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Abstract

Over the last few years, the concept of civil Unmanned Aircraft System(s) (UAS) has been

realised, with small UASs commonly used in industries such as law enforcement, agri-

culture and mapping. With increased development in other areas, such as logistics and

advertisement, the size and range of civil UAS is likely to grow. Taken to the logical con-

clusion, it is likely that large scale UAS will be operating in civil airspace within the next

decade.

Although the airborne operations of civil UAS have already gathered much research

attention, work is also required to determine how UAS will function when on the ground.

Motivated by the assumption that large UAS will share ground facilities with manned

aircraft, this thesis describes the preliminary development of an Automated Taxiing Sys-

tem (ATS) for UAS operating at civil aerodromes.

To allow the ATS to function on the majority of UAS without the need for additional

hardware, a visual sensing approach has been chosen, with the majority of work focusing

on monocular image processing techniques. The purpose of the computer vision system

is to provide direct sensor data which can be used to validate the vehicle’s position, in

addition to detecting potential collision risks. As aerospace regulations require the most

robust and reliable algorithms for control, any methods which are not fully definable or

explainable will not be suitable for real-world use. Therefore, non-deterministic methods

and algorithms with hidden components (such as Artificial Neural Network (ANN)) have

not been used. Instead, the visual sensing is achieved through a semantic segmentation,

with separate segmentation and classification stages. Segmentation is performed using

superpixels and reachability clustering to divide the image into single content clusters.

Each cluster is then classified using multiple types of image data, probabilistically fused

within a Bayesian network.

The data set for testing has been provided by BAE Systems, allowing the system to be

trained and tested on real-world aerodrome data. The system has demonstrated good

performance on this limited dataset, accurately detecting both collision risks and terrain

features for use in navigation.



iv

This thesis has made specific contributions to knowledge:

1. A deterministic machine vision system for semantic segmentation of outdoor scenes,

using a Bayesian Network.

2. A novel method of graphical reachability, intended for use in combining superpix-

els into larger regions without sudden changes in colour.

3. The specification of Normalised Relative Luminance (NRL) and its relationship

with distance for surface marking extraction.

4. The representative probability calculation for texton classification data, specifi-

cally for converting a Binary Decision Tree (BDT) based Support Vector Machine

(SVM) classification into a probabilistic output.
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Chapter 1

Introduction

1.1 Overview

Over the last few decades Unmanned Aircraft System(s) (UAS) have advanced signifi-

cantly, primarily due to military development. As UAS are typically safer and cheaper

than conventional aircraft, many roles which previously required a human pilot are now

predominantly performed by an unmanned vehicle. Widespread military use of UAS has

already created a large industry, with an estimated global worth of $11.3 billion in 2016

[122]. Future uses are also expected to include emerging civil applications, such as agri-

cultural monitoring, aerial inspection and search and rescue. With significant growth

predicted over the next ten years, a global market of $140 billion is forecast for 2026, of

which 23% is expected to be civil [40].

However, despite such predictions there are still many barriers preventing widespread

civil unmanned aviation. As nearly all contemporary UAS are flown by human pilots on

the ground (operating as Remotely Piloted Vehicles (RPVs)), most lack the situational

awareness and decision making abilities required to function autonomously. Although

unmanned military aircraft have operated for decades, the vast majority of flights have

occurred in controlled airspace, where each aircraft follows a flight plan and separation

is performed by Air Traffic Control (ATC). These predictable interactions with other air

users are highly beneficial, as the limited and delayed information available via radio link

can make collision avoidance difficult for remote pilots. By comparison, aircraft operat-

ing within National Airspace Systems (NASs) commonly operate without flight plans and

are responsible for self-separation. As the current capabilities of UAS are not sufficient

to guarantee safety, most countries currently restrict UAS operations (both military and

civil) to segregated airspace [2].
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For future civil UAS to be viable, they must be capable of operating in the complex

NAS environment. The biggest barrier currently preventing UAS integration is the dif-

ficulties in interacting with other airspace users. As civil airspace is “mixed user”, there

will always be a small percentage of non-cooperating aircraft with which UAS will need

to safely navigate around. These aircraft may be operating without flight-plans (such as

recreational aircraft), without radios (such as sail-planes) or even without methods of di-

rect control (such as hot air balloons). To account for the delay in human pilot reaction,

or even complete communication loss, any UAS must be able to respond to these aircraft

in the same manner as a human pilot; usually without knowledge of their intentions and

with little warning of their presence. National regulators, such as the Federal Aviation

Administration (FAA), are responsible for the current restrictions, and are also working

with manufacturers and operators to help introduce UAS which are certified for civil use.

The FAA is committed to the safe and efficient integration of UAS into the

NAS. However, as safety is our top priority, UAS integration must be

accomplished without reducing existing capacity, decreasing safety,

impacting current operators, or placing other airspace users or persons and

property on the ground at increased risk.

Michael P. Huerta - FAA Administrator [37]

Although the majority of research pertaining to UAS operations relates to airborne

activities, as the above quote states ’persons and property on the ground’ are also po-

tentially at risk. Although much effort has already been spent on ensuring safe operation

whilst airborne, comparatively little research attention has been focused on ground oper-

ations, despite similar requirements to interact with other users. In response, the specific

focus of this thesis is to investigate and implement a method of controlling UAS whilst

they are on the ground, i.e. automated taxiing.
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1.2 Outline

This thesis details the development of an ATS for UAS operating at civil aerodromes:

Chapter 2 - Background and Context:

This chapter provides an extensive review of the background and context of the project.

Due to the highly specific niche this system is intended to fulfil, the existing procedures,

technologies and regulations are described in detail, explaining the reasons for the lim-

ited existing research within this area.

Chapter 3 - System Level Study:

A literature review is performed at a system level, in which the requirements for an au-

tonomous taxiing system are identified, and the intended components of the automated

taxiing system are proposed. Due to the diverse nature of the requirements, specific fo-

cus on elements is reserved for the respective chapters.

Chapter 4 - Review of Machine Vision Methods:

An investigation into methods of machine vision, specifically investigating methods

of detecting known and unknown objects in cluttered outdoor environments. Various

methods of visual data acquisition are reviewed and the chosen approach is established.

Chapter 5 - Review of Image Segmentation Methods:

A brief comparison of potential methods of integrating segmentation with classifica-

tion is undertaken, with the decision made to implement both as separate stages. Various

methods of image segmentation are also compared, in terms of their applicability to out-

door aerodrome scenes.

Chapter 6 - Implementation of Image Segmentation and Data Extraction:

Based on the review in the previous chapter, the exact implementation of the image

segmentation process is defined, along with initial results. Following image segmenta-
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tion, the image is divided into distinct clusters awaiting classification. As the classifier

is entirely dependent on the provided data, this chapter also details the various types of

information which can be extracted from an image, and which have been used for this

work.

Chapter 7 - Classification:

A probabilistic Bayesian framework is established in which various types of data can

be probabilistically fused. Methods of discretising and converting data into a probabilis-

tic form are also described. Using the extracted data the classifier is trained and elements

of the image can now be classified.

Chapter 8 - Semantic Segmentation Case Study:

Results are presented for the complete image classification system, applied to a real

world aerodrome data set obtained at Walney Island Airport in the UK.

Chapter 9 - Depth Exaction and Collision Risk Localisation:

Methods of depth extraction from monocular images are discussed, in addition to the

issues with frame-by-frame classification. Methods of temporal smoothing and localis-

ing potential collision risks are established.

Chapter 10 - Conclusions:

The final chapter concludes the thesis by providing an overview of the research, re-

search achievements and the contribution made. It concludes by summarising the aim

and objectives achieved in this research; including recommendations for future work to

be carried out in this research project.



1.3 Publications 5

1.3 Publications

This work has resulted in one journal paper and three conference papers:

Matthew Coombes, William Eaton, and Wen-Hua Chen. Machine vision for uas ground

operations. Journal of Intelligent & Robotic Systems, pages 1–20, 2017. ISSN 1573-0409.

doi: 10.1007/s10846-017-0542-5. URL http://dx.doi.org/10.1007/s10846-017-0542-5

Will Eaton. and Wen-Hua Chen. Image segmentation for automated taxiing of unmanned

aircraft. In Unmanned Aircraft Systems (ICUAS), 2015 International Conference on, pages

1–8, June 2015. doi: 10.1109/ICUAS.2015.7152268

M. Coombes, W. Eaton, and W. H. Chen. Unmanned ground operations using seman-

tic image segmentation through a bayesian network. In 2016 International Conference

on Unmanned Aircraft Systems (ICUAS), pages 868–877, June 2016. doi: 10.1109/ICUAS.

2016.7502572

M. Coombes, W. Eaton, and W. H. Chen. Colour based semantic image segmentation

and classification for unmanned ground operations. In 2016 International Conference

on Unmanned Aircraft Systems (ICUAS), pages 858–867, June 2016. doi: 10.1109/ICUAS.

2016.7502570

http://dx.doi.org/10.1007/s10846-017-0542-5


Chapter 2

Background and Context

The literature review for this thesis is divided into two parts; this chapter which is in-

tended to provide context for the work, and the next chapter which provides more detail

in the form of a system level study. This division is intended to establish the context of

automated civil UAS taxiing, before reviewing the technical requirements.

Context for future UAS ground operations (i.e. the regulations and environment)

must be established in order to define the requirements for an ATS. However, in accor-

dance with regulatory restrictions on the weight of UAS in most countries’ NAS, the vast

majority of current civil UAS are too small to require conventional take-off and landing.

For the few civil UAS which do require a runway, additional regulations also require sep-

aration on the ground, with manned and unmanned aircraft operating at different times

to avoid incident [13]. Although smaller and less busy aerodromes could continue to fa-

cilitate UAS at less busy times, as UAS become increasingly common this will become

impractical.

With this segregation in place, there are no current UAS surface operations at civil

aerodromes from which to draw context. Instead, the civil aerodrome environment will

be discussed by reviewing current surface operations for manned aircraft. In addition,

technologies for automating taxiing for manned aircraft are also reviewed, identifying

their advantages and shortcomings.

For context on UAS specific surface operations, military UAS are currently the best

example, as they can be very large in size and commonly require runway landings. How-

ever, operating outside of the NAS exempts both airborne and ground movements from

civil regulations, with operating procedures at military aerodromes different from that at

a civil aerodrome. Therefore, although technologies and methods developed for military

UAS are reviewed in order to identify potentially useful techniques, this chapter will also
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shed light on why certain methodologies are not suitable for this work.

2.1 Civil Surface Operations

Commercial aviation (the primary use of civil aerodromes) is commonly cited as the

safest form of transportation. Despite being the fastest method of transportation, fly-

ing is statistically over 100 times safer than covering the same distance in a car [92], even

though vehicles move at much lower speeds on the ground. This is primarily due to the

differences in operating environment; compared to the busy surface environment for

cars there is a significantly lower chance of colliding with anything whilst airborne.

Accordingly, it is not surprising that the risk of collision for aircraft greatly increases

when they are on the ground. Research by Boeing states that aside from landing, ground

operations are statistically the most likely ‘flight phase’ in which accidents occur [91].

This is corroborated by data from the National Transportation Safety Board (NTSB), which

shows that during 2011 37% percent of the aviation accidents that occurred in the US

took place during ground operations [1]. Although the overall incident rate is very low,

over 10% of all fatal aviation accidents occur on the ground despite taxiing representing

less than 1% of an average flight time [81]. This large proportion of accidents re-affirms

that aerodromes are dangerous environments and the introduction of UAS must be done

without increasing the potential risk.

Although recent regulations have specified how airport operators should aim to in-

tegrate UAS into their current operations [38], this information is typically aimed at ex-

isting small UAS operating from local aerodromes. For larger commercial airports, there

has been some investigation into UAS terminal region operations using ADS-B [117], but

few airports are willing to accommodate UAS (In fact, within Europe only a single civilian

airport is permitted to allow UAS to land [3]). As large scale civil UAS operations are still

prohibited in most NASs, this section will focus on surface operations for conventional

manned aircraft.

2.1.1 Current Automation

Aerospace is typically considered an extremely high-technology industry, with automa-

tion and localisation technologies (such as autopilot and Global Positioning System (GPS))

becoming common on aircraft soon after the technologies were invented. Within the

terminal area, automatic landing has been in development since the 1940’s [43], allow-
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ing aircraft to land without direct pilot input. Despite this, beyond the runway all civil

aircraft currently taxi under manual pilot control [57].

The most likely reason for the current lack of research is the limited need for such a

system at the current time. Manual human input is currently the most common method

of control, for all forms of aircraft. As human pilots have controlled taxiing aircraft for

decades, manual control has been demonstrated to be highly successful. As with any

problem where a sufficient solution already exists, there is generally far less motivation

to undertake research and therefore there has been little need for an automated solu-

tion. When incidents have caused concern about the safety of human-controlled taxiing,

increased use of communications and rigorous operating procedures have been used

instead. Although ground incidents still occur, current procedures have sufficiently mit-

igate most of the problems.

As a whole, the taxiing process is not the movement of a single aircraft, but instead

the result of complex interactions between multiple vehicles and aerodrome users. Most

large aerodromes host a wide range of aircraft, from small general aviation through large

airliners. An implication of allowing such a range of aircraft is that the level of avionic

equipment can differ widely. Although large civil airliners are equipped with extensive

technology (such as the aforementioned autopilot and autolanding systems), they share

taxiways with small General Aviation (GA) aircraft, which may operate with only a radio

for communication. As light aircraft are often operated recreationally, the financial bur-

den of upgrading prevents the uptake of more advanced systems. Therefore, the current

civil user-base has been a major obstacle, preventing any form of generic automated taxi-

ing system from being introduced for all aircraft. Instead, once an aircraft has landed the

current procedure is for the pilot to operate the aircraft under manual control.

2.1.2 Dangers

Elaborating on the collision statistics in [82], the NTSB identifies pilot error as the main

cause of ground operation accidents. Table 2.1 describes three sources of pilot error

which occur during taxiing. Although automation would not immediately remove issues

with handling and visibility, it is clear that the current manual approach can be greatly

improved upon.
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Handling Aircraft are primarily designed to move well in the air and as such their

ground handling is often a secondary consideration. During taxiing,

most aircraft are very cumbersome and hard to manoeuvre when com-

pared to exclusively ground based vehicles.

Visibility Cockpit windows often provide limited visibility to the pilot. For large

aircraft, the wing tips are usually not visible to the pilot if they remain

seated, requiring the pilot to stand and change position in the cabin.

This has lead to a large number of ‘clipping’ incidents where the wings

collide with other vehicles or structures. In addition, in most aircraft

the pilot is unable to see the ground immediately in front of the aircraft,

due to the cabin arrangement. Any object low enough to be concealed

becomes an undetected collision risk.

Attention Counter-intuitively, the dangers of limited visibility are often com-

pounded by the low speeds at which aircraft manoeuvre on the ground.

With extremely long taxi-ways, pilots often become distracted whilst

taxiing for prolonged periods of time and are therefore unprepared to

manoeuvre around obstacles.

Table 2.1 Sources of pilot error
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2.1.3 Regulations

In order to minimise the risk of accident, aerodromes are highly controlled environments

with strict regulations governing all aspects of ground operations. These regulations pro-

vide rules about communications, aircraft movement and other instructions that pilots

are expected to follow. For UAS to integrate safely into the civil aerodrome environment,

their movements and actions must be predictable and in line with the other users. As

such, the UAS should follow the same regulations as manned aircraft. As this research is

being undertaken in the United Kingdom (UK), the system will be based around the rules

applicable in the UK, which are listed in great detail in [105] and are outlined briefly be-

low:

• Regardless of any given clearance, it is the duty of an aircraft commander to do all

possible to avoid collision with other aircraft, vehicles or structures.

• Aircraft on the ground must give way to those taking off or landing, and to any

vehicle towing an aircraft. Landing aircraft always have right of way.

• Two aircraft approaching head on must each turn right to avoid the other.

• When two aircraft are converging, the one which has the other on its right must

give way, avoiding crossing ahead of the other unless passing well clear.

• An aircraft which is being overtaken by another has right of way and the overtaking

aircraft must keep out of the way by turning left until past and well clear.

• Ground markings are defined by colour, with white markings signifying the runway

whilst yellow signifies taxi markings.

• Information about how an aircraft should taxi is often conveyed using signals on

paved runways and taxiways. Therefore the pilot must be able to see the ground

whilst taxiing. On unpaved manoeuvring areas, such as grass, small flags are used

to display the signals instead.

• An aircraft may only manoeuvre without the permission of Ground Traffic Control

(GTC) whilst in maintenance zones. If the aircraft needs to enter the manoeuvring

area of an aerodrome or taxi on the apron, it must first gain permission from the

GTC.
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• Although pedestrians should only be allowed in the areas used for aircraft if they

have permission, it is still the pilot’s responsibility to ensure that they do not collide.

As an UAS must obey the same regulations as manned aircraft, the following capabil-

ity requirements must be met:

• Navigate through the aerodrome and self localise.

• Detection of other aircraft, vehicles, structures and pedestrians as well as any generic

collision risk.

• Localise other aircraft relative to the UAS and recognise context through the posi-

tion of other vehicles.

• Be able to detect and understand ground markings.

• Communicate with aerodrome authorities.

Of these requirements, all but the last are internal to the UAS and will be explored

in greater detail in the next chapter. However, communication within the aerodrome is

already a standardised procedure, and its application to UAS ground operations is re-

viewed below.

2.1.4 Communications

A significant aspect of civil is the delegation of authority from the pilot to the aerodrome

Ground Traffic Control (GTC). During ground operations, the pilot remains responsible

for ensuring the safety of the aircraft and direct aircraft control. However, the movement

and overall navigation for each vehicle becomes the responsibility of the GTC at the aero-

drome. In order to achieve this ‘distributed authority’, current regulations stipulate that

manned aircraft must remain in constant verbal communication (via Radio Transmis-

sion (RT)) with the GTC. Before undertaking any activity, the pilot must first notify the

GTC and ask for permission. The aircraft should then only move once given clearance,

ensuring that a controlling authority has assessed that the action is viable and that the

movement should not result in an incident.

In addition, it is usual for radio communications to be made during taxi, to provide

additional information or changes to the how the aircraft should proceed. As such, the
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GTC is responsible for over-seeing all ground based aerodrome activities, as well as in-

structing all aircraft on where they should be heading and what they should be expect-

ing. To avoid confusion and to keep control of the airwaves, aircraft may not communi-

cate with each other directly, but as all radio’s are unencrypted, pilots can listen to each

other’s communications to stay informed. Although labour intensive (requiring the pilots

to continuously listen and consider all broadcasts), this form of verbal communication

has proven a reliable method of minimising risk. As manned aircraft have successfully

taxied for many decades using this level of support, the type and amount of informa-

tion provided by the GTC should be sufficient for UAS to operate as well. However, in

order to adopt current practices for UAS, the methods by which communication can be

automated must be considered.

Compared to manned aircraft, communication for UAS will always be more compli-

cated. In order for the aircraft to be controlled at distance, control and communications

systems are often highly integrated. The majority of data transmitted to UAS is inter-

preted by the systems on board and used to directly control the aircraft, whilst the data

relayed back to those supervising the UAS is used to make the decisions about what the

aircraft should do next. As such, the control of UAS can be considered distributed, with

work being done both in and outside of the aircraft. Usually, the low level flight control

and decision making is handled on board, whilst the more high level decisions are issued

remotely.

Following legislation from the International Civil Aviation Organization (ICAO), all

UAS must remain in contact with a ground supervisor at all times. Therefore, as perma-

nent communication capability is a prerequisite of UAS operation, this thesis will assume

that it is always present and functional. However, although the UAS requires a high in-

tegrity data communication to the ground, this is designed for the human operator and it

is unlikely that communication with the aerodrome will use the same method. Instead,

the ATS is more likely to make use of the same methods designed for manned aircraft

communication when communicating with the GTC. Therefore, as almost all current

aerodrome communications are achieved verbally, the biggest barrier for communica-

tion is the form of communication which is used.

With voice recognition and ‘text-to-speech’ software becoming more common in other

fields, it is plausible that UAS could operate using conventional radio telephony. Al-

though understanding the complexities of human speech used in daily conversation is

extremely difficult, the method by which verbal communication is used within aviation

is far more procedural. Due to previous aerodrome incidents (such as the Tenerife air-
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port disaster), communications between the ATC, GTC and pilots is usually constrained

to set phrases and responses. In this way, the ‘call and response’ methodology is similar

to the manner in which computers natively communicate. Therefore this highly scripted

method of voice communication could be fairly straight forward to implement. However,

at this point in time even the most advanced voice recognition solutions still make mis-

takes. Combined with the reduction in audio quality created by low-fidelity Very High

Frequency (VHF) radio systems, the risk of miscommunication is very large. As aero-

drome safety is dependant upon all messages being understood, it is unlikely that avia-

tion authorities will ever have enough confidence to allow a UAS to take actions based on

verbal RT alone.

Fortunately, this dependence on verbal communication might be less important by

the time UAS are in active civil usage. As the work undertaken in this thesis relates to

an ATS in the conceptual stage, it is likely that any real-world applications will be more

than a decade away. Therefore, it is important to consider what aerodromes will be like

in the future. In the United States of America (USA), the Joint Planning and Development

Office (JPDO) is a special initiative, aimed at predicting the future state of technology 1.

Specifically for civil aviation, the JPDO has published the NextGen Unmanned Aircraft

Systems Research and Development Roadmap (NGRM) [55], which is the official publi-

cation for the intended development of aerospace within the United States. As part of

the ‘roadmap’ , the NGRM makes several predictions about the coming changes to aero-

drome operations by 2025, focusing on the changes coming to manned aircraft opera-

tions. In particular, future plans for manned aircraft include replacing a large proportion

of verbal communication with data transmission.

Unlike today where only large airliners benefit from GTC data communications, the

NGRM assumes that the majority of aircraft in 2025 will be fitted with communication

systems such as Controller-Pilot Data Link Communication (CPDLC). This is due to the

increased adoption of pilot aids for ground operations, commonly known known as sur-

face guidance systems, such as the Advanced Surface Movement Guidance and Control

System (A-SMGCS). Designed to assist pilots during taxi, the surface guidance systems

will include Airport Moving Map (AMM) displays which are similar to GPS guidance sys-

tems used in cars. The onboard GPS sensor will indicate the the aircraft’s current loca-

tion whilst data from an onboard database will be used to show the surrounding fea-

tures of the aerodrome. For this to function, an accurate aerodrome map database will

1The JPDO is a multiagency initiative that includes the Department of Transportation, Department of

Defense, Department of Commerce, Department of Homeland Security, Federal Aviation Administration,

National Aeronautics and Space Administration and White House Office of Science and Technology Policy.
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Fig. 2.1 A380 cockpit displays, showing OANS (left) and ETACS (right). ©Patrick De Con-

inck.

be required, showing all surface functionality, including situational awareness capabili-

ties. The disadvantage of this system is that it will need to be kept up to date to ensure

accuracy, however a digital version is easier to update than the traditional paper maps

currently used by pilots.

Going beyond simply displaying the position of the aircraft, the AMM will also dis-

play a combination of data from the aircraft itself and data transmitted from the GTC.

In order for information about the aerodrome to appear on the AMM, data transmis-

sions are expected to replace many of the existing verbal transmissions used at aero-

dromes. Research into existing data-link technology used at aerodromes suggests that

currently unused packets within broadcasts could provide enough bandwidth for the en-

tire routing information to be relayed to incoming aircraft before they even land [69].

The introduction of data-links is also predicted to allow direct communication between

taxiing aircraft, something which is current prohibited through RT during taxiing. Pro-

vided that all aircraft are suitably equipped, the GPS locations of aircraft can be shared

via Automated Dependant Surveillance - Broadcast (ADS-B)/Traffic Information Service

– Broadcast (TIS-B), allowing their positions to appear on the AMM display. Not only

can this help increase the pilots situational awareness, but proposals also include au-

tomated systems capable of giving automatic collision risk alerts. For aerodromes that

support CPDLC, facilitating UAS operation should require little modification to the pro-

posed system for manned aircraft. In these cases, additional information provided by

the aerodrome could greatly improve the situational awareness of an ATS and therefore

it would be logical to for UAS to make use of this data where it is available.
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However, the main downside to relying on CPDLC is that they are not always present

at aerodromes. Whilst the NGRM calls for the introduction of these systems at large air-

ports, many smaller facilities will not be quick to adopt CPDLC as they require extensive

investment in training and ground infrastructure, and are only useful if aircraft operating

from that aerodrome can use it. As such, an ATS for UAS cannot rely upon data-links be-

ing available. Of course, for aerodromes where CPDLC data is available, it provides such

benefits that it may adversely affect the operation of the aircraft at the aerodrome if it

were not to use it. Therefore integration with this kind of system must be implemented,

but cannot be considered a dependency.

In addition to cases where data-links are not available, when data links are present

verbal RT is still expected to be used. Despite the likely widespread adoption of aero-

drome data-links, there is no expectation that all future aircraft will stop using RT. In-

stead, the NTSB identifies the continued need for RT for safety critical communications

(such as permission to take off), where verbal confirmation from the pilot is essential. In

addition, RT is still of great importance to aircraft which do not have access to data-link

information. Obviously, non-co-operating aircraft are still expected to be operating in

2025 (for example light aircraft or sail-planes often function with the minimum of equip-

ment). In these cases, traditional radio telephony will still be used between those pilots

and the aerodrome.

As such, a method of integrating UAS with RT is still required. This is made simpler by

the assumption that a human will remain in the loop. As there is no intention that future

UAS will operate without human oversight, a human operator should always be available.

As the ATS should handle the direct control of the aircraft, the responsibility of the human

operator is much diminished. However, the purpose of an ATS is not to operate without

a human, but instead to significantly reducing the workload of the remote unmanned

aircraft pilot [42]. Therefore, the assumption has been made that the human operator will

remain responsible for all verbal communications with GTC for the foreseeable future.

2.2 Autonomy and Automation

For this work, the intention is to produce a system capable of taxiing an UAS without

relying on direct human input. The use of the word ‘unmanned’ within the acronym Un-

manned Aircraft System(s) (UAS) is sometimes misinterpreted to mean that UAS operate

without human control. In fact, the word ‘unmanned’ only indicates the lack of a human

on board, with the majority of current UAS remotely controlled by human pilots on the
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ground. (For this reason, a common alternative to the acronym UAS is RPV).

The terms ’Automated’ and ’Autonomous’ are often used synonymously, despite hav-

ing different meanings. Simply put, “automatic means that a system will do exactly as

programmed” where as “autonomous means that a system has a choice to make free of

outside influence” [23]. Based on these definitions, it would appear that the two con-

cepts are direct opposites. However, as systems become more complex, the distinction

between automation and automony becomes less clear.

Despite the human pilot, many elements of UAS flight control systems are highly au-

tomated. Early automation for aircraft was typically closed-loop control based directly

on sensor feedback. More complex automation tasks, such as avoiding other aircraft,

cannot be achieved without some form of decision making. Automated systems which

incorporate decision making are termed ‘Intelligent Automation’.

Due to the potential risks of communication delay or even failure, UAS are usually

capable of some form of decision making to ensure they can continue to operate without

the human in the loop. Future UAS are also likely to operate with less direct input regard-

less of the communication quality. It has previously been identified that there is a large

economic benefit for a single operator to command multiple UAS, during both ground

and air operations [110]. As the authority to control the vehicle is seemingly moving from

the human operator to the aircraft itself, a level of autonomy will be required, with data

fusion and decision making explored in later chapters.

2.2.1 Autonomous Taxiing

In the section above, the concept of autonomy was considered with respect to the ability

of the aircraft to act without input from the pilot. However, the pilot is not the only en-

tity to have authority over the UAS. Although the term autonomous is often associated

with artificial systems, the term “autonomous taxiing” has a specific meaning for both

manned and unmanned aircraft alike.

Aerodromes are the most strictly controlled environment in which aircraft operate,

with both the terminal area and ground operations overseen by the ATC (or GTC). Due

to the close proximity of many aircraft, detailed instructions are provided and must be

followed by all aircraft. Even in the unlikely event of communication loss with the pilot,

the UAS is not free to make its own high level decisions but should instead endeavour to

follow the instructions of the GTC.

As aerodromes become increasingly busy, the need to rely on verbal instructions is
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seen as a limit on the aerodrome efficiency. As such, proposals for increasing the effi-

ciency of future aerodromes include the concept of self-control for manned aircraft, in

which well equipped aircraft determine their own routing and collision avoidance, based

on ‘peer-to-peer’ communication with other suitably equipped vehicles. As each vehicle

would be making decisions independently, this concept is commonly referred to as au-

tonomous taxiing.

Although the potential inclusion of autonomous taxiing was considered, autonomous

taxiing is a separate area of research beyond the scope of this thesis. In addition, as rout-

ing information will need to be digitised for interpretation, the route provided by the GTC

could simply be replaced by an onboard system, should autonomous taxiing be viable in

the future. Whether the routing plan comes from an external source (i.e. the GTC) or

from an additional ’autonomous taxiing system’, the ability to actually act upon these

instructions and follow the route remains the focus of this work. As such, it should be

made clear that the intention is to provide automated taxiing, and does not include any

specific work for autonomous taxiing.

2.2.2 Communication Failure

Although general autonomous movement is not required, the ATS will require such ca-

pabilities in the event of communications failure. If communication to the UAS is in-

terrupted, some form of autonomy is required in order for the aircraft to maintain safe

operation. As verbal communications and data-links make use of different transmission

methods, there are three forms of communication loss that must be considered for UAS:

• Data Communication Loss Between GTC and UAS

• Verbal Communication Loss Between Remote Pilot and GTC

• Data Communication Loss Between Remote Pilot and UAS

Of these three potential failure states, the only one in which a UAS could continue

taxiing is in the case of data-link loss between the UAS and the GTC. As the availability

of such data is not guaranteed, the intention is to produce a system which can function

either with or without such data. As such, if data link is lost, verbal RT can be considered a

backup system already in place. Provided the connection loss only affects the connection

to the aerodrome, the human overseer is still connected to the UAS and can still verbally

communicate with the GTC, following whatever procedure is most appropriate.
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By comparison, regardless of whether an aircraft is manned or unmanned, loss of

verbal communication with the GTC can have serious consequences. In the unusual

event that verbal RT transmission is lost but data links remain, it may be feasible that

instructions can be relayed via this method. However, as other aerodrome users may

not have access to the same data, there is no method of verifying the intentions of other

aerodrome uses. Therefore, provided the human operator still has control over the UAS,

the remote pilot can take whatever action is appropriate to make the aircraft safe, before

waiting for communication to be restored.

The third possible mode of communication failure is data loss between the human

operator and the UAS. Unlike communication loss with the GTC, this form of failure re-

moves the ability to depend on a human operator. If GTC communications remain, the

aircraft could simply continue to follow instructions. Although it is beyond the scope

of this work, a simple verbal declaration by the UAS over RT would be sufficient to in-

form the aerodrome and other users that an error has occurred, potentially requiring

new instructions. Without the human operator available, it is most likely that the UAS

will simply be instructed to stop where safe by the GTC via data link.

