

This study was carried out between the years 1970 to 1974. A multi-

disciplinary team of researchers from the TRRL were on-call 24 hours in and 

around the Transport and Road Research Laboratory in South East 

Berkshire, UK and were called on scene by the emergency authorities 

immediately on receipt of a notification of an incident (Morris et al., 2006). All 

information with regards to volatile data such as skid marks, debris and 

position of the vehicles involved after the impact were collected and 

interviews were conducted (Morris et al., 2006). In total, the team 

investigated 2,130 road traffic accidents (RTA), which represented 60% of 

all injury accidents reported to the police in the area. Analysis of the data 

revealed that the survey was representative of the South East Berkshire 

area but not of the country as a whole (Morris et al., 2006). 

In this study road users were analysed in terms of fault of the accident and 

were divided into three levels; (1) primarily at fault, (2) partially at fault, and 

(3) victim. Drivers were found to be at fault in 40% of the accidents, partially 

at fault in 19% of the accidents and a victim in 39% of the accidents. 

Pedestrians were found to be primarily at fault in 65% of accidents, partially 

at fault in 14% and a victim in 21% of the accidents (Sabey & Staughton, 

1975). 

Human factors were found to contribute to 95% of accidents and were 

identified as the sole contributor in 65% of accidents. Road environment 

factors were attributed to be contributory in 569 accidents (28%) and 

vehicular factors in 8.5% of accidents (Sabey & Staughton, 1975).  
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Tri level Study 

Treat et al. (1979) analysed accidents on three levels looking at police report 

data, traffic accidents on site and using a multidisciplinary team to analyse 

cases. A total of 2,258 on site and 420 in-depth accidents were collected 

between the years 1970 to 1975 in the Monroe area of Indiana, USA. The 

Tri level Study was not nationally representative as it did not have a 

statistical design and was conducted in one state specifically. 

Treat's studies utilised essentially the same methodology as Sabey & 

Staughton’s (1975) study with a slight modification such that a three-level 

approach to data collection was used so that each factor was allocated as 

being a 'definite', 'probable' or 'possible' factor in the causal chain of events 

leading to an traffic accident (Morris et al., 2006).  

In the Tri level study human factors were definitely causative as the main 

factor 70.7% when the accident was reviewed in-depth, definite or probable 

in 92.6% of accidents and 64.3% at the initial on site review of the accident. 

The environment was definitely causative as the main factor in 12.4% of in-

depth accidents and 18.9% of on-site accidents and the vehicle was the 

causative factor in 4.5% of in-depth accidents and 4.1% of on-site accidents 

(Treat et al., 1979). These main factors identified for all of the accidents can 

be seen in Table 3. 

 

Table 3: Tri level study main factors (Adapted from Treat et al., 1979) 

Human factors % Vehicular factors % Environmental 
factors 

% 

Looked but did 
not see 

17.6 View 
obstructions 

3.8 Brake systems 2.9 

Inattention 9.8 Wet roads 3.8 Tires and wheels 0.5 

Excessive speed 7.9 Design problems 1.9 Body/door openings 0.5 

Improper 
Manoeuvre 

6.2 Transient 
hindrances 

1.9 Communication 
systems 

0.2 

Internal 
distractions 

5.7 Control 
hindrances 

1.2 Steering systems 0.2 
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GIDAS study 

The German In-Depth Accident Study has been collecting data of in-depth 

investigations on scene in the Hannover area since 1973 and in the 

Dresden area since 1999 in Germany (Hautzinger, Pastor, Pfeiffer, & 

Schmidt, 2007). The team consists of doctors and technicians investigating 

traffic accidents involving injured persons by a statistical spot-check 

procedure.  

Damage to vehicles, accident traces and injuries are documented in detail 

and the injury classification AIS (Abbreviated Injury Scale) is used to 

describe the injury severity of each occupant (Morris et al., 2006). 

This study calculates Equivalent Energy Speed (EES) and speed change at 

impact (Delta-V) using vehicle deformation data and reconstructs the 

kinematic of vehicle and passengers. The maximum avoidance speed of the 

crash is also calculated. Accident causation data is also interpreted by the 

accident investigators after the accident using the information and interview 

data collected on scene. 

INRETS Study  

The Department of Accident Mechanisms at the Institut National de 

Recherche sur les Transports et leur Securité (INRETS) conducted an in-

depth study of traffic accidents in the Salon de Provence region of France 

between the years 1980 to 1987 (Morris et al, 2006). Over the course of this 

study, 400 RTAs were examined in detail (Girard, 1993).  

The INRETS team was alerted to an RTA at the same time as the emergency 

services and collected as much information as possible at the scene of the 

crash. The study concentrated on ‘vanishing’ data such as skid marks, final 

rest locations of vehicles involved, weather and roadway conditions. This 

data together with preliminary assessments of the vehicles were collected by 

a trained technician, whilst a psychologist interviewed the driver either on the 

scene or as soon as was possible afterwards. A second phase of the study 

was undertaken subsequent to the accident comprising an investigation of 
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the demographics of the driver, investigation of details of the journey being 

undertaken and a technical vehicle investigation (Morris et al., 2006).  

The main aim of this study was depth of information collected rather than 

national representivity, so a small number of cases were collected and 

analysed in-depth with each case being analysed on scene and afterwards 

by a group of investigators and decided upon in detail. This analysis has 

been continued since 2006 in the Salon de Province region. Accident 

causation data has been collected in this study. 

ITS study 

The Institute of Transport (ITS) in Leeds analysed 12,554 injury accidents in 

North Leeds in the year 1988, on urban roads that consisted of speed limits 

of 40 mph or less (Carsten et al., 1989). This study was carried out by first 

observing police reports and the researchers following this by administering 

questionnaires to the respondents either by interview or post. The response 

rate was 50% to the questionnaires. Almost 70% of the accidents that were 

observed, were found to occur on junctions. Site visits were also undertaken 

for this study and case conferences where the case contributory factors was 

determined by the investigators, was analysed with two investigators and 

entered into the database. This study used a four step analysis for causation 

that coded cases in terms of: 

1. The immediate failure that precipitated the event 

2. A failure that increased the likelihood of the accident happening 

3. The road user behaviour or lack of skill that lead to those failures 

4. The explanation for the failure or behaviour 

ANCIS study 

The ANCIS (the Australian National Crash In-depth Study) is a collaborative 

research program involving the automotive manufacturing industry, State 

and Federal Government agencies and automobile associations. This study 

was started in 2000 and collects retrospective data with a focus on injuries 

and fatalities (Fildes, Logan, Fitzharris, Scully, & Burton, 2007). 
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This study collects in-depth data on a representative sample of passenger 

vehicle crashes in Victoria and New South Wales on severe crashes where 

the injury to at least one occupant results in their being hospitalised. The 

analysis process is started at the hospital where suitable participants are 

located and retrospective interviews, site visits and vehicle analysis are 

carried out. Over 1,000 accident cases have been collected since the start 

date, and the analysis is particularly concentrated on passive safety system 

development and human error analysis,  

NASS study 

The National Automotive Sampling System (NASS) is a national study that 

uses probability based sampling to collect data in 60 locations around the 

US. NASS collects 55,000 cases per year and uses a statistical weighting 

method to represent the 6.2 million annual crashes that are reported to the 

police. NASS data has collected a sample of 150,000 crashes since 1979 

that include minor, moderate, serious, and fatal crashes (NHTSA, 2010a). 

NASS has two parts: the Crashworthiness Data System (CDS) and the 

General Estimates System (GES). These systems work by randomly 

selecting police accident reports at police agencies. For the CDS 

researchers gather interview and medical record data to add to the on-site 

investigations that they have carried out. GES choses approximately 60,000 

crashes each year that reflect the geography, roadway mileage, population, 

and traffic density of the U.S for sampling purposes. 

CIREN study 

The Crash Injury Research and Engineering Network (CIREN) collect injury 

causation data by using a multidisciplinary approach to crash data. This data 

is collected within eight centres throughout the US, and each individual’s 

injury is linked to the crash mechanism that caused it allowing for a deeper 

understanding of how crashes occur and how to prevent prospective injuries 

(NHTSA, 2010b).  

NMVCCS study 
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The National Motor Vehicle Crash Causation Survey (NMVCCS) aimed to 

collect crash causation data to compliment data acquired from vehicles, the 

roadways, and the environmental conditions. The data was collected on 

crashes involving light vehicles, during the period January 2005 to 

December 2007 throughout the US (NHTSA, 2010b). This study collected 

information at the crash scene and used a two-dimensional sampling frame 

reflecting on both space and time of crash occurrence in sampling crashes 

from among those occurring between 6 a.m. and midnight (NHTSA, 2010b).  

FICA study 

The Factors Influencing the Causation of incidences and Accidents (FICA) 

study was carried out between the years 2003-2006 in Sweden. This study 

was led by Chalmers University Vehicle and Traffic Safety Centre (SAFER) 

as a collaboration partnership between Volvo Car Corporation, Saab, AB 

Volvo, Trafiverket (the Swedish Transport Administration) and Autoliv. FICA 

collected approximately 200 cases during this time period but mostly 

concentrated on collecting single vehicle and intersection accidents (Ljung 

Aust, 2010; Ljung, 2007). This study used an accident causation system to 

collect all relevant factors in the crash and collected telephone interview 

data from individuals involved in the crash. 

Table 4 demonstrates the different types of accident data collection carried 

out in these studies, the data collection procedures that were carried out, if 

an accident causation system was used in the coding of this data and the 

sampling design that was undertaken. Reviewing the different studies it can 

be seen that the studies using accident causation analysis usually collected 

a lower number of cases, had a regional sampling design and mainly were 

on scene accident analysis studies. 

 

 

 



 

40 

 

Table 4: Real world studies by data type, causation method and sampling 

design 

Study Data type Accident causation 
coding system 
data 

Sampling 
Design 

TRRL On scene Yes Regional 
Tri level On scene Yes Regional 
GIDAS On scene Yes Regional 
INRETS On scene Yes None 
ITS Retrospective Yes Regional 
ANCIS Retrospective No National 
NASS On Scene No National 
CIREN Retrospective No National 
NMVCCS On scene Yes Weighted 
FICA On scene Yes Regional 

 

2.9 Case sampling with real world data 

Sampling design can be defined as rules that determine the sampling units 

that are included in the sample (Hagstroem et al., 2010). Case sampling is 

particularly important when using real world in-depth accident data, as the 

applicability of countermeasures is determined by how representative of the 

population the data collected is. Different types of data require different types 

of sampling protocols.  

There are two main types of sampling, probability and nonprobability 

sampling. Probability sampling is random in some manner and represents the 

population, while non-probability sampling is used when population 

representivity is not necessary or possible. There are four major types of 

probability sample designs:  

1. Simple random sampling  

2. Stratified sampling  

3. Systematic sampling 

4. Cluster sampling 
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Table 5: Comparing sampling designs 

Sampling 
procedure 

Sampling type Pros Cons 

Simple 
random 

sampling 
Random selection Exactly random 

Difficult to carry 
out for accident 

data 

Stratified 
sampling 

Samples from 
separate time 

sequences 
(groups) 

Low cost, 
Low error 
variance 

Difficult to identify 
exact strata 

Systematic 
sampling 

Systematically 
select samples in 

an ordered 
sequence 

Evenly sampled 
population 

The sample may 
be compromised 
in extreme cases 

Cluster 
sampling 

Probability 
sampling using 

clusters of 
elements 

Easy to use for 
specific areas 

rather than 
whole 

population 

Representivity 
may be low, 
High error 
variance 

 

Table 5 illustrates the different sampling procedures and pros and cons for 

each of the different sampling procedures. Hagstroem et al. (2010) reviewed 

the different types of sampling procedures with regards to in-depth accident 

data procedures and short discussions of these procedures are provided 

below. 

2.9.1 Simple random sampling 

In simple random sampling, it is assumed that the sample is chosen 

completely at random from the population of interest, and that every element 

within the population has an equal likelihood of being selected within the 

sample (Aczel, 2009). This form of sampling allows each accident to have an 

equal chance of being investigated, though this sampling procedure would 

allow a chance for all accidents to be studied it would be an extremely small 

chance (Hagstroem et al., 2010). 

When considering in-depth accident data the number of accidents that occur 

during different time and day periods vary year to year so an exact random 

sample would not be possible without actually accessing all available 

accidents.  



 

42 

 

2.9.2 Stratified sampling 

When we consider that there are different groups that have similar elements 

in each group, in a population we aim to reduce variance by drawing a 

separate sample from each of the groups and then combine the results to 

both reduce costs and also gather a representative sample. This sampling 

method is called stratified random sampling (Aczel, 2009). 

An example for a stratification variable to reduce variance for in-depth 

accident data could be the time of the accident. The advantage of such 

stratification is that the costs are often lower and the error variance is lower 

while the principles are similar to random sampling. All of the groupings are 

required to be included in the sample, in this example the method has to 

cover all 24 hours in a day, and the population distribution would need to be 

known (Hagstroem et al., 2010). 

2.9.3 Systematic sampling 

In situations where a population is arranged in an orderly manner (e.g. goods 

in a warehouse) a random sample can be drawn in a systematic way 

compared to a simple random sample. To select a systematic sample of n 

elements from a population of N elements, we divide the N elements in the 

population into n groups of k elements (Aczel, 2009). Aczel (2009) states that 

“for this sampling method we randomly select the first element out of the first 

k elements in the population, and then we select every kth unit afterward until 

we have a sample of n elements” (p. 16-19). 

2.9.4 Clustered sampling 

When we do not know every element in a population but know that a cluster 

contains many of these elements we may choose to use the method of 

cluster sampling. This method can also be used if it is not feasible to sample 

the whole region but smaller sub regions are more easily sampled and a 

simple random sample or a stratified random sample may not be carried out 

as easily (Aczel. 2009). 

If these clusters were considered as police zones for example a random 

selection of police zones could be carried out. It is important that all available 
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zones are included not just those zones that are happy to participate, as this 

would compromise the findings in relation to the other districts. Attaining data 

using clustered samples can help reduce the distances that are travelled for 

data collection purposes, though in some cases this type of clustering 

increases rather than decreases error variance (Hagstroem et al., 2010). 

2.9.5 Issues of sampling with real world data 

Though theoretically these different types of sampling present solutions to 

many of the issues that arise due to sample representivity, it is necessary to 

take into consideration that these solutions will not be possible for all types of 

studies, particularly when considering time constraints and available funding. 

The sampling considerations outlined above do not need to be considered 

with police reports, due to all accident data being present in the police data 

and the sample being representative of the population as a whole. 

 In-depth accident datasets have more difficulty in achieving this as the 

resources that they have are limited in nature. The collection of one case can 

lead to not collecting other available cases in the categorised area. A further 

difficulty is that sampling is not possible on a national scale with these types 

of studies, as an area that is deemed to be representative is selected and 

accident cases are collected from here, so the elements of randomness and 

generalizability are influenced. 

 In order to overcome these issues the FICA study concentrated on collecting 

a particular group of accidents to make it representative of all of these 

accidents in the system. While data collection in INRETS focuses on 

collecting as much information as possible on one case and then after 

collection of these cases are finished analysing the similarities and 

differences between these group of cases and police national accident 

reports. 

 

2.10 Scenario development with real world data 
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Traffic accident scenario development concentrates on identifying causes 

and consequences that are common for a group of accidents. Traffic accident 

scenarios have been developed in one of two ways, the first way historically 

was for accident data (usually macroscopic data) to be interpreted by the 

accident investigator and expert in order to identify and relate similar accident 

types to develop scenarios. 

Fell (1976) concentrated on a system that would explain human information 

processing failures or non-performance and tie it together with other factors. 

The accident causal system created causal chain links for human factors and 

chains for the other factors separately. Using this method as a base 

Malaterre (1990) analysed 72 in-depth accidents involving 115 road users 

collected as part of the INRETS study (stated in section 2.8) and identified 15 

different scenario types in relation to this study using a method that focused 

on factors related to attention distribution, task competition and time pressure. 

This analysis was based on the causal charts that were filled in for this data 

and he tried to extend the causation charts to include information related to 

the emergency phase of a crash, but found that this was difficult to carry out 

and required further work. A further analysis of French data has been 

continuously carried out by the INRETS study using a similar methodology. 

Historically in-depth accident data have not been used with statistical 

analysis that uses multivariate methods. The main reason for this is the small 

number of cases usually collected for these study types (often 50–70 cases) 

and their being a much larger number of descriptors for each specific case 

making it difficult to provide statistical weighting to carry out statistical 

procedures (Fleury & Brenac, 2001; Sandin & Ljung, 2007). 

The second way to develop accident scenarios is to use macroscopic data to 

interpret accidents and create groupings using statistical analysis procedures. 

As the large number of crashes in national accident datasets make it suitable 

to use these methods, a number of studies have been carried out using this 

data to develop accident scenarios. With the introduction of computers that 

allow for the analysis of national data in an easier manner, researchers have 

used statistical programs to analyse national statistical accident data.  
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Skyving, Berg, and Laflamme (2009) and Berg, Gregersen, and Laflamme 

(2004) used two multivariate analysis techniques: the Factorial Analysis of 

Correspondence (FAC) and the Hierarchical Ascendant Classification (HAC) 

to identify scenarios for national accident statistic data with regards to fatal 

crashes to older drivers and road accidents occurring during driver training 

respectively, and each found 4 specific accident groups and developed 

countermeasure suggestions according to the specific factors targeted. They 

analysed data in terms of up to 15 subfields and 100 variables to understand 

how specific accidents occur. 

Fault tree analysis methods have also been used to develop scenarios for 

accident types allowing for decisions based on different decision points to be 

made. This analysis has been used on both national statistical data (Chen et 

al., 2009) and in-depth accident data (de Oña, López, Mujalli, & Calvo, 2013a) 

to identify different types of accidents that occur with regards to injury 

outcomes and provide a discussion of countermeasures for these outcomes. 

Latent class clustering methods have been used with national statistics data 

to demonstrate how different types of accidents occur (de Oña, López, Mujalli, 

& Calvo, 2013b; Depaire, Wets, & Vanhoof, 2008). These studies used 

multinomial logit estimation as a predictor variable, to quantify whether the 

accidents have a specific relation to the statistical analysis in real world data 

analysis, and Bayesian networks, to identify if the results that were found 

were new and if possible, insights could be gained. A discussion with regards 

to quantify countermeasure were also made in these studies. 

 

2.11 Countermeasure analysis with real world data 

Countermeasures have been developed historically to prevent accidents 

and accident injury. The aim of a countermeasure is to counteract risk. In 

road traffic, risk is a function of four elements (Porter, 2011): 

 The exposure – the amount of movement or travel within the system 

by different users or a given population density 
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 The underlying probability of a crash, given a particular exposure 

 The probability of injury 

 The outcome of injury 

The nature of the countermeasure changes according to which of these 

factors it is aiming to counteract. In trying to counteract the probability of a 

crash, active safety measures and interactive safety measures are used to 

prevent the road user from participating in an accident. To lessen the 

probability of injury passive and interactive safety measures are 

incorporated to lessen the severity of injury and also the consequences of 

the injury. To lessen the outcome of injury, rescue safety measures are 

incorporated to lessen the severity of injury and also the consequences of 

the injury. These preventions also aim to reduce the monetary costs related 

to an accident.  

We can further divide countermeasures using the Haddon matrix to identify 

relevant groups. In terms of the human road user countermeasures can then 

be further developed based on different road user groups needs and 

structured accordingly for these needs. In terms of the vehicle and 

environment countermeasures can also be structured, depending on the 

different elements that are aimed to be altered. 

The main factors that countermeasures aim to control are all the possible 

factors that cause accident risk to increase. For future improvement of road 

safety countermeasure approaches need to be altered. Countermeasures 

related to the human road user and aimed at the prevention of certain 

human behaviours can be universal in some senses, as human beings go 

through similar processes when in the traffic environment, though culture 

also need to be taken into consideration when applying certain 

countermeasures. When identifying countermeasures for the road 

infrastructure and environment the specific needs of the country and region 

need to be taken into consideration. 
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2.12 Effectiveness of safety measures 

When analysing the role of the human user in the roadway, safety 

technologies aim at either providing support to the road user or undertaking a 

behaviour in place of the road user. Intelligent transport safety functions must 

not only be adapted to drivers needs but also be restricted in order not to 

overload or disturb drivers’ capacity. 

Intelligent Transport Systems (ITS) are a term for any electronic, information 

processing, communication and control technologies that may be used in the 

transport domain (Bayly, Fildes, Regan, & Young, 2007). Bayly et al. (2007) 

identified ITS systems based on the most common classification of the 

system as either; 

 In vehicle based 

 Infrastructure based 

 Cooperative 

In vehicle based systems either provide information to the vehicle user, 

automate some form of the driving behaviour or intervene in a vehicle user’s 

behaviour and adapt it or stop it from occurring. Infrastructure based systems 

provide roadside messages or user information gathered from the road users 

to control traffic flow, and cooperative measures involve communication 

between the different systems within the traffic system either between 

vehicles or with the infrastructure. This information can either be one way or 

two way (Bayly et al., 2007). When a road user is faced with a potential 

conflict situation the amount of time available to make a critical decision is 

relatively short and for these systems to be used effectively fast interpretation 

of the drivers needs are necessary.  

Atalar et al. (2012) identified two steps of analysis necessary to assess the 

potential effectiveness of a safety system: 

1. First the capacity of the system to correctly address drivers’ needs has 

to be estimated by comparing the functionalities of the system with the 

difficulties met by the driver in the accident situation. This asks for a 

clear and precise description of the way the system is acting. 
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2. Then it must be taken into account the physical and operational 

constraints found in accident situations that the system shall be able to 

compensate for, in order to be fully efficient. This necessitates a 

thorough understanding of the specifications of the system 

functionality. 

In terms of how ITS effects safety Draskóczy, Carsten, and Kulmala (1998) 

identified 10 items that are necessary to be used as a barometer in terms of 

safety; 

1. Direct effects of an in-car system on the user (modification of the 

driving task) 

2. Direct effects of a road-side system on the user 

3. Indirect, behaviour modifying effects of the system on the user 

4. Indirect, behaviour modifying effects of the system on the non-user 

(imitating effect) 

5. Modification of interaction between users and non-users (including 

vulnerable road users) 

6. Modifying accident consequences (e.g. by improving rescue, etc.) 

7. Modifying exposure (frequency and/or length of travel) 

8. Modifying modal choice 

9. Modifying route choice 

10. Modifying speed choice 

  

2.13 Road user accident statistics  

The nature of an accident determines both the injury outcome and the 

possible countermeasure that can be used to prevent this type of accident. 

In order to understand the types of accidents that occur, it is necessary to 

identify when and where specific types of traffic accidents occur. An analysis 

of the accident configuration would in turn allow for more detailed and 

focused countermeasures to be developed. According to an overview of 

STATS19 national data from the Great Britain in 2007 (DfT, 2013) the most 

common crash types that occur are: 
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 Rear-end crashes 

 Overtaking crashes 

 Crashes at intersections/Turning crashes 

 Single vehicle crashes 

A rear-end crash refers to a crash in which the front of one vehicle collides 

with the rear of another vehicle (Singh, 2003). Rear-end crashes are the 

most common type of crashes that occur. Data compiled in the United 

States by the National Highway Traffic Safety Administration (NHTSA), 

found that approximately 29.7% of all crashes in the year 2000 were rear-

end crashes. These crashes were responsible for 30% of all injuries and 

29.7% of the property damage accounted for by all accidents in that year 

(Singh, 2003). A way a driver can limit the possibility of a rear-end crash is 

by maintaining a distance from other road users that is appropriate for the 

driving conditions. A proper space cushion can be defined as that which 

provides a driver adequate time to recognise a potential hazard and make a 

decision to avoid this hazard by potentially bringing the vehicle to a stop 

(Abdel-Aty & Abdelwahab, 2004).  

Kuge, Ueno, Ichikawa, and Ochiai (1995) identified behavioural issues with 

regards to rear-end accident situations, by observing road users driving in 

the road environment, as: 

 Highly dangerous situations were more frequently observed in the 

vehicle speed range over 100 km/h. 

 In approaching a preceding vehicle in motion, the driver of the 

following vehicle does not expect the preceding vehicle's emergency 

braking when judging the brake timing. 

 In approaching a stopped vehicle, the higher the approaching speed 

is, the less the time allowance becomes, resulting in higher 

deceleration than normal. 

Davis and Swenson (2006) reviewed rear-end accident video data and using 

simulations identified three possible causes of rear-end collisions as (1) too 

short following distances were probable causal factors for the collisions, (2) 

one or more of the vehicles ahead had a longer reaction time than the 
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preceding vehicle, and (3) had the reaction times been equal the crash 

probably would not have occurred. 

According to Clarke, Forsyth, and Wright (1998) overtaking accidents 

accounted for 7.9% of fatal road accidents in the county of Nottinghamshire, 

England, between the years 1989–1992, and the percentage of cases with 

serious injuries was over 20%. Clarke et al. (1998) analysed 100 overtaking 

accidents from national police data compiled in the Nottinghamshire region 

within the UK and found 10 specific scenarios for these accident types. The 

three scenarios with the largest number of accidents were (1) accident 

collisions with a right-turning vehicle either due to a young driver makes a 

faulty overt, or an older driver making a faulty right turn, (2) a head-on 

collision, and (3) a loss of control accident which is particularly significant for 

younger drivers. 

Clarke et al. (2005) also carried out an analysis of police report files to 

identify what type of accidents occurred most frequently at junctions. The 

drivers that were over-represented were the youngest and oldest groups of 

drivers, and they were the least likely to stop before turning. The young 

drivers particularly had problems when turning onto major roads. With 

regards to gender differences women were more likely than men to stop 

before turning, tended to have their collisions with other women and were 

under-represented as drivers of the non-turning vehicle (Clarke et al., 2005).  

Sandin (2009) analysed causation charts for 52 drivers involved in 26 in-

depth investigated urban intersection crashes in Sweden using the DREAM 

method. The aggregated charts identified six risk situations, four for drivers 

without the right of way and two for those with the right of way. In two risk 

situations, one for drivers with and one for the drivers without the right of 

way, common patterns showed that the drivers had not seen the other 

vehicle due to distractions and/or sight obstructions. For drivers with right of 

way a common pattern was that they did not expect another vehicle to cross 

their path and so did not take this into consideration. Though the roadway in 

Sweden is not the same as the UK, some of the basic features of 
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intersection crashes may be similar due to the psychological processes that 

are being undertaken in these situations being similar for road users. 

A prominent example of a traffic manoeuvre that leads to an accident in 

intersections is the ‘looked but did not see’ accidents. ‘Looked but did not 

see’ accidents can be defined as accidents where the road user looks in the 

direction of the other vehicle but does not see or perceive the presence of 

the other road user (Herslund & Jørgensen, 2003). A main reason of these 

accidents is thought to be experience, as less experienced drivers are 

expected to make these types of functional failures more than drivers that 

have more experience as they are considered to be better at identifying 

`danger` (Koustanai et al., 2008). The nature of the driving situations 

determines the cognitive load that is necessary, less cars and less cluttered 

environmental scenery will allow for the road user to identify situations more 

easily and give road users more time to react to the potential functional 

failure situation and in turn cause a near miss rather than an accident 

(Underwood et al., 2003).  

 For example, to overtake a vehicle, drivers have to estimate both the time 

interval in relation to that vehicle and the risk of collision with vehicles 

coming in front of them, it is very difficult for them to alter this manoeuvre 

once they have started it, while other manoeuvres have lower cognitive 

loads for the drivers (Clarke et al., 1998; Koustanaï et al., 2008; Summala, 

1996). Thus road users develop cognitive schemas and behavioural steps 

for different manoeuvres. Depending on how demanding the workload is the 

road user can adapt to the situation or their late response, or no response, 

can be the cause of a functional failure occurring. For situations that occur 

as expected it is not difficult for the driver to react appropriately, but when a 

driver is faced with a situation that is novel and not expected the cognitive 

workload becomes a constraint that may limit the road user correctly 

interpreting what the other road users are going to do as well as how the 

environment is going to change.  

Koustanai et al. (2008) compared different participants using simulations in 

terms of hazardous situations while overtaking a vehicle or while turning left 
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when the road user could either predict danger or they cannot predict it. 

They found that in situations where drivers cannot predict change in the 

behaviour of a vehicle that is overtaking, there is a much higher level of 

accidents occurring compared to situations where they cannot predict 

danger with left hand turns.  

Brorsson, Rydgren, and Ifver (1993) analysed a sample of questionnaires 

from 467 (62% response rate) injured single vehicle occupants in crashes in 

Sweden, calculating 95% confidence intervals that take into consideration 

the random variability and comparing them against the collected data. They 

identified that the risk level of men between the ages of 18-19 years of age 

were eight times greater than the risk level of men 25-54 years of age. 

Within this sample one third of all drivers were suspected to be drunk, and 

this expectation was more common in middle aged drivers compared to 

younger drivers. 

Clarke et al. (2007) analysing fatal accidents in the UK using a qualitative 

assessment method of police reported data found that nearly 40% of the 

sample as a whole were single vehicle accidents. Of the accidents that 

resulted in fatalities thirty six per cent were single vehicle accidents. The 

number of fatal injury cases where drivers were considered primarily at fault 

also had a higher number of single vehicle accidents (47% of all fatal injury 

cases) and disproportionally skewed towards involving drivers between the 

ages of 17-20.  

Analysing single vehicle accidents from insurance company data gathered in 

Finland between the years 1978-1991, Laapotti & Keskinen (1998) found that 

male and female drivers involved in loss of control accidents were similar in 

terms of proportion. The configuration of these accidents were different as 

male drivers loss of control accidents were usually single vehicle accidents, 

while female drivers loss of control accidents resulted in multiple vehicle 

accidents. Male driver’s loss of control accident contributing factors were 

speed and alcohol, and typical occurred during the evening or night and 

female drivers loss of control accidents contributory factor were typically 

slippery roads.  
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Sandin and Ljung (2007) analysed 38 cases of in-depth single vehicle 

accidents in Sweden and demonstrated four scenarios:  

 Vehicles drifting out of their lane due to going off in a certain direction 

and lacking in recovery attempts. When fatigue was a contributory 

factor these accidents occurred mostly on high speed roads and 

where distraction was a factor these accidents occurred on lower 

speed roads. 

 Loss of control in curves with reduced road friction due to the roads 

slipperiness from roadway factors. 

 Excessive speed in curves where the drivers realised too late that 

they were approaching the curve at too high a speed. 

 Alarmed drivers reacting with excessive manoeuvres due to the other 

vehicle drifting toward there lane. 

 

2.14 Vulnerable road user accidents 

Vulnerable road users are identified by the WHO as making up 46% of all 

global fatalities in road safety throughout the world (WHO, 2009). Vulnerable 

road users consist of pedestrians, powered two wheeler riders and 

young/elderly persons. Due to their high attribution of traffic accidents young 

drivers are also considered as vulnerable road users in some literature.  

2.14.1 Powered two wheeler (PTW) 

Powered two wheeler (PTW) riders are one of the most at risk user groups 

within the traffic environment. Statistical data show that each year they 

represent 15% of people killed on European roads, and according to the 

World Health Organization nearly 200,000 deaths in the world (WHO, 2006).  

The nature of PTW accidents is different from other vehicles in the traffic 

environment due to both the physical dimensions as well as the more limited 

safety measures that can be implemented, as PTWs have a higher degree 

of manoeuvrability compared to other vehicle types.  
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Previous research has demonstrated that PTW riders are the most at risk 

group of vehicle riders/drivers within the road traffic environment. PTW rider 

death rates as a function of distance travelled are generally found to be 

about 30 times greater than for car occupants (Johnston, Brooks, & Savage, 

2008). In the United Kingdom in 2010 there were over 403 motorcycle riders 

(including moped riders) killed in road crashes, 4780 killed or seriously 

injured (KSI) and over 18,686 involved in recorded injury crashes (all 

severities) (DfT, 2010). In 2009 there were 140 deaths and 1,709 people 

killed and seriously injured (KSI) per billion vehicle miles for motorcycle 

riders. The corresponding figures for car drivers were 3 killed and 30 KSI per 

billion vehicle miles (DfT, 2010). Huang, Siddiqui & Abdel-Aty (2011) using 

US police accident data gathered in the state of Florida between the years 

2000-2007 reported that the odds of PTW riders being injured are 2.63 times 

higher than for drivers of light vehicles. The PTW rider was reported as not 

at fault in 43% of these accidents (Haque, Chin, & Huang, 2009).  

A number of studies on powered two wheelers have identified that males are 

part of the accident population on 85% or more of these accidents 

(Bjørnskau, Nævestad, & Akhtar, 2012; MAIDS, 2009). Yannis, Golias, and 

Papadimitriou (2005) identified that rider age was a significant factor in the 

causation of a motorcycle accident as crash involvement decreased with 

increasing driver age. Engine size was also identified in increasing the 

severity of the accident but not affecting the possibility of causation. A 

number of studies have identified that rider age, alcohol impairment, speed, 

rider attention, road surface and road class all influenced accident severity 

(Chorlton, Conner, & Jamson, 2012; Preusser, Williams, & Ulmer, 1995; 

Shankar & Mannering, 1996). 

With regards to motorcyclists being at fault Haque et al. (2009) found that a 

number of factors were more likely in the motorcyclist being considered at 

fault, these factors are (1) cases on motorways or high speed limit roads, (2) 

when the motorcycle engine size was larger, (3) slippery roads, (4) 

intersection conflicts, and (5) when the motorcycle rider was either an older 

or younger rider. Motorcyclists were less likely to be at fault during crashes 

that occurred at night time or at locations where surveillance cameras were 
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present (Haque et al., 2009). Seiniger, Schröter, and Gail (2012) found that 

younger motorcyclists are more likely to be at-fault in the event of a collision, 

as are riders who are under the influence of alcohol. Similarly, motorcyclists 

were less likely to be at-fault when the other driver was of younger age or 

was driving under the influence of alcohol. Clarke, Ward, Bartle, and Truman 

(2004) when asking motorcycle riders to fill in self-report forms and state 

who were at fault from motorcycle accidents had a result of car user 78% of 

the time. 

The literature dealing with motorcycle safety has highlighted one of the main 

type of accident as situations where a motorcycle rider having priority on a 

straight road is put in conflict with another road user when this road user 

moves in front of the rider despite not having priority (Clarke, Ward, Bartle, & 

Truman, 2007; Hurt, Ouellet, & Thom, 1981; MAIDS, 2009; Peek-Asa & 

Kraus, 1996; Williams & Hoffmann, 1979; Wulf, Hancock, & Rahimi, 1989). 

Furthermore, these accidents appear to be characterised by an often high 

level of injury severity (Pai & Saleh, 2008; Pai, 2009; Peek-Asa & Kraus, 

1996). Williams & Hoffman (1979) identified motorcycle visibility as the 

prime cause in 64.5% of motorcycle to car accidents, with particular 

importance being placed on the front of the motorcycle.  

Clarke et al. (2007) identified accidents occurring on bends as some of the 

most dangerous accidents with double the risk of rider or passenger fatality. 

These types of accidents were found to be mainly caused by the 

motorcyclists and the rider was found to have a very high likelihood of being 

inexperienced (Clarke et al., 2007). 

In an in-depth study of motorcycle accidents Clarke et al. (2004) identified the 

three most common types of motorcycle accident scenarios. The most 

prevalent scenario was a right of way violation where a vehicle pulled out 

from a side road onto a main carriageway into the path of an approaching 

motorcycle. In these accidents the driver in conflict with the motorcycle rider 

typically reports detection issues despite feeling that they have satisfactorily 

scanned the roadway before turning. This has been termed a ‘look but failed 

to see’ error (Brown, 2002). Clabaux et al. (2012) analysed a small sample of 
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motorcycle crashes in an in-depth manner in France and found that in urban 

areas “looked but did not see” accidents involving motorcyclists are related to 

initial speeds (for the motorcyclists) that are significantly higher compared 

with those of other types of accidents in intersections, but there was no 

difference in rural accident speeds. The high frequency of junction accidents 

involving motorcycles, and specifically right of way violation accidents, has 

also been reported. 

One of the main difficulties for a driver in identifying an approaching 

motorcycle is that the driver either cannot correctly identify the speed that the 

motorcycle is travelling at, if at all. Crundall, Crundall, Clarke, and Shahar 

(2012) performed two experiments using video clips to understand the 

situations in which car drivers were less likely to see motorcycle riders than 

other vehicles. These situations were similar to ‘look but failed to see’ 

accident types. Drivers who were also motorcycle users were more cautious 

compared to both experienced and novice drivers, with novice drivers 

performing the worst.  

Preusser et al. (1995) uncovered five specific crash types for PTW riders in 

the US that were, (1) ran off-road (41%), (2) ran traffic control (18%), (3) 

oncoming or head-on (11%), (4) left-turn oncoming (8%), and (5) motorcyclist 

down (7%). Left turns and failure to yield were common factors associated 

with the involvement of other motorists in these accidents.  

2.14.2 Pedestrian accidents 

Pedestrian accidents are a particular group of accidents in which the road 

user is not protected during a traffic accident, by either a structure or 

protective clothing. Rather the immediate collision is with the other object in 

the road, and thus the injury outcomes of these accidents are usually 

greater than other accident types. Also, due to the injury outcomes of 

pedestrian accidents being more severe than other types of vehicle 

accidents, pedestrians are more dependent on other road users’ behaviours 

and adherence to traffic laws.  
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Road traffic crashes involving pedestrians often occur and include a large 

proportion of all fatal and serious injury accidents (WHO, 2009). With 

regards to fatal injuries resulting from traffic accidents close to 50% involve 

vulnerable road users (WHO, 2009). Approximately 21% of road traffic 

deaths involve children, yielding an average of 720 child deaths related to 

road traffic accidents per day. 

In the Netherlands almost 50% of pedestrians involved in fatal accidents are 

over 65 years old, and the group that has the next highest proportion are 

children under the age of 14 (Hummel, 1998). In the U.S., fatal injuries are 

more likely for males of all ages and they account for 70% of pedestrian 

deaths. The fatality rate per 100,000 population was 2.19 for males 

compared to 0.91 for females (Clifton & Livi, 2005). 

In the United States, in 2007 approximately 73% of pedestrian fatalities 

occurred in urban areas, this is thought to be due to the larger amount of 

pedestrian activity in urban areas (NHTSA., 2008). Research in Europe also 

has a higher rate of pedestrian fatalities occurring in urban areas (SafetyNet, 

2009). Despite a larger number of pedestrian accidents occurring in urban 

areas the probability of a fatal injury occurring in a pedestrian accident is 2.3 

times more likely in rural areas compared to urban areas (Mueller, Rivara, & 

Bergman, 1998). 

Hunter, Stutts, Pein, and Cox (1995) analysing approximately 5,000 

pedestrian crashes (and 3000 bicycle crashes) from six US states found that 

the most common pedestrian accident types were dart-out in first half of the 

street (24%), intersection dash (13%), dart-out in second half of the street 

(10%), midblock dart (8%), walking along roadway (7.4%), and turning-

vehicle (5%) accidents. 

Analysing naturalistic driving data Habibovic and Davidsson (2012) identified 

two main causation patterns in car user to pedestrian accidents. The first 

pattern occurred when drivers did not identify that a pedestrian was present 

in an intersection, due to either visual obstructions and/or because they 

were concentrating on another aspect of the road environment. In incidents 
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away from intersections, the above defined situation also occurred as well 

as situations where pedestrians unexpected behaviours led to conflicts. 

Also, although it is not a specific crash type, approximately two thirds of 

pedestrian fatalities throughout the world occur at night or under low-light 

conditions. The other road users are not able to see during the night and 

this is a contributory factor to the accident types provided above (Zegeer & 

Bushell, 2012). 

A driver speeding in the roadway can increase the risk to pedestrians in 

several ways. First, vehicle stopping distance increases substantially as 

vehicle speed increases. Second, the risk of a pedestrian death from a 

collision with a motor vehicle is much greater for higher vehicle speeds 

(Zegeer & Bushell, 2012). According to a study by the UK Department for 

Transport (2010), the probability of pedestrian death is 85% when the 

striking vehicle is traveling at 40 mph. This probability drops to about 45% 

for a 30 mph impact and drops further to 5% if the vehicle is traveling at 20 

mph at impact. 

In a study by Tefft (2013) analysing US NASS pedestrian crash study data 

between the years 1994 and 1998, results show that the average risk of a 

struck pedestrian sustaining an injury of Abbreviated Injury Scale 4 or 

greater severity reaches 10% at an impact speed of 17.1 miles per hour 

(mph), 25% at 24.9 mph, 50% at 33.0 mph, 75% at 40.8 mph, and 90% at 

48.1 mph. The average risk of death reaches 10% at an impact speed of 

24.1 mph, 25% at 32.5 mph, 50% at 40.6 mph, 75% at 48.0 mph, and 90% 

at 54.6 mph. The difference between risks according to age should also be 

considered as the risk of death for a pedestrian that is 70 years of age was 

similar to the risk for a 30-year-old pedestrian struck at a speed 11.8 mph 

faster. 

 

2.15 The scope and aim of this thesis 

In the first section of this chapter an explanation of how drivers acquire 

driving skills was outlined (Fitts & Posner, 1967). From the literature it was 
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understood that different models (descriptive or functional models) provide 

different interpretation possibilities when analysing data and understanding 

how the road user understands the traffic environment is paramount when 

considering human error. Human error models (Norman, 1981; Rasmussen, 

1982; Reason, 1990) were also considered. In order for individual cognitive 

issues to be understood in the realm of traffic safety the necessity for a 

model based approach was underlined in the literature.  

Previous studies (Sabey & Staughton, 1975; Treat et al., 1979) provided a 

detailed explanation with regards to the causes of traffic accidents for 

previous years, new technological developments within vehicles requires 

new solution measures to be provided.  

A review of studies that have identified accident scenarios identified that 

recent in-depth accident studies (INRETS; GIDAS; FICA) have concentrated 

on obtaining detailed data on accident causation and have used causation 

charts as a way of understanding how accidents occur. As there is only a 

small number of accident cases for each chart the implications are more 

limited than compared to national data statistical studies that provide 

scenarios.  

The limitations of the national accident data scenario studies (Bédard et al., 

2002; Skyving et al., 2009) are that the level of detail that these studies 

obtain is not sufficient for thorough accident countermeasure development 

purposes. Only a basic understanding of the differences between accidents 

is available from these analysis types. 

Aggregating accident data has been identified as a tool to understand how 

necessary countermeasures can be highlighted though causation data has 

not been previously used with statistical methods for this process as the 

small number of cases collected did not allow for this type of analysis.  

Though a wealth of detail is provided for different studies the necessity for in-

depth data that provides volatile and stable data as well as interviews and 

analysis of the driver’s behaviour was underlined. Though national data and 

other data sources provide insight with regards to how certain behaviours 
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occur, a more detailed systems approach is necessary for a clearer 

understanding of driver errors and related factors. 

A systems theory approach needs to be applied to analyse a combination of 

factors that cause risk in the traffic environment. This is especially more 

important with the implementation of ADAS and infrastructure related 

changes.  

This PhD project aims at creating a methodology to analyse accident 

datasets by statistically analysing different accident scenarios based on 

specific factors and manoeuvre types. The later research focuses on risk 

factors, causes and scenarios. This will be done by identifying the main 

functional failure (perceptive failure) that a road user makes and identifying 

the other factors that contributed to the accident occurring. A holistic 

methodology to analyse these accidents is used. This analysis allowed an 

identification of specific factors that occur in different accident scenarios, 

their frequency and stage at which these factors occur. 

2.15.1 Research questions 

The research questions that this PhD aims to answer are: 

 What are the most frequently occurring traffic accident 

scenarios in relation to driver error (for each accident)? 

An identification of similar accident scenarios will allow for factors that 

are closely related to be examined. This question will be answered by 

analysing accident cases collected during the OTS study using a 

multivariate statistical methodology to identify multiple factors and 

their relationships within the accidents.  

 What interactions occur for two vulnerable road user groups 

(pedestrians and powered two wheeler riders) in relation to driver 

error on the part of both road users? 

This question will be answered by analysing pedestrian and PTW 

crashes collected from the OTS dataset.  

 Are there any differences in establishing causation factors 

between microscopic and macroscopic data? 
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 An analysis of in-depth (on the spot data) and national data (Stats19 

data) will be carried out and a comparison of the level of detail that 

they provide will be made in chapter 7 

 How does the interaction between human failure and 

contributory factors cause traffic accidents? 

Will be analysed by understanding how the statistical methodology 

allowed for these interactions to be grouped as different accident 

scenarios. The interactions within different scenarios will be explained 

and discussed with regards to other research. 

 

2.15.2 Research objectives 

The objectives of this PhD project are, 

1. To develop an analysis method that will allow for statistical analysis to 

be carried out on causation sequence chains in large traffic accident 

datasets.  

2. To analyse all relevant accident scenarios in the OTS dataset.  

3. To analyse the causal chains to understand how functional failure 

sequences occur within particular accident groups to develop accident 

scenarios. 

4. To understand the links between interacting factors and individuals to 

further understand how these interactions cause accidents to occur. 

5. To identify countermeasures implications for the scenarios that are 

highlighted in the research with regards to different stakeholders in the 

road traffic environment. 

 

2.16 Summary 

Chapter 2 presented prominent theories and models in relation to the 

acquisition of driving skills, analysis of human, vehicular and infrastructural 

factors to traffic accidents, accident causation studies and road user 

behaviour studies. An explanation of the cognitive processes that road users 
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carry out in learning how to drive and possible models to help understand 

these processes with regards to accident analysis was made. 

The different causes of traffic accidents were then identified with a 

description of how drivers acquired driving skills. A discussion of human 

error in terms of a number of relevant models was carried out. Historical 

approaches to accident investigation and different countermeasures used 

during these periods were discussed.  

Different real world studies that aimed to collect data in terms of road use 

behaviours were identified and described. An explanation of sampling 

necessities was carried out as well as a discussion of some of the limitations 

of sampling when conducting an in-depth study. Scenario development and 

countermeasure development with regards to real world data were also 

discussed. A brief literature review of common road user accident types and 

configurations as well as a separate consideration or powered two wheeler 

riders and pedestrians was further carried out in this chapter. Finally a 

description of the limitations of the past research and the questions and 

aims of this thesis were presented. 
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3 Classification of road user error 

 

3.1 Selection of accident causation method 

The reviewed literature identified the importance of analysing traffic 

accidents using a multifactorial based model and a data collection process 

that would gather all relevant data. The study carried out in this chapter 

included a review of three current accident causation analysis methods used 

throughout Europe that identify and classify human error/driver behaviour as 

a basis of accident causation interpretation and adhere to a time based 

structure when coding for each road user in a specific accident. The aim of 

this review was to select a method that would enable collected traffic 

accident cases to be coded with regards to all applicable contributory factors 

and human failure in a clear manner. 

These three methods aim to identify the nature of a crash by identifying all 

relevant information from the crash on site within a timeframe that allows for 

the perishable data from the crash to be obtained.  

This chapter will present a comparative case study with regards to these 

three causative analysis methods; 

1. Driver Reliability and Error Analysis Method (DREAM)  

2. Accident Causation Analysis with Seven Steps (ACASS)  

3. Human Functional Failure (HFF) 

This comparison will consist of three separate sections. The first section 

compares the main failures and contributory factors identified by each 

classification system. The differences between the coding systems are 

explained as well as the possible different interpretations that would arise as 

a result of the accident cases being coded with the different methods.  

The second section consists of a questionnaire study comparing the three 

methodologies with regards to questions on the methods applicability and 
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usability. This questionnaire was filled in by ten participants from different 

accident research centres spread throughout Europe. An inter-rater 

reliability comparison between the three methods was carried out with six 

participants, using five cases from three different countries.   

In the third section a comprehensive comparison of the human failures 

coded for each accident as well as all human, vehicular, environmental and 

infrastructural factors was carried out. This study also analysed whether 

different conclusions and countermeasures would be identified as a result of 

using the different methods by comparing the results identified by each 

coding method. The questions that this study answered are as below;  

 Form a better understanding of how human failure is coded by each 

method (section 3.3) 

 Identify how coding is similar/differs from one method to another 

(section 3.5) 

 Compare the usability of the methods (section 3.6) 

 Compare the inter-rater reliability of the methods (section 3.7) 

 Analyse whether different interpretations for integrated safety 

measures would result from different analysis for each case (section 

3.8) 

 Identify the most suitable method in regards to identifying specific 

human failure (section 3.9) 

 Identify the method most appropriate for handling OTS data (section 

3.9.6) 

 

3.2 Review of recent accident causation models 

Understanding how and why traffic accidents occur is necessary for the 

correct implementation of road safety measures. Past research in this field 

has concentrated on developing passive safety measures and improving 

vehicle structures so that the consequences of crashes would lessen. These 

measures concentrate on the issues that a road user faces after a crash 

occurs, namely injuries and other consequences of the crash. Present 
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research is also concentrated on active and integrated safety measures that 

alleviate issues that would/may lead to a traffic accident. 

The methodologies analysed here work under the assumption that if human 

cognition and different types of human error could be clearly understood, an 

identification of the necessary countermeasures would be possible. The aim 

of accident causation research is to identify relevant factors and combine 

them with the main failure that the road user made to better understand how 

the accident occurred. 

The three accident causation analysis methods that have been reviewed 

use causal accident theory as a basis, and integrate systems theory and 

behavioural theory methods to analyse both different risk factors and how 

the traffic environment interact with road users in specific situations. 

 

3.3 Recent accident causation models 

In this section a brief description of three of the more prevalent accident 

causation models that have been developed, and are currently in use by in-

depth accident investigation teams throughout Europe, will be made.  

3.3.1 Driving Reliability and Error Analysis Method 

The Driving Reliability and Error Analysis Method is based on the Cognitive 

Reliability and Error Analysis Method (CREAM) developed by Erik Hollnagel 

(Hollnagel, 1998). CREAM was originally developed to analyse safety-

critical incidents in nuclear power plants (Sagberg, 2007). CREAM is based 

on the “man-technology-organisation” (MTO) perspective and categorizes 

causation to cover these three perspectives, as well as a method to identify 

the relationship between the categories, causal factors and error modes 

(Sagberg, 2007).  

The aim of DREAM is to systematically explain the causes of road accidents 

using in-depth investigations as the basis of classifying these accidents. The 

goal of DREAM is to identify traffic situations where the development and 

introduction of technical solutions would decrease future accidents (Wallén 
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Warner, Björklund, Johansson, Ljung, & Sandin, 2008). In order to do this 

DREAM concentrates on identifying interactive systems for risk avoidance, 

to allow the driver to work within the system to limit the number of 

dangerous situations that they are confronted with (Wallén Warner et al., 

2008).  

DREAM is made up of three main elements: (1) an accident model, (2) 

classification scheme, and (3) a method to acquire all the necessary data to 

be acquired. DREAM uses common performance conditions (CPC) 

parameters forms which cover two main areas: (1) the general driving 

conditions at the scene, and (2) the driver’s general condition which allows 

the researcher to frame the accident situation (Wallén Warner et al., 2008). 

The CPC form is used to identify and collect all relevant data in the accident 

site in order to be able to codify the accident into DREAM. 

The next step of DREAM is to organise the contributing factors and to 

connect them. In order to do this the analyst uses empirical data and their 

pre-understanding of accidents to determine a causal relationship that 

brought the accident to fruition. Empirical data are classified as phenotypes 

(or critical events), they are the observable consequences of the accident 

and are situations that hold true for nearly every accident that occurs, so in 

order to be able to classify accidents it is necessary to use them to form 

groups. DREAM defines the phenotypes as limited to the time, space and 

energy continuum. Phenotypes are objective and use general and specific 

phenotypes as the groups, the investigator using general phenotypes if 

there is limited information and specific phenotypes if there is all necessary 

information.  

Genotypes classify the causal factors preceding the critical event. They 

usually have to be deduced by the accident investigator from the scene, 

information from drivers and witnesses, so they are wholly subjective. 

Genotypes are the MTO perspective re-adapted for use within an accident 

model. Man is the road user, technology is the vehicle and organisation is 

broken into two groups, infrastructure and organisation corresponding to the 

road environment and traffic management (Ljung, 2007). The subgroups 
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below these groups are the basis for the DREAM analysis and allow the 

investigator to interpret the necessary links to develop an understanding of 

how the accident occurred. An extended example of the coding of an 

example case for genotypes and phenotypes can be seen in figure 6. 

Example explanation (adapted from Ljung, 2007): This example is of an 

accident from Sweden and as such concerns a vehicle travelling on the right 

hand side using a left hand drive steering system. In this example driver A 

approaches a T junction that the driver is familiar with intending to go 

straight ahead. As driver A’s vision was blocked by a hedge, driver A could 

not see driver B. When driver B pulls out driver A does not have any time to 

make an avoidance manoeuvre and so drives into vehicle B’s left side. Thus 

for this reason the phenotype selected is timing: no action. The general 

genotype selected combined to the phenotype is misjudgement of the 

situation as driver A thought the intersection was free to enter when it was 

not. For the lower level genotypes missed observation (the hedge 

obstructed driver A’s view), inattention (as a result of being familiar with the 

junction) and expectance of certain behaviours (driver A expected the other 

driver to stop on the T junction in accordance with traffic laws) are chosen. 

At this level the analysis is stopped as no other genotypes can be selected. 

An illustration of the accident and the DREAM causation chart that were 

attributed can be seen in figure 5 and figure 6. 

 

Figure 5: Illustration of the example accident (Adapted from Ljung, 2007) 
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Figure 6: DREAM causation chart (Adapted from Ljung, 2007) 

 

3.3.2 Accident Causation Analysis with Seven Steps method 

The Accident Causation Analysis with Seven Steps (ACASS) method places 

particular emphasis based on the psychological and perceptual aspects 

when interpreting accidents. This is an accident causation system that aims 

to describe relevant human causes of traffic accidents. The analysis aims to 

start at the level of human functions and processes before the traffic 

accident happens, identifying initial conditions, perception, judgement and 

acting (action) leading up to a crash. The levels of perception are presented 

as a causal chain link, taking steps to reach the next level and all in all 

coming to seven steps. 

The first level is the driver’s perception of the situation which is broken down 

into three sublevels: visibility, observation and recognition (of the situation). 



 

69 

 

The second level is the assessment of the accident which has two sublevels, 

evaluation and planning, the driver’s evaluation if there is a hazardous 

situation or if no action needs to be taken. The next level is the action level 

which is broken down into two sublevels, the selection and execution stages, 

which relates to which action was selected from the plan, if it was correctly 

selected and the execution of the action which leads to the accident or near 

miss situation (Pund, Otte, & Jaensch, 2006). 

When the information is presented to the driver it is first perceived (step 1), 

then observed (step 2), recognised (step 3) and evaluated (step 4). Then 

plans are put forward about how to deal with this information (step 5), an 

appropriate plan is selected (step 6) and put into operation (step 7) (Otte, 

Jaensch, & Pund, 2007). In the context of implementing ACASS into non‐

psychologist based on scene data collection it appeared to be sensible to 

simplify the seven categories of human causation factors, to improve the 

practicability of this system during on scene investigations for team 

members. Thus two changes were performed: 

1. The categories (2) observation and (3) recognition were merged to 

one category information access.  

2. The category (6) selection was merged into the category (7) operation. 

The remaining five categories (figure 7) are the main categories of human 

causation factors and may easily be converted back into a seven step 

system with the knowledge of the specific influence criteria of the categories. 

Figure 7 demonstrates this conversion (Otte, Jaensch & Pund, 2007). 

As an addition to this there are also human factors (symptoms of a disease, 

age risks, intoxication with substances and individual risk factors), technical 

factors from the vehicle (technical defects, maintenance failures/ condition of 

the vehicle, human/machine interface and vehicle design) and factors from 

the environment and infrastructure (conditions, road design, factors from 

nature, other external influences and roadside objects) which can all be 

added as causative factors of road accidents. These factors help the 

investigator understand the other factors that contributed to the human 

causes of the accident.  
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Figure 7: Seven steps categories converted to five categories (Adapted from 

Otte, Jaensch & Pund, 2007). 

 

3.3.3 Human Functional Failure method 

The HFF method uses a human factors approach to categorize the factors 

and situations within an individual accident in such a way that a non-human 

factors expert will find useful. The HFF method uses a holistic approach with 

the fundamental ergonomic model as a basis. The user (road user), task 

(driving, walking, and running) and tool (the vehicle) are related to each other 

and the environment (road user’s surroundings) surrounds the task. Using 

this foundation pre-accident driving situations were determined that relate to 

the task (driving) and factors which lead to the contributing factors and main 

failure that is related to the driver, vehicle and the environment (Naing, Bayer, 

Van Elslande, & Fouquet, 2007).The pre-accident driving situations are 

divided into two levels, the task and location. The task is further divided into 

three: primary level driving tasks (essential to the journey), secondary level 

driving tasks (important to the journey but not essential) and tertiary level 

driving tasks (not directly related to the journey). The location is related to 

where the vehicle is leading up to or during the accident as different 

situations necessitates different reactions, for example if the vehicle was at 

an intersection this is different compared to a single lane road. HFF divides 
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the sequence of events in an accident into four phases, connected to one 

another (Molinero et al., 2008): 

1. The driving phase: the driving situation can be described as the one in 

which the user is before a problem arises. It is the 'normal' situation, 

which is characterised for the driver by the performance of a specific 

task in a given context, with certain objectives, certain expectations, 

and so on. It is 'normal' because no unexpected demands are made 

upon him. 

2. The rupture phase: the 'rupture' is an unexpected event that interrupts 

the driving situation by upsetting its balance and thus endangering the 

system. 

3. The emergency phase: it is the period during which the driver tries to 

return to the normal situation by carrying out an emergency 

manoeuvre. 

4. The crash phase: the crash phase comprises the crash and its 

consequences. 

Factors are determined for the user, vehicle and environment. The user’s 

state, experience and behaviour are described in terms of the accident, and 

the environment, road condition, geometry, traffic condition, visibility, traffic 

guidance and other factors are considered as possible risk factors. For the 

vehicle mechanical function, maintenance, design and load are classified as 

separate factors which are possible causal factors of traffic accidents (Naing 

et al., 2007). The interactions within this system are illustrated in figure 8. 

Using these levels of analysis a broad understanding of the accident is 

accounted for and thirty commonly occurring scenarios were also identified 

using French data in order to be able to specify and group accidents and 

determine the main faults of the accidents and developing countermeasures 

for these scenarios.  
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Figure 8: Interactions within the elementary human-vehicle-environment 

system (Adapted from Van Elslande & Fouquet, 2007) 

 

3.4 Accident causation European studies 

The three methods stated above have been used in a variety of projects 

conducted throughout Europe as part of the 6th and 7th EU Framework 

Programme for Research and Technological Development (FP6 & FP7). An 

explanation of three projects that were carried as part of the above stated 

framework programmes are carried out below. 

SafetyNet 

The SafetyNet study was a sixth framework European Union funded project 

aimed at the development of a new European Road Safety Observatory 

(ERSO) to gather data and knowledge to inform future safety policies. The 

SafetyNet Accident Causation Database was developed between 2005 and 

2008. It contains in-depth data on 997 accidents covering all injury severities, 

collected from accidents that occurred in Germany, Italy, The Netherlands, 

Finland, Sweden, and the UK. The data was collected ‘at scene’ or ‘nearly 

at-scene’ and complemented by follow up interviews, using a common 

methodology across all countries. Causation data was recorded according to 

the DREAM methodology that was renamed as the SafetyNet Accident 
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Causation System (SNACS) methodology. A case study using both DREAM 

and ACASS coding methods was also carried out during this project. 

TRACE 

The TRACE project (Traffic Accident Causation in Europe) was a sixth 

framework European Union funded project aimed at developing a scientific 

accident analysis at identifying, characterising and quantifying the nature of 

risk factors, groups at risk, specific conflict driving situations, and accident 

situations. Estimations of the safety benefits of a selection of technology-

based safety functions were also provided by the TRACE project. This 

project used HFF as its methodology with regards to accident causation. 

DaCoTA 

The DaCoTA project was a seventh framework European Union funded 

project aimed to further extend and develop the ERSO, by developing and 

implementing new approaches to gather, structure and apply policy-related 

safety data. Work package 2 was interested in developing a Pan-European 

In-depth Accident Investigation Network and reviewed the three different 

accident causation methods explained in this chapter with regards to 

usability throughout all of Europe.  

 

3.5 Comparison of methods 

The three methods described above are all based on an underlying 

cognitive model that allows for a time-based analysis of traffic accidents. 

DREAM uses a model based on latent failure conditions and makes a 

distinction between sharp end and blunt end failures (Ljung, 2007). A traffic 

accident or incident is caused by the failure of a joint driver-vehicle-system 

at a certain point in time and space (a failure at the sharp end), and the 

analysis of the event needs to find out which factors generated this sharp 

end failure. It must also determine if any blunt end failures contributed to the 

development of the event. A blunt end failure is a failure, which can be 
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remote in space and time, but the consequences of which still can be an 

important contributor to the course of the event. 

ACASS identifies the basic disturbance in the respective step of the 

hierarchically structured flow chart, describing the human basic function in 

detail. This function is perceived as an error during the process of the 

information processing and action conversion. The failure of a basic human 

function is explained due to effective physiological or psychological factors, 

e.g. perception errors due to distraction, decision errors due to unsolvable 

conflicting objectives or action errors due to coordination errors. The role of 

the motivation of the drivers concerns (above all the risk evaluation of a 

situation and the driver's behaviour) concerning the motivational conditions, 

particularly in the steps "estimate" (interpretation of the recognized 

characteristics) and "planning" (action draft due to intention formation) are 

asked. 

The HFF method uses a model based on research carried out by Michon 

(1985), Rasmussen (1982) and Reason (1990) for the analysis of traffic 

accidents. Errors, slips and violations are defined in accordance with 

different accident causation factors at the pre-crash stage.  

All three models require the failure to be put in the context of contributing 

variables (risk factors) that trigger the potential of a functional failure 

occurring, combining these factors identifying a causal sequence of events. 

In DREAM the critical (physical) events that occur to cause the accident are 

coded as part of the causation chain link, though the cognitive stage that the 

road user was at is not coded. Despite this difference in coding, the 

underlying accident process is coded in a manner that is similar to the other 

two analysis methods, with regards to coding contributory factors. 

Contributory factors are divided into three specific groups: 

1. Human factors 

2. Vehicular factors 

3. Environmental/Infrastructure factors 
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The DREAM method only allows certain links to be made between the 

contributory factors and the critical event. A study was carried out to identify 

links between contributory factors and critical events based on previous 

accident research studies. Any previous chain links that were possible with 

previous versions of DREAM were replaced if not present in the literature 

(Warner & Sandin, 2010). Nevertheless a large number of connections can 

still be made using this model, though some of the factors are needed to be 

used as a linkage factor to go in certain routes. 

The ACASS method requires each accident chain sequence to be coded 

using a predetermined structure. Only particular paths can be chosen for 

each specific failure and factor outcome. Though more than one chain can 

be coded, the specific structure of the chain is determined by the factors that 

are included. Vehicle, environment and infrastructure factors can be 

selected as necessary. 

The HFF method allows the coder to select all applicable contributory 

factors separately to the functional failure. For the functional failures, certain 

scenarios have been developed from work that has been carried out in 

France by IFSTTAR, though these are not necessary to be coded unless 

applicable, to allow the researcher to code specific failures with more detail. 

3.5.1 Example case for the three methods 

A case example from the UK OTS database was coded using the three 

methods in order to demonstrate the different coding styles and possibilities. 

Case example: In this example the driver is driving along a B class road with 

a 60 Mph speed limit with a slight bend to the left hand side. The driver is 

confronted with an animal in the middle of the driving lane and has swerved 

to avoid hitting it. The driver has swerved to the offside and lost control. The 

vehicle has left the road to the offside and collided with the ditch to the 

offside. The vehicle has then rolled before coming to a rest. 

DREAM coding: The phenotype selected for this case is too short distance, 

as there was not enough distance for the driver to make a reactionary 
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behaviour. The genotypes selected were misjudgement of time gaps and 

priority error. 

ACASS coding: The main failure selected was planning and the type of 

human factor was decision error. The environmental factor run off the bend 

was included in the chain. 

HFF coding: The main failure selected was a prognosis 3 failure, which is 

the driver driving in such a way as to not be able to react to any obstacles 

the driver is confronted with. The driver was identified as driving at an 

inappropriate legal speed and having newly obtained a driving license, and 

the car as a newly purchased car. The bend was also coded as an 

environmental factor.  

3.5.2 Comparison rationale 

The comparison conducted aimed to identify the method that was most 

suitable for use in this thesis. An understanding of the cognitive stages that 

a road user goes through is necessary in order to understand the type of 

active safety measures that are needed to combat the safety issues that 

road users are faced with. This study aims to take cases that have been 

coded within an in-depth accident database and use different models of 

accident causation to analyse these cases. For this purpose the analysis 

performed had four main purposes. These purposes were to compare; 

1. The ease of use of each of the methods as an analysis tool of traffic 

accidents. 

2. The ease of comparison of the methods and use as a wide spread 

analysis tool by more than one accident research centre. 

3. The differences between the methods with regards to a preliminary 

understanding of any differences between the human failures that 

were identified and also other factors relevant to the accidents 

occurrence. 

4. The ease of identifying all relevant failures and factors in a traffic 

accident, and using this data for analysis purposes. 
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This comparison was carried out as part of the DaCoTA project that ran 

between the years 2010 to 2012, and aimed to increase awareness with 

regards to important issues in traffic safety using a scientific basis to further 

knowledge on road safety issues. Naturalistic driving data and in-depth 

accident data were also collected, and policy issues were analysed within 

this project. 

The data used in this study was collected by DaCoTA work package 2, 

which was interested in developing a Pan-European In-depth Accident 

Investigation Network. Studies 1 and 2 were carried out by the work 

package 2 partners as part of the selection procedure for an accident 

causation method for the DaCoTA database and the data was collected by 

the author. The analysis carried out in this chapter was conducted 

separately from the DaCoTA analysis. 

 

3.6 Comparison of usability 

3.6.1 Objective 

The objective of this comparison was to identify the usability of the three 

accident causation methods described above according to experienced 

accident researchers throughout Europe. A questionnaire was designed to 

allow the participants to rate each method with regards to four separate 

areas: 

1. The ease of use  

2. Inter-rater reliability 

3. Description of the accident  

4. The accident outputs usability  

3.6.2 Participants 

This study sent separate questionnaires for each of the three methods and 

had a total of nine responses for the DREAM and ACASS questionnaire and 
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eight responses for the HFF questionnaire. Each questionnaire had the 

same questions and format. 

The participants were from nine different centres that were experienced in 

in-depth accident research. An experienced researcher was identified as 

any researcher that had carried out at least thirty or more in-depth accident 

investigation on scene or retrospectively.  

Three of the participants were from the centres that developed the accident 

causation models Chalmers, Sweden (DREAM), Medical University of 

Hannover, Germany (ACASS) and IFSTTAR, France (HFF). The remaining 

participants were from the Transport Safety Research Centre (United 

Kingdom), IDIADA (Spain), Hellenic Institute of Transport (Greece), SWOV 

Institute for Road Safety Research (the Netherlands), General Directorate of 

Traffic (SPAIN) and Cidaut (Spain). A distribution of the different 

investigators that participated in the questionnaire is identified in table 6. All 

of the accident investigators had investigated at least 30 cases, either on 

scene or retrospectively. Prior experience with the different methods were 

evenly balanced out with one investigator having prior experience with all of 

the methods, three investigators having experience with two of the methods, 

two investigators having experience with one of the methods and three 

investigators having no prior experience with any of the methods.  

 

Table 6: Accident investigator experience and prior knowledge 

Accident 

investigator 

number 

Gender 
Age 

group 

In-depth 

investigation 

experience 

Prior experience with the methods 

DREAM HFF ACASS 

1 Male 26-35 Over 300 cases Yes Yes No 

2 Male 36-45 Over 500 cases Yes No Yes 

3 Male 36-45 Over 200 cases Yes No Yes 

4 Female 26-35 Over 100 cases No Yes No 

5 Male 26-35 Over 30 cases Yes Yes Yes 

6 Female 36-45 Over 100 cases No Yes No 

7 Male 46-55 Over 50 cases No No No 

8 Male 36-45 Over 200 cases No No No 

9 Male 36-45 Over 100 cases No No No 
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3.6.3 Procedure 

The questionnaires were compared with regards to 4 different closed 

(yes/no) questions with multiple sections and 1 open ended question. The 

questions were: 

Closed questions 

 How easy is the coding system to learn? 

 Would you expect/can you demonstrate good inter-rater reliability? 

 Does this coding system allow you to fully describe all aspects of any 

accident? 

 Does the output fully explain the cases? 

Open ended question 

 On average how long did it take you to code using each system? 

In total the questionnaire included 25 questions in these groups with “yes” 

and “no” alternatives. The questionnaire also included a question asking the 

amount of time taken to code the cases with each separate method. Nine 

accident researchers in total filled in the questionnaire. Participants did not 

answer some of the questions and this resulted in a number of questions 

having less than nine responses. 

3.6.4 Results 

Table 7 illustrates the results that respondents gave with regards to the 

question “How easy is the coding system to learn?”. Of the coders 50% had 

previous experience with the DREAM method, 33% with ACASS and 44% 

with HFF. The user manual was referred to the most for DREAM (62.5%), 

then HFF (37.5%) and then ACASS (11.1%). ACASS (88.8%) was rated 

most often as a fairly intuitive method, compared to DREAM (62.5%), HFF 

(11.1%) score was particularly low for this item. DREAM was rated as 

requiring specialist knowledge by 63% of respondents, compared to HFF 

(37.5%) and ACASS (11%), which was only rated with a positive response 

for this item by one of the respondents. 
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Table 7: How easy is the coding system to learn? 

Question DREAM ACASS HFF 

 Yes No Yes No Yes No 

Prior experience with method 4 4 3 6 4 5 

Manual is not needed to refer to 3 5 8 1 1 8 

System fairly intuitive 5 3 8 1 4 5 

Specialist knowledge is not 
required 

3 5 8 1 5 3 

Sufficient coding possibilities 5 3 9 0 6 2 

Clear start and end 5 2 8 1 9 0 

Benefit from further training 4 4 3 6 8 1 

Total 29 26 47 16 37 22 

Percentage (%) 52.7 47.3 74.6 25.4 62.7 37.3 

 

ACASS was rated as having sufficient coding possibilities by all of the 

respondents, while DREAM (37.5%) and HFF (25%) were rated by some of 

the coders as having too many possibilities. The start and end of all of the 

methods was identifiable by most of the respondent’s, DREAM (71.4%), 

HFF (100%) and ACASS (88.8%). Most respondents rated that they would 

benefit from further training in HFF (88.8%), this items rating was 50% for 

DREAM and 33% for ACASS. 

Table 8 illustrates the results that respondents gave with regards to the 

question “Would you expect/can you demonstrate good inter-rater 

reliability?”. For DREAM (12.5%) and ACASS (11.1%) only 1 of the 

respondents felt that the codes were not clear with regards to coding. While 

for HFF, only 3 of the 7 of the respondents felt that the coding choice was 

clear. For ACASS all respondents felt that the coding choices were not 

difficult to make while for DREAM (37.5%) and for HFF (62.5%) respondents 

felt that that the coding choices were more difficult to interpret and make. 

Most respondents felt that there were more than one interpretation for the 

codes with regards to DREAM (62.5%) and HFF (72.7%), while this was 

less than half of the respondents with regards to ACASS (42.7%). 
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Table 8: Would you expect/can you demonstrate good inter-rater reliability? 

Question DREAM ACASS HFF 

 Yes No Yes No Yes No 

Meaning of each code clear 7 1 8 1 4 3 

Coding choices easy to make 5 3 9 0 3 5 

One interpretation for coding 3 5 4 3 2 5 

Sufficient factors to choose 8 0 8 0 8 0 

Similar coding expected regardless of 
coders background 

3 5 7 2 0 8 

Total 26 14 36 6 17 21 

Percentage (%) 65.0 35.0 85.7 14.3 44.7 55.3 

 

None of the respondents considered that any of the methods had too many 

factors to choose from. Interpretation based difficulties were expected for 

HFF (100%), DREAM (62.5%) and ACASS (28.6%) depending on the 

coders theoretical background. 

 

Table 9: Does this coding system allow you to fully describe all aspects of 

any accident? 

Question DREAM ACASS HFF 

 Yes No Yes No Yes No 

Contains enough relevant factors 5 2 2 7 8 0 

Can code all factors needed 3 4 3 5 5 3 

Involves a time sequence 4 4 1 7 9 0 

Includes all involved users 7 0 4 4 9 0 

Suitable for simple/complex cases 7 1 3 6 9 0 

Total 26 11 13 29 40 3 

Percentage (%) 70.3 29.7 31.0 69.0 93.0 7.0 

 

Table 9 illustrates the results that respondents gave with regards to the 

question “Does this coding system allow you to fully describe all aspects of 
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any accident?”. Of the three methods HFF was the only method deemed to 

contain all relevant factors, 71% of respondents felt that DREAM contained 

enough relevant factors and 28% felt that ACASS contained enough relevant 

factors. Respondents felt that the systems did not allow all necessary factors 

to be coded, for DREAM (57.1%), ACASS (62.5%) and HFF (37.5%). All 

respondents felt that HFF contained a time sequence for events, 50% felt 

that for DREAM and 11% for ACASS. They felt unanimously that all involved 

users could be coded for HFF and DREAM, while this was 50% for ACASS. 

For the question “Analysis was suitable for complex cases” for HFF the 

response was 100%, 85% for DREAM and 33% for ACASS. 

 

Table 10: Does the output fully explain the cases? 

Question DREAM ACASS HFF 

 Yes No Yes No Yes No 

Output provides clear contributory factors/causes 8 0 7 2 9 0 

There are variables that are not reflected in output 4 3 4 5 8 0 

Systems output is manageable 7 1 9 0 8 1 

Suitable for single and aggregate analysis 4 1 6 0 7 0 

Can answer key research questions 4 1 1 4 6 0 

Helps develop and identify countermeasures 7 0 6 3 8 0 

Total 26 6 26 12 37 1 

Percentage (%) 81.3 18.8 68.4 31.6 97.4 2.6 

 

Table 10 illustrates the results that respondents gave with regards to the 

question “Does the output fully explain the cases?”. All respondents 

identified that HFF identified all contributory factors and reflected all 

variables in the output. All felt that DREAM and ACASS identified a clear 

cause but did not allow for all factors to be coded. Respondents felt that the 

output was manageable for ACASS (100%), HFF (88.8%) and DREAM 

(86.5%). All respondents felt that HFF was suitable for single case and 

aggregate analysis, to answer key research questions, and to help identify 
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and develop countermeasures. Most respondents felt that DREAM (80%) 

could answer key research questions, though this was not the case for 

ACASS (20%). 

 

Table 11: On average how long did it take you to code using each system? 

Coding 
system 

Prior 
experience 

N 
No prior 

experience 
N 

All 
respondents 

N 

ACASS 7 minutes 2 14 minutes 6 12 Minutes 8 

HFF 33 minutes 4 30 minutes 4 32 Minutes 8 

DREAM 18 minutes 3 38 minutes 4 25 minutes 7 

 

Table 11 illustrates the average time that respondents took to code each 

accident case with the different accident causation methods. The 

respondents were required to answer this question by only taking into 

account the average time that it took for a case to be coded using the 

accident causation methods once the case had been fully reviewed. ACASS 

was coded the fastest, by both respondents with no previous experience 

and prior experience on average taking 12 minutes to code a case. HFF 

took an average of 32 minutes to code and there was no difference between 

coders with prior and no prior experience. DREAM took an average of 25 

minutes to code and there was an average difference of 20 minutes 

between coders with no prior experience and those with prior experience. 

Figure 9 demonstrates the total accumulative percentages that the different 

methods received as a composite criterion from all of the closed items in the 

questionnaire study. These percentages demonstrate that the HFF method 

had a higher percentage of suitability (73.6%) according to the questionnaire 

study that was carried out compared with DREAM (65.2%) and ACASS 

(66.7%). 
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Figure 9: Total scores (Accumulated from tables 3, 4, 5 and 6) by percentage 

 

3.7 Inter-coder coding comparison 

This study analysed and compared the inter-rater reliability of the three 

accident causation methods. This study was collected as part of the 

DaCoTA work package 2 accident causation comparison study.  

3.7.1 Participants 

Six researchers from six different traffic research institutes throughout 

Europe were asked to code five cases provided by three different accident 

research centres. The cases were then sent for comparison in terms of inter-

rater reliability. All participants had experience using at least two of the 

methods and were experienced accident analysts. 

The participants were based in the TSRC in Loughborough University, 

United Kingdom, SAFER in Chalmers University, Sweden, MUH in the 

University of Hannover, Germany, CIDUAT in Spain and SWOV in the 

Netherlands. IFSTTAR based in France only contributed codes for the HFF 

methodology. 



 

85 

 

3.7.2 Procedure 

Two accident cases were selected from the Intact database (Sweden), two 

accident cases were selected from the IFSTTAR database (France) and one 

accident case was selected from the GIDAS database (Germany). Each 

accident was presented with a detailed description of the accident, multiple 

photos of the accident scene and road users involved, and a diagram of how 

the accident occurred. These cases were provided by different centres so 

differences in the detail level of the accidents were present, though each 

case provided a detailed and adequate amount of information. 

Five separate analysts analysed each of the cases using DREAM and 

ACASS and six analysts analysed the cases using HFF. Each of the analysts 

were advised to select the appropriate codes for each accident, as the codes 

were not already made. The case coding was carried out by the accident 

investigators using the data provided. 

As the HFF method requires a full coding of the accident only the accident 

causation section was taken for this comparison. The coding comparison 

was divided into three sections; (1) the main failure, (2) human factors, and 

(3) vehicular factors and environmental/infrastructural factors. As the 

DREAM method codes the type of phenotype (the critical event) rather than 

the failure, the phenotype was used in place of the main failure for 

comparison purposes. Also, due to the HFF method having a more thorough 

definition of a failure the failure type was taken into consideration rather than 

the specific failure groupings. 

For the ACASS method it is possible to select more than one failure. For this 

study the first failure that was coded was selected, and for the second or 

third failure only the contributory factors were included. The ACASS and 

HFF method allows road users that were non-active in the accident to be 

coded in the analysis. For the ACASS method the road user was coded as 

being non-active and no coding required eight times, and for HFF this 

situation was coded four times. For this study only factors that were 

determined as definitely contributing to the accident were compared, so 
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some factors that were coded as possibly contributing were not included in 

the analysis. 

The analysis was carried out using Krippendorf’s Alpha. This method is 

suitable for inter-rater reliability studies where there are more than one 

individual rating the cases factors that are present, and can also compare 

comparisons when data is missing. This analysis was run using an SPSS 

macro that was developed by Hayes (2005). For this study as the amount of 

coded variables differed, only lines that had at least 2 or more of the 

analysts’ codes were used. So for example if three participants coded 1 

failure, 2 human factors and 1 other factor, 1 participant coded 1 failure, 3 

human factors and 1 other factor and 1 participant coded 1 failure, 4 human 

factors and 1 other factor, the comparison would be conducted on 1 failure, 

3 human factors and 1 other factor. 

3.7.3 Results 

The total number of road users that were coded in this study can be seen in 

Table 12. One of the coders did not code for 2 of the HFF cases thus the 

final number of coding for the HFF method was 56, 4 of these road users 

were identified as being passive in the accident, and as the method allows 

this, were not coded and thus were excluded from this analysis. For the 

DREAM and ACASS methods five coders coded 10 road users, though for 

the ACASS method 8 of the cases were described as passive cases and no 

functional failure was coded. 

 

Table 12: Total number of users coded 

Method 
Total road users 

coded 
Total road users not 

coded 
Total 

number 

DREAM 50 0 50 

ACASS 42 8 50 

HFF 52 4 56 
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The total number of contributory factors coded can be seen in figure 10 for 

each of the three methodologies. DREAM had the most codes with a total of 

133 of which 115 concern human factors, HFF had 100 contributory factor 

codes with 77 of them being human factor codes and ACASS had 97 codes 

with 85 of them being human factor codes.  

 

 

Figure 10: Total number of contributory factors  

 

Table 13 illustrates the results from the Krippendorff’s Alpha comparison 

done for each of the three accident causation methods with regards to inter-

rater reliability. The results identified that out of the three methods the 

DREAM method had the highest rating of inter-rater reliability in both the 

main failure (.655) and the human factors coding (.514). HFF had the 

second highest inter-rater reliability ratings for the main failure (.471) and the 

lowest for human factors (.270). ACASS had the lowest inter-rater reliability 

rating for the main failure (.318) and second highest rating for human factors 

(.336). The other factor codes were highest for HFF (.322) compared to 

DREAM (.193) and ACASS (.133). 

 

 



 

88 

 

Table 13: Inter-rater reliability ratings with Krippendorff’s Alpha 

Method 
Main failure 

match 
 

Human factors 
match 

 
Other factors 

match 
 

DREAM .655  .514  .193  

ACASS .318  .336  .133  

HFF .471  .270  .322  

 

3.8 Case coding comparison 

This study measured similarities in the final causation factors attributed to a 

set of accidents when coded to each of the three methods.  

3.8.1  Participants 

For this study three analysts that had experience in using each of the three 

methods were selected to analyse 23 accident cases. The participants were 

researchers in the Transport Safety Research Centre, Loughborough. The 

analyses of the cases with DREAM were taken from the SafetyNet study. 

The analyses of the cases with HFF were taken from the TRACE study. The 

analysis of the cases with ACASS was carried out separately. 

3.8.2 Procedure 

This study used a total of 23 cases, 18 cases were taken from the On the 

Spot study database (United Kingdom), 2 cases from the Intact database 

(Sweden), 2 cases from the IFSTTAR database (France) and 1 case from the 

GIDAS database (Germany). These cases were in-depth accident cases 

which included relevant information with regards to the human, vehicular and 

environmental/infrastructure factors that contributed to the accident 

occurring. Relevant scene measurements, photos, videos and interview data 

was obtained for each of the accidents and analysed. For each of the cases 

one analyst that had experience in using the different accident causation 

methods analysed the data using one of the three different methodologies. 

Each of the analysts were advised to select the appropriate codes for each 
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accident, as the codes were not already made. Each coding was made from 

the available data provided to the accident coders. 

3.8.3 Comparison of methodologies 

This study used a three level comparison with regards to the crashes to 

examine human failure pre and post-crash factors. A differentiation was 

made between the human, vehicular and environmental/infrastructure 

factors that contributed to the occurrence of the crash. A separate 

comparison was conducted for the main failure that was outlined by the 

method in order to compare the perceptual stage that related to crash 

behaviour. 

Due to the fact that the HFF method requires coding for the whole accident, it 

was determined that in the name of comparison only two of the coding steps 

the “pre-accident situation” and “initiating factors” would be used for this test 

of coding comparison. Due to the difference in the structure of the methods, 

the failure that was coded and the number of factors coded were compared. 

This comparison will be used to determine whether all of the coding 

methodologies would result in a similar suggestion of a solution or whether 

they would be different. 

At the first level the number of pre-crash contributory factors that were coded 

for each coding method was compared. These were divided into three 

categories: human, vehicular and environmental/infrastructural factors. The 

second level used the same comparison structure but analysed factors that 

occurred during the accident. The main analysis was a comparison of the 

stage of failure that was coded. As DREAM uses 4, ACASS uses 5 and HFF 

uses 6 levels of cognition perception during the understanding of traffic 

behaviour the comparison was conducted as below. 

Due to these differences an identification approach was applied to the cases. 

For each accident case, it was determined whether the codes ‘exactly 

matched’, were ‘similar’ or were ‘not a match’. Table 14 makes a brief 

comparison of the different methods with regards to how they code human 
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failure, their objectives and the cognitive model number of subgroups present 

in each. 

 

Table 14: Comparison of Accident Causation methods 

Method Main failure Failure types Method objective 
Cognitive 

model 

DREAM 

 

8 Subgroups 

 

18 
Identifying intelligent 

systems for risk 
avoidance 

4 sub-groups 

ACASS 

 

5 sub-groups 

 

17 

To compile an 

evaluation‐neutral 

coding system of 
accident causes 

5 sub-groups 

HFF 

 

6 sub-groups 

 

30 

To propose 
countermeasures well 
fitted to the real needs 

of road users 

6 sub-groups 

 

3.8.4 Results 

Table 15 demonstrates the matches between the DREAM coding and the 

other two methods. DREAM was an exact or similar match with ACASS on 

54% of the cases, when taking the cases that have not been coded into 

account, and with HFF on 67% of the cases. 

 

Table 15: Matching between DREAM and other methods 

Method  ACASS HFF Total 

 

 

DREAM 

Exact Match 21 22 43 

Similar 6 8 14 

Not Matching 23 15 38 

Not Coded 2 7 9 

Total cases 52 52 104 
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Table 16 demonstrates the matches between the ACASS coding and the 

other two methods. ACASS was an exact or similar match with DREAM on 

54% of the cases, when taking the cases that have not been coded into 

account, and with HFF on 58% of the cases.  

 

Table 16: Matching between ACASS and other methods 

Method  DREAM HFF Total 

 

 

ACASS 

Exact Match 21 13 34 

Similar 6 13 22 

Not Matching 23 19 42 

Not Coded 2 7 9 

Total cases 52 52 104 

 

Table 17 demonstrates the matches between the HFF coding and the other 

two methods. HFF was an exact or similar match with ACASS on 58% of the 

cases, when taking the cases that have not been coded into account, and 

with DREAM on 67% of the cases.  

 

Table 17: Matching between HFF and other methods 

Method  ACASS DREAM Total 

 

 

HFF 

Exact Match 13 22 35 

Similar 13 8 21 

Not Matching 19 15 34 

Not Coded 7 7 14 

Total cases 52 52 104 

 

 

 

 



 

92 

 

3.9 Discussion 

3.9.1 Study results 

In the questionnaire results ACASS was identified as the easiest method to 

learn, and code in a timely manner. HFF was identified as being the most 

difficult to understand, and most respondents identified that they would prefer 

more training with this method if possible. Out of the three coding methods 

DREAM was described as being the least intuitive to code, HFF and DREAM 

were both identified as having more relevant factors and being better suited 

for developing countermeasures by the participants, with the HFF method 

having a slight advantage over the DREAM method.  

When analysing the composite scores from the comparison the HFF method 

gathered more positive scores compared to the other methods. HFF was 

identified as coding the most satisfactory number of factors, allowing the 

most thorough analysis of the cases, and having the highest possibility of 

countermeasure identification. The HFF coding procedure provided the most 

contributory factors and failure types for the accident investigator to utilise, 

and so allowed for a larger differentiation between the accidents. 

The results of the inter-rater reliability analysis highlighted that the DREAM 

method had the most matches with regards to both the main functional failure 

and human contributory factors. The DREAM method has a more rigid 

structure with regards to coding and only allows for certain chains to be 

developed. The method provides the most constraints in terms of accident 

analysis, though if selecting a method that aims at providing similar codes 

was particularly important the DREAM method would be more suitable than 

the other two methods.  

A similar study using the DREAM method, that analysed inter-rater reliability 

of nine participants on 4 specific case types, also identified that when users 

who have been trained in DREAM have coded less than 5 cases the results 

differ for the majority of the coding, compared to similar coding by users that 

have coded more than 5 cases (Warner & Sandin, 2010). In this study 

genotypes, which can be called specific causation or contributory factors, 
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average agreement of 83% and phenotypes, which can be called single 

(main causation factors), average agreement of 78% was observed (Warner 

& Sandin, 2010). This study prepared 3 cases as training cases for the 

participants, and once the participants had coded and sent their codes the 

solutions were sent to the participants, after which the study was carried out. 

Participants that had coded less than 5 cases previous to the study were left 

out of the study.  

Both DREAM and ACASS require a higher level of abstraction to make sure 

that the groupings of the coded cases are similar to each other and provide 

similar results. The links that can be made between factors and failures are 

constrained for both of these methods. Though this allows for a clearer link to 

be made between the cases some of the level of detail within the cases may 

be lost as a result.  

In terms of the similarities between coded cases HFF and DREAM had a 

67% match which was significantly higher than ACASS with DREAM (54%) 

or ACASS with HFF (58%). Exact replication of coding for the different 

methods is difficult for a number of reasons. As seen in the inter-rater 

reliability comparison even when the same cases and methods are given to 

individuals unless they have extensive training in making their codes uniform 

in nature, there will be a large number of differences. 

It should be also taken into account that only one coder for each of these 

three methods was used in this analysis and a further analysis with multiple 

coders that have been trained and have used each of these particular 

methods may have yielded different results. 

3.9.2 How applicable are these methods to use with UK data?  

When using a method that has been developed in another country for 

another culture the question of suitability is bound to be raised, more so with 

regards to traffic accident data as the environmental and infrastructure 

aspect of the data is certain to be different. One of the issues is the 

difference in terms of sampling, as these methods have been developed in 

other countries sampling crashes that have been used in other countries 
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rather than in the UK. The INRETS studies where the HFF method was used, 

had a non-random sampling procedure selecting French accidents based in 

the Salon de Provence region (Morris, Smith, Chambers, & Thomas, 

2005).The FICA study in which the DREAM method was used concentrated 

on single vehicle and intersection crashes, and the sampling plan was non-

representative (Ljung Aust, 2010). The GIDAS study where ACASS was 

used had a random sampling plan based on representivity of national data is 

used (Otte, Jaensch, & Pund, 2007). The methodology that each centre used 

for data collection has similarities, but there were also differences due to the 

sampling criteria differences outlined above. 

The TRACE and SafetyNet studies reviewed data from different European 

countries and developed all three coding systems to be applicable in all of 

these countries. The DaCoTA study aimed to overcome these differences by 

proposing a uniform manner of data collection and analysis procedures as 

well as sampling technique uniformality. 

Furthermore, an initiative to provide in-depth accident data throughout 

Europe has been carried out by DaCoTA and both a case study and test trial 

of a database was carried out within that research project. The work package 

was tasked with selecting a method that was suitable to analyse crash 

causation data for a European consortium of road users between DREAM, 

ACASS and HFF. 

The aim of the work package with regards to selecting the accident causation 

scheme was to select a method that provided (Hill et al., 2012); 

 Good inter-coder reliability  

 Possibility to make single case analyses and automated aggregated 

analyses  

 Have a theoretically established background  

 Sufficient number of relevant causation factors  

 Clearly described contribution factors/causes  

 A manual including examples and recommended applications  

 Clear start and end points in the crash sequence 
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 Identification of the users of the data  

 Results to suggest countermeasures 

 Database implementation of all involved road users  

 Some kind of time sequence  

The selection procedure was made by the partners using the five example 

cases coded in this chapter and filling out the questionnaire that was coded 

in this thesis. After this process a voting procedure for each member to select 

their preferred methods in rank order were carried out. The team ultimately 

selected the DREAM method to be used in future research as it was 

determined that this method both allowed for relatively high inter-rater 

reliability and an analysis of the sequences of crash causation accidents to 

analyse this data with regards to both countermeasures and active safety 

components. According to Hill et al. (2012) all three steps in the process 

carried out in the work package showed a small advantage for the DREAM 

method.  

The DREAM method developed in SafetyNet and during this project obtained 

support as the European method by the Commission. Furthermore DREAM 

was built into the database that DaCoTA was using and the use of another 

method would have been difficult. The considerable time necessary to 

transfer the other methods onto the database and the benefits of DREAM in 

terms of inter-rater reliability ratings meant DREAM was chosen for DaCoTA. 

3.9.3 Model comparison in relation to a Safe System approach 

When comparing the three different accident causation models it is important 

to underline that system management should minimise and be resilient to 

human error. A Safe System approach to road safety requires that system 

design, operation and management be taken into consideration when using 

accident coding and analysis methodologies. The aim ultimately is to 

understand how the system can better cope with the requirements that are 

placed on the functions. 

This in turn leads to a number of latent factors being needed to be taken into 

consideration when looking at road safety requirements. The models that 
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have been considered aim to find the cause of accidents based on 

understanding the factors that can be measured on the scene or through an 

interview process/use of questionnaire data. The purpose of understanding 

human error is to relate it to the accident situation, rather than consider the 

human to be at fault. The different accident causation methods aim to relate 

the conditions of the crash and the human error made to allow for the 

relevant accident sequence to be understood. 

If a Safe System approach were to be used a better understanding of higher 

level factors related to how the road rules and regulations have been 

developed, and the effect that these factors have on individual’s performance 

is necessary. This is taken into account by the DREAM method as the 

contributing level of different road users is not differentiated when coding an 

accident, but a further development of the methods by taking into account all 

relevant higher level system based factors would be beneficial. 

All of the accident causation coding methods compared, concentrated on 

gathering information that was observable within the accident site and the 

subjective factors that could be obtained through interpretation of the incident 

and interviews. This allowed for a high level of information related to the 

incident to be collected, but did not provide an understanding of all relevant 

latent factors that are related to the incidents occurrence on a higher level. 

The understanding of unobservable latent factors related to crash causation 

is an important issue, as the methods that are currently available require a 

level of subjective analysis to piece the factors of a collision together. All of 

the accident causation methods outlined aim to bridge the gap between a 

description of the internal conditions of the road user and the external 

conditions that the road user is faced with within the time span that leads to a 

crash (Van Elslande & Fouquet, 2007). The models selected focused on 

analysing the complex nature of interactions leading up to and during each 

individual reported incident.   

The inclusion within the different methods of higher level factors related to 

design, operation and management issues would help clarify latent factors 

within the crash sequence that are currently unobservable. These issues are 
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particularly important when finding solutions to issues with regards to what 

road users saw and why they carried out the behaviour. The understanding 

of these interactions and latent factors would provide a more detailed 

understanding of human error. 

Despite providing relevant information with regards to each individual 

accident, the consideration of the other levels of traffic safety (e.g. 

government, local authority, management, front line operation) as outlined by 

the Safe System approach needs to be expanded upon (Salmon, Lenné, 

Stanton, Jenkins, & Walker, 2010). This would require the implementation of 

country specific model development, understanding the exact latent factors 

that are present within the traffic environment based on country specific 

policy and procedure. This could be possible by merging the above methods 

with system based approaches (Rasmussen & Svedung. I., 2000; Reason, 

1990; Reason, 2000) to further identify the latent factors that are present, 

combined with the factors already coded for.  

3.9.4 Discussion outcome 

Due to the nature of the research that is being carried out in this thesis it was 

necessary that the accident causation analysis method chosen provide the 

most amount of flexibility in order for the statistical methods used to be able 

to demonstrate specific scenario selections. As one of the aims of the thesis 

was also to statistically identify significant accident clusters as well as 

develop countermeasures the last two questions in the questionnaire study 

were of a particular importance (“Does this coding system allow you to fully 

describe all aspects of any accident?” and “Does the output fully explain the 

cases?”). In the answer to both of these questions the HFF method was the 

most popular according to this group of researchers. 

In cases where a large number of users code cases then DREAM would be a 

more suitable method as the inter-rater reliability would be higher compared 

to the other two methods, but since only one coder would be coding the 

cases for this analysis the inter-rater reliability was less relevant. HFF was 

deemed to provide better flexibility in relation to coding compared to both 

DREAM and ACASS and was selected to be used in the data analysis. 
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When interpreting accident data, it is important to be able to immediately 

understand what is happening, but also necessary to understand the latent 

factors that are occurring, as not all factors are coded immediately at the 

scene of the accident. The HFF model allowed for a clearer interpretation of 

all factors related to the collision occurring compared to the other two 

methods, as there were no limitations in the manner that accidents could be 

coded or the number of factors that could be coded. The other two models 

required a more rigid approach to coding cases and this presented some 

advantages in terms of coding similarities, but also limited the coding 

possibilities. 

The case coding carried out in this thesis placed equal weight on variables 

related to the road user, vehicle and environment/infrastructure. As the 

statistical data mining process limited the number of variables that were 

entered into the analysis, the possibility of coding a large number of variables 

for each of the subgroups in HFF was particularly relevant. A study by 

Thomas, Morris, Talbot, & Fagerlind (2013) using the DREAM method on 

997 crashes analysed in 6 European countries, outlined that when individual 

factors such as speed, alcohol or fatigue are interpreted to be the main 

contributor to the interaction leading to a crash, the DREAM method may not 

provide as much insight as other methods. This is because the coding ends 

after a shorter causation chain is developed compared to longer causation 

chains with regards to more complex cases. When the cases are more 

complex in nature with regards to the interaction present, the structure of the 

DREAM coding patterns helps provide clarity to the analysis of these cases.  

The inter-rater reliability of each of the methods was quite low when 

compared with a group of five different crash cases provided from different 

countries. The DREAM method had the highest inter-rater reliability of the 

different coding methods, but did not have a satisfactory level of 85% or 

higher agreement as defined by (Krippendorff, 2004). The low inter-rater 

reliability ratings for the remaining two methods were considered to be due to 

the lack of formal training being given to the participants, other than a coding 

guide, and the nature of the other methods being able to code variables 

without linking them in the manner of DREAM. If aiming for a number of 
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different research groups to collect accident codes, then DREAM would have 

been the preferable method, though as the aim was to gather as much data 

as possible in the data coding stage and then synthesise that data using a 

three-step analysis approach the HFF methods advantages were considered 

better in this context. 

The difference in the coding approaches of the different methods led to an 

understanding that the analysis of these cases would be needed to be 

handled in a different manner for each coding method. The DREAM method 

allowed for the highest number of factors to be coded, but the inclusion of a 

causal chain approach based on previous research (Wallén Warner et al., 

2008) provided an advantage in basing the codes on previous research 

findings, but also restricted the coding possibilities. The advantages and 

disadvantages of the HFF method can be considered the opposite of the 

DREAM method, where a large number of different variable and perceptual 

failure codes are possible but these coding possibilities are not based on 

past research. For the reasons outlined above the HFF method was 

ultimately selected. 

3.9.5 Limitations of the research 

One of the main limitations in terms of the inter-rater reliability was that only 

the DREAM method had an inter-rater reliability rating higher than 50% for 

any of the fields analysed and none of the methods had a rate higher than 

70%, which demonstrates the difficulty of obtaining similar codes when 

coders are not provided thorough uniform training. Normally an inter-rater 

reliability rate of above 85% is expected when using any type of coding 

methodology (Krippendorff, 2004). According to Krippendorff (2004) high 

inter-coder agreement is reached by giving coders extensive training, 

allowing them to discuss their choices with other coders and adjusting 

problems with the coding schemes (Warner & Sandin, 2008).  

 It should be noted that most of the participants did not have prior training in 

these methods and also came from different theoretical backgrounds. These 

limitations may have affected the codes and cause agreement to be lower 

than expected. 
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The cases used in the inter-rater reliability and comparison studies were also 

collected from three different databases. Though each coding systems’ aims 

were similar in nature, and the type of data collected was also similar, the 

case descriptions and coding level of detail varied and thus this may have 

caused coding issues to be present. Taking this issue into consideration, a 

comparison for case codes by different researchers rather than between the 

cases was carried out. The level of clarity of the accident descriptions was 

also varying, though for these studies the maximum possible information was 

collected so as to make this confounding variable not valid. 

The participants were also identified as individuals that were experienced in 

terms of accident data collection, this was quantified as individuals that had 

been out to or coded at least 30 in-depth or retrospective accident cases. 

This could potentially limit the implications of the analysis as a more thorough 

understanding of the participant’s level of experience and different theoretical 

backgrounds may be necessary to consider if there was bias in the selection 

made when coding cases. 

 

3.10 Summary 

In this chapter a comparison of three of the main methods of traffic accident 

causation analysis that are used currently throughout Europe was made. 

This was carried out by comparing the DREAM, ACASS and HFF accident 

causation methods that are used for in-depth accident investigation 

research.  

A questionnaire study, inter-rater reliability analysis and case coding 

analysis was carried out using each of these three analysis methods to 

support the decision over the most appropriate method to be used for the 

subsequent analysis accident causation coding of the OTS data.  

These studies helped identify the advantages and disadvantages of the 

different systems for accident analysis purposes. Each of the methods have 

been used for countermeasure development procedures in their country of 

origin. 
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According to the aims of the thesis and the results presented, the HFF 

method was identified as the most appropriate method for use. The reasons 

for the selection of HFF were identified as the HFF methods possibility to 

code all accident variables that can be analysed by the accident investigator 

and the possibility of clearer countermeasure identification. 
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4  The Human Functional Failure Model – A 

Review of the Methods and Procedures 

 

4.1 Introduction 

In this chapter the Human Functional Failure (HFF) model that was 

developed by IFSTTAR, France and used throughout this thesis for the 

analysis of accident cases with regards to accident causation will be 

demonstrated. A brief description of the core variables will be undertaken 

below. For further information if necessary please refer to two documents 

from the TRACE project (Naing et al., 2007; Van Elslande & Fouquet, 2007).  

 

4.2 Human perception within causation models 

In order to understand how an accident occurs it is necessary to understand 

the different phases that individuals go through during an accident. The 

perceptual stage that a road user is at before the initiation of the accident 

situation allows investigators to determine which possible factors caused the 

accident. As the driving environment is extremely complex, the road user 

can only perceive a limited amount of information from the environment. The 

driver in turn needs to select the most relevant information from the traffic 

environment in order to make the necessary driving actions. After selecting 

the necessary information then an interpretation of the information needs to 

be made in order for a decision process to be made. These decisions are 

based on previous knowledge of different situations (Van Elslande & 

Fouquet, 2007). The driver then needs to carry out the behaviours that are 

necessary for the action to be undertaken. Thus this is the point that 

functional failures can occur. This is termed 'human error' in the ergonomics 

field (Reason, 1990; Van Elslande & Fouquet, 2007).  

When an error or violation occurs before an accident, it depends on which 

stage of perception the road user is at. Within the traffic environment the 

road user is constantly interacting with the other road users and constantly 
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reacting to what is happening around them (Van Elslande & Fouquet, 2007). 

For each specific situation a decision needs to be made, and a breakdown 

or incorrect decision can lead to either a near miss or the occurrence of an 

accident. Feedback loops are also necessary to be considered, when 

identifying traffic flow patterns, as a way of using countermeasures for 

drivers in situations where there decision making process needs to be 

altered for safety precautions. 

Van Elslande and Fouquet (2007) defined a five stage perceptual model 

related to how road users perceive their environment. The road user is 

constantly interacting with the environment around them, and going through a 

loop of five stages when perceiving traffic. The road user first perceives 

(stage 1) the information from the environment, then diagnoses (stage 2) the 

situation, anticipates (stage 3) how events will unfold, makes a decision 

(stage 4), and then performs an action (stage 5). So in essence we can 

identify the 5 stages in a progressive manner which can be seen in figure 11. 

When considering these groups it is beneficial to understand them in terms of 

Norman (1981), Reason (1990) and Rasmussen’s (1982) work on human 

error. Violations both made deliberately and as a result of the situation can 

be situated in the decision stage (4). The effective understanding of the 

dynamic traffic environment can be seen in two stages in the diagnosis 

(stage 2) and the prognosis (stage 3) stages, where a lapse in awareness 

can result in error or behaviours that will lead to the triggering of an accident. 

This can be viewed in terms of Endsley’s (1995) work on situational 

awareness, as the diagnosis is related to a situational understanding of the 

traffic system and prognosis the expectations that the road user has and how 

‘aware’ they are of what is going on around them with regards to interactions. 

The other stages are related to slips and errors. 
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Figure 11: Functional chain involved in driving activity (Adapted from Van 

Elslande and Fouquet, 2007) 

 

In the section below a description of the 20 sub-groups of human failure can 

be seen. All of these descriptions and the following descriptions with regards 

to human, vehicular and infrastructure factors are taken directly from Van 

Elslande and Fouquet (2007) and Naing et al. (2007). All of the perceptual 

stages and specific failure types coded can be seen in figure 12. 
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Figure 12: Perceptual stages and failure types for road user (Adapted from 

Van Elslande & Fouquet, 2007) 

 

Detection failures 

1. Non-detection in conditions with limited visibility: This failure is due to 

either an environmental or vehicular constraint limiting the driver’s 

ability to detect an important object/situation during driving (e.g. as a 

result of night or the vehicle infrastructure effecting visibility). 

2. Focusing on a part of the visual environment causing incomplete 

information acquisition: This type of failure occurs when a road user 

focuses their attention on a particular or complex problem (without a 

conscious choice) during the journey and so does not detect an 
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object that needed to be detected (e.g. failing to detect a moving 

vehicle). 

3. Cursory or hurried information acquisition: This failure occurs when 

insufficient time is given to the visual field resulting in a failure to 

detect a hazard. Factors could include a busy traffic environment or a 

rapidly changing traffic situation. 

4. Momentary interruption in information acquisition activity: This failure 

occurs as a result of distraction from inside or outside the car but not 

related to the driving task, for example the monotonous nature of the 

driving task resulting in a loss of attention. 

5. Neglecting the need to search for information: This failure is due to 

the road user not searching for information when it was required as 

they believe that it is not necessary, for example when the driver has 

the right of way or is familiar with the road. 

Diagnosis failures 

1. Error in evaluating a passing road difficulty: These are failures that 

occur as a result of incorrectly evaluating a road difficulty.  

2. Error in evaluating of the size of a gap: These are failures that occur 

when identifying the speed and distance of a vehicle that is travelling 

in the same direction or direction other than the road user. 

3. Mistaken understanding of how a site functions: These are failures 

that occur as a result of not understanding the signs/layout of an area 

either due to the road user or the layout 

4. Mistaken understanding of another user's manoeuvre: These are 

failures that occur as a result of the other road user giving misleading 

or ambiguous information or the main road user only interpreting the 

other road user’s behaviour briefly and thus incorrectly. 
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Prognosis failures 

1. Expecting another user not to perform a manoeuvre: In the absence 

of cues to the contrary, drivers who have the priority at an intersection 

do not expect a non-priority user who is stationary to start moving 

forward and are surprised by this unexpected movement. 

2. Actively expecting another user to take regulating action: The driver 

expects another user to either stop or undertake a precautionary 

behaviour, though the other driver does not do this.  

3. Not expecting to encounter another road user ahead: The driver 

adopts a behaviour that does not integrate the possibility of 

encountering an impediment, despite a lack of visibility. 

Decision failures 

1. Violation directed by the characteristics of the situation: The driver is 

confronted with a situation in which they were directed to take a 

certain level of risk in order to attain their goals. 

2. Deliberate violation of a safety rule: This driver performs a behaviour 

that can be deemed as 'risk-taking' in the performance of a 

manoeuvre. 

3. Unintentional violation: When a road user makes a behaviour that is 

unintended but is still a violation. 

Execution failures 

1. Poor control of an external disruption: In situations where s/he meets 

severe constraints, drivers are no longer able to control the trajectory 

of their vehicle. These failures arise either from an external 

disturbance (skid on wet or icy road, presence of a wasp in the 

passenger compartment), or from a sudden mechanical defect 

(defective brakes, breaking of a cable which comes to be stuck in the 

front wheel of a motorcycle, etc.). 
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2. Guidance problem: The road user undertakes a secondary activity 

(picking up fallen objects inside the vehicle, talking to a passenger in 

the rear, and so on), and veers off course.  

Overall failures 

1. Loss of psycho-physiological capacities: A loss of awareness by the 

driver as a result of being taken ill or falling asleep because of 

tiredness and/or a high blood-alcohol level, which occurs most 

frequently during a simple guidance task.  

2. Alteration of sensorimotor and cognitive capacities: Even if they did 

not fall asleep as above, the drivers showing this capacity failure are 

not in a psychophysiological state for adequately controlling driving 

activity as a whole. 

3. Overstretching cognitive capacities: Linked to a general lack of skill in 

relation to driving activity (age, occasional driving), drivers find their 

abilities are overstretched the moment they encounter a difficulty in 

their progress, and they sometimes carry out absurd manoeuvres. 

4.2.1 Pre-accident driving situations 

This is the first part of the HFF analysis. The method identifies certain 

driving manoeuvres to classify the driving situation immediately before the 

crash. The list of behaviours is as below: 

1. Going ahead: The user was 'going ahead' and not making any 

specific manoeuvres prior to the rupture phase. 

2. Changing lane: The user changed lanes into another lane travelling in 

the same direction, but was not overtaking another vehicle.  

3. Overtaking: The user was overtaking another road user or a 

stationary vehicle. 

4. Turning: The user was making a turning manoeuvre (e.g. at an 

intersection, U-turn).  



 

109 

 

5. Stopping: The user was stopping/slowing in the carriageway (e.g. 

parking, approaching stationary traffic queue, approaching a 

junction/traffic control, slowing to turn into driveway/side road). 

6. Reversing: The user was reversing (e.g. on main carriageway, into 

side road/private drive, out of side road/private drive, into roadside 

parking space). 

7. Starting: The user was pulling away from a parking space/driveway/ 

junction/traffic control/traffic queue. 

From investigating the different types of accident locations defined in 

accident data collection systems across Europe and Australia a number of 

general location types were identified. The manoeuvres listed above were 

put into the relevant behaviour list so as to differentiate between each 

specific manoeuvre that a road user made. This list is as below:  

1. Going ahead 

a. Straight road  

b. Road with bend  

2. At intersection:  

a. Give way 

b. Stop 

c. Traffic signal controls 

3. Manoeuvres 

a. Overtaking 

b. Lane changing 

c. Slowing 

4. Other locations  

5. Roundabout  
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6. Slip road 

7. Pedestrian crossing (not at intersection)  

8. Railway crossing 

Along with the manoeuvre undertaken by the road user, these locations form 

part of the driving situation. 

4.2.2 Contributory factors related to the human 

As the main failure describes the specific failure that led to an accident 

occurring, it is also necessary to identify different type of factors that 

contributed to the failure developing and ultimately occurring. Below is a list 

of the contributory factors that cause accidents to occur. 

A. User state  

The ‘state’ of the user includes physical, physiological or psychological 

conditions, either pre-existing or brought on by substances taken, such as 

alcohol or drugs.  

A1. Physical/Physiological  

The physical or physiological state of the user can have a major effect on the 

outcome of a potential accident situation. Often, the danger signal is never 

perceived, because either the road user does not know they have a medical 

condition or the user does not realise that their pre-existing ‘state’ puts them 

in a position of having a higher likelihood of a failure occurring.  

A2. Psycho-physiological condition  

The psycho-psychological condition of the user will also have a major 

influence over the potential for functional failures to occur, as will any 

substances they have taken. These factors include any substances taken or 

whether the road user was emotional, fatigued or in a hurry. 

A3. Internal conditioning of performed task  
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These factors are related to the task that the driver is performing, but refers 

more specifically to the ‘conditioning’ of the driver to the task (e.g. the 

informal rules the driver follows, either consciously or sub-consciously). 

A.4 Risk taking  

These behaviours are intentionally risk taking. The road user is normally 

aware of the ‘chance’ they are taking but, for other reasons (e.g. experience, 

substances taken) they still choose to proceed with the action. Types of risk 

taking include speeding, vehicle positioning, following distance of other 

vehicles (e.g. time headway the distance or time between vehicles), traffic 

control being disobeyed and eccentric motives. 

B. Experience  

The user’s prior exposure to the task at hand or their surroundings will affect 

the way they process information. The factors here are whether the road user 

had too little or too much experience either driving for the particular 

roadway/type, for example driving on the left-hand side or driving in a new 

area. 

C. Distraction  

The behaviour of the road user can affect the way they control their vehicle 

and respond to both their internal and external surroundings. Three types of 

distraction factors are identified: (1) distraction within the user, (2) distraction 

outside the vehicle, and (3) distraction inside the vehicle. 

4.2.3 Contributory factors related to the environment and 

Infrastructure 

This factor encompasses all aspects related to the users’ surroundings (e.g. 

external to the vehicle and road user). Six categories of environment related 

factors have been defined and are outlined below:  

A. Road condition  

The condition of the road surface will affect the road user’s ability to be able 

to control their vehicle on the road. The condition of the road will be affected 

by the contaminants and defects, plus the road surface type itself. 
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B. Road geometry  

The layout of the road itself will also affect the road user’s ability to control 

their vehicle. 

C. Traffic condition  

The flow, speed or density of the traffic on the road will potentially affect the 

road user’s ability to undertake their journey. 

D. Visibility impaired  

If the road users visibility of the road ahead is impaired in some way, this will 

undoubtedly increase the possibility of a functional failure occurring.  

E. Traffic guidance  

If there is a fault or a failure in the traffic guidance system (signs, traffic 

signals and road markings, including reflective studs and painted lines), this 

will affect the road users ability to undertake the driving task. 

F. Other environmental factors  

Obstacles and other factors which suddenly appear within the road/roadside 

will affect the road user’s ability to undertake their journey, even when an 

impact does not occur with these obstacles. 

4.2.4 Contributory factors related to the vehicle 

The vehicle factors encompass all aspects related to the vehicle used. 

Possible factors influencing the vehicle include: 

A. Electro-mechanical  

Electro-mechanical factors are ‘failures’ which directly affect the vehicle’s 

control. This type of failure would generally result in it being physically 

difficult/impossible to control the vehicle. 

B. Maintenance  

Maintenance factors are anticipated vehicle faults, indirectly affecting the 

control of the vehicle. They may make it more difficult (e.g. in terms of 

visibility) or ‘illegal’ to drive/ride the vehicle, but it is still possible. 
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C. Design  

Design factors are those related to the ergonomic design of vehicle, which 

affect its safe/efficient operation by the road user. 

D. Load  

These factors relate to the load of a vehicle involved in an accident. If a 

vehicle drove into another vehicle ‘poorly secured’ discarded load, this would 

be an ‘obstacle in the road’. 

4.2.5 Degree of involvement of the driver 

This variable defines the role played by the driver in the formation of the 

accident. Close to the notion of 'responsibility', it differs from this by the 

reference not to a legal code but by the recourse to a strictly behavioural 

reference. In an ergonomic approach, we try only to clarify the respective 

degree of participation of the various users involved in the same accident. 

Three separate possible selection groups are defined. 

Primary active 

These groups of drivers are those that are primarily causing the triggering of 

the episode. They are directly at the origin of the destabilization of the 

situation. Following the functional failure, the drivers initiate for themselves 

or for the other involved users in the system, a critical situation in which the 

accident situation is going to take place.  

Secondary active 

These drivers are not at the origin of the disturbance which precipitates the 

conflict, but they are part of the development of the accident situation, by not 

trying to resolve this conflict. They are not attributed a direct functional 

implication in the destabilization of the situation, but they were a part in the 

non-resolution of the problem by a wrong anticipation of the events 

evolution.  

Non-active 

These drivers are confronted with an atypical manoeuvre of others that is 

hardly predictable, whether it is or not in contradiction with the legislation. 
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They are not considered as 'active' subjects because the information they 

had did not enable them to prevent the failure of others. They were not able 

to anticipate, for lack of information, the development of the situation, while 

the avoidance of the accident would have been possible in theory if this 

information had been supplied to them in time.  

4.2.6 Accident configuration types  

The method used identified different accident configurations in a 

diagrammatic form in order to demonstrate the failure sequence in its 

interaction stage. The coding method was developed in France by the 

Laboratoire d'Accidentologie (LAB). The coding document can be found in 

Appendix C (PP383-387). This coding method identified 8 specific grouping 

types: 

1. Accidents with vehicles driving in the same direction 

2. Overtaking accidents 

3. Accidents at intersections (Including roundabouts and merging roads) 

4. Accidents occurring with a vehicle leaving a parking space 

5. Single vehicle accidents 

6. Main accident occurring after a previous impact 

7. Special cases 

8. Pedestrian accidents 

A large number of scenarios were available to select for each of these 

specific accident types. After the scenarios identified by the descriptive 

analysis carried out within each of the analysis chapters accidents that had 

similarities were grouped together in ways to be meaningfully interpreted, as 

the large number of diagrams would not yield significant results otherwise. 

 

4.3 Summary 
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The purpose of chapter 4 was to present the analysis processes that were 

undertaken in this study (HFF and LAB coding). The coding structure and 

use of the coding sheets were explained and the different possible codes 

were identified. This system was used for all case coding in chapter 6, 8 and 

9. Each accident was coded using the full coding sheets but only factors 

deemed relevant for each study were included in the analysed data. 
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5 Methodology 

This chapter will discuss the methodology that will be applied in this thesis. It 

will be divided into four sections discussing the participants, instrumentation/ 

measures, procedures and the statistical analysis that will be used 

throughout the following chapters. The research design that was used in this 

study was a cluster analysis design that aimed to identify similarities between 

data obtained in a real world setting. 

 

5.1 Participants 

5.1.1 On the Spot study  

The UK On the Spot (OTS) study was carried out between the years 2000 – 

2010 with the aim of collecting in-depth accident data on the scene of an 

accident. This project was carried out aiming to continue in the essence of 

on the spot studies carried out in the UK by Starks and Miller in 1961 at the 

Road Research Laboratory (RRL), Mackay in 1964 who formed a multi-

disciplinary team working closely with the Birmingham Accident Hospital 

(Mackay et al., 1960) and the TRRL studies carried out between 1970 and 

1974 in the area in and around the Transport and Road Research 

Laboratory in South East Berkshire, UK (Sabey & Staughton, 1975).  

For the OTS study accident data was collected by two separate groups in 

different areas within the UK. The Vehicle Safety Research Institute (VSRC) 

collected cases within the South Nottinghamshire area of East Midlands, 

England and the Transport Research Laboratory (TRL) covered the Slough, 

Reading, Henley on Thames and High Wycombe areas in the South East of 

England.  

 

5.2 Procedure 
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5.2.1 On the Spot study and data gathering 

Within the OTS study accident researchers responded to calls four times a 

week during 8 hour shifts, alternating hours for random data, to accidents 

that happened within this area (Morris et al., 2006). The study collected a 

total of 4,004 accidents involving 12,749 vehicles and 527 pedestrians. The 

OTS team consisted of at least 2 accident researchers and a police officer. 

Accident researchers reported all relevant data in terms of the vehicle, 

environment, infrastructure and human participant in relation to the accident. 

They also deduced and reported causal factors that were related to the 

formation of the accident process.  

Expert research teams attended the scene of road accidents, typically within 

20 minutes of the incident occurring to make an in-depth investigation that 

included the highway, vehicles and human factors that were present. Data 

was also collected retrospectively after the accident occurred. The first step 

once on scene required the serving police officer on the OTS team to make 

contact with the police officer in charge of the accident scene, explaining the 

OTS procedure and intended activities that will be carried out. After the 

fulfilment of protocols and safety requirements, the team made contact with 

the people and the various elements involved in the crash. Data was coded 

in a library of some 200 forms with over 3,000 individual variables (Gkikas, 

2009).  

Photographic evidence of the accident scene as well as physical 

measurements were also recorded. If possible the researchers on scene 

had a short interview with the accident participants which were not recorded 

electronically. Witness statements were also gathered where possible. A 

questionnaire was also sent out to applicable road user groups asking 

questions relating to background information and the accident description, 

the response rate of these questionnaires was close to 50%.  

The OTS study concentrated on gathering information with relation to 

human factors, vehicles and infrastructure. The OTS study aimed at 

acquiring volatile data from the crash scene (Hill & Cuerden, 2005). The 

investigators first gathered data from vulnerable road users, where 
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applicable, and then collected volatile evidence on the highway such as 

contact marks, trace marks and damage to road features. The vehicles were 

examined, with smaller vehicles being examined first, and finally 

measurements of the environment were taken and video and photographic 

recordings of the accident scene were made (Hill & Cuerden, 2005).  

This was carried out by the accident researchers for the accident on scene. 

For the vehicle, as much information with relation to the vehicle were 

recorded as possible on scene in terms of the vehicle, any marks or 

changes on the vehicle body, the tyres and all other objects on the vehicle. 

Relevant information was also gathered in terms of the highway and 

information from the area where the accident occurred and 50 metres before 

and after that area were collected, with the aim of data wholeness. The 

human data was collected through observations and where possible 

interviews with the individuals involved in the accident. This information was 

then put into the relevant human factors and accident causation fields in the 

database. 

Accident reconstruction information was also carried out and put into the 

dataset. This information was produced through interpretation of the 

accident data and where possible (and applicable) a PC crash simulation 

was undertaken.  

The sampling procedure used was based on stratified random sampling and 

made up the sample according to sponsor recommendations (Morris et al., 

2006). The two teams remained on standby for a nine-hour shift period 

ready to respond immediately to an accident notification. The shifts were 

devised as a rotating system to ensure that the dataset gathered could be 

statistically weighted with regards to national data (Cuerden, Pittman, 

Dodson, & Hill, 2008). Shift patterns consisted of six days on and four days 

off. 

5.2.2 On the Spot (OTS) causation measures method 

For the On the Spot team the police driver filled out the forms in relation to 

the path the driver took and the collision codes, while the accident 
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investigators filled out the interactions codes and injury codes on a 

concurrent level. The OTS study aimed to identify contributory factors in a 

road accident and the key actions and failures that lead directly to the actual 

impact. The causation coding systems used within OTS were largely 

subjective and depended on the skill and experience of the investigator to 

reconstruct the events which led directly to the accident (Hill & Cuerden, 

2005).  

OTS used 5 different coding systems for describing accident causation: 

1. The 1995 UK police system: aims at determining (1) the critical failure 

of the manoeuvre and (2) factor(s) that caused this failure.  

2. Causative features: the investigator selects a feature of the accident 

and selects whether it was (1) definitely, (2) probably ,(3) possibly, or 

(4) not causative. There can only be one coding per vehicle for each 

factor. 

3. Crash causation code: 20 variables that explain why a crash happens 

in relation to the driver are able to be selected. 

4. Interaction codes: Are divided into 7 categories (1) legal; whether the 

driver did anything illegal (e.g. above speed limit, not obey a sign or 

was above legal alcohol limit (2) perception; related to what the driver 

was expecting, looking or planning for that driving situation (3) 

judgement; after the perception level what the driver decided and how 

he/she acted according to the driving event. (4) loss of vehicle-control; 

loss of control due to several different factors (braking, acceleration, 

cornering etc.) (5) conflict; explains the conflict level of the accident, 

when the accident situation arose (6) attention; describes if there 

were any distractions or general inattentiveness (7) impairment; 

describes performance impairment due to illness, substance abuse, 

fatigue or other factors. 

5. Self-reported assessments (questionnaire): allows individuals 

involved in the accident to state what they believed caused the 
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accident in a self-report method (Lenard & Hill, 2004). These reports 

are used as additional information with regards to the crash.  

 

5.3 Measures 

5.3.1 HFF accident coding analysis 

For the research conducted in this thesis all of the cases that are included in 

the OTS analysis chapters were coded retrospectively by the author using 

both the HFF and LAB accident type coding analysis methods. All cases 

were coded by the author by looking at all of the relevant data within the 

OTS dataset, which included: 

 Detailed descriptions of the cases by the crash investigators 

 Case notes that provided detailed information on each of the cases, 

including interviews and witness statements that were gathered 

 Detailed measures for all possible factors with regards to the road 

user 

 Detailed measures for all possible factors with regards to the vehicle 

 Detailed measures for all possible factors with regards to the 

environment and road infrastructure 

 Accident causation coding using the OTS causation measures as 

described in section 5.2.2 

The coding of each case took a minimum of 30 minutes, and a total of 2086 

cases were coded. The OTS coding provided a traditional expert coding of 

cases and the HFF coding further elaborated on this by coding all relevant 

factors from the accident. An analysis of all powered two wheeler accident 

cases (chapter 8) and pedestrian accident cases (chapter 9) present in the 

OTS dataset between the years 2000 to 2010 was carried out using the full 

HFF coding model and LAB accident coding type system for this thesis. For 

the all accidents analysis (chapter 6), all cases collected by the OTS team 
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between the years 2000 to 2003 was coded using the full HFF coding 

method and LAB accident coding type system. The OTS causation coding 

system uses a 4 point system coding the causes as definite, probable and 

possibly contributory. The accident was analysed in terms of factors that 

were deemed to have been a factor in the causation of the accident, only 

the factors that were identified as definitely influencing the accident were 

included in the analysis regardless of the original coding by the OTS 

accident investigators. 

The reason that the years the cases coded were different for the different 

analysis chapters was the numerical requirements of the chosen statistical 

methods. For each dimension of analysis within a cluster analysis 10 cases 

need to be included. If 10 dimensions were included 100 cases would be 

needed to be provided, if 100 dimensions are included 1,000 cases would 

need to be included. As the number of clusters increases the number of 

cases needed would also increase. A minimum number of cases were 

needed to be met for analysis purposes and as the PTW and pedestrian 

accident cases were smaller in number an analysis of all possible cases was 

needed to attain statistical significance. 

These analysed cases were then merged with the relevant OTS files in 

order to use all of the acquired data where necessary in the analysis and 

understanding of these accident types. The coding sheets used for the HFF 

and LAB coding procedure can be found in Appendix C (PP362-387). 

 

5.4 Statistical analysis 

5.4.1 False starts 

During the span of study a number of different statistical procedures were 

considered and preliminary analysis with the data was carried out using 

these procedures. Two statistical procedures were attempted to be used with 

the sample data. The procedures that were attempted to be used were: 

1. Principal component analysis 
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2. Quasi induced exposure methodology 

Principal component analysis (PCA) is a statistical methodology that is used 

to reduce large and complicated multivariate datasets into a simpler form. 

This analysis allows multiple factors to be linked to a set of components that 

explain the variance in the group of cases, allowing for correlations between 

these factors to be analysed and interpreted.  

Rather than using pre-conceived data chains to analyse the data this allows 

for an exploratory analysis of the factors linking them to particular detection 

stage failures. This type of analysis is most commonly used with 

questionnaire data, in order to group the questions into specific groupings. 

The aim of PCA is to analyse the variance of the factors that adds up to 80% 

though with accident data usually 50% is seen as a significant number for 

analysis. Two main limitations are present for PCA, the first is that it limits 

the number of variables that can be entered into the analysis. The second is 

that it does not provide groupings that will help identify plausible large 

groupings for scenario building. 