Finally, total communication loss must also be considered. If the communication is

lost at an aerodrome without data links, or if communication loss extends to all systems,

the UAS must act upon its current situational awareness to mitigate dangers to itself and

others. Typically, when communication loss occurs in the air, UAS have relatively little

chance of actually causing a collision. Therefore, the standard procedure is for the air-

craft to loiter in a safe area autonomously until communications are regained, or to at-

tempt to return to home base if it is within range. By contrast on the ground, the aircraft

has no need to keep moving and can sit perfectly still. This would seem to be the safest

option, but the UAS may have lost communication in an area which is dangerous. For ex-

ample, should communication loss occur whilst on the runway, the UAS should be able

to leave the runway to allow other aerodrome users to land. Instead, the safest option

in the event of communications failure would be to have the UAS navigate (or stay) in

the nearest area in which an incursion with the runway cannot occur, such as on a grass

verge. For UAS with an aerodrome database, the nearest safe area should be known and

the system GPS can be used to navigate to it. Alternatively, should communication fail-

ure have rendered all external systems unavailable including GPS, the UAS would need to

rely on its own sensing capabilities to recognise a suitable safe area. The aircraft should

then remain stationary until assistance arrives. As such, although autonomous taxiing

is not explored, the need to autonomous functionality is recognised and the ATS will be
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designed with such capability in mind.

2.3 Current Unmanned Ground Operations

This section will cover the current state of UAS taxiing, outlining operating procedures

and technologies in active use. As stated above, UAS are currently forbidden from op-

erating out of unsegregated aerodromes and there are no well documented examples of

existing civil UAS taxiing which can be investigated. Instead, all current examples of large

UAS taxiing procedures will have to be taken from military operators. (In this work, the

term ‘large’ is used to define any unmanned aircraft which is sufficient in size to function

much like a conventional aircraft, i.e. requiring access to a runway for take-off and land-

ing). The two main forms of control used by current military UAS are remote control and

external recovery.

2.3.1 Remote Control

The most common control method for large military UAS is to be flown under remote

manual control. For military unmanned aircraft (both combat and support roles), the

rules of engagement require that a human operator is in control at all times. As such,

all British military unmanned aircraft are Remotely Piloted Vehicles (RPVs) [19] during

operations. With the functionality already in place, the simplest solution for ground op-

erations is continue to rely on the same mission pilot, who guides the aircraft using the

same conventional controls as used whilst in flight.

Although this method is straightforward to implement, there are many drawbacks. As

the pilot is controlling the aircraft based on feedback from a screen, situational aware-

ness is limited to the view from the on board cameras. As such, visibility is likely to be

worse than a pilot would encounter on a conventional aircraft, with the 2D image also

affecting the pilots ability to estimate both scale and range.

In addition, the method of remote control communication can also adversely effect

the pilots ability to control the aircraft. Many military UAS are controlled via Satellite

Communications (SatComms), which reliably allow the remote pilot to communicate

with the UAS from anywhere in the world. However, this will inevitably introduce some

delay between when instructions are sent and when feedback is received. Although air-

borne manoeuvres are usually quite slow (for non-combat aircraft), responsive feedback

is required during taxiing. Any delay can make manual control of fine activities (such as
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navigating a corner) extremely difficult.

To overcome this problem, the pilot must be closer to the aircraft in order to minimise

the delay. Therefore, military UAS ground operations commonly make use of a separate

operator based at the aerodrome. As these ‘taxi specific’ operators are based locally, the

aforementioned delay problem is greatly alleviated. However, a multi-user communi-

cation set-up requiring hand-over of authority increases operational complexity, whilst

also increasing the likelihood of communication failure.

A practical consideration regarding the use of remote control is the available band-

width. Whilst controlling an UAS is fairly simple, the amount of data captured by the on-

board sensors can be immense, with most military UAS making use of extensive ground

based transmitters or satellite communications to relay information. As this is highly

expensive, it is more likely that civil UAS will use a less powerful localised transmission

method (Whilst ADS-B is fine in the air, it is too powerful to use on the ground). For mul-

tiple aircraft operating in the same area, the available bandwidth would rapidly be used

up.

By far the largest concern with using any remote system is the potential for commu-

nication failure. For example, a recently landed UAS which becomes stranded on the

runway due to communications problems would represent a large safety risk. The ob-

vious way of overcoming this issue is to give the aircraft a level of autonomy, to allow

them to navigate to safety during communication failure. However, if a requirement of

any UAS system would be the ability for the aircraft to direct itself in times of difficulty, it

would make more sense to abandon the remote control aspect and instead have the UAS

systems navigate and control itself.

Compared to military aerodromes, civil aerodromes have a much wider variety of

users and depend greatly on consistency for efficient operation. The reduction in ef-

ficiency than comes with remote control is a major reason why current UAS operating

procedures are unsuitable. With projects such as ASTRAEA working to bring UAS into

civilian airspace, the need for automated operations has increased. In addition to in-

teracting with civil air traffic, a key goal of these programmes is to reduce the operators

workload, with the intention of multiple UAS being controlled at once. Therefore, re-

quiring a human pilot to taxi UAS individually is a far less attractive prospect. As any

unmanned aircraft operating within such an environment should be able to follow the

same regulations as manned aircraft, but cannot rely upon a human pilot, automated

taxiing is required.
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2.3.2 External Recovery

Although current military UAS commonly use remote control when on the ground, alter-

native ground operating procedures are also in use. Often, the techniques used are a re-

flection of the capabilities and size of the UAS being used. Despite similar requirements,

many taxiing solutions for military UAS are not compatible with civil use. As both the

aerodrome and aircraft share the same operator, military aerodromes often allow special

dispensations for unmanned aircraft. This has resulted in some UAS being operated in

unconventional ways.

For example, one of the key benefits of UAS is their size compared to conventional

manned aircraft. As unmanned aircraft do not carry a human pilot or the associated

equipment required to sustain human life, UAS are generally far smaller than their manned

counterparts. This allows UAS to be more efficient and cheaper to operate (as well as

more difficult to detect/shoot down) when compared to manned aircraft capable of sim-

ilar roles. In order to maximise this benefit, military UAS are commonly equipped with

only essential equipment, removing any apparatus surplus to mission requirements to

further reduce weight. Without the need to consider pilot safety, features which would

be considered essential to manned aircraft can be removed. For example, to save weight

during flight neither the Thales Watchkeeper WK450 nor the USMC RQ-7B ‘Shadow’ are

equipped with wheel brakes.

As neither vehicle is able to decelerate after touchdown, the landing procedure is far

from conventional, requiring an arrestor gear system deployed to catch a pendant ex-

tended across the runway during landing. Not only does this approach take far more

time than conventional landing, but it would also represent an enormous safety risk in

a civil environment if done in the presence of other users. As such methods of launch

and retrieval necessitate allocating an entire runway to UAS activity, the procedures are

completely incompatible with civil aerodrome operations.

Beyond landing, self-propelled taxiing is also not possible for either aircraft due to the

safety implications of not being able to stop. Instead, movement on the ground requires

human intervention, with both UAS being towed into position by a support vehicle be-

fore launch. As this practise is not dissimilar to the use of tugs for airliners it could be

argued that such a technique could be deployed at civil aerodromes. As this methodol-

ogy is already being promoted as a potential method of introducing autonomous taxiing

for manned aircraft [77], discussion of potential external recovery methods for civil aero-

dromes will be continued below, in section 2.4.1.
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Fig. 2.2 Watchkeeper WK450 UAS Arrestor hook being deployed across runway. [104]

2.3.3 Radionavigation and Automated Way point Following

The most functional examples of current ATS operate using radionavigation systems,

such as GPS. Despite the complexities involved with other aspects of producing an ATS,

the act of moving the aircraft is fairly straightforward. As aerodromes are designed to

make aircraft movement easy (i.e. flat, paved terrain with minimal obstacles), navigation

can be achieved by using high accuracy Differential Global Positioning System (DGPS)

to manoeuvre the aircraft to way points on an aerodrome map. This form of position-

based auto-taxiing has been used on the GlobalHawk UAS since 2002 [68] and has proven

that automated UAS taxiing is possible on external position data alone. As the methods

used by the military UAS such as the GlobalHawk are unpublished (and potentially classi-

fied), an in depth review of the techniques used is not possible. However, similar systems

produced by competitor companies have published methods allowing techniques to be

investigated. The Universal Distributed Management System (UDMS) created by Proxy

Technologies (PT) [78] is such a system.

According to PT, the majority of UAS incidents relating to medium or large UAS have

occurred due to operator error during taxiing. As such, the UDMS was created to pro-

vide an automated solution that eliminates this risk. As simple waypoint following is
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not a significant achievement, the primary purpose of the UDMS is to provide an inter-

face through which a single operator can control multiple UAS simultaneously. Unlike

traditional ground controls that simulate a cockpit environment, the UDMS provides an

overview of all UAS activities using a map display similar to AMM. After receiving any rel-

evant routing information from the GTC, the human operator simply selects the destina-

tion and any intermediate points using a simplistic mouse driven interface. The precise

route is calculated by the system and defined as a series of GPS waypoints for the UAS to

follow.

After calculating a route, the system submits the route to the human overseer for ap-

proval and asks for permission to begin taxiing. If the route is deemed acceptable, the

system navigates to the runway hold line. In the event of an emergency, the human op-

erator can take control, adjusting speed, heading or even stopping the vehicle and taking

manual control. As such, the UDMS provides an example machine-human interface for

automated UAS. As the UDMS has been tested under real-world conditions, it demon-

strates that GPS data alone can be used to taxi an aircraft. The procedural method of

alerting the pilot at certain stages of the taxi process also demonstrates how a shared-

autonomy system could function. By having major decisions validated, issues can be

identified early on and pre-emptively resolved, rather than waiting for the overseer to

react when the UAS get into a unwanted situation.

Provided that map data is known and accurate, external position data is sufficient

to taxi under supervision. However, relying on a single source of data makes such sys-

tems highly vulnerable to any GPS error (caused either though inaccuracy or malicious

alteration). To ensure that a vehicle is following the correct course, additional sources

of position data could be used to validate the GPS data. In addition, although GPS only

methods can navigate around known static collision risks, these approaches still require

human interaction for avoiding other types of object.

For the rest of the UDMS, little mention is made of how the system operates beyond

its use of GPS for positioning. As the aircraft has no method of directly sensing the envi-

ronment the system is unable to avoid obstacles and the human operator is required for

collision avoidance. As such, this form of DGPS controlled auto-taxiing can only used at

segregated aerodromes, in order to remove the risk of collision with other aircraft.

Collision avoidance of known vehicles could also be achieved using radionavigation

data. Systems such as CPDLC now exist to facilitate the sharing of data between users

of aerodromes and the GTC. From work such as Low Visibility Assistance System (LVAS),

these systems have been shown to be capable of providing the basic information required
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for autonomous operation. However, although vehicles known to the aerodrome may be

avoided if they are broadcasting their position, most other forms of mobile obstacle are

not so well equipped.

In order to produce a robust ATS it is insufficient to rely on a single source of position

data, especially one external to the aircraft. Instead, the aircraft needs to actively seek

it’s environment, not only to detect potential risks, but also to validate it’s position. As

external data cannot be relied upon to provide information on all collision risks, direct

sensing capabilities are required.

2.4 Proposed Automated Taxiing Systems

The current state of automation within aircraft ground operations is highly limited, with

both manned and unmanned aircraft lacking a suitable method of taxiing without hu-

man control. Although the techniques used in military ground operations are functional,

they are unsuitable for civil use due to incompatibilities with the civil aerodrome envi-

ronment. In addition, although the current use of manual control typical of civil aero-

dromes could continue albeit through remote control, the dependence on data links for

safety critical movement is not suitable for environments with none-cooperating users.

From the current systems in use, it is clear that development is required to allow civil UAS

to taxi.

Although this work is motivated by the lack of any current system in operation, it is

not the only work intending to improve aerodrome surface operations. For civil ground

operations, a large focus area for research is improving efficiency. As the levels of traffic

at aerodromes have increased, aircraft are spending more time taxiing to and from the

runway. Often this is countered by physically expanding the airport faculties, building

new runways, terminals and taxiways. However this is both unpopular with the aero-

dromes neighbours and highly expensive. Instead, advances in technology have been

adopted in an attempt to increase pilot’s situational awareness in an effort to increase

efficiency. Several systems have already been proposed for use on current manned air-

craft, although the level of automation varies between systems. Due to the difficulties

in bringing such a system to fruition, most have not yet progressed beyond the concep-

tual stage. However, the intentions and techniques that these systems intend to use can

still be explored. Therefore, this section examines several proposed systems which are

intended to automate taxiing in some way.
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2.4.1 External Recovery

All surface movement for aircraft can be divided into two categories based on the method

of drive; self-propelled or externally drawn. Although the term “taxiing” is most com-

monly applied to the act of an aircraft moving through the aerodrome under it’s own

power, the term is equally applicable to any form of ground movement, even if the driving

force is provided by an additional vehicle. As stated in section 2.3.2, a common method

of recovering military UAS is to dispatch a ground vehicle specifically designed to oper-

ate at that airfield. As military airfields are typically single user (i.e. the ATC, aircraft and

ground vehicles are all under the same chain of command) this allows manual retrieval

of aircraft in a way which could not be replicated directly within civil conditions.

However, although the exact methods used at military aerodromes may be unsuit-

able, the use of an external recovery vehicle may have potential. Whilst the majority of

civil taxiing is currently achieved under an aircraft’s own power, external assistance ve-

hicles (i.e. ‘tugs’) are already in use at civil aerodromes . At large aerodromes, tugs are

commonly used to help aircraft manoeuvre in ways that cannot be achieved with its en-

gine set-up. As the majority of airliners cannot reverse, the most common use of tugs is

backing aircraft from the gate onto the taxiway. Traditionally, tugs have only been used

far away from the main runway. However, more recently several different organisations

have undertaken research into using custom towing vehicles throughout the entire aero-

drome.

An early example of such a system was the Automated Aircraft Towing Vehicle System

(AATVS) [64], proposed in 2001. The AATVS assigns an unmanned tug to each taxing

aircraft with the intention of using the tugs driving force, rather than the aircraft engines

whilst on the ground. The main difference between this proposed system and traditional

aircraft tugs lies in the fact that the tugs are unmanned, being able to drive to and attach

onto the aircraft via remote control. Despite being unmanned, the level of automation is

quite low; once the aircraft is undertow, the ground vehicle is controlled by the pilot in

the cockpit. This enables the aircraft to taxi under the same authority as it would when

using its own engines, only with a great improvement in fuel efficiency. As aircraft are

specifically designed to be most efficient in flight, at low speeds on the ground all aircraft

engines are far from their optimal design point and often run very inefficiently. The use

of a custom towing vehicle completely removes this inefficiency, as the fuel supply used

on the ground is entirely separate to the fuel required for the mission.

Extending this principle to using a tug to retrieve UAS would have additional benefits.

Unlike manned aircraft, UAS operating on the ground will require ground specific equip-
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ment, such as sensors, processing units and communications equipment, additional to

the equipment used in the air. By transferring this equipment onto a ground vehicle, the

overall weight of the aircraft can be reduced. Therefore, in addition to the fuel saving

made by not using the aircraft’s own propulsion systems on the ground, this allows the

aircraft to also be more efficient in the air.

Since AATVS was originally conceived, alternative systems which also make use of

tugs have been proposed. Perhaps the most well developed system is TaxiBot [88], which

has already undergone real world testing at Frankfurt Airport. As with the AATVS, the

primary aim of Taxibot is to save fuel by not using the aircraft engines to taxi. However,

the system differs as it intends to include higher levels of automation. Although current

testing is being performed under remote control, the eventual aim of the project is to fully

automate the movement of the tug whilst it is not attached to an aircraft, enabling it to

navigate to aircraft autonomously. To achieve this, the system will already be capable of

route planning and collision avoidance to an acceptable level. Therefore, extending the

system to function with UAS would probably not require a great deal more development.

Automating the movement of the system whilst towing an aircraft could be consid-

ered the final level of automation, and is the primary goal of another system intended for

automating aerodrome activities. As with the AATVS and TaxiBot systems, the anyTRACS

system [11] attempts to improve ground operations through the use of automated tugs,

However, compared to the other systems, anyTRACS is designed to integrate with the

datalinks currently under development for aerodromes. Rather than rely on any form

of human control, the intention is that all taxiing can be performed based only on in-

structions from GTC. Whilst still in the conceptual phase, the system promises increased

safety and efficiency whist also reducing cost and fuel consumption.

This increased autonomy for ground vehicles offers additional advantages when they

are considered in terms of their integration into the greater aerodrome environment. As

the towing vehicles are stationed at the aerodrome, the level of customisation specific to

that aerodrome can be far higher than a generic system designed to work at any airfield.

This includes a more accurate ‘knowledge’ of the airports layout, and ensures compatibil-

ity between the system and the aerodrome in terms of communications and facilities. As

it likely that the ground towing vehicle will be directed from GTC, the overall situational

awareness of the control tower should be much greater if all aircraft were to use the same

system. In the event of any failure in the autonomous control system, the ground vehicle

could also be operated remotely by a human operator, without the need to access the

controls of the UAS.
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Despite these advantages over traditional aircraft-propelled taxiing, the concept of

using custom towing vehicles for all stages of taxiing has yet to gather much interest. This

is perhaps due to the drawbacks which come with such a system, the most inhibiting of

which is most likely the extensive infrastructure required. For large commercial airports

that already operate a fleet of tug vehicles, using tugs for all taxiing or even upgrading to

autonomous versions might not require a huge investment relative to the airports finan-

cial income. However, many small airfields operate with a minimum of facilities, making

such a system financially impossible. This would restrict the system to aerodromes that

could afford it, limiting where aircraft dependant on this system could land. Not only

would this impact operations in terms of practicality, it would also affect safety as it lim-

its the ability of any dependant UAS to divert to other aerodromes.

For the aerodromes that can afford the infrastructure, there is also the practical im-

plications of having many extra ground vehicles. To avoid leaving stationary aircraft in

dangerous positions, such as on the runway after landing, the tug vehicles would need to

move quickly and accurately. However, an increased number of moving vehicles will gen-

erally increase the risk of collision. Whilst this could be mitigated by driving the ground

vehicles more slowly, the efficiency of the aerodrome would suffer which is generally un-

desirable.

Other complications of using autonomous tugs include the need to operate a suf-

ficient number to account for mechanical failures. If the aerodrome expects to move

many aircraft at a time, a great number would required and therefore this solution would

be very expensive. More vehicles also increases the risk of mechanical failure during op-

eration, as a fault in either the aircraft or the tug could stop the aircraft from taxiing. Again

this could impact both efficiency and safety across the entire aerodrome. Finally, the in-

terface between the aircraft and the tug would need to be established and universal. If

not, separate systems would be required, further complicating the situation. The system

would also need to be compatible with all aircraft sizes without putting undue effort into

changing the design of the aircraft. Otherwise, the potential exists that the system could

influence the physical design of UAS in a way which hinders the aircraft during flight.

Whilst self propelled aircraft are less efficient on the ground and potentially need to

carry extra weight, they are less dependant on the aerodromes facilities. By operating

more like current manned aircraft, UAS could integrate into current aerodrome opera-

tions instead of having current operations change to include UAS. Efforts to improve

self propulsion are also on-going, with aircraft movement no longer limited to using the

main engines. A joint project known as the Electric Green Taxiing System (EGTS) is in
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development by Airbus , in conjunction with Honeywell and Safran [51]. The EGTS is

currently being trialled on Airbus Jet liners and aims to remove the need for main engine

use during taxi. Instead, the electrical power generated by the aircraft’s Auxiliary Power

Unit (APU) is used to drive an electric motor embedded in the nose wheel. This allows

the aircraft to be driven much like a car, propelling the aircraft using the wheels. In ad-

dition to being more fuel efficient, the aircraft is also more manoeuvrable and is able to

reverse, a task that is usually only accomplished using tugs.

Despite the increased weight of the motor being carried during flight, the fuel savings

during taxiing reduce the total fuel used greater than that lost carrying the motor. Should

future UAS be equipped with an electrically driven nose wheel, the fuel saving element

of the additional ground vehicles is no-longer a decisive advantage. Therefore, whilst a

separate vehicle for taxiing is still a viable alternative for large airports, the infrastruc-

ture necessary and the disruption to current aerodrome operations puts it outside the

scope of this project, and it is assumed that the aircraft will be operating under its own

propulsive power.

2.4.2 Terminal Area Path Protocol

As the use of tugs has not gathered much momentum, alternative research has focussed

on solutions which do not require additional ground vehicles. For manned aircraft, prob-

ably the most well defined proposal for automated taxiing is the proposed expansion of

the Terminal Area Path (TAP) protocol so as to also encompass ground activities [69].

However, in order to make use of TAP on the ground, the proposal suggests a method of

automating taxiing in direct opposition to the NGRM from the JPDO [55]. As outlined in

NGRM, the JPDO suggests that future aerodromes would benefit from the introduction

of data-link communications as it would allow authority to be delegated to individual

aircraft, allowing the GTC to focus on safety critical issues. By comparison, the proposed

extension to the TAP protocol aims to use the same data-links to do the opposite, giving

total authority to the GTC.

The current TAP protocol is a concept recently introduced by the Radio Technical

Commission for Aeronautics (RTCA) and is intended to be broadcast as part of the Ground-

Based Augmentation System (GBAS) located at aerodromes. In addition to rectifying GPS

position data, GBAS was designed to allow for different sorts of information to be trans-

mitted, based on a series of message ID’s. Of the 256 total possible types of GBAS broad-

cast, only 8 are currently defined, of which TAP is the most recent. The primary purpose
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of TAP is to assist landing aircraft by providing a GPS defined descent path. Whilst a

straight approach with a constant descent is typical of most aerodromes, certain run-

ways require complicated manoeuvres before landing can take place. This can include

varying the rate of descent, turning and even climbing depending on the aerodrome in

question. Unlike the traditional glide slope, TAP provides a four dimensional path to fol-

low, listing both spacial co-ordinates and the time at which the aircraft should reach each

point, therefore dictating its speed. The TAP data consists of ‘legs’ (straight sections) and

turn radii, allowing the aircraft to line up with the runway after following a complex path.

Not only is this useful as a pilot aid, it can also be used completely autonomously and

has shown promise for use in UAS landings.

The proposed extension to TAP suggests that the same protocol can be extended for

use on the ground [69]. As the entire aerodrome is well within the GBAS area whilst under

taxi, the proposed taxi-route could be provided to the aircraft using a GPS defined path,

rather than the more abstract existing method which uses semantic instructions (such as

‘follow taxiway bravo’). As such, the co-ordinates could be used to directly control the air-

craft, assuming DGPS accuracy to be sufficiently high. The role of the human pilot would

be much like the proposed role for future civil UAS operator, visually confirming that the

system is performing correctly and providing a means of communication between the

aircraft and the GTC outside of the established data-link. The human pilot would also be

responsible for ensuring that the upcoming taxiway is free of collision risks, and as such

a similar sensing solution would be required for any UAS.

In addition to providing a highly accurate taxi-route to each aircraft, the advantages of

TAP include the ability to always have up-to-date information on the position and move-

ments of all aircraft, as the GTC would essentially be in control. As the local aerodrome

GTC is responsible for broadcasting TAP, any changes to the runway layout can easily be

reflected in the GPS coordinates provided. The time based coordinate system also allows

for aircraft separation to occur on the ground automatically, without the need for vehicle

to vehicle transmission, or any form of autonomous taxiing.

However, the use of ground-based TAP also has disadvantages. The biggest is that

the use of TAP requires all aircraft to have the same functionality. Although it could be

suggested that this might be the case several decades in the future, it is unlikely to be

available on all aircraft by the time UAS are ready to operate from civil aerodromes. To

avoid pushing the economic cost onto the other aerodrome users, it would be better for

an ATS to be compatible with current taxiing methodologies and not require active par-

ticipation from other users.
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In addition, of some concern is the increased workload pushed onto the GTC. Al-

though such an activity would mostly involve computation, rather than manual human

effort, the requirements for controlling all aircraft within an aerodrome would represent

a significant increase in required computational power. Currently, as individual aircraft

are responsible for the majority of their own navigation, the GTC simply provides path

planning based on the local knowledge of the operators. In extreme cases for large aero-

dromes, more efficient routing can be introduced by the use of relatively simple path

finding algorithms (such as time-dependent A star searches), to select the shortest path.

This can then be transmitted to the aircraft as a simply list of taxiways to follow. Com-

paring this to TAP, using exact GPS coordinates requires a far higher level of accuracy

in terms of the transmission. The need for real-time position monitoring and control

feedback over time would likely result in an increase in data that must be transmitted,

despite the reduction in RT. At busy aerodromes this could result in increased delays

between communications due to the other aircraft requiring updated TAP information.

Finally, although TAP could be used to improve the routing information for aircraft,

it cannot be considered a full ATS. As the GTC cannot directly monitor the entire aero-

drome, all aircraft must also continue to assess whether the TAP route is safe and inde-

pendently decide on whether the instructions should be followed. As such, although off

board planning reduces the computational burden on the aircraft, it does little to actually

reduce the overall computation required.

Removing computation from the aircraft also introduces potential problems during

communication system failure. Although the control of the aircraft is performed on board,

communication failure prevents the aircraft from receiving the route it needs to follow.

For manned aircraft, the human pilot can simply return to aerodrome maps and navigate

manually. However, any UAS specifically designed to function with TAP may be entirely

unable to function without the TAP communications. If additional capability were added

specifically to allow UAS to continue in these situations, the majority of development to-

wards a system which does not depend on external data would have been completed.

Therefore, a better approach would seem to increase the capabilities aboard the UAS,

rather than rely on even more external control.

By keeping the autonomy internal to the UAS, the system will generally have to carry

more equipment in the form of sensors and processing hardware. However, it has numer-

ous additional benefits over a distribute approach. By designing the system to interact

with other aircraft and the GTC like a human pilot, the system should be able to work

anywhere, without any specialised equipment on the ground. In addition, the need for



2.4 Proposed Automated Taxiing Systems 31

high bandwidth can be mostly negated. As much work has already gone into design-

ing autonomous ground vehicles, ideas which are common can be extracted and applied

here, simplifying the overall design process required.

2.4.3 Low Visibility Assistance System

In complete contrast to the proposed use of the TAP protocol as outlined above, the LVAS

developed by National Aerospace Laboratory of the Netherlands (Nationaal Lucht- en

Ruimtevaartlaboratorium) (NLR) has been developed in line with the predictions for fu-

ture aerodromes laid outlined in the NGRM [18]. As the name suggests, the system has

been conceived for use on manned aircraft when inclement or foggy weather interrupts

airport operations. When weather conditions worsen, the visibility for GTC staff in the

the control tower decreases. Without being able to see the aircraft on the ground, oper-

ators must instead confirm the location of aircraft via radio telephony, a process which

takes far longer than looking out of the window. In addition, taxiing aircraft must closely

monitor radio transmissions in order to be aware of other aircraft that might be con-

cealed by the fog.

The purpose of the LVAS is to provide greater levels of information directly to the air-

crew. This is achieved using a combination of A-SMGCS, AMM and CPDLC. By using all

of these systems together, the pilot’s situational awareness can be greatly improved.As

the LVAS cannot control an aircraft directly it is only a pilot aid, rather than an ATS. How-

ever, the system architecture required for LVAS is comparable to an UAS operating purely

on data-links and without voice communication capabilities. As such, many of the tech-

niques used to create this system are essentially what would be required for a full ATS.

LVAS is included here as it is the most complete demonstration of the improvements

in situational awareness which can be introduced through the use of data links. After it

was developed, the capabilities of LVAS were tested through simulation, using a virtual

airliner controlled by experienced human pilots [18]. Simulating low-visibility condi-

tions and a busy aerodrome, the pilots were tasked to taxi through the aerodrome with-

out direct verbal RT communication with the GTC, instead relying only on information

obtained through data-link communication via LVAS. To complete this kind of task, LVAS

incorporates many different systems.

As direct contact with the GTC was avoided, routing information was not provided.

Instead, LVAS uses path planning algorithms to calculate the most efficient route, using

the Integrated Aeronautical Information Package (IAIP) database to understand the air-
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ports layout. The map data is also used to aid in interacting with other aerodrome users.

Using the data obtained via CPDLC, the positions of known aircraft were used as part

of the path planning process to attempt to avoid entering conflicts. If the aircraft gets

with close proximity of others, Closest Point of Approach (CPA) algorithms are used to

predict potential conflicts. CPA operates by defining a safe zone around the aircraft and

then alerting the pilot if any other aircraft is predicted to intersect this area. To allow for

minimal clearance at busy aerodromes, accurate size data would required for all aircraft.

However to simply ensure safety when dealing with aircraft of various sizes, a sufficiently

large safe zone was used instead. The CPA system then warns the crew to varying levels

depending on the remaining time till potential collision. Where possible, the system also

gives advisory information based on the type of conflict which is occurring:

• Crossing

– Occurs where aircraft are attempting to cross paths.

– Can be resolved by obeying the rules on who has right of way.

• In trail

– Occurs where a following aircraft catches up to the leader

– Should primarily be resolved through speed adjustment. Where there is suffi-

cient room overtaking is viable, whereas for broken down aircraft, re-routing

is a required.

• Head-on

– Occurs when aircraft travel towards each other on the same taxi way.

– If the taxiway is not wide enough to allow aircraft to pass this conflict cannot

be solved as most aircraft cannot reverse. Following one-way rules in plan-

ning and communication with the GTC should prevent this from occurring.

Both the route planning and CPA collision advisory systems were shown to be of great

benefit to pilots, providing an efficient route whilst also preventing any risk of collision

with known aircraft. However, a current limitation of LVAS is that all guidance and col-

lision risk abilities are based on data provided through CPDLC. As such, only aircraft

broadcasting their own position were known to the system, requiring the pilot to con-

tinue to visual identify any other collision risks.
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As non-cooperating aircraft are likely to continue to exist for many decades, future

civil UAS will also need a method of detecting unknown collision risks without relying

on data-links. However, a large advantage of UAS is that a single system could be used

to combine all the relevant data. During the aforementioned simulation, the visually

detected aircraft were avoided by one system (the human pilot) whilst the prior-known

aircraft were avoided by another LVAS. For an UAS which uses both communicated data

and sensor based aircraft detection, all collision risks could be tracked using a single sys-

tem, with a singular avoidance method (such as CPA) used for all risks.

In scenarios where the GTC did communicate verbally, the paper concludes that us-

ing the LVAS, pilots can operate in low visibility conditions nearly as efficiently as in

good weather. As such, LVAS has shown the benefits of increased situational awareness

through data links and an autonomous taxiing system using these features is a viable

option. The remaining challenges involve integrating a sensing method that is just as

effective at identifying collision risks as a human pilot. Once this is resolved, the situa-

tional awareness element of an ATS system could be considered complete, although such

a system would remain dependant on high level of external data.