An attempt was made to use PCA with the OTS accident data but the output 

only provided at most two categories/components that were interpretable with 

regards to scenarios and the rest of the categories were moved to other axis. 

This did not allow for a clear interpretation of the data as the largest factors 

were included in two axes and from the third axis onwards it was not possible 

to find any meaningful results, which resulted in a loss of information. 

The quasi induced exposure method uses road users deemed to be ‘not at 

fault’ as the comparison group to road users that are identified as entirely at 

fault. This method selects only two-vehicle crashes in which one driver is 

declared entirely responsible and the other entirely not-responsible compared 

to the case control method where all crash types are included (Lenguerrand, 

Martin, & Laumon, 2006). Drivers that are not assigned any human factor 

causes within a crash situation are identified by the investigator as being ‘not 

at fault’. This method assumes that the not at fault drivers represents all 

drivers exposed to the crash hazard, and so represents the total population. 

This allows for the two separate groups that are being compared to have the 
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same comparable variables and thus allows a more comprehensive analysis 

of accident data as a single factor methodology (Chandraratna & 

Stamatiadis, 2009). 

Chandraratna and Stamatiadis (2009) identified two points of limitations in 

regards to the quasi induced methodology, firstly that not at fault drivers may 

be coded incorrectly and in fact are either partly or fully at fault in an 

accident. In terms of accident research we assume that an accident 

researcher correctly interprets an accident scene as a result of both 

background and study, so this would be a limitation of most accident 

research. Secondly this method cannot explain single vehicle accidents as 

in these types of accidents the road user is usually at least partly to blame 

for the occurrence of the accident.  

Furthermore in the analysis of accident causation in traffic accidents it is 

necessary to not administer fault to any of the involved road users, as this 

would not allow for solutions to be described for road users that would be 

deemed as ‘not at fault’ in the quasi induced method. These methods found 

to only provide numerical values in terms of risk rather than a complete 

scenario setting, and so were not used for this reason. Due to the nature of 

their analysis requirements they could also not be used with single vehicle 

accident settings, which was an analysis that was also carried out in this 

thesis. 

5.4.2 Latent class cluster analysis 

Cluster analysis methods can be considered as data mining tools which are 

placed between statistical methods and information processing. The main 

aim of cluster analysis is to differentiate objects in groups by identifying 

similar objects and putting them in the same group depending on the 

variables entered into the analysis (Rezankova, 2009). The similarity is 

dependent on quantitative or qualitative variables and how similar each 

group is depending on these features (Rezankova, 2009).  

Cluster analysis is most commonly used to maximise the similarities between 

in cluster elements and the differences between inter cluster elements 



 

124 

 

(Fraley & Raftery, 2002). These measures are called similarity based 

clustering methods and use a distance function for continuous variables. In 

the situation that variables consist of continuous or qualitative elements then 

the variable can be mapped onto a binary measure to enable comparison 

(Depaire et al., 2008). 

Among traditional similarity based clustering approaches two major 

approaches can be seen, the hierarchical approach (e.g. Ward’s method, 

single linkage method) and the partitional approach (e.g. K-means) (Depaire 

et al., 2008). Hierarchical cluster analysis types use a distance measure to 

be able to handle data. When the data is mixed in nature (includes both 

categorical and continuous data) these measures may not yield satisfactory 

results as the analysis will try to analyse categorical data by comparing 

distances and the distance functions in the continuous data may not be 

applicable for the categorical data, which will in turn alter the results. K 

means clustering works on the basis that each cluster is partitioned into a 

number of clusters represented by their centres (or means). The mean of this 

analysis needs to be defined and it is particularly sensitive to noisy data and 

outliers (Rokach & Maimon, 2005).  

The principle behind each cluster method is similar in that all cases are firstly 

considered as individual clusters. Clusters are merged depending on the type 

of method chosen, as each method has a specific criterion to merge cases. 

In all methods we begin with as many clusters as there are cases and end up 

with just one cluster containing all cases. By using mathematical procedures 

it is possible to identify clusters that are highly similar to each other (Field, 

2013). The data used in this clustering can only be interval or binary data. 

The reason for this is that the clustering method uses a distancing measure 

to group cases together and so treats cases that are categorical in an interval 

nature. As most of the data collected from traffic accidents is categorical 

these methods were not viable. 

The second type of clustering methods are known as latent class modelling. 

In this model every cluster has an underlying probability distribution to 

generate data (Depaire et al., 2008). These models can be recast as a 
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statistical choice procedure, and a comparison of different models is possible 

with goodness of fit measures (Fraley & Raftery, 2002). 

Latent class analysis is a statistical technique that can be used to analyse 

multivariate categorical data. When data has a number of categorical 

variables it is often of interest to identify cases that contain similar aspects, 

and identify whether these similarities hold over different variables (Linzer, 

2008). 

Latent class models can be used to undertake the above stated goals. 

According to Linzer (2008) “The latent class model seeks to stratify the 

cross-classification table of observed variables by an unobserved unordered 

categorical variable that eliminates all confounding between the manifest 

variables. Conditional upon values of this latent variable, responses to all of 

the manifest variables are assumed to be statistically independent, an 

assumption typically referred to as “conditional" or “local" independence” (p. 

1). The variables that are selected to be included in the model should not be 

completely identical to other variables and have a measurable difference 

(Linzer, 2008). In the case that a model includes outliers an extra cluster is 

added to include these cases and separate them from the model (Fraley & 

Raftery, 2002). Typically this group of outliers can be identified if a cluster is 

hard to profile by means of the distribution within the analysis (Depaire et al., 

2008).   

The model, in effect, uses probabilistic grouping to produce expectations 

with regards to how the observation will respond on each manifest variable. 

Although the model does not automatically determine the number of latent 

classes it offers a variety of parsimony and goodness of fit statistics that can 

be used to make a theoretically and empirically sound assessment (Linzer, 

2008). 

Some of the limitations for this cluster analysis method are: 

1. A good understanding of the data is necessary as only relevant 

variables are needed to be included in the analysis for the results to 

be meaningful. 



 

126 

 

2. An interpretation of the significance of the results is needed to find 

meaningful relationships. 

3. Large sets of data are needed so that the analysis remains significant 

and meaningful. 

5.4.3 Chi square test 

After the cluster analysis was carried out each cluster was compared to the 

total values for each individual variable using a chi square goodness of fit 

test. This test is used to test whether observed data follow a particular 

distribution. The chi square statistic for this analysis is demonstrated in figure 

13. 

 

Figure 13: Chi Square goodness of fit test 

 

The results of the cluster analysis were analysed with a Pearson’s chi square 

goodness of fit test for each of the factors included in the analysis and the 

specific values of these factors. The observed counts for the variable and the 

expected counts for this variable are compared with the observed counts for 

the same variable against the same dataset and the formula demonstrated in 

figure 13 is used to see if there are any differences for the values. A chi 

square goodness of fit test is carried out to see if there is significant 

difference between the groups within the data and an analysis of the value 

residuals is carried out to determine where the difference is found. 

The chi square test was carried out by comparing the percentage in the 

cluster for the value against the overall value and then calculating the 

residual variance. Values that were over 2, meaning that a factor was over-

represented, were included as significant results for all of the factors (and 

their values) that were included in the cluster analysis.  
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For example if we take gender as the variable, the values for male and 

female in cluster 1 are compared against the dataset as a whole identifying 

the observed and expected values. A significance test is then carried out to 

see whether there is a significant difference within the cluster compared to 

the overall values for the variable. If there is a significant difference a residual 

test to see where the difference is from determines whether the positive 

difference is coming from males in the cluster or females and whichever had 

a value over 2 from the residual test is taken as an over-represented value. 

This procedure is then carried out for all variables within the cluster model. 

This test allowed for it to be determined whether the value of a variable was 

over-represented or under-represented. For example if one of the variables 

entered into the cluster analysis is gender and for the specific cluster females 

attribute for 40% of the individuals while for the full dataset they account for 

20% the chi square analysis identified whether being female was significantly 

over-represented for the specific cluster. This test was carried out for all 

clusters and all variables in the dataset.  

Though these significant results were taken into account for the analysis the 

overall frequency values were also kept in mind when analysing the results, 

as a factor being over 75% in average would require a value of close to 80% 

depending on the number of cases to be considered significant, though in 

essence would still be over-represented when considering the descriptive 

values separately. 

 

5.5 Statistics software 

The statistical analysis for this thesis was carried out using IBM SPSS 

Statistics version 21®. The OTS data was made available by the Transport 

Safety Research Centre (TSRC) in Loughborough University. The HFF 

coding sheets were coded in excel, then converted into SPSS form and 

merged with the OTS database by the author. 

The LCC analysis was conducted using the R statistics program which is an 

open source programming language and software environment. SPSS® and 
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R are able to be integrated when the related packages are used. R version 

2.14 is the applicable program for SPSS version 21 and so these two 

statistical analysis programs were integrated using the programs available at 

the IBM website. Due to the nature of cluster analysis including groups with 

values that were too small would cause the cluster analysis to give results 

that were not meaningful, thus an analysis of the descriptive data was carried 

out for each of the analysis chapters separately and values of the variables 

were grouped in meaningful ways both based on the literature review and the 

HFF coding categories provided.  

A package that would be able to carry out Latent Class Cluster analysis was 

identified for the R statistics program as poLCA, which was developed by 

Linzer (2008). The poLCA package allows an analysis of both latent class 

clustering and latent class regression methods.  

5.5.1 Clustering algorithm 

According to Eshghi, Haughton, Legrand, Skaletsky, and Woolford (2011) 

the basic latent class cluster algorithm can be given as demonstrated in 

figure 14; 

 

Figure 14: Latent class cluster algorithm 

Source: Ehsghi et al. (2011) 

 

Ehsghi et al. (2011) defined this formula as “Where yn is the nth observation 

of the manifest variables, S is the number of clusters and _j is the prior 

probability of membership in cluster j. Pj is the cluster specific probability of yn 

given the cluster specific parameters Өj . The Pj will be probability mass 

functions when the manifest variables are discrete and density functions 

when the manifest variables are continuous” (p. 273) (Figure 14). 
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5.5.2 Analysis process 

The analysis process used in the analysis chapters using the OTS data 

consisted of the same systematic process. First each individual OTS case 

was coded using the HFF and LAB coding sheets by analysing the OTS 

coding as source material. Once all coding was completed the new coding 

sheets were merged with the SPSS files from the OTS data and a latent 

class cluster analysis using the poLCA package was carried out using SPSS. 

This package was run through SPSS using syntax (which can be seen in 

Appendix A, Page 328) first to compare 2 to 15 cluster solutions with regards 

to the AIC and BIC measures, and then to identify the cluster that was 

statistically relevant in terms of goodness of fit. This cluster was then printed 

out onto an excel sheet and a detailed chi square analysis measure was 

carried out for each of the clusters identified versus the total values for the 

data in order to identify significant values for the factors within the clusters. 

These significant clusters were calculated based on chi-square significant 

levels of 95% confidence intervals (p<0.05). These results were then 

interpreted using a systems approach to identify applicable countermeasure 

indications for the different failure scenarios described. 

Certain statistical measures were undertaken in order for the LCC analysis 

to be interpreted. A descriptive analysis was conducted for each specific 

accident set that was studied. From this analysis factors that were identified 

as having a high frequency were included into the data where applicable. 

Latent class clustering (LCC) methods requires the user to manually define 

the number of classes for the analysis sample. The number of clusters 

ultimately selected is related to certain statistical measures that are 

available in the data that describe the goodness of fit of the model. 

When selecting this model, a Bayesian model evidence is carried out. A 

statistical model identifies how one or more factors are related to each other 

and the goodness of fit (GOF) describes how well a model fits a set of 

observations and summarizes how different the observed and expected 

values within the model are.  
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The selection of the cluster analysis was carried out using two goodness of 

fit measures, (1) the Bayesian information criterion (BIC) and (2) the Akaike 

information criterion (AIC). AIC is an estimate of a constant plus the relative 

distance between the unknown true likelihood function of the data and the 

fitted likelihood function of the model, so that a lower AIC means a model is 

considered to be closer to the truth (Wang, December 4, 2014). 

BIC is an estimate of a function of the posterior probability of a model being 

true, under a different Bayesian setup, so that a lower BIC means that a 

model is considered to be more likely to be the true model (Wang, 

December 4, 2014). Through the nature of BIC it has more of a chance of 

choosing too small a model while the opposite is true for the AIC. In cases 

where the BIC and AIC are different the BIC would be smaller and the AIC 

should be larger when considered. The lower the numerical value of these 

procedures the better the fit of the model to the data.  

When selecting an appropriate model from the two, research carried out by 

Lin and Dayton (1997) identified the AIC as more appropriate than the BIC 

when there are complex models that include a variety of different factors and 

groupings, of the type that is encountered in this research. The AIC should 

also be preferred unless there are more than several thousand cases or the 

sample is based on a few criteria (e.g. variables), in which case the BIC is 

preferred (Lin & Dayton, 1997). 

The LCC method also provided a residual degrees of freedom measure that 

is based on the number of observations of the factors in the cluster against 

the number of cases used in the analysis. In instances where the number of 

observations is greater than the number of cases, this will cause issues in 

the validation of the model. Thus the number of cases and factors chosen 

were selected so that cluster analysis between 2 and 15 clusters could be 

interpreted and compared with regards to the AIC and BIC. 

This thesis aims to find patterns and fully understand accident data, so it 

was more beneficial for there to be too many clusters than too few thus the 

AIC and BIC were both observed and the AIC was chosen as the definitive 

measure for model selection, especially considering that real world accident 
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data collected with a sampling strategy was used in this analysis. The 

complete process of analysis can be seen in figure 15, which demonstrates 

the step by step approach that was taken in order to analyse the accident 

data and carry out the latent class cluster analysis, 

 

 

Figure 15: Analysis process of cases for the thesis 

Traffic Accident 

Step 1 

OTS Analysis 

Step 2 

HFF and LAB coding 

Step 3 

SPSS data merging 

Step 4                          
poLCA analysis 

Step 5                 
Significance analysis 

Step 6 

Scenario development 

Step 7 

Countermeasure 

Implications 
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5.6 Summary 

The aim of chapter 5 was to describe the methodology that was used in this 

thesis describing both the data gathering process and statistical analysis 

hybrid procedure that was put in place to help identify accident scenarios in a 

detailed manner. The data collection procedures that were used in the OTS 

study were described in some detail, identifying how accident researchers 

gathered relevant information on each particular aspect of a traffic accident. 

Each case was then analysed retrospectively using the HFF method to 

gather relevant accident causation information for each accident. This data 

was combined into an SPSS data file that would allow a latent class cluster 

analysis to be carried out and reported.  

The latent class cluster analysis was run using the poLCA package within the 

R programming language using syntax to run the analysis through SPSS. 

The clusters that were identified by this cluster analysis were then analysed 

in excel using a chi square analysis. This procedure was carried out for all of 

the OTS data analysis chapters.  
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6 An analysis of the OTS dataset for In-Depth 

Accidents 

 

6.1 Introduction 

Research to improve road traffic safety and reduce casualties has historically 

concentrated on identifying single factors that cause accidents and their 

effects. Road safety management in many countries is increasingly using 

systems approaches to provide further reductions in traffic casualties.  

As (Clarke et al., 2005, p. 721) pointed out ”In-depth studies of behavioural 

factors in road accidents using conventional methods are often inconclusive 

and costly” thus a good understanding of the nature of the data and analysis 

required is necessary to be able to deduce the sequence and causal links 

within the accident process. 

New intelligent technologies are rapidly being introduced to the road and 

vehicle environment with the purpose of improving safety and transport 

efficiency. According to Ljung Aust (2010) the goal of these preventive safety 

functions, or advanced driving assistance systems (ADAS), is to prevent 

accidents from occurring and/or to reduce accident severity, by either alerting 

the driver to potential hazards or by taking over the driving task to some 

extent, using, for example, autonomous braking in emergency situations. 

With the increasing development and implementation of these systems within 

vehicles it is necessary to thoroughly understand the critical situations that 

can be addressed with the different current and emerging technologies. 

Accident causation research allows for this analysis by identifying the key 

factors, human functional failures and interactions that result in a traffic 

accident.  

Detailed accident studies have been carried out in the UK (Carsten, Tight, 

Southwell, & Plows, 1989; Sabey & Staughton, 1975), but typical accident 

scenarios have not been developed. Large accident datasets analysed using 

cluster analysis methods throughout Europe (de Oña et al., 2013b; Depaire 

et al., 2008) did not include more than one human failure factor or 
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contributory factors, and so the weighting of the cluster reflected vehicular 

and environmental factors to a greater extent. It was determined that an in-

depth look at data coded with accident causation variables would further 

elaborate on these findings and indicate possible differences if present, as 

well as allow for an exploration of UK specific scenarios. 

The aim of this study is to identify and compare accident causation chains 

within the OTS database using cluster analysis to identify functional failure 

sequences with an emphasis on human errors.  

 

6.2 Method 

6.2.1 Design 

In this chapter a total of two analysis procedures were carried out. Firstly a 

descriptive analysis of all accident cases collected in the UK OTS study was 

carried out. Secondly two separate cluster analysis procedures using all 

multiple vehicle and single vehicle accidents for suitable cases were carried 

out. The following sections describe how this data was collected, the 

procedures put in place for this analysis and the cluster analysis.  

6.2.2 Sample 

Details of the causation factors relating to individual collisions were acquired 

using in-depth accident data methods on the spot by a group of accident 

researchers within an average time span of 20 minutes after an accident had 

occurred. A detailed explanation of the procedures used can be found in the 

methodology chapter. The results presented in this study are based on 1,614 

accidents.  

The age distribution from the dataset can be seen in figure 16. Of the 1,877 

individuals whose age was coded in the sample the age of the road users 

were on average 38.0 years old with a standard deviation of 16.2 (figure 16).  
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Figure 16: The age distribution for the OTS dataset 

 

6.2.3 Procedure 

The attained data contained a total of 1,614 cases, from these cases single 

vehicle accidents and multiple-vehicle accidents were split into two separate 

files. There were 543 single vehicle and 1,093 multiple vehicle accidents 

which included 2,893 interactions. For the cluster analysis all cases that 

included unknown variables were excluded from the analysis, furthermore 

four of the single vehicle accidents involved bicycles and were excluded from 

this analysis on account of the low numbers. For the multiple vehicle accident 

dataset 22 of the cases did not have the relevant OTS data for the second 

vehicle and were excluded from this analysis. Two separate cluster analysis 

procedures were carried out the first for single vehicle accidents (including 

366 cases) and the second for multiple vehicle accidents (including 673 
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cases). Only the first two vehicles that had the main “interaction” within the 

data were analysed in the multiple vehicle accident cluster analysis study.  

6.2.4 Statistical analysis 

This study identified similarities between different traffic accidents depending 

on the specific human error that the road user had made in causing an 

accident. The sample was analysed by separating the different failure types 

that the different drivers made during the accident and grouping cases 

according to these failures.  

An identification of key human, vehicular, environmental and infrastructure 

factors for each of the failure types was then carried out. A descriptive 

analysis was done to identify all of the manoeuvre types and contributory 

causation factors within the data. As the dataset used consisted of more than 

2,000 variables for each accident it was necessary to use an exploratory 

analysis tool to find significant factor groupings. Cluster analysis was used in 

this study as the procedures outputs most closely matched the stated aims 

and objectives. The basic aim of cluster analysis is to find natural groupings 

of individuals, In order to carry out cluster analysis the similarity (or 

dissimilarity) of every pair of individual needs to be measured (Chatfield & 

Collins, 1980). A table for each cluster highlighting the relevant significant 

factors were created including the chi square values, variables included, 

number of cases where the factor was present and the significant values. 

The number of cases where the factor was present was found by multiplying 

the percentage and number of cases with the clusters, so sometimes similar 

values will have different percentages as the values were rounded up. This 

was the same for all subsequent cluster analysis procedures throughout this 

thesis. 

 

6.3 Results 

6.3.1 Descriptive analysis 

An analysis was carried out using all of the cases coded with the HFF 

method. Relevant demographic, accident type and risk factors were included 
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and broken down with regards to the different failure type that a road user 

made. A total of 2,893 road user accident data files were analysed and a chi 

square significance test was carried out for each of the failure types with 

regards to the coded factor variable coding, which can be seen in table 18. 

The comparison used the residual value to confirm whether the variable 

value was over or under-represented according to the overall number. Each 

value that is over-represented according to this analysis was highlighted in 

bold in table 18. 

In two of the demographic variables (gender and age groups), the accident 

injury level and the road side speed limit had unknown factors and these 

values were not included in the chi square analysis. The number of unknown 

cases was written as a total in the relevant variable row and failure type 

column in the table. In the variable risk factors the columns do not 

necessarily have to add up to 100% as each factor can be coded for a road 

user. 

The largest group of accidents coded were prognosis failures (N=1,112). 

Detection failures (N=626) and diagnosis failures (N=478) were also 

commonly coded. All of the groups had significant correlations with being the 

primary road user involved in the accident other than prognosis (expectation 

of the other road users behaviours) failures, which was the main failure 

coded for the vehicle that was not contributing to the accidents occurrence. A 

description for each failure groups significant chi square results is provided 

below: 

 

Table 18: All road user cases versus failure types with risk factors and other 

important factors 

Factor Detection 

N=626 

Diagnosis 

N=478 

Prognosis 

N=1112 

Decision 

N=267 

Execution 

N=158 

Overall 

N=252 

N 

2893 

Gender        

Male 66.8 74.4 73.2 81.7 68.5 74.4 73.2 

Female 33.2 25.6 26.8 18.3 31.5 25.6 26.8 

Unknown (coding) 56 52 122 43 12 17 302 

Vehicle type 
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Factor Detection 

N=626 

Diagnosis 

N=478 

Prognosis 

N=1112 

Decision 

N=267 

Execution 

N=158 

Overall 

N=252 

N 

2893 

Car 72.5 83.3 73.9 74.2 77.2 80.2 75.9 

LGV 6.2 4.4 4.8 2.6 4.4 0.4 4.4 

HGV 8.6 4.0 5.4 2.2 8.2 2.4 5.5 

Bus 1.4 1.3 1.3 0.0 0.0 0.4 1.0 

PTW 3.4 5.0 7.0 5.6 5.7 4.4 5.5 

Cycle 2.9 0.6 2.6 3.0 1.9 1.6 2.2 

Pedestrian 4.5 0.8 2.7 11.2 1.3 10.7 4.2 

Speed limit        

30 mph 44.9 33.1 41.1 61.8 25.3 44.4 41.9 

40 mph 11.3 12.3 13.8 12.0 10.8 12.7 12.6 

50 mph 3.4 2.9 4.3 3.4 2.5 1.6 3.5 

60 mph 15.5 29.3 19.4 9.4 24.1 19.8 19.6 

70 mph 21.6 20.7 18.9 9.0 36.1 18.7 19.8 

Unknown (coding) 21 8 28 12 2 7 78 

Involvement        

Primary 91.2 83.9 5.1 97.4 91.8 100.0 58.3 

Secondary 5.8 4.2 4.0 3.4 3.8 0.4 4.0 

Non contributory 4.5 12.8 96.5 4.1 7.0 0.0 40.9 

Light Conditions        

Day 91.1 70.3 79.6 64.0 77.2 55.2 76.8 

Night 18.5 29.7 20.4 36.0 22.8 44.8 25.2 

Injury level        

Fatal 2.4 3.6 3.5 5.2 2.5 8.3 3.8 

Serious 10.9 9.4 12.5 15.0 13.9 13.5 12.0 

Slight 49.2 41.0 50.6 41.6 27.8 38.1 45.6 

Non-Injury 36.6 44.6 32.9 37.8 55.7 37.7 37.7 

Unknown (coding) 6 7 5 1 0 6 25 

Age range        

0-17 3.8 1.7 2.0 8.2 3.8 9.1 3.6 

18-21 5.0 13.6 4.2 7.9 4.4 4.0 6.3 

22-29 13.1 13.4 11.2 9.0 10.8 10.7 11.7 

30-49 24.8 21.5 31.2 20.6 31.6 21.4 26.4 

50-65 12.1 7.7 12.1 7.1 10.1 8.7 10.5 

66+ 5.3 3.1 3.1 4.1 5.1 8.7 4.3 

Unknown(coding) 234 190 464 128 58 95 1169 

Risk factors        

Alcohol 0.0 0.2 0.2 2.6 1.9 45.2 4.4 

Speeding 8.0 42.9 2.7 33.0 25.3 23.8 16.3 

Distraction 9.7 1.0 0.1 1.5 17.1 4.0 3.7 

In a hurry 25.1 25.5 2.3 40.8 10.8 19.8 16.6 
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Factor Detection 

N=626 

Diagnosis 

N=478 

Prognosis 

N=1112 

Decision 

N=267 

Execution 

N=158 

Overall 

N=252 

N 

2893 

Breaking the law 24.4 19.2 0.9 84.3 8.2 18.7 18.7 

Visibility 26.2 3.6 2.5 9.4 3.8 4.8 8.7 

Accident type        

Overtaking/ 

Lane change 29.7 27.6 33.2 34.8 20.9 25.4 30.3 

Loss of control 5.1 17.6 12.3 8.2 43.7 31.3 14.6 

Rear-end 27.5 7.9 24.0 5.2 8.2 2.8 17.7 

Head on  1.4 6.1 7.5 4.5 5.1 3.6 5.2 

Pedestrian 7.2 1.3 5.2 9.4 1.9 7.9 5.4 

Right turn against 5.6 4.8 6.4 5.2 0.0 2.8 5.2 

Turning 9.1 4.6 8.5 8.6 0.6 3.2 7.1 

Intersection(not turning) 4.3 1.3 4.9 10.9 2.5 1.6 4.3 

Merging 4.2 3.8 3.6 3.0 0.0 0.4 3.2 

Other 5.9 25.1 0.0 10.1 17.1 21.0 9.1 

 

Detection failures: Association between gender and detection failures were 

significant (χ²=5.23, df=1, p=<0.05), with females being over-represented in 

this accident type. All road user types other than PTW riders and pedestrians 

were more likely to exhibit detection failures (χ²=20.41, df=6, p<0.01). The 

speed limits (χ²=12.5, df=3, p<0.01) were significant with 30 mph and 70 mph 

accounting for these values. These accidents most commonly occurred 

during the day (χ²=5.23, df=1, p<0.01) and had either a slight or non-injury 

accident as being significant (χ²=9.59, df=3, p<0.01). The risk factors visibility 

issues, distraction, breaking the law and being in a hurry were highlighted for 

this failure type (χ²=26.88, df=5, p<0.001). Overtaking, rear-end and 

pedestrian accidents were also identified as being more likely to occur than 

the other factors with regards to the total accident data, (χ²=25.89, df=10, 

p<0.01). 

Diagnosis failures: Male road users were more likely to make this failure 

type and were slightly over-represented (χ²=4.78, df=1, p<0.05). Road users 

driving cars (χ²=14.84, df=6, p<0.01) as well as roads with high speed limits 

(χ²=12.31, df=4, p<0.01), were also significant. These failure types occurred 

more prominently during the night (χ²=4.84, df=1, p<.0.05), and the main risk 

factors were speeding, being in a hurry and breaking the law (χ²=15.90, df=6, 
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p<.0.05). The main accident types for these failures were loss of control and 

head on accidents, (χ²=25.35, df=9, p<0.01). 

Prognosis failures: All road users except for pedestrians were highlighted 

by the analysis (χ²=24.12, df=7, p<0.01). Due to the large number of cases 

most of the factors were highlighted as significant. The main factors that were 

not significant were being the primary contributory vehicle, as well as high 

risk factors. 

Decision failures: Male road users were identified as effecting the 

significance of the gender variable (χ²=4.07, df=1, p<.0.05). Overtaking/lane 

changing accidents, pedestrian accidents and intersection accidents were 

more likely to occur (χ²=24.21, df=9, p<0.01). The main contributory factors 

were breaking the law, being in a hurry and distraction (χ²=22.24, df=6, 

p<0.01). 

Execution failures: Loss of control accidents as well as the contributory 

factors distraction and being in a hurry were highlighted (χ²=19.51, df=9, 

p<0.05) for this failure type. 

Overall failures: Being a male road user (χ²=4.37, df=1, p<0.05), and a car 

driver or pedestrian were more likely for this failure (χ²=14.68, df=6, p<0.05). 

These failures were more likely to be coded for night time accidents (χ²=5.60, 

df=1, p<.0.05) compared to the other accident types. Overall failures were 

more likely to be fatal accidents (χ²=10.33, df=3, p<.0.05), and have younger 

(ages 0-17) or older (aged 66 or above) road users (χ²=15.70, df=5, p<0.01). 

Alcohol, speeding and being in a hurry were the most likely risk factors 

(χ²=113.08, df=6, p<0.001). Loss of control accidents and pedestrian 

accidents were the most likely accident types (χ²=21.48, df=9, p<.0.05). 

Single vehicle accidents 

There were a total of 539 single vehicle accidents in the OTS database 

between the years 2000 to 2003. Table 19 illustrates the number of single 

vehicle accidents that were collected in the OTS data by vehicle type. The 

vehicle that had the highest proportion of single vehicle accidents were cars 

(85.9%) and the second highest were PTWs (7.4%).  
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Table 19: Vehicle types for single vehicle accidents 

Vehicle Type N Percent 

 Car 463 85.9 

Light Good Vehicles 12 2.2 

Heavy Goods Vehicles/Bus 24 4.5 

PTW 40 7.4 

Total 539 100.0 

 

The different failure types for all single vehicle accidents in relation to injury 

severity are illustrated in Table 20. Most of the cases in the dataset are non- 

injury accidents (58.5%). The most prominent failure types with regards to 

single vehicle accidents were diagnosis failures (35.6%) and overall failures 

(26.7%), which together accounted for close to two thirds of all single vehicle 

accidents. Execution failures (17.1%) were also a prominent group of failures 

for this accident type. Overall failures (9.4%) had the highest number of fatal 

accidents and decision failures (13.3%) had the highest number of serious 

injuries for the analysed cases. 

 

Table 20: Failure types in single vehicle accidents by injury 

 Failure type 
 

 Severity Detection Diagnosis Prognosis Decision Execution Overall Total  

Fatal 0.0 2.2 0.0 5.0 1.1 9.4 4.0  

Serious 6.8 12.4 0.0 13.3 9.8 9.4 10.6  

Slight 29.5 26.3 33.3 13.3 30.4 30.2 26.9  

Non-
injury 63.6 59.1 66.7 68.3 58.7 51.1 58.5 

 

Total 8.2 35.6 1.1 11.3 17.1 26.7 539  

 

6.3.2 Single vehicle accident cluster analysis 

In table 21 all of the factors that were entered into the single vehicle accident 

cluster analysis are outlined. A total of 13 specific variables were selected 

according to the most relevant risk factors that are present in single vehicle 
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accidents. They were divided into four groups. The human factors selected 

were the main failure that the road user was coded as making as well as the 

main two contributory factors that were coded as occurring in the accident. 

The contributory factors were grouped according to the contributory human 

factors sub groups outlined in section 4.2.2. In cases where the failure was 

descriptive enough and no other factors were necessary ‘no factor coded’ 

was selected as the contributory factor. The age group of the road user, the 

gender type and the vehicle type were also coded. With regards to 

environmental and infrastructure factors the road type, speed limit, and 

carriageway class were entered into the analysis. To identify the accident 

situation the manoeuvre of the road user was also included in the analysis as 

well as the LAB accident type scenarios that were most prevalent. A detailed 

list of all of the values counts and percentages can be found in Appendix B 

(pp. 330). 

 

Table 21: Variables used in the single vehicle accident cluster analysis 

Variable Aspect Level Value 

Speed limit Environmental Accident ≥ 30 mph; 40-50 mph; 60-70 mph 

Road area Environmental Accident Urban; Rural 

Light 
conditions 

Environmental Accident Day; Night 

Road type Environmental Accident A class; B class; Motorway; Minor 

Failure 
mechanism 

Traffic 
accident 

Road 
user 

Detection; Diagnosis; Prognosis; Decision; Execution; 
Overall 

Gender  Road user Road 
user 

Male; Female 

Age group Road user Road 
user 

0-21; 22-29; 30-49; 50-65; 66+ 

Contributory 
factor 1 

Accident Road 
user 

Impairment; Alcohol; Psychological factors; Speed; 
Breaking the law; Inexperience; Distraction; Road 
Condition; Other road factors; Visibility; Obstacle in 
road; Vehicular factor; No factor coded 

Contributory 
factor 2 

Accident Road 
user 

Impairment; Psychological factors; Speed; Risk taking; 
Inexperience; Distraction; Environment; Other factors; 
No factor coded 

Emergency 
manoeuvre 

Accident Road 
user 

Brake; None; Steered 

Road user 
vehicle type 

Vehicle Road 
user 

Car; PTW, Other 

Manoeuvre Road user Vehicle Going ahead; Left bend; Right bend; Intersection; Other 

Accident type Accident Road 
user 

Leaving lane left; Leaving lane right; Rollover; Collision 
with obstruction/Hit parked car; Roundabout; Other 
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Goodness of fit 

The latent class cluster analysis focused on the documented 367 single 

vehicle accident files. The comparison of the BIC and AIC for the different 

clusters analysed highlighted a 2 (11509.48) and 6 (10747.41) cluster 

solution respectively, the AIC criterion identified the 6 cluster solution as 

having the best separation and statistical significance for analysis purposes. 

The levels for both the AIC and BIC for 2 to 15 cluster solutions can be seen 

in figure 17.  

 

 

Figure 17: AIC and BIC values for the single vehicle accident cluster analysis 

 

Six distinctive (separated) accident classes were identified resulting in a 6 

cluster solution. The results from the full cluster analysis can be seen in 

Appendix B (pp. 332), factors that were identified as being significantly over-

represented are highlighted in bold in that table.  

Cluster results 

Figure 18 highlights the different number of cases for the single vehicle 

cluster analysis. The clusters were arranged in size order from cluster 1 

through to cluster 6.  
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Figure 18: Single vehicle accident cluster sizes 

 

Cluster analysis results 

Cluster 1 (n=88) 

“Leaving the lane on a bend as a result of speeding” 

Table 22 highlights the results for cluster 1, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 22: Single vehicle cluster 1 analysis results 

Variable  Value Percentage df N χ² Sig. 

Gender   Male 81.5 1 72 4.0 0.05 

Age  0-21 29.5 4 26 14.4 0.01 

Failure mechanism   Diagnosis  91.5 5 80 130.6 0.001 

Contributory factor 1  Speed 88.3 12 78 191.7 0.001 

Contributory factor 2   Psychological 36.3 8 32 31.7 0.001 

Speed limit  60-70 mph 75.2 2 66 18.8 0.001 

Area type   Rural 71.7 1 63 9.4 0.01 

Manoeuvre   Left bend 41.7 4 37 107.8 0.001 

  Right bend 41.6 4 37   
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Accident type   Leaving lane left 53.7 5 47 13.2 0.05 

 

Human Factors 

The demographic variables relating to the road user were male road users 

(81.5%) and the age group between 0 to 21 years old (29.5%). The road user 

made a diagnosis failure (91.5%), with speed (88.3%) being the first 

contributory factor and psychological factors (36.3%) the second contributory 

factor.  

Vehicular Factors 

No vehicle type was over-represented in this cluster. 

Environmental/Infrastructural Factors 

The accidents occurred in a rural (71.7%) area on a 60 – 70 mph speed limit 

(75.2%) road. The road users were on a left hand (41.7%) or right hand 

(41.6%) bend and left the traffic lane to the left (53.7%) of the road.  

 

Cluster 2 (n=67) 

“Leaving the lane due to human or environmental factors” 

Table 23 highlights the results for cluster 2, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 23: Single vehicle cluster 2 analysis results 

Variable Value Percentage df N 
χ² 

Sig. 

Gender  Female 48.9 1 33 20.4 0.001 

Age  22-29 51.7 4 35 41.3 0.001 

Failure mechanism Detection 26.4 4 18 61.9 0.001 

Contributory factor 1 Psychological factors 26.5 12 18 81.1 0.001 

 Road condition 22.1 12 15   

 Visibility 6.6 12 4   
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 Obstacle in road 5.8 12 4   

Emergency manoeuvre  Steered 39.0 2 26 23.6 0.001 

Vehicle type Car 92.2 2 62 6.9 0.05 

Speed limit  60-70 mph 78.7 2 53 20.0 0.001 

Area type  Rural 87.9 1  59 30.8 0.001 

Manoeuvre Going ahead 50.0 4 33 34.7 0.001 

Accident type Leaving lane left 57.5 5 38 12.2 0.05 

 

Human Factors 

Female (48.9%) road users were over-represented for this group, and in the 

age range 22-29 (51.7%). The main failure detection failure (26.4%) was also 

over-represented for this group. A number of contributory factors were coded 

for the first contributory factor with the largest group being psychological 

factors (26.5%).  

Vehicular Factors 

The vehicle was a car (92.2%). 

Environmental/Infrastructural Factors 

These accidents occurred in a rural area (87.9%) on a 60 to 70 mph (48.7%) 

speed limit road. The road users were going ahead (50.0%) and leaving the 

lane to the left (57.5%) of the road. 

 

Cluster 3 (n=57) 

“Accidents occurring due to impairment and alcohol” 

Table 24 highlights the results for cluster 3, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

Table 24: Single vehicle cluster 3 analysis results 

Variable Value Percentage df N χ² Sig. 

Age  50-65 21.3 4 12 56.3 0.001 

 66+ 21.9 4 12   
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Failure mechanism Decision 33.4 5 20 92.0 0.001 

Contributory factor 1 Impairment 37.9 12 22 202.5 0.001 

 Alcohol 38.2 12 22   

Contributory factor 2 No factor coded 54.9 8 3 29.7 0.001 

Area type Urban 54.4 1 31 4.0 0.05 

Manoeuvre Going ahead 39.7 4 23 10.3 0.05 

Accident type  Leaving lane right 37.7 5 22 12.5 NS 

 

Human Factors 

The significant age group were road users above the age of 50 (43.2% in 

total). The main failure for this cluster was a decision failure (33.4%). The first 

contributing factor was impairment (37.9%) or alcohol (38.2%) and the 

second factor was no factor coded (54.9%).  

Vehicular Factors 

No vehicle type was over-represented in this cluster.  

Environmental/Infrastructural Factors 

These accidents occurred on an urban road (54.4) where the road users 

were going ahead (39.7%). The scenario leaving the lane to the right (37.7%) 

had a significant residual value despite the accident type group not having a 

significant chi square value. 

 

Cluster 4 (n=56) 

“Accident due to being in a hurry and detection failures in an 

intersection” 

Table 25 highlights the results for cluster 4, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 
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Table 25: Single vehicle cluster 4 analysis results 

Variable Value Percentage df N χ² Sig. 

Age  66+ 13.9 4 8 11.0 0.05 

Failure mechanism Detection 24.9 5 14 39.8 0.001 

Contributory factor 1 Psychological factors 34.6 12 19 46.8 0.001 

 Distraction 9.1 12 5   

 Visibility 9.3 12 5   

Contributory factor 2  Distraction 5.4 8 3 10.3 NS 

Emergency manoeuvre Brake 31.6 2 18 12.6 0.001 

Vehicle type PTW 30.7 2 17 35.0 0.001 

Speed limit 30 mph and under 73.2 2 41 65.9 0.001 

 40-50 mph 20.6 2 12   

Road type  Minor 46.1 3 26 17.1 0.001 

Area type Urban 90.5 1 51 62.7 0.001 

Light conditions Day 81.3 1 45 12.3 0.001 

Manoeuvre Intersection 48.8 4 37 27.9 0.001 

Accident type Roundabout 28.1 5 16 38.0 0.001 

 

Human Factors 

The road users age was 66 years and older (13.9%). The failures that were 

significant in this cluster were detection failures (24.9%). The first 

contributory factor was psychological factor (34.6%) or visibility issues (9.3%) 

and the factor distraction (5.4%) had a significant residual value despite the 

second contributory factor not having a significant chi square value.  

Vehicular Factors 

PTWs (30.7%) were over-represented in this cluster. 

Environmental/Infrastructural Factors 

These accidents occurred in urban areas (90.5%), during the day (81.3%), on 

a minor road (46.1%), in a 30 mph or under (73.2%) or 40-50 mph (20.6%) 

speed limit road. These accidents occurred on an intersection (48.8%) and 

the accident type coded were roundabout conflicts (28.1%). 



 

149 

 

Cluster 5 (n=51) 

“Diagnosis failures in a high speed setting due to vehicle factors” 

Table 26 highlights the results for cluster 5, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 26: Single vehicle cluster 5 analysis results 

Variable Value Percentage df N χ² Sig. 

Age  30-49 70.5 4 36 32.8 0.001 

Failure mechanism  Diagnosis 91.5 5 47 66.8 0.001 

Contributory factor 1 Inexperience 10.3 12 5 144.3 0.001 

 Road condition 16.5 12 8   

 Vehicle factors 29.0 12 15   

Contributory factor 2 No factor coded 44.3 8 23 11.9 NS 

Emergency manoeuvre Brake 34.1 2 17 14.9 0.001 

Vehicle type Other 22.9 2 12 22.6 0.05 

Speed limit  60-70 mph 89.5 2 46 28.5 0.05 

Road type  Motorway 44.3 3 23 48.7 0.05 

Area type  Rural 93.4 1 48 31.0 0.05 

Manoeuvre Going ahead 51.3 4 26 36.2 0.001 

 Right bend 30.5 4 16   

 

Human Factors 

Gender was not significantly over-represented in this cluster and the road 

user age range 30-49 year olds (70.5%) was significant. The main failure was 

a diagnosis failure (91.5%). The first contributory factors were vehicle factors 

(29.0), inexperience (10.3%), or the road condition (16.5%). A braking 

manoeuvre was made in 34.1% of these cases.  

Vehicular Factors 

The road user’s vehicle type coded as other (22.9%), which includes LGV, 

HGV and buses, were over-represented in this cluster. 
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Environmental/Infrastructural Factors 

These accidents occurred in a rural area (93.4%) with a speed limit of 60-70 

mph (89.5%) on a motorway (44.3%). These accidents occurred either with 

the road user going ahead (51.3%) or on a right hand bend (30.5%).  

 

Cluster 6 (n=47) 

“Accidents occurring in a low speed setting due to alcohol or breaking 

the law” 

Table 27 highlights the results for cluster 6, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 27: Single vehicle cluster 6 analysis results 

Variable Value Percentage df N χ² Sig. 

Road user gender  Male 87.4 1 41 5.6 0.05 

Road user age group 0-21 47.9 4 23 33.6 0.001 

Road user failure 
mechanism  

Decision 33.4 5 16 73.5 0.001 

Road user contributory 
factor 1 

Alcohol 40.0 12 19 129.8 0.001 

 Breaking the law 23.3 12 11   

 Inexperience 13.8 12 6   

Road user contributory 
factor 2  

Speed 48.2 8 23 58.5 0.001 

Vehicle type Car 97.6 2 46 8.0 0.05 

Speed limit 30 mph and under 83.9 2 39 64.3 0.001 

Road type Minor 50.4 3 24 15.7 0.01 

Area type Urban 82.2 1 39 35.0 0.001 

Light conditions Night 82.3 1 39 40.4 0.001 

Accident type  
Collision with obstruction/Hit 
parked car 

14.0 5 7 34.7 0.001 

 Roundabout 23.7 5 11   

 

Human Factors 
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The gender of the road user was male (87.4%). The road users age range 0 -

21 (47.9%) was over-represented. The main failure coded in this cluster were 

decision failures (33.4%), the significant first contributing factor was alcohol 

(40.0%) or breaking the law (23.3%) and the second contributing factor was 

speeding (48.2%).  

Vehicular Factors 

The vehicle type was coded as a car (97.6%). 

Environmental/Infrastructural Factors 

These accidents occurred in an urban area (82.2%) on a 30 mph or under 

speed limit (83.9%) road during the night (82.3%). The accident type was 

either a collision with obstruction (14.0%) or roundabout accident (23.7%). 

Cluster analysis results by injury outcome 

In terms of injury outcomes the cluster with the highest percentage of fatal 

injuries is cluster 3 and the cluster with the highest percentage of serious 

injuries is cluster 6. Clusters 2, 4 and 5 had a high number of non-injury 

cases, and cluster 1 had some serious injury cases but not a large number of 

fatal injuries. These figures can be seen in table 28. 

 

Table 28: Single vehicle accident injury outcome by cluster 

 Injury severity Clusters  

 1 2 3 4 5 6 n 

Fatal 3 1 10 0 0 4 18 

Serious 16 2 7 9 6 9 49 

Slight 30 22 21 24 12 12 121 

Non-injury 37 42 19 23 33 21 175 

Unknown 2 0 0 0 0 1 3 

 Total 88 67 57 56 51 47 366 
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6.3.3 Multiple vehicle accident cluster analysis  

Table 29 illustrates the different factors that were entered into the multiple 

vehicle accidents cluster analysis. A total of 17 specific variables were 

selected to be entered into this analysis according to the most relevant risk 

factors that are present in multiple vehicle accidents. These variables were 

divided into four groups. The human factors selected were the main failure 

that both of the road users were coded as making, as well as the main two 

contributory factors that were coded as occurring in the accident for the first 

road user and the main contributing factor that were coded as occurring for 

the second road user. These factors were coded using the HFF main 

categories for road user 1 with regards to both the main failure and 

contributory factor 1. The main failure for road user 2 included the six failure 

groups and a separate group called only present, which was added as a 

number of vehicles were coded as such. 

 Whether the road user was contributing to the accident, was a secondary 

contributing road user or not contributing to the accidents occurrence was 

also coded as the level of involvement. The age group and gender of each 

road user was also included in the analysis. 

The vehicle type was also coded for both vehicles. In terms of the 

environment and infrastructure different factors that described the road type, 

speed limit, and carriageway class were entered into the analysis. The 

manoeuvre of both of the road users was also included in the analysis as well 

as the accident type scenarios that were most prevalent. A detailed table of 

all of the values counts and percentages can be found in Appendix B (pp. 

335), in this table each overly represented significant factor is presented in 

bold. 

 

Table 29: Variables used in the multiple vehicle accident cluster analysis 

Variable Aspect Level Value 

Speed limit Environmental Accident ≥ 30 mph; 40-50 mph; 60-70 mph 

Road Area Environmental Accident Urban; Rural 

Light conditions Environmental Accident Day; Night 

Road user 1 
failure 
mechanism 

Traffic 
accident 

Road 
user 

Detection; Diagnosis; Prognosis; Decision; Execution; 
Overall 
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Road user 2 
failure 
mechanism 

Traffic 
accident 

Road 
user 

Detection; Diagnosis; Prognosis; Decision; Execution; 
Overall; Only present 

Road user 1 
gender  

Road user Road 
user 

Male; Female 

Road user 2 
gender  

Road user Road 
user 

Male; Female 

Road User 1 
age group 

Road user Road 
user 

0-17; 18-21 22-29; 30-49; 50-65; 66+ 

Road User 2 
age group 

Road user Road 
user 

0-17; 18-21; 22-29; 30-49; 50-65; 66+ 

Road user 1 
contributory 
factor 

Accident Road 
user 

Impairment; Alcohol; Psychological factors; Risk; 
Speed; Breaking the law; Inexperience; Distraction; 
Road Condition; Other road factors; Visibility Impaired; 
Obstacle in road; Vehicular factor; No factor coded 

Road user 2 
contributory 
factor  

Accident Road 
user 

Psychological; Identification; Risk taking; Traffic control; 
Atypical manoeuvres other road user; Illegal 
manoeuvres other road user; Other factors; Visibility; 
No factor coded 

Road user 1 
mode of 
transport 

Road user Vehicle Car; LGV; HGV/BUS; PTW; Pedestrian/Cycle 

Road user 2 
mode of 
transport 

Road user Vehicle Car; LGV; HGV/BUS; PTW; Pedestrian/Cycle 

Road type Environmental Accident A class; B class; Motorway; Minor 

Road user 1 
Manoeuvre 

Accident Road 
user 

Going ahead; Intersection; Turning left;; Right turn; Left 
turn; Overtaking; Other 

Road user 2 
Manoeuvre 

Accident Road 
user 

Going ahead; Intersection; Turning; Overtaking; 
Slowing in traffic; Other 

Accident type Accident Road 
user 

Rear-end; Right turn against; Right turn same direction; 
Left turn; Merging road; Roundabout; Leaving lane; 
Pedestrian; Going into the opposite lane; Overtaking; 
Other 

 

The latent class cluster analysis focused on the documented 673 accident 

files. The comparison of the AIC and BIC for the different clusters highlighted 

an 8 (25468.12) and 2 (27713.48) cluster solution respectively. The AIC 

criterion identified the 8 cluster solution as having the best separation and 

statistical significance for analysis purposes. The levels for both the AIC and 

BIC for 2 to 15 cluster solutions can be seen in figure 19.  
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Figure 19: AIC and BIC values for the multiple vehicle accident cluster 

analysis 

 

 Eight distinctive (separated) accident classes were highlighted resulting in 

an 8 solution cluster. The clusters were ordered with regards to case sizes 

and the sizes of each of the clusters can be seen in figure 20. A detailed list 

of all of the cluster results can be found in Appendix B (pp. 338). Factors that 

were identified as being significantly over-represented are highlighted in bold 

in the table.  

 

 

Figure 20: Multiple vehicle accident cluster sizes  
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Cluster analysis results 

Cluster 1 (n=123) 

“Turning accidents in a low speed setting due to detection issues from 

visibility or lane violations” 

Table 30 highlights the results for cluster 1, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 30: Multiple vehicle accident cluster 1 analysis results 

Variable Value Percentage df N  χ² Sig. 

Road user 1 gender  Female 38.7 1 48  5.8 0.05 

Road user 1 age group 30-49 49.1 5 60  20.5 0.01 

Road user 1 failure 
mechanism 

Detection 65.2 5 80  34.1 0.001 

Road user 1 contributory 
factor 

Breaking the law 49.9 13 61  133.2 0.001 

 Visibility 20.4 13 25    

Road user 2 age range 0-17 8.9 5 11  22.2 0.001 

 18-21 11.9 5 15    

Road user 2 failure 
mechanism 

Prognosis 93.6 6 115  15.0 0.05 

Road user 2 contributory 
factor 

Risk taking 5.6 9 7  98.1 0.001 

 
Illegal manoeuvres 
other driver 

57.0 9 70    

Road user 1 mode of 
transportation 

Car 90.9 4 112  34.9 0.001 

Road user 2 mode of 
transportation 

PTW 35.0 4 43  113.9 0.001 

Speed limit 30 mph and under 74.0 2 91  32.0 0.001 

Area type Urban 75.0 1 92  7.0 0.01 

Road type B class 23.8 3 29  35.4 0.001 

 Minor 41.8 3 51    

Road user 1 manoeuvre Intersection 77.6 5 95  164.2 0.001 

Road user 2 manoeuvre Going ahead 82.2 5 101  58.7 0.001 

Accident type Right turn against 37.5 10 46  4292.2 0.001 
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Right turn same 
direction 

19.7 10 24    

 Left turn 8.1 10 10    

 

Human Factors 

Road user 1: Female road users (38.7%) and the age range 30-49 (49.1%) 

were over-represented in this cluster. The failures for vehicle 1 were 

detection failures (65.2%). The first contributing factor for road user 1 was 

breaking the law (49.9%) or visibility issues (20.4%) 

Road user 2: The age groups 0-17 (8.9%) and 18-21 (11.9%) were over-

represented in this cluster. The failure type that was significant for this road 

user was prognosis failures (93.6%). The contributing risk factor was coded 

as other road user’s illegal manoeuvres (57.0%). 

Mode of transportation 

The vehicle coded for road user 1 was a car (90.9%). PTWs (35.0%) were 

significantly over-represented for the second road user. 

Environmental/Infrastructural Factors 

The accidents occurred in an urban (75.0%) area. The road type was either a 

B class (23.8%) or minor (41.8%) road that had a 30 mph or under speed 

limit (74.0%). The manoeuvre coded for road user 1 was at an intersection 

(77.6%) and the second road user was coded as going straight ahead 

(82.2%). The accident type was coded as right turn against (37.5%) or right 

turn same direction (19.7%). 

 

Cluster 2 (n=115) 

“Rear-end accidents in a high speed setting due to detection issues” 

Table 31 highlights the results for cluster 2, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 
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Table 31: Multiple vehicle accident cluster 2 analysis results 

Variable Value Percentage df  N χ² Sig. 

Road user 1 age group 22-29 26.1 5  30 23.3 0.001 

Road user 1 failure mechanism Detection 86.8 5  100 104.3 0.001 

Road user 1 contributory factor Distraction 15.3 13  17 108.8 0.001 

 Potential risk 10.1 13  12   

 No factor coded 28.9 13  33   

Road user 2 failure mechanism Prognosis 90.5 6  104 7.6 NS 

Road user 2 contributory factor Other road factors 8.5 9  4 122.6 0.001 

 Obstacle in road 8.6 9  2   

Road user 1 mode of transport LGV 11.4 4  13 44.9 0.001 

 HGV/BUS 12.9 4  15   

Road user 2 mode of transport  Car 80.4 4  84 10.0 0.05 

Speed limit  60-70 mph 55.9 2  97 44.6 0.001 

Urban rural  Rural 45.4 1  84 6.1 0.001 

Light conditions Day 87.9 1  13 8.1 0.01 

Carriageway A class 65.5 3  15 40.1 0.001 

 Motorway 15.4 3  84   

Road user 1 manoeuvre Going ahead 61.1 5  13 43.7 0.001 

Road user 2 manoeuvre  Intersection 28.6 5  64 233.3 0.001 

 Slowing in traffic 44.0 5  52   

Accident type Rear-end 87.0 10  101 439.3 0.001 

 

Human Factors 

Road user 1: Neither gender was over-represented for this cluster. The age 

group 22-29 (26.1%) was significant. The main failure that this road user 

made was detection failures (86.8%). The contributing factor for road user 1 

was no factor coded (28.9%) or distraction (15.3%). 

Road user 2: Gender and age range values were not significant for road 

user 2. The main road user failure was prognosis failures (90.5%) and the 

contributing risk factor was coded as other road factors (8.5%) or obstacle in 

road (8.6%).  
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 Mode of Transportation 

Road user 1 was over-represented as an LGV (11.4%) or HGV/BUS (12.9%) 

driver while road user 2 was a car driver (80.4%).  

Environmental/Infrastructural Factors 

These accidents occurred in rural areas (45.4%) in a 60-70 mph (55.9%) 

speed limit road during the day (87.9%) in an A class road (65.5%) or 

motorway (15.4%). The manoeuvre for road user 1 was going ahead (61.1%) 

and road user 2 was either at an intersection (28.6%) or slowing down in 

traffic (44.0%). The accident type was a rear-end accident (87.0%).  

 

Cluster 3 (n=99) 

“Urban road low speed accidents” 

Table 32 highlights the results for cluster 3, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

 

 

Table 32: Multiple vehicle accident cluster 3 analysis results 

Variable Value Percentage df  N χ² Sig. 

Road user 1 failure mechanism Prognosis 16.3 5  16 37.1 0.001 

Road user 1 contributory factor 
Psychological 
factors 

37.7 13  37 59.8 0.001 

 Other road factors 6.1 13  6   

Road user 2 failure mechanism Diagnosis 16.6 6  16 52.5 0.001 

 Decision 8.0 6  8   

 Only Present 3.7 6  4   

Road user 2 contributory factor  Psychological 6.0 9  6 44.5 0.001 

 Risk taking 6.3 9  6   

 Traffic control 6.5 9  6   
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Road user 1 mode of 
transportation 

PTW 15.3 4  15 51.6 0.001 

Speed limit 30 mph and under 71.8 2  71 29.4 0.001 

Area type Urban 82.2 1  81 15.7 0.001 

Light conditions Day 86.1 1  85 24.6 0.05 

Road type B class 23.5 3  23 25.1 0.001 

 Minor 40.9 3  40   

Road user 1 manoeuvre Turning right 26.2 5  26 102.5 0.001 

 Turning left 11.5 5  11   

 Intersection 15.5 5  15   

Road user 2 manoeuvre Turning 23.3 5  23 89.5 0.001 

 Overtaking 17.7 5  18   

Accident type Merging road 14.2 10  14 119.4 0.001 

 Overtaking 17.7 10  18   

 Other 17.9 10  18   

 

Human Factors 

Road user 1: Gender and age range values were not significant for this 

cluster. The failures that were over-represented for road user 1 were 

prognosis failures (16.3%). The first contributing factor for road user 1 were 

psychological factors (37.7%).  

Vehicle 2: Gender and age range values were not significant for this cluster. 

The failure types that were significant for this road user were diagnosis 

(16.6%) failures. The contributing risk factor was coded as psychological 

factors (6.0%), risk taking (6.3%) or traffic control (6.5%) factors. 

Mode of transportation 

The vehicle coded for road user 1 was a PTW (15.3%). The second road 

user did not have a significantly over-represented mode of transportation. 

Environmental/Infrastructural Factors 

These accidents occurred in urban areas (82.2%) in a 30 mph or under road 

(71.8%) during the day time (86.1%) and in a B class (23.5%) or minor road 

(40.9%). Road user 1’s manoeuvre was either turning right (26.2%), turning 
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left (11.5%) or intersection (15.5%). Road user 2’s manoeuvre was turning 

(23.3%), or overtaking (17.7%). The accident type was overtaking (17.7%), 

other (17.9%) or merging road (14.2%). 

 

Cluster 4 (n=81) 

“Lane violation due to speed or impairment” 

Table 33 highlights the results for cluster 4, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 33: Multiple vehicle accident cluster 4 analysis results 

Variable Value Percentage df N χ² Sig. 

Road user 1 age group 18-21 20.7 1 17 11.5 0.05 

Road user 1 failure mechanism Diagnosis 42.6 5 34 84.9 0.001 

 Prognosis 11.9 5 10   

 Execution 9.5 5 8   

 Overall 15.4 5 12   

Road user 1 contributory factor Alcohol 8.6 13 7 161.8 0.001 

 Speed 42.7 13 35   

 Experience 7.3 13 6   

 Road condition 7.3 13 6   

Road user 2 age group 50-65 29.4 5 24 11.1 0.05 

Road user 2 failure mechanism Prognosis 97.2 6 10 18.8 0.01 

Road user 2 contributory factor No factor coded 65.2 9 53 25.1 0.01 

Road user 1 mode of transport Car 86.7 4 70 26.4 0.001 

 Motorcycle 9.2 4 7   

Road user 2 mode of transport  Car 84.4 4 70 19.9 0.001 

Speed limit  60-70 mph 46.8 2 38 13.3 0.01 

Road area  Rural 58.2 1 47 21.0 0.001 

Road type B class 26.3 3 21 14.2 0.01 

Road user 1 manoeuvre Going ahead 82.6 5 67 94.7 0.001 
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Road user 2 manoeuvre Going ahead 83.6 5 68 35.6 0.001 

Accident type Going into opposite lane 67.8 9 55 377.1 0.001 

 

Human Factors 

Road user 1: The gender of the first road user was not significant and the 

age range 18-21 (20.7%) was over-represented. The failures that are over-

represented for vehicle 1 were diagnosis failures (42.6%), prognosis failures 

(11.9%) and overall failures (15.4%). The first contributing factors for road 

user 1 that predominantly occurred were speed factors (42.7%) or alcohol 

(8.6%). 

Road user 2: Neither gender was significant for the second road user. The 

age range between 50 to 65 year old (29.4%) was over-represented. The 

failure type that was significant for this road user was prognosis failures 

(97.2%). The contributing risk factor was coded as no factors coded (65.2%). 

Mode of transportation 

The vehicle coded for road user 1 was a car (86.7%). The second road user 

was also coded as a car driver (84.4%). 

Environmental/Infrastructural Factors 

The accidents occurred in rural areas (58.2%) with a 60-70 mph speed limit 

(46.6%). The manoeuvre coded for road user 1 was going ahead (82.6%) 

and for the second road user was also going ahead (83.6%).The accident 

type was going into the opposite lane (67.8%). 

 

Cluster 5 (n=78) 

“Intersection accidents due to breaking the law” 

Table 34 highlights the results for cluster 5, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 
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Table 34: Multiple vehicle accident cluster 5 analysis results 

Variable Value Percentage df N χ² Sig. 

Road user 1 age group 50-65 18.6 5 14 18.2 0.01 

 66+ 13.1 5 10   

Road user 1 failure 
mechanism 

Diagnosis 29.5 5 23 49.1 0.001 

 Decision 32.2 5 25   

 Overall 17.4 5 14   

Road user 1 contributory 
factor 

Alcohol 8.8 13 7 123.0 0.001 

 Potential risk 12.3 13 10   

 Breaking the law 58.6 13 46   

 Experience 7.6 13 6   

Road user 2 failure 
mechanism 

Prognosis 95.8 6 75 11.1 NS 

Road user 2 contributory 
factor 

Illegal manoeuvres other 
driver 

71.4 9 56 110.4 0.001 

Road user 1 mode of 
transport 

Car 85.8 4 72 11.0 0.05 

Road user 2 mode of 
transport 

Car 82.5 4 67 18.1 0.01 

Speed limit 40-50 mph 41.6 2 32 33.6 0.001 

Road area Urban 76.2 1 59 45.1 0.05 

Light conditions Night 31.4 1 25 4.4 0.05 

Road type A class 80.0 3 62 38.4 0.001 

Road user 1 manoeuvre Intersection 56.3 5 44 129.3 0.001 

 Turning right 36.5 5 28   

Road user 2 manoeuvre Intersection 61.0 5 48 90.3 0.001 

Accident type Merging road 37.1 9 29 215.9 0.001 

 Roundabout 17.6 9 14   

 

Human Factors 

Road user 1: Road user 1’s gender did not have an over-represented group. 

The age groups 50-65 (18.6%) and 66+ (13.1%) were over-represented for 

this cluster. The failures that are over-represented for road user 1 were 

decision failures (32.2%), diagnosis failures (29.5%) or overall failures 
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(17.4%). The first contributing factor for road user 1 that predominantly 

occurred was breaking the law (58.6%).  

Road user 2: Neither gender nor age groups were significant for this cluster. 

The failure type that was significant for this road user were prognosis failures 

(95.8%). The contributing risk factor was coded as other road user’s illegal 

manoeuvres (71.4%). 

Mode of transportation 

The vehicle coded for road user 1 was a car (85.8%). The vehicle coded for 

the second road user was also a car (82.5%). 

Environmental/Infrastructural Factors 

The accidents occurred in an urban area (76.2%). The accident occurred on 

a road with a 40-50 mph speed limit (41.6%), during the night (31.4%) and in 

an A class road (80%). The manoeuvre coded for road user 1 was 

intersection (56.3%) or turning right (36.5%). The second road users 

manoeuvre was coded as intersection (61.0%). The scenario was a merging 

road (37.1%) or roundabout (17.6%). 

 

Cluster 6 (n=68) 

“Right of way violation due to road user risk taking or illegal behaviour” 

Table 35 highlights the results for cluster 6, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 35: Multiple vehicle accident cluster 6 analysis results 

Variable Value Percentage df N χ² Sig. 

Road user 1 gender Male 83.6 1 57 26.4 0.001 

Road user 1 age groups 30-49 56.1 5 38 49.8 0.001 

 66+ 11.9 5 8   

Road user 1 failure 
mechanism 

Execution 11.9 5 8 41.4 0.001 



 

164 

 

Road user 1 contributory 
factor 

Potential risk 12.9 5 9 102.2 0.001 

 Vehicle factors 16.4 13 11   

Road user 2 failure 
mechanism 

Diagnosis 14.3 9 10 32.2 0.001 

Road user 2 contributory 
factor 

Traffic control 10.0 9 7 59.7 0.001 

 
Atypical manoeuvres other 
driver 

24.2 9 16   

Road user 1 mode of 
transport 

HGV/BUS 22.4 4 15 62.3 0.001 

Road user 2 mode of 
transport 

HGV/BUS 20.0 4 14 43.5 0.001 

Speed limit  60-70 mph 89.9 2 61 148.8 0.001 

Road area  Rural 88.9 1 60 116.4 0.001 

Road type Motorway 58.1 3 40 271.6 0.001 

Road user 1 manoeuvre Going ahead 51.7 5 35 93.1 0.001 

 Intersection 24.6 5 17   

 Other 21.4 5 15   

Road user 2 manoeuvre Going ahead 79.7 5 54 57.1 0.001 

 Overtaking 8.8 5 6   

Accident type Leaving lane 8.8 9 6 173.1 0.001 

 Overtaking 41.3 9 28   

 

Human Factors 

Vehicle 1: The first road users gender was male (83.6%) and age range was 

30-49 (56.1%). The main failures that are over-represented for vehicle 1 were 

execution (11.9%) failures. The first contributing factors for road user 1 that 

predominantly occurred were potential risk (12.9%), or vehicular factors 

(16.4%).  

Vehicle 2: No gender was significant, while the age group was significant as 

a chi square analysis but did not have a group that was over-represented. 

The failure type that was significant for this road user were diagnosis failures 

(14.3%), and the first contributing factors for road user 2 that predominantly 

occurred were other road user’s atypical manoeuvres (24.2%) 

Mode of transportation 
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The vehicle coded for road user 1 was a HGV/BUS (22.4%) and for road user 

2 was also a HGV/BUS (20.0%). 

Environmental/Infrastructural Factors 

The accidents predominantly occurred in roads that had a 60-70 mph speed 

limit (89.9%) in a rural area (88.9%) on a motorway (58.1%). The manoeuvre 

coded for road user 1 was going ahead (51.7%) and for road user 2 it was 

also going ahead (79.7%). The scenario was an overtaking (41.3%) or 

leaving lane (8.8%) accident. 

 

Cluster 7 (n=60) 

“Pedestrian accidents occurring as a result of impairment” 

Table 36 highlights the results for cluster 7, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 36: Multiple vehicle accident cluster 7 analysis results 

Variable Value Percentage df N χ² Sig. 

Road user 1 age group 0-17 68.7 5 41 283.0 0.001 

 66+ 8.0 5 5   

Road user 1 failure 
mechanism 

Overall 33.5 5 20 54.0 0.001 

Road user 1 contributory 
factor 

Impairment 31.8 13 19 126.5 0.001 

Road user 2 gender Female 40.1 13 24 4.5 0.05 

Road user 2 failure 
mechanism 

Detection 20.0 6 12 27.8 0.001 

Road user 2 contributory 
factor 

Atypical manoeuvres other 
driver 

20.0 9 12 86.0 0.001 

 Other factors 8.4 9 5   

 Visibility 25.1 9 15   

Road user 1 mode of 
transport 

Pedestrian/Cycle 100.0 4 60 405.7 0.001 

Road user 2 mode of 
transport  

Car 90.3 4 54 14.5 0.01 

Speed limit 30 mph and under 81.3 2 49 26.7 0.001 
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Area type Urban 85.0 1 51 11.9 0.001 

Road type Minor 57.0 3 34 31.5 0.001 

Road user 1 manoeuvre Going ahead 48.2 5 29 76.5 0.001 

 Other 43.4 5 26   

Road user 2 manoeuvre Going ahead 79.8 5 29 27.2 0.001 

Accident type Pedestrian 83.2 10 50 263.5 0.001 

 

Human Factors 

Road user 1: Gender was not significant for this cluster. The age range 0-17 

(68.7%) was over-represented. The failures that are over-represented for this 

road user were overall failures (33.5%) and the contributory factor 

impairment (31.8%) was also over-represented.  

Road user 2: Being female (40.1%) was significant for this road user. The 

failure type detection failures (20.0%) was significant, and the contributing 

risk factor was coded as atypical manoeuvres other road user (20.0%). 

Mode of transportation 

The first road user was a pedestrian/cycle (100.0%). The vehicle type for the 

second road user was a car (90.3%). 

Environmental/Infrastructural Factors 

The main factors that were outlined in this analysis were that the accidents 

occurred on a 30 mph speed limit (81.3%) urban area (85.0%) minor road 

(57.0%). The accidents that were significant in this cluster were pedestrian 

accidents (83.2%). Both road users were going ahead (48.2% and 79.8%) 

and the accident type was a pedestrian (83.2%) accident. 

 

Cluster 8 (n=49) 

“Pedestrian/Cyclist to car accidents where road user made the primary 

contributory behaviour” 
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Table 37 highlights the results for cluster 8, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 37: Multiple vehicle accident cluster 8 analysis results 

Variable Value Percentage df N χ² Sig. 

Road user 1 gender  Female 43.4 1 21 4.7 0.05 

Road user 1 age group 0-17 14.2 5 7 16.4 0.01 

 18-21 20.5 5 10   

 66+ 12.7 5 6   

Road user 1 failure 
mechanism 

Decision 44.1 5 22 33.6 0.001 

 Overall 14.2 5 7   

Road user 1 contributory 
factor 

Psychological factors 28.7 13 14 16.9 NS 

Road user 2 age group 0-17 22.5 5 7 54.1 0.001 

 18-21 8.0 5 10   

 66+ 8.1 5 6   

Road user 2 failure 
mechanism 

Detection 14.4 6 7 54.2 0.001 

 Overall 6.0 6 7   

Road user 2 contributory 
factor 

Psychological 10.2 9 5 37.3 0.001 

 
Atypical manoeuvres other 
driver 

22.3 9 11   

 Visibility 11.8 9 6   

Road user 1 mode of 
transport 

Pedestrian/Cycle 48.8 4 24 56.8 0.001 

Road user 2 mode of 
transport 

Pedestrian/Cycle 48.8 4 24 140.9 0.001 

Speed limit 30 mph and under 92.2 2 45 36.8 0.001 

Area type Urban 95.9 1 47 22.6 0.001 

Light conditions  Night 34.3 1 17 4.5 0.05 

Road user 1 manoeuvre 
type 

Intersection 54.1 5 28 26.5 0.001 

Road user 2 manoeuvre 
type 

Other 23.1 5 11 122.7 0.001 

 Intersection 52.2 5 27   

Accident type Pedestrian 91.8 10 44 262.5 0.001 



 

168 

 

 

Human Factors 

Road User 1: Road user 1’s gender was female (43.4%) and the age range 

0-17 (14.2%), 18-21 (20.5%) and 66 years or older (12.7%) were significant 

for this cluster. The failures that are over-represented are decision failures 

(44.1%) or overall failures (14.2%). The first contributing factor for road user 

1 was psychological factors (28.7%)  

Vehicle 2: The road users age range was either 0-21 (30.5%) or 66 and 

above (8.1%). The failure types were detection failures (14.4%) or overall 

failures (6.0%). The contributing risk factor was coded as other road user’s 

atypical manoeuvres (22.3%) or psychological factors (10.2%). 

Vehicular Factors 

The vehicle coded for road user 1 was a pedestrian/cycle (48.8%). The 

second road user was coded as a pedestrian/cycle (48.8%). 

Environmental/Infrastructural Factors 

The accidents occurred in an urban area (95.9%). The road had a 30 mph 

speed limit (92.2%). These accidents occurred disproportionally during night 

time (34.3%). The manoeuvre coded for road user 1 was intersection 

(54.1%), and the manoeuvres for road user 2 were coded as other (23.1%) or 

intersection (52.2%). The accident was coded as pedestrian (91.8%). 

 

Cluster by injury 

In terms of injury outcomes the cluster with the highest percentage of fatal 

and serious injuries is cluster 4 which had the highest number of fatal injuries 

and the second highest number of serious injuries. These figures can be 

seen in table 38.  

 

 

 

 



 

169 

 

Table 38: Multiple vehicle accident injury outcome by cluster 

 Injury severity Clusters   
 

 
1 2 3 4 5 6 7 8 n 

Fatal 5 1 1 12 0 2 5 3 29 

Serious 18 7 17 17 10 10 14 15 108 

Slight 84 71 59 40 45 37 40 29 405 

Non-injury 16 36 22 12 23 18 1 2 130 

Unknown 0 0 0 0 0 1 0 0 1 

 Total 123 115 99 81 78 68 60 49 673 

 

6.4 Discussion 

A latent class cluster analysis was performed on both single and multi-vehicle 

accident types in order to understand, and statistically identify, the 

meaningful accident scenarios with regards to these different types of 

accidents. One of the main points of the analysis was to demonstrate 

different accident scenario groupings using significant factors. The results of 

the two analyses are discussed in the sections below. 

6.4.1 Descriptive statistics analysis results 

Failure type 

The analysis of the descriptive statistics shows that the group of accidents 

that were most often coded were prognosis accidents. These types of 

accidents occur when a road user can not anticipate a manoeuvre that 

another road user is making, and so the road user either does not make a 

mitigating emergency manoeuvre or does not have time to react to the other 

road user. 

In relation to gender females were more likely to make detection failures, 

execution failures and prognosis failures, while males were more likely to 

make decision failures and overall failures. These findings are similar to 

studies that have used macroscopic accident data (Clarke et al., 2007). 
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In terms of the road type decision failures were most commonly occurring in 

30 mph speed limit roads, while execution failures mostly occurred in higher 

speed roads and under-represented in lower speed roads. The link between 

speed and crash rate has been well documented (Aarts & van Schagen, 

2006; Elvik et al., 2004), so the execution failures may be due to the 

possibility of recovering from an error made when the speed is low but having 

a shorter time gap with higher travelling speeds 

Contributory factor 

Breaking the law (18.6%), speed (16.3%) and in a hurry (16.6%) were the 

main contributory factors that were identified in the analysis. Violations are a 

common cause of accidents occurring, in the data these behaviours were 

particularly over-represented for diagnosis and decision based failures.  

The nature of the failures that road users make while speeding leads to 

issues with diagnosing the road, illegal manoeuvring or, when combined with 

a decrease in sensory ability, not being able to react to the situation ahead. 

The road user’s choice led to them either not anticipating the roadway, and to 

not be able to diagnose the situation, or their rule breaking leading to a 

conflict situation. 

Road user age 

 In terms of age younger road users (18-21) were over-represented in the 

dataset for diagnosis failures. Older road users were over-represented in 

terms of detection and prognosis failure types. These issues point towards 

male younger road user’s higher propensity towards risk taking (Laapotti & 

Keskinen, 1998). 

6.4.2 Single vehicle accidents cluster analysis results 

Results for the single vehicle accidents provided a clear definition of 

scenarios with the analysis classifying the accidents into 6 different clusters. 

A detailed listing of all relevant factors present in the single vehicle cluster 

model as well as some explanatory descriptive variables for the clusters is 

presented in table 39. 
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The two largest groups of clusters were due to the road user speeding and 

an individual leaving the lane due to psychological factors or the road 

condition in a high speed setting. The nature of single vehicle accidents for 

men was related to speed and impairment resulting from either a decision to 

make a dangerous manoeuvre or misdiagnosis of the roadside obstacles. 

The main type of failure for women was detection failures which can be seen 

in cluster 2. Differences between male and female single vehicle accidents 

were also observed, with females being 2.5 times more likely than males to 

make detections failures and 1.5 times more likely to make execution 

failures. The common accident failure types for males were diagnosis failure, 

which they were 1.5 times more likely to make compared to females. The 

majority of cases were identified as loss of control accidents, though there 

were differentiations based on different group attributes with regards to these 

accidents. 

Cluster 1 

Cluster 1 identified a diagnosis failure due to speed in a high speed setting. 

In terms of gender and age, males and young and middle age road users 

trended more for these group of accidents. The road user did not make a 

reactionary manoeuvre during these accidents. Some additional factors that 

were identified by the cluster analysis were visibility issues, being in a rural 

area and leaving the road lane.  

Cluster 2 

Cluster 2 presented single vehicle accidents where psychological factors 

were related to detection failures. Over half of the cases present in this 

cluster were vehicles that were going straight and made an emergency 

steering reaction. These results are in line with the findings of Lapooti and 

Keskinen (1998), though the contributory factors for female single vehicle 

road users were cognitive factors in that study. 

Cluster 3 

Cluster 3 represented an accident type that is related to impairment and 

alcohol, where the road user did not make an emergency manoeuvre and 

was travelling on a straight road during the night. 
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Cluster 4 

Of the 36 documented PTW rider failures for single vehicle accidents, 17 

were present in cluster 4 with an equal distribution between 4 different failure 

mechanisms (detection, diagnosis, execution and overall failures).  

Cluster 5 

Cluster 5 grouped together a number of accidents on a high speed road due 

to diagnosis failures. In these accidents the road user was not able to 

correctly diagnose the road setting due to vehicle issues or the road 

condition. 

Cluster 6 

Cluster 6 grouped young male riders that either made a violation or took 

alcohol. The main failures for this group were decision failures. 
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Table 39: Single vehicle cluster analysis model and variables  

Cluster/ N of 
cases/% of 
cases 

 Descriptive information  Cluster model 

 Accident type Casualty 
level 

 Main failures Contributory 
factor 1 

Contributory  
Factor 2 

Gender/ Age Manoeuvre Road setting Accident 
setting 

1 
 
88 
 
24.0% 
 

 Loss of control on a bend Fatal (0) 
Serious (6) 
Slight (12) 
Non-injury 
(33) 

 Diagnosis Speed Psychological Male/ 
0-21 
 

Leaving lane 
left 
 

Left bend 
 
Right bend 

60-70 mph 
Rural area 
 

2  
 
67 
 
18.3% 
 

 Loss of control on a 
straight road 

Fatal (1) 
Serious (2) 
Slight (22) 
Non-injury 
(42) 

 Detection Psychological 
Road 
condition 

 Female/ 
22-29 

Leaving lane 
left 
 

Going ahead 60-70 mph 
Rural area 
 

3 
 
57 
 
15.6% 

 Loss of control on a 
straight road or a bend 

Fatal (4) 
Serious (9) 
Slight (12) 
Non-injury 
(22) 

 Decision 
 

Alcohol 
Impairment 

No factor 
coded 

50+ Leaving lane 
right 

Going ahead 60-70 mph 
Urban area 
 

4 
 
56 
 
15.3% 

 Loss of control in an 
intersection 

Fatal (0) 
Serious (9) 
Slight (24) 
Non-injury 
(23) 

 Detection Psychological Distraction 66+ Roundabout 
 

Intersection Minor road 
30 mph 
Urban area 
Daytime 

5 
 
51 
 
13.9% 

 Loss of control on a bend Fatal (3) 
Serious (16) 
Slight (30) 
Non-injury 
(39) 

 Diagnosis Vehicle 
factors 
Road 
condition 
 

 30-49 Leaving lane 
left 

Right bend B road 
60-70 mph 
Rural area 
Daytime 

6 
 
47 
 
12.8% 

 Loss of control on a 
straight road  

Fatal (10) 
Serious (7) 
Slight (21) 
Non-injury 
(19) 

 
 
 

Decision 
 

Alcohol 
Breaking the 
law 

Speed 
 

Male/ 
0-21 

Roundabout 
Other 

 Minor road 
30 mph 
Urban area 
Night-time 
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6.4.3 Multiple vehicle accidents cluster analysis results 

The multiple vehicle accidents latent class cluster analysis provided an 8 

cluster result. Due to the large amount of data within the analysis most of the 

cases were characterised by the manoeuvre and accident type that occurred.  

A detailed listing of all relevant factors present in the multiple vehicle cluster 

model as well as some explanatory descriptive variables for the clusters is 

present in table 40. 

The single vehicle accidents identified different scenarios for male and 

female road users, as well as PTW riders compared to car drivers or 

pedestrians. The multiple vehicle cluster analysis differentiations were based 

less on demographic variables. The multiple vehicle accident analysis 

identified differences between a number of turning accidents with regards to 

the human failure that was made. Each cluster result is discussed in the 

section below. 

Cluster 1 

The largest cluster grouped turning accidents into one group, particularly 

right turn accidents which in the UK involve crossing the roadway against 

oncoming vehicles. These accidents were right of way violations where the 

first road user did not detect the second road user due to the road user 

disobeying traffic rules in nearly half of these cases. These accident types 

were evenly distributed over all road user ages and for the first road user 

females were over-represented and for the second road user males were not 

over-represented but accounted for 78.1% of the cases. The described 

gender effect found was similar to Clarke et al.’s (1998) findings. 

The structure of the cluster identified that similar accidents occur to all types 

of road users. PTWs were also over-represented as the second road user in 

this accident type. Nearly 50% of these accidents involved VRU’s, as the 

second road user that did not expect the first road user to make their 

manoeuvre. In nearly half of these cases the road user either concentrated 

on ‘visibility constraints’ or ‘information processing’ concentrating on a portion 

of the accident.  

Cluster 2 
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The second largest group of accidents were rear-end accidents where the 

road user was either distracted or not paying attention to the road user ahead 

in high speed situations following a vehicle that braked. The road user ahead 

was slowing down in traffic and this situation was not identified by the first 

road user, most commonly due to this vehicle not expecting the vehicle in 

front to be static or slowing down. Over 80% of all rear-end accidents within 

the data were present in this cluster. In a large number of these cases a 

breaking manoeuvre was made but due to the high speed setting the 

accident occurred. Visibility conditions were not an issue in this accident type 

rather ‘hurried information acquisition’ or the expectation that the other road 

user would not be in front of the driver were of particular importance. This 

study showed a difference compared to Singh (2003) in that the road users 

did not trend as younger drivers, though 65% of the striking vehicle did 

involve male drivers similar to the US sample, the difference in age range 

may be a result of either the smaller sample size or the differences between 

UK and US drivers.  

Cluster 3 

Cluster 3 is an amalgamation of different accidents in a low speed limit road. 

Close to 25% of the road users made a steering avoidance manoeuvre but 

were not able to stop the accident from occurring. These accidents occurred 

as a result of manoeuvring by road user 1 and a number of failures were tied 

to this accident type, the largest of which was detection failures despite this 

failure type not being over-represented. 

Cluster 4 

Cluster 4 identified a lane violation accident in a high speed limit road. The 

results highlighted speed as an important factor and diagnosis failures or 

overall failures were identified as the most significant failures. For this cluster 

most of the high injury setting accidents either occurred as a result of 

detection failures or decision failures. When road users either did not detect 

the road user ahead or made a decision to undertake risky behaviour injury 

outcomes were found to be more severe. 

Cluster 5 
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 Cluster 5 identified a situation at an intersection where the first road user 

was either turning or going ahead. These accidents were based on right of 

way violations due to an incorrect decision or diagnosis of the accident. 

These accident types had a low number of serious injury accidents, there 

were mostly slight injury outcomes. 

Cluster 6 

Clusters 6 highlighted an accident situation where right of way violations 

occurred due to a detection failure or diagnosis failure, these failures had 

high descriptive values despite not being statistically over-represented. Road 

user 2 was making an overtaking manoeuvre and this was not perceived by 

the first road user. These failures were due to incorrect overtaking 

manoeuvres with vehicles going in the same directions. 

Cluster 7 and 8 

Clusters 7 and 8 highlighted two pedestrian accidents where the pedestrian 

undertook risky behaviours that did not allow the other road user to identify 

them or react in time. Cluster 8 identified a pedestrian conflict where in nearly 

half of the cases the pedestrian made the overall failure and in the other half 

the road user other than the pedestrian made the main failure. These clusters 

grouped together all pedestrian accident types, and there is a high likelihood 

that the difference in accident configurations compared to the other clusters, 

due to pedestrians being present in the accidents, caused this difference. 

These accident types will be further analysed in detail in chapter 9 when 

analysing pedestrian accident specific clusters, as the cluster analysis 

grouping was made based on the different road user type rather than a 

specific accident.  
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Table 40: Multiple vehicle cluster analysis model and variables  

Cluster/ N or 
cases/% of 
cases 

 Descriptive information  Cluster model 

 Accident type Configuration Casualty level  Road user Main failures Contributory factor Gender/ Age Manoeuvre Accident setting 

1 

 

123 cases 

 

18.3% 

 Right turn (same 
direction/against) 

Car to Car (56) 

Car to PTW (38) 

Fatal (5) 

Serious (18) 

Slight (84) 

Non-injury (16) 

 
1 Detection Breaking the law 

Female/ 

30-49 

Turning at 
intersection 

B road/ 

Minor road 

30 Mph Or under 
speed limit 

Urban area 

Night-time 

  

2 Prognosis 
Other driver illegal 

manoeuvres 

Male/ 

0-17 

18-21 

Going ahead at 
intersection 

2 

 

115 cases 

 

17.1% 

 Rear-end Car to Car (70) 

LGV to Car (10) 

HGV to car (10) 

Fatal (1) 

Serious (7) 

Slight (71) 

Non-injury (36) 

 
1 Detection In a hurry 

Female/ 

22-65 
Going ahead 

A class road/ 
Motorway 

60-70 Mph 

Rural area  

Daytime 

 

  

2 Prognosis Road factor 
Male/ 

30+ 

Slowing in traffic 
Intersection 

3 

 

99 cases 

 

14.7% 

 Urban road low 
speed accidents 

Car to Car (54) 

Car to PTW (13) 

Fatal (1) 

Serious (17) 

Slight (59) 

Non-injury (22) 

 
1 

Detection 

Decision 
Psychological factors 22-29 

Turning right 

Other 

B class/ Minor 
road 

30 mph 

Urban area 

Daytime 

  

2 Prognosis No factors coded 
Female/ 

22-29 

Turning 

Overtaking 

4 

 

81 

 

12.0% 

 Going into opposite 
lane 

Car to Car (62) Fatal (12) 

Serious (17) 

Slight (40) 

Non-injury (12) 

 
1 Diagnosis Speed 

Male/ 

18-21 

Going into opposite 
lane 

B class 

60-70 Mph 

Rural area 

Daytime 

 

 

  

2 Prognosis No factor coded 50-65 Going ahead 
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5 

 

78 cases 

 

11.6% 

 Intersection 
accidents 

Car to car (61) Fatal (0) 

Serious (10) 

Slight (45) 

Non-injury (23) 

 

1 

Decision 

Diagnosis 

Overall 

Breaking the law 
Male/ 

50+ 

Merging road/ 

Roundabout 

A class road 

40-50 Mph 

Night-time 

Urban area   
2 Prognosis 

Other road user illegal 
manoeuvre 

Male/ 

18-29 
Intersection 

6 

 

68 

 

10.1% 

 Overtaking situations Car to Car (27) 

HGV/Bus to Car(23) 

Car to PTW(9) 

Fatal (2) 

Serious (10) 

Slight (37) 

Non-injury (19) 

 
1 

Detection 

Execution 

Risk factors 

Vehicle factors 

Male/ 

30-49 

Overtaking 

Other 

Motorway 

60-70 Mph 

Daytime   

2 
Diagnosis 

Prognosis 

Other road user 
atypical manoeuvre 

22-29 Going ahead 

7 

 

60 cases 

 

8.9% 

 Pedestrian 
Impairment 

Pedestrian to car (54) Fatal (5) 

Serious (14) 

Slight (40) 

Non-injury (1) 

 
1 Overall 

Impairment 

 

Male/  

         0-17 
Pedestrian 

Minor road 

30 Mph  

Urban   

2 Prognosis 

Visibility 

Other road user 
atypical manoeuvre 

Female/ 

30-65 
Going ahead 

8 

 

49 cases 

 

7.3% 

 Pedestrian 

Law breaking 

Car to pedestrian (24) 

Pedestrian to car (21) 

Fatal (3) 

Serious (15) 

Slight (29) 

Non-injury (2) 

 

1 Decision 

Breaking the law 

Psychological factors 

Impairment 

Female/ 

0-21 

66+ 

Pedestrian 

A class road 

30 Mph 

Urban 

Night-time   

2 
Detection 

Decision 

Other road user 
atypical manoeuvre 

Visibility 

Male/            0-
17 

Intersection other 
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6.4.4 Countermeasure indications 

Single vehicle accidents 

The single vehicle accident clusters point to speed as being an important 

factor, both in low speed limit and high speed limit areas. The possible 

countermeasures related to speed are plentiful and can be selected based on 

the traffic environments specific requirements. The analysis identified that 

different factors contribute to the road user’s difficulty in analysing the 

roadside and undertaking appropriate manoeuvres. Females and males were 

found to have different accident configurations in similar road situations. The 

possible countermeasure indications for these accidents are outlined below. 

The factors that can be considered are: 

 Speed 

 Alcohol 

 Road conditions 

The relationship between speed, injury and accident occurrence has been 

well documented throughout the literature (Baruya & Finch, 1994; Elvik et al., 

2004). Countermeasures to reduce speed are not just important for single 

vehicle accidents but for all accident types, as with lower speeds the time 

that is possible for a countermeasure increases (Carsten & Tate, 2005). 

Intelligent speed adaption devices have been estimated to reduce up to 33% 

of accidents on urban roads in field trials (Lai, Carsten, & Tate, 2012).  

Simple laboratory task performance has been showed to be highly influenced 

when they involve secondary impairment (Fillmore, Stockwell, Chikritzhs, 

Bostrom, & Kerr, 2007; Holloway, 1995). A study by Clarke et al. (2007) 

showed that alcohol was present in 20% of a sample of 1185 fatal traffic 

accidents in the UK between the years 1994-2005. Dunaway, Will, and Sabo 

(2011) listed a large number of possible alcohol prevention measures ranging 

from relating to individual measures (deterrence laws) to alcohol control 

policies which can prove effective in the dropping of these accident types. 

Roadside factors identified by this study were road defects/layout which was 

a contributory factor in 6% of the cases and road contaminants which was a 
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factor in 8% of all single vehicle accidents. The condition of the road is 

particularly important for drivers and depending on the roadside infrastructure 

a number of possible countermeasures are available, such as geometric 

countermeasures, signalization countermeasures and road side 

markings/signs. These countermeasures should be made based on site 

specific criteria, and though outside the scope of this study are important 

nonetheless. 

Multiple vehicle accidents 

In terms of the multiple vehicle accidents the clusters were based around the 

crash configurations turning accidents, rear-end accident, lane violations, 

intersection accidents and right of way violation accidents. 

The issues identified in turning accidents for cluster 1 were detection based, 

over 25% of the cases were due to the road user having hurried or ineffective 

visual search patterns for other road users with conflicting paths and close to 

20% were due to visibility constraint conditions. Most of these accidents 

occurred at intersections (77.2%), where the omission of detection of a key 

element will lead to the conflict or accident situation to occur (Clarke et al., 

1998). Ideally the safety systems that would help these accident types are 

inter-vehicle communication systems which provide information to the road 

user depending on other vehicle/VRU’s behaviour and impending conflict 

situations.  

The lane violation accidents from cluster 4 were due to speed or alcohol and 

the countermeasures for this cluster could be speed based measures or a 

lane departure warning system.  

Intersection accidents identified in cluster 5 were due to breaking the law in 

an intersection setting. These accidents were due to decision or diagnosis 

failures. The two types of failures for cluster 6 are making an incorrect 

diagnosis of the road condition or taking risk due to reaching their desired 

destination earlier. Training, education and enforcement countermeasures for 

these accident types are possible, as the failure was mainly connected to 
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road user behaviours as well as the latent conditions producing these 

failures. 

\With regards to the rear-end accidents identified in cluster 2 the main issues 

were also found to be detection based, with the road user performing in such 

a way as to not be able to evade hitting the road user in front. It is difficult to 

find suitable countermeasures for the vehicle that is being struck from behind 

due to physical limitations and avoidance manoeuvres difficulties. Possible 

countermeasures should rather concentrate on the issue of distraction or 

inattention in rear-end accidents in the vehicle that is hitting the rear of the 

vehicle in front. This issue can be tackled with the use of active safety 

measures to alert the road user that the length that they are keeping with the 

vehicle in front is not appropriate. As identified by Davis and Swenson (2006) 

the vehicles in front longer reaction time to situations which occur in front of 

this vehicle can in turn cause a shorter reaction time being allotted to the 

preceding vehicle and in this case a longer following distance would provide 

a better safety margin, especially considering that in this dataset most of the 

rear-end accidents occurred on high speed roads. 

6.4.5 OTS sampling compared to national data 

A study carried out by Richards, Cookson, and Cuerden (2010) linked the 

OTS and Great Britain national accident (STATS 19) datasets to each other 

considering all cases collected between the years 2000-2006. This study 

compared the linked OTS dataset to the STATS19 dataset in terms of injury 

severity, accident time of day, accident month, road user age and casualties. 

In terms of injury outcomes the severity of the accidents in OTS were found 

to not be representative of the accidents in STATS19, this test did not include 

the OTS cases that were coded as non-injury. In terms of accident time of 

day no difference was found between the OTS and STATS19 linked 

datasets. The month that the accident occurred in the OTS dataset is 

significantly different to the regional and national STATS19 datasets.  

In terms of vehicle types the differences between OTS and the regional and 

national STATS19 datasets were found to be significant to the 99% level. 

The OTS dataset had more goods vehicles and PTWs. 
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There was found to be no significant difference between the OTS and 

STATS19 data for all casualties, though significant differences in the 

distribution of the gender of casualties of all severities were found. In these 

accidents, there were a slightly greater proportion of male casualties in the 

OTS linked cases. 

The differences between OTS and the regional and national STATS19 

datasets in terms of road user category were found to be significant. The 

OTS cases contained a slightly higher proportion of cars, motorcycles and 

goods vehicles, and a lower proportion of pedestrians and pedal cycles. 

This analysis demonstrates that some caution needs to be taken when using 

OTS data as it is not representative for all accident variables. The analysis 

carried out was for OTS phases 1 (2000-2003) and phase 2 (2004-2006), in 

phase 3 (2007-2010) the sampling plan was changed so that the accident 

cases collected would be more representative of the Great Britain national 

accident statistics. 

 

6.5 Summary 

Chapter 6 described a detailed analysis of the OTS data collected between 

the years 2000-2003 using descriptive and cluster analysis methods to 

identify the different failure and interaction sequences found within the 

accident data.  

The descriptive analysis unveiled differences between failure types with 

regards to demographic variables, risk factors and other accident related 

variables. This analysis formed the foundation to select the relevant variables 

for the cluster analysis. 

The results from the single vehicle cluster analysis identified a number of loss 

of control accidents that had different configurations based on the main 

failure that the road user made and gender and age variables. The multiple 

vehicle cluster analysis results were based around the manoeuvre and 

accident configuration. Both of the cluster analysis results were discussed 

with regards to countermeasure indications.   
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7 An analysis of the STATS19 dataset 

 

7.1 Introduction 

Chapter 6 provided an analysis of in-depth accident data with accident 

causation variables using multiple and single vehicles. The statistical 

methodology used was latent class cluster analysis. The current chapter will 

provide a comparison of latent class cluster analysis methods when using 

national accident data and perform a comparison of the results from this 

analysis with the results from chapter 6. 

The aims of this study are to compare the differences between microscopic 

and macroscopic coded data with regards to understanding an accident 

when using accident causation data and cluster analysis methodology. 

 

7.2 Analysis of failure sequences 

In this study an analysis of all STATS19 data with contributory factors was 

carried out using data from the year 2005 to compare the results from the 

OTS multiple vehicle study with. This data was selected as the contributory 

factors data was collected by all police forces starting from 2005 onwards. 

The data from 2005 was the closest sample to compare with the OTS data 

collected between the years 2000 to 2003 and thus was used as a 

comparison. 

In this chapter an analysis of all STATS19 data with contributory factors was 

carried out for the year 2005. The analysis only included two vehicle 

accidents, which is similar to the study carried out by Depaire et al. (2008). 

Cluster analysis methods were used for analysis purposes, a detailed 

description of the methods and procedure used can be found in the 

methodology chapter. 
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7.2.1 Participants 

The accident data were collected in the year 2005 by police forces around 

Great Britain. All accidents occurring and reported to the police in Great 

Britain are collected and inputted either on scene or when the accident is 

reported. All accidents are then inputted into the STATS19 database which 

holds records of all reported accidents reported throughout Great Britain. Due 

to the large number of cases present in the dataset, and for reasons of 

comparison, it was determined that a comparison of multiple vehicle 

accidents involving two vehicles would be carried out. This data is the closest 

to the multiple vehicle accidents analysis carried out on the OTS data. The 

results presented in this study are based on 55,474 accidents involving two 

vehicles selected from this dataset.  

7.2.2 Procedure 

All data used in this study was from the Stats19 national road accident 

database. This data was provided by the Department for Transport, Great 

Britain. Each accident case is collected either on scene or retrospectively 

from reports by police accident investigators using the STATS19 report form. 

This form includes information on road user, vehicular, infrastructure and 

environmental factors providing information on these factors as well as 

factors related to human causality and injury casualty (Pai, 2011).  

Accident cases are only collected for accidents where an injury has occurred. 

The possible injury levels are fatal, serious, and slight injury. Fatal injury is 

defined where death occurs within 30 days as a result of the accident. A 

serious injury is any injury that results in the individual requiring medical 

treatment and most likely staying in a hospital. A slight injury is any injury that 

is not severe but requires attention on site (Pai, 2011). 

7.2.3 Accident causation measures 

The accident causation measures data original form was collected starting in 

1949, the year that accident data collection was started in the UK. The aim of 

this form was to allow investigators to identify the factors that they believe 

contributed to the accidents occurrence. This system was reviewed and 
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improved every five years since its inception, though the form was removed 

as a data collection requirement after debate about its subjective nature 

following a review in 1959, despite this in 1994 half of the police forces 

collecting data used some version of this form (Broughton, 1997). 

A report carried out by Maycock (1995) identifying three different systems 

that the police groups used, persuaded the DfT to commission the 

development of a contributory systems measure by the Transport Research 

Laboratory (TRL). This system was based on the work carried out in the ITS 

study by Carsten et al. (1989) to use a hierarchical method to code the data 

viewing, though the four level hierarchy was deemed unnecessarily complex 

and a two level hierarchy was considered in its place (Broughton, 1997; 

Gkikas, 2009);  

1. Precipitating factors; The immediate failures that lead to an accident 

2. Contributory factors; The factors for the failures and manoeuvres 

The original version allowed for up to three precipitating factors and 

contributory factors to be coded in decreasing importance, but a review of 

police accident cases with the form limited the precipitating factor to 1 and 

allowed the contributory factors to be coded as definite, probable and 

possible. 

The Transportation Research Group in Southampton University provided a 

review suggesting a revised form for collecting contributory data, though for 

ease of use a different layout was adopted (Hickford & Hall, 2004). The 

outcome of that work was the STATS19 contributory factors form now in use, 

including seventy-six contributory factors and also an option to report “other 

factor” by text description (Gkikas, 2009). The factors are grouped in five 

main categories: (1) road environment contributed (nine factors), (2) vehicle 

defects (six factors), (3) driver/rider only (forty-seven factors), (4) pedestrian 

only (ten factors), and four factors for special codes (stolen vehicle, vehicle in 

course of crime, emergency vehicle on call, vehicle door open/closed 

negligently). The driver/rider category is further subdivided into five 

subcategories: injudicious action, error or reaction, impairment or distraction, 

behaviour or inexperience, and vision affected (by). The reporting officer can 
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select up to six factors from the grid, relevant to the accident. Previously 

suggested three and four-point scales of confidence are now substituted by a 

simple two-point scale: the officer indicates for each factor whether s/he 

considers it “very likely” or just “possible”. The system allows for more than 

one factor to be related to the same road user and for the same factor to be 

related to more than one road user, if appropriate. This allows the police 

officer sufficient flexibility to include the necessary details and in a concise 

manner. 

7.2.4 Data handling 

The accident data files were provided in 4 separate excel files separating the 

accident, casualty, contributing factor, and vehicle data files. The accident file 

was separated by the author into all accidents that involved 2 road users 

only. These file numbers were then used as a reference to separate the 

cases from the other supporting files as only reference numbers were 

provided in the other data files. Information containing the individual vehicle 

data was not originally included, so the cases were divided into two for each 

individual road user, and merged into the accident data using SPSS to have 

separate information for each vehicle within the accident. The contributory 

factor variables were only provided for each accident and the information was 

separated according to the different accident users, and merged with the 

main accident data file to allow for the dataset to be analysed. 

 

7.3 Results 

7.3.1 Cluster analysis  

In table 41 all of the factors that were entered into the cluster analysis are 

outlined. A total of 18 specific variables were selected according to the most 

relevant risk factors that are present in multiple vehicle accidents. The age 

group of the road user and the gender type were included in the analysis. 

The first two contributory factors for each road user were included and the 

vehicle type was also coded. The environmental and infrastructure factors 

included described the road type, speed limit, junction detail, junction control 
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and carriageway class, and were also entered into the analysis. The degree 

of freedom values for each included factor were included in the table. A 

detailed list of all of the values counts and percentages can be found in 

Appendix B (pp. 342).  

Table 41: Stats 19 cluster analysis variables 

Variable Aspect Level df Value 

Speed limit Environmental Accident 4 ≥ 30 mph; 40 mph; 50 mph; 60 mph; 70 mph 

Road type Environmental Accident 5 Roundabout; One way; Dual carriageway; Single 
carriageway; Slip road; Unknown 

Junction detail Environmental Accident 8 Roundabout; Mini roundabout; T or staggered 
junction; Not at junction; Slip road; Crossroads; 
Junction more than four arms; Private drive or 
entrance; Other junction 

Junction control Environmental Accident 4 Authorised person; Automatic traffic signal; Stop 
sign; Give way; Uncontrolled 

Light conditions Environmental Accident 1 Day; Night 

Road user 1 & 2 
gender  

Road user 1 & 
2 

Road 
user 

1 Male; Female 

Road User 1 & 2 
age group 

Road user 1 & 
2 

Road 
user 

5 0-17; 18-21; 21-29; 30-49; 50-65; 66+ 

Road user 1 & 2 
contributory 
factors 1 & 2 

Accident Road 
user 

9 Road environment contributed; Vehicle defects; 
Injudicious action; Driver/rider error or reaction; 
Impairment or distraction; Behaviour or 
inexperience; Vision affected by external factors; 
Pedestrian codes; Other; No factor coded 

Manoeuvre Road user 1 & 
2 

Road 
user 

8 Turning let; Turning right; Waiting; Lane change; 
Overtaking; Going ahead left bend; Going ahead 
right bend; Going ahead; Other 

Road type Environmental Accident 4 A class; B class; C class; Motorway; Minor 

Road user 1 & 2 
Mode of 
transport  

Vehicle Road 
user 

4 Cycle; PTW; Car; LGV; HGV 

 

The goodness of fit measurements were carried out for the two-vehicle 

accident cluster analysis. This analysis demonstrated that for the AIC 

(2096839) a 15 class solution and for the BIC (2110013) a 13 class solution 

was appropriate. In accordance with Linzer (2008) the BIC was used to 

select the number of clusters, as the number of cases was well into the 

thousands, and a thirteen cluster solution was selected to be analysed, the 

goodness of fit measures analysis can be seen in figure 21. 

.  
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Figure 21: AIC and BIC values for Great Britain national accident data 

 

Thirteen distinctive (separated) accident classes were highlighted resulting in 

a 13 solution cluster. A simple explanation of each of the clusters was carried 

out in order to support the discussion, these explanations can be found within 

the results section. The clusters were ordered with regards to case sizes. 

There were three large clusters that represented a third of the total cases 

together with 10 smaller clusters (figure 22). A detailed table of all of the 

cluster results can be found in Appendix B (pp. 345), in this table each over-

represented significant factor is presented in bold. 

 

 

Figure 22: Two vehicle accident cluster sizes  
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The results from each of the clusters are presented in table form, in the 

below section. Due to the large number of factors that are present only 

factors that were significantly over-represented and accounted for at least 5% 

of the variance within the cluster were entered into the tables.  

Cluster analysis results 

Cluster 1 (n=7911) 

“Accidents at a low speed give way setting while turning” 

Table 42 highlights the results for cluster 1, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 42: Two vehicle cluster 1 analysis results 

Variable Value Percentage N χ² Sig. 

Road user 1 gender  Female 37.8 2992 392.8 0.001 

Road user 1 age group  30-49 39.9 3159 409.8 0.001 

 50-65 17.9 1418   

 66+ 9.6 759   

Road user 1 contributory factor 
1  

Error or reaction 66.2 5236 2906.6 0.001 

 
Vision affected by 
external 

8.2 645   

Road user 1 contributory factor 
2  

Error or reaction 40.5 3200 1476.8 0.001 

 
Vision affected by 
external 

7.9 623   

Road user 2 gender  Male 72.6 5744 87.5 0.001 

Road user 2 age group  18-21 12.5 991 487.5 0.001 

 
22-29 20.1 1591   

Road user 2 contributory factor 
1  

No factor coded 76.0 6010 388.8 0.001 

Road user 2 contributory factor 
2  

No factor coded 94.6 7487 499.5 0.001 

Road user 1 mode of transport  Car 93.3 7383 1231.7 0.001 

Road user 2 mode of transport  Cycle 18.0 1424 4624.5 0.001 

 
PTW 21.1 1669   

Light conditions Day 93.7 7413 8.7 0.01 

Road type  Single carriageway 94.4 7464 2373.4 0.001 

Speed limit  30 mph 94.5 7473 5443.0 0.001 

Junction detail  
T or staggered 
junction 

69.0 5456 7885.5 0.001 

 Crossroads 15.7 1240   

 
Private drive/ 
entrance 

7.4 587   

 Other junction 5.6 439   
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Junction control  Give way 93.8 7424 5708.8 0.001 

Road User 1 manoeuvre  Turning left 10.9 858 
1104

4.3 
0.001 

 Turning right 57.5 4547   

 Other  15.4 1220   

Road user 2 manoeuvre  Overtaking 5.7 453 
3585.

9 
0.001 

 
Going ahead 81.1 6415   

 

Human Factors 

Road user 1: Female road users (37.8%) and all age groups from 30 years 

old and older (67.4% total) were over-represented in this cluster. The first 

and second contributing factor for road user 1 was error or reaction (66.2%) 

or vision affected by external objects (8.2%) 

Road user 2: The second road user was male (72.6%) and the age groups 

18-21 (12.5%) and 22-29 (20.1%) were over-represented. Both contributing 

factors were coded as no factor coded (76.0% & 94.6%). 

Mode of transportation 

The vehicle coded for road user 1 was a car (93.3%). PTWs (21.1%) and 

cycles (18.0%) were significantly over-represented for the second road user. 

Environmental/Infrastructural Factors 

The accidents occurred in a single carriageway road (94.4%) with a 30 mph 

or under (94.5%) speed limit at a T or staggered junction (69.0%) with a give 

way sign (93.8%). Road user 1 was either turning left (10.9%) or right 

(57.5%) and road user 2 was going ahead (81.1%). 

 

Cluster 2 (n=7699) 

“Accidents in a slow setting where the road user 1 is going ahead” 

Table 43 highlights the results for cluster 2, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 
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Table 43: Two vehicle cluster 2 analysis results 

Variable Value Percentage N χ² Sig. 

Road user 1 age group  18-21 18.3 1407 378.2 0.001 

 22-29 21.2 1630   

Road user 1 contributory factor 1  Road environment 16.9 1299 1736.1 0.001 

 Injudicious action 19.1 1469   

 Impairment/Distraction 8.3 637   

 Behaviour/Inexperience 7.8 603   

Road user 1 contributory factor 2  Road environment 5.6 433 921.4 0.001 

 Injudicious action 13.3 1022   

Road user 2 gender Female 40.1 3089 275.8 0.001 

Road user 2 age group  30-49 51.3 3947 269.5 0.001 

 50-65 21.8 1678   

Road user 2 contributory factor 1  No factor coded 83.8 6454 949.1 0.001 

Road user 2 contributory factor 2  No factor coded 97.7 519 796.3 0.001 

Road user 1 mode of transport  Car 85.2 6563 444.3 0.001 

Road user 2 mode of transport  Car 88.8 6834 1228.0 0.001 

Light conditions Night 8.2 632 17.0 0.001 

Road type  Single carriageway 94.8 7298 2348.8 0.001 

Speed limit  30 mph 62.1 4783 1007.8 0.001 

 60 mph 27.6 2126   

Junction detail  T or staggered junction 58.2 4482 6070.3 0.001 

 Crossroads 16.3 1254   

 Private drive/entrance 7.9 607   

 Other junction 10.0 772   

Junction control  Give way 95.2 7333 5896.6 0.001 

Road User 1 manoeuvre  Going ahead left bend 8.4 644 2325.4 0.001 

 Going ahead 58.3 4489   

Road user 2 manoeuvre  Turning right 8.5 657 4324.0 0.001 

 Waiting 31.2 2402   

 Going ahead right bend 6.6 509   

 Other  16.8 1293   

 

Human Factors 

Road user 1: For this cluster the age groups 18-29 (39.5% in total for two 

groups) were significant. The contributing factors that were over-represented 

were injudicious action or road factors. 

Road user 2: The significant gender for road user 2 was female (40.1%). 

The age range was 30-49 (51.3%) or 50-65 (21.8%). The contributing factors 

that were significant for this road user were no factor coded. 

 Mode of Transportation 
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Road user 1 was a car driver (85.2%), and road user 2 was also a car driver 

(88.8%).  

Environmental/Infrastructural Factors 

These accidents occurred on a single carriageway (94.8%) in a 30 mph 

(62.1%) or 60 mph (27.6%) speed limit road in a t or staggered junction 

(58.2%) in a give way setting (95.2%). The first road user was going ahead 

(58.3%) and the second road user was waiting (31.2%) or coded as an ‘other’ 

manoeuvre (16.8%). 

 

Cluster 3 (n=6703) 

“Accidents due to injudicious actions in a single carriageway” 

Table 44 highlights the results for cluster 3, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 44: Two vehicle cluster 3 analysis results 

Variable Value Percentage N χ² Sig. 

Road user 1 gender Male 76.4 5123 91.1 0.001 

Road user 1 age group  0-17 10.2 682 639.9 0.001 

 18-21 18.1 1210   

Road user 1 contributory factor 1  Road environment 15.5 1038 2415.0 0.001 

 Injudicious action 18.2 1222   

 Impairment/Distraction 12.0 804   

 Behaviour/Inexperience 11.0 736   

Road user 1 contributory factor 2  Road environment 5.2 348 1027.1 0.001 

 Injudicious action 11.4 763   

 Impairment/Distraction 5.4 363   

 Behaviour/Inexperience 11.1 746   

Road user 2 gender Female 36.1 2421 61.5 0.001 

Road user 2 age group  30-49 49.8 3336 201.1 0.001 

 50-65 22.1 1478   

 66+ 6.1 410   

Road user 2 contributory factor 1  No factor coded 85.1 5706 962.2 0.001 

Road user 2 contributory factor 2  No factor coded 99.4 6664 931.6 0.001 

Road user 1 mode of transport 1 Cycle 5.7 381 435.6 0.001 

 
PTW 10.9 729   

Road user 2 mode of transport  Car 86.0 5763 1019.6 0.001 
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HGV 10.2 680   

Road type  Single carriageway 91.9 6157 1477.9 0.001 

Speed limit  60 mph 36.6 2454 1468.7 0.001 

Junction detail  No junction 100.0 6703 15535.5 0.001 

Junction control  Uncontrolled 100.0 6702 15542.1 0.001 

Road User 1 manoeuvre  Overtaking 9.0 604 4449.6 0.001 

 
Going ahead 72.6 4868   

Road user 2 manoeuvre  Waiting 14.6 975 2637.5 0.001 

 
Other  29.7 1987   

 

Human Factors 

Road user 1: The significant gender for road user 1 was male (76.4%) and 

the age ranges between 0-21 (28.3% in total) were over-represented. The 

first contributing factor for this road user was injudicious action (18.2%), road 

environment (15.5%) or impairment/distraction (12.0%). 

Road user 2: The road users gender was female (36.1%) and the three age 

groups above thirty years old (78.0% in total) were over-represented in this 

cluster. No factors coded was significant as the contributory factor for this 

road user 

Mode of transportation 

The mode of transport that was over-represented for road user 1 were cycles 

(5.7%) and PTWs (10.9%). The second road user was a car driver (86.0%). 

Environmental/Infrastructural Factors 

These accidents occurred in a single carriageway (91.9%), in a 60 mph road 

(36.6%) uncontrolled junction (100.0%) where the first road user was going 

ahead (72.6%) and the second road user was waiting (14.6%) or making a 

manoeuvre coded as other (29.7%). 

 

Cluster 4 (n=4459) 

“Road user error while turning” 

Table 45 highlights the results for cluster 4, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 
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Table 45: Two vehicle cluster 4 analysis results 

Variable Value Percentage N χ² Sig. 

Road user 1 gender Female 33.1 1475 50.0 0.001 

Road user 1 age group  30-49 46.4 2068 415.1 0.001 

 
50-65 21.1 940   

Road user 1 contributory factor 1  No factor coded 79.9 3561 25635.0 0.001 

Road user 1 contributory factor 2  No factor coded 97.5 4345 5781.8 0.001 

Road user 2 gender Male 70.9 3159 17.3 0.001 

Road user 2 age group  18-21 15.1 674 764.3 0.001 

 22-29 20.7 923   

 66+ 7.2 322   

Road user 2 contributory factor 1  Road environment 7.1 315 13031.6 0.001 

 Injudicious action 18.9 843   

 Error or reaction 59.0 2631   

 Behaviour/Inexperience 5.4 241   

Road user 1 mode of transport  PTW 8.1 361 108.7 0.001 

 
Car 80.8 3604   

Road user 2 mode of transport  Cycle 10.9 486 186.5 0.001 

Light conditions Day 93.2 4154 4.3 0.001 

Road type  Single carriageway 79.9 3562 161.2 0.001 

Speed limit  30 mph 70.2 3131 754.8 0.001 

 
40 mph 13.4 595   

Junction detail  Roundabout 9.6 426 2616.6 0.001 

 T or staggered junction 53.3 2374   

 Crossroads 16.3 727   

 Private drive/entrance 6.8 305   

 Other junction 8.0 358   

Junction control  Traffic signal 16.1 717 2386.1 0.001 

 
Give way 82.3 3670   

Road User 1 manoeuvre  Waiting 16.1 718 2229.8 0.001 

 
Going ahead 50.4 2245   

Road user 2 manoeuvre  Turning left 5.1 227 3104.4 0.001 

 Turning right 25.9 1156   

 Overtaking 5.1 226   

 

Human Factors 

Road user 1: The gender of the first road user was female (33.1%) and the 

age ranges between 30-65 (67.5%) were over-represented. The contributing 

factors were both no factor coded. 

Road user 2: Males (70.9%) and the age range between 18-29 (35.8%) and 

66 years or older (7.2%) was over-represented. The contributing risk factor 

was coded as error or reaction (59.0%). 
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Mode of transportation 

The vehicle coded for road user 1 was a car (80.8%). Cycles (10.9%) were 

over-represented for the second road user. 

Environmental/Infrastructural Factors 

The accidents occurred on a single carriageway road (79.9%) during the day 

(93.2%) at a T junction (53.3%) and a give way setting (82.3%). The first road 

user was going ahead (50.4%) and the second road user was turning right 

(25.9%). 

 

Cluster 5 (n=4316) 

“Intersection accidents due to breaking the law” 

Table 46 highlights the results for cluster 5, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 46: Two vehicle cluster 5 analysis results 

Variable Value Percentage N χ² Sig. 

Road user 1 gender Female 36.6 1578 149.3 0.001 

Road user 1 age group  50-65 20.5 886 1028.5 0.001 

 
66+ 18.5 798   

Road user 1 contributory factor 1 Error or reaction 71.2 3074 1613.9 0.001 

 
Vision affected by external 5.2 223   

Road user 1 contributory factor 2  Error or reaction 52.4 2263 1330.1 0.001 

 
Vision affected by external 5.7 244   

Road user 2 gender Male 71.4 3081 23.6 0.001 

Road user 2 age group  18-21 10.0 429 14.6 0.001 

 22-29 17.4 749   

 50-65 20.5 883   

 66+ 5.7 246   

Road user 2 contributory factor 1  Injudicious action 5.2 224 364.1 0.001 

 
No factor coded 80.4 3469   

Road user 2 contributory factor 2  No factor coded 96.2 4153 313.3 0.001 

Road user 1 mode of transport  Car 89.5 3862 428.8 0.001 

Road user 2 mode of transport  PTW 17.1 737 576.6 0.001 

Light conditions Day 93.4 4029 4.3 0.001 

Road type  Single carriageway 86.9 3750 600.6 0.001 
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Speed limit  40 mph 19.7 852 2862.5 0.001 

 50 mph 5.7 247   

 60 mph 46.3 1999   

Junction detail  T or staggered junction 68.8 2968 4434.3 0.001 

 Private drive/entrance 11.8 511   

 Other junction 6.1 262   

Junction control  Stop sign 2.5 106 3380.8 0.001 

 
Give way 96.4 4158   

Road User 1 manoeuvre  Turning left 6.1 263 9569.2 0.001 

 
Turning right 75.4 3252   

Road user 2 manoeuvre  Overtaking 4.7 203 2429.0 0.001 

 
Going ahead 85.9 3706   

 

Human Factors 

Road user 1: Female (36.6%) road users and the age groups 50-65 (20.5%) 

and 66+ (18.5%) were over-represented for this cluster. The contributing 

factor error or reaction was over-represented for both contributing factors. 

Road user 2: Road user 2 was coded as a male (71.4%) and all age ranges 

other than 0-17 and 30-49 were over-represented for this cluster. The 

contributing factor was no factor coded. 

Mode of transportation 

The vehicle coded for road user 1 was a car (89.5%). PTWs (17.1%) were 

over-represented for the second road user. 

Environmental/Infrastructural Factors 

The accidents occurred in a single carriageway setting (86.9%) during the 

day in a 40-60 mph speed limit, at a T junction (68.8%) at a give way sign 

(96.4%). The first road user was turning right (75.4%) and the second road 

user was going ahead (85.9%). 

 

Cluster 6 (n=4093) 

“Road user incorrectly entering a roundabout” 

Table 47 highlights the results for cluster 6, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 
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Table 47: Two vehicle cluster 6 analysis results 

Variable Value Percentage N χ² Sig. 

Road user 1 gender Female 30.4 1245 8.0 0.01 

Road user 1 age group  30-49 40.5 1656 94.8 0.001 

 50-65 18.7 764   

 66+ 8.6 352   

Road user 1 contributory factor 1  Injudicious action 14.9 609 553.8 0.001 

 Error or reaction 59.1 2417   

 Pedestrian only 2.9 119   

Road user 1 contributory factor 2  Error or reaction 35.1 1438 106.4 0.001 

Road user 2 gender Female 34.5 1412 13.4 0.001 

Road user 2 contributory factor 1  Error or reaction 14.1 578 144.5 0.001 

 Impairment/Distraction 1.6 64   

 No factor coded 74.7 3058   

Road user 2 contributory factor 2  No factor coded 93.6 3829 141.7 0.001 

Road user 1 mode of transport  Car 80.6 3299 31.1 0.001 

 
HGV 10.2 417   

Road user 2 mode of transport  Cycle 13.3 545 486.6 0.001 

 
PTW 12.1 495   

Light conditions Day 93.2 3813 4.3 0.05 

Road type  Roundabout 92.4 3783 44459.2 0.001 

Speed limit  30 mph 57.3 2343 292.6 0.001 

 40 mph 16.3 669   

 50 mph 3.9 158   

Junction detail  Roundabout 91.3 3739 38476.0 0.001 

 
Mini roundabout 8.5 347   

Junction control  Authorised person 0.3 12 2543.7 0.001 

 
Give way 92.1 3770   

Road User 1 manoeuvre  Turning left 7.1 289 958.6 0.001 

 Waiting 5.3 217   

 Going ahead 47.1 1928   

 Other  22.3 912   

Road user 2 manoeuvre  Turning right 9.9 404 455.2 0.001 

 
Waiting 17.0 697   

 

Human Factors 

Vehicle 1: The first road users gender was female (30.4%) and age range 

was 30 years old and older (67.8%). The contributing factors for road user 1 

were error or reaction. 

Vehicle 2: The second road user was female (34.5%) and age range related 

variables were not significant. The first contributing factor for road user 2 was 

no factor coded (74.7%). 
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Mode of transportation 

The vehicle coded for road user 1 was a car (80.6%). Cycles (13.3%) or 

PTWs (12.1%) were over-represented for the second road user. 

Environmental/Infrastructural Factors 

The accidents predominantly occurred during the day (93.2%) on a 

roundabout (92.4%) in a 30 mph (57.3%) speed limit road in a give way 

setting (92.1%). Road user 1 was going ahead (47.1%) and road user 2 was 

waiting (17.0%). 

 

Cluster 7 (n=4042) 

“Road user error at traffic lights” 

Table 48 highlights the results for cluster 7, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 48: Two vehicle cluster 7 analysis results 

Variable Value Percentage N χ² Sig. 

Road user 1 age group 2 18-21 16.3 660 116.9 0.001 

 
22-29 22.4 907   

Road user 1 contributory factor 1  Injudicious action 27.8 1122 1069.2 0.001 

Road user 1 contributory factor 2  Injudicious action 8.5 343 236.6 0.001 

 Error or reaction 31.9 1288   

 Behaviour/Inexperience 9.5 385   

Road user 2 age group  22-29 20.3 822 62.7 0.001 

Road user 2 contributory factor 1  Injudicious action 6.5 262 332.3 0.001 

 
No factor coded 77.8 3145   

Road user 2 contributory factor 2  No factor coded 94.4 3817 230.1 0.001 

Road user 1 mode of transport  Car 85.1 3441 172.8 0.001 

 
LGV 2.7 107   

Road user 2 mode of transport  Car 82.9 3350 204.1 0.001 

 
LGV 3.0 123   

Road type  Dual carriageway 36.6 1480 1689.9 0.001 

Speed limit  30 mph 76.6 3097 1602.1 0.001 

 
40 mph 17.1 692   

Junction detail  Crossroads 59.8 2416 13138.7 0.001 

 
Four or more arms 11.2 453   
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Junction control  Traffic signal 89.6 3620 20972.6 0.001 

Road User 1 manoeuvre  Turning right 34.6 1398 1118.0 0.001 

 
Going ahead 45.4 1836   

Road user 2 manoeuvre  Turning right 11.3 455 570.1 0.001 

 Waiting 12.9 521   

 Going ahead 60.8 2457   

 

Human Factors 

Road user 1: The age range 18-29 (38.7%) was over-represented. The 

contributory factors injudicious action and error or reaction were over-

represented for this road user. 

Road user 2: The age range 22-29 (20.3%) was significant for this road 

user. The contributory factors no factor coded were significant. 

Mode of transportation 

The first road user was a car (85.1%). The vehicle type for the second road 

user was also a car (82.9%). 

Environmental/Infrastructural Factors 

The main factors that were outlined in this analysis were that the accidents 

occurred on a 30 mph (76.6%) speed limit dual carriageway road (36.6%) at 

a cross roads (59.8%) with a traffic signal control (89.6%). Road user 1 was 

going ahead (45.4%) or turning right (34.6%) and road user 2 was going 

ahead (60.8%).  

 

Cluster 8 (n=3841) 

“High speed accidents on a motorway due to faulty manoeuvre” 

Table 49 highlights the results for cluster 8, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 
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Table 49: Two vehicle cluster 8 analysis results 

Variable Value Percentage N χ² Sig. 

Road user 1 gender Male 78.2 3003 90.7 0.001 

Road user 1 age group  22-29 21.0 806 342.6 0.001 

 
30-49 46.9 1801   

 
50-65 17.3 664   

Road user 1 contributory factor 1  Error or reaction 45.8 1760 188.6 0.001 

 Impairment/Distraction 7.3 280   

 
Vision affected by external 6.1 234   

Road user 1 contributory factor 2  Injudicious action 8.3 320 105.1 0.001 

 
No factor coded 45.7 1754   

Road user 2 gender Male 72.4 2782 36.3 0.001 

Road user 2 age group  30-49 51.0 1960 145.6 0.001 

 
50-65 22.0 844   

Road user 2 contributory factor 1  No factor coded 74.4 2859 69.0 0.001 

Road user 2 contributory factor 2  No factor coded 92.3 3546 75.3 0.001 

Road user 1 mode of transport  HGV 29.1 1119 2108.6 0.001 

Road user 2 mode of transport  Car 76.0 2917 1101.1 0.001 

 
HGV 19.6 752   

Road type  Dual carriageway 97.2 3733 20539.9 0.001 

 
Slip road  2.0 77   

Speed limit  50 mph 5.6 215 31831.0 0.001 

 
70 mph 86.7 3329   

Junction detail  No junction 100.0 3841 8406.1 0.001 

Junction control  Uncontrolled 100.0 3841 8414.7 0.001 

Road User 1 manoeuvre  Lane change 24.0 923 6998.6 0.001 

 Overtaking 7.3 279   

 Going ahead 51.9 1992   

Road user 2 manoeuvre  Lane change 5.2 198 1398.2 0.001 

 Going ahead 59.8 2297   

 Other  18.7 717   

 

Human Factors 

Road User 1: The gender of the first road user was male (78.2%) and the 

age ranges between 22-65 (88.2%) were significant for this cluster. The first 

contributing factor was error or reaction (45.8%).  

Vehicle 2: The gender of the second road user was male (72.4%) and the 

age ranges between 30-65 (73.0%) were significant. The contributing factor 

was no factor coded. 

Vehicular Factors 
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The vehicle coded for road user 1 was a HGV (29.1%). The second road 

user was either a car (76.0%) or a HGV (19.8%) driver. 

Environmental/Infrastructural Factors 

The accidents occurred on a dual carriageway (97.2%), in a 70 mph speed 

limit (86.7%) road with no junction (100.0%) or traffic control (100.0%). Both 

road users were going ahead or road user 1 was making a lane change or 

overtaking manoeuvre. 

 

Cluster 9 (n=3295) 

“Road environment or behaviour errors on a bend” 

Table 50 highlights the results for cluster 9, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 50: Two vehicle cluster 9 analysis results 

Variable Value Percentage N χ² Sig. 