2.4.4 Airbus Automation: OANS and ‘Trains’

The previous systems are pilots aids which simply provide data. Before moving to full

automation, a possible ’stepping point’ are ‘shared-authority’ systems, with both the hu-

man pilot and an automated system sharing some responsibility for control. As such sys-

tems require a high level of avionics, current proposals for shared authority systems are

designed to build upon the most modern of avionics for large airliners. Focussing spe-

cific on Airbus, the following proposal is intended to become part of the Onboard Airport

Navigation System (OANS) currently installed on the A380 and A350, which essentially

combines a live aerodrome map with other data, much like AMM.

The proposed system from Airbus [96] is designed to help alleviate aerodrome con-

gestion without modifying the aerodrome layout. Delays at aerodromes often occur

while aircraft are waiting to taxi. As current pilot situational awareness is limited to what

can be observed from the cockpit, large safety margins and extended periods of observa-

tion are used by pilots to avoid collisions. This delay is further extended as pilots often

perform additional tasks whilst taxiing. When following other aircraft, pilots often al-

low a larger separation distance than is required, in order to provide adequate reaction

time should the lead aircraft do something unexpected. As such, Airbus states that there
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is usually sufficient room for more aircraft, but due to inefficient taxiing procedure the

taxiways are often artificially saturated.

During current aerodrome operations, a common instruction given by GTC is to fol-

low another aircraft. For manned aircraft, pilots currently perform this action visually,

recognising the aircraft by its type and registration and then following it. By automat-

ing the act of following another aircraft, both the pilot’s workload and the distance be-

tween the aircraft can be reduced, allowing more aircraft to taxi simultaneously. The

proposed system functions by grouping aircraft into ‘trains’, with multiple aircraft fol-

lowing a leader. Within each train, the lead aircraft remains under pilot control, with the

speed, heading and position of the leader broadcast to a central control system before

being relayed to other aircraft. The system has two proposed level of operation:

• For the most basic level, the separation distance and closing speed of following air-

craft are monitored by the central system. By altering throttle settings, a safe sep-

aration distance is automatically maintained from the preceding aircraft, reducing

the pilots workload and the overall length of the train.

• At the higher level, it is proposed that the following aircraft would also steer them-

selves, following the same route as the lead aircraft. It is assumed that the lead air-

craft followed a safe route and therefore subsequent members of the train should

be safe to follow that route as well. To stop scenarios where large aircraft attempt

to fit through small gaps, aircraft larger than the current leader will become the

leaders of a new train.

Additional elements of the system include the flexibility to allow aircraft to leave and

join, as well as the ability to include non-cooperating aircraft; provided the aerodrome

could accurately track the movement of a non-cooperating aircraft (something which is

available at some large aerodromes) other aircraft could follow behind it. The main draw-

back to implementing ‘trains’ is the immense large of infrastructure required, both at the

aerodrome and on board each aircraft. In addition, as all aircraft receive control com-

mands from external sources, there are also safety concerns over data loss and security

vulnerabilities.

For unmanned aircraft, the concept of having the UAS follow a lead aircraft is a dif-

ferent method of achieving autonomous taxiing. If an ATS were to replicate the abilities

of a human pilot in order to operate at a civil aerodrome, the ability to detect and track

other aircraft would be essential. If speed and position data for specific aircraft were
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made available via CPDLC, the UAS could follow a lead aircraft much more easily, as sug-

gested in this system. This technique also has the obvious drawback of requiring another

vehicle to be both present and heading towards the same destination. As this is not guar-

anteed, this method can only be used in certain conditions. However, where it can be

used it offers a far simpler method than having the aircraft attempt to perform all actions

of a pilot by itself. Therefore, this proposal to use lead vehicles opens a new method of

autonomous UAS taxiing. Rather than having the UAS perform most of the calculations,

following a lead aircraft could reduce most of the difficulties. However, the obvious short-

comings of this approach would be if there were no other aircraft to follow, or if the UAS

itself were to be ‘leading’ a train.

2.4.5 UGOMS

As the previous examples have alluded to, despite ongoing efforts to automate taxiing for

both manned and unmanned aircraft, there are very few examples of a complete system.

From a review of literature, only one publicised example of a system designed to com-

pletely automate military UAS taxiing has been found. The Unmanned Aircraft System

Ground Operations Management System (UGOMS) is currently the most advanced auto-

mated taxiing available, and represents the cumulative developments of several different

parties over a number of years. Despite being the only notable example, the system is

well formed and is capable of performing most of the functionality required for auto-

mated taxiing [42] [32].

Citing the impact of delayed communications on remote taxiing as the primary mo-

tivator, UGOMS is intended to be a taxiing system which works without direct operator

input. In addition to automated taxiing, the system also includes many of the require-

ments for autonomous taxiing, in the case of external communications failure and GPS

loss. These capabilities are provided through direct sensing, which is achieved using a

computer vision system. The methods used when designing a machine vision system

are dictated by what data is required. For example, a key function of UGOMS is to en-

able military UAS to continue taxiing in the event of GPS denial [32]. Without GPS data,

machine vision is used to determine the aircraft’s position through visual comparison of

surrounding terrain to known map data.

As UGOMS was designed for military use, many elements of the system are incom-

patible with civil usage. However, as this work is similar in both hardware and scope,

UGOMS provides examples of collision risk detection technologies which have been pre-
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viously implemented. As such, UGOMS will be examined further in Section 4.3.2.

2.5 Ground Infrastructure

From the section above, it is clear that many of the proposed improvements to aircraft

ground operations rely on the introduction of additional equipment at aerodromes: ei-

ther ground based navigation aids or external recovery vehicles. For UAS, the reliance

on external equipment is nothing new. Following the rest of the aviation industry, this

work uses the term Unmanned Aircraft System(s) (UAS) rather than the somewhat older

term Unmanned Aerial Vehicle (UAV), in order to convey that the system is comprised of

more than the aircraft itself. As all UAS are dependant on observers and operators outside

of the aircraft platform, the hardware available on the ground can be just as important

as the airborne systems. Similarly, additional ground infrastructure has been used to

improve capability at aerodromes for decades, with technologies such as ‘Autolanding’

being common at most large airports around the world.

It could be argued that if UAS are only expected to operate from certain aerodromes,

an ATS could be tailored specifically for these locations. Systems such as A-SMGCS cur-

rently rely on aircraft communicating their position via data-link. However, several aero-

dromes are also incorporating Surface Movement Radars (SMR) and machine vision sys-

tems within A-SMGCS in order to track the movements of all vehicles on the ground [29].

If this information was provided to UAS, the need for active collision risk detection is

greatly diminished as the GTC would be expected to provide the information to the air-

craft.

However, there are also disadvantages to relying on systems external to the aircraft.

As with other ground based systems, the financial requirement for the installation and

upkeep of ground equipment would likely be the responsibility of the aerodrome. When

civil UAS are first introduced, it is unlikely that all airports will immediately allow UAS

access. Smaller aerodromes with less traffic are likely to offer UAS access first, but may

lack the budget required for the equipment.

In addition, all aircraft operating in civil airspace must follow established regulations.

If UAS can only operate from facilities with ground based equipment, the established

principles of diverting to another aerodrome would only be possible if the other aero-

drome were also suitably equipped. Furthermore, it would also be unwise to design

UAS which are dependant on specific systems which might never be adopted. There-

fore, aerodrome based equipment has not been considered, and the challenge of UAS
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taxiing must be met by a capability improvement on UAS themselves. This work will be

undertaken with the current systems and procedures in place at civil aerodromes.

2.6 Conclusion

This chapter has provided an overview of the current state of UAS ground operations,

with the intention of providing context for the rest of the work. By reviewing the basic

regulations that all aircraft must obey within a civil environment, it is easy to conclude

that the methods currently used by UAS are unsuitable for use at civil aerodromes. As

present-day UAS are segregated from manned aircraft whilst on the ground, many mod-

ern UAS do not use standard operating procedure; instead using retrieval methods which

are unconventional and incompatible with the aforementioned regulations. As such,

civil UAS will need to use different methods. The inability to operate in non-segregated

aerodromes represents a large barrier to bringing UAS into the civil airspace, with au-

tomated taxiing and aerodrome operations already identified as a research gap within

Europe [36].

Focussing on ground operations within civil aerodromes, present operating proce-

dures continue to rely on manual control, with very little automation used during taxi-

ing. As a result, in contrast to earlier efforts to bring airborne automation to UAS, there

are no existing ground based systems to simply copy from manned aircraft. In addition,

although the potential benefits of increased automation has resulted in several potential

systems being proposed for civil UAS taxiing, most are unsuitable due to there funda-

mental concepts involving a human pilot. Due to civil regulations requiring a pilot to

communicate and make decisions, many of these systems do not represent entire ATS

but instead are more highly advanced pilot aids and could not be simply adopted by

UAS.

Ignoring the incompatible operating procedures, the most ‘feature complete’ ATS are

currently designed for military UAS. Many such systems can already perform automated

taxiing, relying on satellite based navigation solutions. However, the complexity of the

civil aerodrome environment precludes a simple automation system based on position

alone. Although military operators can function with only external observers for collision

avoidance, such a system would not be suitable for civil aerodrome use. Despite rapid

changes in technology, the interaction with legacy systems and none-cooperating users

limits the ability to rely on a single system to govern the entire aerodrome.

Moreover, relying on radio-navigation as the sole provider of location data is poten-
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tially dangerous in the event of communications failure (or delay). As DGPS offers no

method of position confirmation, even static collision risks cannot be avoided if external-

localisation systems are incorrect. Furthermore, a shared-autonomy approach (such as

GPS driven taxiing with human collision risk detection) is also insufficient as any ap-

proach which relies on external control can be considered unsuitable.

As conventional aircraft could also benefit from automated taxiing, the potential ex-

ists to create a universal system which could be used by all aircraft. However, the large

variety of civil aerodrome users again makes this difficult. As many civil aircraft oper-

ate with minimal equipment, implementing any system which relies on all aircraft and

aerodromes upgrading to said system is infeasible. Instead, in order for UAS to operate

alongside safety, it is more practical for the capability of pilots to be replicated. For the

system to operate in any aerodrome layout necessitates both flexibility and adaptabil-

ity, with a generic approach capable of responding to any problem, regardless of local

equipment levels. The inability to rely on systems external to the aircraft indicates the

strong need for an ATS on board a UAS. The transition to automated taxiing will require a

system with many of the capabilities currently provided by the human pilot. Rather than

relying on ground based infrastructure, an ATS contined entirely onboard the UAS is the

most suitable option.

2.6.1 Research Gap

As UAS already require many sensors to operate, a range of equipment can be consid-

ered available as standard (i.e. DGPS, compass, airspeed sensors). Of these sensors, only

Global Navigation Satellite System (GNSS) (such as DGPS) is designed to provide position

information. As previously stated, depending solely on external position data is danger-

ous as there is no form of validation to confirm this information to be correct. In addition,

amongst typical avionics there are no sensors capable of detecting obstacles for collision

risk detection. These problems could be overcome by including highly specialised sen-

sors, such as Laser Imaging, Detection and Ranging (LIDAR), in addition to ground based

localisation tools designed to track the movement of any UAS.

However, the barriers which prevent civil UAS ground operations are not only tech-

nical, but also economic. The inclusion of new equipment not only increases the up-

front cost of purchase, but also represents additional payload which will continue to in-

crease operating costs throughout the lifespan of the UAS. To work around this problem,

the simplest solution is to only make use of the equipment available on board an UAS.



2.6 Conclusion 39

Furthermore, to prevent UAS from becoming limited to only using certain aerodromes,

the solution should be capable of undertaking automated taxing without any additional

ground equipment.

Aside from conventional avionics, the only other form of sensor commonly carried

by UAS are cameras; included to provide additional information to the remote pilot. Al-

though not original designed to be used as a sensor, images are extremely data rich and

a forward facing camera is likely capable of performing both collision avoidance and lo-

calisation.

In addition, using the camera to extract information has additional benefits. Beyond

confirming localisation and providing collision risk detection, a camera can be used to

extract a wider variety of information. In 2004, the Joint Aviation Authorities (JAA) stated

that a large risk with UAS in civil aerodromes was the inability to convey visual informa-

tion in the same manner as a pilot. For civil taxiing, visual information such as waiting

lights on runway entrances and surface markings convey much of the required informa-

tion. The use of surface markings at aerodromes is so important that the Group of Airport

Safety Regulators (GASR) performed a study to determine the impact of UAS who cannot

follow the lines [103].

Therefore, this work aims to improve the ground operating capabilities of UAS solely

through the inclusion of visual data in addition to existing UAS avionic systems. The re-

search question is whether it is possible to replicate (or exceed) the capabilities of human

pilots in aerodrome operations, through mimicking the visual capabilities of human pi-

lots with a single forward facing camera.



Chapter 3

System Level Study

The goal of this work is to produce an Automated Taxiing System (ATS). Although the

term ATS infers a single system solution, many elements are required to function together

in order to ensure safe aerodrome traversal. Therefore, rather than a single algorithm or

technique, the ATS should consist of multiple subsystems working together to achieve

the final goal. This chapter will present a system level study of the ATS, briefly outlining

the approach being taken, the required sub-systems and how they interact. As the cre-

ation of a full automated taxiing system is beyond the scope of a single thesis, this chapter

also highlights elements which will not be explored, along with the methods used to work

around their absence.

3.1 Outline of the problem

The problem that will be addressed in this thesis is how an UAS can navigate from one

position in the aerodrome to another, without direct human control. If the aircraft was

simply a large ground robot, established techniques from the field of mobile robotics

could provide a solution; as all large UAS operate with external localisation aids (such

as GPS) and all civil aerodromes should be well-mapped, such a task could be accom-

plished using a simple steering control strategy based on current position and compass

heading. However, although such a method has been used to achieve military UAS taxi-

ing (in which external human observers keep constant watch for collision risks) this ap-

proach would be far from appropriate for civil operations. For this work, the problem is

not how to achieve the manoeuvre, but how to do so both safely and reliably.

This is a difficult problem for several reasons. Despite being far more constrained

than other real-world environments, aerodromes are still uncontrolled, in that the sur-
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roundings and users change without input from the UAS operator. Although permanent

fixtures are unlikely to change and can be avoided using only map data, the chance of

colliding with other obstacles is too great to assume a clear path from start point to tar-

get destination. As such, additional sources of information will be required which convey

the position of other collision risks.

Standard avionics are somewhat lacking in this area. Although well equipped aircraft

can utilise technologies such as radar data and Traffic Collision Avoidance System (TCAS)

whilst airborne, there is minimal support between aircraft on the ground. Where such

support does exist (usually via ADS-B), only other similarly equipped aircraft can broad-

cast their own location, leaving all other potential collision risks as unknowns. In ad-

dition, dynamic objects (such as ground vehicles and pedestrians) and static objects

(which are present but are not on the aerodrome map) will also need to be avoided.

Therefore, as external data sources and prior data cannot be relied upon, direct sens-

ing of the environment is required. Again, standard avionics usually lack short range

sensors, as they are of limited use whilst in flight. As any additional sensors will add

weight to the aircraft, the viability of sensor types must also include their mass. As any

increase in the payload mass of an aircraft mass decreases range and endurance, some

sensor types may be ineligible for use due to their impact across the entire operational

role of the aircraft. Which ever sensor is used, the chosen approach must be highly robust

and able to handle both typical conditions in addition to unexpected objects.

Due to the safety implications of an aircraft moving through a civil aerodrome along-

side conventional aircraft, the system must assert with high confidence that the route is

safe. Irrespective of the sensing equipment used, automated taxiing requires more than

basic feature extraction. After potential collision risks have been detected, interpretation

and situational awareness will be required. Rather than relying directly on the instan-

taneous output of a sensor, the system must incorporate a re-observation and tracking

methodology, which creates a form of situational awareness. This will require fusing data

from all possible sources into a coherent system.

Finally, in addition to the requirement to detect and avoid collision, the position of

the aircraft within the aerodrome must also be validated. Although localisation could be

achieved through GPS alone, GPS accuracy is highly variable depending on many factors.

GPS signals are very weak and as such are susceptible to signal segregation, localised in-

terference or even malicious manipulation. Originally only accurate to within 100m, ad-

vances such as DGPS have increased accuracy to within 5m [76]. However, this is still

sufficiently inaccurate for an aircraft to collide with a static structure, such as a build-
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ing. If only a single data source were relied upon for position data, any inaccuracies in

this data could have dangerous consequences. Although direct sensing could be used

to prevent collision with static risks, other aerodrome users rely on aircraft maintaining

correcting positioning for safety. In the most extreme, a UAS with inaccurate position

data could commit a runway incursion, becoming a collision risk for landing aircraft.

Instead, to produce a robust and accurate solution, the navigation problem should

be solved through the use of as many sources of data as possible. Therefore, in addition

to GPS, the vehicle’s own sensors will be used; with the intention to confirm or improve

upon external position data. Although it is not expected that an UAS will ever need to taxi

without any form of external assistance (as the majority of UAS cannot fly in GPS denied

environments), the intention is that this work should allow for operation without GPS

data, but will mainly seek to simply build upon it.

3.2 Research Scope

As both collision avoidance and localisation depend upon direct sensing, the research

scope is already narrowed to identifying objects within the environment and determin-

ing their position relative to the UAS. In addition, the scope of this research is further

narrowed by the following factors, which will be discussed below:

• UAS operational area within the aerodrome

• Regulatory restrictions

• Hardware available on board the UAS

3.2.1 Operational Area

In aviation, the term ‘ground operations’ is used to define the activities of aircraft which

take place on the ground; including maintenance, loading and refuelling. As these ac-

tivities are often aircraft specific, they are not simple to implement in a generic manner.

As such, for this work the term Automated Taxiing System (ATS) has been chosen, as the

purpose of the system is specifically related to taxiing rather than ground operations as

a whole. Furthermore, the physical task of taxiing also extends slightly beyond the regu-

latory definition of ground operations. As any aircraft positioned on an active runway is

still a risk to other aircraft attempting to land, ground operations do not technically in-

clude aircraft movements on the runway, which are instead considered to be part of the
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flight. Despite this technical distinction, the method of taxiing does not differ whether

an aircraft is on or off an active runway. As such, this system aims to solve the taxiing

problem regardless of where an aircraft is within an aerodrome.

3.2.2 Regulatory Restrictions

With the predicted introduction of civil UAS still many years away, it is likely that widespread

use (and therefore the requirement for a full ATS) could still be decades in the future.

This firmly suggests that the work undertaken here is early stage research, and as such

should endeavour to investigate the most contemporary methods available. In recent

years, data fusion and artificial decision making has improved dramatically through the

use of machine learning techniques, such as ANN. Related applications, such as Self

Driving Cars (SDCs), have already demonstrated the use of ANN for urban scene inter-

pretation and response [8].

However, aerospace safety regulations require that all aspects of control algorithms

are understood. As the internal functionality of the algorithms is typically hidden from

human users, regulatory approval of machine learning algorithms (such as ANN) for

aerospace use is unlikely. Similarly, non-deterministic techniques, where the output is

not entirely dependant on the input, are also unlikely as the end-result cannot be guar-

anteed. The use of machine learning and non-deterministic systems has already been

identified as a potential barrier to entry for new technology. From [116]:

“Existing adaptive/ non-deterministic algorithms have not been widely applied to safety-

critical civil aviation applications in part because of the lack of a mature process for de-

signing, implementing, and testing such algorithms.’

As such, these kind of methods are difficult to propose for use on an UAS when there

is no certainty that they could ever be used. Although at this early stage it may seem

unwise to limit the work based on unknown certification requirements, a grounded ap-

proach stands the best chance of producing a viable technique that could see real world

use. As such, this work will endeavour to use algorithms that are deterministic and fully

explainable. For this reason, techniques which use artificial learning have not been in-

vestigated.

A key element in the use of deterministic methods is that the system can be consid-

ered “automated”. When given the same input data, a deterministic system will always
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respond in the same way. As such although the system can make make decision outside

of the pilots input, it cannot ever make decision outside the scope of intended functions.

This form of highly adaptive but deterministic automation is known as specialised intel-

ligence (designed for solving a particular problem). No form of general intelligence (i.e.

artificial intelligence) will be explored in this work.

3.2.3 Aircraft Equipment

As the research required to bring UAS to civil airspace is expected to take many years,

the hardware and capabilities of future civil UAS are unknown. While it is possible to

make predictions based on current research, this may result in solutions that rely on ex-

pected developments which never come to fruition. Therefore, it has been decided to

work under the assumption that any automated taxiing system will only make use of cur-

rent aircraft hardware.

Although it is not implicitly stated in the aim section, as an Automated Taxiing Sys-

tem (ATS) is essentially a piece of software, the system should be generic enough to be

deployed onto any unmanned aircraft. This can be achieved by keeping the research

as platform independent as possible; avoiding the use of hardware which may be un-

available on certain UAS aircraft and instead using only systems which are common to

the majority of UAS. Conversely, assumptions should also be made about the minimum

level of equipment. Current manned aircraft are produced by a variety of different man-

ufacturers and carry a range of equipment on board. Despite it being likely that future

UAS will emulate the same pattern, unmanned aircraft are slightly more constrained as

the lack of a human pilot necessitates a minimum equipment level. In order to navigate

while airborne, all UAS must be equipped with a wide array of avionics, including Inertial

Navigation System (INS), airspeed sensors and a GPS receiver. Therefore, this equipment

is considered available for this work. In addition, unlike some current military UAS, the

ATS will be designed to only work with aircraft capable of safe self-propelled taxiing.

3.3 Direct Sensing Equipment

When considering the equipment available to an aircraft, most of the hardware required

to achieve automated taxiing functionality is already present (e.g. undercarriage, light-

ing, propulsion and communications equipment can all be assumed to be present on any

operating large-scale UAS). Despite this, all current taxiing methods (both manned and



3.3 Direct Sensing Equipment 45

unmanned) rely on human operators to provide functionality that is difficult to repli-

cate. Aside from verbal communication (which is discussed below in section 3.5), this

is usually in the form of collision risk detection and position confirmation, both done

through visual inspection. In order for the ATS to function with human oversight rather

than direct input, it must replicate the human capability to observe and understand the

surrounding environment. As such, a mixture of sensors and interpretative algorithms

are required.

Assuming that future UAS will not be overly dissimilar to current aircraft, a wide va-

riety of sensing equipment is already present on-board. However, current sensors are

typically designed for airborne use and are not suitable for use on the ground. The

majority of sensors used by current military UAS are either related to mission activi-

ties (commonly referred to as Intelligence, Surveillance, Target Acquisition, and Recon-

naissance (ISTART) equipment) or the operation of the platform itself [89]. To conserve

weight and volume, sensors are often employed in more than one activity at once. For ex-

ample, cameras used for surveillance are often also used by the pilots when commanding

the aircraft remotely.

A potential approach would be to include sensors specifically for ground operations.

Active sensors (such as LIDAR) are being introduced for similar purposes in self-driving

cars, due to their output being easily used for collision risk detection and even localisa-

tion. However, active sensors are typically energy intensive and add additional weight

which impacts a vehicles performance. In addition, as LIDAR operates on line of sight,

the sensor is typically positioned as high and far from the rest of the vehicle as possible

in order to prevent self obstruction. As the size of the LIDAR unit is usually proportional

to its detection range, larger units are able to use higher power and sense further; with

LIDAR systems intended for outdoor use often being bulky and heavy, consisting of a ro-

tating tower that protrudes from the vehicle. Although smaller LIDAR systems are avail-

able which could fit within even a small UAS airframe, the detection range of small LIDAR

is often limited, such that any detected collision risk would already be very close to the

UAS.

Therefore, although the output from a LIDAR sensing would provide data highly ap-

propriate for automated taxiing, it is unlikely that a small UAS will sacrifice flight per-

formance for a system that can only be used on the ground and hampers the aircraft

aerodynamically. As the time an aircraft spends on the ground is only a secondary con-

sideration, and as certification issues are generally prohibitive to new technologies, it is

unlikely that UAS will be fitted with this kind of sensing equipment, purely to improve
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their ground capability.

3.3.1 Cameras and Machine Vision

As active sensors are unlikely to be available, a different form of sensor must be selected

to use with the ATS. The alternative to active sensors are passive sensors, which rely on

external stimuli to gather information. As with active sensors, passive sensors depend

on specific mediums to function (i.e. microphones depend on sound, radiometers de-

pend on radiowaves etc). However, as the sensors only take in data, rather than output

a signals, they are usually far smaller, lighter and less power consumptive than active

sensors. The downside to passive sensors is that they require far more interpretation of

the received data. For active sensors, the difference between the outgoing and returning

signal is used to determine information about the environment. For passive sensors, the

incoming data is entirely outside of the sensors control and must be examined in full.

For remote sensing, the most common type of passive sensor are cameras. With the

only output from a camera being a standard two-dimensional image, a processing system

must be associated with each camera for interpretation, leading to the term ‘machine

vision’ (or computer vision). Although originally used in controlled conditions, machine

vision has proven to be extremely reliable and is now being used in increasingly varied

environments, with recent production road vehicles (such as Tesla Motors) fitted with a

camera and using machine vision techniques to provide ‘autopilot’ functionality [61], a

large step towards fully functional SDC.

An advantage of machine vision is that images are extremely data-rich. Therefore,

different techniques can extract significantly different data from the same image. As the

principle of machine vision is to mimic human visual interpretation, theoretically any

visual detection task performed by a pilot can be replicated. This suggests that a camera-

based system could be used to directly replace human interpretation.

Visual sensing has additional benefits when used for aerodrome operations, due to

large amounts of data being transmitted visually to pilots. As stated in Section 2.1.3, aero-

drome regulations require information about how an aircraft should taxi to be conveyed

using signals on paved runways and taxiways. Ground markings are defined by colour,

with white markings used on runways and yellow markings used for taxiing. In addition

to the centre line, taxiway ‘Stop Bars’ (where an aircraft should hold and wait for GTC

clearance) are also denoted by surface markings, indicating how visual detection is re-

quired.
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Unlike other sensor types, visual cameras are already in extensive use on unmanned

aircraft. As current UAS are operated as RPV, cameras are used to relay images back to

the human operators to interpret. Therefore, the majority of UAS are already suitably

equipped. As computer processors become ever more powerful yet smaller in physical

size, on board interpretation (i.e. machine vision) may not even require any change to

the UAS. The main hardware concern with using machine vision is that the cameras

must be positioned to provide good visibility during taxiing. As on-board cameras for

UAS are primarily designed for airborne observation, the main cameras are often under

slung and downwards pointing. As such, an additional forward mounted camera may be

required, although any UAS which has previously been taxied remotely is likely to already

have such a camera.

For manned aircraft, situational awareness is being improved by using camera sys-

tems mounted in areas which are hard for the pilot to see, such as in the tail, undercar-

riage and wing tips. With the increasing simplicity of digital cameras and the increased

size of airliners operating at aerodromes, the NTSB has recently recommended that all

large aircraft should be fitted with cameras on wing tips to help pilots see potential colli-

sion threats [50].

The main disadvantage of monocular cameras is the absence of depth data. For au-

tomated taxiing, the position of the aircraft relative to other objects is important. Sensors

which provide depth data directly allow collision risks to be detected and avoided with-

out any need to classify the information. In contrast, when compared to active sensors

(such as LIDAR) monocular cameras require significantly more processing of their out-

put.

Alternatively, stereoscopic cameras can be used. With wing tip collision representing

one of the most common incidents in all of aviation, there has already been an extensive

investigation into the use of computer vision to prevent collision [44]. Using wing-tip

mounted cameras in a stereoscopic camera set-up, it has been shown that the position

of objects captured by both cameras can be estimated. As the range of stereoscopic depth

estimation is dependant on the separation between the cameras, the wing tips of aircraft

could provide a method of long range distance estimation. As such, implementing a sim-

ilar stereoscopic system on a UAS could provide the information required for collision

risk detection.

However, requiring that all aircraft are fitted with wing tip cameras would place a

hardware restriction on the system. Instead, to ensure compatibility with as many differ-

ent UAS types as possible, it would be better to assume the more common configuration
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of a single nose mounted camera for taxiing. During movement, each aircraft is only re-

sponsible for maintaining it’s own position and avoiding collisions with other vehicles in

front of it. As such, a forwards facing camera should be sufficient, provided that other

aircraft behind the UAS are equally capable of avoiding collision.

Therefore due to their small size, low weight and ease of installation, cameras will

be assumed to present on all UAS and will be considered the main sensor in the inves-

tigation. It should be noted that when relying purely on passive visual cameras, such a

system would only be useful in good lighting conditions during the day. Although ma-

chine vision can be applied used with infra-red cameras (and therefore could be used at

night) for the sake of compatibility this has not been considered. In addition, in order to

capture more information, high resolution cameras will be assumed. As high resolution

images contain more information, this increases the processing required, reducing the

ability for the system to operate in real-time. However, as this system is designed for fu-

ture UAS, an increase in computational power can be expected and real-time operation

will not be a main focus of this work.

3.3.2 Test Equipment

As part of the ongoing efforts to bring UAS into civil airspace, many nations have cre-

ated organisations to assess the viability of civil UAS. Prior to its premature finish in

2015, the Autonomous Systems Technology Related Airborne Evaluation and Assessment

(ASTRAEA) programme was the main project within the UK [12], with the aim to “enable

the routine use of UAS in all classes of airspace without the need for restrictive or spe-

cialised conditions of operation”. Although the final goal of ASTRAEA was to demonstrate

functioning civil UAS, all ground based movements were expected to be controlled by

remote human pilots and as such no work was undertaken for automated ground opera-

tions [53].

However, some benefits from ASTRAEA survive to be of use to this work. Safely testing

technologies on full scale UAS requires access to segregated airspace and large financial

investment. For ASTRAEA, established UAS manufacturers, such as BAe Systems and

Thales, were expected to undertake much of the testing. This work has been undertaken

in conjunction with BAE systems who have provided the practical test data. As a result,

the has been tailored towards the test-platform, the BAE Jetstream surrogate UAS, shown

in Figure 3.1. Matching this hardware, this work assumes that direct sensing capabilities

are limited to a single forward facing monocular camera.
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Fig. 3.1 BAE Jetstream Surrogate UAS

Although it is theoretically possible to produce a sufficiently capable machine vision

system to replicate all elements of human vision, this would represent an enormous un-

dertaking and far exceed the requirements of this project. Therefore, to prevent the sys-

tem from becoming overcomplicated, it is essential to first determine what is required for

the system to operate successfully, then restrict the computer vision algorithms to only

extract this data. Suitable data must be reliable, accurate and pertinent to the UAS oper-

ation. In order to facilitate this, a separate literature review of machine vision techniques

will be undertaken in Chapter 4.

3.4 Navigation

Accurate navigation (i.e. positioning the UAS correctly on the taxiway) is an essential part

of aerodrome operations. If an aerodrome is compared to a typical urban environment as

faced by SDC, roads are far busier and are far more dangerous (in terms of statistical life

loss). However, the possible loss of life from a single collision at an aerodrome far exceeds

the danger from the majority of situations encountered by road vehicles. Therefore an

extremely high level of safety must be maintained.

Navigation of aircraft also must deal with dangers beyond physical contact. Whilst

ground vehicles are generally driven by wheels, aircraft use propulsive methods such as
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propellers and turbofans. Not only are propellers dangerous directly, due to the high

speed at which they rotate, but these engines all produce thrust that can be a risk to any-

thing that is immediately behind the aircraft. To avoid danger, routes around aerodromes

are often planned out to mitigate these effects. Aircraft which reach their destination but

do so using an unorthodox route may represent a danger to other aerodrome users, if not

themselves.