Road user 1 gender Male 77.0 2537 52.1 0.001 

Road user 1 age group  0-17 5.9 194 210.1 0.001 

 18-21 19.1 629   

 22-29 22.9 756   

Road user 1 contributory factor 1  Road environment 37.7 1243 3492.7 0.001 

 Injudicious action 15.7 518   

 Behaviour/Inexperience 9.7 319   

Road user 1 contributory factor 2  Road environment 16.3 537 2581.7 0.001 

 Injudicious action 14.7 485   

 Behaviour/Inexperience 9.9 327   

 Vision affected by external 4.9 161   

Road user 2 age group  30-49 48.2 1587 200.2 0.001 

 50-65 25.9 854   

 66+ 6.8 222   

Road user 2 contributory factor 1  Road environment 9.3 307 807.9 0.001 

 Vision affected by external 4.3 141   

 No factor coded 75.4 2486   

Road user 2 contributory factor 2  Road environment 2.7 89 450.1 0.001 

 Vision affected by external 1.6 52   

 No factor coded 92.7 3055   

Road user 1 mode of transport  PTW 9.3 307 99.4 0.001 
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Car 80.1 2639   

Road user 2 mode of transport  Car 80.3 2645 485.2 0.001 

 HGV 13.7 451   

Light conditions Night 11.0 362 81.3 0.001 

Road type  Single carriageway 97.0 3196 1047.6 0.001 

Speed limit  60 mph 71.2 2346 5040.0 0.001 

Junction detail  No junction 100.0 3295 7140.5 0.001 

Junction control  Uncontrolled 100.0 3295 7147.8 0.001 

 
Unknown 0.8 28   

Road User 1 manoeuvre  Going ahead left bend 60.6 1997 28713/7 0.001 

 
Going ahead right bend 30.4 1000   

Road user 2 manoeuvre  Going ahead left bend 26.4 869 21295.8 0.001 

 
Going ahead right bend 50.9 1677   

 

Human Factors 

Vehicle 1: The first road users gender was male (77.0%) and the age range 

18-29 (42.0%) was over-represented. The first contributing factors for road 

user 1 were road environment or injudicious action.  

Vehicle 2: The second road user did not have an over-represented gender. 

The age range 30 years old or older was over-represented (80.9%). The 

contributing factor was no factor coded. 

Mode of transportation 

The vehicle coded for both road users were cars. 

Environmental/Infrastructural Factors 

The accidents predominantly occurred on a single carriageway (97.0) in an 

uncontrolled junction (100.0%) in a 60 mph road (71.2%) on a bend. 

 

Cluster 10 (n=3004) 

“Vulnerable road user fails to give way” 

Table 51 highlights the results for cluster 10, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 
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Table 51: Two vehicle cluster 10 analysis results 

Variable Value Percentage N χ² Sig. 

Road user 1 gender Male 92.1 2767 663.5 0.001 

Road user 1 age group  0-17 38.7 1163 7791.2 0.001 

 
18-21 18.1 542   

Road user 1 contributory factor 1  Injudicious action 23.3 698 947.5 0.001 

 
Behaviour/Inexperience 13.9 418   

Road user 1 contributory factor 2 Injudicious action 9.4 283 527.6 0.001 

 Error or reaction 30.2 907   

 Behaviour/Inexperience 15.8 476   

Road user 2 gender Female 35.8 1074 21.3 0.001 

Road user 2 age group  22-29 18.0 541 41.6 0.001 

 50-65 20.5 615   

 66+ 5.9 177   

Road user 2 contributory factor 1 Error or reaction 15.6 470 253.4 0.001 

 
No factor coded 72.5 2179   

Road user 2 contributory factor 2  No factor coded 92.5 2778 136.6 0.001 

Road user 1 mode of transport  Cycle 26.6 799 13600.5 0.001 

 
PTW 43.7 1314 450.4 0.001 

Road user 2 mode of transport Car 89.8 2697   

Light conditions Day 97.2 2919 87.1 0.001 

Road type  Single carriageway 92.6 2783 716.0 0.001 

Speed limit  30 mph 84.4 2534 1049.4 0.001 

Junction detail  T or staggered junction 65.5 1969 2747.1 0.001 

 Private drive/entrance 11.5 345   

 Other junction 7.6 230   

Junction control  Give way 94.4 2837 2007.7 0.001 

Road User 1 manoeuvre  Overtaking 22.6 678 2850.2 0.001 

 
Going ahead 56.5 1697   

Road User 2 manoeuvre Turning left 5.7 170 3479.2 0.001 

 Turning right 33.0 992   

 

Human Factors 

Vehicle 1: The first road users gender was male (92.1%) and age range was 

0-21 (56.8%). The first contributing factors were injudicious action and 

error/reaction.  

Vehicle 2: The second road users gender was female (35.8%) and the age 

ranges 22-29 (18.0%) and 50 and above (26.4%) was over-represented. The 

contributory factor was no factor coded. 

Mode of transportation 
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The vehicle coded for road user 1 was a cycle (26.6%) or PTW (43.7%). The 

second road user was a car driver (89.8%). 

Environmental/Infrastructural Factors 

The accidents occurred in a single carriageway (92.6%) at a T junction 

(65.5%) at a give way sign (94.4%). Road user 1 was going ahead (56.5%) 

and road user 2 was turning left (5.7%) or right (33.0%). 

 

Cluster 11 (n=2416) 

“Younger road user accident on a bend” 

Table 52 highlights the results for cluster 11, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 52: Two vehicle cluster 11 analysis results 

Variable Value Percentage N χ² Sig. 

Road user 1 gender Male 77.0 1860 52.1 0.001 

Road user 1 age group  0-17 5.9 142 210.1 0.001 

 18-21 19.1 461   

 22-29 22.9 554   

Road user 1 contributory factor 1 Road environment 37.7 912 3492.7 0.001 

 Injudicious action 15.7 380   

 Behaviour/Inexperience 9.7 234   

Road user 1 contributory factor 2  Road environment 16.3 394 2581.7 0.001 

 Injudicious action 14.7 356   

 Behaviour/Inexperience 9.9 240   

 Vision affected by external 4.9 118   

Road user 2 age group  30-49 48.2 1164 200.2 0.001 

 50-65 25.9 626   

 66+ 6.8 163   

Road user 2 contributory factor 1  Road environment 9.3 225 807.9 0.001 

 
No factor coded 75.4 1823   

Road user 2 contributory factor 2  No factor coded 92.7 2240 450.1 0.001 

Road user 1 mode of transport 2 PTW 9.3 225 99.4 0.001 

 
Car 80.1 1935   

Road user 2 mode of transport  Car 80.3 1939 485.2 0.001 

 
HGV 13.7 331   

Light conditions Night 11.0 266 81.3 0.001 
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Road type  Single carriageway 97.0 2343 1047.6 0.001 

Speed limit  60 mph 71.2 1720 5040.0 0.001 

Junction detail  No junction 100.0 2416 7140.5 0.001 

Junction control  Uncontrolled 100.0 2416 7147.8 0.001 

Road User 1 manoeuvre  Going ahead left bend 60.6 1465 28713.7 0.001 

 Going ahead right bend 30.4 733   

Road user 2 manoeuvre  Going ahead left bend 26.4 637 21295.8 0.001 

 
Going ahead right bend 50.9 1230   

 

Human Factors 

Vehicle 1: The first road users gender was male (77.0%) and age range was 

between 0-29 (47.9% in total). The contributing factors were road 

environment or injudicious action.  

Vehicle 2: The road user 2 age range 30 or older (80.9%) were significant. 

The first contributing factor was no factor coded (75.4%). 

Mode of transportation 

The vehicle coded for road user 1 was a car (80.1%) and the second road 

user was coded as a car (80.3%). 

Environmental/Infrastructural Factors 

The accidents predominantly occurred in a single carriageway (97.0%) road 

with no junction (100.0%) on a bend (91.0%). 

 

Cluster 12 (n=1995) 

“High speed accidents on a motorway due to faulty manoeuvre” 

Table 53 highlights the results for cluster 12, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 53: Two vehicle cluster 12 analysis results 

Variable Value Percentage N χ² Sig. 

Road user 1 gender Female 30.5 609 4.2 0.05 

Road user 1 age group  30-49 44.5 888 179.0 0.001 
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 50-65 22.7 452   

Road user 1 contributory factor 1  No factor coded 65.6 1309 6984.1 0.001 

Road user 1 contributory factor 2  No factor coded 84.7 1689 1465.7 0.001 

Road user 2 gender Male 73.0 1457 23.3 0.001 

Road user 2 age group  18-21 17.4 347 426.9 0.001 

 
22-29 18.9 376   

Road user 2 contributory factor 1  Road environment 17.0 339 5243.6 0.001 

 Injudicious action 16.2 324   

 Error or reaction 44.7 891   

 Impairment/Distraction 5.4 108   

 Behaviour/Inexperience 8.4 167   

Road user 2 contributory factor 2  Injudicious action 10.2 204 6778.6 0.001 

 Error or reaction 32.0 638   

 Behaviour/Inexperience 9.7 193   

Road user 1 mode of transport  Car 80.0 1596 39.4 0.001 

Road user 2 mode of transport  Cycle 10.0 199 700.8 0.001 

 
PTW 12.2 243   

Light conditions Night 8.9 177 9.7 0.01 

Road type  Single carriageway 87.6 1748 288.8 0.001 

Speed limit  40 mph 11.5 230 222.8 0.001 

 
60 mph 31.0 619   

Junction detail  No junction 100.0 1995 4222.5 0.001 

Junction control  Uncontrolled 100.0 1994 4220.5 0.001 

Road User 1 manoeuvre  Waiting 10.4 206 913.5 0.001 

 Overtaking 5.8 116   

 Going ahead right bend 8.7 173   

 Going ahead 42.7 851   

 Other  24.4 486   

Road user 2 manoeuvre Overtaking 8.1 161 700.8 0.001 

 Going ahead left bend 10.0 199   

 Other  17.4 348   

 

Human Factors 

Vehicle 1: The first road users gender was female (30.5%) and age range 

was between 30-65 (67.2%). The contributing factors were no factor coded.  

Vehicle 2: The second road users gender was male (73.0%) and age range 

was between 18-29 (36.3%). The contributory factors were error or reaction 

and road environment. 

Mode of transportation 
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The vehicle coded for road user 1 was a car (80.0%) and the second road 

user’s mode of transportation was over-represented as a cycle (10.0%) or a 

PTW (12.2%). 

Environmental/Infrastructural Factors 

The accidents occurred on s single carriageway road (87.6%), where road 

user 1 was going ahead (43.7%) and road user 2 was making an ‘other’ 

manoeuvre (17.4%). 

 

Cluster 13 (n=1700) 

“Junction accident due to error” 

Table 54 highlights the results for cluster 13, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 54: Two vehicle cluster 13 analysis results 

Variable Value Percentage N χ² Sig. 

Road user 1 gender Male 73.8 1255 44.7 0.05 

Road user 1 age group  22-29 21.8 371 72.3 0.001 

 30-49 42.1 716   

 50-65 17.5 297   

Road user 1 contributory factor 1 Error or reaction 53.0 901 81.1 0.001 

 
No factor coded 47.6 809   

Road user 2 age group  30-49 50.0 850 38.7 0.001 

 
50-65 21.6 366   

Road user 2 contributory factor 1  Error or reaction 15.3 260 49.3 0.001 

 
No factor coded 73.2 1244   

Road user 2 contributory factor 2  No factor coded 91.5 1555 32.1 0.001 

Road user 1 mode of transport  HGV 17.2 293 201.1 0.001 

 
Car 81.1 1378   

Road user 2 mode of transport  HGV 12.6 215 175.2 0.001 

Road type  Dual carriageway 69.6 1183 10913.6 0.001 

 
Slip road  20.8 353   

Speed limit  40 mph 11.5 195 7259.7 0.001 

 50 mph 8.0 136   

 70 mph 64.5 1096   

Junction detail  Roundabout 37.0 629 17008.7 0.001 

 Slip road  39.1 665   
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 Other junction 7.5 127   

Junction control Give way 89.0 1514 951.6 0.001 

Road User 1 manoeuvre  Waiting 7.7 131 1255.8 0.001 

 Lane change 15.5 263   

 Going ahead 42.7 725   

 Other  21.4 363   

Road user 2 manoeuvre  Waiting 22.4 381 572.3 0.001 

 
Other  18.7 318   

 

Human Factors 

Vehicle 1: The first road users gender was male (73.8%) and age range was 

between 22-65 (81.4%). The contributing factors for road user 1 were error or 

reaction (53.0%). 

Vehicle 2: The second road user did not have a significant value for gender 

and the age ranges 30-65 were over-represented (71.6%). The contributing 

factors were no factor coded. 

Mode of transportation 

The vehicle coded for road user 1 was a car (81.1%) and the second road 

user was coded as a HGV (12.6%). 

Environmental/Infrastructural Factors 

The accidents occurred on a dual carriageway (69.6%) on a roundabout 

(37.0%) or slip road (39.1%) with a give way (89.0%) sign. 

 

7.4 Discussion  

7.4.1 National data compared to in-depth data using cluster 

analysis 

There is a need to take a few considerations into account before a detailed 

understanding of the results from the cluster analysis can be made. First of 

all it is necessary to consider the differences between the contributory factors 

reporting scheme that was used for the STATS19 coding with the more 

detailed HFF accident coding method.  
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All contributory factors were included in this analysis, though for a large 

number of the cases only one road user was coded as having a contributory 

factor. So a direct understanding of what both road users did was sometimes 

not possible. In 79.7% of the accidents a contributory factor was only 

attributed to one of the road users. This demonstrates that there are 

limitations in terms of coding accident causation behaviour particularly when 

the accidents are reported to the police officers rather than collected on 

scene. 

The more detailed level of information in terms of the accident site variables 

skewed the clusters towards coding these variables, and without the 

contributory factor information the exact understanding of the failures was not 

possible. The nature of the STATS19 data did not allow for groupings of the 

accident cases based on accident type, so the main grouping possible was 

based on the carriageway characteristics of the accidents. 

When interpreting the cluster analysis results it can be seen that 4 of the 6 

largest clusters were related to single carriageway accidents on roads that 

had a T junction. The contributory factor codes did not allow for a detailed 

analysis of the accident causation portion of these accidents, though possible 

coding with the vehicle point of impact may have provided more detailed 

information with regards to the accident type. Due to these issues the 

clustering algorithm turned slight differences for this accident types into 

different cluster groupings. 

A way around these issues may be to only select one manoeuvre for analysis 

or to only use select police reports that provide detailed information about 

specific cases and use these as a sampling tool such as Clarke et al. (1999). 

When using specific cases the data is reprocessed into a new database to 

allow for causal inferences to be developed, rather than using raw data 

provided by databases such as STATS19. 

A further issue is the difference in the detail level of the cases collected. For 

the STATS19 data a total of 82 fields can be possibly completed and a 

number of the cases are collected retrospectively with a large amount of the 

data not being collected. 
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The OTS data collected could gather up to 3,000 variables and as the cases 

are collected on the spot the cases are fundamentally more complete 

compared to the STATS19 cases.  

7.4.2 Issues when analysing accident data 

A number of statistical methods have been used to analyse accident data, 

the use of these methods relies upon the research question that the 

researchers is asking. Some of the fundamental characteristics of accident 

data result in methodological limitations that are not fully understood 

(Savolainen, Mannering, Lord, & Quddus, 2011). 

Some of these limitations have been identified as the underreporting of 

accidents, the ordinal nature of injury data, omitted variable bias, the difficulty 

in capturing behaviour related factors, ignoring factors related to space and 

time, and small sample size (Lord & Mannering, 2010; Mannering & Bhat, 

2014; Savolainen et al., 2011).  

Lord and Mannering (2010) identified 13 different types of data modelling 

tools that are currently used to analyse accident data. The accident data 

used for analysis purposes for research is most commonly either national or 

regional data. The nature of bivariate and multivariate analysis tools requires 

certain parameters and estimations to be made and set for the data analysis 

to be plausible and meaningful. 

When analysing accident data, a number of considerations need to be made 

depending on the type of statistical analysis that is used and interpretation 

outcomes that is aimed for. Some of the main points of consideration are; 

1. Completeness of the data 

2. Exposure 

3. Reported accidents 

In order for the analysis of the data to be possible it is necessary that the 

data be as complete as possible. In cases where there are missing values a 

number of possible methods are available to use to replace the data. If the 

fact that data are missing does not depend upon any values, or potential 

values, for any of the variables, then data are said to be ‘missing completely 
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at random’. This is an ideal situation for missing data as any observation is 

just as likely as another to be missing.  

If the data available can predict the unavailable data than a ‘missing at 

random’ computation can be used to predict the remaining data (Hautzinger 

et al., 2007). This computation estimates the values of the missing data by 

including a number of variables that are relevant to this information. For 

example if we are considering whether the vehicles running lights were on or 

off then it would be necessary to also include the variable day and night and 

also weather conditions into the analysis to allow for a probable calculation 

(Hautzinger et al., 2007). 

A third type of data is the ‘missing not at random’ data type. This situation 

occurs when the data is not even missing at random and so a model that 

describes these occurrences is required to be developed. The underlying 

missing factors are important and difficult to decipher. 

Exposure methods aim to estimate the relative and absolute crash risks of 

different road user types (Huang et al., 2011). The number of trips that 

people make and the number of times that a risk is possible according to 

these trips. It is difficult to find exposure data for accident safety research, as 

the number of variables included in these datasets is quite large and 

definitive and suitable data for this source is not possible.  

Reported accidents refer to whether an accident is reported or not to the 

police. When considering non-fatal accidents the under reporting of accidents 

is quite well known (Amoros, Martin, & Laumon, 2003). The degree of under 

reporting can be quite large and needs to be addressed by each country 

specifically for accident analysis purposes.  

 

7.5 Summary 

Chapter 7 presented an analysis of Great Britain national data using the 

relevant factor coding sheets to compare these coding against the multiple 

vehicle cluster analysis carried out in chapter 6.  
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This analysis demonstrated that when a detailed level of information is not 

included in the cluster analysis, the results tend to be skewed towards 

physical variables that provide a greater amount of information. 

A discussion with regards to the differences between in-depth and national 

data analysis procedures and finding implications was carried out. Issues to 

consider when using accident data were highlighted with regards to the 

analysis. 
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8 An Analysis of Powered Two Wheeler 

accidents  

 

8.1 Introduction 

The literature review carried out in section 2.14.1 established that powered 

two wheeler (PTW) riders are one of the most at risk road user groups within 

the traffic environment. Statistical data shows that each year they represent 

15% of people killed on European roads, and according to the World Health 

Organization nearly 200,000 deaths in the world annually (WHO, 2006).  

Though the literature (Clabaux et al., 2012; Clarke et al., 2007; Haque et al., 

2009; MAIDS, 2009) provides detailed information about PTW accidents, an 

approach using each case to observe the riders and other road users 

contribution to each accident, and defining each case according to the failure 

that each road user makes, would benefit in providing PTW scenarios where 

the interactions of both road users would be quantified against each other. 

This study was carried out to focus on how PTW accidents occur on an 

accident basis, and to identify the two way relationships between riders and 

other road users in accidents involving PTW riders and other types of 

vehicles. 

A retrospective analysis using accident causation coding for each PTW 

accident occurring in the OTS dataset between the years 2000-2010 was 

carried out. Four hundred and forty nine cases were coded and analysed in 

terms of relevant factors to understand how PTW accidents occurred. 

The aim of this study was to understand the different type of failures that 

PTW riders make when involved in either a single vehicle accident or when 

interacting on the roadway with other vehicles in a multiple vehicle accident. 

This study aimed to distinguish the factors and situations that were found in 

different PTW accident groupings. Analysis was conducted in two steps, first 

using descriptive methods to understand the data and then performing a 
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latent class cluster analysis to group similar accidents together in order to 

identify accident scenarios. 

 

8.2 Method 

8.2.1 Design 

This study uses a large number of in-depth accidents collected on site as part 

of the On the Spot accident study (OTS) carried out in the UK from 2000 to 

2010. Factors relating to the accident were obtained by grouping the accident 

variables into 4 specific groups relating to human, vehicular, infrastructural or 

environmental factors relating to the accident. The larger number of years 

included compared to the study carried out in chapter 6 was a result of the 

necessary number of cases for the cluster analysis. As the number of cases 

involving PTWs between 2000-2003 were 147 total cases and were not 

sufficient for a detailed cluster analysis to be carried out, all of the cases 

collected within the OTS study needed to be included.  

8.2.2 Sample 

Accident data was collected by two separate groups in two different areas. 

The results presented in this study are based on 4,004 accidents involving a 

total of 12,749 vehicles and 527 pedestrians. From these accidents 449 

accidents involving Powered Two-Wheelers were selected to be analysed.  

Of these cases 21 did not have sufficient data to be included in the cluster 

analysis and were thus excluded. The total number of PTW accidents 

included in the cluster analysis was 428.  

In the sample of the PTW riders 400 of the individuals were male and 45 

were female while 4 of the individuals’ gender was unknown. Of the 429 

individuals whose age was coded in the sample the age for the riders were 

on average 32.2 years old with a standard deviation of 13.5 (figure 23). 
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Figure 23: PTW rider age distribution 

 

8.2.3 Procedure 

For this study all of the PTW accidents present in the OTS mass data file that 

contained relevant data in terms of the vehicle, environment, infrastructure 

and human participant in relation to the accident was selected and separated 

into a new data file. All of the cases were retrospectively analysed by the 

author using the Human Functional Failure Causation methodology (Naing et 

al., 2007) and the LAB accident type coding diagrams by deducing and 

reporting the causal sequence related to each PTW accident and identifying 

the typical accident image that occurred. This data file was then merged with 

the OTS data file.  

The analysis was carried out in two steps. First a descriptive analysis was 

carried out on the merged data to identify specific accident characteristics 
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and for data interpretation purposes. The second stage of analysis was a 

latent class cluster analysis. This analysis was carried out by identifying 

variables that are important in the literature, and by using the descriptive 

analysis and literature as a guide, to separate variables into groupings that 

would be meaningful. The variables were grouped in a larger higher level 

group so the cluster analysis would not discount them. For example, 

variables such as in a hurry, panic and the road user’s emotional status were 

grouped into one variable termed physical/physiological. These groupings 

were based on the HFF method variable groups that were described in 

chapter 4. 

8.2.4 Statistical analysis 

This study incorporated a cluster analysis in order to group the accidents in 

several collision scenarios. Accident causation data fields are categorical 

data in nature, so it was necessary to handle this data in an appropriate 

manner. The handling procedure was carried out by separating the specific 

factors and entering them into a latent class cluster analysis.  

The factors that contributed to the accident and analysed in the cluster 

analysis are illustrated in Table 61. In addition to these variables the road 

type and environment variables were selected from the recorded data by the 

accident investigators, these factors can also be seen in Table 61. Due to the 

nature of the analysis it was necessary to identify the main failure factors that 

are most prominently present in both single and multiple vehicle PTW 

accidents. All PTW accidents were included in the cluster analysis whether 

single or multi-vehicle accidents. This was done by using the HFF chain 

analysis method. 

The latent class cluster analysis was run including all of the above described 

factors above fitting them on between 2 to 15 clusters. From these clusters a 

comparison of the AIC and BIC was made to optimise goodness of fit while 

making sure that the degrees of freedom of the analysis was not negative. A 

chi-square analysis for all of the individual factors in each individual cluster 

was conducted against the total value for the dataset. So the analysis that 

was carried out was an analysis of the first cluster versus the total and 
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expected values, the second cluster against the total and expected values 

and so forth. 

For each variable that was seen to be significant a residual analysis of the 

values were then conducted to further determine the value that was 

statistically significant in the cluster analysis. Each residual value that was 

above 2 and also higher than the expected value was entered into a table for 

that specific cluster and described in the description section for each specific 

cluster. 

 

8.3 Results 

8.3.1 Descriptive analysis 

Below is a description of the different types of PTW accidents that were 

analysed within this study. Table 55 presents the number of vehicle records 

for all of the accidents that are present within the dataset. The first road user 

within the accident was always coded as a PTW, and the interacting vehicles 

(n=340) other road users to PTW accidents were coded. In total 449 

accidents were coded. Of these accidents 109 were single vehicle accidents, 

302 were two vehicle accidents, 30 were three vehicle accidents, and 8 were 

four vehicle accidents. The other road user most commonly interacting with 

the PTW riders in multiple vehicle accidents were car (87.9%) drivers and for 

this reason the interacting road user type was not included in the cluster 

analysis, rather the failure mechanism that the other road user made was 

included. 

Table 56 demonstrates all of the different types of failures for multiple vehicle 

accidents with the first combination of rider and road user that interacted 

within the accident. This was done by identifying the failure types and 

comparing rider and road user types. The coding illustrates that for detection 

failures made by the interacting road user a majority of the cases were 

prognosis failures (n=156), where the PTW user did not expect the driver to 

make a manoeuvre. The same accident type was also identified for cases for 

where the road user was not identified by the rider (n=41). 
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Table 55: PTW rider by other road user type and number of vehicles involved 

in the accident 

 PTW accidents  

Interacting 
Vehicle 

Single 
Vehicle 

Two 
Vehicle 

Three 
Vehicle 

Four 
Vehicle 

N 

Car 0 275 18 6 299 

Heavy Goods 0 4 1 0 5 

Light Goods 0 14 1 1 16 

PTW 109 0 2 0 111 

Pedestrian 0 7 4 1 12 

Other 0 10 4 0 14 

Total 109 302 30 8 449 

 

This is the largest group of failures and includes both ‘looked but did not see’ 

accidents or ‘right of way violation’ accident types. A large number of 

accidents occurred that were road users making decision errors and 

undertaking a risky driving behaviour and colliding with a PTW rider (n=40). 

Other failure types that had a relevant number of cases were diagnosis 

failures of the roadway by the PTW rider (n=29) and decision failures (risky 

behaviours undertaken) made by the PTW rider (n=36). 

 

Table 56: Failure types for PTW riders compared to interacting road users 

PTW Interacting road user failure 

Failure  Detection Diagnosis Prognosis Decision Other N 

Detection  7 1 41 4 1 54 

Diagnosis 3 1 24 1 0 29 

Prognosis 156 13 5 28 5 207 

Decision 11 1 18 6 0 36 

Execution 1 1 3 1 0 6 

Overall 0 0 7 0 0 7 

Total 178 17 81 40 6 339 

 

Table 57 demonstrates a cross tabulation between the different failure types 

by a number of demographic variables, contributory factors, PTW size, level 

of accident involvement, environmental factors and injury severity. All factors 
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could be specifically coded for all of the accidents and so the totals do not 

necessarily add up to 100%. As the total number of empty cells in the table 

were of a high number a chi square analysis was not carried out, this was 

due to the results would not being meaningful in cases where there are a 

large number of empty cells and the expected cell counts are less than 5.  

For detection failures the main contributory factors identified was ‘being in a 

hurry’ (34.5%) and ‘inexperience’ (29.1%) of the PTW rider. The age group 0-

18 (29.1%) made more detection failures than any other rider group 

according to the group size. A prognosis failure where the PTW rider was not 

expecting the other road user to make a manoeuvre was quite evenly spread 

for all factors. In terms of accident configuration right turn against (19.5%) 

conflicts had the highest number of occurrences in the data. Decision failures 

and diagnosis failures both had high values for the PTW rider being in a hurry 

and speeding. Diagnosis failures were particularly high for riders between the 

ages of 19-25 (37.9%) and also for PTWs with engine capacities above 250 

cc (72.4%). Both decision failure and diagnosis failure types had a higher 

level of injury compared to the other accident groups. Decision failures 

(22.2%) and prognosis (26.6%) failures were the most prominent groups for 

main contributing PTW riders in terms of right turn against accident 

situations. The other road user did not make an emergency manoeuvre in 

83% of the coded cases. 

 

Table 57: PTW rider failure types with risk factors and other important factors  

Factor Detection 

N=55 

Diagnosis 

N=29 

Prognosis 

N=207 

Decision 

N=36 

Execution 

N=5 

Overall 

N=7 

N 

339 

Contributory factor       

Speed 14.5 27.6 5.3 55.6 20.0 42.9 15.0 

Alcohol 0.0 0.0 0.0 0.0 0.0 42.9 0.9 

Distraction 12.7 0.0 0.0 8.3 0.0 0.0 2.9 

In a hurry 34.5 55.2 5.3 55.6 0.0 85.7 21.2 

Inexperience 29.1 10.3 2.9 5.6 40.0 100.0 10.3 

Age range        

0-18 29.1 13.8 9.7 19.4 20.0 28.6 14.7 

19-25 9.1 37.9 15.5 22.2 20.0 28.6 17.4 

26-45 29.1 34.5 32.9 33.3 40.0 42.9 32.7 
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Factor Detection 

N=55 

Diagnosis 

N=29 

Prognosis 

N=207 

Decision 

N=36 

Execution 

N=5 

Overall 

N=7 

N 

339 

46-65 3.6 6.9 10.1 2.8 0.0 14.3 10.9 

66+ 1.8 0.0 3.4 2.8 0.0 0.0 2.7 

Missing 5.5 6.9 28.5 22.2 20.0 0.0 21.5 

Engine size        

≤ 50cc  23.6 10.3 12.1 22.2 40.0 14.3 15.3 

51> cc ≤ 250 16.4 17.2 15.9 44.4 0.0 42.9 16.5 

Cc > 250 50.9 72.4 48.8 52.8 60.0 42.9 51.6 

Missing 5.5 0.0 23.2 16.7 0.0 14.3 17.1 

Day/Night        

Day 83.6 79.3 67.1 88.9 60.0 71.4 73.5 

Night 10.9 17.2 22.2 8.3 40.0 28.6 18.9 

Missing 1.8 3.4 10.6 5.6 0.0 0.0 7.7 

Other road user emergency manoeuvre  

Yes  9.4 20.7 16.5 22.9 50.0 28.6 17.3 

No 90.6 79.3 83.5 77.1 50.0 71.4 82.7 

Injury severity       

Fatal 9.1 10.3 2.9 13.9 0.0 28.6 5.3 

Serious 23.6 34.5 23.2 36.1 40.0 28.6 26.0 

Slight 25.5 48.3 56.5 38.9 40.0 57.1 53.7 

Non-injury 5.5 3.4 7.7 8.3 20.0 0.0 7.7 

Level of involvement       

Primary 85.5 89.7 6.3 61.1 40.0 100.0 36.3 

Secondary 3.6 0.0 10.1 25.0 20.0 0.0 9.7 

Not contributory 7.3 10.3 83.6 2.8 40.0 0.0 54.0 

Accident type        

Other vehicle 
right turn against 

5.5 0.0 26.6 22.2 0.0 0.0 19.5 

Rear-end 41.8 3.4 4.8 5.6 20.0 0.0 10.9 

Both vehicles 
turning right  

7.3 0.0 9.2 2.8 0.0 0.0 7.1 

Merging roads 1.8 0.0 8.2 2.8 0.0 0.0 5.6 

Drifting into 
opposite lane 

5.5 24.1 1.0 2.8 20.0 57.1 5.3 

 

Table 58 shows the different PTW failure types and manoeuvres for each 

specific accident failure type for multiple vehicle accidents that include PTWs 

from the OTS dataset. Only 301 of the 449 cases had manoeuvres coded, by 

the OTS analyst, and are included in the table below. The largest groups of 

failures were prognosis failures (n=163) and the largest accident type for 
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these failures was turning accidents (55.8%). Overtaking accidents (22.0%) 

was the second largest manoeuvre types for this failure. The second largest 

failure group were detection failures (n=52) and the largest accident type was 

rear-end accidents (51.9%), then overtaking (21.1%) and turning accidents 

(15.4%). Overtaking was a particularly large group of accidents where 

diagnosis failures (44.4%) and decision failures (25.7%) occurred. 

 

Table 58: PTW rider failure type and accident type 

Accident  

Type 

Detection 

N=52 

Diagnosis 

N=27 

Prognosis 

N=163 

Decision 

N=35 

Other 

N=24 

Overtaking 21.1% 44.4% 22.0% 25.7% 8.3% 

Loss of control 9.6% 18.5% 4.9% 8.6% 29.1% 

Rear-end 51.9% 3.7% 8.4% 14.3% 4.1% 

Turning 15.4% 7.4% 55.8% 22.9% 4.5% 

Other 2.0% 26.0% 8.9% 28.5% 54.1% 

Total 100% 100% 100% 100% 100% 

 

Table 59 shows the different PTW rider failure types and manoeuvres for 

single PTW accidents. The largest group of failures were diagnosis failures 

(n=34), while the other failures were quite evenly split between the other 5 

groups; detection failures (n=17), execution failures (n=17), overall failures 

(n=17), decision failures (n=16) and prognosis failures (n=9). The most 

common accident types were loss of control accidents either in straight 

ahead situations (n=47) or while turning (n=42). Diagnosis failures were 

particularly high for loss of control accidents, accounting for 27% of all single 

PTW accidents. Diagnosis failures (31.2%) together with execution failures 

(14.5%) and overall failures (13.6%) accounted for over half of the single 

PTW accidents. Other than loss of control accident types only overtaking 

(5.4%) and hitting obstruction accidents (5.4%) were observed to be the 

accident types that occurred for single PTW accidents. 
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Table 59: PTW single vehicle rider failure with accident type 

Failure Detection Diagnosis Prognosis Decision Execution Overall Total 

 N=17 N=34 N=9 N=16 N=17 N=17 109 

Overtaking 11.8% 2.9% 0.0% 18.8% 0.0% 0.0% 6 

LOC (straight) 29.4% 38.2% 55.6% 43.8% 47.1% 52.9% 47 

LOC (turning) 29.4% 50.0% 22.2% 25.0% 47.0% 35.3% 42 

Hitting 
obstruction 

5.9% 2.9% 11.1% 6.3% 5.9% 5.9% 6 

Other 23.5% 6.0% 11.1% 6.1% 0.0% 5.9% 8 

 

Table 60 shows all incidents where the road user in conflict with the PTW 

rider was coded as making a detection failure. These types of accidents have 

been highlighted in the literature as ‘looked but did not see’ accidents. The 

main type of failure that the road user made was due to hurried information 

acquisition (35.3%), the second due to visibility constraints (30.6%), and the 

third due to focusing on another road side component (22.5%). 

 

Table 60: Other road user PTW detection errors by failure subgroup type 

Failure type N Percentage 

Visibility constraint conditions 53 30.6 

Information acquisition focused on another component 39 22.5 

Hurried information acquisition 61 35.3 

Interruption in information acquisition 8 4.6 

Neglecting the need to search for information 12 6.9 

Total 173 100 

 

 

8.3.2 Cluster analysis 

Cluster analysis factors 

Table 61 shows all of the associated risk factors used in the cluster analysis. 

A total of 13 specific variables were selected to be entered into this analysis 

according to the most relevant risk factors that previous research had 

identified as present in PTW accidents. The variables were divided into four 

groups. The human factors selected were the main failure that the PTW rider 
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was coded as making as well as the first contributory factor that was coded 

for the rider. The rider’s level of involvement in the accident was also coded, 

determining what level of contribution the rider made to the accidents conflict 

situation. The main contributing factor that the rider made was coded with 10 

specific groups. The interacting road users main failure (or single accident) 

was coded in order to identify the direct failure interactions, to clarify the type 

of multi-vehicle accidents or whether the PTW was involved in a single 

vehicle accident. The age group and gender of the rider were also included in 

the analysis 

With regards to the PTW, the size of the engine was used to determine the 

types of PTWs that faced different obstacles. The PTW types were classified 

similarly to Montella, Aria, D’Ambrosio, & Mauriello (2012) where the first 

type referred to commonly as an L1 lightweight PTWs (mopeds and scooters) 

with a cylinder capacity less than or equal to 50 cm3 (category 1), and the 

second and third categories were made up of L3 categories scooters and 

light weight motorcycles, with a cylinder capacity greater than 50 cm3 and 

less than or equal to 250 cm3 (category 2) and the last category included 

heavy scooters and motorcycles with a cylinder capacity greater than 250 

cm3 (category 3). 

In terms of the environment and infrastructure separate factors that described 

the road area, speed limit and road type were entered into the analysis. The 

manoeuvre of the PTW rider was also included in the analysis as either going 

ahead on a straight road, entering an intersection, overtaking another vehicle 

and the remaining accident manoeuvres were put into a group called “other” 

as their numbers were not significant enough to be entered into the cluster 

analysis. A detailed list of all of the values counts and percentages can be 

found in Appendix B (pp. 353). 

 

Table 61: Variables used in the PTW accident cluster analysis  

Variable Aspect Level Value 

Speed limit Environmental Accident ≥ 30 mph; 40-50 mph; 60-70 mph 

Road area Environmental Accident Urban; Rural 

Light conditions Environmental Accident Day; Night 
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PTW rider 
failure 
mechanism 

Traffic 
accident 

PTW 
rider 

Detection; Diagnosis; Prognosis; Decision; Execution; 
Overall 

Gender  Road User PTW 
rider 

Male; Female 

Age group Road User PTW 
rider 

0-18; 19-25; 26-45; 46-65; 66+ 

Rider 
contributory 
factor 

Accident PTW 
rider 

Physical/physiological; Risk taking; Inexperience; 
Distraction; Road condition; Traffic condition; Visibility 
impaired; Other environmental factors; Vehicular 
factor; No factor 

Emergency 
manoeuvre 

Accident PTW 
rider 

Yes; No 

Level of 
involvement 

Accident  PTW 
rider 

Primary contributory; Secondary contributory; Not 
contributory 

PTW type Vehicle PTW 
rider 

≤ 50cc; 51> cc ≤ 250; cc > 250 

Road type Environmental Accident A class; B class; Motorway; Minor 

Other vehicle 
failure type 

Vehicle Road 
User 2 

Detection; Prognosis; Decision; Single PTW crash; 
Other 

Rider 
manoeuvre 

Accident PTW 
rider 

Leaving lane; Rear-end; Changing lane; Overtaking; 
Right turn; Left turn; Intersection; Other 

 

Goodness of Fit analysis 

 The results from the goodness of fit analysis comparing the Akaike 

information criterion (AIC) and Bayesian information criterion (BIC) from 2 to 

15 clusters can be seen in figure 24. The BIC (10919.30) produced a two 

cluster fit as the best fit for analysis purposes while the AIC (10657.58) 

produced a seven cluster fit as the best fit for analysis purposes. The AIC 

analysis was selected for the cluster analysis as the case size and dataset 

structure was a better fit for this analysis (figure 24). 
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Figure 24: AIC and BIC values for the PTW accident cluster analysis 

 

Cluster analysis descriptions 

The latent class cluster analysis focused on the documented 428 PTW 

accident files. Seven distinctive (separated) accident classes were 

highlighted resulting in a 7 cluster solution. The grouping was made 

according to the cluster sizes, the largest cluster being the first group, the 

second largest being the second group and so forth (figure 25). A detailed 

table that includes all of the cluster results can be found in Appendix B (pp.  

355), in this table each overly represented significant factor is presented in 

bold.  
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Figure 25: PTW cluster sizes 

 

A simple explanation of each of the clusters was carried out in order to 

support the discussion, these explanations can be found within the results 

section. For each of the clusters a table that included all of the factors that 

were significant and over-represented according to the chi square analysis, 

as well as the degrees of freedom (df) values and number of cases where 

these factors were present was created. The degrees of freedom values and 

values of significance were not reported by each individual factor within the 

clusters to prevent repetition. 

 

Cluster analysis results 

Cluster 1 (n=122) 

“Intersection accident due to other road user not detecting PTW” 

Table 62 highlights the results for cluster 1, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 
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Table 62: Powered two wheeler cluster 1 analysis results 

Variable  Value Percentage df N χ² Sig. 

Rider gender   Female 17.0 1 21 8.4 0.01 

PTW rider failure mechanism   Prognosis 96.6 5 118 161.2 0.001 

Rider contributory factor  Traffic condition 40.5 9 49 120.7 0.001 

  No Factor 43.0 9 52   

Level of involvement   Not contributory 92.9 2 113 187.4 0.001 

Other vehicle failure type  Detection 76.4 4 93 139.2 0.001 

  Decision 14.0 4 17   

  Other 9.7 4 12   

PTW engine size  50cc 24.5 2 30 11.1 0.01 

Road area  Urban 87.8 1 107 46.8 0.001 

Speed limit  30 mph and under 76.0 2 93 79.9 0.001 

Road type   B class 22.9 3 28 25.0 0.001 

  Minor 39.8 3 48   

Accident situation   Right turn 53.6 7 65 114.6 0.001 

  Left turn 6.4 7 8   

  Intersection 12.9 7 16   

 

Human Factors 

PTW: In terms of demographic variables female riders (17.0%) were 

significantly over-represented for this cluster. The riders main failures were 

prognosis failures (96.6%) and the contributing factors for the rider were 

either the condition of the traffic environment (40.5%) or no contributory 

factor (43.0%) being coded. The fact that the rider made a prognosis failure 

and was not contributing (92.9%) to the accident highlights that most of the 

failures were related to the rider not expecting the other road user to make a 

manoeuvre. The failure that the other road user made was a detection failure 

(76.4%) or a decision failure (14.0%).  

Vehicular Factors 

The engine size of the PTWs were 50cc and below (24.5%). 
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Environmental/Infrastructural Factors 

These accidents occurred in an urban area (87.8%) with a speed limit that 

was 30 mph or under (76.0%) in a B class (22.9%) or minor road (39.8%). 

The accident situation that the rider was going against was either a vehicle 

turning against right turn (53.6%), vehicle making a left turn (6.4%) or an 

intersection (12.9%).  

 

Cluster 2 (n=77) 

“Single vehicle PTW accident due to risk taking and incorrect diagnosis 

of the roadway” 

Table 63 highlights the results for cluster 2, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 63: Powered two wheeler cluster 2 analysis results 

Variable Value Percentage df N χ² Sig. 

Rider age group  19-25 34.8 4 27 26.2 0.001 

PTW rider failure mechanism  Diagnosis 50.8 5 39 204.4 0.001 

 Decision 25.1 5 19   

 Overall 21.2 5 16   

Rider contributory factor Physical/physiological 33.5 9 26 110.1 0.001 

 Risk taking 57.8 9 44   

Level of involvement Primary contributory 100.0 2 77 94.5 0.001 

Other vehicle failure type  Single vehicle 73.4 4 57 161.2 0.001 

Engine size  250+cc 75.8 2 58 9.9 0.01 

Road area  Rural 57.9 1 45 16.7 0.001 

Speed limit  60-70 mph 46.2 2 36 24.9 0.001 

Road type  Minor 44.3 3 34 11.1 0.05 

Accident situation Leaving lane 83.7 7 64 183.1 0.001 

 



 

229 

 

Human Factors 

PTW: The PTW riders were male riders (90.9%) for this cluster despite 

gender not having a significant chi square value and the significant age range 

was 19-25 (34.8%).  

The riders main failures were diagnosis failures (50.8%), decision (25.1%) or 

overall failures (21.2%). The contributing factors for the rider were either the 

physical/physiological condition (33.5%) or risk taking (57.8%). The rider was 

the primarily contributing road user (100.0%) to the accident. The accident 

was a single vehicle accident (73.4%). 

Vehicular Factors 

The engine size of the PTWs was above 250 cc (75.8%). 

Environmental/Infrastructural Factors 

These accidents occurred in a rural area (57.9%) with a speed limit that was 

above 60 mph (46.2%) in a minor road (44.3%). The rider was leaving their 

lane (83.7%). 

 

Cluster 3 (n=75) 

“Detection conflict situation with road user due to lane changing or 

turning” 

Table 64 highlights the results for cluster 3, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 64: Powered two wheeler cluster 3 analysis results 

Variable Value Percentage df N χ² Sig. 

Rider age group  66+ 8.2 4 6 15.5 0.01 

PTW rider failure mechanism  Prognosis 96.1 5 72 84.2 0.001 

Rider contributory factor  Traffic condition 34.0 9 25 55.7 0.001 

 No Factor 46.4 9 35   
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Level of involvement  Not contributory 83.1 2 62 71.6 0.001 

Rider emergency manoeuvre Yes 46.5 2 35 4.1 0.05 

Other vehicle failure type Detection 79.5 4 60 73.5 0.001 

Engine size  250+ 78.2 2 59 9.7 0.01 

Road area  Rural 74.0 1 55 51.6 0.001 

Speed limit  40-50 mph 50.2 2 38 76.5 0.001 

 60-70 mph 49.8 2 37   

Road type A class 67.9 3 51 36.0 0.001 

 Motorway 13.5 3 10   

Accident situation  Changing lane 31.4 7 28 72.8 0.001 

 

Human Factors 

PTW: Male riders were not significant for this cluster but were involved in a 

large proportion of the cases (92.6%). The rider’s age range 66 years or 

older (8.2%) was over-represented. 

In this cluster prognosis failures (96.1%) were identified as being significant 

and the contributing factors for the rider were either the condition of the traffic 

environment (34.0%), or no contributory factor was coded (46.4%). The rider 

was not contributing (83.1%) to the accident occurring and made an 

emergency manoeuvre (46.5%). The failure that the other road user made 

was a detection failure (79.5%).  

Vehicular Factors 

The engine size of the PTWs was above 250cc (78.2%). 

Environmental/Infrastructural Factors 

These accidents occurred in a rural area (74.0%) with a speed limit that was 

40 mph to 50 mph (50.2%) or over 60 mph (49.8%) in an A class road 

(67.9%) or motorway (13.5%). The accident occurred while changing lanes 

(31.4%).  

 

Cluster 4 (n=46) 
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“Rider detection issues in high speed situation” 

Table 65 highlights the results for cluster 4, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 65: Powered two wheeler cluster 4 analysis results 

Variable Value Percentage df N χ² Sig. 

Rider age group  46-65 28.5 4 13 18.2 0.01 

PTW rider failure mechanism Detection 74.8 5 34 98.3 0.001 

 Diagnosis 25.3 5 11   

Rider contributory factor  Distraction 12.8 9 6 22.3 0.01 

Level of involvement Primary contributory 100.0 2 46 28.3 0.001 

Other vehicle failure type  Prognosis 80.4 4 36 65.4 0.001 

Engine size  250+ cc 84.2 2 38 12.7 0.01 

Accident situation  Rear-end 41.8 7 19 84.6 0.001 

 Overtaking 29.0 7 13   

 

Human Factors 

PTW: Male riders (91.1%) were not significant for this cluster despite being 

involved in a high percentage of these cases. The rider’s age range was 

between 46-65 (28.5%).  

The riders main failures were detection failures (74.8%) or diagnosis failures 

(25.3%), and the contributing factors for the rider were the rider’s distraction 

(12.8%). The rider was the primarily contributing road user (100%). The 

failure that the other road user made was a prognosis failure (80.4%).  

Vehicular Factors 

The engine size of the PTWs was above 250 cc (84.2%). 

Environmental/Infrastructural Factors 

The accident type that was significant was a rear-end accident (41.8%) or an 

overtaking accident (29.0%).  
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Cluster 5 (n=41) 

 “Young rider detection issues in low speed situations due to risk 

taking or inexperience” 

Table 66 highlights the results for cluster 5, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 66: Powered two wheeler cluster 5 analysis results 

Variable Value Percentage df N χ² Sig. 

Rider age group 0-18 88.0 4 37 168.8 0.001 

PTW rider failure mechanism Detection 53.8 5 23 70.1 0.001 

 Overall 13.2 5 6   

Rider contributory factor Physical/physiological 35.7 9 15 58.2 0.001 

 Inexperience 16.7 9 7   

 Visibility impaired 9.3 9 4   

Level of involvement Primary contributory 93.1 2 39 35.7 0.001 

Other vehicle failure type  Prognosis 64.1 4 27 53.9 0.001 

Engine size 50 cc 66.6 2 28 98.0 0.001 

Road area Urban 90.0 1 38 15.0 0.001 

Speed limit 30 mph and under 84.0 2 35 29.8 0.001 

Road type  Minor 58.8 3 25 20.9 0.001 

Accident situation  Rear-end 22.0 7 9 14.8 0.05 

 

Human Factors 

PTW: Male riders were involved in a high proportion of these cases but were 

not over-represented for this cluster (90.5%), and the riders age range was 

between 0-18 (88.0%). 

The riders main failures were detection failures (53.8%) and the contributing 

factors for the rider were either physical/psychological (35.7%), inexperience, 

(16.7%) or impaired visibility (9.3%). The rider was the primary contributing 
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road user (93.1%). The failure that the other road user made was a prognosis 

failure (64.1%).  

Vehicular Factors 

The engine size of the PTWs was below 50 cc (64.1%). 

Environmental/Infrastructural Factors 

These accidents occurred in an urban area (90.0%) with a speed limit that 

was under 30 mph (84.0%) in a minor road (58.8%). The accident type was a 

rear-end accident (22.0%).  

 

Cluster 6 (n=36) 

“Young PTW rider with small engine size accident in a low speed 

setting” 

Table 67 highlights the results for cluster 6, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 67: Powered two wheeler cluster 6 analysis results 

Variable Value Percentage df N χ² Sig. 

PTW rider failure mechanism  Decision 62.8 4 23 102.2 0.001 

Rider contributory factor Risk taking 49.9 9 18 31.6 0.001 

Level of involvement Secondary contributory 34.1 2 12 51.2 0.001 

Other vehicle failure type  Decision 62.8 4 23 21.2 0.001 

Road area Urban 88.5 1 32 11.4 0.001 

Speed limit  40-50 mph 48.5 2 17 2.5 0.01 

Road type A class 67.6 3 24 6.4 NS 

Accident situation  Right turn 49.2 7 18 25.6 0.001 

 

Human Factors 
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PTW: Male riders (95.5%) were not significant for this cluster. The rider’s 

failure identified by the cluster analysis was decision failures (62.8%) and the 

contributing factors for the rider was risk taking (49.9%). The rider as the 

primary contributing (62.7%) road user had a high proportion but did not have 

a significant residual value. The failure that the other road user made was a 

decision failure (62.8%).  

Vehicular Factors 

No engine size value was significant in this cluster. 

Environmental/Infrastructural Factors 

These accidents occurred in an urban area (88.5%) with a speed limit that 

was either 40 or 50 mph (48.5%) in an A class road (67.6%). The accident 

situation was a right turn conflict (49.2%).  

 

Cluster 7 (n=31) 

“Single motorcycle leaving lane due to road condition or vehicular 

failure” 

Table 68 highlights the results for cluster 7, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 68: Powered two wheeler cluster 7 analysis results 

Variable Value Percentage df N χ² Sig. 

Rider age group  26-45 76.3 4 24 14.8 0.01 

PTW rider failure mechanism  Execution 56.6 5 18 209.7 0.001 

Rider contributory factor  Road condition 34.5 9 11 260.5 0.001 

 Other environmental factors 18.8 9 6   

 Vehicular factor 15.7 9 5   

Level of involvement Primary contributory 81.0 2 25 13.5 0.01 

Other vehicle failure type  Single vehicle 74.2 4 23 61.7 0.001 

Road area  Rural 64.8 1 20 10.6 0.01 
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Speed limit  60-70 mph 61.2 2 19 26.3 0.001 

Road type  Motorway 31.8 3 10 50.3 0.001 

Accident situation Leaving lane 77.2 7 24 53.7 0.001 

 

Human Factors 

PTW: Male riders were not significant for this cluster though were in a high 

proportion of the accidents (96.6%). The rider’s age range was between the 

ages of 26 to 45 (76.3%). The riders main failures were execution failures 

(56.6%) and the contributing factors for the rider were road conditions 

(34.5%), other environmental factors (18.8%) or vehicular factors (15.7%). 

The rider was the primarily contributing road user (81.0%). The accident was 

a single vehicle accident (74.2%).  

Vehicular Factors 

The engine size of the PTWs was not significant for this cluster. 

Environmental/Infrastructural Factors 

These accidents occurred in a rural area (64.8%) on a motorway (31.8%) 

with a 60 mph or over speed limit (61.2%). The accident type was a leaving 

lane accident (77.2%). 

 

8.4 Discussion 

The PTW study was undertaken with two general aims, the first was to 

understand the different types of accident scenarios that occur for PTW 

riders with other road users. The second was to determine the nature of 

these scenarios and what countermeasures can be identified to either reduce 

or altogether stop these types of accidents.  

This analysis process was carried out in two parts, firstly carrying out a 

descriptive analysis in order to provide a detailed understanding of the 

accidents and what type of road users the PTW riders mostly interacted with, 

and secondly a cluster analysis in order to use a statistical approach to form 

scenarios based on inferential statistics.  
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8.4.1 Sampling 

The sample in this study consisted of 449 cases collected by the OTS in-

depth accident study between the years 2000-2010. McCarthy, Walter, 

Hutchins, and Tong (2008) carried out an analysis comparing the OTS PTW 

accidents against the relevant Great Britain national data cases, using the 

302 PTW accidents that were collected up to that point (90 single PTW 

accidents, 212 multi-vehicle accidents). This comparison was carried out 

using a chi square analysis and found that the OTS data was not significantly 

different than national data with regards to rider age, engine size and types of 

area.  

A comparison with regards to accident injury severity found that there was a 

major difference between the data, and that the OTS data had more accident 

cases that included severe injuries. The reason for this may be that the 

nature of in-depth accident studies make there accident collection procedure 

skew towards injury accidents, as the accidents are notified to police 

immediately and some non-injury or less significant injury accidents are not 

reported (Clarke et al., 2004). 

8.4.2 Descriptive analysis 

In terms of the accident configurations most of the accidents found in this 

dataset were either single vehicle accidents (24.3%) or multiple vehicle 

accidents that occurred with cars as the vehicle that the PTW was in conflict 

with (60.0%). This is in accordance with UK national data as reported by 

Elliot et al. (2003), but single PTW accidents were slightly more (18%) and 

car to PTW accidents (68%) less than figures reported in the UK by the DfT 

in 2005 (DfT, 2005). 

In terms of demographic variables males were coded as the PTW rider in 

nearly 90% of these accidents which is similar to other studies on PTWs 

(Bjørnskau et al., 2012; MAIDS, 2009).  

The single PTW accident causes were a result of the PTW either losing 

control on a straight road (52.9%) or losing control while turning (35.3%), this 

is in contrast to figures from Clarke et al. (2007) and Hurt et al. (1981) where 

both studies had most of the loss of control studies occurring on bends rather 
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than on straight roads, though the figures from Hurt et al. (1981) are for US 

national data and the sample is not similar to this study, due to the years the 

data was collected and sample characteristics. While for multiple vehicle 

accidents the main accident types were right turn against (19.5%) and rear-

end accidents (10.9%) which is similar to figures from Clarke et al. (2007). 

The data from the Clarke et al. (2007) study was obtained from the midland 

police forces between the years 1997 – 2002, so there may be some overlap 

between a small number of cases that were obtained in the Nottinghamshire 

region of the OTS study and similarities in the sample characteristics. 

In terms of contributing to an accident’s occurrence other road users (54%) 

were more likely than PTW riders (36%) to cause the conflict situation to 

occur. This is different compared to the data from Clarke et al. (2007), which 

had PTW users as the main contributing road user in 51% of the cases. The 

possible reasons for this could be that though one of the main sampling 

areas was similar to the OTS studies, the data was collected in different 

years and accident configurations may have changed during the different 

periods. Clarke et al. (2007) did not include non-injury cases and this may 

have also caused the difference. Another possible reason could be that the 

coding schema or the interpretation by the researchers used by the UK 

national data police force and OTS studies was different within the two 

studies. 

Most of the accidents in this sample occurred in situations where the PTW 

rider was going straight ahead and was not in direct conflict with the other 

road user. The other road user did not make an emergency reaction on more 

than 80% of the two road user accidents. 

8.4.3 Cluster analysis interpretation 

The analysis classified the accidents into seven different clusters, from these 

clusters it was possible to differentiate the four clusters where the PTW rider 

was the main contributing road user to the accident occurring, two clusters 

where they were not a contributing user and one cluster where both road 

users contributed to the accident occurring. A brief description for each 

cluster is made below. A detailed listing of all relevant factors present in the 
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PTW cluster model as well as some explanatory descriptive variables for the 

clusters is present in table 69. 

Cluster 1 

The first cluster identified an accident situation where the road user was 

making a right turn at an intersection in a low speed setting and was not able 

to detect the PTW rider. The PTW rider did not expect to be not detected and 

so did not have sufficient time to react to this occurrence, and did not make 

an emergency manoeuvre. The main contributing road user to these 

accidents was the other road user. This accident can be termed a ‘looked but 

did not see’ right of way accident, which can be classified as right of way 

violation accidents at T junctions identified by Clarke et al. (2007). This group 

of car to PTW accidents was the accident that most commonly occurred.  

Cluster 2 

Cluster 2 identified a single road user accident where the PTW rider 

misdiagnosed the roadside and made a manoeuvre that led to them leaving 

the lane. This cluster was related to risk taking and the rider did not make an 

emergency manoeuvre. These accidents were similar to the accidents 

classified by Clarke et al. (2007) as loss of control accidents with the accident 

setting described being the same as this cluster. 

Cluster 3 

The third cluster identified a situation where the road user was changing 

lanes or turning right in a medium to high speed setting and did not detect the 

PTW rider. The other road user was the main contributing road user to this 

cluster. The PTW rider did not expect the other road user to perform their 

behaviour but was able to make an emergency manoeuvre on nearly half of 

the cases. This cluster could also be determined as ‘looked but did not see’ 

accidents though different to cluster 1, in that the there was a higher speed 

setting and the size of the PTW was larger. 

Cluster 4 

Cluster 4 identified an accident where a rider on a large engine PTW made a 

detection or diagnosis error. The cases for this cluster were distributed 
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between either rear-end or overtaking accidents, where the manoeuvre that 

the PTW rider made led to the accident occurring. 

Cluster 5 

Cluster 5 identified accidents where younger riders were on PTWs that were 

50ccs or below, and made a detection error due to risk taking or 

inexperience. The accident configuration was the rider either not seeing the 

vehicle in front and striking the other vehicle in the rear or performing an 

unsuccessful overtaking manoeuvre. These accidents were similar to the 

accidents classified by Clarke et al. (2007) as PTW manoeuvring accidents 

and the group of young moped riders were far more likely to cause rear-end 

shunts compared to other PTW riders. 

Cluster 6 

This cluster identified accidents where both road users were contributing to 

the accidents occurrence. The main types of accidents that were highlighted 

were right turn accidents, where the rider made a decision error due to risk 

taking and the other road user made a detection or decision failure. This 

cluster occurred in urban areas and younger PTW riders were over-

represented for this grouping. 

Cluster 7 

This cluster identified single vehicle PTW accidents where the PTW rider 

either made an overall failure or an execution failure. The road condition was 

deemed to be problematic in a quarter of the cases and there was a PTW 

vehicular failure in another 20% of these cases. This was the only cluster that 

had the PTW as the primary contributing road user together with traffic 

condition as a contributory factor in a multiple road user accident. 

Cluster analysis general discussion 

The cluster analysis mainly distinguished between accidents where the PTW 

was the main contributing road user and accidents where the other road user 

was the main contributing road user. 

For the clusters where the road user was the main contributing road 

participant cluster 1 and cluster 3 highlighted detection issues in two different 
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settings. These clusters are ‘looked but did not see accidents’ where the 

other road user made a detection error. This conflict situation between PTWs 

and vehicle types, particularly car to PTW, has been illustrated by previous 

research (Brown, 2002; Clabaux et al., 2012; Clarke et al., 2004; Clarke et 

al., 2007; Crundall et al., 2012; Hurt et al., 1981) and is of particular 

importance for road safety measures to broach as a large number of cases in 

research all over the world all demonstrate this accident type.  

The difference between the clusters is the first cluster being in a low speed 

setting in an urban area where there was an issue with the traffic 

environment with a right turn against or intersection situation. The third 

cluster contained cases that were in a higher speed setting and rural 

environment which is different from typical ‘looked but did not see’’ accidents. 

Koustanai et al. (2008) identified that road users failed to see a two-wheeled 

vehicle mainly because it has atypical properties in comparison with the rest 

of traffic. The reason that PTW riders are not detected by other road users 

can be many, similar results have been discussed by previous studies that 

identified ‘looked but did not see’ PTW accidents, but the in-depth accident 

analysis provided in this chapter that further separated these failures can 

help in providing a discussion point of the different types of detection errors. 

The descriptive analysis in table 60 highlighted hurried information 

acquisition as the main issue in these types of accidents. The other main 

types of failures were due to visibility constraints in the environment and 

focusing on another component within the traffic environment.  
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Table 69: PTW cluster analysis model and variables 

Cluster/ N of 
cases/% of cases 

 Descriptive information  Cluster model 

 Accident type Casualty level  PTW Main 
failures 

Contributory factor 1 Other road user 
failure 

Gender/ 
Age 

Manoeuvre Level of 
involvement 

Accident 
setting 

1 
 
122 
 
28.5% 

 Right turn accident 
onto PTW 

Fatal (1) 
Serious (28) 
Slight (68) 
Non-injury (9) 

 Prognosis Traffic condition Detection Female/ 
0-25 

Right turn 
Left turn 
Intersection 
Other 

Not contributory B road/ 
Minor road 
30 mph 
Urban area 
Night-time 

2  
 
77 
 
18.0% 

 PTW loss of control Fatal (15) 
Serious (31) 
Slight (27) 
Non-injury (3) 

 Diagnosis 
Decision 

Risk taking 
Physical/Psychological 
 

Single vehicle 
accident 

Male/ 
19-45 

Leaving lane  
 

Primary 
contributory 

Minor road 
60-70 mph 
Rural area 
Daytime 

3 
 
75 
 
17.5% 

 Loss of control on a 
straight road or a 
bend 

Fatal (3) 
Serious (17) 
Slight (46) 
Non-injury (6) 

 Prognosis Traffic condition Detection Male/ 
26-45 

Changing 
lane 
Intersection 

Not contributory 
Secondary 
contributing 

A road/ 
Motorway 
40-50 mph 
/60-70 mph 
Rural area 
Daytime 

4 
 
45 
 
10.5% 

 Rear-end/ 
Overtaking 

Fatal (2) 
Serious (16) 
Slight (23) 
Non-injury (3) 

 Detection 
Diagnosis 

Distraction Prognosis Male/ 
26-65 

Rear-end 
Overtaking 

Primary 
contributing 

A road 
Daytime 

5 
 
42 
 
9.8% 

 Right turn/Rear-end Fatal (1) 
Serious (7) 
Slight (30) 
Non-injury (3) 

 Detection 
Overall 

Physical/Physiological 
Inexperience 
Visibility impaired 

Prognosis Male/ 
0-18 

Rear-end 
Intersection 

Primary 
Contributing 

Minor rad 
30 mph 
Urban area 

6 
 
36 
 
8.4% 

 Right turn  Fatal (5) 
Serious (14) 
Slight (15) 
Non-injury (1) 

 
 
 

Decision 
 

Alcohol 
Breaking the law 

Detection 
Decision 

Male Right turn Primary 
contributing 
Secondary 
contributing 

A road 
40-50 mph 
Urban area 
Daytime 

7 
 
31 
 
7.2% 

 PTW leaving lane Fatal (2) 
Serious (10) 
Slight (15) 
Non-injury (4) 

 Execution Road condition 
Other environmental 
factors 

Single vehicle 
Other 

Male/ 
26-45 

Leaving lane Primary 
contributing 

Motorway 
60-70 mph 
Rural area 
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Single PTW accidents were prominent in clusters 2 and 7. The first cluster 

had driver risk taking as a large contributory factor to the accidents 

occurrence, identifying that riders misdiagnosed the road situation in a high 

speed setting. In both of these clusters the road user age group that was 

significant was either 19-26 year olds or 26-45 year olds. Both of these 

clusters had risk taking as the main contributing factor though the accident 

settings were different in that the former was a high speed rural setting while 

the latter occurred on low speed urban roads and occurred at a conflict 

situation rather than a loss of control. 

The second clusters difference compared to the first cluster was with regards 

to the engine size of the PTWs and being in a higher speed setting in a rural 

area with lane changing by the vehicles. Clarke et al. (2004) reported from a 

questionnaire study that 58% of motorcyclists admitted to always or 

frequently breaking the speed limit, and both of these clusters are related to 

younger PTW riders riding at speeds that are not suitable for the situation 

that they are in. 

In cluster 7 the segmentation included environmental visibilities and the traffic 

environment as contributory factors and both road users contributing to these 

accident types.  

8.4.4 Countermeasure indications 

When considering traffic safety countermeasures it is possible to consider 

different stages of the accident where countermeasures can be attributed, 

these can be the pre-crash, crash or post-crash. As this study focused on 

how the accident occurred and not the injury outcomes of each individual 

accident the countermeasure discussion will focus on the pre-crash phase. 

When discussing possible countermeasure developments it is necessary to 

break the different PTW accidents into three groupings based on the cluster 

analysis: 

1. Single PTW accidents 

2. Accident were the other road user was the primary contributing vehicle 

3. Accidents were the PTW was the primary contributing vehicle 
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In the single PTW accidents, where the PTW was the primary contributing 

vehicle and made risk taking behaviours, namely cluster 2, a number of 

countermeasures can be considered based on education measures. Clarke 

et al. (2004) identified appropriate countermeasures for cases where 

motorcyclists initiated the accident and had the possibility of making a 

countermeasure. These countermeasures were identified as slower speed on 

bends, appropriate speed for conditions and not overtaking near a junction or 

exit.  

Extra training or awareness programs for riders in traffic conditions that are 

wet or snowing may benefit riders in the long run. Anti-lock Braking Systems 

(ABS) specifically developed for PTWs is becoming the norm but older bikes 

do lock up when undertaking manoeuvres. ABS has become compulsory for 

PTWs above 125cc since 2016 in the EU and this is a good step forward to 

take, particularly for PTW performance on difficult and wet/icy roads. Also 

awareness with regards to risk taking would be of particular benefit to 

motorcyclists and this could be possible through either programs.  

It also has to be considered that PTW active safety systems would be 

beneficial particularly for these single vehicle accidents, as they would either 

improve the riders ability to respond to the situation earlier by providing 

notification of a possible conflict or provide the opportunity for their 

emergency reaction whether it be breaking, swerving or both combined to be 

more successful by creating an optimum performance for each behaviour for 

the rider. 

For the accidents where the other road user was the main contributing road 

user ’looked but did not see’ failures were prominent for clusters 1 and 3. 

From the data provided in these cases it can be seen that the road user is 

unaware of the PTW rider and so does not make any mitigating manoeuvre 

for the accident while the PTW rider also does not make a manoeuvre. 

Ideally in these situations the other road user could be made aware of the 

PTW rider. How to do this is an issue of concern as there are possible 

measures to introduce though the measures effectiveness are debateable. 
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One of the main issues is the visual search patterns of other road users in 

relation to riders. Crundall et al. (2012) demonstrated that car road users that 

have PTW licenses are more likely to see PTWs than car road users who do 

not ride PTWs, though the time spent for initial perception of the PTW was 

the same the appraisal of the rider was made far more quickly by the driver 

with riding experience. So, rather than scanning behaviours for the road user 

in order to identify PTW riders, effective scanning of the PTW rider in order to 

speed up the appraisal process of these road users is necessary. Ideally 

driver training would be carried out in this regard to help road users. The 

question of how to effectively provide this type of training is a difficult one to 

answer, as LBDNS car to PTW right of way accident have been studied and 

discussed throughout the last 30 years and are still occurring frequently. 

The three main types of detection failures that were identified have different 

countermeasure possibilities. All of the failure types would benefit from 

technological developments helping the other road user to identify the rider. 

A number of systems are starting to be introduced into the market place and 

could provide benefits in this regards. 

Scholliers, Bell, Morris, and Garcíad (2014) identified oncoming vehicle 

information systems for PTWs, based on vehicle to PTW communication, as 

a possible avenue of improvement which could provide other road users with 

information on PTWs and allow for the appraisal and diagnosis of conflict 

situations to run more smoothly. 

Three of the clusters occurred on urban roads with lower speed limits, and 

thus as Clabuax et al. (2012) identified traffic calming measures could be 

used to specifically target these situations. One of the accident types 

involved an accident with small PTWs where young riders made errors due to 

their inexperience, their physiological/ psychological state or being distracted. 

The main countermeasure for this would be to either better train or educate 

these riders.  
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8.5 Summary 

Chapter 8 described a statistical analysis of all of the PTW accident cases 

collected in the OTS study with regards to human failure and different 

accident factors. The study analysed 448 cases from the OTS dataset 

performing a descriptive analysis and 428 cases were entered into a latent 

class cluster analysis. 

The results identified 7 scenarios with regard to PTW rider accidents, 

defining 5 scenarios where the PTW rider was the primary contributing road 

user and 2 scenarios where the other road user was the primary contributing 

road user. The main accident types where the road user was the contributing 

factor were ’looked but did not see’ accidents, while the accidents where the 

PTW rider was the main contributing road user were accidents that occurred 

due to speeding or risk taking. The countermeasure indication for each 

scenario was discussed with regards to possible safety measures for the 

road users.
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9 An Analysis of Pedestrian Accidents  

 

9.1 Introduction 

The literature review suggested that a better understanding of traffic accidents 

can be accomplished by using an interactive ergonomics model to understand 

how the multitude of factors combine to cause the main human failure. In 

traffic accidents certain factors have been identified as increasing the risk of 

an accident occurring. Pedestrian accidents are a particular group of 

accidents that are important for road safety performance improvement, as the 

road user is not protected by any vehicle.  

Rather the immediate reaction is with the other object in the road and thus the 

injury outcomes of the accidents are usually greater than those for other 

accident types. Also, due to the injury outcomes of pedestrian accidents being 

more severe than other types of vehicle accidents, pedestrians are more 

dependent on other road users’ behaviours and adherence to road safety 

rules.  

The study reported here aimed to investigate the type of failure sequences 

that cause pedestrian accidents. This study analysed driver and pedestrian 

behaviour before pedestrian accidents and the sequence that leads up to 

these accidents. 

 

9.2 Method 

9.2.1 Design 

Data were acquired from on the spot analysis of accident data by a group of 

accident researchers within a 30 minute time span of the accident occurring. 

Factors relating to the accident were obtained by grouping the accident 

variables into 4 specific groups relating to human, vehicular, infrastructural or 

environmental factors relating to the accident.  
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9.2.2 Sample 

Accident data was selected from the On the Spot study collected between the 

years 2000 to 2010. As cluster analysis requires a large number of cases 10 

years of data were included rather than the 4 years of data included in the full 

dataset analysis, as the number of pedestrian cases for this 4-year period was 

111 cases which would have not allowed a large number of variables to be 

entered in the cluster analysis.  

From this data 265 accidents involving pedestrians were analysed. All cases 

were included in the descriptive analysis. Of the cases that were analysed 17 

did not have values for all of the variables that were included in the cluster 

analysis and so were omitted. In total 248 cases were included in the cluster 

analysis. Cyclists were also considered for analysis purposes but due to 

insufficient case numbers were not included as they did not fit the statistical 

requirements of cluster analysis. 

In the sample 157 of the Pedestrians were male and 102 were female while 6 

of the participant’s gender was unknown. Of the 245 individuals whose age 

was coded in the sample the age for the pedestrians were on average 31.3 

years old with a standard deviation of 24.2 (figure 26). 
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Figure 26: The age distribution of the pedestrian sample 

 

9.2.3 Procedure 

For this study the available accident data was analysed retrospectively by the 

author using the Human Functional Failure Causation methodology (Naing et 

al., 2007) and coded using the LAB accident type coding diagrams. All cases 

were then merged with the OTS data that was previously identified by OTS 

accident investigators. For each of the cases the pedestrian was identified as 

the first road user and the other vehicle was identified as the second road 

user. 

9.2.4 Statistical analysis 

This study incorporated a cluster analysis in order to group the accidents in 

different types of scenarios. This was done by separating the specific factors 

identified in table 74 and entering them into a cluster analysis. Each variable 

was grouped according to previous research and possible research questions, 

as the number of values that can be entered into analysis are limited. In the 

case that a number of values in the specific variable were small and could not 
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be entered as a separate value they were combined into a value called other. 

This was done so that the small number of this value would not unduly 

influence the cluster analysis.  

For this study a latent class cluster analysis based on the similarity between 

the different road users’ involved in the accidents was used.  

 

9.3 Results 

9.3.1 Descriptive analysis 

Below is a description of the type of impacting vehicles that interacted with 

pedestrians that were analysed within this chapter. Table 70 has the number 

of vehicle records for all of the accidents that are present within the analysed 

dataset. The first road user within the accident was always coded as the 

vehicle that directly interacted with the pedestrian. Within this dataset there 

were a total of 265 accidents coded. The majority of these cases were car to 

pedestrian accidents (80.4%).  

 

Table 70: Vehicles included as the first interacting vehicle with pedestrians in 

the analysis 

Interacting Vehicle Count Percent 

Car 213 80.4 

PTW 9 3.4 

Bus 22 8.3 

Heavy Goods 8 3.0 

Light Goods 8 3.0 

Other 5 1.9 

Total 265 100.0 

 

Table 71 illustrates the main failures made by the other road user and the 

pedestrian. For the other road user the main failure that was mostly coded is a 

prognosis failure (n=144), while the opposing main failures for the pedestrian 

road user were either making an overall failure (n=54), making a detection 
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failure (n=41) or making a decision failure (n=39) due to undertaking risky 

behaviours. The other main type of failure for the other road user was 

detection failures where they could not identify the pedestrian (n=67). There 

was a high number of overall failures (n=75), related to impairment or fatigue, 

made by the pedestrian in this sample. 

 

Table 71: Main failure types for pedestrians and other road users 

Vehicle  Pedestrian 

Failure  Detection Diagnosis Prognosis Decision Execution Overall N 

Detection  17 5 24 7 1 14 68 

Diagnosis 6 0 5 2 0 3 16 

Prognosis 41 3 4 39 3 54 144 

Decision 1 1 11 3 1 2 19 

Execution 0 0 4 0 0 1 5 

Overall 2 2 8 0 0 1 13 

Total 67 11 56 51 5 75 265 

 

Table 72 contains a comparison of the injury outcome of the accident and the 

road type that was reported. Most of the accidents either occurred on an A 

class road (n=112) or a Minor road (n=99). Of the fatal or serious accidents 57 

occurred on A roads, 42 on Minor roads and 17 on B roads. 

 

Table 72: Main failure types for pedestrians and other road users 

Road Type 

Injury level A road B road motorway Minor road Total 

Fatal 13 4 0 5 22 

Serious 44 13 1 37 95 

Slight 52 23 1 52 138 

Non-injury 3 0 1 5 9 

Total 112 40 3 99 264 

 

Table 73 contains a number of demographic, human factor and 

environmental/infrastructure factors against the failure that the pedestrian 

road user made. The pedestrian was the main contributory road user in the 
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accident in 194 (73.2%) of the cases. The main contributory factors that were 

made by the pedestrian were being in a hurry (31.3%), playing (14.3%) and 

using alcohol (13.6%). This sample included a large number of pedestrians 

who were below the age of 18 (48.3%). Most of the accidents occurred during 

the day (69.8%) and in urban areas (70.2%). There were a large number of 

accidents that caused serious injuries (35.5%).  

 

Table 73: Descriptive statistics of data against pedestrian failure type 

Factor Detection 

N=67 

Diagnosis 

N=11 

Prognosis 

N=57 

Decision 

N=49 

Execution 

N=5 

Overall 

N=76 

N 

265 

Pedestrian contributory factor      

In a hurry 70.1 36.4 1.8 55.1 40.0 56.6 31.3 

Pedestrian 
playing 

14.9 0.0 0.0 8.2 20.0 50.0 14.3 

Alcohol 0.0 0.0 0.0 2.0 0.0 34.2 13.6 

Traffic signs 
disobeyed 

13.4 0.0 1.8 32.7 0.0 9.2 9.8 

Eccentric 
behaviours 

3.0 0.0 0.0 26.5 0.0 11.8 5.7 

Visibility 
impaired 

34.3 9.1 5.3 10.2 20.0 19.7 12.8 

Distraction 4.5 18.2 0.0 10.2 80.0 21.1 6.8 

Other road user contributory factor      

In a hurry 7.5 45.5 47.4 2.0 0.0 5.3 15.8 

Risk taking 7.5 36.4 40.4 8.2 20.0 5.3 15.5 

Visibility 32.8 9.1 17.5 30.6 20.0 36.8 29.1 

Age range        

0-12 47.8 27.3 19.3 24.5 40.0 53.9 38.1 

13-17 9.0 18.2 10.5 14.3 0.0 7.9 10.2 

18-29 10.4 9.1 31.6 24.5 0.0 14.5 18.5 

30-65 9.0 18.2 7.0 10.2 0.0 5.3 7.9 

66+ 11.9 0.0 21.1 14.3 0.0 7.9 12.5 

Missing 11.9 27.3 10.5 12.2 60.0 10.5 12.8 

Day/Night        

Day 77.6 72.7 73.7 67.3 80.0 60.5 69.8 

Night 20.9 27.3 26.3 32.7 20.0 39.5 29.8 

Injury severity       

Fatal 4.5 0.0 10.5 14.3 0.0 7.9 8.3 
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Serious 29.9 45.5 40.4 38.8 0.0 35.5 35.5 

Slight 61.2 45.5 45.6 40.8 100.0 34.2 46.4 

Non-injury 3.0 9.1 3.5 6.1 0.0 2.6 3.8 

Road type        

A class 35.8 45.5 31.6 65.3 40.0 40.8 42.3 

B class 14.9 9.1 21.1 10.2 40.0 13.2 15.1 

Motorway 0.0 0.0 1.8 2.0 0.0 1.3 1.1 

Minor 49.3 45.5 43.9 26.5 20.0 43.4 41.5 

Level of involvement       

Primary 95.5 36.4 3.5 98.0 60.0 96.1 73.2 

Secondary 3.0 0.0 0.0 0.0 40.0 3.9 2.6 

Not 
contributory 

1.5 63.6 96.5 2.0 0.0 0.0 24.2 

Area type        

Urban 77.6 72.7 73.7 67.3 80.0 60.5 70.2 

Rural 20.9 27.3 26.3 32.7 20.0 39.5 29.8 

 

9.3.2 Cluster analysis 

Cluster analysis factors 

Table 74 illustrates all of the associated risk factors included in the analysis. A 

total of 13 specific variables were selected to be entered into this analysis 

according to the most relevant risk factors that are present in pedestrian 

accidents. The human factors selected were the main failure that the road 

user in conflict with the pedestrian was coded as making as well as their level 

of contribution to the accident. Whether the road user was contributing to the 

accident or not was also coded as the level of involvement of the road user. 

The pedestrian’s main failure was also coded as well as the pedestrians 

contributory factor that contributed to the accident occurring. The age group 

and gender of both road users were also included in the analysis. In terms of 

the environment and infrastructure different factors that described the road 

type, speed limit and carriageway class were included. The driving behaviour 

of the road user as well as the conflict situation type was also included in this 

analysis. A detailed list of all of the values counts and percentages for these 

variables and values can be found in Appendix B (pp. 358). 
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Table 74: Variables used in the pedestrian accident cluster analysis  

Variable Aspect Level Value 

Speed limit Environmental Accident ≥ 30 mph; <30 mph 

Road area Environmental Accident Urban; Rural 

Light conditions Environmental Accident Day; Night 

Pedestrian 
failure 
mechanism 

Traffic 
accident 

Pedestrian Detection; Diagnosis; Prognosis; Decision; 
Execution; Overall 

Gender  Road user Pedestrian Male; Female 

Age group Road user Pedestrian 0-12; 13-17; 18-29; 30-65; 66+ 

Gender  Road user Road user Male; Female 

Age group Road user Road user 18-24; 25-34; 35-45; 46-65; 66+ 

Pedestrian 
contributory 
factor 

Accident Pedestrian Alcohol/Impairment; Young age/Pedestrian 
playing; Psychological state; Risk taking; 
Driver behaviour; Visibility impaired; None 

Pedestrian 
behaviour  

Accident Pedestrian Crossing road; Crossing intersection; 
Crossing between cars; Vehicle crash; Other 

Emergency 
manoeuvre 

Accident Road user Yes; No 

Level of 
involvement 

Accident  Road user Primary contributory; Secondary 
contributory; Not contributory 

Road user 
situation 

Accident Road user Going ahead; Traffic lights; Intersection; 
Overtaking; Pedestrian Crossing; Other 

Other road user 
failure type 

Vehicle Road User  Detection; Diagnosis; Prognosis; Decision; 
Execution; Overall 

    

 

Goodness of Fit analysis 

The results from analysing goodness of fit measures in terms of the Akaike 

information criterion (AIC) and Bayesian information criterion (BIC) and 

clusters ranging from 2 to 15 classes can be seen in figure 27. According to 

the BIC (7078.026) the selected solution was a three cluster model and 

according to the AIC (6581.895) the selection solution was a four cluster 

model. Due to the low number of cases and parsimony levels that were 

discussed in the methodology section a four cluster model was selected 

based on the AIC results for analysis purposes and used for the cluster 

analysis. 
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Figure 27: AIC and BIC values for the pedestrian cluster analysis 

 

Cluster analysis 

The latent class cluster analysis focused on the documented 248 other road 

user to pedestrian accident cases. Four distinctive (separated) accident 

classes were highlighted resulting in a 4-solution cluster, the clusters were put 

in order from largest to smallest. The number of cases for each cluster can be 

seen in figure 28. A detailed table of all of the cluster results can be found in 

Appendix B (pp. 360), in this table each overly represented significant factor is 

presented in bold. 

 

 

Figure 28: Pedestrian cluster sizes 
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A table describing the significant factors identified by the cluster analysis, their 

percentages in the cluster, number of cases they were equivalent to, degrees 

of freedom (df) values and values of significance were provided and an 

explanation of these factors was carried out in order to support the discussion, 

these explanations can be found within the results section. 

Cluster analysis results 

Cluster 1 (n=78) 

‘’Pedestrians crossing an intersection while either under stress or under 

situations with limited visibility” 

Table 75 highlights the results for cluster 1, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 75: Pedestrian cluster 1 analysis results 

Variable Value Percentage df N χ² Sig. 

Pedestrian gender Female 47.6 1 37 4.8 0.05 

Pedestrian age 18-29 24.7 4 19 11.0 0.05 

Pedestrian failure mechanism Detection 66.2 5 52 150.6 0.001 

Pedestrian contributory factor Psychological state 59.2 6 46 134.0 0.001 

 Visibility impaired 16.5 6 13   

Other road user age 26-45 37.7 4 29 19.3 0.001 

Other road user failure type  Prognosis 73.1 5 57 25.6 0.001 

Road user level of involvement Not contributory 95.4 2 74 48.1 0.001 

Light conditions Day 83.1 1 65 9.8 0.01 

Pedestrian behaviour Crossing intersection 27.9 4 22 15.4 0.01 

 

Human Factors 

Vehicle: Road users aged between 26 and 45 (37.7%) were over-

represented in this cluster. The failures that were significant for the other road 
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user in this cluster were prognosis failures (73.1%). The other road user was 

not contributory to this accident occurring (95.4%).  

Pedestrian: Female pedestrians were significant for this cluster (47.6%) and 

the pedestrian’s age range was between 18-29 (24.7%). The pedestrian’s 

main failures were detection failures (66.2%) and the contributing factors for 

the pedestrian were either their psychological state (59.2%) or their visibility 

being impaired (16.5%).  

Environmental/Infrastructural Factors 

These accidents occurred during the day (83.1%) and the pedestrian was 

crossing an intersection (27.9%).  

 

Cluster 2 (n=60) 

“Other road user with detection issues or in a hurry” 

Table 76 highlights the results for cluster 2, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 76: Pedestrian cluster 2 analysis results 

Variable Value Percentage df N χ² Sig. 

Pedestrian gender Female 53.1 1 32 8.0 0.01 

Pedestrian age 30-65 41.5 4 25 21.3 0.001 

 

66+ 23.7 4 14  

 

Pedestrian failure mechanism Diagnosis 10.0 5 6 198.6 0.001 

 Prognosis 82.9 5 50   

Pedestrian contributory factor Other driver 36.5 6 22 177.4 0.001 

 None 50.2 6 30   

Other road user age 66+ 23.2 4 14 7.7 NS 

Other road user failure type  Detection 46.4 5 28 93.9 0.001 

 Decision 16.6 5 10   

 Execution 6.6 5 4   
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 Overall 16.6 5 10   

Road user level of involvement Primary contributory 100.0 1 60 200.6 0.001 

Other road user emergency manoeuvre No 68.0 1 41 15.9 0.001 

Accident situation Pedestrian crossing 13.3 5 8 46.7 0.001 

 Other 24.9 5 15   

Pedestrian behaviour Vehicle crash 31.5 4 19 24.2 0.001 

 Other 33.2 4 20   

 

Human Factors 

Vehicle: Male road users (73.5%) were not significant in the chi square 

analysis despite their high numbers. Road users aged 66 and older (23.2%) 

were significant for this cluster. The failures that were significant for the other 

road user in this cluster were detection failures (46.4%), decision failures 

(16.6%), execution failures (6.6%) and overall failures (16.6%). The other 

road user was the primarily contributing road user to this accident occurring 

(100.0%). The other road user did not make an emergency reaction for this 

cluster grouping (68.0%). 

Pedestrian: Female pedestrians were significant for this cluster (53.1%). The 

pedestrian’s age range was between 30-65 (41.5%) and 66 years and older 

(23.7%). 

The pedestrian’s main failures were prognosis failures (82.9%) and diagnosis 

failures (10.0%). The contributing factors for the pedestrian were the other 

road user (36.5%) or no factor coded (50.2%).  

Environmental/Infrastructural Factors 

These accidents occurred where the other road user was either going ahead 

(59.3%), at a pedestrian crossing (13.3%) or coded as other accident (20.3%). 

The pedestrian conflict was either a result of a vehicle to vehicle accident 

(31.6%) or other accident type (33.2%) 

 

Cluster 3 (n=60) 
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“Night time accidents with impaired or risk taking pedestrians while the 

pedestrian crosses the road” 

Table 77 highlights the results for cluster 3, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 77: Pedestrian cluster 3 analysis results 

Variable Value Percentage df N χ² Sig. 

Pedestrian gender Male 82.2 1 49 10.4 0.01 

Pedestrian age 19-29 27.9 4 17 45.7 0.001 

 30-65 44.2 4 26   

 66+ 22.3 4 13   

Pedestrian failure mechanism Decision 39.4 5 24 56.4 0.001 

 Overall 52.2 5 31   

Pedestrian contributory factor Alcohol/Impairment 56.4 6 34 179.7 0.001 

 Risk taking 33.0 6 20   

Other road user age 19-25 47.2 4 28 14.5 0.01 

Other road user failure type  Prognosis 68.9 5 41 8.9 NS 

Road user level of involvement Secondary contributory 10.9 2 7 18.5 0.001 

 Not contributory 81.2 2 49   

Light conditions Night 57.7 1 35 28.1 0.001 

Speed limit Over 30 mph 19.6 1 12 64.8 0.05 

Accident situation Traffic lights 32.1 5 19 17.7 0.01 

Pedestrian behaviour Crossing road 47.8 4 29 24.2 0.001 

 Crossing intersection 30.5 4 18   

 

Human Factors 

Vehicle: Male road users were not significant for this cluster (79.9%). All road 

users in three age groups between nineteen and above were over-

represented. The failures that were significant for the other road user in this 

cluster were prognosis failures (68.9%) which had a significant residual value 
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despite the failure type grouping not having a significant chi square value. The 

other road user was not contributory to this accident occurring (81.2%).  

Pedestrian: Male pedestrians were significant for this cluster (82.2%) and the 

pedestrians age range was between the ages of 19-29 (27.9%), 30-65 (44.2%) 

or 66 and older (22.3%). The pedestrian’s main failures were decision failures 

(39.4%) or overall failures (52.2%) and the contributing factors for the 

pedestrian was either alcohol impairment (56.4%) or risk taking (33.0%).  

Environmental/Infrastructural Factors 

These accidents occurred during the night (57.7%) on a road with a speed 

limit that was over 30 mph (19.6%). The other road user was at traffic lights 

(32.1%). The pedestrian was either crossing the road (47.8%) or crossing an 

intersection (30.5%). 

 

Cluster 4 (n=50) 

“Young pedestrians crossing the road while playing or in a hurry” 

Table 78 highlights the results for cluster 4, each significant and over-

represented factor from the chi square analysis is described in detail in the 

section below. 

 

Table 78: Pedestrian cluster 4 analysis results 

Variable Value Percentage df N χ² Sig. 

Pedestrian age 0-12 70.3 4 35 86.6 0.001 

 

13-17 29.7 4 15  

 

Pedestrian failure mechanism Overall 73.5 5 37 57.3 0.001 

 Execution 4.0 5 2   

Pedestrian contributory factor 
Young age/Pedestrian 

playing 
77.1 6 39 122.2 0.001 

Other road user failure type  Prognosis 69.2 5 35 7.4 NS 

Road user level of involvement Not contributory 86.3 2 43 15.7 0.001 
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Other road user emergency 

manoeuvre 
Yes 75.5 1 38 11.4 0.001 

Light conditions Day 81.4 1 41 44.1 0.05 

Accident situation Going Ahead 82.8 5 41 32/7 0.001 

 Overtaking 15.1 5 8   

Pedestrian behaviour Crossing between cars 55.4 4 28 56.9 0.001 

 

Human Factors 

Vehicle: The other road users gender was not significant for this cluster, and 

the age groups variable had a significant chi square value but none of the 

groups were over-represented. The failures that were significant for the other 

road user in this cluster were prognosis failures (69.2%). The other road user 

was not contributory to this accident occurring (86.3%). The other road user 

made an emergency reaction for this cluster grouping (75.5%). 

Pedestrian: Male pedestrians were not significantly over-represented in this 

cluster (70.2%) despite having a high percentage of the individuals coded. 

The pedestrians age range was between 0-12 (70.3%) or 13-17 (29.7%). The 

pedestrian’s main failures were either overall failures (73.5%) or detection 

failures (4.0%), and the contributing factors for the pedestrian were young 

age/pedestrian playing (77.0%).  

Environmental/Infrastructural Factors 

These accidents occurred during the day (81.4%) with a speed limit that was 

at or under 30 mph (94.0%). The other road user was either going ahead 

(82.8%), or performing an overtaking manoeuvre (15.0%). The pedestrian 

was crossing between cars (55.4%). 

 

9.4 Discussion  

The aim of this chapter was to understand how different pedestrian accidents 

occur in terms of different accident factors and accident causation scenarios 

with the other interacting road user. This analysis was used to discuss 

possible implications for countermeasure development. 
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9.4.1 Descriptive analysis 

The descriptive analysis of the accident data showed that the pedestrian was 

the main contributing road user to the accident in 73% of the accidents in this 

dataset, and the road user did not expect the pedestrian to perform their 

behaviour in over 50% of all accidents coded. These findings are similar to the 

study carried out on urban pedestrian accidents by Carsten et al. (1989) 

where two pedestrian groups were analysed and adult pedestrians (n=297) 

were determined at fault in 71% of the accidents and child pedestrians 

(n=166) were determined at fault in 80% of accidents.  

For the two largest groups of pedestrian failures detection and overall failures 

0-13 year old pedestrians accounted for close to 50% for detection failures 

and over 50% of overall failures. Both of these groups had pedestrians as the 

primary contributing road user in over 95% of the cases. With regards to the 

cluster where the other road user was the primary contributory user 

pedestrians were not contributory to the accident occurrence in over 95% of 

the cases. For these cases 18-29 year olds accounted for close to one third of 

them, while they accounted for close to one fifth of the cases in total.  

Close to 70% of the accidents occurred in urban areas and during the 

daytime, and close to 90% of the cases occurred in areas with speed limits of 

30 mph or less. These figures are similar to UK national and European 

pedestrian accident figures (DfT, 2007; SafetyNet, 2009). The nature of the 

traffic environment and pedestrian facilities within it makes it realistic that 

most pedestrian behaviour will occur in urban areas and so these figures are 

to be expected. Close to 80% of the accidents occurred not at intersections 

but on road sections with the pedestrian crossing the road at a non-

designated pedestrian crossing or crossing between vehicles and as such 

making it difficult for the other road user to anticipate the pedestrians 

behaviours. These results are similar to the finding of two studies where 75% 

of UK STATS19 national data showing pedestrian accidents occur where 

there is no crossing (Alnaqbi, 2009) and an analysis of Israel pedestrian 

accidents where 80% of accidents occurred on arterial multi lane streets 

(Gitelman, Balasha, Carmel, Hendel, & Pesahov, 2012). The high percentage 

of these accidents further underline that in close to 75% of the accidents the 
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pedestrian was identified as the main contributing road user. In intersections, 

pedestrian crossing areas and areas where the other road user needs to 

make decisions, pedestrians can be expected to use more thorough visual 

search patterns. 

The road types were the accidents occurred were most commonly either A 

roads or Minor roads, and with regards to injury accidents the accidents in A 

roads had a higher rate of pedestrian fatalities and serious injuries compared 

to other road types. This was possibly due to the higher speed limits in these 

roads as the relationship between vehicle speed and pedestrian injury 

mechanisms is well documented (Richards, 2010; Zegeer & Bushell, 2012). 

With regards to the data the groups that are large enough to draw possible 

interpretations in terms of their failure mechanisms are overall failures (n=76), 

detection failures (n= 67), prognosis failures (n=57) and decision failures 

(n=49). 

With regards to injury mechanisms the second highest percentage of fatal 

injuries (10.5%) and the second highest percentage number of pedestrian 

serious injuries (40.4%) occurred in the prognosis grouping where the 

pedestrian was not contributing to the accident (96.5%) occurring, and the 

other road user was either in a hurry or risk taking (table 73). The other failure 

mechanisms that had a high rate of fatal injuries were decision failures 

(14.3%) where the pedestrian undertook a risky behaviour and was either in a 

hurry, disobeyed a traffic sign or displayed unexpected/eccentric behaviours, 

and overall failures (7.9%) where two groups of pedestrians can be observed; 

The first were young pedestrians playing in the road side and not 

understanding the situation that they are in and the second were pedestrians 

that were intoxicated and failing to process the environment around them 

adequately. 

9.4.2 Cluster analysis 

In the cluster analysis four clusters were identified with three clusters relating 

to cases where the pedestrian and one cluster relating to cases where the 

other road user was the primary contributing road user to the accident. From 

these cases three distinct groups of pedestrian accidents can be determined.  
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Cluster 1  

The first cluster identified a situation where the pedestrian was crossing the 

road either in view or from between vehicles where the other road user was 

going straight or at a traffic light intersection. The pedestrian’s main reason of 

failure was detection issues (66.2%) due to their being in a hurry and not 

adequately scanning the roadside for other vehicles. The other road user was 

not expecting the pedestrian to make a manoeuvre and in just over half of the 

cases did not make an emergency reaction. The pedestrians age was evenly 

spread throughout most of the age groups, as were the other road users.  

Cluster 2 

The second cluster was the only grouping where the other road user was the 

main contributing user to the accidents occurrence. The accident occurred 

either due to two other road users colliding and then colliding with the 

pedestrian or due to the manoeuvre that the other road user was making. The 

pedestrians in this cluster were significantly older compared to the other 

clusters and the conflicting road user was significantly younger. The other 

road user did not make an emergency reaction for this cluster, 

Cluster 3 

The third cluster identified accidents that occurred during the night where the 

pedestrian either undertook risky behaviours or consumed alcohol which led 

to an accident occurring due to making a risky decision and not anticipating 

the risks of that decision. These accidents occurred when the pedestrian was 

either crossing the road or an intersection. This cluster is in line with findings 

in a number of studies about intoxicated pedestrians (Bradbury, 1991; Carole 

Millar Research, 1998). 

Cluster 4 

The fourth cluster highlighted an accident where pedestrians that were of a 

younger age, due to either being in a hurry or as a result of playing, 

confronted the road user in such a way as to cause an accident occurring. 

The pedestrian came out from in between cars to the roadside and the road 

user did not expect such behaviour to occur. In both of the situations the other 
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road user reacted with an emergency manoeuvre more often than not but still 

could not stop the accident from occurring.  

Cluster analysis general discussion 

The cluster that identified the accidents that occurred where the road user 

was the main contributing vehicle had a high incidence of vehicle to vehicle 

accidents causing a pedestrian accident. The first accident type occurred in 

intersections and more complex road settings within a road that had an under 

30 mph speed limit. In close to 70% of these cases the other road user did not 

make a mitigating manoeuvre. In this cluster the primary contributing road 

user was of a younger age. This can be a reason of the road users not 

performing an adequate scanning of the environment in a number of these 

cases. Borowsky, Oron-Gilad, Meir and Parmet (2012) presented novice and 

experienced road users with a task of tracking pedestrians in urban and 

residential areas and found that experienced road users processed 

information more efficiently than young-inexperienced road users (both 

trained and untrained) when pedestrians were identified. 

In accidents where the pedestrian was the main contributing road user to the 

accident the other road user more often than not attempted to avoid the 

accident (either braking or going to the right or left). All of the cluster 

groupings where the pedestrian was the main contributory road user 

demonstrated that when the pedestrians cognitive functioning is affected by 

either impairment or being in a hurry/playing the pedestrians reactions are 

unpredictable for the other road user.  

9.4.3 Countermeasure indications  

When analysing the pedestrian data the pedestrian can be seen as the main 

contributing road user to 73% of the accidents in this dataset. Of the four 

clusters identified only one cluster had the other road user as the primary 

contributing road user to the accident occurring. This demonstrates that 

pedestrians performing unexpected behaviours or rule breaking lead to a 

majority of these accidents occurring. 

For young adult pedestrians a cluster defined alcohol consumption and/or risk 

taking as one of the problems. Previous research in Scotland demonstrated 
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that nearly a third (31%) of all pedestrian casualties had consumed alcohol 

prior to their accident compared to 5% of drivers and 9% of car passengers. 

These pedestrians were more likely to be males and between the age range 

of 20–29 (Bradbury, 1991; Carole Millar Research, 1998). 

This is a difficult group of accidents to provide countermeasures to, as there 

are no laws to prevent pedestrians from walking while intoxicated or stop 

them from performing risk taking behaviours. Education and information with 

regards to alcohol consumption and its effect on individual motor control has 

been freely provided over the years particularly to road users and also to 

young adult pedestrians, advising them to stay with friends and not walk 

alone. For younger pedestrians a particular problem was their coming out in 

between other vehicles, as other road users had a problem reacting to this 

situation as their expectations were that this would not occur. It is difficult to 

expect young children to adhere to similar road safety standards as adults, so 

measures to restrict these types of interaction areas are necessary. A number 

of measures that were discussed during the previous decades have been 

implemented such as (Davies, 1999); 

 20 mph roads 

 Traffic calming 

 Speed enforcement cameras 

 Publicity campaigns 

Though these measures don’t tackle the immediate issue of pedestrians 

behaving in an eccentric/unexpected manner on the roadway, they aim to 

lessen the consequences of the conflict situation and provide both 

pedestrians and other road users with a way of responding to conflict 

situations with mitigating behaviours. Changing pedestrian behaviour is 

something to be considered over the long haul and as an ongoing battle to 

provide better facilities and better education when using these facilities. 

In cases where the other road user was the active component in the accident 

the main cause of accidents were the road user being in a hurry, taking risk or 

visibility issues in relation to the road environment. Visibility issues for the 

driver were present in 30% of the cases analysed and are one of the main 

issues that need to be tackled. Active safety systems that could help in 
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directing the road users gaze into the direction of an event occurring could be 

particularly useful for better emergency reaction measures.  

Focusing on the other road user to be particularly aware of these situations 

and providing training to them can also be another way of preventing these 

situations, but the cost benefits for these behaviours may not be high. The 

pedestrian conflict situations identified were similar in nature to those 

identified by Habibovic and Davidson (2012). Though due to the difference in 

the data collected they identified more factors related to the other road user’s 

behaviour compared to this study, as it is difficult to identify road user’s 

obstruction of view data from retrospective accident studies. The data 

provided highlighted that warning systems for other road users that are 

interacting with pedestrians are needed, the exact nature and timing of the 

warning in order for it to be able to affect the road user would be dependent 

on other factors that were not identified here, such as the exact pedestrian 

and vehicle trajectories during accident occurrences (Habibovic & Davidsson, 

2011). 

 

9.5 Summary 

Chapter 9 described a statistical analysis of all of the Pedestrian accidents 

collected during the OTS data with regards to human failure and different 

accident factors. The study analysed 265 cases from the OTS dataset for the 

descriptive analysis and 248 cases for the latent class cluster analysis. 

The results identified 4 accident scenarios for pedestrians, identifying three 

accident types where the pedestrian was the primary contributing road user 

and one accident scenario where the other road user was the primary 

contributing road user. Results indicated that in the majority of cases the 

pedestrian’s behaviour initiated the accident situation and countermeasure 

indications on how to mitigate the accident situations with regards to the 

accident configurations focused on technological advances and pedestrian 

behaviour adaptation through training, environmental countermeasures and 

education were discussed.  
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10 General Discussion 

 

10.1 Introduction  

Understanding the causes of road accidents requires an understanding of the 

road, vehicle and road user factors that generate each individual crash. Such 

factors may interact, influencing the behaviour of an active participant in a 

crash just as the behaviour factors of one participant may interact with 

another. The main aim of this thesis was to identify prominent accident 

scenarios leading to traffic accidents employing a methodology able to 

incorporate these interactions. Development of a methodology to understand 

which factors interact with each other when an accident occurs, allows for 

both deeper interpretations of the factors and for countermeasure implications 

with regards to the transport system for these factors interactions to be carried 

out. This type of development provides a deeper classification of how errors 

occur compared to an understanding of individual risk factors. 

Specific objectives were to (1) develop an analysis method that would allow 

for statistical analysis to be carried out to develop causation sequence chains 

in large traffic accident dataset, (2) analyse all relevant accident scenarios in 

the UK On the Spot accident study (OTS) dataset, (3) analyse the causal 

chains to understand how functional failure sequences occur within particular 

accident groups to develop accident scenarios, (4) understand the links 

between interacting factors and individuals to further understand how these 

interactions cause accidents to occur and (5) identify countermeasure 

implications for the scenarios that are highlighted in the research with regards 

to different stakeholders in the road environment. These objectives were 

made in order to first identify a suitable statistical procedure, demonstrate how 

it works with real world traffic accident data and develop accident scenario 

sequences to allow for a discussion of countermeasures. 

The analysis carried out in this thesis aimed to demonstrate a method that 

would allow for all relevant accident causation and human error factors to be 

linked in terms of their interaction to each other and their interaction with 
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those of other active road users. The reason for this analysis was to use a 

methodology that would identify accident causation analysis factors combined 

with other important accident site and vehicular factors. This would in turn 

allow a more detailed understanding of human error, compared to 

understanding accident factors individually. This research investigated the 

benefits of using a latent class clustering (LCC) model with real world in-depth 

accident data combined with accident causation data to understand accident 

scenario sequences. 

The research comprised of one literature review, a method comparison study 

and four empirical studies focused on identifying functional failure sequences 

in traffic accidents. In this section the implications and contributions of the 

empirical studies with regards to the aims of the thesis will be discussed. Four 

separate studies were carried out, these studies focused on: 

(1) Key accident scenarios in single and multiple vehicle accidents to 

demonstrate accident scenarios based on microscopic accident data. 

(2) Comparison of national and in-depth accident scenarios to identify the 

differences between macroscopic (national) and microscopic (in-

depth) accident data in terms of both level of detail and cluster results.  

(3) Common accident patterns in powered two wheeler (PTW) accidents 

to identify common accident sequences for single and multiple vehicle 

accidents that include PTWs.  

(4) Factors that lead to accidents with pedestrians in the traffic 

environment. 

This chapter presents a discussion of the rationale, development and main 

results that emerged from this research under the following areas. 

• Findings of the in-depth accident data analysis studies. 

• The development of the method. 

• Challenges and limitations of the applied methodology. 
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10.1.1 Overview of the work 

Accident scenarios are clusters of accidents with a similar set of crash 

characteristics, the analysis of these accidents allows for identification of pre-

accident and accident factors that increase the risk of accidents occurring. 

The analysis of accident scenarios can be used to develop prevention 

strategies to chains of events (Fleury & Brenac, 2001). This in turn allows for 

links between possible countermeasure implications to be made based on the 

results of the accident scenario development procedure.  

The methodology has been used by IFSTTAR in France where in-depth 

accident (microscopic) cases are used to develop accident scenarios and 

national accident (macroscopic) cases are mapped onto these scenarios 

where possible, allowing for countermeasure implications to be made (Van 

Elslande, 2000) and in Sweden using the FICA dataset where accidents that 

have similar configuration such as intersection accidents causation charts are 

aggregated to see similarities and patterns (Sandin, 2009). 

In order to be able to demonstrate the usability of the latent class clustering 

method real world in-depth accident data collected from the OTS accident 

study between the years 2000–2010 was used. The OTS study is based on 

stratified random sampling procedure.  

Each study that used the OTS data had two sections, a descriptive analysis 

and a latent class cluster analysis. To illustrate the different factors and 

accident groupings the results of a descriptive analysis were reported within 

each chapter. This analysis provided a snapshot of the data, and helped the 

interpretation of the cluster analysis by providing an overall picture within the 

specific datasets. This analysis allowed an interpretation of how each 

individual factor was present in the overall accident data. The latent class 

cluster analysis was carried out to link variables that interact in specific 

clusters. A chi square analysis with an analysis of the residuals in each of the 

clusters was also carried out in order to identify significant values within the 

clusters. The analysis of the residual values for the categories within each 

variable allowed for a differentiation between significant and non-significant 

values to be carried out. This allowed for cases where a variable value was 
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over-represented to be brought to the forefront of the analysis and compared 

with different scenarios as well as the overall dataset.  

For example in the single vehicle cluster analysis the road user’s gender was 

male in over 70% of the accidents. The chi square analysis allowed a further 

interpretation of the clusters in which males (clusters 1 and 6) and females 

(cluster 2) were over-represented compared to the overall values. The 

descriptive analysis results were also taken into consideration so the chi 

square analysis was an extra analysis step rather than a separate analysis 

method. The cluster analysis results were then interpreted as accident 

scenarios and discussed in terms of how the significant variables interacted 

with each other. 

One of the difficulties when conducting this work was to connect it to previous 

traffic accident research. One aspect of this approach was the use of the 

perceptual Human Functioncal Failure (HFF) causation methods failure model 

as this was not commonly used in other research using cluster analysis (de 

Oña, López, Mujalli, & Calvo, 2013a; Depaire et al., 2008; Skyving et al., 

2009), and where an accident causation coding method was used with a 

descriptive analysis, only a very small number of cases were analysed (Ljung 

Aust, 2010; Sandin & Ljung, 2007; Van Elslande, 2000). Nevertheless these 

connections were made in the discussion sections of the studies. 

 

10.2 Findings of the research 

10.2.1 Analytic results 

The detailed review of previous research found that the highest level of detail 

for an individual accident is provided by in-depth accident data collection 

methods. The main advantages of this method are the detailed information 

that is provided with regards to factors related to the roadside/infrastructure, 

the vehicle and the road user. Interviews conducted with active participants 

provide detailed information on the road users actions before the accident and 

questionnaire data that is obtained following up the incident provides further 

details. 
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Despite providing the highest level of detail due to low case numbers in-depth 

accident causation studies have not previously used any statistical 

methodologies to group accidents together based on similarities.  

A total of 25 scenarios were identified by the latent class cluster analysis in 

four separate studies using OTS data (single vehicle accidents, multiple 

vehicle accidents, powered two wheeler accidents and pedestrian accidents). 

A number of these clusters had overlap in terms of the human functional 

failure perceptual stages that they were alluding to, though the different 

infrastructure and vehicular factors that were present in the scenarios allowed 

for countermeasure implications to be made with regards to similar accident 

groupings. 

Accident dataset population study 

All single vehicle accidents and multiple vehicle accidents collected between 

the years 2000-2003 were selected from the full OTS dataset. A total of 1,614 

accident cases were collected between these years, for the cluster analysis 

only cases that included all relevant accident data variables were selected. 

Any case that did not include information on variables that were included in 

the cluster analysis were omitted. For the latent class cluster analysis 366 

single vehicle accidents and 673 multi-vehicle accidents were used.  

The descriptive analysis carried out on the OTS data identified that a majority 

of the cases had detection failures and prognosis failures as the main human 

functional failure types. The most common types of accidents were lane 

changing, rear-end and loss of control accidents. The most commonly coded 

human factors were speeding, the road user being in a hurry and the road 

user breaking the law. Accidents occurred mainly in lower speed (30 mph) or 

higher speed (60-70 mph) roads. Over 75% of the vehicles involved in the 

accidents were cars. 

Amongst the single vehicle accidents several scenarios were identified. Four 

of the scenarios occurred on high speed roads and two occurred on low 

speed environments. The three largest accident groupings were different 

types of leaving lane accidents, the largest group related to road users 
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making diagnosis errors due to speeding, the second due to road users 

making a detection error due to being in a hurry or the road condition and the 

third due to alcohol and impairment and the road user making a decision or 

execution error. A comparison with an analysis of Swedish data (Sandin & 

Ljung, 2007) showed a similar pattern for the more common scenario but 

lower commonality for the smaller groups of accident scenarios. The clusters 

that had higher accident severity outcomes were the first and third group of 

clusters. 

The latent class cluster analysis identified four clusters related to detection 

issues in multiple vehicle crashes, the road user not identifying the other road 

user. Two of the clusters highlighted issues with the driver’s search patterns 

while turning right at a junction. These results are similar to findings for 

studies looking at ‘looked but did not see’ accidents (Brown, 2002; Clabaux et 

al., 2012; Clarke et al., 2004; Clarke et al., 2007; Crundall et al., 2012; Hurt et 

al., 1981). The first of these two clusters grouped together ‘looked but did not 

see’ accidents at intersections involving both car to car and car to PTW 

accidents. This result indicated that similar types of interactions occur with 

regards to visual search patterns for these accidents despite the different 

vehicle types. These clusters indicated that the road user did not use 

appropriate visual search patterns due to either being in a hurry or their 

emotional state. One cluster identified rear-end accidents where the driver did 

not detect the road user ahead. This grouping contained most rear-end 

accidents within the dataset with a majority being on higher speed (60-70 

mph) roads. The last cluster highlighted situations where the road user was 

overtaking a vehicle on a motorway and did not recognize that the situation 

was not suitable for an overtaking manoeuvre and has poor control of their 

vehicle. These groupings are in line with the most common type of multiple 

vehicle accidents in the STATS19 dataset being rear-end accidents, 

overtaking accidents intersection accidents (DfT, 2013), however this analysis 

provided new insight with regards to the accident setting and human errors for 

the accident types.  
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Powered two wheeler study 

All powered two wheeler accidents collected between the years 2000-2010 in 

the OTS dataset were used. A total of 339 accidents were included in the 

descriptive analysis for multiple vehicle accidents that included PTWs and 428 

accidents including single PTW and other vehicle to PTW accidents were 

included in the cluster analysis. The selection for the descriptive analysis was 

made to identify important factors when the PTW was in an accident with 

another road user. All PTW accidents were included in the cluster analysis to 

identify similarities and differences for these accidents. 

The descriptive analysis identified that for the PTW rider involved in two 

vehicle accidents the most common human functional failure was a prognosis 

failure. This demonstrated that the other road user was making a behaviour 

that was unexpected by the PTW rider. The main contributory factors were the 

rider being in a hurry and speeding. Most PTWs were larger than 250cc in 

engine capacity and the other road user did not make an emergency 

manoeuvre. PTW riders were considered the main contributing road user to 

the accident in only 36% of the accidents, which was lower than findings of 

51% from a study by Clarke et al. (2007).  

The cluster analysis separated single PTW accidents and multiple vehicle 

accidents succinctly. ‘Looked but did not see’ accidents where road users did 

not identify the PTW rider were found in two clusters. This is similar to other 

studies in the area (Clarke, Ward, Bartle, & Truman, 2004; Clarke et al., 2007; 

Crundall, Crundall, Clarke, & Shahar, 2012). For single PTW accidents the 

rider was considered as taking unnecessary risks related to speeding in 

regard to the different situations confronted. This is in line with self-reports 

from PTW riders in terms of speeding in a majority of situations (Clarke et al., 

2004).  

Pedestrian study  

All pedestrian accidents collected between the years 2000-2010 in the OTS 

dataset were used. A total of 265 pedestrian accidents were used in the 

descriptive analysis and 248 accident cases that included all relevant data 

were used in the latent class cluster analysis. 
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The descriptive analysis identified that the contributory factors for pedestrians 

were most commonly being in a hurry, a young pedestrian playing and 

alcohol. The common human functional failure types were overall failures and 

detection failures. Pedestrians were considered the main contributing road 

user in 73% of the accidents, meaning that the accident investigator 

considered the pedestrians behaviour as the main initiator of the accident. 

These findings are in agreement with a study carried out by Carsten, Tight, 

Southwell, & Plows (1989). Close to 80% of the pedestrian accidents occurred 

at non-designated pedestrian crossing road sections which is consistent with 

STATS19 data (Alnaqbi, 2009) and a study carried out on pedestrian 

accidents in Israel (Gitelman, Balasha, Carmel, Hendel, & Pesahov, 2012).  

The cluster analysis expanded on the descriptive findings by identifying four 

main pedestrian accident scenarios. The first occurred when pedestrians did 

not detect other vehicles in the traffic environment due to being under stress 

or limited visibility. The second was due to the other road user not detecting 

the pedestrian due to being in a hurry. The third was a night time accident 

where the pedestrian was impaired or had taken alcohol and made a violation 

or lost cognitive capacity. The fourth involved younger pedestrians crossing 

from between vehicles and not being seen by the other road user. 

STATS19 study 

In order to highlight the different results that are obtained from microscopic 

and macroscopic accident data a latent class cluster analysis of all national 

data collected in Great Britain for two vehicle accidents from the year 2004 

was carried out. A total of 55,474 accident were included in this analysis,  

The cluster analysis identified large clusters that were based on accidents 

occurring in a T or staggered junction in a give way setting in a lower speed 

area. Four of the clusters were related to single carriageway accidents, and 

the differences between the clusters were based on the road users 

manoeuvres in relation to one another. Three of the clusters were nearly 

identical in nature relating scenarios where one road user turned and another 

road user was going ahead on a T junction. The similarities of the results 

made it difficult to provide a relevant discussion in terms of countermeasure 
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implications. The results found in this analysis were similar to other latent 

class cluster analysis studies that also used microscopic data (Depaire et al, 

2008; De Ona et al., 2013), in that the cluster groupings were characterised 

either by traffic accident characteristics or road user contributory factors. 

The comparison of microscopic (in-depth) accident data using the UK On the 

Spot dataset and macroscopic (national) accident data using the STATS19 

dataset demonstrated that in order for detailed clusters that include relevant 

human, vehicular and infrastructure/environmental factors to be formed, data 

that includes accident causation information is needed. This type of data is 

only provided by in-depth accident data. When the variables and variable 

values that are coded by the accident investigator are limited with regards to 

the accident coding of one aspect of the accident, the results of the cluster 

analysis are skewed towards the variables that allow for a clear differentiation 

between variable values.  

In the analysis the road user 1 contributory factor was most commonly clearly 

significant for the value error or reaction and there was little differentiation for 

the clusters whereas the junction type variable was separated based on the 

variable values. This was particularly an issue for road user based human 

factors that were mainly limited to demographic factors that did not allow for a 

clear interpretation of the resulting clusters. For example gender and age 

ranges were significantly over-represented in the resulting clusters but this 

was due to the large case numbers, the percentages were mostly within 5% of 

the overall percentages for the variable values.  

10.2.2 Methodological findings 

Accident scenario analysis using the Human Functional Failure method 

The studies carried out in this thesis applied the Human Functional Failure 

(HFF) method that was developed and used by IFSTTAR in France. This 

methodology has been previously used in countries other than France, within 

the Traffic Accident Causation in European project (Naing, Bayer, Van 

Elslande, & Fouquet, 2007; Van Elslande & Fouquet, 2007) and in the 

Netherlands (Boele-Vos et al., 2016). Other than a small number of cases 
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coded in the TRACE study (Naing et al., 2007) within the UK, this was the first 

time that this large a number of cases were analysed and coded in a UK 

sample. The studies carried out using HFF demonstrated that identification of 

general human error and accident factors translates over to UK data, though 

the accident scenarios need to be developed individually. 

A number of advantages were observed with regards to using the Human 

Functional Failure method compared to previous LCC analysis studies that 

did not use accident causation coding systems (de Oña et al., 2013b; Depaire 

et al., 2008). In the study carried out by de Oña et al. (2013b) variables 

related to the road user that were used in the analysis were gender, age and 

accident causes. The accident causation variables were grouped into one 

variable that differentiated causes into four possible categories; driver 

characteristics, road characteristics, vehicle characteristics and other. Driver 

characteristics were most commonly identified as being the main cause of the 

accident (92%) by the accident investigators. In the study carried out by 

Depaire et al. (2008) variables related to the road user were gender, age, and 

behaviour. The behaviour variable was grouped into ignores red light, fails to 

give right of way, crosses a full white line, passes incorrectly, makes an 

evasive manoeuvre, incorrect location on the road, loss of control, not enough 

distance kept, fall and normal behaviour. The categories are concentrated on 

issues related to road user violations and are limited in the explanation of the 

road users selected behaviours.  

The analysis of in-depth accident data coded with HFF carried out in this 

thesis allowed for a deeper differentiation of human factors compared to the 

other studies that used cluster analysis. The human factors were divided into 

distinct groups that illustrated differences between violations, lapses in 

attention and error based failures. In addition to this coded information two 

contributory factors were included for the single vehicle accident analysis, and 

one factor for each road user was included in the multiple vehicle, PTW and 

pedestrian accident analyses. These factors were included in addition to road 

user’s gender and age. This differentiation allowed for the road user 

behaviours leading up to the collision and other factors to be coded together, 

and for the statistical analysis to contain a larger number of human related 
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factors that have been collected based on an human functional failure coding 

methodology. The inclusion of the main human functional failures allowed for 

an understanding of the manner in which the pre-crash infrastructure and 

vehicular characteristics together with traffic conditions in combination 

resulted in specific errors of one or more road users. 

Historically accident studies have focused on understanding road user error 

within the traffic environment (Carsten et al., 1989; Sabey & Staughton, 1975; 

Treat et al., 1979). However the data did not include higher level information 

on the operation of the transport system and it was concluded that if further 

data became available in future studies than the analysis would be further 

enhanced. This methodology would require all relevant factors to be identified 

and related to the higher level system based information such as legislation, 

stakeholders in the system and the functioning parts of the system to be 

merged together and interpreted as a whole. An example of the work that 

would be required can be found in an article by Salmon, Read and Stevens 

(2016) where a detailed structural analysis of the working structure of the road 

transport system operation in Queensland, Australia was carried out.  

Some of the limitations of using the HFF method relate to the Safe System 

approach. While a large number of factors to be coded in terms of the traffic 

system are present and can be coded with the HFF method, the system as a 

whole has not been directly modelled, and as such the interpretations that the 

analyst makes with the crashes may be limited in terms of higher level system 

based factors (design, operation and management issues). A merging of this 

method with a more system based approach such as those used by (Reason, 

1990; Reason, 1997), could help bridge the gap between in-depth accident 

studies and methods used as a systems approach. 

Statistical analysis methodology 

The preparation and analysis of the data was a long procedure that included a 

number of false starts with regards to the data analysis that was selected. A 

comparison of different statistical methods that could have been incorporated 

into this thesis was carried out during the data preparation stage. From this 

review, a number of methods were identified as being suitable for use with the 
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data when considering the analysis requirements. Two of the methods that 

were identified as possibly suitable, principal component analysis and quasi 

induced exposure methods, were tried.  

These two methods were found to be unsuitable due to their inability to 

compartmentalize the analysis allowing for a comparison of all interacting 

factors. The principal component analysis did not clearly identify accident 

scenarios and grouped most of the factors within a small number of scenarios. 

This limited the ability to clearly identify interacting factors with a number of 

scenarios, and also caused a loss of data within the analysis. The quasi 

induced exposure method required a control group to be selected from road 

users that were identified as non-active within each accident. This limited the 

interpretation of the interactions of each individual accident scenario, as a 

comparison of factors was going to be necessary. Regression methods were 

also considered but ultimately discarded as they required one or more 

outcome variables for interpretations purposes. 

Ultimately the latent class clustering method was selected for this thesis as it 

was determined that this method was most applicable to the purpose of this 

research to develop scenarios without concentrating on outcome variables 

and allowing each variable to have an individual weighting with regards to the 

overall scenarios. One of the main advantages of this methodology was that 

the analysis did not lose any of the information when identifying variable 

interactions and included all variables within the analysis results, whether the 

individual findings were significant or not.  

The statistical measures based on data mining used in this thesis can be used 

as a bridge between quantitative and qualitative methods in analysing 

accident data to uncover hidden relationships, as historically most analysis 

methods concentrated on dependent factors to analyse the varying level of 

risk. The aim in this thesis was to not concentrate on injury risk, but rather to 

identify where failures occur and so LCC was the most suitable method for 

this purpose. LCC analysis allows a definition of risk while relating multiple 

factors together within a cluster.  
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The interpretation of accident data requires a consideration of the research 

question and then the accident data. When modelling accident data using 

statistical models, it is necessary to consider whether the variables within the 

data have linear properties. Modelling linearity is particularly necessary when 

using parametric based modelling methods such as hierarchical cluster 

analysis and hierarchical regression. The assumptions of linearity require the 

data to include an outcome variable, which in traffic safety studies is most 

commonly risk. 

When considering the suitability of the statistical method, two different 

considerations were made. Firstly the advantages compared to previous road 

safety studies using LCC, and secondly the suitability of the method 

compared to other possible statistical procedures. 

The measurement of a large amount of human related factors in traffic 

crashes requires a subjective assessment by using interview data and 

accident reconstruction, as it is not sufficient to collect information based on 

the accidents physical attributes with regards to human error. These factors 

are then combined with physical factors that are either binary (yes/no) in 

nature or to measurements related to the road infrastructure/presence of 

environmental factors. In the analysis chapters, objectively and subjectively 

measured accident factors were combined in such a way as to allow for direct 

statistical analysis to be carried out, and as the analysis was concentrated on 

identifying accident types rather than outcome variables such as injury 

information, the purpose was to develop scenarios of interacting factors. The 

highest possible level of detail was provided on both the descriptive and 

cluster analysis level, and the analysis concentrated on making sure that the 

statistical method did not allow for any data to be lost during the analysis. 

When considering accident data analysis techniques no one technique will 

provide all of the answers to all of the questions. It is necessary that different 

questions are answered by using different data sources and statistical 

procedures, for the issues that were examined in this thesis, the use of other 

statistical methodologies that are commonly used in accident data analysis, 

were not appropriate. The issues related to principal component analysis and 
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quasi-induced exposure methodologies were stated above. The use of 

regression based analysis methods is dependent on the identification of one 

or more dependent variables, most commonly injury outcomes. The inclusion 

of a dependent variable would provide clarity with regards to that variable, in 

terms of the injury outcomes, but not allow for clear interpretations of 

interaction between different variables to be made. 

When considering accident data, categorical and continuous data need to be 

analysed together. This requirement makes it difficult to include all relevant 

data within models that provide a basis through a linear relationship. If an 

analysis of accident risk with regards to injury outcomes was carried out there 

are more suitable methods for risk analysis than LCC, such as neural 

networks (de Oña et al., 2013b) , multinomial logit estimates (de Oña, López, 

& Abellán, 2013) and logistic regression procedures (Michalaki et al., 2015). 

These types of analyses provide detailed numerical information in terms of 

risk with regards to injury outcomes. An advantage of using the LCC method 

compared to other multivariate methodologies is that LCC allows for the 

interaction of the variables to be mapped together rather than observing 

individual risk outcomes or having to group variables together for this 

purpose. Decision trees (Badea – Romero & Lenard, 2013) and other 

regression based tree procedures (de Oña et al., 2013) are similar in nature, 

though cluster analysis provides a clearer allocation of all variables within the 

clusters by determining the variables by a percentage rather than an ‘either-

or’ selection procedure. 

The use of these methods compared to the descriptive based approach 

allows for relationships that were not previously detected to be observed. This 

helps bring a level of objectivity to the understanding of accidents rather than 

grouping accident types according to a logical structure. The grouping of 

accident studies using expert judgment based on a logical framework for 

comparison either by accident configuration or human failure type has been 

used by a number of studies. The Factors Influencing the Causation of 

Accident and Incidents (FICA), the German In-Depth Accident Study (GIDAS) 

& Institut National de Recherche sur les Transports et leur Securité (INRETS) 

studies have been commonly used for ADAS advancement purposes. The 
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method used in this thesis helps provide a comparison point to previous 

studies that have aimed to use risk factors or other statistical measures for 

macroscopic accident analysis purposes. 

The limitations of working with a basic system of coding accident causation 

was also demonstrated in the national data analysis chapter where although 

accident causation variables were coded, a clear linkage to other factors was 

not possible due to the nature of the codes. 

The division of the powered two wheeler (PTW) and pedestrian accident 

cases into separate analyses furthermore allowed for the identification of 

specific accident types for these road user groups rather than concentrating 

solely on the crash configuration of pedestrian/PTW against other road users. 

This is particularly pertinent when considering that in the accident analysis 

chapter all of the pedestrian accidents were grouped in two large groups that 

did not allow for a differentiation of the data. A similar issue was seen in the 

study by Depaire et al. (2008) where all pedestrian accidents were grouped 

into one large cluster. In both the present study and the study carried out by 

Depaire et al. (2008) the accidents involving a pedestrian were considered by 

the cluster analysis to be significantly different from the other accident types. 

This resulted in the clusters only including pedestrian to other vehicle 

accidents and not allowing for a differentiation of different types of pedestrian 

accidents. The analysis carried out on the vulnerable road user groups 

allowed for individual clusters to be identified. 

The segmentation of the accident groupings, particularly with microscopic 

data that provides clearer definitions compared to previous analysis, allows 

for specific groupings to be analysed. This can be seen in the differentiation of 

the ‘looked but did not see’ accident groupings where three different accident 

types were identified. The inclusion of errors made by the drivers of the 

interacting vehicle also allowed the other road user’s expectations and 

reactions to be considered. This type of understanding cannot be obtained 

from macroscopic data without information on road user error. If the number 

of in-depth accidents collected could be increased, the possibilities of the 

cluster analysis would also increase proportionally.  