As all UAS require many different avionics systems to operate, GNSS ()such as GPS)

are assumed to be available. However, the accuracy of these systems can be highly vari-

able, primarily depending on the level of local augmentation available at the aerodrome.

As such, the accuracy of these systems, and other methods of position estimation, are

outlined below. Not included within this section is the use of inertial sensors. Whilst crit-

ical in ensuring that aircraft are stable and useful for dead-reckoning in the event of GPS

failure, the tendency to drift makes inertial sensors less useful as a primary data source.

As GPS is assumed available, inertial sensors will not be investigated for aerodrome nav-

igation.

3.4.1 Map Data

Although knowing the exact location of the aircraft is essential, this data on its own is

not useful. Navigation relates to the system being able to determine the location of the

aircraft with respect to the rest of the aerodrome. Therefore, in order for the system to

be capable of navigation, the system must also hold data on the layout of any aerodrome

at which it might land. Fortunately, as aerodromes are already charted for human use,

the majority of data is already publicly available in digital format. For example, ICAO

publishes Aerodrome Charts which display the global co-ordinates of all stands, taxiway

numbers, markings and hold points at an aerodrome. Due to the size and complexity of

aerodromes, pilots routinely rely on aerodrome maps in order to navigate.

For general aviation, these maps are often printed and inspected manually by pilots.

However, for better equipped aircraft aerodrome map data is often stored as part of the

avionics, and shown on a Multiple Function Display (MFD) in the cockpit, forming the

basis of the previously mentioned AMM. As map data for nearly all aerodromes is al-

ready available and digitised, migrating this data for UAS use should be fairly trivial. In

fact, several existing examples of automated taxiing systems for UAS already make use of

digitised map data (discussed in greater detail in Section 2.4).
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3.4.2 GPS and Ground Based Augmentation

For current manned aircraft, the lack of automation requires the human pilot to main-

tain control. Although GPS data is available, it is currently only used as reference. As

such, GPS accuracy needs only to be good enough to inform the pilot of the aircraft’s

general location, as maintaining the correct position on the taxiway remains a task to

be performed visually by the pilot. Without the need for high accuracy, pure GPS (i.e.

satellite signals only) is sufficient. Although pure GPS is only accurate to around 15m,

taxiways and runways are typically large enough that this has little effect on the human

interpretation of where the UAS is.

If the ATS is to function without a pilot, a far more precise position estimate must

be available to the ATS. As accurate positioning is a requirement for numerous other

applications, several types of augmentation which improve upon the raw GPS position

are already available. The majority of accuracy improvement is achieved through the use

of GBASs, where local ground based receivers with known locations compare their actual

location with their GPS indicated position. Any discrepancy is then used to produce an

error correction signal which is retransmitted to other users.

The most common form of GBAS augmentation is DGPS. Although it varies by nation,

the system is usually comprised of a few stations throughout a country, which transmit

the correction signal over many hundreds of miles. For example, the UK has 12 DGPS

transmitter stations used to cover the entire country. For most users, including aircraft

in flight, DGPS is easily sufficient for accurate navigation. However, certain applications

require a far higher level of precision. In these cases, localised GBAS can be employed.

Localised GBAS uses the same methodology as DGPS but operates over a much smaller

area, ensuring that error correction is locally as accurate as possible. Using localised

GBAS should allow GPS accuracy to increase to within 10 cm.

Although large airliners traditionally use systems such as Instrument Landing System

(ILS) when landing, more modern aircraft can make use of GPS position as well. As such,

localised GBAS is already installed at many major airports, enabling precision approach,

landings and take-off. Although localised systems are intended to be the most precise

at the runway, previous investigations have found that the accuracy improvement from

local GBAS extends far enough to easily cover the largest of aerodromes [69]. Therefore,

with this precise navigation system being available in these locations, it would be logical

to use the system for more than just landing.

However, whilst small countries such as the UK have total DGPS coverage, larger na-

tions often do not and as such at many aerodromes DGPS is not available. In addition,
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although GBAS is common at large aerodromes, many smaller facilities are not equipped

with the system. As UAS are usually dependant on autolanding, it is likely that any aero-

drome from which unmanned aircraft operate will have some form of GBAS. However,

as other methods of autolanding do exist, the presence of high accuracy GPS cannot be

guaranteed.

In addition to the possibility that high accuracy GPS won’t be available, the suitabil-

ity of relying solely on GPS for position data is also questionable. Even with accurate

GPS data, the system is just as dependant on the accuracy of the aerodrome map. With-

out any form of direct sensing, any modification to the actual aerodrome must also be

updated on the map for the system to be aware of the change. Despite aerodrome oper-

ating environment being strictly controlled, even small changes can have a large effect.

For example, a simplification of a junction during taxiway repainting, would render the

the map onboard the UAS outdated. With no method of directly sensing the change, the

UAS would attempt to follow the route shown on the map. At minimum, this could be

confusing for other airport users and at worst, this could lead to a collision.

Finally, even supposing that high accuracy GBAS were available at an aerodrome with

an up to date map, the integrity of GPS data is not certain. With the possibility of GPS loss

always being a factor, the minimal operational level of the system should incorporate a

method of functioning without GPS data. In addition, malicious manipulation of GPS

signals (i.e. ‘spoofing’) is easily achievable at close range. Whilst airborne, UAS are suffi-

ciently fast and far from the ground to generally be safe from amateur interference. How-

ever, when on the ground this could easily be used to misdirect an aircraft which have no

other reference against which to check. This scenario is unique to UAS that rely on GPS

alone, as aircraft which have methods of validating GPS position (such as a human pilot),

will detect this discrepancy and so are naturally less susceptible.

Therefore, for this project is has been decided that relying solely on GPS position data

is unsuitable. Instead, GPS should only form the basis of the localisation system with

additional sensing used to confirm this data. In order to allow this system to be deployed

anywhere, when available GPS precision is assumed to only be as nominal GPS accuracy,

of around 15 metres.

3.4.3 Machine Vision with Visual Landmarks

As machine vision has already been identified as the solution being used for collision risk

detection, its potential for localisation should also be considered. For pure navigation,
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machine vision has been demonstrated to be successful in navigation for many years.

As early as 1987, [119] demonstrated that a visual navigation system could be used on

autonomous ground vehicles. Further extensions have meant that work undertaken in

[59] demonstrates map generation by feature recognition in the environment, allowing

autonomous vehicles to not only visually navigate an environment, but to also generate

a map which then optimises there subsequent routing algorithms.

As such it is clear that the issues identified above could be resolved by augmenting

GPS with visually determined localisation estimates. As this will involve more detailed

study, previous examples of visual navigation systems will be assessed in a later section.

3.5 Communications

As stated in section 2.1.4, communication with the GTC is essential during civil aero-

drome operations. When a manned aircraft is taxiing, control authority is distributed

between the pilot and the GTC. Although the pilot remains in direct control, to ensure

safety the GTC has the authority to command the pilots action; selecting the routes and

timings which should be obeyed for the aircraft to reach its destination safely. This dual

approach is most clearly seen in how separation between vehicles is maintained; with

the pilot following any preceding aircraft at a safe distance, whilst the GTC ensures other

aircraft can only move when safe.

With the potential inclusion of data-links in the future, the GTC could provide much

of the required information directly to the UAS. Assuming that taxiing aircraft would re-

ciprocate by declaring their position, it is theoretically possible that safe taxiing could

occur without the need for direct sensing on-board each UAS. However, as the use of

data links is only proposed, it cannot be considered part of standard aerodrome equip-

ment and therefore cannot be relied upon for this ATS. Although the ATS should have the

ability to include additional sources of information, the system is implemented under

the assumption that a human will remain in the loop for RT communications.

Although RT information from the GTC will not always be directly available to the

ATS, it is still required by the system in order to comply with GTC instructions. There-

fore the assumption is made that the human operator will interpret verbal commands

for the ATS. Where data-links are not available, the human overseer would be required to

highlight the route that the UAS should follow. Although there are proposals to introduce

autonomy for aircraft to assign their own routes in crossing the aerodrome, for an air-

craft equipped with an aerodrome map, route planning is straight forward and is already
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considered highly mature. Therefore this has not been explored, and a route across the

aerodrome is instead considered given.

As the required data entry would be significant, it is unlikely that even a skilled hu-

man overseer could interpret all verbal information for the system. Instead, only the

most critical information is likely to be provided. Although the position of other aircraft

would be beneficial, information relating to other moving aircraft continuously changes,

requiring more effort to update the ATS than would be required to control the aircraft

directly. Therefore, if RT is the only form of communication available, the position of all

neighbouring aircraft will be assumed to be unknown.

Even if all aerodromes were already fitted with data-links, for the foreseeable future

there will always be a certain percentage of aircraft which do not have the required equip-

ment on board (i.e. non-cooperating). Therefore, the ATS cannot be expected to estab-

lish the position of other aircraft through communication and instead must detect them

directly. In addition to other aircraft, aerodromes often use large numbers of ground

support vehicles to assist in operation. Unless all of these were also exchanging position

data, a UAS would be unaware of potential collision risks throughout the aerodrome. The

decision to use collision risk detection was intended to help mitigate these risks.

In the event of an unexpected encounter (such as a collision risk across an taxiway)

the requirement for an intelligent response from the aircraft has not been considered.

In the interest of safety, if the aircraft encounters something it cannot comprehend or

respond to in a routine manner, the intent is for the system to request manual assistance

and for the UAS to stop. This is considered in keeping with current operations, where

pilots would notify the tower and wait for instruction if the unexpected occurred.

3.6 Summary

Collision Risk

Detection

Trajectory

Regulation
Localisation

Data

Camera

Visual Acquisition

 Subsystem

Fig. 3.2 An overview of the Visual Acquisition Subsystem (VAS), showing the data re-

quired.
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For this research, it will be assumed that the aircraft is operating under its own power

and is not making use of a towing vehicle. In addition, the ATS will be attempting to

replicate the actions of a human pilot as closely as possible. This will restrict the basic

sensing and processing capabilities to being on board the aircraft, as well as indicating

that the system must be able to correctly interpret and respond to the conventional ar-

rangement of a civil aerodrome. The ATS must be capable of performing all necessary

actions with the minimal amount of support from the GTC. Under normal operating

conditions, position data should be available from conventional sources, such as GPS.

However if additional data is available it should also be capable of assimilating this data

from sensors.

In terms of sensor choice, active sensors (specifically LIDAR) is very suitable for colli-

sion risk detection as all objects nearby will be detected without any need for additional

interpretation. However, LIDAR was deemed unsuitable primarily due to the sparse en-

vironment limiting the effectiveness of LIDAR for navigation, as there will be few ‘land-

marks’ to confirm position. In addition, as LIDAR is not already present on UAS it would

have to be added. This is unlikely for several reasons. LIDAR is:

• ‘Bulky’, and must protrude from the vehicle, interfering with airborne capabilities.

• ‘Heavy’, adding weight to the aircraft which limits the payload capabilities.

• ‘Power-hungry’, requiring a suitably capable power delivery system onboard.

• ’Expensive’ which could prohibit universal adoption.

Instead, visual sensing using a conventional monocular camera has been selected

as most UAS are already fitted with a forward facing camera; making the system more

generically applicable and requiring no-airframe alterations (The BAE Jetstream Surro-

gate UAS test-platform is also already fitted with a forward-facing visual camera). In ad-

dition:

• Visual sensing range is only limited by the resolution of the camera, with any large

obstacle being clearly visible at range with most modern cameras.

• A visual camera should be capable of interpreting any visual data in the same man-

ner as a human, allowing for both collision risk detection and localisation to be

achieved using a single sensor.
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• Data is often presented visually to pilots, through the use of lights, floor markings

and sign age. For a UAS to make use of this information, a form of visual sensing is

required.

As such, the use of machine vision to validate the externally given position will be ex-

plored. As GPS data is expected to be relatively accurate, the more critical use of machine

vision is to detect potential collision risks. Therefore, for this work collision risk detection

is considered the main goal with visual localisation a secondary target, both helping to

provide the ATS with data.



Chapter 4

Review of Machine Vision Methods

The following chapter discusses the use of machine vision for automated taxiing, focus-

ing on methods of extracting data from an image. As discussed in Chapter 2, there is very

little literature specifically related to sensing techniques for aircraft on the ground. In-

stead, due to the similarities in the sensing requirements, literature concerning mobile

robotics and Self Driving Cars (SDCs) is often more relevant and will be explored below.

This is done in line with the system development process, assessing the requirements

and seeking solutions to the encountered problems. As collision risk detection is a major

requirement which can only be accomplished using visual data, it is the initial point of

research. Therefore, the first half of this chapter is a review of established methods of

object detection. As it is established that there are too many types of risk to seek specific

objects, object detection methods are determined to be unsuitable, with a more generic

approach required for this application. Therefore the second half of this chapter focuses

on the chosen approach of using terrain classification to identify surfaces, with the re-

maining regions of the image assumed to represent obstacles.

After assessing various potential methods of accomplishing the task, an appropri-

ate image-segmentation approach is briefly outlined before the chosen implementa-

tion (along with the related contributions) is fully defined in the next chapter. As men-

tioned previously, this work aims to avoid problems with regulations by avoiding non-

deterministic and deep-learning methods throughout the ATS. Therefore, only fully-

definable vision processing solutions are reviewed.
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4.1 Visual Acquisition System

In Chapter 3 it was established that an ATS would be comprised of multiple sub-systems,

each responsible for a specific element of the overall task. Based on the system architec-

ture described in the previous chapter, a Visual Acquisition Subsystem (VAS)is required

to interpret the image captured by the forward facing camera. As conventional avionics

are not designed for surface operations, the VAS provides the main source of information

used for automated taxiing. Without alternative sensors for comparison, the success of

the ATS is dependant on the accuracy of the data extracted from each image.

Despite this requirement, visual data extraction is significantly more complex when

compared to other types of sensor. When using a three dimensional sensor (such as

LIDAR), the depth data may require interpretation to determine what something is, but

the presence of an obstacle is known from the basic sensor output. By comparison, al-

though an image can contain a great amount of information, the system which captures

the image is only aware of coloured pixels. As digital cameras were originally intended

only to produce images for human interpretation, any useful information must be ex-

tracted in an additional step. Just as human perception is based on experience and un-

derstanding, the software inspecting the image is the key component in the abilities of

visual sensors.

4.1.1 Task Priority

Shown in Figure 3.2, the VAS is responsible for extracting three types of information from

the camera image. In each case, visual information can be used to:

• Determine the position within the aerodrome (Aerodrome localisation data).

• Ensure correct orientation on the current taxiway (Taxiway position regulation).

• Detect objects which pose a potential collision risk (Collision risk detection).

The inclusion of visual data is intended to improve localisation accuracy, but is not an

essential requirement. As shown by many existing military UAS, taxiing is possible using

GPS alone (as discussed in Chapter 2). When compared to other ground based systems

which require collision avoidance, such as robots or SDC, collision avoidance for aircraft

is simplified by the aerodrome environment. To make landing and taxiing easier, aero-

dromes are usually built on flat land, greatly reducing the chance of collision with the ter-

rain. In addition, there are rarely any structures built along taxiways or runways, with any
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permanent static collision risks typically already marked on aerodrome maps. Therefore

known collision risks can typically be avoided using accurate localisation alone.

Assuming that the UAS has highly accurate localisation and will follow a suitable

course, the remaining potential collision risks will be unknown objects positioned on

the taxiway (or runway) which have the potential to impact with the UAS. As collision

risk detection is essential and can only be accomplished through machine vision, it is

the most critical requirement and therefore the initial point of research.

4.1.2 Methods of Detecting Collision Risks

When attempting to detect objects, the choice of sensor dictates the entire approach.

Active sensors (such as LIDAR) provide range and bearing estimates to any nearby sur-

face, allowing any object which extends from the ground by even a few centimetres to be

detected. Processing the captured pointcloud (such as segmenting by velocity and loca-

tion) allows both static and mobile objects to be isolated, providing generic collision risk

detection without the need to specifically identify any objects.

Although this information would be highly useful for automated taxiing, this work is

being undertaken with only a single forward facing camera. Without any form of depth

data, any captured image requires significant interpretation in order to yield useful re-

sults. If working solely within the image plane, it is extremely difficult to detect the pres-

ence of obstacles without first identifying what the obstacle is. If compared to active sen-

sors, the process is essentially reversed, beginning by detecting objects within the image

plane, then estimating depth only after an object is identified. Therefore, identification

of collision risks (and non-collision risks) is a key part of a working system. The chosen

approach must be capable of:

• Identifying objects within the image plane which could potentially collide with the

UAS.

• Estimating the position of each object relative to the UAS.

There are many methods to detect objects within an image, yet all methods can be

broadly divided into two categories; known object detection, where the object being

sought is of an expected type, or generic object detection where any object can be de-

tected. Both approaches have advantages and disadvantages and so both were consid-

ered, beginning with known object detection.
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4.2 Known Object Detection

‘Known Object Detection’ methods attempt to detect the presence of specific objects

within an image, comparing prior knowledge of the expected objects to what is visi-

ble within the captured image. For collision risk detection, this is only viable for ob-

jects whose presence can be predicted and where the number of potential risk types is

fairly low. As aircraft ground operations are potentially very dangerous, aerodromes are

highly restricted environments, effectively eliminating many types of risk that are found

in other settings. Aside from static obstacles, the most likely collision risks are other air-

craft, ground support vehicles and pedestrians. Assuming that these three types of object

will make up most of the risks within an aerodrome, known object detection could be a

viable solution.

Although limiting the detection capabilities to only certain objects is disadvanta-

geous, there are numerous benefits of using known object detection. As the sought ob-

jects are well defined, comparison to known examples makes detection more robust and

typically resilient to false detection. Furthermore, the additional information about the

known objects can be used without the need for further data extraction. Although iden-

tifying the presence of an object suggests that there is a potential risk, the object is not

actually a known risk until it has been determined to intersect with the intended path of

the UAS, requiring both it’s position and motion relative to the UAS to be established. De-

spite generic ‘depth extraction’ methods being viable for any object, if the actual size of

an object is known it can simply be compared to its scale within the image to quickly es-

timate the distance. Furthermore, the orientation of a vehicle can be used to estimate its

heading, even when the vehicle is not in motion. With this additional information being

highly useful, methods of known object detection were investigated for use in aerodrome

conditions.

4.2.1 Orthogonal Templates and Feature Descriptors

‘Known Object Detection’ methods function by comparing known information about an

object to what is present within an image. Owing to the heavy use of machine vision

in manufacturing, many methods were original designed for inspecting objects on a flat

surface, with the camera arranged orthogonally. Orthogonal methods work on the as-

sumption that sought objects will be consistently orientated towards the camera in the

same way (i.e. the same face will always be visible). As orthogonal object detection meth-

ods are still widely used, they were chosen as the starting point of this investigation.
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Despite orthogonality being difficult to enforce between vehicles, orthogonal approaches

have been used by SDCs systems for identifying other vehicles on the road. As cars tend

to remain in lane, the vehicle ahead of the camera will present a fairly consistent view

which can be identified through orthogonal template matching. Therefore the potential

exists to use a similar approach to determine the presence of a leading aircraft ahead of

the UAS on the taxiway.

The most basic object detection methods use raw pixel data directly, with the pixels

in example images compared to pixels within the captured image. Although correlation

based matching allows for the object to vary in scale and rotation within the image and

even global changes in illumination [107], raw pixel methods can only detect objects if

they are extremely similar to the template. Direct pixel matching approaches are strongly

affected by problems such as occlusion, clutter and local illumination changes. As UAS

operate outdoors and in all weather conditions, pixel matching methods would be diffi-

cult to use in an aerodrome environment.

Rather than relying on raw pixel values, most approaches use ‘feature descriptors’,

which establish trends in images which are easier to compare. This not only improves the

result, but is also usually accompanied by a decrease in processing time. Furthermore,

although individual features can be used for detection, the most common orthographic

method is shape based matching, in which features are extracted for the template as a

whole. The extracted features are stored relative to each other, such that an affine trans-

form can be used to vary the rotation and scale of the template for comparison with the

captured image. Figure 4.1 shows various feature descriptors which can be used in the

orthogonal detection of a leading aircraft. As feature descriptors must be extracted from

an existing image, the grey-scale image in Figure 4.1a was created using a 3D model to be

a basis for example templates.

As the intention is to use object detection in outdoor conditions, illumination in-

variant features are key. Some of the most popular illumination invariant features are

‘key-point’ descriptors such as Speeded-Up Robust Features (SURF) [14], shown in Fig-

ure 4.1b. Although the methods of establishing key-points vary (often based on local

maxima), the underlying principle is to only extract a limited number of key points from

a template, using a method which can be reliably repeated. This allows a quick compar-

ison between key points in another image to quickly determine if the sought object is

present.
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(a) Original grey-scale image (b) SURF points shown on original image

(c) Edge detection (without line fitting) (d) Edge detection (with line fitting)

(e) Shape outline for Fourier transform de-

tection

(f) Simple component detection strategy

Fig. 4.1 Comparison of several feature descriptors applied to a template image, designed

for use with orthogonal detection techniques.
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Alternatively, other simplistic illumination invariant features are ‘edges’, defined as

elements of the image where neighbouring pixels are highly dissimilar. Figure 4.1c shows

a template created using pure edge detection. As changes in lighting are unlikely to make

two highly different regions within an image look very similar, edges should persist under

nearly all changes in illumination. This makes them a highly robust feature to use, and

are easy to understand as they are also a critical part of human vision.

However, as using raw edge data is very similar to raw pixel data, the matching pro-

cess is computationally expensive and a robust match is not always achieved. Instead,

it is more common for the edges to be further processed. Figure 4.1d shows the raw

edges grouped into straight lines and curves which are easy to mathematically define.

Not only is it quicker to compare two straight lines based on location and orientation

(rather than the individual pixels within an edge) but these techniques also allow some

degree of variation tolerance during matching. Alternatively, if the outline of the shape is

well preserved against the background, the entire outline may be used, as shown in Fig-

ure 4.1e. Many airborne detection systems identify flying objects using just the perimeter

of a shape, where the Fast Fourier Transform (FFT) of the perimeter can be calculated to

quickly compare against known examples to seek a match.

Regardless of the method used, orthogonal shape based matching is widely estab-

lished. However, the main disadvantage of shape based methods is the inability to deal

with any variance between the template and the captured image. As detection relies on

maintaining consistent spatial relationship between every feature detected within the

template, small changes can often produce a false negative result, even when the major-

ity of the object is correctly identified.

A potential solution would be to move away from shape based matching and in-

stead use component based matching. As with shape based matching, shapes are sought

within the template. However these are typically far simpler primitive shapes which

are detected independently, as shown in Figure 4.1f. The relationship between detected

shapes is then used as the template for the overall object. Component based matching

is commonly used for detecting objects with variable configuration but the same under-

lying components, or objects of a class which are similar but not precisely the same. As

detection is based on individual parts of aircraft, such as engine nacelles and tail fins, it is

possible to use a component based approach to detect a generic aircraft shape. However,

if the exact dimensions of the aircraft are no longer known, the scale of the object within

the image cannot be used to provide depth information (as aircraft of varying sizes use

similar configurations).
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The main benefit of orthogonal methods is the speed of detection. As the object is

only sought in a single orientation (with only scale and rotation transformation applied

to the template) an entire image can be searched very quickly. However, limiting de-

tection to only objects known to be aligned with the camera (or objects which appear

the same when approached from any direction) severely limits the ability to use the ap-

proach. As many differently sized aircraft share a similar profile, detecting an aircraft

using this methods cannot reliably provide an estimate of distance. As such, not only is

an alternative method of detection required for other objects, when orthogonal detection

does detect an aircraft an additional method of depth extraction would also be required.

As such, despite the speed and prior use of orthogonal matching in related applications,

it is not considered a viable method for collision risk detection in aerodromes and has

not been further pursued in this work.

4.2.2 Perspective Methods

A major limitation of orthogonal methods is the inability to deal with the effects of per-

spective. Even when an object is orthogonal to the camera, unless the object is entirely

planar (i.e. flat) the effects of perspective can be seen as the camera moves closer, as

shown in Fig 4.2. Due to the size of aircraft wings, the issues with perspective are far

more pronounced for an aircraft than for a car, requiring significantly different templates

as the range changes.

(a) 70m separation (b) 40m separation (c) 12m separation

Fig. 4.2 Comparison of the effects of perspective over distance. A 3D model of an Air-

bus A320 is shown at varying distance from the camera. Each image has be scaled such

that the wingspan appears equivalent, to allow the changing shape to be observed more

easily.
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This simplest method to introduce perspective matching is to use the same tech-

niques as in orthogonal matching but to extend the transformation beyond the affine.

By linearly scaling the co-ordinates of a template in two dimensions simultaneously but

unequally, straight lines remain straight but parallel lines stop being parallel, mimicking

the effects of perspective. This is known as a ’Perspective transform’.

However, the obvious limitation with this method is the lack of depth data within the

original template. Much like raising a piece of paper from the desk and rotating it in free

space, the template is only representative of a 3D transformation of a 2D object, as shown

in Figure 4.3. Although perspective deformable matching is widely used for 3D applica-

tions where the object has a flat face, more complex geometric shapes, such as aircraft,

cannot be easily detected using the same method. Perspective deformation searching is

suitable for finding the 3D poses of 2D objects within scenes, but is not suitable for lo-

cating full 3D objects. Instead, in order to ensure that the system can recognise an object

from any angle and distance, data pertaining to every potential viewing position must be

available. As the object is no longer considered a two-dimensional representation, this is

commonly known as 3D matching.

Fig. 4.3 Complex objects under perspective cannot be detected using orthogonal tech-

niques. Even when the template undergoes the correct perspective transformation, the

lack of depth within the template prevents enough alignment for a match to be found.
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Despite the use of the term ‘3D’ implying that a different technique will be used, the

detection problem is essentially the same, with a known object to be found within a 2D

image. As such, the same feature extraction methods as used for orthogonal detection

are still valid. Instead, rather than a single template, additional templates are required for

each potential viewpoint (orthogonal shape based matching is essentially an over con-

strained application of 3D shape based matching). Although a physical object could be

photographed from many angles to generate the templates, a virtual camera orbiting a

3D computer generated model is often more practical. As the entire shape of the model

is used, this is again commonly referred to as ‘Shape based matching’. Using software

designed to portray models realistically, the characteristics of the real-world camera are

mimicked to introduce the effects of perspective. The distance and orientation of the

object with respect to the camera are then altered in small increments, to generate many

thousands of viewpoints.

To test this method of object detection applied to an aerodrome environment, the

commercial MVTec Halcon vision processing software was used to generate the tem-

plates required to detect an A320 aircraft. Returning to the orthogonal methods above,

the limitations on orientation were still appropriate, in that other aircraft are never likely

to be seen from above or below during taxiing. Using this prior information simplified

the search process; as the aircraft should lie on the ground plane and the height of the

camera is known, the model only has to rotate in a single dimension, reducing the num-

ber of required templates. An example of a match is shown in Figure 4.4, demonstrating

that this method is highly successful in detecting known objects. In addition, the relative

position and orientation of the aircraft were both extracted, allowing them to be used in

the wider ATS.

However, although the knowledge that the aircraft is on the ground does reduce the

total number of templates required, the aircraft’s heading and distance to the UAS are

entirely unknown; still requiring many thousands of sample templates to represent the

aircraft in varying poses relative to the camera. As each potential orientation and dis-

tance of object is a separate template, the matching process is essentially repeated many

thousands of time. This makes the approach far more computationally intensive, taking

several seconds to get a match when seeking the highest level of precision on a stan-

dard desktop computer. To speed up the search process, the features are extracted from

each template and stored to eliminate the need to constantly sample the same templates.

However this can require significant storage space, with the templates of the A320 gen-

erated to perform the matching in Fig 4.4 taking 140GB of storage to account for all po-
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tential orientations and distances. Furthermore, as the effects of perspective and scale

are specific to the camera and lens, the produced templates are only compatible with the

same hardware configuration.

When it is further considered that each additional object will also require the same

number of as many templates, the total computational effort to detect all expected col-

lision risks would multiple with the number of objects, likely making 3D shape based

matching unsuitable for use in this task.

Fig. 4.4 Example of 3D shape based matching, using previous A320 model to detect real-

world example. From the known camera parameters, the pose and orientation of the

aircraft can be determined with respect to the camera. Object detection achieved here

using MVTec Halcon.
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4.2.3 Model Based Object Detection

As seeking out many specific objects is likely to be computationally intensive beyond

the scope of what is achievable aboard an UAS, the alternative approach is to establish a

‘model’ for each class of objects, and use that to detect potential collision risks. Making

use of the shape and contextual relationship between parts of objects, non-specific vari-

ants of classes can be identified. For example, four wheels in a rectangular configuration

may be enough to identify a road vehicle (although the system would not be capable of

distinguishing if the vehicle were a car or a van).

Similar to the orthogonal component matching approach, this can be achieved by

breaking a 3D object down into simpler 3D ‘primitive shapes’ and then identifying the

larger object based on the relative position of primitives within the captured image. How-

ever, although a component based approach is commonly used for orthogonal matching,

performing this action with parts in any orientation or distance is far more complex. De-

termining the spatial relationship between elements requires a high-level understanding

of the parts being extracted, in order to match other elements of the image. For exam-

ple, most aircraft have two wings, but only one is visible when the aircraft is seen from

the side. Any viable 3D component based approach would require interpretative logic

capable of understanding that only one wing is visible if the fuselage is obscuring the

other.

For a component based detection method to be viable, members of the class must

not only look alike, but share similar physical characteristics. For example, using Fourier

descriptions of outlines rather than individual components, work done in [21] shows that

both road vehicles and aircraft can be detected using generic models of a class, rather

than an exact 3D model, allowing generic detection which could be used for collision

avoidance. For SDC this can be taken further; as the majority of collision risks will be

other road vehicles on the road ahead and most road vehicles are similar in width, the

scale of the vehicle in an image can be used to estimate the range between the camera

and a proceeding vehicle, without any exact classification of the vehicle which has been

detected.

Despite this prior work, this same process cannot be used for aircraft. As with road ve-

hicles, many aircraft have the same configuration, with airliners being especially similar

across different models and even different manufacturers. However, aircraft can differ

significantly in terms of scale. Seeking wings, tail, fuselage and undercarriage both an

Airbus A320 and an Airbus A380 could be detected using the same generic parts. How-

ever, the A380 is over twice as long as the A320. Without any approximate dimension
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within the aircraft that can be used to infer scale, the distance from the camera remains

unknown. As the end result is recognition without depth, this approach cannot be con-

sidered viable and has not been pursued in this work.

Beyond methods which rely on physical models, deep learning methods are also ca-

pable of identifying generic examples of objects within images without the system having

an exact example to match against. Work such as that undertaken in [31] explore the use

of deep neural networks to recognise a wide range of object types, at any scale and within

any form of image. As before the biggest limitation with this approach is that the specific

type of object is not identified. As such the scale and therefore the position of the object

is still unknown. Whilst this type of method has great potential in identifying aircraft and

other entities around the aerodrome, it is not useful for determining a objects position.