 

282 

 

Compared to previous accident causation based accident studies which 

analysed 38 single vehicle crashes (Sandin & Ljung, 2007) and 392 road 

users involved in crashes (Van Elslande, 2000), this thesis had a significantly 

larger number of cases analysed and compared with an in-depth statistical 

procedure. The level of data available and the methods that were used to 

gather this data were the most advanced available at the time.  

The FICA and IFSTTAR studies have been used by both road operators to 

help implement changes in the traffic environment and by vehicle 

manufacturers to help develop active safety systems that will address the 

issues of road users in the traffic environment as identified by analysis of 

accident causation data. The Volvo Car Corporation and SAAB were partners 

in the FICA study. The HFF, ACASS and DREAM models have also been 

used in a number of different European traffic safety projects for accident 

analysis and countermeasure development purposes. 

 

10.3 An examination of the results in relation to existing 

research 

The literature review of models related to driving and human error provided a 

detailed description of how human failure can influence accidents and what 

type of failures can occur to cause a traffic accident. Previous research 

identifying failure in the case of traffic accidents has commonly quoted that 

human error causes up to 95% of all accidents (Treat et al., 1980; Sabey & 

Staughton, 1975). A detailed understanding of human factors within a road 

accident is necessary in order to understand how road users are interacting 

within the traffic environment and how human errors are initiated.  

The results of the studies carried out in this thesis demonstrated that an 

analysis of a significant number of detailed factors within the accident are 

necessary to understand the accidents as a whole. Countermeasure 

development is increasingly based on a Safe System approach and when 

considering road user error it is necessary to take into account the other 

relevant higher level factors that lead to the road user making an error. Past 
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research has focused on developing models to help demonstrate how human 

failure (Rasmussen, 1982; Reason, 1999; Norman, 1981) occurs. Much of the 

research that has been carried out in in the past 10 years on accident 

causation has used these models or similar models as a basis for the 

development of tools to understand human accident causation (Ljung, 2007; 

Otte, Jaensch, & Pund, 2007; Van Elslande & Fouquet, 2007; Wallén Warner, 

Björklund, Johansson, Ljung, & Sandin, 2008). The advantage of using these 

types of models to understand traffic accidents is that accidents can be 

grouped in a relevant time based sequence and can be analysed in more 

detail for countermeasure purposes. These models also allow for human 

factors and other factors to be determined for each accident in a holistic 

approach. Nevertheless these models are typically applied to single accident 

cases and are only rarely used for aggregate data analysis. 

The use of the above stated accident causation methods to classify human 

error makes it possible to determine how certain failure types and contributory 

factors contribute to an accident. Before deciding on the accident causation 

coding model to be used within the thesis, a comparison of three possible 

models was carried out. This comparison aimed to clarify the usability of the 

different models with regards to the aims of the studies.  

The models compared were the Driver Reliability and Error Analysis Method 

(Ljung, 2007), the Accident Causation Analysis with Seven Steps (Otte et al., 

2007) and the Human Functional Failure (Van Elslande & Fouquet, 2007). 

Ultimately the Human Functional Failure method (HFF), a method developed 

in France that was based on previous research in human failure by 

Rasmussen (1982) and Reason (1990), was selected to be used. The main 

advantage observed in the HFF method compared to the other two models 

were that clearer interpretations of all factors related to the collision occurring 

compared were possible. Despite this advantage there was a disadvantage in 

terms in inter-rater reliability compared to the other two methods. 

The HFF method uses a five stage perceptual model related to how road 

users perceive the traffic environment. The road user is constantly going 

through these stages when making decisions related to their behaviours. The 
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road user first perceives (stage 1) the information from the environment, then 

diagnoses (stage 2) the situation, anticipates (stage 3) how events will unfold, 

makes a decision (stage 4) and then performs an action (stage 5). A sixth 

stage related to issues with sensory or cognitive impairment/failures is also 

included. The HFF model had a detailed number of 30 top scenarios with 

regards to the above main failure that occurred for the road user based on 

French macroscopic and microscopic data. These scenarios can be seen in 

the Appendix in page 374. Current research analysing traffic accidents has 

focused on the detection and decision stages (MAIDS, 2009; Pai & Saleh, 

2008; Pai, 2009) to distinguish when the road user makes an error, though the 

other stages have not been used particularly when macroscopic data is 

analysed.  

This method allowed an analysis of the accident data with regards to accident 

causation measures as well as an analysis of the main failures that all road 

users involved in the accident made. When applying HFF, all relevant factors 

leading up to the incident with regards to the road user, vehicle and 

environment/infrastructure are collected using a mixture of objective and 

subjective data collection measures for coding purposes.  

For the study carried out on multiple vehicles using the UK On the Spot (OTS) 

dataset, the coding method which further partitioned the six main failure 

groupings into 30 sub-groupings was originally used. This analysis was 

ultimately discarded because the cluster groupings did not provide relevant 

results, most likely due to having been developed from French data. The 

analysis based on the six main failures was carried out instead.  

There were two main constraints with regards to using this expanded 

methodology, the first of which is theoretical and the second statistical. Firstly, 

these scenarios did not provide a broad understanding of the accident 

clusters, rather the resulting segmentation was not clear and provided a large 

amount of overlap between the cluster findings. A possible reason for this is 

that the nature of the UK driving environment is different than in France so 

although the broader categories were suitable for analysis purposes, the sub-

categories being developed in France did not clearly represent the UK in-
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depth data. Secondly the number of cases within the accident dataset only 

allowed a limited number of factor values to be entered into the analysis. The 

number of factors that can be included in a cluster analysis are based on the 

number of cases that are present in the dataset. The cluster analysis studies 

carried out by Depaire et al. (2008) used 29 variables with 4,028 cases from a 

national dataset, de Oña et al. (2013b) used 18 variables with 3,229 cases 

from a national dataset, and Skyving et al. (2009) used 167 cases with 12 

variables from an in-depth accident dataset. Approximately at least 10 cases 

per variable factor are accepted within accident data analysis for in-depth 

accident data and this was taken into account for the in-depth accident 

studies cluster analysis carried out in this thesis. 

When using latent class clustering methods only a finite number of variable 

values can be entered into the analysis. For the main functional failure rather 

than entering a total of 30 factors into the analysis for the main failures, 

entering 6 main failure factors allowed for a more evenly distributed cluster 

analysis between all of the factors. This allowed for other factors related to the 

infrastructure, vehicular and environmental factor, such as the road lighting 

and road area type, to be also included in the cluster analysis, and the 

scenarios to be evenly weighted with regards to the different coded factors. 

This was done in order to have a better balance in terms of coded factor types 

compared to previous research (de Oña et al., 2013b; Depaire et al., 2008). 

Previous work using accident causation data has concentrated on either case 

by case analysis methods (Ljung Aust, 2010; Sandin & Ljung, 2007) or 

subjectively relating accident types to national data and creating groupings 

according to this analysis (Van Elslande, 2000). These types of analysis allow 

for an understanding of how each individual accident was caused, but do not 

allow a determination of which factors are significant or over-represented in 

individual situations using statistical modelling measures. The advantages of 

using a method that is based on comparing factors using significance testing, 

is that when understanding the most commonly occurring accident scenarios, 

as in the present research, the weight of each individual factor and 

occurrence can be identified.  
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For the first road user within the multiple vehicle accident database and the 

single vehicle accident data, the stage of perception was similar to the results 

from Van Elslande (2000). The main stages of functional failure were 

detection failures and diagnosis failures. When the second road user was 

included in the analysis prognosis failures was the largest failure grouping. 

The grouping of the two road users when analysing multiple vehicle accident 

data was unique in that it allowed an interpretation of both the accident setting 

and relevant human factors related to the accident together. This grouping 

allowed for further differentiations to be made with regards to the scenarios. 

For example in the PTW cluster 5 results both car drivers and PTW riders that 

made decision failures and prognosis failures were identified by the clusters. 

This indicated that both road users were making similar human functional 

failure types.  

The analysis within this thesis, through the use of microscopic data, provided 

results that included greater detail compared to previous studies that used 

macroscopic accident data (de Oña et al., 2013b; Depaire et al., 2008). Each 

clusters countermeasure implications were discussed with regards to possible 

measures that could be taken, and clusters where similar countermeasures 

could be carried out were identified. The use of accident causation coding 

also allowed for identification of the accident configurations in great detail, 

identifying the factors in a time based fashion.  

If considering the implications of the results, in Depaire et al.’s (2008) study 

using two vehicle macroscopic data in the Brussels region of Belgium the 

seven resulting clusters were titled (1) crossroad with no traffic light, (2) traffic 

accidents with adult pedestrians, (3) traffic accidents on crossroads with 

predominantly traffic lights, (4) traffic accidents between a car and a non-

moving second road user, (5) traffic accidents with a motorcycle or bicycle, (6) 

traffic accidents with non-adult pedestrians and (7) traffic accidents on 

highways. A factor related to human behaviour was included in the analysis, 

but no relevant significant values related to this factor was reported within the 

cluster analysis results.  
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The results from the multiple vehicle accident scenarios study using OTS data 

carried out in this thesis were in order: (1) turning accidents in a low speed 

setting due to detection issues from visibility or lane violations, (2) rear-end 

accidents in a high speed setting due to detection issues, (3) urban road low 

speed accidents, (4) lane violation due to speed or impairment, (5) 

intersection accidents due to breaking the law, (6) right of way violations due 

to road user risk taking or illegal behaviour, (7) pedestrian accidents occurring 

as a result of impairment, and (8) pedestrian/cyclist to car accidents where the 

road user made the primary contributory behaviour. 

The nature of the results differed in that specific accident segmentations and 

countermeasure implications based on these results were possible. This was 

not the case in Depaire et al.’s (2008) study where indications of accidents 

are present but a detailed understanding of the interactions leading to the 

incidents cannot be deduced from the cluster analysis. 

The advantages compared to the previous study can be identified as: (1) the 

human factors were not present in the Depaire et al. (2008) study, while in the 

study carried out in this thesis they were, (2) The scenarios were more 

detailed in nature and a more detailed discussion of countermeasure 

implications were possible to be carried out, (3) A further analysis of the data 

using a separate statistical modelling approach was not necessary. 

 

10.4 An indication of the importance of the findings 

In-depth accident research studies have concentrated on using a model of 

human error types to provide individual analysis to accident cases and identify 

accident scenarios for analysis purposes, identifying Advanced Driver 

Assistance System (ADAS) measures as appropriate for individual accident 

configurations. These methods have commonly used descriptive statistics to 

help identify road safety issues either previously without the use of a 

behavioural causation model (Morris et al., 2006; Sabey & Staughton, 1975; 

Treat et al., 1979) or when using an accident causation coding model (FICA, 

GIDAS & ITS study). 
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The use of a statistical mining tool using microscopic accident data to help 

better understand factor interactions, as reported within this thesis, is unique 

as the numbers of accidents collected by researchers are commonly not large 

enough within in-depth accident datasets for this purpose. The higher number 

of cases collected within the UK On the Spot (OTS) accident dataset allowed 

a sufficient number of accident cases to be used for statistical modelling 

purposes. The main benefit of using this combined approach including in-

depth accident data and the Human Functional Failure (HFF) accident 

causation analysis coding, were the more detailed results compared to 

previous studies that used national microscopic data and latent class 

clustering methods (Depaire et al, 2008; De Ona et al., 2013). 

This methodology works in two ways, (1) it allows for an extension of 

previously identified accidents to be combined with a large number of relevant 

variables that give information about which situations accident scenarios 

occur in and (2) it allows for previously hidden or unknown relationships to be 

broached and detailed. The nature of in-depth accident data makes it 

necessary that clear methodological steps are necessary for analysis 

purposes, data mining approaches can help provide these possibilities. 

10.4.1 Research and policy implications 

When understanding accident data output it is necessary to put it into the big 

picture of how developing and developed countries are tackling issues related 

to traffic safety. Developed countries are using the Safe System approach 

based around measures developed within vision zero to decrease accident 

rates and fatal injuries suffered by road users. 

When analysing in-depth accident data using causal inferences, most 

methods used a number of different crash causation classification systems, in 

order to uniformly identify accident factors. There has been difficulty in linking 

the factors identified by these models (human, vehicular & 

environmental/infrastructure) to other systems based information such as road 

rules and regulations (Salmon et al., 2010). The output that has been 

generated by using the HFF data interpretation method and LCC analysis has 

provided detailed information on how interactions of different factors within the 
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road environment cause accidents, though a link to road rules and regulation 

would provide possibilities to make more detailed observations and 

interpretations.  

The HFF method has been previously used in France to develop accident 

scenarios for analysis and countermeasure purposes. This is done by 

analysing data collected from in-depth accidents and identifying possible 

scenarios, and then mapping out this data onto national accident database 

data to identify similarities. The analysis carried out in this thesis has identified 

accident causation scenarios using a purely statistical approach that is 

different to the subjective analysis approach carried out at IFSTTAR. The use 

of an objective method removes the potential of the researcher’s 

preconceptions framing the analytic outcomes. 

The results of this analysis were clear cluster scenarios based on a large 

number of cases grouped together based on the main issues related to the 

individuals. These identified clusters could then be broken down into more 

specific groups for analysis purposes. Clusters that were similar in nature 

such as the leaving the lane accidents for single vehicles were analysed 

together, and indications for the different factors leading up to these incidents 

were separated based on the cluster results. For leaving lane accidents 

though the largest cluster was related to speeding the other two cluster results 

indicated that detection issues and impairment also led to similar accident 

occurrences. Incidents related to alcohol also more commonly occurred in 

rural areas. 

In this thesis, the situations leading to driver detection errors were further 

elaborated on with regards to both the road user making the error and also 

the other road users that were involved. When considering accident data, it is 

better to consider all road user’s interactions rather than each road user 

individually. Possible reactions from all of the road users that are interacting 

within the accident locus proximity should be taken into consideration, and 

future developments particularly with regards to active safety 

countermeasures need to work within the attention limitations that road users 

have. If a holistic approach considering all road users is used traffic safety 
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measures could be made more reliable through the understanding of how 

individuals interact with each other within specific settings. 

The structure of the traffic environment is dynamic in nature, and future 

developments should aim at eradicating all potential issues from the 

environment rather than concentrating on individual road user issues. A clear 

benefit of analysing each accident on a case by case basis and including all 

variables on this basis in the multiple vehicle accident analysis was that a 

clear scenario including both vehicle users could be developed. The inclusion 

of both variables that combine accident level variables for both road users, 

accident level variables for individual road users and human factor variables 

for each road user allowed for this data to be gathered in a way that was not 

done previously. This process allowed for a more detailed understanding of 

how interactions occurred in the accident configurations. 

Similar to previous literature (Brown, 2002; Clabaux et al., 2012; Clarke et al., 

2004; Clarke et al., 2007; Crundall et al., 2012; Hurt et al., 1981) ‘looked but 

did not see’ accidents, accidents related to inattention or related to distraction, 

were identified within the multiple vehicle and powered two wheeler accident 

analysis, particularly with regards to powered two wheelers (PTW). For these 

scenarios the inclusion of all relevant road users within the analysis allowed 

for a clearer identification of the interaction that was taking place between all 

road users.  

The implications of the results for ‘looked but did not see’ clusters highlighted 

that, for the car driver PTW accidents, the incidents occurred on lower speed 

limit roads during the night-time and higher speed limit roads during the 

daytime. The lower speed limit scenario were commonly occurring on a 

junction whereas the daytime setting was on a motorway or on an A road and 

was related to the speed that the other road user was going at. These results 

elaborated previous results by demonstrating both the different accident 

situations that the incidents were occurring in as well as allowing a 

differentiation of these incident types and reactions by the other road users. 

Most technological developments concentrate on alleviating issues with 

regards to the driver’s detection of the situation or of other road users in the 
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traffic environment. But for all issues to be directly tackled all road users 

involved in the conflict situation should also be taken into consideration and 

future technological developments should aim at alleviating all sides of this 

issue, rather than just concentrating on the road user that is identified as the 

road user that is considered at fault for the accident.  

The use of the accident causation method allows for an understanding of the 

human functional failure types and factors that cause different types of 

accidents, that helps underline the different human failure types that occur 

within the OTS dataset. Similar findings have been presented in previous 

research literature, but the interaction of these failures, with other types of 

contributory factors and accident level variables in this research is novel in 

nature. The inclusion of the errors of all road users within the cluster analysis 

also allowed for the contributory factors and main failures of both road users 

to be taken into account. The road environment setting of the accident, the 

type of accident occurring and the human factors interaction all allowed for a 

more thorough understanding of the cluster implications.  

This thesis did not aim to analyse the scenario results with regards to the 

available vehicle technologies for active and passive safety, but the 

implications for this technology are still present. These implications were 

discussed with regards to the road user behaviour highlighted by the 

scenarios and mainly focused on countermeasures related to behaviour, 

though these could be elaborated with the codes on environmental/ 

infrastructural factors that were coded within the accident scenarios and 

individual cases. For example cluster 7 in the PTW accident analysis 

identified cases where the state of the road directly led to the accident 

occurring and as such the implications for these accidents are in terms of 

keeping the roads in a suitable manner for PTW riders, rather than an issue 

related to their riding behaviour. 

10.5 Limitations of the study 

The limitations of the whole thesis are discussed in this section within the 

general framework of accident causation. The main limitations of each of the 

studies are also discussed within this section. When taking all of the research 
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studies into consideration a number of general limitations can be highlighted. 

The main limitations of the studies presented in this thesis can be 

summarised as: 

 The human functional failure coding of the OTS data was carried out by 

one investigator retrospectively. 

 Latent class clustering analysis interpretations are limited to identifying 

clusters but clusters had similar results and overlapped. 

 An estimation of risk using another statistical method was not carried 

out. 

 Higher level system operation data was not available. 

The OTS data was collected by a team of individuals and coded after the 

accident and reviewed in the office once they returned. The accident 

causation data was coded by the author by retrospectively reviewing the 

available information available from the OTS accident database. Ideally each 

individual case would be coded by a team of accident researchers and 

discussed before coding is completed (similar to the procedure at IFSTTAR), 

though the time limitations and availability of other individuals to code this 

data was not possible.  

This would limit the amount of subjective interpretation bias for each individual 

accident case report as much as possible. It is also necessary to consider that 

accident investigators may look for certain patterns in behaviour types and 

despite best practice procedures being put in place will still possibly make 

these types of interpretations. The cluster results similarities may be a result 

of these interpretations, nevertheless the HFF coding carried out in the OTS 

studies was as close to the original coding and all of the available information 

was coded, where possible within the HFF method.   

The latent class clustering analysis provided detailed interpretations of the 

results. Despite this some of the clusters had overlap in terms of the results 

and caused the interpretations of the clusters to become more difficult. This 

was particularly the case for ‘looked but did not see’ accidents, where there 

were many similarities between clusters and this made it more difficult to 

differentiate the meaning of the results. These issues mean that the findings 
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from the studies need to be considered alongside a detailed descriptive 

analysis. These issues were particularly prominent for the STATS19 data, 

where the cluster results were very similar in nature and did not allow a clear 

interpretation to be possible.  

A risk analysis for individual factors was not included on the dataset. The 

exclusion of this information with regards to injury levels particularly reduced 

the interpretation possibilities of the data. Despite this the aim of the work was 

to find scenarios rather than identify levels of risk for individual variables. A 

clear risk assessment would have been beneficial to provide a more focused 

analysis on injury mechanisms.  

As there was no possibility to have higher system level information within the 

analysis, this also limited the interpretations of the results. In order for a better 

understanding of human error, it is necessary to further understand the 

reasons for an error occurring. These reasons are rooted in higher level 

system based information such as road rules and regulations. If more detailed 

higher level system information could be provided a more detailed analysis 

could be conducted. This analysis would allow for more meaningful 

countermeasure implications to be discussed. 

10.5.1 OTS data limitations 

One of the main issues while analysing all cases in the OTS dataset was that 

a large number of the cases in the single and multiple vehicle accident data 

were missing values for the demographic variables gender and age. The large 

proportion in missing cases accounted for 30% of the single vehicle accident 

data and 35% of the multiple vehicle accident data. Each of the cases were 

enhanced by a cross checking procedure against STATS19 data for the 

specific years identifying each accident according to the accident date, time, 

area of accident, road user configuration and injury level. This procedure was 

carried out in order to decrease the number of missing cases and identify the 

missing demographic variables. Only cases that could be definitely identified 

were included in the analysis thus despite the thorough analysis of each 

accident case a large number of cases were not able to be identified, 

particularly in the all accident dataset, due to the different coding present in 
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the two datasets. The number of cases not identified in the Pedestrian and 

PTW analysis chapters were less than 7% for each dataset. 

A number of statistical methods were available to treat missing values, for 

example treating them as missing at random which is a feature in the latent 

class cluster analysis. Missing at random means that there is a possibility of 

systematic differences between observed and missing values, these values 

can in turn be explained by other observed variables. If the missing cases 

were between 5-10% then this would be a reasonable measure though the 

large number of missing values increased the potential for bias in the results 

and so only complete cases were included. A possibility of systematic bias 

due to accidents that did not have gender and age related variables coded 

also needs to be considered. An alternative is bootstrapping the data, which 

would carry out random sampling, estimating the missing variable’s values 

and including them in the analysis. Bootstrapping uses the available sample 

data to create a large number of phantom samples and aims to replicate the 

population values. By using this method missing values within the 

measurements can be replaced based on the estimated population values. 

Bootstrapping relies on the available data representing the characteristics of 

the population adequately and provides confidence intervals for the missing 

values rather than point estimates of the data. The R statistics package and 

poLCA dataset does not allow for bootstrapping and so it was not possible to 

carry out this procedure. 

Another possible limitation in terms of the single vehicle cluster analysis is the 

placement of duplicate factors in the cluster contributory factor 1 and 

contributory factor 2 fields. For example speed could be coded as both a 

contributory 1 and a contributory 2 factor for different cases, this would make 

it more difficult for speed to be identified as the main contributing factor 1 or 

factor 2 as the proportion is split between two values. The reason that this 

study was carried out in this manner was that there was no other way to 

reflect the categorical coding nature of the accident case other than including 

individual factors in the cluster analysis. Due to a limited number of variables 

and variable values being included in the cluster analysis it was not possible 

to enter each contributory factor value individually. If these variables would 
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have been included a large number of the cases would not have any of the 

factors coded and this would have negatively influenced the cluster results. 

For this reason the clustering was done in the above stated manner and the 

descriptive analysis was used to highlight the complete coding within the 

analysis. 

One further limitation is the timeframe for the sampling of the accident cases, 

as the cases are between 13-17 years old. The changing nature of the vehicle 

fleet and implementation of new safety measures and technologies mean that 

the results discussed in this study need to be further analysed with newer 

accident data, if available. 

Due to the nature of the PTW study it was not possible to include a number of 

relevant factors specific to PTW accident analysis to include in the cluster 

analysis, such as the riders experience level and specific type of rural and 

urban environment. Due to the broader nature of the OTS study which was 

not specifically focused on PTW accidents, a number of differences to 

dedicated PTW studies can be highlighted. McCarthy et al. (2008) compared 

the OTS and MAIDS studies and found that MAIDS provided more detailed 

accident reconstruction data, mechanical data, human factors information and 

provided more detailed coding on factors specific to PTW accidents. The 

experience level of the rider was of particular interest in the MAIDS (2009) 

study, which analysed this variable in detail and if it was possible to gather 

this analysis level than it would have contributed to the cluster analysis 

significantly. Though it was not possible to use this variable, cases where the 

road user was inexperienced were deduced and coded for in the contributory 

factors section, and one of the clusters significantly emphasised 

inexperienced PTW riders.  

Similar to the PTW study one of the main limitations of the pedestrian study 

was that the OTS study was not aiming to collect data specifically on 

pedestrian accidents and so the broad nature of the data collection process 

though providing a detailed case analysis did leave out some variables that 

would have benefitted the above study. More detailed information on pre-

crash pedestrian factors could have enhanced the result findings and 
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provided better differentiations of the clusters, or possibly a new cluster to be 

formed. 

Although the OTS study was carried out in two specific regions in the UK, the 

main understanding of the results should be generalizable to the whole UK. 

Two separate studies were available in the literature to examine the 

representivity of the OTS study for all accident types and for PTW accidents 

alone. 

A study carried out by Richards, Cookson, & Cuerden (2010) comparing the 

OTS study data and Great Britain national accident data between the years 

2000 to 2006 found that there were differences in the two datasets with 

regards to road user gender and vehicle types. With regards to PTW 

accidents McCarthy, Walter, Hutchins, & Tong (2008) compared the first 302 

OTS cases collected with the Great Britain national data. It was found that 

there were more severe injury cases in the OTS data but no significant 

differences in terms of rider age, engine size and the area type that the 

accident occurred in. 

Both results implied that there was a significant amount of overlap between 

the OTS and STATS19, data nevertheless some caution needs to be 

exercised when considering the findings. The implications of the OTS study 

may also not be applicable to generalise in other country settings. 

 

10.6 Practical applications of the study 

10.6.1 Countermeasure implications 

Traffic safety countermeasures aim to provide solutions to issues that road 

users face that lead to any type of accident. Countermeasures aim to reduce 

the amount of risk that a road user faces in the environment, and provide 

solutions that will optimally decrease the possibility of serious injury or an 

accident. Accident causation methods provide a description of each individual 

case and allow for a link to be made with possible countermeasures.  
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The use of accident scenarios including accident causation data enables 

interpretations of mass countermeasures for specific scenarios to be 

identified. The inclusion of relevant human factors and error data allows for a 

better interpretation of the combination of factors that lead to accidents. This 

analysis in turn allows for a better understanding of these issues.  

Research studies that used macroscopic data (Depaire et al., 2008; Skyving 

et al., 2009) with cluster analysis methods provided limited countermeasure 

application discussions, rather focusing on the ability of the cluster analysis to 

segment accident data and group similar types of factors. This segmentation 

in turn was used to identify clusters of factors that caused injuries, where 

applicable. Previous studies that used latent class cluster analysis methods 

on macroscopic data (de Oña et al., 2013b; Depaire et al., 2008) identified 

cluster segmentation results that were mainly based on roadside physical 

attributes. These results required further analysis in the form of a multinomial 

logit model or binary networks with regards to the injury outcomes for each 

cluster to be used for detailed analysis findings. 

In Depaire et al.’s (2008) and de Oña, López, Mujalli, & Calvo (2013b) studies 

the authors stated that the study was an exploratory study on whether cluster 

analysis could be used to segment traffic accident data, they state that cluster 

analysis helps with regards to interpreting data heterogeneity. The studies 

carried out within this thesis help underline the advantages of working with 

more detailed data when using LCC analysis. The selection of 

countermeasures based on the above stated study results would be more 

focused and related to specific causation factors. As the level of detail in the 

data increases the use of the clustering methodology provide better results 

and better differentiation between clusters. The inclusion of human factors 

related to the accident, particularly the human functional failure, and the more 

precise nature of the clusters in this thesis allowed for more detailed 

interpretations to be carried out which were not possible in the stated studies. 

Each cluster provided significant analysis for variable values. The significance 

values provided detail on the factors that occur more often in particular 

clusters. This allowed a differentiation of different types of accident scenarios. 



 

298 

 

An example of how to use the findings to discuss countermeasure 

implications is provided below. 

The latent class cluster analysis of the OTS multiple vehicle accidents 

identified four clusters related to detection issues, as outlined in the analytic 

results sections. Despite the accident groupings being related to detection 

issues the countermeasure implications are different for the three situations. 

The first scenario would require a system identifying conflict possibilities 

based on vehicle positioning at an intersection. Education on this issue would 

also be beneficial. For the second scenario countermeasures related to 

inattention or distraction would be necessary. For the third scenario the road 

user’s incorrect analysis of the road situation or risk taking was interpreted. 

The detection issues countermeasures would be based on education and 

enforcement rather than ADAS systems. 

This separation of similar cluster groupings highlights that as the level of detail 

in accident data is increased, such as microscopic data compared to 

macroscopic data, more detailed cluster results and countermeasure 

implications are possible.  
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11 Conclusions and Recommendations 

 

11.1 Conclusions 

The aim of this thesis was to provide a procedure that would allow for 

accident causation data to be combined with other types of data acquired in 

in-depth accident analysis procedures to identify accident scenarios. The 

motivation for this research was to find methods that would help better 

understand the interactions that are present in detailed traffic accident cases. 

The statistical methods and data handling procedures employed in this thesis 

demonstrated the possibility of causation data giving statistically relevant 

results when a large sample size is available. Previous work in this field 

concentrated on creating causation charts to analyse the data and involved 

analysing each case specifically for the analysis purposes (Habibovic & 

Davidsson, 2012; Sandin & Ljung, 2007; Sandin, 2009). This thesis provided 

similar detailed results using a larger number of cases with a statistical 

procedure. 

This thesis demonstrated that when accident data has a sufficient level of 

detail, data mining tools can aid in the understanding of a large number of 

cases with regards to the causation codes present in them, though analysts 

need to be cautious in terms of the factors entered into the analysis so as not 

to alter the results. The type of factors that are included in the analysis may 

skew the cluster results towards one main type of factor group, thus a good 

balance between factors related to all possible accident factors (human, 

vehicle and environmental/infrastructure) are necessary to be put into the 

analysis. It is also possible to use macroscopic (national) databases for this 

process, though the limited level of detail may impair the interpretation of the 

results. If the data is coded in a more systematic manner then causal 

inferences become possible. A more detailed accident causation scheme 

such as the precipitating factors coding method developed for the STATS19 

data would provide a better foundation for statistical analysis possibilities. 
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In summary, the results of the studies provided evidence in support of four 

main arguments: 

1. Microscopic in-depth accident data is needed to understand the types 

of accident mechanisms that road users make in the road environment 

in order to provide detailed information on accident scenario 

segmentation. 

2. A data mining approach using latent class cluster analysis can be used 

to develop an understanding of the different types of failure 

mechanisms that occur in traffic accidents. 

3. Accident causation analysis of road user failures is necessary to 

illustrate the types of failures that road users make. 

4. The development of accident scenarios helps quantify accidents and 

allows countermeasure indications to be made.  

The main contribution to knowledge is the demonstration that the pairing of in-

depth microscopic accident data with latent class clustering methods and the 

application of a consistent detailed description of human error allows for an 

analysis of clear scenarios for different traffic accident types. The advantage 

of this method compared to other methods of data mining is that both 

categorical and continuous data can be included in the same model, without 

the necessity of weighting the data or recoding it in such a way as to lose 

information within the analysis. This enables data to be included in its original 

coding form and for the clear relationships between factors to influence the 

cluster analysis method. The data analysis was initially conducted with 

principal component analysis, factor analysis and hierarchical cluster analysis 

methods but all three were not able to produce the results that were indicated 

in this thesis. 

A further advantage and contribution to knowledge is the ability to analyse the 

factors relating to all vehicles involved in the each accident together rather 

than concentrating on the individual factors that were coded for each 

individual road user separately. According to the literature review this was the 

first type of accident analysis for multi-vehicle accidents carried out with a 

statistical method as a base, an advantage of which is that all interactions 
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between road users and all factors contributing to the accident as well as the 

type of accident were grouped together to form clear accident patterns.  

Single vehicle accident and multiple vehicle accidents were also separated 

analysed separately in order to clearly illustrate the differences in pre-crash 

factors and human error.  

The advantage of the microscopic data compared to macroscopic data was 

also highlighted and compared in the national data analysis chapter. The 

resulting clusters and comparison with previous cluster analysis research 

results clearly demonstrated that the use of accident causation data within the 

cluster, paired with other types of data significantly contributed to the 

information that was provided by each cluster and the analysis of the accident 

scenarios. 

In summary the main contributions that this thesis has made are: 

 Demonstrating that the use of a causation model to understand human 

behaviour in accident situations when aiming to carry out statistical 

analysis is beneficial. 

 Demonstrating that the use of in-depth accident data and an accident 

causation model allows for a detailed understanding of traffic accident 

scenarios to be developed when combined with a data mining tool 

(latent class clustering), and using a statistical method to understand 

differences between the clusters (chi square goodness of fit test). 

 Demonstrating that in-depth accident data provides better and more 

detailed information than national accident data in terms of accident 

scenario development. 

 

11.2 Future work 

The work presented in this thesis proved the usability of accident causation 

data with regards to analysing accident scenarios and providing detailed data 

for discussion points in relation to countermeasure indications within this 

context. Certain limitations with regards to this analysis were present and 
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future research could both tackle these issues as well as provide an extension 

of the research carried out. 

The analysis carried out on the full accident dataset, powered two wheeler 

accident dataset and the pedestrian accident dataset helped identify certain 

accident scenarios. Though the accident data used was a large dataset that 

collected data from two areas that aimed at mirroring national data carried out 

in the UK and the sampling procedures carried out were within this vein, there 

is a possibility that the scenarios, or some aspects of them, are related to 

local not national issues. The limitations with regards to the data handling 

discussed in the general discussion if broached and tackled would allow for a 

better understanding of traffic accidents to be carried out. Currently two 

possible avenues for future research were identified in this realm.  

In-depth accident research continues to be carried out in the United Kingdom. 

Though the UK studies are extensive in nature and detailed they would further 

benefit by the inclusion of one of the detailed accident causation methods 

(DREAM, ACASS & HFF) or a similar accident causation coding method, as it 

has proven difficult for the causation methods used in the OTS and STATS19 

datasets to be analysed with multivariate methods for scenario development. 

This would help in the analysis of driver failure directly to help better detail the 

issues that road users face. This could be considered as an addition to the 

accident causation methods that have already been developed and are 

employed by in-depth accident research teams in the UK.  

Furthermore, the application of the outlined analysis structure to naturalistic 

driving data could help in the data handling aspects of the data providing 

information related to near miss data, accident data and normal driving 

behaviour. This would also allow for a detection of risk factors to be possible, 

though in this case depending on the researcher objectives other statistical 

procedures may be used together with the descriptive and LCC based 

analysis. 

A further enhancement would combine geographical information with accident 

causation data and the reactions of the road user collected from the vehicle 

would aid in further identifying failure. Such methods are mostly unavailable, 
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since data from vehicle black boxes are seldom accessible by accident 

investigators. Though the level of detail used in the studies was high in terms 

of accident data the future possibilities of acquiring data through vehicles 

communicating to systems within cities before accidents and possible uses of 

on-board data recorders will make the data mining procedure carried out in 

this thesis and similar types of data mining and analysis exercises much more 

important in the future. In the upcoming decade the possible improvement of 

available new data, such as detailed driving data (acceleration, braking and 

steering information, driver response to stimuli, etc.) and crash data (from 

vehicle black-boxes), holds considerable promise for the future development 

of the field of accident analysis (Lord & Mannering, 2010).  

Further work analysis with different statistical programs that allow latent class 

clustering, such as Latent Gold and SAS, could be beneficial for purposes of 

comparison with the results provided throughout this thesis. A comparison 

between the different solutions found by the different statistical analysis 

programs would be possible, and would allow for a better understanding of 

the limitations of the data if present. One of the limitations of LCC analysis is 

that for a relevant number of factors to be included a large number of cases 

must be present. The number of cases present in the datasets analysed 

limited the number of factors that could be entered into the analysis, though 

the number of factors entered for the analysis was high with a larger dataset 

an even more defined analysis would be possible. 

The use of logistic regression models to further clarify whether the clusters 

identified provide new insight and information would be ideal for future 

considerations with regards to the handling of this data. This would be done 

by using accident severity analysis similar to the study using both latent class 

clustering and multinomial regression conducted by Depaire et al. (2008), 

though this study used national data from Belgium and the LCC analysis did 

not produce scenarios as detailed as the ones present in this thesis 

Causal inferences developed from this and future data will allow for a more 

thorough understanding of traffic safety system issues particularly and the 
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interaction and relationship between accident and exposure data using 

naturalistic methods will allow for this to occur.  
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Appendix A: The basic SPSS syntax to run R 

The basic syntax to run the poLCA program 

BEGIN PROGRAM R. 

library(poLCA) 

alldata = spssdata.GetDataFromSPSS( ) 

f <- cbind(Gender, Speedlimit, LightConditions, Failure, AccidentManoeuvre, Involvement, 

Reaction, Contributoryfactor1, ContributoryFactor2, LAB, GenderV2, AccidentManoeuvreV2, 

IV2, FV2, CF1V2, UR, V1, AgeV1, Age2V2, V2)~1 

p <- poLCA(f, alldata, nclass=2, maxiter=1000, graphs=FALSE, tol=1e-10) 

p2 <- poLCA(f, alldata, nclass=3, maxiter=1000, graphs=FALSE, tol=1e-10) 

p3 <- poLCA(f, alldata, nclass=4, maxiter=1000, graphs=FALSE, tol=1e-10) 

p4 <- poLCA(f, alldata, nclass=5, maxiter=1000, graphs=FALSE, tol=1e-10) 

p5 <- poLCA(f, alldata, nclass=6, maxiter=1000, graphs=FALSE, tol=1e-10) 

p6 <- poLCA(f, alldata, nclass=7, maxiter=1000, graphs=FALSE, tol=1e-10) 

p7 <- poLCA(f, alldata, nclass=8, maxiter=1000, graphs=FALSE, tol=1e-10) 

p8 <- poLCA(f, alldata, nclass=9, maxiter=1000, graphs=FALSE, tol=1e-10) 

p9 <- poLCA(f, alldata, nclass=10, maxiter=1000, graphs=FALSE, tol=1e-10) 

p10 <- poLCA(f, alldata, nclass=11, maxiter=1000, graphs=FALSE, tol=1e-10) 

p11 <- poLCA(f, alldata, nclass=12, maxiter=1000, graphs=FALSE, tol=1e-10) 

p12 <- poLCA(f, alldata, nclass=13, maxiter=1000, graphs=FALSE, tol=1e-10) 

p13 <- poLCA(f, alldata, nclass=14, maxiter=1000, graphs=FALSE, tol=1e-10) 

p14 <- poLCA(f, alldata, nclass=15, maxiter=1000, graphs=FALSE, tol=1e-10) 

p15 <- poLCA(f, alldata, nclass=16, maxiter=1000, graphs=FALSE, tol=1e-10) 

END PROGRAM. 

 

The basic syntax to analyse the selected cluster 

BEGIN PROGRAM R. 

library(poLCA) 

alldata = spssdata.GetDataFromSPSS( ) 
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f <- cbind(Gender, Speedlimit, LightConditions, Failure, AccidentManoeuvre, Involvement, 

Reaction, Contributoryfactor1, ContributoryFactor2, LAB, GenderV2, AccidentManoeuvreV2, 

IV2, FV2, CF1V2, UR, V1, AgeV1, Age2V2, V2)~1 

p <- poLCA(f, alldata, nclass=8, maxiter=1000, graphs=FALSE, tol=1e-10) 

print(table(p$predclass))  

print(p$predclass)  

END PROGRAM. 
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Appendix B: Cluster analysis results and 

descriptive statistics for each analysis 

Single vehicle cluster analysis descriptive statistics 

Variable Count  Percent 

Road user gender 

Male 

 

256 
 

 

69.9 

Female 110  30.1 

Road user age 

0-21 

 

69 
 

 

18.9 

22-29 75  20.4 

30-49 155  42.3 

50-65 40  11.0 

66+ 27  7.3 

Vehicle type 

Car 

 

292 
 

 

79.8 

PTW 43  11.7 

Other 31  8.6 

Failure mechanism 

Detection 

 

51 
 

 

13.8 

Diagnosis 110  30.1 

Prognosis 7  1.9 

Decision 19  5.2 

Execution 96  26.3 

Overall 83  22.6 

Area type 

Urban 

 

166 
 

 

45.3 

Rural 200  54.7 

Light conditions 

Day 

 

230 
 

 

62.7 

Night 136  37.3 

Road user contributory factor 1 

Impairment 

 

18 
 

 

4.8 

Alcohol 34  9.3 

Psychological factors 69  19.0 

Speed 79  21.5 

Breaking the law 12  3.2 

Experience 18  4.9 

Distraction 25  6.8 

Road Condition 38  10.3 
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Other road factors 11  3.1 

Visibility 17  4.6 

Obstacle in road 14  3.9 

Vehicle factors 23  6.4 

No factor coded 9  2.3 

Road user contributory factor 2 

Impairment 

 

8 
 

 

2.3 

Psychological 91  24.8 

Speed 51  13.9 

Risk taking 11  2.9 

Experience 23  6.4 

Distraction 7  1.8 

Environment 29  7.9 

Other Factor 25  6.8 

No factor coded 121  33.1 

Emergency manoeuvre 

Brake 

 

73 
 

 

19.9 

None 231  63.1 

Steered 62  17.0 

Speed limit 

30 mph and under 

 

136 
 

 

37.1 

40-50 mph 41  11.2 

60-70 mph 189  51.8 

Road type 

A class 

 

145 
 

 

39.7 

B class 52  14.1 

Motorway 63  17.1 

Minor road 106  29.0 

Manoeuvre 

Going ahead 

 

116 
 

 

31.6 

Left bend 94  25.6 

Right Bend 67  18.4 

Intersection 70  19.2 

Other 19  5.2 

Accident type 

Leaving lane left 

 

163 
 

 

44.4 

Leaving lane right 91  24.9 

Rollover 27  7.3 

Collision with Obstruction/Hit parked car 26  7.1 

Roundabout 34  9.4 

Other 25  6.8 
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Single vehicle cluster analysis results 

Cluster 1 2 3 4 5 6 Total 

Number of cases 88 67 57 56 52 47 366 

Gender        

Male 81.5 51.2 83.4 67.2 72.8 87.4 73.1 

Female 18.5 48.9 16.6 32.8 27.3 12.6 26.9 

Road user age group        

0-21 29.5 18.7 0,0 18.6 7.3 47.9 20.4 

22-29 19.3 51.7 11,0 17.9 5.8 30.1 23.6 

30-49 44.7 15.4 45.8 45.8 70.5 22 40.1 

50-65 6.5 11.5 21.3 3.7 16.4 0,0 9.8 

66+ 0,0 2.7 21.9 13.9 0,0 0,0 6.0 

Road user mode of transport        

Car 85.1 92.2 90.8 60.8 71.1 97.6 83.3 

Motorcycle 7.7 7.8 3.6 30.7 6,0 2.4 9.7 

Other 7.3 0,0 5.6 8.6 22.9 0,0 7.0 

Road user failure mechanism        

Detection 0,0 26.4 0,0 24.9 0,0 0,0 8.9 

Diagnosis  91.5 36.7 22.4 25.8 91.5 22.4 38.4 

Prognosis 1.2 0,0 0,0 0,0 1.2 0,0 1.3 

Decision 7.4 0,0 33.4 3.5 7.4 33.4 6.4 

Execution 2.8 0,0 23.7 28.1 2.8 23.7 19.5 

Overall 5.1 6.4 11,0 1.9 5.1 11,0 25.3 

Road area type        

Urban 28.3 12.1 54.4 90.5 6.6 82.2 42.4 

Rural 71.7 87.9 45.6 9.6 93.4 17.8 57.6 

Light conditions        

Day 64.7 65.4 53.1 81.3 67.5 17.7 60.2 

Night 35.3 34.6 46.9 18.8 32.5 82.3 39.8 

Road user contributory factor 1        

Impairment 0,0 0,0 37.9 0,0 2.4 0,0 6.0 

Alcohol 0,0 1.4 38.2 2.1 0,0 40.0 11.5 
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Cluster 1 2 3 4 5 6 Total 

Number of cases 88 67 57 56 52 47 366 

Psychological factors 6.6 26.5 19.2 34.6 12.2 0,0 16.7 

Speed 88.3 15.7 0,0 19.4 3.2 22.8 30.1 

Breaking the law 2.1 0,0 0,0 2.1 0,0 23.3 3.7 

Experience 3.0 0,0 0,0 4.6 10.3 13.8 4.6 

Distraction 0,0 8.1 0,0 9.1 7.8 0,0 4.1 

Road Condition 0.0 22.1 0,0 15.5 16.5 0,0 9.1 

Other road factors 0,0 11.5 0,0 1.7 1.9 0,0 2.7 

Visibility 0,0 6.6 0,0 9.3 0,0 0,0 2.7 

Obstacle in road 0,0 5.8 0,0 1.7 11.6 0,0 3.0 

Vehicle factors 0,0 0,0 0,0 0,0 29,0 0,0 4.0 

No factor coded 0,0 2.4 4.8 0,0 5.2 0,0 1.9 

Road user contributory factor 2        

Impairment 1.2 0.0 3.6 1.7 3.9 2.1 1.9 

Psychological 36.3 14.8 13.8 24.7 26.6 26.5 24.2 

Speed 0,0 22.6 16.9 7.0 11.9 48.2 15.8 

Risk taking 2.5 0,0 1.8 4.8 1.9 6.3 2.7 

Experience 11.3 10.3 0,0 10.5 0,0 8.9 7.4 

Distraction 0,0 1.1 3.7 5.4 0,0 2.2 1.9 

Environment 12.1 12.7 0,0 10.3 7.4 4.4 8.6 

Other Factor 7.5 11.5 5.3 8.6 4.0 1.3 6.9 

No factor coded 29.1 27 54.9 26.8 44.2 0,0 30.6 

Road user emergency manoeuvre        

Brake 8.6 12.2 10.2 31.6 34.1 18.1 18.0 

None 72.4 48.8 74.7 62.8 61.6 62.8 63.9 

Steered 18.9 39.0 15.2 5.6 4.3 19.1 18.2 

Speed limit        

30 mph and under 16.2 11 31.6 73.2 4.1 83.9 33.2 

40-50 mph 8.7 10.3 12.8 20.6 6.4 8.9 11.1 

60-70 mph 75.2 78.7 55.7 6.2 89.5 7.3 55.6 

Road type        

A class 37.4 38.3 50.2 38.5 41.6 36.8 40.0 
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Cluster 1 2 3 4 5 6 Total 

Number of cases 88 67 57 56 52 47 366 

B class 21.8 6.8 21.1 15.4 14.1 10.7 15.4 

Motorway 13.9 23.4 9.3 0,0 44.3 2.2 15.6 

Minor 26.8 31.5 19.4 46.1 0,0 50.4 29.0 

Manoeuvre        

Going ahead 0,0 50.0 39.7 31.51 51.3 34.8 28.6 

Left bend 41.7 29.6 27.8 8.04 12.3 19.1 25.0 

Right Bend 41.6 16.1 17.8 4.34 30.5 10.1 15.3 

Intersection 11.1 0,0 14.7 48.8 2.1 27.4 25.1 

Other 5.5 4.3 0,0 7.3 3.9 8.6 6.0 

Accident type        

Leaving lane left 53.7 57.5 48.6 29.5 46.6 39.8 47.2 

Leaving lane right 28.0 29.9 37.7 25.9 24.6 6.4 26.4 

Rollover 10.5 4.7 8.0 5.8 9.2 5.0 7.3 

Collision with Obstruction/Hit parked car 0,0 1.4 2.1 8.9 9.6 14.0 5.1 

Roundabout 2.8 0,0 2.1 28.1 0,0 23.7 8.4 

Other 5.1 6.4 1.5 1.9 10.0 11.0 5.6 
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Multiple vehicle cluster analysis descriptive statistics 

Variable Count Percent 

Road user 1 gender 

Male 473 69.6 

Female 200 30.4 

Road user 1 mode of transport 

Car 479 71.1 

LGV 30 4.5 

HGV/BUS 42 6.3 

Motorcycle 28 4.2 

Pedestrian/Cycle 94 14.0 

Road user 1 age group 

0-17 62 9.2 

18-21 74 11.0 

22-29 118 17.5 

30-49 268 39.8 

50-65 97 14.4 

66+ 31 8.0 

Road user 1 failure mechanism 

Detection 318 47.4 

Diagnosis 111 16.4 

Prognosis 40 5.9 

Decision 116 17.2 

Execution 27 4.0 

Overall 61 9.0 

Area type 

Urban 435 64.7 

Rural 238 35.3 

Light conditions 

Day 524 77.9 

Night 149 22.1 

Road type 

A class 321 47.8 

B class 110 16.3 

Motorway 58 8.7 

Minor 183 27.2 

Road user 1 contributory factor 

Impairment 33 4.9 

Alcohol 20 3.0 

Psychological factors 119 17.7 
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Potential Risk 40 6.1 

Speed 67 9.9 

Breaking the law 146 21.7 

Experience 22 3.3 

Distraction 42 6.2 

Road Condition 12 1.8 

Other road factors 12 1.8 

Visibility 58 8.6 

Obstacle in road 4 0.6 

Vehicle factors 19 2.8 

None 78 11.6 

Speed limit 

30 mph and under 344 51.0 

40-50 mph 121 18.1 

60-70 mph 208 30.9 

Road user 1 manoeuvre type 

Going ahead 246 36.3 

Intersection 206 30.4 

Turning right 64 9.8 

Turning left 21 3.1 

Intersection 47 7.0 

Other 89 13.3 

Accident type 

Rear-end 124 18.6 

Right turn against 65 9.7 

Right turn same direction 32 4.8 

Left turn 17 2.5 

Merging road 41 6.4 

Roundabout 30 4.3 

Leaving lane 11 1.6 

Pedestrian 95 14.1 

Going into opposite lane 64 9.2 

Overtaking 61 9.1 

Other 132 19.7 

Road user 2 gender 

Male 482 71.6 

Female 191 28.4 

Road user 2 age group 

0-17 25 3.7 

18-21 49 7.3 

22-29 127 18.9 

30-49 318 47.4 
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50-65 124 18.4 

66+ 29 4.3 

Road user 2 mode of transport 

Car 488 72.6 

LGV 21 3.1 

HGV/BUS 49 7.3 

Motorcycle 66 9.8 

Pedestrian/Cycle 48 7.1 

Road user 2 manoeuvre 

Going ahead 357 52.9 

Intersection 143 21.2 

Turning 45 6.7 

Overtaking 22 3.3 

Slowing in traffic 63 9.4 

Other 44 6.5 

Road user 2 failure mechanism 

Detection 39 5.8 

Diagnosis 40 6.0 

Prognosis 564 83.8 

Decision 16 2.4 

Execution 4 0.6 

Overall 3 0.4 

Only Present 7 1.0 

Road user 2 contributory factor 

Psychological 15 2.2 

Identification 15 2.2 

Risk taking 17 2.5 

Traffic control 21 3.1 

Atypical manoeuvres other driver 81 12.0 

Illegal manoeuvres other driver 173 25.7 

Other factors 20 3.0 

Visibility 31 4.6 

No factors coded 300 44.6 
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Multiple vehicle cluster analysis results 

Cluster 1 2 3 4 5 6 7 8  Total 

Case number 123 115 99 81 78 68 60 49 673 

Road user 1 gender          

Male 61.3 66.8 69.6 77.7 78.1 83.6 73.9 56.6 69.6 

Female 38.7 33.2 30.4 22.3 21.9 16.4 26.1 43.4 30.4 

Road user 1 mode of transport          

Car 90.9 72.7 74.9 86.7 85.8 68.9 0.0 51.2 71.1 

LGV 5.1 11.4 3.0 0.0 4.9 5.7 0.0 0.0 4.5 

HGV/BUS 0.0 12.9 6.7 4.1 2.6 22.4 0.0 0.0 6.3 

Motorcycle 0.0 2.9 15.3 9.2 1.2 1.5 0.0 0.0 4.2 

Pedestrian/Cycle 4.0 0.0 0.0 0.0 5.5 1.5 100.0 48.8 14.0 

Road user 1 age group          

0-17 0.0 0.0 6.1 6.1 3.8 0.0 68.7 14.2 9.2 

18-21 9.3 7.9 14.2 20.7 12.1 0.0 5.0 20.5 11.0 

22-29 17.0 26.1 23.1 16.5 16.9 12.9 1.6 16.3 17.5 

30-49 49.1 40.1 39.6 43.8 35.4 56.1 11.7 28.3 39.8 

50-65 17.5 19.9 11.3 8.6 18.6 19.1 5.0 8.1 14.4 

66+ 7.1 6.0 5.8 4.2 13.1 11.8 8.0 12.7 8.0 

Road user 1 failure mechanism          

Detection 65.2 86.8 45.1 8.7 20.8 46.6 39.8 31.3 47.4 

Diagnosis 12.4 1.0 18.0 42.6 29.5 23.6 1.7 4.1 16.4 

Prognosis 0.0 6.1 16.3 11.9 0.0 3.4 3.1 6.4 5.9 

Decision 19.7 0.0 20.6 12.0 32.2 5.1 18.6 44.1 17.2 

Execution 1.6 6.2 0.0 9.5 0.0 11.9 3.4 0.0 4.0 

Overall 1.1 0.0 0.0 15.4 17.4 9.4 33.5 14.2 9.0 

Area type          

Urban 75.0 54.6 82.2 41.8 76.2 11.2 84.9 95.9 64.7 

Rural 25.0 45.4 17.8 58.2 23.9 88.9 15.1 4.1 35.3 

Light conditions          

Day 78.1 87.9 86.1 73.1 68.6 74.8 76.7 65.7 77.9 

Night 21.9 12.1 13.9 26.9 31.4 25.2 23.3 34.3 22.1 
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Cluster 1 2 3 4 5 6 7 8  Total 

Case number 123 115 99 81 78 68 60 49 673 

Road type          

A class 34.4 65.5 35.7 43.3 80.0 40.5 26.4 56.8 47.8 

B class 23.8 13.1 23.5 26.3 9.2 0.0 14.9 10.4 16.3 

Motorway 0.0 15.4 0.0 0.0 0.0 58.1 1.7 0.0 8.7 

Minor 41.8 6.1 40.9 30.3 10.8 1.3 57.0 32.8 27.2 

Road user 1 contributory factor          

Impairment 0.0 0.0 0.0 4.7 5.1 1.6 31.8 10.2 4.9 

Alcohol 0.0 0.0 0.0 8.6 8.8 3.0 6.7 0.0 3.0 

Psychological factors 7.3 19.5 37.7 7.7 0.0 21.6 26.3 28.7 17.7 

Potential Risk 0.0 10.1 8.0 1.2 12.3 12.9 1.6 2.0 6.1 

Speed 2.4 9.8 8.0 42.7 0.0 5.6 5.0 6.1 9.9 

Breaking the law 49.9 0.9 10.9 3.3 58.6 11.0 3.5 30.3 21.7 

Experience 0.0 1.7 1.1 7.3 7.6 5.8 3.4 2.0 3.3 

Distraction 7.6 15.1 6.5 6.0 0.0 0.0 3.4 4.0 6.2 

Road Condition 0.0 2.9 0.0 7.3 0.0 4.0 0.0 0.0 1.8 

Other road factors 0.0 3.1 6.1 0.0 0.0 3.7 0.0 0.0 1.8 

Visibility 20.4 2.6 8.2 6.1 7.5 0.0 11.7 8.2 8.6 

Obstacle in road 0.8 1.7 0.0 0.0 0.0 0.0 1.7 0.0 0.6 

Vehicle factors 0.0 3.5 1.8 2.5 0.0 16.4 0.0 0.0 2.8 

None 11.6 28.9 11.7 2.6 0.0 14.4 5.0 8.6 1.2 

Speed limit          

30 mph and under 74.0 26.4 71.8 33.4 38.2 0.0 81.3 92.2 51.0 

40-50 mph 11.7 17.7 20.1 19.8 41.6 10.1 13.6 7.9 18.1 

60-70 mph 14.4 55.9 8.2 46.8 20.2 89.9 5.0 0.0 30.9 

Road user 1 manoeuvre          

Going ahead 6.7 61.1 22.8 82.6 1.5 51.7 48.2 22.8 36.3 

Intersection 77.6 25.1 6.1 5.0 56.3 0.0 0.0 54.1 30.4 

Turning right 8.3 0.0 26.2 0.0 36.5 2.3 0.0 0.0 9.8 

Turning left 2.3 0.9 11.5 4.4 2.5 0.0 0.0 0.0 3.1 

Intersection 0.0 3.2 15.5 7.9 0.0 24.6 8.4 0.0 7.0 

Other 4.9 9.7 17.9 0.0 3.1 21.4 43.4 23.1 13.3 
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Cluster 1 2 3 4 5 6 7 8  Total 

Case number 123 115 99 81 78 68 60 49 673 

Accident type          

Rear-end 0.0 87.0 0.0 12.6 2.4 19.0 0.0 0.0 18.6 

Right turn against 37.5 0.0 6.3 0.0 15.2 0.0 0.0 2.1 9.7 

Right turn same direction 19.7 0.0 6.8 0.0 1.5 0.0 0.0 0.0 4.8 

Left turn 8.1 0.9 3.0 1.2 0.8 0.0 0.0 2.5 2.5 

Merging road 0.0 0.0 14.2 0.0 37.1 0.0 0.0 0.0 6.4 

Roundabout 7.0 3.1 2.1 0.0 17.6 0.0 0.0 2.0 4.3 

Leaving lane 0.0 0.0 3.4 2.1 0.0 8.8 0.0 0.0 1.6 

Pedestrian 0.0 0.0 0.0 0.0 0.0 0.0 83.2 91.5 14.1 

Going into opposite lane 3.0 1.1 0.0 67.8 1.4 1.6 0.0 0.0 9.2 

Overtaking 0.7 0.0 17.7 10.6 2.7 41.3 6.7 0.0 9.1 

Other 24.0 7.8 46.4 5.7 21.3 29.3 10.1 2.0 19.7 

Road user 2 gender          

Male 78.1 72.6 66.7 69.4 73.3 73.9 59.9 75.0 71.6 

Female 21.9 27.4 33.3 30.6 26.7 26.1 40.1 25.0 28.4 

Road user 2 age group          

0-17 8.9 0.0 0.0 2.4 0.0 0.0 1.9 22.1 3.7 

18-21 11.9 2.7 5.6 3.6 12.4 7.1 6.7 8.6 7.3 

22-29 23.8 12.0 25.2 10.9 23.7 27.8 8.4 16.4 18.9 

30-49 38.5 55.1 47.4 48.8 45.6 50.3 56.6 36.6 47.4 

50-65 13.2 23.2 19.1 29.4 16.0 8.8 26.4 8.3 18.4 

66+ 3.7 6.9 2.7 4.8 2.4 6.0 0.0 8.1 4.3 

Road user 2 mode of transport          

Car 48.9 80.4 75.2 84.4 92.5 66.5 90.3 44.8 72.6 

LGV 2.4 4.9 5.9 5.3 0.0 2.0 1.7 0.0 3.1 

HGV/BUS 3.6 6.6 5.0 10.4 2.5 20.1 8.0 6.5 7.3 

Motorcycle 35.0 6.3 6.8 0.0 1.7 11.3 0.0 0.0 9.8 

Pedestrian/Cycle 10.1 1.8 7.0 0.0 3.3 0.0 0.0 48.8 7.1 

Road user 2 manoeuvre          

Going ahead 82.2 12.2 41.4 83.6 31.5 79.6 79.8 11.5 52.9 

Intersection 12.9 28.6 12.8 7.3 61.0 3.2 0.0 52.3 21.2 



 

341 

 

Cluster 1 2 3 4 5 6 7 8  Total 

Case number 123 115 99 81 78 68 60 49 673 

Turning 4.9 3.5 23.3 2.6 7.6 0.0 6.8 0.0 6.7 

Overtaking 0.0 0.8 12.2 1.2 0.0 8.8 3.3 0.0 3.3 

Slowing in traffic 0.0 44.0 2.3 1.2 0.0 4.9 10.1 0.0 9.4 

Other 0.0 10.9 8.0 4.1 0.0 3.4 0.0 36.3 6.5 

Road user 2 failure mechanism          

Detection 3.1 5.1 2.1 0.0 4.2 7.4 20.0 14.4 5.8 

Diagnosis 0.0 4.4 16.6 0.0 0.0 14.3 6.7 10.1 6.0 

Prognosis 93.6 90.5 69.5 97.2 95.8 74.0 70.0 61.3 83.8 

Decision 2.5 0.0 8.0 0.0 0.0 2.9 0.0 6.1 2.4 

Execution 0.8 0.0 0.0 0.0 0.0 1.5 1.7 2.0 0.6 

Overall 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.1 0.4 

Only Present 0.0 0.0 3.7 2.9 0.0 0.0 1.7 0.0 1.0 

Road user 2 contributory factor          

Psychological 0.0 0.0 6.0 0.0 1.4 1.5 3.4 10.2 2.2 

Identification 2.9 2.5 2.4 0.0 1.6 2.9 0.0 6.2 2.2 

Risk taking 5.6 0.0 6.3 1.2 0.0 4.4 0.0 0.0 2.5 

Traffic control 2.7 1.7 6.5 0.0 3.1 10.0 0.0 0.0 3.1 

Atypical manoeuvres other driver 1.0 2.4 18.1 9.7 15.2 24.2 20.1 22.3 12.0 

Illegal manoeuvres other driver 57.0 0.0 10.4 22.6 71.4 6.0 6.8 20.6 25.7 

Other factors 0.0 8.6 0.0 0.0 1.3 4.7 8.4 2.0 3.0 

Visibility 0.0 0.9 3.1 0.0 0.0 0.0 25.1 11.8 4.6 

No factors coded 27.5 84.0 47.1 65.2 4.7 46.3 36.3 26.9 44.6 
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STATS19 cluster analysis descriptive statistics 

Variable Count Percent 

Road type 
Roundabout 4289 7.7 

One way street 814 1.5 

Dual carriageway 8825 15.9 

Single Carriageway 40675 73.3 

Slip road  
 

584 1.1 

Unknown 
 

291 0.5 
Speed limit 
30 mph 

 
31363 56.5 

40 mph 
 

5531 10.0 

50 mph 
 

1560 2.8 

60 mph 
 

12167 21.9 

70 mph 
 

4857 8.8 
Junction detail 
Roundabout 5183 9.3 

Mini roundabout 516 0.9 

T or staggered junction 18470 33.3 

No junction 18259 32.9 

Slip road  
 

937 1.7 

Crossroads 6435 11.6 

Four or more arms 974 1.8 

Private drive/entrance 2399 4.3 

Other junction 2305 4.2 
Junction control 
Authorised person 102 0.2 

Traffic signal 5542 10.0 

Stop sign 
 

564 1.0 

Give way 
 

31024 55.9 

Uncontrolled 18247 32.9 
Road user 1 mode of transport 
Cycle 

 
1662 3.0 

PTW 
 

3771 6.8 

Car 
 

44103 79.5 

LGV 
 

896 1.6 

HGV 
 

5047 9.1 
Road user 2 mode of transport 
Cycle 

 
3500 6.3 

PTW 
 

4668 8.4 

Car 
 

41771 75.3 

LGV 
 

1171 2.1 

HGV 
 

4365 7.9 
Light conditions 
Day 

 
51546 92.9 

Night 
 

3933 7.1 
Road user 1 manoeuvre 
Turning left 2141 3.9 

Turning right 11058 19.9 

Waiting 
 

2377 4.3 

Lane change 1780 3.2 

Overtaking 2815 5.1 

Going ahead left bend 3146 5.7 

Going ahead right bend 1912 3.4 

Going ahead 22410 40.4 
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Other  
 

7841 14.1 
Road user 2 manoeuvre 
Turning left 1044 1.9 

Turning right 4099 7.4 

Waiting 
 

6348 11.4 

Lane change 583 1.1 

Overtaking 1823 3.3 

Going ahead left bend 1747 3.1 

Going ahead right bend 2993 5.4 

Going ahead 29327 52.9 

Other  
 

7518 13.6 
Road user 1 gender 
Male 

 
39665 71.5 

Female 
 

15815 28.5 
Road user 2 gender 
Male 

 
37764 68.1 

Female 
 

17716 31.9 
Road user 1 age group 
0-17 

 
2823 5.1 

18-21 
 

7621 13.7 

22-29 
 

10644 19.2 

30-49 
 

21422 38.6 

50-65 
 

8777 15.8 

66+ 
 

4193 7.6 
Road user 2 age group 
0-17 

 
706 1.3 

18-21 
 

5246 9.5 

22-29 
 

9603 17.3 

30-49 
 

26119 47.1 

50-65 
 

10793 19.5 

66+ 
 

3013 5.4 
Road user 1 contributory factor 1 
Road environment 5502 9.9 

Vehicle defects 483 0.9 

Injudicious action 8037 14.5 

Error or reaction 24944 45.0 

Impairment/Distraction 2645 4.8 

Behaviour/Inexperience 3565 6.4 

Vision affected by external 2390 4.3 

Pedestrian only 1438 2.6 

Special codes 799 1.4 

No factor coded 5675 10.2 
Road user 1 contributory factor 2 
Road environment 1773 3.2 

Vehicle defects 216 0.4 

Injudicious action 3967 7.2 

Error or reaction 16593 29.9 

Impairment/Distraction 1365 2.5 

Behaviour/Inexperience 3984 7.2 

Vision affected by external 2085 3.8 

Pedestrian only 1062 1.9 

Special codes 382 0.7 

No factor coded 24053 43.4 
Road user 2 contributory factor 1 
Road environment 1845 3.3 

Vehicle defects 192 0.3 

Injudicious action 2672 4.8 
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Error or reaction 7829 14.1 

Impairment/Distraction 715 1.3 

Behaviour/Inexperience 1512 2.7 

Vision affected by external 1150 2.1 

Pedestrian only 609 1.1 

Special codes 371 0.7 

No factor coded 38587 69.6 
Road user 2 contributory factor 2 
Road environment 353 0.6 

Vehicle defects 37 0.1 

Injudicious action 920 1.7 

Error or reaction 3370 6.1 

Impairment/Distraction 290 0.5 

Behaviour/Inexperience 768 1.4 

Vision affected by external 508 0.9 

Pedestrian only 277 0.5 

Special codes 86 0.2 

No factor coded 48871 88.1 
Road type 
Motorway 

 
4289 7.7 

A(M) 
 

814 1.5 

A 
 

8825 15.9 

B 
 

40675 73.3 

C 
 

584 1.1 

Unclassified 291 0.5 
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STATS19 cluster analysis results 

  1 2 3 4 5 6 7 8 9 10 11 12 13 Total 

  7911 7700 6701 4460 4316 4094 4044 3839 3295 3007 2419 1997 1698 55474 

Road type               

Roundabout 0.1 0.1 0.1 7.2 0.1 92.4 0.1 0.2 0.0 0.2 0.1 0.2 8.3 7.7 

One way street 2.2 2.0 1.2 2.0 0.2 0.0 2.6 0.2 0.4 2.4 3.0 1.3 1.2 1.5 

Dual carriageway 2.8 2.1 5.8 9.9 12.5 2.8 36.6 97.2 1.7 3.7 8.9 9.5 69.6 15.9 

Single Carriageway 94.4 94.8 91.9 79.9 86.9 4.6 59.8 0.0 97.0 92.6 87.2 87.6 0.0 73.3 

Slip road  0.1 0.5 0.3 0.5 0.3 0.2 0.2 2.0 0.1 0.5 0.2 0.3 20.8 1.1 

Unknown 0.5 0.5 0.8 0.6 0.1 0.0 0.8 0.4 0.8 0.5 0.7 1.1 0.2 0.5 

Speed limit               

30 mph 94.5 62.1 50.3 70.2 26.2 57.3 76.6 1.2 20.6 84.4 65.0 53.4 7.9 56.5 

40 mph 2.9 8.1 10.1 13.4 19.7 16.3 17.1 5.3 5.9 5.0 9.2 11.5 11.5 10.0 

50 mph 0.0 2.2 3.0 2.4 5.7 3.9 3.0 5.6 2.2 0.9 2.1 2.9 8.0 2.8 

60 mph 2.6 27.6 36.6 13.6 46.3 15.9 2.6 1.3 71.2 9.7 23.8 31.0 8.2 21.9 

70 mph 0.0 0.0 0.0 0.5 2.1 6.7 0.7 86.7 0.1 0.0 0.0 1.2 64.5 8.8 

Junction detail               

Roundabout 0.4 3.9 0.0 9.6 0.2 91.3 0.2 0.0 0.0 1.4 0.0 0.0 37.0 9.3 

Mini roundabout 0.4 0.8 0.0 1.2 0.0 8.5 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.9 
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  1 2 3 4 5 6 7 8 9 10 11 12 13 Total 

  7911 7700 6701 4460 4316 4094 4044 3839 3295 3007 2419 1997 1698 55474 

T or staggered junction 69.0 58.2 0.0 53.3 68.8 0.0 25.5 0.0 0.0 65.5 0.0 0.0 10.9 33.3 

No junction 0.0 0.1 100.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 32.9 

Slip road  0.2 1.3 0.0 1.2 1.7 0.0 0.3 0.0 0.0 0.6 0.0 0.0 39.1 1.7 

Crossroads 15.7 16.3 0.0 16.3 10.0 0.0 59.8 0.0 0.0 11.2 0.0 0.0 1.5 11.6 

Four or more arms 1.4 1.6 0.0 3.6 1.4 0.1 11.2 0.0 0.0 1.2 0.0 0.0 1.5 1.8 

Private drive/entrance 7.4 7.9 0.0 6.8 11.8 0.0 0.1 0.0 0.0 11.5 0.0 0.0 2.4 4.3 

Other junction 5.6 10.0 0.0 8.0 6.1 0.0 2.9 0.0 0.0 7.6 0.0 0.0 7.5 4.2 

Junction control               

Authorised person 0.2 0.3 0.0 0.3 0.2 0.3 0.2 0.0 0.0 0.3 0.1 0.0 0.7 0.2 

Traffic signal 4.5 2.9 0.0 16.1 1.0 7.3 89.6 0.0 0.0 4.0 0.0 0.0 9.8 10.0 

Stop sign 1.5 1.6 0.0 1.3 2.5 0.4 2.4 0.0 0.0 1.3 0.0 0.0 0.5 1.0 

Give way 93.8 95.2 0.0 82.3 96.4 92.1 7.8 0.0 0.0 94.4 0.0 0.1 89.0 55.9 

Uncontrolled 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 99.9 100.0 0.0 32.9 

Road user 1 mode of transport               

Cycle 0.2 0.0 5.7 2.3 0.6 2.0 2.8 0.2 0.7 26.6 2.7 1.8 0.7 3.0 

PTW 0.2 3.6 10.9 8.1 0.6 5.6 3.1 3.6 9.3 43.7 3.8 5.9 2.7 6.8 

Car 93.3 85.2 75.4 80.8 89.5 80.6 85.1 66.6 80.1 27.6 80.7 80.0 77.9 79.5 
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  1 2 3 4 5 6 7 8 9 10 11 12 13 Total 

  7911 7700 6701 4460 4316 4094 4044 3839 3295 3007 2419 1997 1698 55474 

LGV 1.3 1.8 1.2 2.7 1.1 1.6 2.7 0.5 1.3 0.5 3.1 3.1 1.4 1.6 

HGV 5.0 9.4 6.9 6.0 8.3 10.2 6.4 29.1 8.6 1.6 9.8 9.2 17.2 9.1 

Road user 2 mode of transport               

Cycle 18.0 0.8 1.0 10.9 2.1 13.3 2.8 0.9 1.2 0.9 16.2 10.0 1.7 6.3 

PTW 21.1 1.1 0.9 8.3 17.1 12.1 6.2 2.6 2.1 1.1 20.4 12.2 3.9 8.4 

Car 55.8 88.8 86.0 72.8 72.5 67.5 82.9 76.0 80.3 89.8 51.3 69.8 81.1 75.3 

LGV 2.8 2.2 2.0 1.5 1.2 1.7 3.0 0.9 2.8 1.9 4.7 1.4 0.7 2.1 

HGV                                                    2.2 7.2 10.2 6.5 7.2 5.5 5.1 19.6 13.7 6.3 7.5 6.7 12.6 7.9 

Light conditions               

Day 93.7 91.8 92.5 93.2 93.4 93.2 93.5 92.3 89.0 97.2 94.7 91.2 93.3 92.9 

Night 6.3 8.2 7.5 6.9 6.6 6.9 6.5 7.7 11.0 2.8 5.3 8.9 6.7 7.1 

Road user 1 manoeuvre               

Turning left 10.9 3.4 0.4 3.1 6.1 7.1 2.0 0.1 0.1 3.9 1.4 0.7 3.1 3.9 

Turning right 57.5 3.4 0.7 11.8 75.4 9.3 34.6 0.1 0.1 9.2 10.3 2.4 3.6 19.9 

Waiting 3.9 3.4 0.9 16.1 2.9 5.3 4.4 1.3 0.0 0.5 4.4 10.4 7.7 4.3 

Lane change 0.6 0.3 0.8 0.3 1.0 4.4 1.6 24.0 0.1 0.9 5.0 1.3 15.5 3.2 

Overtaking 1.0 4.4 9.0 3.2 0.3 0.9 1.0 7.3 4.4 22.6 12.4 5.8 2.4 5.1 
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  1 2 3 4 5 6 7 8 9 10 11 12 13 Total 

  7911 7700 6701 4460 4316 4094 4044 3839 3295 3007 2419 1997 1698 55474 

Going ahead left bend 0.0 8.4 2.1 1.4 0.0 1.6 0.1 1.6 60.6 1.2 0.5 3.8 2.7 5.7 

Going ahead right bend 0.1 3.8 1.9 2.6 0.1 1.9 0.3 1.0 30.4 1.0 0.5 8.7 0.9 3.4 

Going ahead 10.6 58.3 72.6 50.4 4.1 47.1 45.4 51.9 3.4 56.5 26.9 42.7 42.7 40.4 

Other  15.4 14.7 11.6 11.2 10.2 22.3 10.6 12.8 1.0 4.2 38.7 24.4 21.4 14.1 

Road user 2 manoeuvre               

Turning left 1.1 2.6 0.7 5.1 0.3 4.2 1.8 0.0 0.1 5.7 0.2 0.8 1.8 1.9 

Turning right 1.7 8.5 2.1 25.9 0.9 9.9 11.3 0.1 0.2 33.0 0.8 3.1 1.9 7.4 

Waiting 2.2 31.2 14.6 4.9 0.8 17.0 12.9 9.2 1.6 10.6 6.8 3.0 22.4 11.4 

Lane change 0.2 0.2 0.4 2.0 0.2 1.4 0.7 5.2 0.0 0.6 0.3 2.3 4.4 1.1 

Overtaking 5.7 0.3 0.9 5.1 4.7 1.4 0.6 4.8 0.3 1.7 13.8 8.1 2.5 3.3 

Going ahead left bend 0.8 3.0 0.2 2.0 2.4 1.1 0.4 1.3 26.4 0.8 1.1 10.0 1.5 3.1 

Going ahead right bend 2.5 6.6 0.2 1.2 4.4 3.1 0.4 0.9 50.9 1.1 1.3 4.4 1.2 5.4 

Going ahead 81.1 30.8 51.4 40.9 85.9 48.4 60.8 59.8 17.6 34.3 59.0 51.0 45.7 52.9 

Other  4.7 16.8 29.7 13.0 0.4 13.5 11.2 18.7 2.9 12.4 16.9 17.4 18.7 13.6 

Road user 1 gender               

Male 62.2 71.4 76.4 66.9 63.4 69.6 70.7 78.2 77.0 92.1 72.4 69.5 73.8 71.5 

Female 37.8 28.6 23.6 33.1 36.6 30.4 29.4 21.8 23.0 7.9 27.6 30.5 26.2 28.5 
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  1 2 3 4 5 6 7 8 9 10 11 12 13 Total 

  7911 7700 6701 4460 4316 4094 4044 3839 3295 3007 2419 1997 1698 55474 

Road user 2 gender               

Male 72.6 59.9 63.9 70.9 71.4 65.5 68.1 72.4 69.0 64.3 77.3 73.0 67.0 68.1 

Female                                              27.4 27.4 40.1 36.1 29.2 28.6 34.5 31.9 27.6 31.0 35.8 22.7 27.0 33.0 

Road user 1 age group               

0-17 1.0 2.0 10.2 1.7 1.7 3.1 2.9 0.9 5.9 38.7 2.9 1.8 1.6 5.1 

18-21 12.0 18.3 18.1 8.0 10.5 11.0 16.3 10.0 19.1 18.1 9.5 8.6 10.5 13.7 

22-29 19.6 21.2 19.7 16.9 14.3 18.2 22.4 21.0 22.9 15.7 16.3 16.2 21.8 19.2 

30-49 39.9 37.6 34.8 46.4 34.5 40.5 38.4 46.9 36.8 22.5 40.7 44.5 42.1 38.6 

50-65 17.9 13.0 11.4 21.1 20.5 18.7 14.4 17.3 11.5 4.1 21.2 22.7 17.5 15.8 

66+ 9.6 8.1 6.0 5.9 18.5 8.6 5.5 3.9 3.9 1.1 9.4 6.2 6.4 7.6 

Road user 2 age group               

0-17 3.1 0.0 0.1 4.5 0.8 0.9 0.4 0.1 0.2 0.1 2.3 4.9 0.1 1.3 

18-21 12.5 6.7 7.1 15.1 10.0 9.3 8.0 6.0 7.0 9.3 10.2 17.4 6.9 9.5 

22-29 20.1 14.9 14.9 20.7 17.4 17.5 20.3 17.2 12.1 18.0 16.6 18.9 16.5 17.3 

30-49 44.5 51.3 49.8 37.9 45.8 48.3 46.9 51.0 48.2 46.3 49.5 39.8 50.0 47.1 

50-65 15.2 21.8 22.1 14.5 20.5 18.9 19.2 22.0 25.9 20.5 17.1 13.1 21.6 19.5 

66+ 4.6 5.3 6.1 7.2 5.7 5.1 5.2 3.7 6.8 5.9 4.4 6.0 4.9 5.4 
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  1 2 3 4 5 6 7 8 9 10 11 12 13 Total 

  7911 7700 6701 4460 4316 4094 4044 3839 3295 3007 2419 1997 1698 55474 

Road user 1 contributory factor 1               

Road environment 3.9 16.9 15.5 2.1 5.7 6.8 6.4 8.3 37.7 4.3 1.3 7.7 6.3 9.9 

Vehicle defects 0.2 1.1 1.6 0.1 0.3 0.7 0.6 1.6 1.2 2.5 0.2 0.0 1.5 0.9 

Injudicious action 9.7 19.1 18.2 3.6 11.3 14.9 27.8 13.8 15.7 23.3 4.2 5.5 14.4 14.5 

Error or reaction 66.2 38.4 35.8 10.4 71.2 59.1 43.9 45.8 24.7 43.6 64.0 14.9 53.0 45.0 

Impairment/Distraction 2.0 8.3 12.0 0.2 1.1 3.4 4.8 7.3 5.0 3.1 1.4 0.5 4.4 4.8 

Behaviour/Inexperience 4.0 7.8 11.0 1.1 4.3 5.9 6.0 5.8 9.7 13.9 3.8 1.7 6.4 6.4 

Vision affected by external 8.2 3.5 3.2 2.0 5.2 3.2 2.4 6.1 3.3 2.8 7.4 3.4 3.2 4.3 

Pedestrian only 4.0 2.8 0.6 0.1 0.7 2.9 4.8 1.5 0.9 3.7 12.5 0.1 1.3 2.6 

Special codes 1.3 1.5 1.6 0.6 0.3 0.7 2.2 2.2 1.4 1.6 4.0 0.6 1.5 1.4 

No factor coded 0.6 0.7 0.6 79.9 0.1 2.4 1.3 7.7 0.4 1.2 1.3 65.6 8.0 10.2 

Road user 1 contributory factor 2               

Road environment 1.0 5.6 5.2 0.3 1.5 1.4 1.5 2.0 16.3 1.1 0.4 1.3 2.0 3.2 

Vehicle defects 0.1 0.6 0.7 0.0 0.1 0.3 0.4 0.6 0.9 0.9 0.0 0.0 0.3 0.4 

Injudicious action 2.2 13.3 11.4 0.7 2.5 6.7 8.5 8.3 14.7 9.4 0.4 1.9 7.0 7.2 

Error or reaction 40.5 29.3 27.4 1.3 52.4 35.1 31.9 28.2 25.0 30.2 32.2 7.3 30.6 29.9 

Impairment/Distraction 1.3 3.8 5.4 0.1 1.4 1.9 2.4 3.8 2.4 2.4 1.8 0.1 1.5 2.5 
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  7911 7700 6701 4460 4316 4094 4044 3839 3295 3007 2419 1997 1698 55474 

Behaviour/Inexperience 5.4 7.9 11.1 0.0 5.8 6.7 9.5 5.5 9.9 15.8 4.6 1.8 7.8 7.2 

Vision affected by external 7.9 3.1 2.6 0.2 5.7 3.1 2.0 3.8 4.9 1.9 5.2 2.9 2.1 3.8 

Pedestrian only 3.2 2.0 0.2 0.0 0.4 1.7 3.9 1.2 0.7 2.9 9.6 0.1 0.8 1.9 

Special codes 0.5 0.7 0.9 0.0 0.4 0.4 1.1 1.1 0.7 1.0 2.5 0.1 0.2 0.7 

No factor coded 38.0 33.7 35.2 97.5 29.9 42.7 38.9 45.7 24.5 34.3 43.3 84.7 47.6 43.4 

Road user 2 contributory factor 1               

Road environment 2.3 2.1 1.7 7.1 3.3 1.4 1.9 2.1 9.3 0.8 0.4 17.0 1.8 3.3 

Vehicle defects 0.4 0.1 0.1 1.1 0.2 0.5 0.1 0.4 0.2 0.4 0.2 1.4 0.5 0.3 

Injudicious action 4.9 1.1 0.9 18.9 5.2 2.8 6.5 3.6 2.6 1.0 2.7 16.2 3.2 4.8 

Error or reaction 8.1 7.2 6.3 59.0 6.4 14.1 7.9 12.4 4.1 15.6 7.1 44.7 15.3 14.1 

Impairment/Distraction 1.6 0.6 0.7 4.1 0.6 1.6 0.3 1.4 0.3 0.6 0.8 5.4 0.6 1.3 

Behaviour/Inexperience 2.3 2.0 2.4 5.4 1.9 2.4 2.1 2.1 3.0 2.8 1.1 8.4 3.3 2.7 

Vision affected by external 2.1 1.9 1.5 2.8 1.6 0.8 0.8 2.1 4.3 3.6 1.6 4.9 1.0 2.1 

Pedestrian only 1.9 0.7 0.5 0.4 0.1 1.2 2.0 0.7 0.5 2.2 3.8 0.3 0.8 1.1 

Special codes 0.6 0.6 0.8 1.1 0.3 0.6 0.7 0.8 0.3 0.5 0.8 1.6 0.5 0.7 

No factor coded 76.0 83.8 85.1 0.2 80.4 74.7 77.8 74.4 75.4 72.5 81.6 0.0 73.2 69.6 

Road user 2 contributory factor 2               
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  1 2 3 4 5 6 7 8 9 10 11 12 13 Total 

  7911 7700 6701 4460 4316 4094 4044 3839 3295 3007 2419 1997 1698 55474 

Road environment 0.2 0.3 0.1 1.9 0.3 0.3 0.2 0.4 2.7 0.0 0.0 4.5 0.0 0.6 

Vehicle defects 0.1 0.0 0.0 0.3 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.4 0.1 0.1 

Injudicious action 0.9 0.2 0.1 9.5 0.7 0.6 0.8 1.2 1.1 0.2 0.0 10.2 1.4 1.7 

Error or reaction 1.5 0.8 0.4 40.3 1.5 3.6 2.7 3.9 1.3 4.1 0.1 32.0 4.8 6.1 

Impairment/Distraction 0.4 0.0 0.0 3.1 0.0 0.3 0.0 0.5 0.2 0.0 0.0 3.7 0.1 0.5 

Behaviour/Inexperience 0.9 0.2 0.1 7.3 0.4 0.7 0.6 0.8 0.2 0.8 0.0 9.7 1.4 1.4 

Vision affected by external 0.4 0.4 0.0 3.6 0.8 0.3 0.2 0.4 1.6 1.1 0.0 6.1 0.4 0.9 

Pedestrian only 0.9 0.2 0.0 0.3 0.0 0.5 1.0 0.3 0.2 1.1 2.0 0.4 0.3 0.5 

Special codes 0.0 0.1 0.0 0.7 0.0 0.2 0.0 0.1 0.1 0.1 0.0 1.5 0.1 0.2 

No factor coded 94.6 97.7 99.4 33.1 96.2 93.6 94.4 92.3 92.7 92.5 97.8 31.5 91.5 88.1 

Road type               

Motorway 0.1 0.1 0.1 7.2 0.1 92.4 0.1 0.2 0.0 0.2 0.1 0.2 8.3 7.7 

A(M) 2.2 2.0 1.2 2.0 0.2 0.0 2.6 0.2 0.4 2.4 3.0 1.3 1.2 1.5 

A 2.8 2.1 5.8 9.9 12.5 2.8 36.6 97.2 1.7 3.7 8.9 9.5 69.6 15.9 

B 94.4 94.8 91.9 79.9 86.9 4.6 59.8 0.0 97.0 92.6 87.2 87.6 0.0 73.3 

C 0.1 0.5 0.3 0.5 0.3 0.2 0.2 2.0 0.1 0.5 0.2 0.3 20.8 1.1 

Unclassified 0.5 0.5 0.8 0.6 0.1 0.0 0.8 0.4 0.8 0.5 0.7 1.1 0.2 0.5 
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PTW cluster analysis descriptive statistics 

Variable Count Percent 

Gender 

Male 384 89.7 

Female 44 10.3 

Rider failure mechanism 

Detection 68 15.9 

Diagnosis 61 14.4 

Prognosis 206 48.1 

Decision 50 11.7 

Execution 19 4.6 

Overall 23 5.4 

Area type 

Urban 267 62.5 

Rural 161 37.5 

Light conditions 

Day 339 79.2 

Night 89 20.8 

Rider contributory factor 

Physical/physiological 89 20.9 

Risk taking 90 20.9 

Experience 13 3.0 

Distraction 11 2.6 

Road Condition 12 2.7 

Traffic Condition 87 20.3 

Visibility Impaired 14 3.2 

Other Environmental factors 6 1.4 

Vehicular factor 7 1.6 

No Factor 100 23.4 

Other road user emergency failure mechanism 

Yes 

 

155 

 

36.2 

No 273 63.8 

Rider level of involvement 

Primary Contributory 213 49.8 

Secondary Contributory 33 7.7 

Not Contributory 182 42.5 

Road type 

A class 209 48.9 

B class 66 15.4 

Motorway 23 5.3 

Minor 130 30.3 



 

354 

 

Rider age range 

0-18 72 16.9 

19-25 88 20.6 

26-45 192 44.9 

46-65 59 13.8 

66+ 16 3.8 

Speed limit 

30 mph and under 194 45.4 

FortyFifty mph 125 29.2 

SixtySeventy mph 108 25.3 

PTW engine size 

50 71 16.5 

51-250 84 19.6 

250+ 274 63.9 

Interacting variable 

Detection 174 40.7 

Prognosis 96 22.5 

Decision 39 9.1 

Single Vehicle 95 22.2 

Other 24 5.6 

Accident type 

Leaving lane 107 25.0 

Rear-end 41 9.6 

Changing lane 39 9.2 

Overtaking 36 8.5 

Right turn 114 26.6 

Left turn 15 3.5 

Intersection 31 7.2 

Other 45 10.5 
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PTW cluster analysis results 

Cluster 1 2 3 4 5 6 7 Total 

Number of cases 122 77 75 45 42 36 31 428 

Rider gender         

Male 83.0 90.9 92.6 91.1 90.5 95.5 96.6 89.7 

Female 17.0 9.1 7.4 8.9 9.6 4.5 3.4 10.3 

Rider failure mechanism         

Detection 2.5 2.9 1.3 74.8 53.8 4.1 13 15.9 

Diagnosis 0.9 50.8 2.6 25.3 13.8 0.0 6.8 14.4 

Prognosis 96.6 0.0 96.1 0.0 0.0 33.2 12.9 48.1 

Decision 0.0 25.1 0.0 0.0 14.6 62.8 6.8 11.7 

Execution 0.0 0 0.0 0.0 4.6 0.0 56.6 4.6 

Overall 0.0 21.2 0.0 0.0 13.2 0.0 3.9 5.4 

Area type         

Urban 87.8 42.1 26 61.8 90 88.5 35.2 62.5 

Rural 12.2 57.9 74 38.2 10 11.5 64.8 37.5 

Light conditions         

Day 74.2 83.5 79.4 85.1 71.8 90.1 77.2 79.2 

Night 25.8 16.5 20.6 14.9 28.2 9.9 22.9 20.8 

Rider contributory factor         

Physical/physiological 7.9 33.5 15.6 30.6 35.7 30.5 8.0 20.9 

Risk taking 1.5 57.8 4.1 25.5 23.0 49.9 3.6 20.9 

Inexperience 0.7 2.6 0.0 2.0 16.7 3.3 3.2 3.0 

Distraction 0.8 1.3 0.0 12.8 3.0 0.0 6.5 2.6 

Road Condition 0.8 0.0 0.0 0.0 0.0 0.0 34.5 2.7 

Traffic Condition 40.5 4.9 34 9.0 7.7 3.0 0 20.3 

Visibility Impaired 4.9 0.0 0.0 2.2 9.3 5.8 3.1 3.2 

Other Environmental factors 0.0 0.0 0.0 0.0 0.0 0.0 18.8 1.4 

Vehicular factor 0.0 0.0 0.0 0.0 4.7 0.0 15.7 1.6 

No Factor 43 0.0 46.4 18.0 0.0 7.5 6.5 23.4 

Road user emergency manoeuvre         
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Cluster 1 2 3 4 5 6 7 Total 

Number of cases 122 77 75 45 42 36 31 428 

Yes 32.6 30.2 46.5 35.3 37.9 34.9 41.4 36.2 

No 67.5 69.8 53.6 64.7 62.1 65.1 58.6 63.8 

Level of involvement         

Primary Contributory 0.0 100 6 100 93.1 62.7 81 49.8 

Secondary Contributory 7.1 0.0 10.9 0.0 4.6 34.1 6.3 7.7 

Not Contributory 92.9 0.0 83.1 0.0 2.4 3.2 12.8 42.5 

Road type         

A class 37.4 44.3 67.9 62.7 24.1 67.6 51.9 48.9 

B class 22.9 10.2 12.3 17.3 17.1 10.9 6.6 15.4 

Motorway 0.0 1.2 13.5 4.3 0.0 0.0 31.8 5.3 

Minor 39.8 44.3 6.3 15.7 58.8 21.5 9.7 30.3 

Rider age group         

0-18 18.6 0.0 3.7 2.9 88.0 15.9 9.5 16.9 

19-25 21.8 34.8 20.6 15.3 9.5 21.1 3.2 20.6 

26-45 41.4 46.0 51.6 53.4 2.5 52 76.3 44.9 

46-65 13.9 16.9 15.9 28.5 0.0 3.1 10.9 13.8 

66+ 4.3 2.4 8.2 0.0 0.0 7.8 0.0 3.8 

Speed limit         

30 mph and under 76.0 40.7 0.0 32.7 84 48.2 9.8 45.4 

40-50 mph 24.0 13.1 50.2 33.4 16.1 48.5 28.9 29.2 

60-70 mph 0.0 46.2 49.8 34.0 0.0 3.4 61.2 25.3 

PTW engine size         

50 24.5 4.8 6.0 0.0 66.6 7.2 6.5 16.5 

51-250 23.1 19.5 15.8 15.8 28.4 16.7 12.6 19.6 

250+ 52.5 75.8 78.2 84.2 5.1 76.1 81.0 63.9 

Other vehicle failure type         

Detection 76.4 0.0 79.5 11.1 2.4 42.3 0.0 40.7 

Prognosis 0.0 25.2 1.3 80.4 64.1 23.8 13.2 22.5 

Decision 14.0 1.3 10.9 0.0 6.8 27.5 0.0 9.1 

Single Vehicle 0.0 73.4 0.0 8.5 24.3 3.6 74.2 22.2 
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Cluster 1 2 3 4 5 6 7 Total 

Number of cases 122 77 75 45 42 36 31 428 

Other 9.7 0.0 8.2 0.0 2.4 2.8 12.6 5.6 

Accident type         

Leaving lane 3.3 83.7 5.2 0.0 25.2 0.0 77.2 25.0 

Rear-end 4.2 0.0 7.9 41.8 22.0 0.0 6.3 9.6 

Changing lane 2.1 0.0 31.4 8.9 6.9 14.5 3.2 9.2 

Overtaking 3.0 5.8 9.7 29 9.4 10.6 0.0 8.5 

Right turn 53.6 0.0 22.6 16 15.5 49.2 0.0 26.6 

Left turn 6.4 0.0 7.4 0.0 0.0 4.7 0.0 3.5 

Intersection 12.9 0.0 11.0 0.0 13.6 3.5 0.0 7.2 

Other 14.5 10.5 4.9 4.3 7.4 17.6 13.3 10.5 
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Pedestrian cluster analysis descriptive statistics 

Variable Count Percent 

Road user gender 

Male 184 74.2 

Female 63 25.8 

Road user failure mechanism 

Detection 64 26.2 

Diagnosis 15 6.1 

Prognosis 134 54.1 

Decision 15 6.3 

Execution 5 2.2 

Overall 12 5.1 

Area type 

Urban 220 89.1 

Rural 28 10.9 

Light conditions 

Day 172 69.7 

Night 75 30.3 

Pedestrian contributing factor 

Alcohol/Impairment 35 14.5 

Young age/Pedestrian playing 53 21.4 

Psychological state 51 20.6 

Risk taking 27 10.9 

Other driver 22 9.1 

Visibility impaired 20 8.4 

None 37 15.2 

Manoeuvre 

Going Ahead 142 57.4 

Traffic lights 43 17.6 

Intersection 9 3.8 

Overtaking 17 6.9 

Pedestrian Crossing 11 4.8 

Other 23 9.6 

Road user emergency manoeuvre 

Yes 134 54.1 

No 113 45.9 

Road user level of involvement 

Primary Contributory 70 28.5 

Secondary Contributory 14 5.8 

Not Contributory 162 65.7 

Road user age group 51 20.7 
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0-18 

19-25 85 34.5 

26-45 63 25.8 

45-65 9 3.8 

66+ 37 15.3 

Pedestrian age group 

0-12 67 27.1 

13-17 39 15.9 

19-29 40 16.5 

30-65 66 26.7 

66+ 34 13.9 

Speed limit 

30 mph and under 218 88.2 

Over 30 mph 29 11.8 

Pedestrian failure mechanism 

Detection 55 22.4 

Diagnosis 9 3.8 

Prognosis 53 21.6 

Decision 44 17.8 

Execution 3 1.4 

Overall 81 33.1 

Accident type 

Crossing road 85 34.6 

Crossing intersection 47 19.2 

Crossing between cars 52 21.1 

Vehicle crash 22 9.0 

Other 40 16.1 

Pedestrian gender 

Male 154 62.4 

Female 93 37.7 
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Pedestrian cluster analysis results 

Cluster 1 2 3 4 Total 

Number of cases 78 60 60 50 248 

Road user gender      

Male 74.8 73.5 82.2 66.5 74.2 

Female 25.2 26.5 17.8 33.5 25.8 

Road user failure mechanism      

Detection 18.6 46.4 16.9 22.9 26.2 

Diagnosis 8.3 8.3 5.9 2.0 6.1 

Prognosis 73.1 5.4 68.9 69.2 54.1 

Decision 0.0 16.6 6.7 2.0 6.3 

Execution 0.0 6.6 0.0 2.0 2.2 

Overall 0.0 16.6 1.7 2.0 5.1 

Area type      

Urban 92.1 93.4 86.6 84.4 89.1 

Rural 8.0 6.6 13.4 15.6 10.9 

Light conditions      

Day 83.1 71.8 42.3 81.4 69.7 

Night 16.9 28.2 57.7 18.6 30.3 

Pedestrian contributory factor      

Alcohol/Impairment 1.6 0.0 56.4 0.0 14.5 

Young age/Pedestrian playing 8.5 0.0 0.0 77.1 21.4 

Psychological state 59.2 9.9 2.6 10.5 20.6 

Risk taking 10.6 0.0 33.0 0.0 10.9 

Other driver 0.0 36.5 0.0 0.0 9.1 

Visibility impaired 16.5 3.4 3.5 10.1 8.4 

None 3.7 50.2 4.5 2.3 15.2 

Road user manoeuvre      

Going Ahead 59.3 30.4 57.1 82.8 57.4 

Traffic lights 20.3 18.2 32.1 0.0 17.6 

Intersection 5.2 6.6 3.3 0.0 3.8 

Overtaking 5.8 6.6 0.0 15.1 6.9 
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Cluster 1 2 3 4 Total 

Number of cases 78 60 60 50 248 

Pedestrian Crossing 2.7 13.3 3.2 0.0 4.8 

Other 6.8 24.9 4.4 2.1 9.6 

Road user emergency manoeuvre      

Yes 49.3 32.0 59.6 75.5 54.1 

No 50.7 68.0 40.4 24.5 45.9 

Road user level of involvement      

Primary Contributory 0.0 100.0 7.9 6.0 28.5 

Secondary Contributory 4.6 0.0 10.9 7.8 5.8 

Not Contributory 95.4 0.0 81.2 86.3 65.7 

Road user age group      

0-18 17.1 22.0 26.2 17.5 20.7 

19-25 19.0 29.8 47.2 42.0 34.5 

26-45 37.7 18.3 10.9 36.3 25.8 

45-65 6.4 6.6 0.0 2.0 3.8 

66+ 19.8 23.2 15.8 2.2 15.3 

Pedestrian age group      

0-12 23.1 11.7 3.3 70.3 27.1 

13-17 21.5 9.9 2.4 29.7 15.9 

19-29 24.7 13.3 27.9 0.0 16.5 

30-65 21.2 41.5 44.2 0.0 26.7 

66+ 9.5 23.7 22.3 0.0 13.9 

Speed limit      

30 mph and under 86.8 91.7 80.4 94.0 88.2 

Over 30 mph 13.2 8.3 19.6 6.0 11.8 

Pedestrian failure mechanism      

Detection 66.2 2.2 5.1 16.2 22.4 

Diagnosis 5.1 10.0 0.0 0.0 3.8 

Prognosis 0.0 82.9 3.4 0.0 21.6 

Decision 22.1 3.3 39.4 6.4 17.8 

Execution 0.0 1.7 0.0 4.0 1.4 

Overall 6.6 0.0 52.2 73.5 33.1 
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Cluster 1 2 3 4 Total 

Number of cases 78 60 60 50 248 

Pedestrian behaviour      

Crossing road 38.6 13.7 47.8 38.2 34.6 

Crossing intersection 27.9 18.2 30.5 0.0 19.2 

Crossing between cars 22.2 3.4 3.4 55.4 21.1 

Vehicle crash 1.3 31.5 3.3 0.0 9.0 

Other 10.1 33.2 15.0 6.3 16.1 

Pedestrian gender      

Male 52.5 46.9 79.9 70.2 62.4 

Female 47.6 53.1 20.2 29.8 37.7 
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Appendix C: HFF and LAB coding sheets 
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HFF 
Method  

 

 
 

Sheet N° 1: Pre‐accident 
situation  

 

Coding 
Step: 1  

 

 
 

A. Stabilised 
Situation  

A.1 Going ahead 
A.1.1 Going ahead on a straight road 

A.1.2 Going ahead on a left bend 

A.1.3 Going ahead on a right bend 

B. Intersection 
 

 

B.1 On approach 

B.1.1 Approaching a 'give way' intersection 

B.1.2 Approaching a 'stop' intersection 

B.1.3 Approaching a 'traffic signal' intersection 

B.1.4 Approaching intersection where road user has right 
of  

 

B.2 Stopped 

B.2.1 Stopped at a 'give way' intersection 

B.2.2 Stopped at a 'stop' intersection 

B.2.3 Stopped at a 'traffic signal' intersection 

B.2.4 Stopped in road/ turning lane waiting to turn 
 
 

 
B.3 Going ahead 

B.3.1 Going straight on at a 'give‐way' intersection 

B.3.2 Going straight on at a 'stop' intersection 

B.3.3 Going straight on at a 'traffic signal' intersection 

B.3.4 Crossing intersection where road user has right of 
way B.3.5 Travelling on roundabout (not turning on/off) 

B.3.6 Travelling on slip‐road (not turning on/off) 
 
 
 
 
 

B.4 Turning 

B.4.1 Turning across traffic at a 'give‐way' intersection 

B.4.2 Turning across traffic at a 'stop' intersection 

B.4.3 Turning across traffic at a 'traffic signal' 
intersection B.4.4 Turning across traffic from main road into side road 

B.4.5 Turning away from traffic at a 'give‐way' 
intersection B.4.6 Turning away from traffic at a 'stop' intersection 

B.4.7 Turning away from traffic at a 'traffic signal' 

B.4.8 Turning away from traffic from main road into side 
road C. 

Manoeu
vre 

 

 

C.1 Overtaking 

C.1.1 Overtaking stationary vehicle on left 

C.1.2 Overtaking stationary vehicle on right 

C.1.3 Overtaking moving vehicle on left 

C.1.4 Overtaking moving vehicle on right 
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C.2 Changing lane C.2.1 Moved into lane on left (NOT overtaking) 

C.2.2 Moved into lane on right (NOT overtaking) 

C.3 Slowing C.3.1 Stopping (not at junction) 

 C.3.2 Parking (roadside) 

C.4 Starting C.4.1 Starting (not at junction) 

C.4.2 Leaving parking space (roadside) 
 

 

C.5 Turning (not at intersection) 

C.5.1 Turning across traffic from main road into private 
drive C.5.2 Turning away from traffic from main road into 
private C.5.3 Turning across traffic out of private drive 

C.5.4 Turning away from traffic out of private drive 

C.6 Reversing C.6.1 Reversing 

C.7 U‐turn C.7.1 U‐turn 

C.8 In wrong direction C.8.1 Driving in wrong direction (e.g. down a one‐way 
road) D. 

Ot
her 

D.1 Parked C.1.1 Parked 

D.2 Stopped in traffic queue D.2.1 Stopped in traffic queue 

D.3 Pedestrian crossing D.3.1 Approaching pedestrian crossing 

D.3.1 Stopped at pedestrian crossing 

D.4 Railway crossing D.4.1 Approaching railway crossing 

D.4.2 Stopped at railway crossing 
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HFF Method 

Sheet N° 2: Factors 

Coding Step:  2‐4 and 8 

 
 
 

User 

related 

Factors 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. 

User 

State 

 
 
 
 
 

1. 

Physical/ 

Physiologic

al 

 

A.1.1 

Medical 

condition 

Heart condition/Epilepsy/Other 
brain 

condition/Respiratory 

condition/Blood condition/Other 

condition A.1.2 Pre‐
existing 
impairment 

Hearing/Visual/Physical disability/Other 
impairment 

A.1.3 

Behavioural 

slowness 

Linked to 
age 

 
 
 
 
 
 
 
 

 
2. Psycho‐ 

physiologic

al condition 

A.2.1 
Substances 

taken ‐ alcohol 

Above ‘legal’ 
limit/ 

Below ‘legal’ 
limit A.2.2 

Substances 

taken ‐ drugs 

Illegal 
drugs 

A.2.3 
Substances 
taken ‐ 
Medication 

Correctly used 
medication/ 

Misused 
medication A.2.4 

Emotional 
Upset/Angry/Anxious/Happy/Other emotion 

A.2.5 Fatigue Physical/M
ental 

A.2.6 In a hurry In a 
hurry 

 

A.2.7 Panic 
The road user is overwhelmed by the situation 

 
 

 
3. Internal 

conditionin

g of 

performed 

task 

A.3.1 Right of 
way 

status 

 

Rigid attachment to the right of way status 

A.3.2 Excessive 
confidence 

 

Excessive confidence in signs given to others 

A.3.3 

Identificatio

n of 

potential 

risk 

 

Identification of potential risk about only part 

of the situation 
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   A.3.4 Overall 
time 
constraint 

Affected to the journey 

A.3.5 Situational 

time constraint 

 

Affected to a maneuver 

A.3.6 

Trivialization 

of the 

situation 

 

Neglect the potential risk associated with the 

situation, notably for well-known and usual 

situations 

A.3.7 Illusion 

of visibility 

The road user is confident in the fact that he has 
been seen by the other (often the case for less 
conspicuous road users: PTW riders, 
pedestrians) 

  

 
A.3.8 Lights off 

By night or during the day for vehicles which must 
put 

them on (PTW, cars for countries where it 
is compulsory) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Risk 
taking 

A.4.1 Illegal 
Speed 

Illegal/Erratic/Other 

A.4.2 Legal Speed 

but inappropriate 

Legal but inappropriate to situation constrains 

A.4.3 Vehicle 
positioning 

In front/Lateral/Other 

A.4.4 Traffic 
control 

Signs disobeyed/Signals disobeyed 
/Markings 

disobeyed/Othe
r  

A.4.5 ‘Eccentric’ 

motives 

Testing a vehicle/Thrill‐ 

seeking/Competing/’Stunt’/Unspecified 

eccentric motives 

A.4.6 

Atypical 

acceleratio

n 

Levels of acceleration which can surprise the other 
road users (specifically for 

motorbikes) 

A.4.7 Atypical 
overtaking 

 

Overtaking on the wrong lane / filtering / 
gymkhana 

A.4.8 Excess of 
caution 

 

Too much caution affected to the 
driving activity 

 

B. 

Experience 

 
 

1. 
Little/Non
e 

B.1.1 Driving Learner/New driver/Infrequent driver/Other 

 

B.1.2 Route 
New route/Road type/New road/Road 

feature/Driving on the left/Driving on the right/Other 
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B.1.3 Vehicle 
New 

vehicle/ 
Transmission type/ 

Left hand drive 

vehicle/ 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

C. Attention 

  Right hand drive 
vehicle/ 

Other vehicle 
feature 

 

 

B.1.4 
Environment 

Night driving/City driving/Country driving/Driving in 
snow/Driving in fog/Driving in wet or flood/Driving 

in ice/Other 

B.1.5 Driving Change in driving rules/Other 

 

 
 
 

2. 
Over

‐ 

experien
ced 

 

B.2.1 Route 
Route in general/Road type/New 

road/Road feature/Other 

 

B.2.2 Vehicle 
New vehicle/ 

Transmission type/Other vehicle feature 

 

 

B.2.3 
Environment 

Night driving/City driving/Country driving/Driving in 

snow/Driving in fog/Driving in wet or flood/Driving 

in ice/other 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. 

Attentio

n 

disturba

nces 

 
 
 

C.1.1 

Distraction 

outside 

vehicle* 

Police/Animal in 
road/ 

Sunlight or sunset/ 

People in 

roadway/ 

Crash scene/Other perceived danger/Road 

construction/ Searching for directional 

information/ Unspecified outside distraction 
 
 
 
 
 
 
 
 

 
C.1.2 

Distraction 

within 

vehicle* 

Adjusting 
radio/ 

Adjusting 

cassette/ 

Adjusting CD/ 

Other occupant/ 

Moving object in 
vehicle/ 

sing or viewing device integral to 

vehicle/ Using other device brought into 

vehicle/ Adjusting climate controls/ 

Eating/Drinking/ 

Cell 

phone/ 

Smoking/ 

Looking inside vehicle/ 

Reaching for object/ 

Unspecified inside 

distraction 

C.1.3 Distraction 

within user* 

Lost in 
thought/ 

Medical 
problem 
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Environment 

related Factors 

   

 
 
 
 
 

 
D. Road 

Condition 

D. 1 Contaminants: 
Wet/Flood/Snow 

Wet/Flood/Snow 

D.2 Contaminants: 
Ice/Frost 

Ice/Frost 

D. 3 Contaminants: 
Oil/Diesel 

Oil/Diesel 

D. 4 Contaminants: 
Sand/Gravel/Mud 

Sand/Gravel/Mud 

D. 5 Surface defects Potholes/Cracks/Bumps 

 

D. 6 Surface type 
Asphalt/Concrete/Untreated/Cobbles 

/Brick/Other 

 

 
 
 
 
 
 
 
 
 
 
 
 

E. Road 

Geometry 

E. 1 Bend(s) Left/Right/Wide/Tight/Multiple bends 

E. 2 Slope(s) Decline/Incline/Multiple slopes 

 

E. 3 Road width 
Wide/Narrow/Single lane/Multiple 

lanes/Change in width 

E. 4 Adverse camber Left/Right 

 

E. 5 Traffic calming 
Road hump/Speed 

table/Throttle/Chicane 

E. 6 Temporary road 
layout 

Roadworks/Other 

E. 7 
Misleading/complex 
road layout 

Misleading/Complex 

 

 

E. 8 Speed‐inciting 
layout 

Bend in road/Straight 

road/Gradient/Wide road/Continuity 

effect 

E.9 Monotonous 
Layout 

Ex: Motorway 

 

 
 
 
 
 
 
 

F. Traffic 

Condition 

F.1 Difficulties of 

obtaining an 

insertion slot 

Traffic dense, erratic, at high 
speed 

F.2 Other road 
user(s) : Absence of 
clues 

to manoeuvre 

Absence of clues to manoeuvre 

F.3 Other road 
user(s) : Ambiguity of 

clues to manoeuvre 

Ambiguity of clues to manoeuvre 

F.4 Other road 
user(s) : Atypical 
manoeuvres 

Atypical manoeuvres 

F.5 Illegal road user(s) 
manoeuvres 

No respect of Traffic light/ stop / signal 
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  F.6 Disruptive 
behaviour of another 
user 

Low speed/ hesitant behaviour 

 

F.7 Being drawn into 
manoeuvre 

Passenger/Vehicle ahead/Vehicle 

behind/Pedestrian/Cyclist 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

G. Visibility 

Impaired 

G.1 Road lighting Type/Colour/Intensity/No lighting 

G.2 Vehicle lighting Type/Colour/Beam type/No lighting 

G.3 Day/night Daylight/Darkness/Dusk/Dawn 

 

G.4 Sun glare 
Direct from sun/Reflection from wet 

road 

G.5 Weather Rain/Fog or mist/Snow/Hail 

G.6 Smoke Vehicle/Nearby fire/Other 

G.7 Terrain profile Bend/Slope/Side slope(s)/Other 

 

 

G.8 Other vehicle(s) 

High vehicle/Wide vehicle/Parked 

vehicle/Vehicle stopped 

in traffic/Other 

 

 
G.9 Roadside objects 

Overhanging tree(s)/ Overhanging 

shrubbery/Sign(s)/Bridge 

structures/Barrier(s)/Wall(s)/Boundary 

fence(s)/Other 

G.10 Glare Vehicle lights of other user/ sun 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

H. Traffic 

Guidance 

 

 

H.1 Traffic 
signs/signals ‐ 
Insufficient 

Signs present but insufficient/Signals 

present but 

insufficient/Signs 

absent/Signals absent/Other  
 
 

H.2 Traffic 
signs/signals – 
Maintenance 

Signs damaged/Signals damaged/Signs 
poorly maintained/Signals 

poorly maintained/Signs 

positioned incorrectly/Signals 

positioned incorrectly/Other 
 

H.3 Traffic 
signs/signals – 
Unexpected 

Signs replaced/Signals replaced/Signs 
new/Signals new/Other 

 

 

H.4 Traffic 
signs/signals – 
Inappropriate 

Signs inappropriate/Signals 

inappropriate/Signs confusing/Signals 

confusing /Other 
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H.5 Road markings 
(visual/tactile) ‐ 

Insufficient 

Visual markings present but 
insufficient/Tactile markings present 

but insufficient/Visual markings 

absent/Tactile markings absent 
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vehicle related 

Factors 

   

 
 
 

 
J. Electro‐ 

mechanical 

J.1 Steering Partial failure/Total failure 

J.2 Brakes Partial failure/Total failure 

J.3 Engine Partial failure/Total failure 

J.4 Suspension Partial failure/Total failure 

J.5 Electrical/electronics Partial failure/Total failure 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

K. 

Maintenance 

 
 
 
 

 
K.1 Windscreen/Glass 

Front chipped/ Front 
cracked/ 

Front misted/Front dirty 

/ Front scratched/Rear 

chipped/ Rear 

cracked/Rear misted/ 

Rear dirty/Rear 

scratched/ 

Side chipped/ Side 
cracked/ 

Side 

misted/Side 

dirty/ Side 

scratched/Other 

 

K.2 Tyre(s) 
Incorrect type/Air pressure/ 

Tread/ 
Blow‐

out/Othe
r 

 
 
 
 
 
 
 
 
 
 

K.3 Exterior lights 

Headlight type/Headlight bulb 
needs 

replacing/Headlight 

cracked/Headlight broken 

cover/ Rear light type/ Rear 

light bulb needs replacing/ Rear 

light cracked/ Rear light broken 

cover/ Brake light type/ Brake 

light bulb needs replacing/ 

Brake light cracked/ Brake 

light broken cover/ Indicator 

type/ Indicator bulb needs 

replacing/ Indicator cracked/ 

Indicator broken cover/ Fog 

light type/ Fog light bulb 

needs replacing/ Fog light 

cracked/ Fog light broken 

cover/Other 

 

 
K.4 Interior lights 

Fuel light/Oil 
light/Water 

light/Parking brake 

light/Other dashboard 

light/Other interior 

lighting 
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L. Design 

 

 
L.1 Visibility 

A‐pillar(s)/B‐
pillar(s)/C‐ 

pillar(s)/Steering wheel 

blocking view/Rear view 

mirror/Wing 

mirror(s)/Seating/Other 

L.2 Auditory Auditory warnings 
confusing 

   

L.3 Displays 
Colour/Size/Co

nfusing 
information

/Other  

L.4 Controls 
Colour/Size/Co

nfusing 

information/Reach
/Other 

 

 
 

M. Load 

M.1 Heavy On vehicle/Within 
vehicle/Other 

M.2 Uneven On vehicle/Within 
vehicle/Other 

M.3 Visibility obstructed On vehicle/Within 
vehicle/Other 
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HFF Method  
 

 
 

Sheet N° 3: Pivotal Functional Failure   
 

Coding Step: 3  
 

 
 
 
 
 
 
 
 
 
 

Failure in 
information 

acquisition ? 

 

Failure in 
diagnosing 

the 
situation ? 

 

Failure in 
predicting 

the 
situation ? 

Failure when 
deciding to 
undertake 

specific 
manoeuvre ? 

Psychomotor 

failure when 
performing 

action ? 

 
Overall 
failure ? 

 
 
 

Detection Diagnosis Prognosis Decision Execution Overall 

 
Failure to 

detect in 

visibility 

constraints 
 

Focalised 

acquisition of 

information 

 
Cursory 

information 

acquisition 

 
Interruption in 

information 

acquisition 

 
Neglecting 

information 

acquisition 

demands 

Incorrect 

evaluation of 

a road 

difficulty 

 
 

Incorrect 

evaluation of 

a gap 

 
 

Incorrect 

understanding 

of how site 

functions 
 

 
Incorrect 

understanding 

of manoeuvre 

undertaken by 

another user 

Not expecting 

(by default) 

manoeuvre by 

another user 
 

 
 

Expecting 

adjustment by 

another user 

 

 
Expecting no 

perturbation 

ahead 

 
Directed 

violation 
 

 
 
Deliberate 

violation 
 

 
 
Violation - 

error 

 
Poor control 

of a difficulty 

 
 

 
Guidance 

problem 

 

Loss of 

psycho- 

physiological 

ability 

 
Impairment of 

sensorimotor 

and cognitive 

abilities 

 
Exceeding 

cognitive 

abilities 

 
 
 
 
 

Delineation of functional failures found in In-depth accident data 
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Sheet N° 4: TYPICAL HFF GENERATING SCENARIOS 
(Top 30)  

 
 

Category of 

HFF 

Type of Human Functional 

Failure (HFF) 

 
Typical Human Failure Generating Scenario 

Detection  

Detect 1 failure ‐ Non‐detection 

in visibility constraints conditions 

'Detect 1C': Road user surprised by a pedestrian or a two-
wheeler non‐visible when approaching 

'Detect 1D': Driver surprised by the manoeuvre of a non‐ 

visible approaching vehicle 

 
 
 

 

Detect 2 failure ‐ Information 

acquisition focused on a partial 

component of the situation 

'Detect 2A': Focalisation on a directional problem 

'Detect 2B': Focalisation towards a source of information as 

a function of driver's layout representation 

'Detect 2C': Focalisation towards a source of information 

regarding the importance of the traffic flow 

'Detect 2D': Focalisation towards an identified source of 

danger 

 
 

Detect 3 failure ‐ Cursory or 

hurried information acquisition 

'Detect 3A': Cursory search for information while turning on 

the left (on the right for left driving countries) 

'Detect 3B': Cursory search for information while crossing 

intersection 

Detect 4 failure ‐ Momentary 

interruption in information 

acquisition activity 

 
'Detect 4A': Non‐detection of the rapprochement from 

the vehicle ahead 

 
 

Detect 5 failure ‐ Neglecting the 

need to search for information 

'Detect 5A': Late detection of the slowing down of the 

vehicle ahead 

'Detect 5B': Late detection of a non‐priority road user 

starting manoeuvre in intersection 

Diagnosis  

Diag 1 failure ‐ Erroneous 

evaluation of a passing road 

difficulty 

'Diag 1B': Under evaluation of the difficulty of an 

although known bend 

'Diag 1C': Erroneous evaluation of a bend difficulty in a 

context of playful‐driving 

Diag 2 failure ‐ Erroneous 

evaluation of the size of a gap 

'Diag 2B': Erroneous evaluation of a merging gap 

connected to the low attention paid to the manoeuvre 

 Diag 3 failure ‐ Mistaken 

understanding of how a site 

functions 

 
' Diag 3A': Mistaken understanding leading to a stopping 

failure in intersection 
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Diag 4 failure ‐ Mistaken 

understanding of another user's 

manoeuvre 

' Diag 4B': Mistaken understanding of the other's 

manoeuvre related to the polysemy of their signals 

'Diag 4C': Mistaken understanding of other's manoeuvre 

related to cursory processing of the interaction 

Prognosis Prog 1 failure ‐ Expecting 

another user not to perform a 

manoeuvre 

 
'Prog 1A': Expecting a non-priority vehicle not to 

undertake a manoeuvre in intersection 

 

Prog 2 failure ‐ Actively 

expecting another user to take 

regulating action 

'Prog 2B': Erroneous expectation of the stopping of a non-

priority vehicle approaching intersection 

'Prog 2C': Erroneous expectation of the stopping of a non-

priority vehicle coming on the trajectory 

Prog 3 failure ‐ Expecting no 

perturbation ahead 

'Prog 3A': Expecting no vehicle ahead in a bend with no 

visibility 

Decision Dec 1 failure ‐ Violation directed 

by the characteristics of the 

situation 

 
'Dec 1A': Road user directed to go ahead in order to take 

the information 

Dec 2 failure ‐ Deliberate 

violation of a safety rule 

 
'Dec 2B': Overtaking on a zone with limited axial‐visibility 

 
Dec 3 failure ‐ Violation‐error 

'Dec 3B': Going ahead at intersection being drawn into 

manoeuvre 

Execution  

Exec 1 failure ‐ Poor control of 

an external disruption 

'Exec 1A': Sudden encounter of an external disruption 

'Exec 1B': Sudden encounter of an external disruption, 

more or less expectable 

 
 

Exec 2 failure ‐ Guidance 

problem 

'Exec 2A': Guidance interruption consequently to 

attention orientation towards a secondary task 

'Exec 2B': Guidance interruption consequently to 

attention impairment 

Overall 

failure 

Over 1 failure ‐ Loss of psycho‐ 

physiological capacities 

'Over 1A': Loss of psycho‐physiological capacities 

consequently to a falling asleep or ill‐health 

Over 2 failure ‐ Alteration of 

sensorimotor and cognitive 

capacities 

'Over 2A': Alteration of trajectory negotiation capacities 

 
'Over 2B': Alteration of guidance capacities 

Over 3 failure ‐ Overstretching 

cognitive capacities 

'Over 3A': Overstretching processing capacities in traffic 

interaction situation 

 

 
 

 
 



HFF Method   

378 

 

Sheet N° 5: Involvement level of the driver  
 

Coding Step: 6  
 
 
 
 

 
CODE Signification Explanation 

PC Primary 
contributing 

This modality designates the drivers who 'provoke the 
disturbance’. 

SC Secondary 
contributing 

These drivers are not at the origin of the disturbance which 
precipitates the conflict, but they are however part of the 
genesis of the accident by not trying to resolve this conflict. 

NC No contributing They are not considered as 'active' in the degradation because 
the information they had did not enable them to prevent the 
failure of others (contrary to the secondary contributing). They 
were not able to anticipate, due to this lack of information, the 
degradation of the situation, while the avoidance of the 
accident would have been possible in theory if this information 
had been supplied to them in time. 

OP Only present These drivers are not involved in the destabilization of the 
situation even if they are nevertheless an integral part of the 
system. Their only role consists in being present and they 
cannot be considered as an engaging part in the disturbance. 
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Sheet N° 6: Emergency Failure   
 

Coding Step: 7  
 
 
 
 

 
 

Code 
 

Description 
Recovered In the case when for the driver considered the avoidance 

manoeuver was adapted but the other one's neutralized 
this adaptation 

ND The AD of danger implies road users who did not detect 
the accident situation nor the emergency situation. 

D1 The maneuver is the result of a decision forced by the 
situation constraints (offering no other choice). 

D2 The choice of the maneuver that the road user decided to 
put forward is not suitable. 

E1 The   intention   of   maneuver   is   appropriate   (adapted 
option)  but  the  execution  carried  out  is  incorrectly 
because of several strong situational constraints. 

E2 The intention of the performance is appropriate (adapted 
option)  but  not  successful  because  of  poor  execution 
control issues. 

Unavoidable Distance  /  time  conditions  are  too  short  to  allow  to 
achieve a successful avoidance. 
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Sheet N° 7: Crash Configuration  
 

Coding Step: 9  
 

 
 

For each vehicle and whatever the vehicle 
 
 Code Description 

Primary crash 
configuration 

PCC.1 Front 
PCC.2 Lateral 
PCC.3 Back 
PCC.4 roll‐over 
PCC.5 Reversal 
PCC.6 Side swipe 
PCC.7 Unclassifiable 

Primary crash 
Side 

PCS.F Front 
PCS.B Back 
PCS.L Left 
PCS.R Right 

PCS.Ro Roof 
PCS.U Unclassifiable 

Secondary crash 
configuration 

SCC.0 No Secondary Choc 
SCC.1 Front 
SCC.2 Lateral 
SCC.3 Back 
SCC.4 roll‐over 
SCC.5 Reversal 
SCC.6 Side swipe 
SCC.7 Unclassifiable 

Secondary crash 
Side 

SCS.F Front 
SCS.B Back 
SCS.L Left 
SCS.R Right 

SCS.Ro Roof 
SCS.U Unclassifiable 
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Sheet N° 8: Crash Aggravating Factors   
 

Coding Step: 10  
 
 

 

 Code Crash Factors 

Users related factors U.1 Size of driver / passenger 
U.2 Weight of driver / passenger 
U.3 Old of driver/ passenger 
U.4 Gender of driver / passenger 
U.5 Medical condition 
U.6 Substances taken ‐ alcohol 
U.7 Substances taken ‐ Drugs 
U.8 Substances taken ‐ medication 
U.9 Fatigue 

U.10 speed 
U.11 No braking 

Main Impact 
type of main 

obstacle (having 
absorbed the greatest 

amount of impact 
energy) 

PC.1 Nothing 
PC.2 small utility vehicle (minivan, derivative of a four‐door 

sedan: cat 4 ) 
PC.3 small utility vehicle ( van < 3,5 T : category 5 ) 
PC.4 off‐road vehicle ( category 7 ) 
PC.5 4X4 
PC.6 heavy truck ( >3,5 T ) 
PC.7 public transportation 
PC.8 Train 
PC.9 farm tractor 

PC.10 camper or small trailer 
PC.11 heavy construction vehicle 
PC.12 non‐motorized two‐wheel vehicle 
PC.13 motorized two‐wheel vehicle 
PC.14 ground ( only in the case of roll‐over ) 
PC.15 pole / lamp post 
PC.16 tree 
PC.17 guide rail 
PC.18 sign post 
PC.19 ditch ‐ gutter 
PC.20 embankment 
PC.21 fence 
PC.22 wall / bridge pilon / building 
PC.23 lane divider wall 
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 PC.24 pedestrian 
PC.25 large animal 
PC.26 other 

Secondary Impact 
(impact having 

absorbed less energy 
than main impact) 

SC.1 Nothing 
SC.2 small utility vehicle ( minivan, derivative of a four‐ 

door sedan: cat 4 ) 
SC.3 small utility vehicle ( van < 3,5 T : category 5 ) 
SC.4 off‐road vehicle ( category 7 ) 
SC.5 4X4 
SC.6 heavy truck ( >3,5 T ) 
SC.7 public transportation 
SC.8 Train 
SC.9 farm tractor 

SC.10 camper or small trailer 
SC.11 heavy construction vehicle 
SC.12 non‐motorized two‐wheel vehicle 
SC.13 motorized two‐wheel vehicle 
SC.14 ground ( only in the case of roll‐over ) 
SC.15 pole / lamp post 
SC.16 tree 
SC.17 guide rail 
SC.18 sign post 
SC.19 ditch ‐ gutter 
SC.20 embankment 
SC.21 fence 
SC.22 wall / bridge pilon / building 
SC.23 lane divider wall 
SC.24 pedestrian 
SC.25 large animal 
SC.26 other 

Safety system SS.1 Occupants completely ejected 
SS.2 Occupants partially ejected 
SS.3 Occupant pushed forward by thrust of rear occupant 

or load 
SS.4 Seat belt not available 
SS.5 Seat belt not fasted 
SS.6 Seat belt rear passenger unbelted 
SS.7 Seat belt rear passenger unavailable 
SS.8 child restraint system unbelted 
SS.9 Child restraint system properly fastened / defect 

SS.10 frontal Air‐bag absent or defect 
SS.11 Lateral Air‐bag absent or defect 
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Sheet N° 9: Pictogram  
 

Coding Step: 11  
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