Therefore, whilst a similar approach may be applied to determine what an object is, it

cannot be used to determine where it is. Finally, as deep learning methods contain ele-

ments which are hidden from the human operators, they are not suitable for use within

aerospace due to issues surrounding certification.

4.2.4 Conclusions on Known Object Detection

From the section above, it is clear that ‘known object detection’ is an established area,

with much research progress having been made in related fields. A large benefit of seek-

ing only known objects is the ability to integrate prior knowledge into the system. Specif-

ically for collision avoidance, if the actual dimensions of an object are known then the

size of the object within the image can be used to estimate range. Additional informa-

tion, such as the type of object, can also be used to increase situational awareness. For

example, if a stationary vehicle is detected, the heading and therefore most likely trajec-

tory can be determined, allowing collision risk detection to be included should the vehi-

cle begin to move. Similar concepts have already been demonstrated on SDC, with road

vehicle detection allowing for safe navigation, even in cluttered urban environments.

However, searching for specific types of objects has several significant disadvantages.

Compared to the instant range and bearing given by active sensors such as LIDAR, one of

the most noticeable issues is the long processing time. Searching for a particular object

requires that every region of the image is checked not just once, but for every possible

orientation and range that the object is likely to be. As collision risks can occur both

at distance and nearby, this can significantly increase the computational time required.

Furthermore, if multiple types of object are being sought, the processing requirement is
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essentially multiplied by the number of potential objects (after feature extraction). This

is problematic due to many types of object the UAS could encounter. In addition to the

hundreds of potential types of aircraft, there are countless support vehicles and other ob-

jects that would also need to be maintained in the database, potentially requiring many

thousands of object types in total.

As object techniques have matured, model based detection methods now exist which

can identify objects by class, rather than finding an exact match. Downsides of this ap-

proach include the loss of any prior knowledge about specific objects, in addition to

potential decrease in robustness. In addition, unless the dimensions of the object are

known, the range can only be estimated using an additional stage.

Finally, the most obvious disadvantage of only seeking known objects is that the sys-

tem can only identify pre-selected objects. If an object is present in the image but was not

anticipated, the system would not be able to recognise it. Despite the well-controlled en-

vironment, there is always the possibility of an unexpected object posing a collision risk.

Although a complete library of aviation related equipment could be collated, any new

types of object that are not part of the detection system would not be detected. Collision

risk detection methods which can only detect objects of expected types are not capable

of fulfilling the requirements of this project. Therefore, in order to detect any risk, the

obstacle detection methodology must be as generic as possible.

As a generic risk detection method should also detect expected objects, there is no

specific requirement to include a known object detection stage and work on a single

generic risk detection method will be the focus of this work going forward. However,

as identifying other aircraft and ground vehicles could provide additional information

useful to an ATS, the ATS should be implemented such that it can be expanded out to

include specific object detection at a later date.
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4.3 Generic Object Detection Using Depth Estimation

‘Generic Object Detection’ methods are defined as being capable of detecting objects

within an image, without prior knowledge of the object’s appearance. Unlike known

object detection, where all possible techniques are fairly similar in their approach, the

methods used to detect generic object differ significantly. Although some techniques

may seek to detect distinct objects, other methods inspect individual pixels or small re-

gions instead. As generic object detection techniques are highly varied, it is also possible

to use separate techniques in combination to improve the final result.

The added requirement of seeking to avoid collision with any detected object intro-

duces the need for depth extraction. As the identity of any detected object is unknown,

features of that object cannot be used to estimate its position. Instead, a different method

of estimating the distance to an object is required to determine if it poses any risk. Al-

though depth data is not present within a single digital image, methods of recovering

depth from 2D images are well documented. If the captured image can be converted to a

depth map, objects can be found using similar techniques to point cloud based process-

ing. Therefore, object detection and depth extraction are both required, but either can

occur first.

As extracted depth directly removes the requirement to actual identify most of the

object in each image, depth recovery methods were the initial focus of this work and

are documented in this section. Although direct depth extraction is likely the best form

of generic collision avoidance, the methods available to use with a single camera were

found to be either too inaccurate or too dangerous to employ in an ATS. As such, direct

depth estimation methods have not been used in this work and are only presented here

for completeness.

4.3.1 Stereoscopic Depth Extraction Through Motion

Despite the lack of any range data within a two-dimensional image, some three-dimensional

information is available in the form of the angle between each pixel and the optical axis

of the camera. From a single observation, this bearing alone cannot be used to estimate

depth. However, if the same point can be identified in multiple observations, the relative

position of the camera can be used to calculate range. As such, the most common ma-

chine vision techniques which attempt to extract depth data use more than one image,

commonly referred to as ‘stereo-vision’.

As the only difference between a monocular camera and a stereoscopic camera is an
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additional viewpoint, images taken by a moving camera can be used in a similar way,

with multiple frames used to estimate depth. As this work intends to make use of a video

feed, rather than a single image, it is possible to use techniques which seek to extract

depth data from images by tracking the change in objects over time. Work undertaken

as early as 1994 [129] demonstrated accurate depth estimation, provided the egomotion

of the camera could be accurately tracked. For static objects viewed from a side-facing

camera, the motion of the camera can be used in combination with the movement of

pixels in an image to estimate their respective distance based on parallax. Pixels with

similar distances can then be grouped into objects as appropriate.

However, for this work the only camera available is a single forward facing camera. As

the motion of the vehicle is aligned with the optical axis, there will be minimal change in

the location of pixels between frames. As conventional pixel tracking techniques (such

as ‘optical flow’) rely on clear features and relatively large motion for accuracy, most ob-

jects would not be detected until the UAS were in close proximity. As such, Stereoscopic

methods which rely on a single camera can be considered unsuitable for this task, as

depth cannot be extracted at the required range.

4.3.2 Motion Predicted Imagery

The UGOMS system [32] (as aforementioned in Section 2.4.5) uses a similar camera ar-

rangement, with a single forward facing camera intended to provide all relevant infor-

mation for automated taxiing. The developers of UGOMS recognised the difficulties in

known object detection and elected to use a generic object detection method for colli-

sion avoidance. This was achieved using a technique known as Motion Predicted Im-

agery (MPI).

MPI uses multiple image frames to detect risks without classification. However, rather

than attempting to determine depth from the outset, a prior stage is introduced in which

likely objects are first detected based on their change in appearance over time. Assum-

ing that everything ahead of the vehicle should be flat ground, the pixels from previous

frames are shifted to reflect their expected position in the current frame. This uses both

the egomotion of the vehicle and the relative position of the camera with respect to the

ground. As the aircraft approaches a three dimensional object, the effects of perspec-

tive will cause the object region to differ from the estimated image. Groups of pixels

which show a large discrepancy are then grouped and assumed to indicate an obstacle.

Once isolated, the movement of this region between images is used to estimate depth. As
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no prior knowledge is required, MPI can be considered a truly generic object detection

technique. In addition, MPI is especially suited to aerodrome environments as its main

requirement is flat terrain.

However, despite offering a truly generic solution, MPI has several issues which make

it less suited for collision risk detection. As MPI warps the previous image assuming all

pixels represent the ground, the disparity between detected and estimated position in-

creases with the height of objects. As such, low objects, are extremely difficult to detect,

despite small objects (such as runway lights) still posing a large risk to the UAS.

In addition, MPI is highly dependant on accurate ego-motion tracking of the camera.

As aircraft undercarriages are often very flexible, vertical camera movement is common.

Even slightly uneven terrain can produce unexpected camera movement, resulting in

inaccurate results. The errors introduced by ego-motion and camera stability are exac-

erbated when tracking is performed on individual pixels. As each pixel is compared to

the prediction independently using MPI, small discrepancies can grow into large errors.

Simply shifting the image by a few pixels (such as would occur during a bounce) will re-

sult in the entire image being indicated as a collision risk. Although multiple frames are

used to establish the presence of an object, if an error occurs over several frames a false

collision risk could be detected. As false positives are highly undesirable, a method which

can overcome these issues would provide a better method of risk detection.

4.3.3 Deformable Net Object Detection

A technique known as Region-based Deformable Net (RbDN) Analysis uses region based

tracking to detect potential collision risks. Initially proposed in [97] and extended for ve-

hicular use in [98], RbDN isolates regions of an image and tracks them over time. As the

name suggests, RbDN begins by segmenting the image using a ‘net’, i.e. breaking an im-

age into a series of small regions for analysis through region based image segmentation.

A difference between simple region based segmentation and the RbDN approach is

that net is formed of polygons, rather than clusters of pixels. The net consists of indi-

vidual vertices (or nodes) which are free to move. These nodes are then connected to

form edges, which in turn form polygons. As the edges are restricted from crossing each

other, each polygon represents a unique part of the image. The net used in RbDN is able

to deform and adapt to the image below, with the end result being a series of polygons

which reflect a simplified version of the original image. Although the net is adjusted to

fit the underlying image, it remains defined by the position of the vertices and the edges
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which run between them. This allows a consistent net, which slowly updates to reflect the

changes in the images over time. By tracking the change in polygon size relative to the

motion of the camera, the range to each polygon can be calculated with some precision.

The work done in [98] applied the concepts developed in [97], by using RbDN on a

ground based robot. In [98], a robot is used in an environment where externally provided

position data (such as GNSS) is unavailable. Without GNSS the robot’s position data is

limited to mechanical odometer and compass heading readings. Over time, the accumu-

lation of errors through integration leads to the robot losing orientation and becoming

lost. As a method of countering this, RbDN is used to track the position of nearby ob-

jects within an image captured by an onboard camera. By tracking the objects over time,

[98] shows it is possible to accurately determine their distance to the camera. By track-

ing these distances as the robot moves, the robot can effectively eliminate the issues of

growing position errors by correcting the odometer data. Later work in [98] shows that

it is also possible to estimate the distances to objects that are more than 100 m away, as

long as the camera displacement is over 10 % of the expected distance to the objects.

However, although RbDN is capable of detecting generic objects, it also has disadvan-

tages. One issue is that this method is only suitable for detecting stationary objects. If an

object is moving at the same speed as the camera, its area will not change over time and

it will either not be recognised or simply calculated to be very far away. In addition, cer-

tain forms of motion can result in false collision risk detections. For example, in outdoor

conditions it is common for terrain to be partially obscured by buildings. If the camera

were to move passed a building in front of a grassy area, as the building passes out of

the image frame, the grass region will grow as it becomes more visible. Despite being

static terrain, the increase in area would suggest a rapidly approaching object and trigger

a false collision risk detection. As these issues are fundamental to the methods used in

RbDN, it has not been selected as a suitable method for this work.

4.3.4 Conclusions on Object Detection Using Depth Extraction

If the distance between each pixel and the camera can be determined, objects can be

identified by grouping points located close by in both the image and in free space, allow-

ing collision risk detection without having to first identify the image contents. Drawing

from previous work in related fields, three potential methods of achieving this have been

presented. However, as stated above, each of the presented techniques has issues which

make them unsuitable for this application.
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Furthermore, in addition to the previously stated issues specific to each technique,

the biggest limitation with depth based detection methods is not the methods them-

selves, but the hardware limitations specific to this work. As only a single monocular

camera is assumed to be present, additional viewpoints will only be available if the cam-

era moves.

Therefore, for any of the three techniques listed above, the UAS would need to be in

motion in order to detect if there is an object in its path. As each process can require

several frames before any potential risk is detected, there exists the risk of immediate

collision, as soon as the UAS moves. As requiring that the UAS is taxiing in order to de-

tect if there is an object in its path is potentially dangerous, even with human operator

oversight, it would be better to implement a method which functions even when the air-

craft is stationary. Primarily for this reason, in addition to the other reasons stated in the

individual sections above, motion based depth estimation is not considered a suitable

method of generic object detection for aerodrome conditions.

4.4 Generic Object Detection Using Terrain Classification

Returning to the concept of known object detection, the conclusion was drawn that it

would be impossible to create a suitable database of all the potential objects (i.e. all ob-

jects) which could represent a collision risk. Furthermore, as an obstacle can be any size,

shape or colour, no suitable model could encompass such variety for detection. For these

reasons, known object detection was determined to be impractical for this application.

One method of overcoming this issue is to focus on identifying only the most rele-

vant objects within the scene. For extremely simple environments, the process of de-

tecting unknown objects can be considered ’anomaly detection’ in which regions of the

image which are sufficiently different from the rest are viewed as objects. However, as the

complexity of the image increases (with variable lighting, weather, occlusion, clutter and

border interception) attempting to find outlying regions becoming increasingly difficult.

Although collision risks are highly variable, the aerodromes themselves are not. De-

spite some differences between individual aerodromes, most are typically uniform in ap-

pearance. As such, the most easily classifiable regions in a captured image will not be

obstacles, but the terrain features of the surrounding environment; such as concrete, as-

phalt and grass. Therefore, this work proposes using the principles of anomaly detection

to detect collision risks. By determining the parts of an image which do not represent

collision risks, the presence of risks can be inferred from the remaining areas.
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Fig. 4.5 Comparison of Object detection and Semantic Segmentation results

Image Segmentation

Whole image recognition tasks which seek to both divide up an image and classes the

parts, are commonly known as ‘semantic segmentation’. As with object detection, classi-

fication can be performed on any known region. Therefore, in addition to typical terrain

surfaces, common objects that could pose a collision risk can be classified through com-

parison to known data, similar to object detection. The regions with a low confidence of

matching any known class can be generically labelled as an ‘unknown’ collision risk. As

generic risk detection is essential, this approach has been chosen.

Often considered an alternative to object detection, semantic segmentation differs in

that every single pixel within an image must undergo classification. As such, the com-

putational cost of semantic segmentation is high. However, accurate semantic segmen-

tation isolates regions within the image to a pixel level, not only determining the class

of objects but also performing accurate border extraction. This provides more precision

which should be of benefit when estimating the position of potential collision obstacles.

For this work, semantic segmentation will be explored with the specific goal of ac-

curate ’unknown’ detection. As semantic segmentation is not novel, existing techniques

can be utilised. However, many techniques cannot reject areas as unknowns. Of the

methods which can include an unknown class, the focus remains on known classes, with

the end results featuring minimal unknowns or inaccurate borders. As such this work will

take a more novel approach, intending to introduce highly dependable ’unknown’ recog-

nition for collision risk detection. Furthermore, terrain classification can also be used

for localisation. Rather than rely on discrete landmarks, an alternative is to use a more

holistic approach, in which the entire ground area is compared to known map data.
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Data Extraction, Horizon Detection and Depth Estimation

In order to classify regions of the image, data extraction will be required. Typically, data

for classifying a region is taken from that region itself, such as colour or texture. Addi-

tional information, such as relative position, can also be used. Due to the decision to use

terrain features to determine risks, determining the difference between sky and ground

based elements of the image is essential. As such, the position of the horizon should be

known, and horizon detection methods should be explored.

Horizon position is also useful for ‘depth estimation’ when working with unknown

objects and a single camera image. By determining the position of the horizon within

the image, and knowing the characteristics (including height) of the camera, the relative

bearing of objects within the frame can then be established. By limiting the region of

interest to below the horizon, unknown regions must always meet with the known terrain

Assuming it can be seen, this is always the lowest point of the unknown region within

the image. As the height of the camera is known, an approximate distance based on

trigonometry can be extracted.

If the actual object does not make contact with the ground, this approach may indi-

cate the range between the camera and the object to be greater than it actual is. However,

as the position of the bottom object should give a better indication of range, the risk can

be avoided by using the lowest pixel of connected objects to provide the shortest range

estimate.
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4.4.1 Conclusions on Object Detection Through Terrain Classification

Fig. 4.6 Earthen barriers at Birmingham Airport (Reuters UK, 2016)

As all unknown regions are to be treated as collision risks, the largest potential issue

is misclassifying an unknown object as a terrain feature. If this occurs, objects which

look similar enough to terrain features would not be detected as collision risks. Although

buildings are not typically made of asphalt, both buildings and taxiway surfaces are com-

monly made out of concrete. In addition, airports which are located close to urban pop-

ulations often endeavour to minimise disruption to their neighbours by erecting struc-

tures to reduce noise and light pollution. Although some structures are made of artificial

materials, many airports simply use large earthen barriers to absorb or reflect the sound

(as shown in Figure 4.6). As these ‘structures’ share identical features as the ground (such

as colour and texture), terrain classification techniques will likely not detect them as col-

lision risks.

However, for this work collision risk detection is focused on the detection of non-

static risks. Static collision risks, such as buildings or sound barriers, should be denoted

on the aerodrome map. Provided that localisation is accurate, the UAS should be able to

avoid these objects despite the possibility that they are not detected as risks.
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4.5 Conclusions

The visual data available to the UAS has two main purposes: collision risk detection and

localisation improvement. As GNSS systems, such as GPS are already standard on UAS,

collision risk detection can be considered the more important requirement and therefore

is given the higher priority. However, monocular cameras are difficult sensors to work

with in uncontrolled environments. Despite being immensely data rich, they have little

usable information in their native form. As no depth data is available without processing,

depth extraction is a necessary part of collision risk detection.

Within an aerodrome environment, the size of moving obstacles can vary dramat-

ically; ranging from small Foreign-Object-Debris (FOD) to large airliners. At the same

time, these obstacles might be alone on an empty runway, or surrounded by other objects

on a busy apron. Assuming that the UAS is limited to the same data currently available

to human pilots, the size, type and location of all mobile risks start as unknowns.

Object detection techniques which attempt to find known objects are usually very

processor intensive, needing to inspect the entire image for the object in any pose and

at any distance. As more potential objects require detection, this process becomes more

complicated, reducing the applicability for collision risk detection. More generic meth-

ods for detecting known objects seek a ‘class’ of object, rather than a specific version.

However, without an exact match it is impossible to extract the pose data required for

depth estimation, making the result far less useful for collision avoidance. As such, it can

be considered impractical to attempt to detect risks on an individual basis.

Generic object detection methods commonly use the principles of stereoscopic depth

extraction. For this work, without multiple cameras available, this requires that multiple

images are captured from a single camera whilst moving. Several methods are available

which can perform generic object detection using a moving camera. However, the need

to move the camera (and therefore the aircraft) is dangerous and therefore has been iden-

tified as being unsuitable for use within an aerodrome environment.

Instead, the methodology which has been chosen for this work uses the alternative

approach of identifying regions of the image which do not pose a risk. By interpreting

the captured image in its entirety, regions which could pose a risk can be determined by

identifying all the regions which do not. The underlying process, of dividing the image

into visually distinct parts, is known as image segmentation. As smaller segments should

ideally represent a single object or material type, the scene will be easier to interpret,

with each region being labelled as the most likely class based on its contents. Where
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identification is not possible or confidence in identification is low, the segment is to be

considered a collision risk by default.

Once collision risks have been found within an image, they can be extrapolated from

the image plane into real-world coordinates by seeking their closest point within the im-

age. As most UAS have fixed height landing gear, the height and pose of the camera can

be used to calculate range and bearing estimates. As a small variation in angle can re-

sult in a large error in range estimation, visual horizon detection can be used to correct

for any variation in camera position. The remaining elements within the image which

are not considered collision risks are essentially the ground surface. As the segmenta-

tion should isolate grass from taxiway and taxiway lines from asphalt, extracting features

to compare against the aerodrome map allows the same technique to be extended for

localisation improvement as well.



Chapter 5

Review of Image Segmentation Methods

In Chapter 4, it was established that Image Segmentation would be used to interpret vi-

sual data for both collision risk detection and localisation improvement. As it would be

impractical to identify all object types that could be potentially encountered, the task

of image segmentation focuses on terrain classification; establishing which areas within

the captured image represent ground features such as asphalt or grass. By determining

which elements of the image do not represent a risk, this works seeks to achieve generic

collision risk detection through the use of ‘negative space’, where regions which cannot

be identified are considered to be collision risks by default. This chapter reviews po-

tential methods of achieving this, identifying why many established techniques are not

suitable for this application. The next chapter (Chapter 6) builds upon the final approach

selected in this chapter, and establishes the actual implementation used.

5.1 Image Segmentation for Terrain Classification

In order to detect potential risks through the detection of terrain features, the entire im-

age must be classified. As the end result will partition the image into multiple regions

(each assigned either a known class or labelled as an unknown), the term ‘Image segmen-

tation’ is commonly used. Despite the word ‘segmentation’ suggesting that the process

is a task of division, segmentation is more commonly approached from the bottom up,

clustering similar pixels together. For an individual image, the optimal segmentation re-

sult can be achieved manually, assigning the relevant class to each pixel within an image.

Figure 5.1 shows the results of manual segmentation applied to an aerodrome image. For

this scene, only 6 classes of data are required to categorise the entire image in a manner

which could be used for collision avoidance and visual localisation.
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(a) Original Input Image (b) Manually Segmented Representation

Fig. 5.1 Example of manually-achieved ideal segmentation, using image of Waukegan

National Airport, Illinois. [118]

For an automated approach, determining whether pixels are similar requires features

to be extracted for comparison. Low-level features (such as colour) make clustering

straightforward as each pixel already contains the required data. However, as a single

object can have multiple colours, the resulting segmentation might not provide much

benefit. Instead, higher order features are often more useful. For example, understand-

ing the appearance of fur could allow dogs to be isolated within an image, regardless

of the colour of the dog. Segmenting regions based on a understanding of its contents,

rather than purely its visual appearance, is known as semantic segmentation.

A semantic approach to image understanding is highly beneficial for automated taxi-

ing. For example, taxiway surfaces are often formed of multiple materials, with concrete

and asphalt commonly used alongside each other. If image segmentation was achieved

using colour data alone, the dark grey asphalt pixels and beige concrete pixels would be

visually different, and therefore separated into different regions. However, if it was un-

derstood that both are part of the same taxiway surface, a better segmentation would be

to combine them into a single region, as they serve the same purpose. An image where

distinct regions are isolated and labelled in a way which reflects human interpretation is

the goal of semantic segmentation.

The main objective for this chapter is to compare various image segmentation meth-

ods, in order to determine which approach produces the best segmentation result for

aerodrome images. Ideally, the chosen approach will produce object specific segmenta-

tion, in which each object within the scene is isolated from it’s surroundings. However,
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as this high level of accuracy is technically difficult, a subjective assessment of the quality

of the output from each method will be required. If the ideal result cannot be obtained,

the result will either be an under-segmentation or an over-segmentation. As an under-

segmented image risks missing potential collision risks, an over-segmentation is prefer-

able. If an image is over-segmented, each cluster should still only contain a single object

type (i.e. class), allowing the scene to still be classified correctly.

Depending on the method employed, classification and segmentation can either be

achieved together, or separately. For this work, the initial investigation is to determine

whether to use a method which does both simultaneously, or to segment the image first

and then classify afterwards. Regardless of the approach, to be viable the approach must:

• Avoid under-segmentation and ideally minimise over-segmentation.

• Preserve object borders from the underlying image.

• Avoid the use of deep-learning or non-deterministic methods.

• Not bias the classification process towards a particular class.

5.2 Classifier led Segmentation

Classifier Led Segmentation (CLS) is a term used to describe any image segmentation

methodology where the final segmentation is based directly on classification results. By

categorising pixels at a small scale (either individually or in small groups), larger regions

within an image are formed where many neighbouring pixels share the same class. With-

out the need for a separate segmentation stage, data is only extracted from the image for

classification, making CLS techniques highly efficient. CLS techniques can be broadly

divided into two types; traditional CLS and modern CLS.

Traditional CLS techniques are some of the earliest forms of image segmentation,

having been an area of active research for over 40 years [48]. These techniques rely heav-

ily on small scale classification, comparing small sections of the image to known exam-

ples of other classes. As features are inspected at a very low level (typically using colour

or some texture data) this limits the techniques to applications with consistently scaled

features, such as for finding buildings and roads within satellite images [47].

Modern CLS techniques emerged from research for image categorisation for ‘seman-

tic retrieval’; enabling search engines to match images without requiring manual catego-

rization of image contents. Early image categorisation algorithms often used image-wide
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content descriptions, which sought dominant visual descriptors throughout the image.

This could produce a list of image contents that would allow classification, such as ‘grass,

animal and water’. However, with an ever increasing amount of images to categorise,

more modern techniques (such as [90]) seek to establish a relationship between the el-

ements of the image. For example, a dog on grass in front of water. As the position of

unique regions with an image is determined with respect to each other, each region in

the image must be isolated (i.e. segmented).

Over time, the two tasks have converged and techniques originally for one purpose

are used for the other. For example some image segmentation methods [100] begin by

examining the image as a whole to create an image level prior, which lists the most likely

classes present within the image, based on dominant features. Further classification is

then performed with the classifier biased towards these expected classes. Alternatively,

methods such as [28] continue to use low-level features for segmentation into regions,

but use high level categorization techniques to assign each region a final classification.

From a brief review of current literature it is clear that the vast majority of modern se-

mantic segmentation techniques commonly attempt to perform both image segmenta-

tion and classification simultaneously.

5.2.1 Prevalence of Machine Learning

As image segmentation methods have become more popular, there are already examples

of using CLS for collision risk detection. Work undertaken in [8] describes a CLS method

specifically designed for object recognition in urban environments, designed to detect

and classify nearby objects for SDC collision risk detection.

Although this does indicate that modern CLS methods could be used for collision risk

detection within aerospace, as with many modern CLS techniques, [8] uses an ANN to

perform classification. Due to the complexity of fusing many different information types

required for CLS, machine-learning approaches are commonly used. However, as the

inner functionality of deep-learning methods cannot be easily defined/explained, they

are difficult to certify or diagnose when unexpected behaviour occurs. As established in

section 3.2.2, new technologies which include non-deterministic methods or deep learn-

ing have the additional regulatory barrier to overcome and are unlikely to gain regulatory

approval for aerospace use.

Consequently, this work differs from the majority of modern semantic segmentation

techniques as it only makes use of fully explainable methods for semantic segmenta-
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tion. Although the majority of modern CLS approaches use deep learning, alternative

CLS methods also exist, which are often examples of supervised learning. However, as

the newest techniques predominantly use deep-learning, alternative techniques are of-

ten based on methods from traditional CLS and have therefore inherited many of the

problems.

5.2.2 Known Class Biasing and Border Accuracy

The use of deep-learning methods notwithstanding, issues associated with CLS approaches

impact how suitable they would be for collision risk detection. Issues specific to this work

emerge from the decision to infer collision risks from unknown regions. Once a collision

risk has be isolated within an image, the position of the segmented region borders are

used to extrapolate the range and bearing to the potential risk. As such, accurate border

extraction is critical. However, as the data within an unknown region cannot be used to

help define the border, the limits of any potential collision risk can only be defined by the

boundaries of surrounding known classes. Therefore, accurately segmenting ‘unknown’

regions within an image is just as important as defining known classes.

Despite the previous use of CLS for collision risk detection, precise region extraction

is often difficult when using classification data to directly segment an image. Inaccurate

region borders are partially introduced through the use of feature descriptors. Despite

being data rich, images are comparatively information devoid, with a great number of

pixels required to provide any significant feature useful for recognition. Although colour

data is stored in each pixel, more complex data, such as texture, requires data from mul-

tiple pixels. To ensure pixels are sampled in a consistent manner, a feature descriptor is

typically ‘slid’ around the image to sample pixels consistently. Regardless of the method

used, the descriptor must be large enough to encapsulate a visually definable amount

of texture, sometimes requiring several thousand surrounding pixels (for example, [112]

suggests a 50x50 pixel sliding window which would process 2500 pixels each sample).

Prior to segmentation, a supervised learning stage is required to create a model for

each class. This achieved by applying the feature descriptor to a training-specific labelled

data-set. As the training set should be an accurate sample of each class, the model should

reflect the training set accurately. However, as the training set is also limited, the model

must be able to ‘generalise’, in order to correctly classify data outside of the training set.

As these requirements are in opposition, a point must be established which allows the

model to generalise but still closely adheres to the known examples. This problem is
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known as the Bias–Variance Tradeoff (BVT) and is a well known problem in supervised

learning.

If the model adheres too closely to the training data, it increases the chances of over-

fitting to trends in the training set, which are not representative of the class as a whole.

During segmentation, this would result in many unknown regions which would produce

many false-positive collision risk detections. In contrast, simplifying the model by en-

closing more of the feature space may under-fit, resulting in a model which captures

elements from beyond its class. When this is the case, individual pixels are often suffi-

ciently close to multiple classes to be considered a match, with the class with the highest

confidence claiming the pixel. As visual training sets typically require vast amounts of

data for training, models with high-bias (i.e. under-fitting) are more common in image

processing. As such, classifiers will tend to bias towards known classes, rather than un-

knowns.

When feature descriptors extract data from the centre of a region, there are minimal

effects of under-fitting as the large sample size helps to provide enough data to achieve

the correct classification. However, when the feature descriptor is applied near region

boundaries, it can capture pixels from multiple regions at the same time. When the fea-

ture descriptor overlaps multiple classes simultaneously, if classifier confidence is higher

for one class (which is always true when the other region is an unknown), fewer pixels

are required to qualify as a known region. This results in inaccurate region borders, with

the known class region ‘encroaching’ into the unknown region. Results from [100] and

[46] show that segmentation based on texture feature descriptors often shifts regional

boundaries from their original position. Where regions are small enough, this can result

in them being entirely misclassified, with small regions becoming absorbed into larger

neighbours. As even small objects can pose a risk, this form of misclassification could

directly endanger the UAS. Despite the widespread use of CLS, as the goal of this system

is to able to detect generic collision risks, relying on expected classes for segmentation

was deemed inappropriate.

5.3 Untrained Segmentation

As semantic segmentation is a goal, not a process, there are many methods which can be

used. Although multiple forms of CLS are available, the tendency to bias classification

and shift edges is difficult to avoid when relying solely on classification data during seg-

mentation. In an attempt to correct for these issues, some CLS techniques incorporate a
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secondary stage to re-adjust region borders. (Work undertaken in [101] and [127] makes

use of edge detection to to correct region border shift by moving the border to a nearby

edge).

To avoid introducing the same classifier-based issues, region borders are extracted

from the original image using low-level image features; using either direct pixel values or

neighbouring pixel relationships. Working with extremely small features ensures that the

border-shift issues common with CLS do not occur. Accordingly, the most precise region

boundaries can only be extracted by directly comparing values of individual pixels (i.e.

brightness or colour) and therefore pixel-level border regions should be achievable.

Low level features are often very capable of extracting region borders. As such, it is

entirely possible to carry out segmentation without using classification data. As directly

comparing pixels does not require a classification model, there is no training stage and

these forms of segmentation are often described as ‘Untrained segmentation’. By sepa-

rating segmentation and classification, an alternative approach is to perform segmenta-

tion first, using only low-level image features. After segmentation is complete, the image

will be divided into many distinct regions (as with CLS), each of which will still require

classification.

Provided that the untrained segmentation is capable of correctly segmenting a scene

(each cluster should only contain visual similar regions of the original image), the con-

tents of each cluster can be assumed to represent a single class. This allows every pixel

within each cluster to be used during the subsequent classifications stage. Should any

cluster be malformed so as to contain more than one class, at least partial misclassifi-

cation is guaranteed as no further segmentation will be introduced. Instead, the entire

cluster is assigned the most likely class (or as an unknown). Therefore, when relying on

low level features alone, it is often better to err on the side of caution, and produce an

over-segmentation such that each cluster is more likely to only represent a single object

or part of one.

The main disadvantage of an initial over-segmentation is that it requires more clas-

sification stages (in accordance with the increased number of regions) and each region

has less data to use. However, even if the initial segmentation is an over-segmentation,

as each cluster should represent a single class, the classification stage can use the en-

tirety of each cluster as sample data. If the segmentation is good, classification should

be very accurate. Semantic understanding can then be introduced during the classifica-

tion phase, where each cluster is categorised based on its contents. After classification,

neighbouring regions of the same type can be merged, producing a result more compa-
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Fig. 5.2 Example image which will be used to display the output of different segmentation

techniques.

rable to human segmentation. As the data used for segmentation is different to that used

for classification, additional processing stages are required. This makes the process less

efficient than CLS. However, the precision of edges and the ability to use well-established

methods make this a more viable alternative.

As image segmentation has been an area of research for decades, untrained segmen-

tation methods that produce pixel level accuracy are well established. Therefore, a re-

view of several segmentation methods will follow, assessing the suitability of each tech-

nique to use in an aerodrome environment. Unlike CLS methods, which could be directly

compared to examples of manual segmentation to determine accuracy, the overall suc-

cess of untrained segmentation depends both on the segmentation stage and the sub-

sequent classification stage. As such, a numeric representation of the performance of

each method cannot be obtained. Instead, the perceived quality of the segmentation

will be based on the perceived accuracy. Figure 5.2 shows an image captured at Walney

Airport, which will be used to compare the results of multiple untrained segmentation

techniques. Additional consideration will also be given to the difficulty of obtaining an

accurate segmentation.



5.3 Untrained Segmentation 89

5.3.1 Edge based segmentation

Although it was stated at the beginning of this chapter that ‘segmentation is commonly

approached from the bottom up, clustering similar pixels together’, an alternative ap-

proach is to directly seek the borders present within the image, i.e. to use edge detection.

When distinct regions are present in an image, adjacency between regions usually creates

a strong discontinuity in colour or brightness. Edge detection filters (such as the Canny

filter [20]) are designed to produce a ’filter response’ image which highlights discrepan-

cies between neighbouring pixels. To ensure only edges are detected, the filter further

increases the response when other neighbours also have a strong response, maximising

the chance of detecting a consistent edges whilst reducing the response of anomalous

individual pixels.

Once the raw edge detection response has been acquired, the ‘strength’ of a detected

edge is apparent by the values of the pixels. Depending on the application, weaker edges

may either be useful or discarded. As such, a user defined threshold is applied, creating a

binary image in which every pixel response is assumed to represent an edge. As the clear-

est edges in most images are found at a perimeter, edge detection is useful for defining

the boundary between different objects. Edge detection is also highly efficient and can

be accomplished very quickly.

Although the results of edge detection may appear segmented, none of the pixels

within the image have been grouped. To accomplish this, areas enclosed on all sides

by edges can be considered a single cluster. As this appears much like contours defin-

ing similar elevation on a map, the process is often referred to as ’contour’ detection.

Contour detection is far more complex than edge detection, with multiple possible ap-

proaches. A possible approach involves:

• Morphological closing to ensure there are no gaps in the edges.

• Skeletonisation to determine junctions and connectivity between junctions.

• Loop detection, using the connectivity between junctions and treating the entire

image a graph.

• Region reconstruction, combing the edges which form the smallest loops to create

unique regions.

Despite the number of stages, ‘contour detection’ can be highly efficient. As the pro-

cess is based on junctions and edges, the vast majority of an image is not used during the

contouring stage. This allows for even a large image to be segmented quickly.
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Fig. 5.3 Canny edge detection, seeking only ‘strong’ edges

Fig. 5.4 Canny edge detection, including ‘weaker’ edges
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Difficulties

The fundamental problem with edge based segmentation is consistency. In order to de-

tect an object, it must be isolated as a region (or several smaller regions) within an im-

age. As edge detection methods rely on strong discontinuities, this requires a continuous

border around each object. However, in outdoor environments (such as aerodromes)

strongly defined borders are not guaranteed. Over distance, effects such as haze and at-

mospheric scattering result in lines becoming less distinct. During testing, it was found

that the clarity of the edge between taxiway and surroundings reduced towards the hori-

zon. This resulted in continuous regions containing both taxiway asphalt and grass bor-

ders, as shown in Figure 5.3.

To properly define regions, weaker edges must also be captured. This is achieved by

lowering the response threshold to include weak edges. As shown in Figure 5.4, lower-

ing the threshold significantly does capture the border between runway and grass as an

edge, all the way to the horizon. However, it also has the adverse affect of introducing

many more edges within other parts of the image. In order to capture borders between

each type of terrain, the edge detection method produced an over segmentation. Highly

textured materials, such as asphalt or grass, result in many edges being detected despite

not representing the border of a region. The small regions created are often too small to

provide sufficient information for accurate classification, whilst taking substantial time

to extract using the method outlined above.

Despite additional testing, consistently extracting edges was found to be difficult.

Variability in lighting conditions, weather, camera motion and the neighbouring classes

of objects combine to make edge extraction results difficult to use outdoors. As such,

other untrained segmentation approaches will be considered which do not use edges,

but instead group similar pixels together into clusters.

5.3.2 Colour/Intensity Quantisation

A more common method of forming regions within images is to ‘cluster’ pixels together,

based on similarity. In the simplest implementation, regions can be formed by com-

paring the colour (or intensity) data of each pixel within the image, without including

additional information, such as connectivity or cluster size. However, attempting to

group pixels on their original colours is usually impractical. As modern cameras use 8-bit

colour, each colour channel has 256 possible colour vales. With most camera using three

channels (RGB, YCbCr etc), there are approximately 16 million possible colours per pixel.
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Therefore, as it unlikely that many pixels will share the exact same colour, the number of

overall colours must be reduced.

Different methods of reducing the number of colours within an image has resulted in

different terminology being used to describe very similar tasks. The term ’Thresholding’

was originally used, as it described the process of determining the threshold which would

convert a grey-scale image into the optimal binary-image output. Techniques such as the

Otsu method [83] were extremely successful and are still commonly used when attempt-

ing to separate image foreground and background. For colour images, the multi-Otsu

method built upon the original by establishing multiple thresholds within colourspace,

continuing to promote the use of the term ’Thresholding’. However, many other tech-

niques do not use thresholds, such as K-means clustering (which has now been proven

to be equivalent to Otsu [66]) and histogram peak detection. As such, the most suit-

able term to encapsulate all of these methods is ‘colour quantisation’. For this work, the

quantisation method chosen for testing is Wu Quantisation [121], (which is a threshold

based method, repeatedly pi-bartioning the RGB colourspace using variance minimisa-

tion). The Wu method was chosen as it is commonly used in computer graphics due its

tendency to preserve the appearance of the image for human interpretation, despite a

large reduction in the number of colours.

For simplistic images with distinct regions of solid colour, pure quantisation meth-

ods can efficiently segment an image into distinct regions. When isolated against a uni-

form background of a different colour, pixel based quantisation can be coupled with

‘connected component’ analysis to determine distinct objects in the foreground, mak-

ing these methods widely used in industrial/manufacturing processes settings. However,

when used on more complex scenes, such methods are rarely successful at achieving

a good segmentation. As similar colours can be dispersed throughout an image, pixel

groupings often lack spatial cohesion, leading to cluster being comprised of pixels scat-

tered throughout the image, rather than a connected region. Outside of extremely sim-

plistic conditions, colour quantisation alone creates poor segmentation results.

Figure 5.5 shows a 3D representation of the colourspace used by the example image in

Figure 5.2. In Figure 5.5a the colourspace is reduced to 32 distinct colours, before being

further reduced to just 8 in Figure 5.5b using Wu Quantisation.

Despite a reduction from 16 million to only 32 colours, the remaining colours are

still similar enough so as not to form distinct areas within the image. Instead, where the

original pixel colours are near equidistant to multiple quantised colours, pixels will alter-

nate between quantised colours depending on which one is closest. As such, the results
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(a) Colourspace quantised in 32 colours (b) Colourspace quantised in 8 colours

Fig. 5.5 3D RGB colour quantisation representations of the example image

of connected component analysis would generate thousands of small regions, many of

which are simply individual pixels. Even where the majority of one area is a single colour,

fragments of other clusters will be present within the larger region, making any task of

separation very difficult.

A possible method to impose spatial constraints through quantisation alone would be

to decrease the number of colours available. Further reducing the image to just 8 colours

subjectively improves spatial clustering, as shown in Figure 5.6. However, all yellow and

white taxiway markings have now been combined into a single cluster, which includes

part of the sky as well as some asphalt. As such, quantisation alone is not very suited for

untrained segmentation.

Some recent work attempts to improve segmentation through quantisation by rep-

resenting the fragmented groupings as Gaussian ellipsoids [74]. This approach favours

areas dense with a single colour while fragmented outliers are lost, presenting a highly

efficient method of isolating regions of similar colour within the image. The resulting

ellipsoids sufficiently convey the colours and locations of regions within the image such

that they can be used to classify the type of road a car is currently travelling along (e.g.

urban, rural or offroad). However, the applicability of this approach to automated taxiing

is limited, especially considering the loss of shape data through the Gaussian conversion

would make accurate tracking of collision risks or terrain features difficult.
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Fig. 5.6 A single ‘cluster’ produced by colour quantisation

5.3.3 Unsupervised Region-Growing

The use of image-wide features, such as the most common colours, is only appropriate

for tasks which are not focused on low-level details, such as file-size reduction. Although

some of the results of pure colour quantisation are acceptable, as the colours are chosen

before the segmentation process, they cannot adapt to regions of the image. To define

regions more precisely, techniques which work at local level are more appropriate. One

method of localising clustering is to ensure that all pixels which make up a cluster are

not only similar in colour, but are also connected together. This is commonly achieved

through region growing algorithms, which segment images based on similarity between

neighbouring pixels.

Specific implementations use slightly different methodologies, but region growing

methods typically begin with a random selection of starting pixels, each of which is com-

pared to their immediate neighbours. If the difference between the neighbours and the

original pixel is less than a preselected threshold, clusters are formed consisting of the

connected pixels. This process continues (either using colour distance to the starting

pixel or to the current cluster mean) until no more pixels can be grouped.

As clusters only continue to grow while neighbouring pixels are below the colour

threshold, edges are formed between regions of distinct colours. This results in region

growing segmentation adhering to strong edges in much the same way as edge detection

methods. In addition, when a single pixel is within threshold range of multiple clusters, it

is grouped into the cluster which is most similar. Therefore neighbouring clusters should
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Fig. 5.7 Region growing segmentation with superimposed edges

produce a well defined boundary between two regions, even if they are separated by a

weak edge.

For this work, the HALCON region growing algorithms provided by MVTec software

were used [79]. Compared to colour quantisation and edge based segmentation, region

based segmentation methods are computationally intensive as they require comparisons

between individual pixels pairs. However, as the results are usually more consistent and

appear better through qualitative human assessment, they are more popular.

Limitations

Region growing methods provides a subjectively better result when compared to ‘edge

based segmentation’ or ‘colour quantisation’; as shown in Figure 5.7, the results consist

of fully connected regions of a reasonable size, which also accurately adhere to the bor-

der of the original image. As such, pure region growing methods could be used as the

segmentation stage for this work.

Nevertheless, simply because the result is usable does not suggest that it cannot be

improved upon. To maximise the chance of correct classification, a single cluster should

cover as much of an object as possible so as to provide the most data. However, region

growing algorithms produce over-segmented results in images with gradual changes in

colour. Although abrupt colour changes are highly likely to represent the meeting of dif-

ferent objects, smooth colour gradients are generally indicative of a single object. (For

example, objects with curved surfaces often have gradual colour changes due to lighting).
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As regions will stop growing when neighbouring pixels exceed the permissible threshold,

arbitrary boundaries will be created in regions with colour gradients. For large regions,

this can occur multiple times, introducing parallel clusters next to each other. This cre-

ates ’banding’ within smooth areas, with the end results being unnatural to human vi-

sion. As the atmospheric effects of Rayleigh scattering result in colour changes towards

the horizon, it was found during testing that region growing methods divided taxiways

into multiple segments.

This mild over-segmentation is not a total barrier to the use of region growing for the

segmentation stage. However, over-segmentation risks the increased change of misclas-

sification. If a taxiway is broken into numerous parts, the probability that a false positive

risk detection will occur increases. Therefore, methods of unifying clusters which repre-

sent a single object were explored.

5.4 Object Specific Segmentation

The ideal goal of the segmentation process is for each object within the original image

to be represented as a single cluster. This form of ’Object Specific Segmentation’ would

allow the entire object area to be used during classification, whilst also ensuring that only

pertinent data is used. As such, methods of improving upon the results of region-growing

classification were investigated.

As the region-growing technique produced an over-segmentation, a possible approach

would be to ’re-cluster’ the smaller segments into larger regions which only represent a

single object. However, this is evidently very difficult; as each cluster has stopped grow-

ing, they have likely reached the maximum variance allowed by region growing threshold.

This would make the average data in each cluster too dissimilar to be grouped on colour

alone. Alternatively, as the over-segmentation introduces region borders where no clear

division exists in the original image, edge detection could be used to confirm actual bor-

ders. This again returns to the issue that edge detection requires strong edges which may

not always be present on features further from the camera. Through testing it was ob-

served that neighbouring regions with dissimilar contents but a weak border were incor-

rectly combined using this method, as shown in Figure 5.8. As an under-segmentation

will always produce an incorrect result, the use of edges during re-clustering was not

pursued.

As the original over-segmentation was the result of the region-growing algorithm stop-

ping before isolating an entire object, adjustments to the region-growing algorithms were
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Fig. 5.8 Results of attempting re-clustering using strong region edges to separate regions

also explored. As most region growing algorithms compared new pixels to either the

‘seed’ or the current region mean, the region stops growing when new pixels become

dissimilar. An alternative approach is to compare each new pixel to the pixels which cur-

rently form the region border. Regions are then formed of pixels which, whilst not nec-

essarily similar to each other, are connected to each other via a sequence of connected

pixels that do not differ more than a threshold. Due to the similarity to methods used in

graph theory, this is referred to as ‘reachability’ clustering.

However, attempting to modify region growing algorithms to incorporate this change

has proved unsuccessful. Although clear edges will continue to separate regions, reacha-

bility significantly increases the likelihood that neighbouring clusters will combine. If

any part of the border is sufficiently gradual to allow a reachability connection to be

formed, the two clusters will be combined into one. This is especially true for regions

near the horizon, due to the atmospheric effects shift pixel hue and saturation. Attempt-

ing to apply reachability directly to traditional region growing usually results in a signifi-

cant under-segmentation.

Although reachability cannot be applied to large clusters (as they are already too dis-

similar) nor at the pixel level (as they are too similar) a solution is to apply reachability

re-clustering after over-segmenting the image into small clusters. Smaller clusters are

more likely to be similar to their neighbours, allowing a reachability approach to include

them when forming a large cluster. At the same time, using the average data of many pix-

els lowers the likelihood of forming a connection across object boundaries. Therefore,
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an over-segmentation approach followed by reachability clustering is seen as an appro-

priate method of obtaining object specific segmentation without classification, and has

been explored in more detail in the following section.

5.4.1 Over-segmentation

Beginning with a deliberate over-segmentation requires a different approach compared

to the previously described image segmentation methods. As the clusters are to be re-

combined into larger regions, the initial over-segmentation must meet certain require-

ments; specifically the size of the clusters is of critical importance if a reachability ap-

proach is to be used. Each cluster must:

• Be large enough that the contents will be dissimilar to clusters of a different object,

even without well defined borders in the original image

• Be small enough that the variance between neighbouring clusters of the same class

is low, allowing them to be easily grouped into larger segments later on.

The easiest method of ensuring that each cluster is the correct size would be to di-

vide the image uniformly, using either a rectangular or hexagonal grid. However, this ex-

tremely simple ‘Grid Segmentation’ approach has significant drawbacks, primarily due

to the grid not adhering to the underlying borders within the image, shown in Figure 5.9.

During the subsequent reachability clustering, the edge of the large region can only ad-

here to the edges of the merged sections. Therefore, the border of the region will not be

aligned with the edge of the object within the original image, leading to depth estimation

issues and introduce data into the larger region which may hinder classification.

Further more, any grid segment which lies on the border of two objects may not be

clustered into either region due to the average data being significantly different from

both. If the segment is not clustered, it is likely to be identified as an ‘unknown’ potential

risk as it contains conflicting data from multiple classes. This tends to result in many

small collision risks being falsely detected throughout the image, as shown in Figure 5.9

where a 10 by 10 pixel grid results in many segments containing multiple classes. These

issues demonstrate how important accurate clustering is, even at the smallest scale. The

over-segmentation must not only be regular in size, but must also be consistent in colour

in order to adhere to object borders.

Due to the limited applications of clustering at a small scale, there are not a great

number of methods which quickly divide an image into small clusters, whilst still adher-
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Fig. 5.9 Segments produced by a grid which contain multiple classes

[Segments produced by a grid which contain multiple classes and would likely produce

a collision risk result by default. Achieved using a 10 by 10 pixel rectangular grid.]

ing to the underlying image. Therefore, the only two potential methods were explored;

‘watershed’ segmentation and ‘superpixel’ segmentation.

Watershed Segmentation

’Watershed’ segmentation is a method which uses a similar concept to ‘Edge based seg-

mentation’, but interprets the data an alternative way. As described in Section 5.4.1, edge

detection works by applying a filter to an image, in order to determine the colour gradi-

ent for each pixel compared to its neighbours. As local maxima are indicative of edges, a

threshold can be applied which defines edges based on the magnitude of the response.

For edge based segmentation, the intention was to directly segment the image into large

regions, requiring only the strongest edges to be used.

As the goal is now to produce an over-segmentation, more edges can be detected if

the threshold is lowered significantly. However, edge detection alone is only half the task;

self enclosing ’contours’ must be present in order to form segments. As shown in Figure

5.10, even with extremely low threshold values (0.1% of the maximum value range), edge

detection does not reliably form self enclosing regions. As such it is clear that ‘edge base

segmentation’ is not capable of producing a usable over segmentation without suitable

edges being present in the original image.

Despite this, the gradient image still contains useful information that can be used for
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Fig. 5.10 Enlarged depiction of the results of edge detection using a low threshold

segmentation. Watershed segmentation uses the same filter response image, but rather

than seek the maxima, it uses the gradient minima. Unlike maxima which occur when

neighbouring pixels are dramatically different, the minima occur when neighbouring

pixels share the same value (or are at least very similar). Apply a threshold to isolate

these pixels produces an image where regions of minimal variance have been grouped

into ’blobs’. Returning to the original image, these blobs indicate highly consistent re-

gions which are suitable as the basis for segments. The remaining process is to expand

the borders of each segment to include pixels with greater variance.

In geography, the term ‘Watershed’ refers to ridges on a landscape which separate

the catchment areas of rivers. By treating each image region as a catchment area, the

’Watershed’ segmentation approach determines the position of lines which would best

divide these areas. This is most commonly used for full image segmentation where large,

distinct regions already present. For example, when applied to a simple binary image,

the original clusters expand based on distance alone grouping each new pixel into the

closest cluster, as shown in Figure 5.11.

For greyscale or colour images, the gradient of the filter response is also included to

ensure the boundaries are placed in the most suitable location. Because the watershed

edges are extrapolated from minima regions, they are not directly based on the maxima

within the filter response. However, as the boundaries are established on both spatial

distance and colour gradient, they will tend to align with strong edges within the original

image.
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Fig. 5.11 The results of Watershed segmentation applied to the Loughborough University

Logo

Fig. 5.12 Watershed based segmentation

Due to the images being stored digitally, a combination of colour discretisation and

compression artefacts determine the exact location of the minima. As no preprocessing

is applied to the aerodrome images, the minima regions are typically very small, produc-

ing small clusters which adhere to the underlying contents of the image. This results in

the desired over-segmentation, as shown in Figure 5.12.

Despite this, the Watershed segmentation approach does have issues; primarily there

is no method of controlling the number or size of the clusters produced. Without any

form of pre-processing, the size of output clusters depends directly on the image texture

within the image, resulting in highly irregular segment sizes for images of multiple ob-

ject/material types. Although some clusters are already fairly large (which reduces the
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need to re-cluster) different materials within the image can result in other clusters being

extremely small.

For highly textured surfaces, such as asphalt, this produces a dramatic over segmen-

tation, with some regions as small as just a few pixels. During the subsequent reacha-

bility clustering, extremely small clusters are similar to individual pixels in that they risk

creating a ‘reachability path’ between two distinct regions. In addition, as re-clustering

requires that each segment is compared to it’s neighbours, smaller clusters increase the

overall cluster count, which increases the computational requirements. Although Water-

shed segmentation is a viable method of over-segmentation, alternative methods which

offered greater control over the number of clusters created were also explored.

Superpixel Segmentation

Segmentation techniques which establish clusters solely on the contents of the image

are unable to regulate cluster size. A single segmentation process (such as Watershed

segmentation) could result in either many small clusters or just several large clusters, de-

pending on the image contents. By comparison, if the desired number of clusters could

be specified before segmentation takes place, the approximate number of pixels in each

cluster could be determined based on the size of the image. As such, methods which

attempt to achieve a specific number of segments are more suitable for producing a sim-

ilarly sized clusters. This form of segmentation, which tailors the result based on user

parameters, is a relatively new form of untrained image segmentation, often referred to

as ‘Superpixel’ segmentation.

The term ‘Superpixel’ was coined due to the ability to use small clusters in lieu of

pixels for many tasks. By generating a large number of very small clusters (which follow

object borders), the average data for the cluster should be highly representative of each

pixel within it. If every pixel in the original image is grouped into superpixels, an im-

age with millions of pixels can be reduced to a meaningful representation of only a few

hundred superpixels, without loosing much colour information. Applying machine vi-

sion techniques at the superpixel level can produce similar results to the pixel level, but

at a much lower computational cost. (Although simply rescaling the image could also

speed up processing, the original borders would not preserved, preventing additional

data, such as image texture, being extracted at a later time).

Despite superpixels being a relatively new concept, there are already many different

algorithms available to generate them. For example, ‘Graph based’ superpixel creation

involves representing an entire image as a graph, in which every pixel within an image
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is represented as a node (such as Felzenszwalb [39]). The edges between nodes repre-

sent neighbouring pixels, and the edge weights are assigned based on colour similarity of

these pixels. Superpixels are then created by minimising a cost function over the graph in

its entirety. Alternatively, ’Gradient-ascent-based’ algorithms can also be used, in which

clusters of pixels are iteratively adjusted to maximise border gradients whilst maintaining

the average cluster size (such as Quick-Shift [114]).

Determining the best method of generating superpixels is made difficult by the lack

of any clear metric with which to compare different techniques. Essentially, the chosen

approach must satisfy the following conditions:

• Adherence to original image borders

• Computational simplicity

• Cluster size regularity

Although an empirical review of superpixel methods could have been undertaken,

one superpixel method is far more widely used than others due to excelling at all three

requirements. The current state-of-the-art in superpixel generation is widely considered

to be Simple Linear Iterative Clustering (SLIC). Compared to other superpixel generation

techniques, SLIC is highly computationally efficient, with the work done in [87] demon-

strating that a standard desktop computer (circa 2011) provides sufficient computational

power for SLIC to process high resolution images in real time, easily matching the typ-

ical 30Hz refresh rate of cameras. SLIC produces superpixels of consistent size and of

minimal colour range, while adhering well to region boundaries. Although difficult to

quantify, it is subjectively considered to produce a better end result. Therefore, SLIC was

selected as the over-segmentation approach. Figure 5.13 is an example of superpixel seg-

mentation achieved using SLIC.

5.4.2 Reachability Clustering

As stated at the beginning of Section 5.4, the goal of the entire segmentation process is

to achieve ‘Object-specific-segmentation’ in which unique classes within the image are

separated. Following on from Section 5.4.1, as each superpixel should only represent a

single class of object, direct classification of superpixels is a potential method of achiev-

ing this goal. However, as each superpixel is fairly small, there may not be adequate
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Fig. 5.13 Superpixel over-segmentation

information to accurately perform classification. The problem of classification and over-

segmentation is shown in [46], where segmentation is achieved using superpixels. Clas-

sification of each superpixel is then performed using texture data, but is also augmented

with relative location data (e.g. pixels above trees are likely to be sky, and pixels below

trees are likely to be grass). Despite most superpixels being classified correctly, the final

result still suffers from misclassification, due to the small size of superpixels making it

difficult to extract sufficient features.

For classification, larger clusters are preferable (where possible), as each cluster has

more information for the classifier to use. Accordingly, a suitable intermediary stage is

to use the over-segmented output from SLIC and apply reachability clustering; grouping

the superpixels into larger, visually similar regions. As simply merging superpixels does

not shift their borders, the final cluster boundaries should preserve their accuracy to the

underlying image, whilst offering substantially more information to aid in classification.

Therefore, this section outlines potential methods of re-clustering superpixels.

Figure 5.14a shows an aerodrome image with the SLIC superpixel over-segmentation

shown in Figure 5.14b. Based on this over-segmentation, Figure 5.14c shows the results of

clustering using k-nearest neighbors algorithm, whereas Figure 5.14d shows the results

of reachability clustering, using the Density-Based Spatial Clustering of Applications with

Noise (DBSCAN) algorithm as outlined below.
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(a) Original image of outdoor scene (b) SLIC Superpixel over-segmentation result

(c) Nearest-neighbour clustering result (d) Reachability clustering result

Fig. 5.14 Comparison of Reachability and Nearest neighbour clustering results
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DBSCAN

Although the concept of using reachability to re-cluster superpixels has been previously

explored, there is very little literature on the subject. The only prominent example is the

work undertaken by Kovesi [63], in which SLIC generated superpixels are re-clustered

to form larger regions, using the DBSCAN algorithm [35]. (This use of DBSCAN for re-

clustering is different from a more common use of DBSCAN for superpixel generation,

such as in [99]).

DBSCAN is an advanced clustering algorithm which is entirely based on the concept

of reachability. For two points to be ‘reachable’ from each other, the distance between

them must be less than a threshold distance, ϵ . DBSCAN builds upon the concept of

reachability by introducing the ’density reachability’, in which reachable points are fur-

ther categorised by the number of connections they can make. Using DBSCAN, each data

point (or superpixel) is categorised as:

• Core Point - If a point is reachable from at least minPts other points, then it is

considered a core point. Each cluster must have at least one core point, and the

minimum number of points within a cluster is mi nP t s +1.

• Reachable Point - If a point is reachable from less than minPts but is within ϵ

of a known core point, it is still considered to be part of the cluster. but cannot

be used to link in further points (i.e. most cluster border points are not core). As

the connection to other ‘reachable’ points is not explored, it prevents neighbouring

regions with only a single link from becoming combined.

• Outliers - Any remaining points are considered outliers and are not clustered.

A reachability approach can cluster data which cannot be clustered using older tech-

niques (such as k-means or Gaussian mixture clustering). As clusters are formed based

on the spread of data, there is no need to specify the number of clusters beforehand. This

allows an image containing an unknown number of objects to be reliably segmented. In

addition, a reachability approach allows data to be clustered even when the sets cannot

be separated linearly (which is of consequence for objects with gradient colour in dif-

ferent colour channels). This is particularly useful for outdoor images, as atmospheric

scattering creates a gradual change in colour with distance. Provided that the superpix-

els between the closest and furthest point capture the change in colour gradually, the

two extremes will be considered reachable and therefore will be combined into a single

region.
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Density reachability is also essential to stop over-clustering. Although superpixels are

large enough that they should prevent ’path-forming’, the possibility still exists that two

similar superpixels could connect two otherwise disimilar regions. By requiring a mini-

mum number of connection points, DBSCAN greatly increases the liklihood of filtering

out such connections.

As the original superpixel boundaries formed by SLIC are preserved during DBSCAN

clustering, the final result retains the sharp resolution required for depth estimation. If

the final segmentation is still an over-segmentation, the larger clusters increase confi-

dence in getting the correct classification results, with the remaining over-segmented

regions finally combined by sharing the same class. A successful segmentation result has

already been achieved using this methodology [33].
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Fig. 5.15 Reachability based clustering, in which clusters are formed using a minPts value

of two. Points A, J and O are connected to the cluster despite not being core points. In

addition, due to point J not being a core point, point I is not included within the cluster

despite point I being reachable from point J.

For superpixel re-clustering the most suitable distance metric to use is Delta-E (∆E∗
ab

),

which is essentially the euclidean colour distance within the Lab colourspace. As with

SLIC, colour data is used as the small size of an individual superpixel limits the amount

of other data types which could be extracted for comparison. To improve computational
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speed and to prevent disconnected clusters forming, only the colour distance between

adjacent superpixels have been considered.

Due to the contents of the image being unknown, the relationship between each set

of neighbouring superpixels must be treated equally. Therefore, determining if two su-

perpixels are ‘within reach’ of each other is entirely dependant on the single parameter

ϵ , making the selection of an appropriate value of ϵ highly important. As the average

change between neighbouring superpixels of the same class should be very small, the

value required is around the ‘Just Noticeable Distance’, being large enough to include su-

perpixels of the same class within a cluster but not form links with superpixels which are

different.

As lighting conditions change throughout the day and the distance metric includes

a brightness component, the colour distance between clusters will be effected by global

illumination changes. However, to operate in outdoor conditions, cameras make use of

techniques such as auto-exposure to adjust the values in the output image. Therefore, the

brightness component of an image is typically scaled to the same range despite changes

in the brightness of a scene. As this shifts with global illumination changes, the overall

impact is very small during day time conditions.

This form of reachability will not be successful when the average brightness is very

low, as the distance between superpixels of any class will tend to zero. Despite this, as the

system is not currently intended to function at night, this is not considered to be an issue.

Therefore, for this work ϵ was experimentally determined using aerodrome images with

the intention that all testing for this work is only undertaken during day-time conditions.

One additional issue with DBSCAN is that it is not entirely deterministic. Superpixels

which are equidistant from multiple clusters are placed into which ever cluster is pro-

cessed first. This minor factor is unlikely to contribute much to the overall result. If a

superpixel is equally likely to belong to two clusters, they are probably the same class

and will be grouped together during the classification stage.
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5.5 Summary

In Chapter 4, it was established that Image Segmentation is the most suitable approach

for terrain classification. As many different methods are available, this chapter reviews

potential methods of achieving the best segmentation and identifying why many estab-

lished techniques are not suitable for this application.

As classifier-led-segmentation methods are now the most popular methods of image

segmentation, such techniques would seem the most appropriate. However, the ma-

jority of classifier-led-segmentation methods use deep-learning and therefore are not

viable for aerospace use. In addition, due to the remaining classifier-led-segmentation

approaches tending to bias the results towards known classes and artificially shifting ob-

ject borders, it was decided that an untrained segmentation approach was better suited

for this work.

After reviewing several unsuitable methods of untrained segmentation, a compari-

son of their shortcomings established the ideal result of ‘Object specific segmentation’, in

which each object in the image is individually segmented, regardless of scale or contents.

In order to satisfy border accuracy between objects, a localised segmentation method

was required, with a Superpixel implementation found to provide the best segmentation

result, restricting cluster growth in both space and colour distance. As the superpixel-

segmentation process divides the image into visually distinct clusters of pixels, each clus-

ter should contain only a single object type (i.e. class), allowing the entirety of each clus-

ter to be used during classification.

As the output from superpixel clustering is a dramatic over-segmentation, processing

at this level is inefficient, whilst also limiting the amount of information available for clas-

sification. A reachability clustering approach has been found to be effective in grouping

superpixels so as to form larger regions without disturbing localised borders, achieving

the closest results to ‘Object specific segmentation’ using untrained segmentation. The

next chapter (Chapter 6) builds upon the final approach selected in this chapter, and

establishes the actual implementation used, in addition to some initial results.



Chapter 6

Implementation of Image Segmentation

and Data Extraction

In Chapter 5, it was established that an untrained image segmentation approach was the

most suitable. By clustering through similarity and reachability, the resulting clusters

should each only contain a single type of object, albeit with the actual class still remain-

ing an unknown. Therefore, to produce the desired semantic segmentation, each clusters

must undergo classification.

The classification stage involves extracting features from each cluster and comparing

them to known examples of each class. The best match and the degree of similarity then

provides a confidence of the clusters identity. As the classification stage depends on the

features extracted from each cluster, data extraction is a vital part of semantic segmen-

tation. As such, it is discussed here within this individual chapter, separate to the actual

process of classification. Prior to classification the implementation must consists of two

elements:

• Using untrained segmentation to divide the image into regions, each of which should

only contain a single class.

• Performing data extraction upon these regions to extract data suitable for classifi-

cation.

This chapter describes the methods used to implement this approach. Figure 6.1

shows how data extraction is required for both training and classification, with stages

discussed in this chapter highlighted in blue. Although classifier training and classifi-

cation are different processes, in order for the classifier to function correctly, consistent

data extraction techniques must be used throughout.
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Data extraction

Classification

Segmentation

Prior to operation

Extract data from

each labelled region 

within the training

images

Segment training 

image and manually 

label classes to 

create "ground truth" 

Train Classifier

based on extracted

data for each class

During operation

Automated Image

Segmentation

Extract data from

each unknown region 

within the captured

images

Use trained classifier

to determine the

class of each 

cluster

Fig. 6.1 Stages of the semantic segmentation process, showing the ‘repetition’ of stages

both prior to and during operation. To ensure prior data can be used for classification,

the same data extraction methods must be used throughout.

Contributions from this chapter include:

• A novel method of graphical reachability, intended for use in combining superpix-

els into larger regions without sudden changes in colour (Section 6.1.2).

• The specification of Normalised Relative Luminance (NRL) and its relationship

with distance for surface marking extraction (Section 6.4.3).

6.1 Untrained Image Segmentation

With the aim of achieving ‘Object Specific Segmentation’, as defined in Section 5.4 , two

components are required: superpixel oversegmentation and the subsequent reachabil-

ity re-clustering. As described in Section 5.4.1, the current state-of-the-art in superpixel

generation is widely considered to be Simple Linear Iterative Clustering (SLIC). As such,

this will form the basis of the superpixel approach.
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6.1.1 SLIC Superpixels

SLIC is very simple to implement, with the only tunable variable being the number of

desired superpixels. As such, the segmentation was implemented using the method sug-

gested by the original authors Achanta et al. [4]. (This method was also used in the pre-

viously published work [33]).

The SLIC algorithm is fundamentally a K-means clustering approach with two inputs;

the dataset (i.e. the input image of size N pixels) and the number of desired centres K

(i.e., the number of superpixels). Alternatively, the approximate size of each superpixel

can be used as it is simply N /K .

For K-means, cluster centres are required. This are spatial located within the XY coor-

dinates of the image, at every grid interval S =
p

N /K . Clustering is then achieved using

a distance metric composed of both colour and spatial distance. In order for colour dis-

tance to be applied uniformly, the CIELAB colour space is used. Despite the colour dif-

ference being revised multiple times since it’s inception, Achanta et al. use the original

CIE76 definition of colour distance and achieve good results, so this has been replicated

here.

Each cluster centre is denoted as a 5 dimensional co-ordinate in terms of colour and

location.

Ck = [lk , ak ,bk , xk , yk ]T

The colour difference formula is simply the euclidean distance in CIELAB colour space,

for each other pixel compares to the cluster centre:

dl ab =
√

(lk − li )2 + (ak −ai )2 + (bk −bi )2

Similarly, the spatial distance is also the euclidean distance from each pixel to the

cluster centre, only within the XY image space:

dx y =
√

(xk −xi )2 + (yk − yi )2

As colour distance and spatial distance are not directly comparable, they need to be

normalised to allow comparison. This is done using the maximum colour and spatial

distances within each cluster ( Nl ab and Nx y ):

Ds =

√

(
dl ab

NLab
)2 + (

dx y

Nx y
)2
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As the clusters are formed iteratively, constantly determining these maximum values

would greatly increase the computational intensity. Instead, simplifications can be made

through approximation. As the maximum spatial distance in any one cluster should not

exceed the distance between cluster centres, Nx y can be approximated as S. Colour dis-

tance is more complex as they are specific to both individual clusters and vary massively

depending on the image. Instead, Achanta et al. simply replace the maximum colour

distance NLab with a constant ‘gain’: m.

By tuning this ‘gain’, the relative contribution of spatial and colour distance can be

adjusted in the overall distance metric. A large value of m results in spatially uniform

superpixels, which may not adhere to image boundaries perfectly, while a very low value

of m results in superpixels which accurately follow borders but are irregular sizes and

shapes. When using CIELAB, Achanta et al. suggest that m remains within the range of 1

to 40. The overall distance metric used is therefore:

Ds = dl ab +
m

s
dx y

Fig. 6.2 SLIC Representation of a hot air balloon, using very large superpixels.
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An iterative algorithmic approach is then used to segment the image into superpixels.

Another example of SLIC superpixel segmentation is shown in Figure 6.2. Once the SLIC

algorithm has been applied, the original image will have been divided into multiple small

clusters, each similar in size. As superpixels are spatial constrained, the end result is

always a significant over-segmentation, ensuring that the superpixels are a suitable size

for reachability clustering. In addition, using both colour and spatial distance to cluster

ensures that even subtle edges in the original image are reflected in the position of the

superpixel borders. This minimises the risk that any superpixel will contain more than

one category of object, whilst also ensuring that superpixel boundaries conform to the

boundaries of objects within the image.

6.1.2 Graph Based Reachability Reclustering

Despite the success of DBSCAN in previous work ([33]), DBSCAN has not been used to

re-cluster superpixels here. The foremost reason for this is computational speed. When

used to cluster unrelated points within a dataset, DBSCAN is highly efficient. However,

it does not include the concept of adjacency. In order to prevent disconnected clusters

from forming in the 2D image, superpixel adjacency was calculated in a prior step and

stored within an adjacency matrix. For each new superpixel that could be added to a

cluster, both an adjacency and colour distance check were required.

As the adjacency matrix was available, a novel graph based implementation was found

to be far quicker, similar to the Felzenszwalb graph based method for creating superpix-

els ([39]). Using the same concepts as in DBSCAN (density reachability,(∆E∗
ab

) distance

metric and threshold value ϵ , a Region Adjacency Graph (RAG) was formed in which

each superpixel was considered a node. Edges between nodes were formed based on ad-

jacency, with colour distance between superpixels used as the edge weighting. The graph

based implementation of DBSCAN was simply:

• Removing all edges above the threshold ϵ .

• Identifying core ’nodes’ which have more than minPts connections.

• Remove all edges which are not connected to a core.
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Defining this in graph theory notation, let graph G = (V ,E) where:

V (or V (G)) are the vertices which represent each superpixel and

E (or E(G)) are the edges created from the adjacency matrix.

Determine the vertices which represent colour distance greater than the threshold ϵ:

VE X =V (G) > ϵ

Remove these edges to form a reduced graph, often already divided into several dis-

connected sub-graphs:

G1 =G −VE X

Core points are identified as vertices where the maximum degree of a vertex (number

of connected edges ∆(G1)) is greater than minPts:

VCORE =∆(G1) ≥ mi nP t s

Finally, remove edges not connected to a core. This is most easily defined by estab-

lishing the neighbourhood (set of adjacent vertices) of each core point and combining

them into a single graph.

GRE AC H AB I LI T Y =
∑

N (VCORE )

As the neighbourhood of core vertices will included connected vertices which aren’t

core themselves, this produces the appropriate re-clustering far quicker than the process

of visiting each point in turn.

Returning to the previous implementation where DBSCAN and adjacency were con-

sidered separately, DBSCAN simply established colour similarity between a superpixel

and all the superpixels already within a cluster. If a new superpixel was similar to enough

superpixels already within the cluster, it was included even if those superpixels were not

directly adjacent. An additional benefit of this new graph based method is that it requires

that both similarity and adjacency to be satisfied before a superpixel can be added to a

cluster, ensuring both local superpixel similarity as well as similarity to the cluster as a

whole.

To further to minimise the risk of multiple classes being captured by a single clus-

ter, the graph is purposely divided using a threshold which produces a higher number

of clusters than optimal, in order to ensure clusters do not expand into neighbouring
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Fig. 6.3 Superpixel based reachability clustering

regions. Figure 6.3 shows the results of re-clustering superpixels, which is identical re-

gardless of whether DBSCAN or graph based re-clustering is used.

6.1.3 Results

The chosen reachability clustering approach has been found to produce better results

when compared to the other techniques which have been previously discussed. Despite

this, determining the actual quality of a segmentation result is difficult.

As shown in Figure 6.3, the chosen segmentation approach would appear to success-

fully divide an image into clusters, each of which contain only a single class of object.

Although this is in accordance with the desired result, simply inspecting the image does

not provide an indication of the quality of the segmentation process. For simple im-

ages consisting of solid blocks of colour, it would be straightforward to assess whether

the segmentation process had produced the optimal result. However, when dealing with

complex scenes (containing objects which themselves have sub-components of different

textures and colours) assessing such a result is extremely difficult.

Work by Mohammad et al. [75] attempts to provide a numerical method for evaluat-

ing the quality of a segmentation, based on the similarity of the final result to a manually

defined ‘ground truth’. By comparing the automated result to that produced by a human,

the difference between expectancy and actual result can be used to assess quality. The

downside to this approach is that it requires the manual ground truth to match the inten-

tions of the segmentation process. A data set for comparison is offered by Mohammad et
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al. with which segmentation processes can be assessed. However, the dataset assumes

that the segmentation process is attempting to achieve object-specific separation. For

this work, a deliberate over-segmentation has been retained to prevent any risk of under

segmentation. Therefore, simply comparing to full objects in scenes is likely to indicate

poor performance if the segmentation result does not match, even if it is viable for the

classification stage.

Instead, the quality of the outcome should be assessed on the requirements of the

segmentation. As the goal is to pass the results to a classifier, under-segmentation would

likely result in misclassification. Attempting to achieve universal segmentation using a

single technique requires the approach to be cautious, in order to prevent under segmen-

tation. Therefore the primary assessment of segmentation quality should be to deter-

mine if any instances of under-segmentation have occurred. Nevertheless, the purpose

of the re-clustering phase is to allow large regions to form to provide sufficient data for

classification. As retaining an over-segmentation reduces the amount of data available to

classify each cluster, this should also be avoided. Therefore, assessing the segmentation

involves:

• Determining the presence of any under-segmentation within the final image result.

• Determine if the amount of over-segmentation is acceptable.

Following on from the work of Mohammad et al, nine images were manually seg-

mented to provide a ground truth, against which the automated results were compared.

The following figures show the final segmentation result applied to each of the aero-

drome images. The top row, from left to right, show the original image, superpixel over

segmentation and the final cluster outlines. The bottom row, again from left to right,

shows a false colour representation of the automated segmentation result, false colour

manual segmentation (ground truth), and finally regions of ‘undersegmentation’ in the

final segmentation result, highlighted in red.

Of note, these images were provided for this work by BAe Systems. During capture,

the camera was mounted in a position such that part of the vehicle test-bed was visi-

ble in the bottom of the image. For the sake of depth extraction, the characteristics of

the camera must be retained - i.e. the image has not been cropped. Instead, a Region

Of Interest (ROI) will be used to remove these sections during the classification stage.

Therefore, the results of segmentation within this area are not reviewed as they are not

relevant to the task.
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(a) Original Image (b) Superpixel Segmentation (c) Reachability Re-clustering

(d) Re-clustering with Artificial

Colouration

(e) Manual segmentation with

Artificial Colouration

(f) Difference between manual

and automated segmentation

Fig. 6.4 Results of segmentation applied to aerodrome image 1

Figure 6.4 shows the segmentation approach applied to an image with a very busy

foreground. From Figures 6.4c and 6.4d it is clear that the end result is slightly over-

segmented, primarily on the surface markings in the foreground. Looking at the image,

with the worn paint work and inconsistent colouring, this would appear to be an accu-

rate reflection of the actual taxiway conditions and therefore would be an appropriate

segmentation output.

Comparing Figures 6.4d and 6.4e produces Figure 6.4f, where elements which are un-

dersegmented in Figure 6.4d are highlighted in red.

Although a large proportion of Fig 6.4f is in red, the cause is simply that the man-

ual segmentation approach maintains a consistent taxiway centreline to the horizon,

splitting the taxiway into two clusters. By comparison, the automated segmentation ap-

proach fails to separate the taxiway in the distance, with the taxiway centreline becom-

ing too small and indistinct to produce superpixels, as shown in Figure 6.4b. As such,

although the under-segmentation may appear extreme, in actuality the two areas both

represent unpainted asphalt surface.

The weak detection of the distant taxiway lines is an under-segmentation, however it’s

importance (considering the taxiway lines are around 50 metres from the camera before

becoming indistinct) is minimal. Therefore, this image can be assessed to be suitably

segmented.
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(a) Original Image (b) Superpixel Segmentation (c) Reachability Re-clustering

(d) Re-clustering with Artificial

Colouration

(e) Manual segmentation with

Artificial Colouration

(f) Difference between manual

and automated segmentation

Fig. 6.5 Results of segmentation applied to aerodrome image 2

Figure 6.5a shows a very similar scene as Figure 6.4a, with a busy foreground and a

taxiway divided by a centreline. From Figure 6.5d, it can be seen that the results of the

automated segmentation are also very similar to the results for the previous figure. In

the exact same way as Figure 6.4, the manual centreline extends to the horizon, splitting

the taxiway into two clusters. Again, as the centreline extends into the distance, super-

pixel resolution is not small enough to isolate the centreline, leading to both sides of the

taxiway merging and being considered a single cluster. This produces a near identical

‘under-segmentation’ as occurred in Figure 6.4. As the nearby centrelines are well de-

fined, the imprecise distant lines should be of limited consequence for the classification

stage. As with the previous image, Figure 6.5d shows that an over-segmentation occurs

around the multi-coloured floor markings in the foreground, sometimes as small as sin-

gle superpixels. This is primarily due to compression artefacts in the image, resulting

in a very small area of distortion around the lettering. Although the same distortions

were present in Figure 6.5, the worn markings were responsible for the majority of the

over-segmentation. By comparison, in this figure the compression artefacts are the main

cause. Compression artefacts such as these occur when two neighbouring regions of in-

tensively different colour meet in a sharp edge. This issue is very hard to resolve within

the segmentation stage, as the image storage format has altered pixel values on each side

of the cluster borders. However, as the average pixel values remain mostly unchanged,

it is likely that this will be resolved during the classification stage. When deployed in an

actual system, a lossless image format would be more appropriate for this task.
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(a) Original Image (b) Superpixel Segmentation (c) Reachability Re-clustering

(d) Re-clustering with Artificial

Colouration

(e) Manual segmentation with

Artificial Colouration

(f) Difference between manual

and automated segmentation

Fig. 6.6 Results of segmentation applied to aerodrome image 3

Unlike the previous two aerodromes images, Figure 6.6 shows no major under-segmentation.

This is due to the taxiway centreline having a clear starting point in the Figure 6.6a lead-

ing to both sides of the taxiway being connected in both the automated and manual re-

sult. Again, over-segmentation occurs, especially around the stop bar markings in the

lower part of the image. This is again caused by compression artefacts. Although the

exact compression method depends on the format in which the video was encoded, the

storage size of the image is typically reduced by grouping pixels together which share a

similar colour and storing all their data

Essentially, to reduce file size image compression is already somewhat similar to su-

perpixels in that small regions of the image are ‘described’ as sharing the same hue.

This is most clearly seen when the image is displayed using Hue-Saturation-Value (HSV)

colourspace, as shown in Figure 6.7. Despite the taxiway outside of the yellow markings

being grey, this visible colour difference is a result of variance in the ‘Value’ channel alone.

From the ‘Hue’ channel, the entire taxiway is considered yellow and the sky is green. Only

the influence of the other two channels allows the differences to be seen. Despite the ‘Sat-

uration’ channel being far more precise than hue, the data is still averaged over a small

range of pixels, resulting in shared pixel values extending across clear borders within the

original image. This results in superpixels close to object borders having slightly different

average values than those at object centres. Again, this can be resolved by using cameras

which do not compress the image. However, for this work, the classification stage should

resolve most of the over-segmentation issues.
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(a) Hue (b) Saturation (c) Value

Fig. 6.7 Image compression artefacts in the Hue, Saturation and Value channels

(a) Original Image (b) Superpixel Segmentation (c) Reachability Re-clustering

(d) Re-clustering with Artificial

Colouration

(e) Manual segmentation with

Artificial Colouration

(f) Difference between manual

and automated segmentation

Fig. 6.8 Results of segmentation applied to aerodrome image 4

Figure 6.8 shows very empty scene, with a similar result to the first two aerodrome

images (Figures 6.4 and 6.5) in which the taxiway is considered under-segmented due to

the same difficulty in discerning the taxiway centreline at distance.

One noticeable success in Figure 6.8 is the accurate object-specific segmentation of

the vehicle (a Land Rover discovery) on the taxiway ahead of the camera. Despite sim-

ilar ‘Saturation’ and ‘Value’ to the taxiway itself, the vehicle has still been individually

segmented. It is the re-clustering that allows this difference to be captured which also

introduces the over-segmentation closer to the camera. As detecting the presence of this

collision risk is essential, the segmentation approach can be considered appropriate,

provided that the classification stage can correctly identify the vehicle as a non-terrain

feature.



6.1 Untrained Image Segmentation 122

(a) Original Image (b) Superpixel Segmentation (c) Reachability Re-clustering

(d) Re-clustering with Artificial

Colouration

(e) Manual segmentation with

Artificial Colouration

(f) Difference between manual

and automated segmentation

Fig. 6.9 Results of segmentation applied to aerodrome image 5

Figure 6.9 again shows no under-segmentation, in part due to the camera being po-

sitioned on a runway with no taxiway centre line to divide the asphalt in half. However,

compared to the manually segmented image the automated result has produced a dra-

matic over-segmentation, as seen in Figure 6.9d.

The cause of this over-segmentation is clear from Figure 6.4a, where the runway ma-

terial can be seen to be highly worn. Although a human would correctly interpret the

runway as a single object, the difference in material colour has produced the highly seg-

mented result. However, as each segment still represents asphalt, this over-segmentation

should be resolved through classification.
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(a) Original Image (b) Superpixel Segmentation (c) Reachability Re-clustering

(d) Re-clustering with Artificial

Colouration

(e) Manual segmentation with

Artificial Colouration

(f) Difference between manual

and automated segmentation

Fig. 6.10 Results of segmentation applied to aerodrome image 6

Figure 6.10 shows an image taken from the camera on a runway with consistent sur-

face materials. As such, the final automated result is extremely similar to the manual

segmentation, with neither significant over-segmentation or under-segmentation. The

most significant different is the seperation of the greenery on the right side of the image

into two clusters, whereas the manual approach only identifies one. As this actually re-

flects the actual state of this area, with nearby grass and bushes intermixed with distance

fields, the automated approach could be considered more accurate than the manual seg-

mentation result, which simply segmented based on colour.
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(a) Original Image (b) Superpixel Segmentation (c) Reachability Re-clustering

(d) Re-clustering with Artificial

Colouration

(e) Manual segmentation with

Artificial Colouration

(f) Difference between manual

and automated segmentation

Fig. 6.11 Results of segmentation applied to aerodrome image 7

Figure 6.11 shows a more complex scene, with buildings, vehicles and surface mark-

ings. Again, under-segmentation has only occurred on the ground, due to weak surface

markings not segmenting the asphalt in the same manner that a human would expect.

Over-segmentation primarily occurs on the buildings and vehicles within the image.

However, this accurate reflects the subcomponents these objects are formed from, and

therefore can sill be considered an appropriate segmentation.
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(a) Original Image (b) Superpixel Segmentation (c) Reachability Re-clustering

(d) Re-clustering with Artificial

Colouration

(e) Manual segmentation with

Artificial Colouration

(f) Difference between manual

and automated segmentation

Fig. 6.12 Results of segmentation applied to aerodrome image 8

Figure 6.12 shows the camera much closer to a building. Unlike previous images, the

surface material is concrete blocks, rather than asphalt. Although the taxiway centre-

line is again responsible for an under-segmentation, an additional under-segmentation

is produced by the manual segmentation adhering to the edges of the concrete blocks

which make up the taxiway. Due to the borders of each block being very narrow, the

line itself does little to alter the values of the superpixels on either side. As such, the

re-clustering effort combines the same material from different surface slabs, despite the

visible edge. As this has no effect on the classification stage, this is seen as an appropriate

result. Even if the edge were to create two separate regions, this separation would be lost

during classification stage as each cluster would share the same class type.
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(a) Original Image (b) Superpixel Segmentation (c) Reachability Re-clustering

(d) Re-clustering with Artificial

Colouration

(e) Manual segmentation with

Artificial Colouration

(f) Difference between manual

and automated segmentation

Fig. 6.13 Results of segmentation applied to aerodrome image 9

Figure 6.13 shows many regions indicated to be under-segmented, due to the pres-

ence of lines in the manual segmentation which are not well preserved in the automated

result. However, Figure 6.13d and 6.13e also show an example of the opposite, in which

the manual result combined regions of taxiway which were considered separate by the

automated approach.

Although this could simply be percieved as an over-segmentation, it is in fact simply

an example of two potential segmentation results, of which neither is more accurate. As

all surface materials are the same throughout, both the manual and automated clustering

results can be considered accurate, despite their difference in grouping.
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6.1.4 Conclusion

In Chapter 5 it was established that the ideal result is ‘object specific segmentation’, in

which an image is divided into visually distinct clusters of pixels, with each cluster con-

taining only a single object type (i.e. class), allowing the entirety of each cluster to be

used during classification. To achieve this, the chosen approach was determined to re-

quire two stages; a superpixel-segmentation process which creates an initial over seg-

mentation (which adheres well to object borders), and a reachability re-clustering which

groups similar superpixels into larger regions.

A method of achieving this result was already used in work prior to this thesis [33],

where SLIC superpixels were combined with the DBSCAN algorithm for reachability reclus-

tering. This chapter has built upon that work, replacing the previous DBSCAN algorithm

with a novel solution, consisting of a computationally more efficient graph-based pro-

cess. In addition to being more efficient, reachability between superpixels is restricted to

where both adjacency and similarity are locally present, reducing the risk under-segmentation.

Testing is performed using images captured under realistic aerodrome conditions.

The results can be empirically judged as a suitable segmentation. Although object spe-

cific segmentation is not always achieved, this is difficult in environments where objects

can have varying colours per object. Over-segmentation does occur (sometimes due to

the presence of artefacts caused by image compression), however this is not considered

a failure as this can be resolved during the classification stage. In addition, although the

alternative error of under-segmentation was demonstrated to occur (in comparison to

manually segmented images) in each case the clusters combined were of the same class,

with only weak taxiway markings failing to separate two asphalt regions. This form of

under-segmentation would have minimal effect on the subsequent classification stage.

By establishing that untrained segmentation will be used, the image-processing tasks

required to generate a semantic segmentation can now be defined. Despite the segmen-

tation stage preparing clusters for classification, the intermediate stage of ’Data Extrac-

tion’ is still required, in which relevant data pertaining to the contents of each cluster

must be extracted from the image.

6.2 Data Selection, Extraction and Interpretation

Data extraction consists of the following elements:

• Selection: Choosing data that will allow the classifier to differentiate classes
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• Extraction: How to process raw image data to extract this data type

• Interpretation: How much additional processing occurs prior to classification

When an image is stored in a digital format, it is converted into a three dimensional

matrix of pixel values; typically consisting of several thousand rows and columns, as well

as the three ‘layers’ which form the colour channels. For example, an image matrix for

a high definition image (1920 by 1080 pixels in size) will consist of 6,220,800 individual

elements. Despite each image consisting of a vast amount of data, each individual value

means very little alone, and it is usually impractical to extract information from pixel

values directly. Machine learning approaches methods, such as ANN can automatically

determine the rules required to interpret the scene, allow raw pixel data to be used. How-

ever, in order to achieve the same result without deep-learning, human interpretation

will need to be manually coded into the system.

Therefore, data extraction techniques are required to produce meaningful informa-

tion. As many different methods exist, extraction techniques must be selected based on

their suitability for the task. For example, attempting to differentiate red and green ap-

ples using object shape would not be the most appropriate strategy. In this way, selecting

the appropriate data extraction methods is just as important as accurately extracting the

data.

Although data extraction methods simplify the information compared to the raw pixel

values, the resulting data is often still very complex. Using colour as an example, the aver-

age data per cluster could be directly provided to the classifier. Assuming standard 8-bit

colour storage, this would provide 16,581,375 potential discrete colour inputs which the

classifier would need to interpret. If this data were instead interpreted in a prior stage (for

example, ‘binning’ raw colour in categories such as "red", "yellow", "black" or "grey") the

smaller number of potential colours would make it easier to establish a relationship be-

tween classifier data input and class.

Preparing colour data for classification is straightforward; as colour data is continu-

ous, colour-space can be divided into sections based on manually defined limits. As each

colour section (e.g. red, black, green) is only indicative of class, multiple classes can share

the same same colour category, with the overall classifier using multiple types of data to

determine the actual class.

By comparison, other data can only be used to directly estimate a class. For example,

highly complex data (such as image texture) typically correlates with only the specific

class which it represents. This presents two options; either expose the lowest level of data
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possible to the final classifier (which is likely to be far more complex than colour data)

or implement a separate classifier within the interpretation stage, providing information

for the overall classifier to act upon.

Using multiple classification stages is computationally more intensive, but allows a

simpler final classifier if estimates of class have already been made. Rather than a discrete

class, the probability of being a class can be passed to an overall classifier. This concept

is further explored in Chapter 7.

6.2.1 Data Loss through Image Digitisation

Prior to investigating methods of extracting data, the issues of data loss through image

digitisation should be discussed. When a digital image is captured, the limitations of the

camera hardware reduce the available data within the image; i.e. the quality of the cam-

era sensor (Charge-Coupled Device (CCD)) determines the image resolution and colour

range which can be captured. In addition, further information is lost due to the stor-

age format imposing discretisation, data compression and range reduction in the chosen

colour channels.

Discretisation and resolution limitations are unavoidable when using digital images.

However, the severity of data compression and range reduction depends heavily on the

colour space chosen. For example, as early colour televisions were Cathode Ray Tube

(CRT) based, the image on the screen was created using separate Red-Green-Blue (RGB)

colour channels. However, RGB images are data intensive and difficult to compress, (as

brightness, saturation and chroma information is distributed throughout all three colour

channels). Instead, the YCbCr colourspace was created as the standard for television

broadcast, where Y is the brightness and Cb and Cr are co-ordinates within two chroma

axes. As human eyes detect changes in the brightness more precisely than chroma, the

chroma data can be sent a massively reduced rate, without much reduction in final image

quality, known as chroma sub-sampling.

Despite CRT televisions having been replaced with more modern alternatives, newer

implementations of YCbCr continue to be used, with chroma sub-sampling still present

in most modern video systems. The data used for this work has clearly undergone chroma

sub-sampling, in addition to the effects of modern compression strategies, such as inter-

picture prediction. (in which only a small number of image frames within a video stream

are complete, with the other frames simply updating the pixels which change when nec-

essary).



6.2 Data Selection, Extraction and Interpretation 130

Cameras which function without this loss of information are available, however they

are typically used for industrial machine vision applications in controlled lighting envi-

ronments. In addition, returning to Chapter 3, a motivation of this work is to make use

of equipment already available onboard UAS. As the causes of data loss stated above are

likely present in any image originally designed for transmission to the remote pilot, the

ATS must be able to function with this type of image.

Despite the chroma components suffering around 75% data loss, the brightness com-

ponent should remain fairly intact. The superpixel segmentation process has already

been shown to provide a suitable output while using both chroma and brightness com-

ponents of colour. This suggests that brightness data is still pixel accurate. As such, the

brightness component should be used as the source of as much information as possible.

6.2.2 Data extraction over multiple frames

Prior to data extraction, it is useful to consider the fact that the system is not limited to

dealing with individual frames in isolation. As the ATS is expected to be constantly clas-

sifying each captured frame, data from multiple image frames could be used to generate

the classification result. Potential methods include using previous frame data as a prior

in classifier, or splitting the image into persistent regions, with the new data from each

frame used to modify or update the contents.

As the aircraft moves fairly slowly on the ground, the difference between subsequent

frames captured by the camera should be minimal. Due to reachability clustering, re-

gions awaiting classification are relatively large, increasingly the likelihood that a region

in the previous frame can be matched in the next, purely on shape and location. If the

boundaries have only shifted slightly, the contents of the image are highly likely to be the

same.

Despite moving slowly, the number of comparable frames is very small. When the

aircraft is turning, finding communicability with the image space is unlikely. Therefore,

the ability to work on a single frame is still required. Furthermore, simply biasing the

classifier to previous estimates does not eliminate misclassification. As such, introduc-

ing persistence within the classification stage risks keeping errors. As clusters are not

preserved between frames, prior data would need to act at a pixel level, with new clus-

ters matched to previous based the proportion of classes within the new cluster from the

previous frame.

As a result, data extraction for classification and classification itself will occur on a
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frame-by-frame basis. However, both aircraft localisation and collision risk detection will

be tracked over time, This will be achieved independently of the classifications stage and

outside of the image domain.

6.3 Texture

Colour data is highly appropriate for segmentation, as a single variable (i.e. colour dis-

tance) can be used to determine similarity between pixels and clusters. However, this

same simplicity makes colour less useful for classification. As multiple classes can share

the same colour and objects of the same class can be different colours, colour cannot be

used as a unique identifier. Instead, colour can at most be considered indicative of class.

Even in scenarios where classes are expected to have unique colours, colour cannot be

relied upon to be consistent. Within naturally lit scenes, changes in lighting conditions

(both seasonal and throughout a single day) dramatically alter the perceived colour of

objects. Therefore, colour alone is too variable and insufficiently unique to be used to

classify clusters after segmentation.

Instead, machine vision more commonly uses image texture for classification. Rather

than being stored in individual pixels, texture data describes the variance in pixel inten-

sity within a defined spatial region. As position and intensity are used to define texture,

there are near infinite combinations of texture that can be observed. As such, texture

data is often highly indicative of the material of an object, and can be considered close

to a unique identifier. Therefore, as most objects are made of a known material, surface

type can be used to infer object type, allowing classification through texture alone.

For known objects under observation in controlled conditions, texture based classi-

fication is fairly straightforward. However, in outdoor scenes, the variability of surface

texture is enormous. Lighting, weather, climate, material age, distance from camera and

atmospheric effects can all alter the appearance of a material. In addition, although a

single surface type (such as asphalt) may conform to an expected surface appearance,

the variability within each class can still be very large. Therefore, a texture recognition

approach will require a large training set for each material type, in order to encompass

the potential range of texture associated with each class.
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6.3.1 Texture Extraction Overview

Before it is possible to extract texture, the concept of image texture must first be defined.

Although texture is the change in colour over distance, there is no intrinsic scale upon

which texture operates. Just as the resolution of an image defines how many pixels con-

stitute an object, the texture within that object is also equally variable. Different scales of

texture can also exist within each other; for example a tiled floor will have both a macro

texture of the interlocking tiles, and the micro textures of the tile material. In addition to

scale, there are many other variables to consider; such as the directionality of change, the

measure of variance and the storage method. Due to this complexity, there is no singular

method to describe or store texture data.

Instead, a method must be selected in order to consistently extract data in a man-

ner appropriate for the scenario. As texture data is widely used, various techniques have

been proposed to represent texture in a more succinct manner. These representations

are often referred to as ’descriptors’ as they provide the means to compare different ex-

amples of textures. Texture descriptors commonly fall into two categories; ‘model-based’

and ‘statistical’ [7].

Model-based methods are the older technique, being introduced to overcome limi-

tations in early computer hardware. As an image is essentially a large matrix, operations

performed on the matrix often require many times the memory necessary to store the

original image. Early computers often lacked this capacity, and therefore methods which

simplified data were keenly sought. As fitting a generic model of texture to the data al-

lows thousands of pixels to be replaced with just a few variables, model-based texture de-

scriptors were highly popular. For classification, parameter comparison techniques can

be used to compare the data to known examples. Popular models used for texture anal-

ysis include fractals, autoregressive models, fractional differencing models, and Markov

random fields.

With increased computational power, these techniques remain popular as they can

be applied at very high speed. However, as model based techniques discard much of the

data, they often produce inferior results to direct statistical comparison. As computers

now have the ability to process information en masse, all the data within an image can be

extracted and statistical approaches have become more common. Methods include co-

occurrence matrices, grey-level sum and difference histograms, Laws’ masks, frequency

domain methods, and Gabor filters. Work undertaken by Schwartz (2012) [94] provides a

comparison of common statistical texture descriptors for three-dimensional object clas-

sification. It concludes that different descriptors outperform each other on different tex-
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ture types, and at the time of writing there is no single descriptor that is universally better

than others.

However, many texture descriptors can only work with certain types of data. As tex-

ture descriptors are essentially a pattern recognition task, the data may have to presented

in a certain way to extract a consistent result. Therefore, rather than select a texture de-

scriptor based on capability, it is instead easier to select a descriptor based on ’applica-

bility’. i.e. feature descriptors which can function in aerodrome conditions. The selector

texture descriptor needs to be:

• Invariant to rotation - Objects in the aerodrome can be approached from any angle.

• Invariant to scale - The distance between the object and the camera is not fixed

• Invariant to changes in brightness - As the images are acquired outdoors, the light-

ing conditions can vary.

With these restrictions in place, many common feature descriptors can be eliminated

from the selection process. As finding an optimal descriptor for outdoor environment is

not part of this work, the final choice of descriptor was based on methods which have

already been proven to function well in outdoor semantic recognition. As such, a tra-

ditional Gabor filter approach and a Local Binary Pattern (LBP) feature extractor were

selected.

6.3.2 Gabor Filter Bank

Gabor filters are linear filters, which are primarily used for edge detection [86]. They are

especially popular in feature extraction for texture analysis, as the output is thought to be

similar to perception in the human visual system [71]. Modelled using a series of highly

eccentric Gaussian ellipses, the orientation of the major-axes determines the direction-

ality of the edges detected. Unlike small scale edge detection methods (such as Canny

or Sobel) the large size of a Gabor filter allows edges to be detected at any angle, rather

than within rows/columns. By varying the size of the filter, different scales of response

can be detected. Therefore, in order to capture patterns occurring at different scales and

orientations, texture extraction requires a ‘bank’ of filters to be used.

For this work, the MR8 filter bank was selected, due to its previous success in texture

classification [113]. This filter bank consists of two distinct Gabor filters, each applied at

3 scales and rotated to 6 orientations each, in addition to two isotropic filters, as shown
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Fig. 6.14 The Maximum Response Filters (MR8) filter bank. Each column represents a

single feature response rotated, which can be collapsed after application to produce 8

response channels.

in Fig. 6.14. The MR8 filter bank was specifically designed to describe the appearance

of three-dimensional surfaces. To accomplish this, they work with image elements that

are mostly invariant to differing lighting conditions and camera orientations, while also

benefiting from simple implementation.

To extract texture data, each of the filters within the filter bank are individually ap-

plied to the original image. Despite being a texture classification process, it is possible to

introduce colour data by applying the filters to each colour channel independently. This

would allow texture and colour classification to occur in a single process, albeit with a

significant increase in processing required (Assuming three colours channels in the in-

put image, the resulting textons would be three times as long, i.e. 114 filter responses).

However, this coupling has been found to be disadvantageous when the precise colour

of the surface is not constant. In an outdoor scene, materials are exposed to different

lighting conditions throughout the day, shifting the colour. In addition, certain materi-

als (such as metal) can retain a distinctive texture but have many colours which could

be associated with that class. During testing, combining colour data within the texture

classifier was found to actually reduce performance. Instead, the original image is con-

verted into an intensity image for processing. (This is achieved using the Y component

of the YCbCr colourspace, which is equivalent to a weighted sum of the R, G, and B com-
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ponents, of 0.2989R + 0.5870G + 0.1140B. This is known as Luminance).

Each of the 38 filters within the filter bank are individually applied to the original

image, producing 38 ‘filter response’ images. Theses are then concatenated into layers;

similar to how colour channels are stacked in colour images. As a result, each pixel in

the original image is replaced by a 38-element vector, forming a multi-channel response

which represents the texture at that point.

For scenarios in which texture is expected to conform to the same orientation (i.e.

rotationally dependant), all 38 responses can be used to maximise the distinctiveness of

the texture response. However, for aerodrome use, detection will focus on terrain fea-

tures and surface markings, which can be approached from any angle. As such, texture

alignment is not necessary, as introducing rotational constraints into the classifier can

only reduce performance. Instead, as all 38 filters are still required for extraction, an

additional step is introduced after the responses are created. Rotational invariance is

achieved by ‘collapsing’ data from the various orientations, by taking the maximum sin-

gle response for each scale of filter. As such, the final result consists of 8 responses (two

Gabor filters at three scales and two isotopic filters), each consisting of the maximum

orientation result (hence the name Maximum Response Filters (MR8)).

To allow for comparison, both the filters and the order in which they are arranged

must be kept consistent throughout. As the original pixel data is directly replaced by a

filter response, a benefit of this approach is that it produces spatially cohesive results,

i.e. the position of the filter response matches the original image. Therefore, data can

be grouped directly into the clusters created during the segmentation phase. As Gaus-

sian filter responses are pixel orientated, each response vector is also independent of its

neighbours. This allows the textons (covered in Section 6.3.4) from each pixel within a

cluster to be amalgamated into a single vector, without reference to their original neigh-

bours.

6.3.3 Local Binary Patterns

A feature of the MR8 filter bank which provides both advantages and disadvantages is the

size of the filters used. As can be seen from Fig. 6.14, the sample size of each filter is large,

capturing 49 by 49 pixels (2401) pixels in total. The large sample area allows the method

to capture texture data over a wide range of scales, allowing both large and small texture

features to be detected. As the imagery is expected to mainly consist of large regions

(taxiway, sky and grass), large sample sizes provide more data for the classifier, which
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should increase confidence in the result.

However, the large number of pixels required impacts the precision with which each

filter can be applied. Near cluster boundaries, a large texture descriptor will sample

from multiple regions at once, potentially capturing data from multiple object types and

therefore lowering the accuracy of classification. To provide a better estimate of texture

for smaller regions, a smaller descriptor chapan be used, minimising the risk of sam-

pling data from outside the class. Previous work [22] has demonstrated that ‘small image

patches’, as compact as 3x3 pixels, are sufficient for texture data extraction. As the area

is so small, filter based methods are unsuitable. Instead, the LBPs texture descriptor has

been chosen as an additional texture extraction method.

LBP assigns each pixel in the original image a texture response, based on it’s direct

neighbours. Comparing the intensity of the surrounding pixels, those with greater in-

tensity are labelled as ’1’, whilst all others are ’0’. Reading in a clockwise direction from

the upper right neighbour, the neighbours in sequence produce a binary number which

describes the relationship of the central pixel to it’s neighbours, i.e. the localised texture.

With 8 neighbours, an 8-bit binary number results in 256 different possible textures. As

with the filter response above, rotational invariance is also possible, by collapsing the

non-unique patterns down into groups, reducing the possible outputs to just 59.

Despite it’s simplicity, LBP has proven capable at small scale texture classification

and is widely used for situations which require small texture features extraction, such as

in human face recognition [6]. In addition to rotational invariance, LBP is also highly

invariant to changes in brightness. As a total brightness change will shift the intensity

of all pixels together, the relative difference between neighbouring pixels will remain the

same.

The results in Varma (2003) [113] demonstrate that LBP can outperform filter-bank

derived textons in certain conditions. However, the main drawback of LBP is that highly

localised sampling can fail to detect larger texture features. Therefore, both MR8 and LBP

are to be used in combination for texture based classification.

6.3.4 Textons - Filter response simplification

As shown in Figure 6.16, for each pixel in the original image, the MR8 filter bank re-

sponses are gathered into a vector. This vector represents all the filter responses, and

therefore the texture, for that single pixel within the image. As this is a single point mea-

sure of texture, the term ‘Texton’, is commonly used [56]. As such, a multi-filter texture
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response image is formed of ‘textons’ in the same manner that a colour image is formed

of pixels.

Both LBP and Gabor approaches produce spatially cohesive response images. How-

ever, while LBP produces a single response, the MR8 filter bank produces a separate re-

sponse for each filter used. As stated above, rotationally invariant LBP can produce 59

possible responses for each original pixel. By contrast, assuming the response is stored

in an 8-bit format, there are 2558 possible Texton responses from an MR8 filter bank.

As this represents an enormous amount of variability, discretisation is required to sim-

plify the results. This was performed by broadly following the methodology outlined in

the widely known ‘Textonboost’ work [101] (originally proposed in [65] and explained in

greatest detail in [128]).

As multiple filter responses cannot be easily binned, discretisation is achieved by re-

placing each raw texton with the closest ’Typical texton’ from a ‘texton dictionary’. This

allows a reduced texton set to represent all texture in the image, as shown in Figure 6.17.

To create these ’typical textons’, image data containing all of the potential classes is con-

volved using the same filter bank, which creates several hundred thousand raw textons,

covering the entirety of feature space. K-means clustering can then be used to find a

desired number of ‘typical textons’ from the data.

To finalise the dictionary, the number of words must be decided upon. Greater num-

bers of typical textons can increase classification accuracy, however the computational

cost would also increase. Work done in [10] uses textons in terrain classification for

robots, demonstrating real world application for a similar task. In that work, a hierar-

chical classification is used, with two separate applications of textons. The first uses only

20 typical textons and is meant to rapidly determine classes with unique textures. The

second is a more in depth analysis with 40 textons, designed to distinguish between very
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Original Image 38 Filter Response 'Images' Raw Texton

Fig. 6.16 Visual depiction of a ‘texton’, created by applying each filter within the Maximum

Response Filters (MR8) filter bank, then combining the ‘pixel response’ from each filter

into a vector.

Raw Texton 120 Representative Textons

A

D

B

E

C

F

Fig. 6.17 Discretisation of Textons is achieved by comparing each unique texton to spe-

cially created ‘representative’ textons. As each response is independent, they can be used

as co-ordinates within multi-dimensional space to determine which representative tex-

ton is most similar.
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Fig. 6.18 High simplified example of a texton representation of an aerodrome image.

similar texture classes.

The reason for using a hierarchical classification in [10] is the limited processing

power on board a small robot. However, as this is not considered an issue for the fu-

ture UAS, a larger spread of textons can be used in a single stage. Therefore, for this work

the texton dictionary will consist of 120 typical textons. As shown in Figure 6.18, the tex-

ture data is reduced down into a single indexed response image, much like the LBP result,

where each pixel is replaced by a single integer representing a local texture response. To

allow comparison between clusters of different sizes, the area of each cluster is used to

normalise the result, producing a description of texture which is cluster size invariant.

A drawback of textons is that they are computationally intensive. However since

their inception computational power has increased enormously and more literature has

started to use them in image segmentation, such as [101]. Of further benefit, [101] sug-

gests that as textons rely on dense features, both highly textured and untextured objects

receive the same level of distinction. This is highly useful when dealing with objects with

gradual texture changes, such as occur over distance (e.g. a runway tending to the hori-

zon).
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6.3.5 Histographic Texture Comparison

As both LBP and MR8 texture descriptors are spatially cohesive, the results for each clus-

ter occupy the same positions as the pixels in the original segmentation, making extrac-

tion very straightforward. (The process described here will refer to Textons created using

the MR8 filter bank, however the same texture comparison method is equally applicable

to the LBP results).

After segmentation, the Texton response of each region can be simply extracted using

an image mask. As the order of the Textons is no longer important, each cluster can

be represented as a vector of its texton contents. As each possible texture response is

independent from all others, a further simplified output (such as mean) is not possible.

Instead, as the output from both MR8 and LBP consists of discrete responses, the texture

data is most easily represented by the total number of each response within that cluster,

much like a histogram. Therefore, comparison to known examples of each class is made

in this form.

Figure 6.19, shows the normalised histogram outputs, based on the clusters estab-

lished in Figure 6.18. Despite the difference in cluster size, the normalisation produces

similar histograms for regions of the same type, which can then be used for classification.

(The painted runway centreline and the taxiway surface produce a similar texture result,

as occurs in reality).

In order to classify clusters, the cluster data must be compared to each expected

class. As the texture training data consists of many thousands of independent samples,

a method of representing the potential texture range of each class must be determined.

In addition, a distance metric is required which defines similarity/dissimilarity between

the cluster and each class. As the texture data is stored as a histogram, both parametric

and non-parametric methods of histogram comparison have been investigated.

For clarity, both parametric and non-parametric methods use parameters. The dif-

ference is that for parametric models the parameters are defined by the user prior to ap-

plication to the data (typically by creating a model), whereas non-parametric methods

determine the parameters directly from the data.
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Fig. 6.19 Texton response histograms for each cluster established in Figure 6.18
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6.3.6 Distance Metrics

Non-parametric methods are often preferred over parametric methods as they as simpler

to implement; as the parameters are extracted directly from the dataset, they do not re-

quire the user to understand the underlying principles in order to produce a good result.

However, as non-parametric comparison methods rely on entirely on comparing points

within the dataset, the distance metric used can greatly affect the result. Therefore, in ad-

dition to comparing different non-parametric methods, different distance metrics must

also be considered.

As the data for each cluster appears similar to a histogram, histogram similarity met-

rics would seem a viable method, with Intersection similarity and Hellinger similarity

both tested. However, as each sequential entry in the histogram is actually an indepen-

dent count of texture and unrelated to its neighbours, the applicability of these methods

is questionable.

In [33], the Bhattacharyya coefficient measure was used as the distance metric. How-

ever, this was found to have computationally intensive. As it is not possible to produce

an ‘average’ texture for each class, many examples of each class were required in order to

cover the entire feature range. As the Bhattacharyya coefficient measure can only com-

pare two distributions directly, every sample in each class required an individual com-

parison. Although the results were favourable, histographic comparison methods which

were easier to perform en masse were sought instead.

Therefore, additional distance based metrics are also explored. As each texton re-

sponse is independent, it is possible to treat each of the 120 manual chosen textons as

individual dimensions within a multi-dimensional feature space. Distance can then be

calculated by combining the results from each texton, much like colour distance is the

Euclidean extension of distance within each individual colour channel. As each ‘dimen-

sion’ is independent, the use of Euclidean 2-norm geometry is not guaranteed to provide

the best indicator of distance. As such, the Manhattan (or taxicab) distance metric (also

known as Euclidean 1-norm distance) was also included. Four different distance metrics

were considered in total:

• Manhattan

• Euclidean

• Intersection similarity

• Hellinger similarity
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K-Nearest Neighbour
Average Distance to

10 nearest Neighbours

MR8 LBP MR8 LBP

Manhattan 19.91 46.26 88.73 87.54

Euclidean 62.92 70.23 88.85 87.62

Intersection Similarity 53.34 59.36 88.73 87.54

Hellinger Similarity 82.37 37.52 88.94 68.53

Table 6.1 Percentage correct classification of pixels for distance comparison methods

6.3.7 Non-Parametric Distance Comparison

In order to determine if a non-parametric method is suitable for classifying texture data,

one hundred typical aerodrome images (captured during aircraft taxiing at Coventry air-

port, UK) were manually classified to provide ‘ground truth’ images. Eight classes were

chosen to test the suitability of texture classification. These were; Taxiway surface (as-

phalt and concrete), Grass, Plants (all bushes and trees which could not be considered

grass), Sky, White painted surface markings, Yellow painted surface markings, Buildings

(based on corrugated metal walls) and Vehicles (based on metal panels on aircraft and

ground vehicles).

Of the one hundred classified images, eighty were used to provide training data for the

classifier, whilst the remaining twenty were used for testing. For the twenty test images,

clusters were generated using the superpixel and reachability clustering method defined

in Chapter 5. Texture data for both LBP and MR8 texture descriptors was then extracted

from each cluster, using the methods explained previously in this section. Combinations

of each distance metric and non-parametric comparison methods were then applied,

with the results shown in Table 6.1.
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The simplest non-parametric distance method for classification is direct nearest neigh-

bour comparison. Direct nearest neighbour is most suitable when classes are distinct, or

when there is only a single data point is attributed to each class. For texture, the training

set contains many thousands of examples of each class, with certain classes overlapping.

As such, direct nearest neighbour distance was only found to work well when using train-

ing data extremely similar to the test environment. As this form of comparison was found

to give highly unpredictable results, it has not been explored in further detail.

Instead, two other non-parametric methods of distance comparison have been tested.

The first is the popular k-Nearest Neighbours (KNN), in which a threshold distance is es-

tablished around cluster data point. The number of samples of each class within that

threshold distance are then used to assign probability of belonging to said class. From

Table 6.1 it can be seen that the success of using KNN is highly variable, depending on

the distance metric used. The difficulty in using KNN to compare texture data is the in-

consistent local structure of the data. Although certain classes are grouped tightly, others

are much more dispersed. As such, the number of points within the decision boundary

was class dependant, and therefore produced highly varying results.

The second method of distance comparison has been specially devised to overcome

the issue of inconsistent local structure. Rather than a fixed threshold, the average dis-

tance to a fixed number of the closest examples of each class is used as an indicator of

similarity. Empirical testing found that the mean distance to the closest 10 examples of

each class provided a suitable measure of distance. From Table 6.1 it can be seen that

the average distance method is far more successful in correct classification compared to

KNN. In addition, the results are also fairly consistent, regardless of the distance metric.

Therefore, the conclusion can be made that the distance metric is not overly important,

provided that that the method of comparison is suitable.

Given that the average-distance method performs far better than KNN, this method is

seen as the best example of non-parametric classification for texture. However, there are

issues with using this technique in the final system. In order to determine the 10 closest

points, a sorting algorithm must be used. Such algorithms are famously computationally

intensive, especially considering that the data set contains many thousands of samples

and has a high dimensionality. As the sorting process must be repeated for every cluster

within the original image, this can require significant processing time.

As image segmentation is already computationally demanding, requiring additional

time during classification reduces the rate at which the system can function. Approaches

which access the training data directly during classification will always be slow. The al-
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ternative is to pre-process the data in order to create a model which improves the speed

of classification. Although a model is introduced, texture is still described using the raw

response, thus such an approach is parametric classification, rather than texture mod-

elling. Therefore effort has be made to see if comparable results can be achieved using

parametric methods, without the large computational time.

6.3.8 Parametric Distance Comparison Using Support Vector Machines

Non-parametric models are highly fitted to the data set on which they were created. As

the methods proposed above require examples for comparison, they cannot infer that a

cluster could belong to a class unless it can be compared directly to known examples.

Although this makes them statistically more ‘robust’ to misclassification, this requires an

extremely large data set to ensure that the entirety of each class are included. Alterna-

tively, individual points within a dataset can used to generate a model with which each

cluster can be compared.

Conventionally, model fitting requires creating a model bespoke to the problem space.

Although such an approach usually guarantees good results, it can be very time consum-

ing and becomes increasingly difficult as dimensionality increases. As such, a method

which can establish a simple parametric model for any dataset in high-dimensional space

is very useful. Therefore, a SVM approach has been explored. SVM are supervised learn-

ing models, well regarded as efficient classifiers. Rather than define a specific model,

SVM uses training data to determine a ’hyperplane’, which divides space into two re-

gions. This can either enclose a single class within a volume, or can separate infinite

space into two regions denoting different classes. New data points are then classified

based on which side of the hyperplane the are located, and the distance from the hy-

perplane then establishes the confidence in the result. Although hyper-planes are linear,

a kernel function can be used to map the training data into increasingly higher dimen-

sional space, until a linear result can be achieved (which is required for single-class clas-

sification). As this is very fast to process, SVM are highly efficient classifiers and have

proven to be very reliable.

As the kernel function is responsible for establishing the classification model, the im-

plementation determines if the SVM is either parametric or non-parametric. For exam-

ple, Gaussian Radial Basis Function (RBF) kernels are non-parametric as the distance

between the training points is used to establish the kernel matrix. As the kernel is based

directly on the dataset, the complexity of the kernel is dependant on the amount of data



6.3 Texture 146

available in the training set. This allows the complexity of the kernel to adapt to the

dataset, ensuring a suitable model is generated. As such, Gaussian RBF kernels are the

most common form of kernel used for SVM.

However, as stated above, non-parametric models rely on large datasets. Despite us-

ing eighty aerodrome image for training, certain classes (such as surface markings) rep-

resent a much smaller proportion of the data set than others (such as asphalt or sky) as

they occur less frequently at aerodromes. This makes RBF based SVM more likely to re-

ject examples of the class which are not suitably similar to the known examples. Although

this could be resolved by specifically gathering examples of under-represented classes,

access to aerodromes environments is difficult and the available dataset was limited to

what could be collected from aircraft mounted footage. Instead, the alternative approach

is to use a parametric kernel, as this can accurately fit a hyperplane using a much smaller

data set. As such, this work makes use of a polynomial kernel, with an experimental de-

rived degree parameter of 30 (due to the extremely high order of each Texton co-ordinate

i.e. 120 dimensions).

Due to the ease of application and suitability for this work, SVM has been the only

parametric approach considered for classification. The major limitation of SVM is that

each hyperplane can only divide space into two regions, (i.e. SVMs are binary classifiers).

Therefore, methods of extending SVM to allow multi-class classification are required.

6.3.9 Multi-class SVM

As a single SVM can only ever distinguish between two different classes, multi-class SVM

classification is primarily achieved by simply adding additional SVMs. A method of multi-

class SVM classification which relies almost entirely on adding more classifiers is Pairwise

Majority Voting (PMV). As the name suggests, SVM classifiers are created for each ‘pair’

of potential classes. As the data under classification may not belong to either class, the

winning class receives a ’vote’, despite the fact that it may not actually be the correct.

As the correct class should always ‘win’, the class with the most votes after all classes

have been compared to each other is then considered to be the overall winning class. As

shown in Table 6.2, this produces a result as good, if not better, than the aforementioned

non-parametric methods.

However, despite remaining a common approach for SVM, this method has many

drawbacks. As many classifiers are required, the process is computationally intensive

(although still far quicker than non-parametric approaches). In addition, when compar-
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Fig. 6.20 Comparison of PMV and BDT voting complexity for SVM.

ing two classes of which neither is the correct classification, a winner is still declared.

Although a majority vote should always go to the true class, it is often common for the

next most likely class to lose by a single vote, only being beaten by the true class. As such,

confidence in the end result is often difficult to extract, as strong correlation appears the

same as weak correlation.

To resolve these issues, a BDT based implementation has been suggested in [70].

Rather than vote for independent classes, a sequential process leads to the end result

with far fewer classification attempts. Beginning with the entire training data set, a clus-

tering approach based on maximum separability divides the data set in two [123]. Each

subset then undergoes the same process, until only individual classes are represented.

SVM classifiers are then created to produce the vote at each stage, leading to high speed

classification. Due to a single vote dimissing entire classes at once, far fewer votes are

required.

Figure 6.20a shows the PMV votes required to differentiate between just eight classes,

requiring 28 SVM classifications to occur each time. By comparison, by combining classes

based on maximum separability, the BDT approach requires a maximum of four SVM

classifiers to determine the final class.

Table 6.2 shows the results of the SVM classifiers. As there is very little difference in

terms of accuracy, yet significant improvements in online computation efficiency, SVM
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MR8 LBP

Best distance comparison result 88.94 87.68

SVM Voting 88.91 87.70

SVM BDT 89.01 87.80

Table 6.2 Pixel-wise correct classification for SVM implementations

BDT is the most appropriate parametric classification approach. In addition, as the re-

sults are very similar to the best results from direct, non-parametric comparison, BDT

based SVM has been selected for classification of both MR8 and LBP overall.

6.3.10 Conclusion

Image texture data is commonly used for classification, as classes can often be uniquely

identified using texture alone. As texture is defined as the change in pixel values within a

neighbourhood, there is no inherent unit of measurement, requiring feature descriptors

to define texture in a comparable form. Due to elements of texture existing at different

scales, two different forms of feature descriptor has been selected; the MR8 filter bank to

capture larger texture features and LBP to capture highly localised texture.

As classification occurs within a segmented image, texture definitions must also be

spatially constrained so as to only sample data from specific areas. A texton based imple-

mentation, in which each pixel within the image is assigned a localised texture response,

has been implemented as the solution converts an MR8 result into a form similar to LBP,

allowing the same interpretation methods to be used for both feature descriptors.

In each case, the contents of a cluster require comparison to known examples of each

class, with the smallest ‘distance’ used as a measure of similarity. To select an appropri-

ate solution, both parametric and non-parametric methods have been tested, along with

several distance metrics. Non-parametric methods are simple to implement, but are of-

ten computationally intensive as they need to access the training data directly during

classification.

The best results from non-parametric distance comparison used the average distance

to the closest ten examples of each class Despite good results, this requires an additional

sorting algorithm to determine the ten closest points. As an aerodrome data set is likely

to contain many thousands of samples with high dimensionality, this can require signifi-

cant processing time, especially as the sorting process must be repeated for every cluster

within the original image. The alternative is parametric classification, where the train-

ing data is pre-processed to create a model which improves the speed of classification.
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From a comparison of several techniques, an SVM approach which uses a BDT to min-

imise the processing cost has been chosen. The allows comparable results to the best of

non-parametric methods, with a greatly reduced computational requirement.

Although BDT based SVM has been found to produce a fairly accurate texture only

classification, the results are still far from perfect, with less than 90% accuracy overall

(shown in Table 6.2). This is mainly due to classes with very similar texture (such as as-

phalt and surface markings) being difficult to differentiate on texture alone. Therefore,

data fusion with other types of information will be required within the classifier.

Fig. 6.21 Original example image used for comparing texture classification results
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Fig. 6.22 MR8 Texture classification results for example image shown in Figure 6.21. Each

results shows the most likely class, without removing results with low probability. The

black regions for K-nearest neighbour classification signify insufficient neighbours were

found to make an estimate. Aside from these ‘missing’ classification results, all of the

classifiers correclty classified the majority of clusters, confirming that texture is an ap-

propriate method of cluster classification. For precise results, please refer to Tables 6.1

and 6.2.
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6.4 Colour

From Table 6.2, it can be concluded that the SVM texture classifier is at most only around

90% accurate. The 10% error is the result of similar classes being misclassified as each

other, with asphalt and painted surface markings being difficult to differentiate on tex-

ture alone. Examining the performance per class, around 30% of surface marking clusters

were misclassified as asphalt.

At most aerodromes, there are many different types of lines on the ground in order

to convey information. Both taxiways and runways have different marking conventions

to help guide aircraft, whilst most ramp areas will have additional lines specifically for

ground support vehicles. Despite not posing a collision risk to the aircraft, correctly de-

tecting surface markings is important as they can provide additional information. As

other vehicles follow surfaces markings, they could be used to gain contextual informa-

tion, such as the most likely route a ground vehicle will take through the aerodrome.

Alternatively, as surface markings themselves are in known locations, they are also po-

tentially useful for localisation. Therefore, correctly extracting surface markings can po-

tentially improve the control of the UAS.

Fig. 6.23 Examples of surface types with similar texture data but differing colour

To improve the classification result, additional data is required which can differen-

tiate between classes with similar texture more easily. For painted surfaces markings,

colour data is the obvious choice, as can be seen in Figure 6.23. Although colour cannot

be used as a primary classifier (due to multiple classes sharing the same colours) the use

of colour data to improve a primary texture based classification approach is well estab-

lished [52].

In machine vision, the term ‘colour’ refers to the wide array of different methods of

representing the value of individual pixels. The components of colour include brightness
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Fig. 6.24 Comparison between RGB, YCbCr and HSV colourspaces. The RGB colourspace

is cubic, with changes in chroma, saturation and brightness distributed throughout all

three colour channels. The YCbCr colourspace is also cubic, however brightness data

has been isolated within channel Y. The chroma and saturation data remain distributed

within the Cb and Cr channels. In contrast, HSV colourspace is cylindrical, in which

colour component changes are isolated within independent colour channels.

(luma), saturation and hue (chroma) in addition to many other variants. Different repre-

sentations separate or combine components in ’colour channels’ to make the data better

suited for its application. (For example, the common RGB colourspace is both similar to

how the human eye captures chroma, as well as being ideal for computer display). Al-

though changing how colour is represented does not modify the data, it can simplify the

data extraction process and make interpretation far easier.

As different colourspace representation alter the ability to interpret colour informa-

tion, this section discusses colour extraction methods; beginning with conventional colour

extraction from the YCbCr, RGB and HSV colour spaces. In addition, a novel application

of relative luminance is also proposed, specifically intended to improve the detection of

taxiway surface markings.

6.4.1 Colour Extraction in Different Colourspaces

In Section 6.2.1, the issues with image storage and the loss of data, especially in the

chroma components, were expressed. Despite the reduction in data, compared to what

could be obtained using a custom camera, compressed chroma data remains an impor-

tant source of information for classification. Although conversion from one colourspace

to another cannot restore the lost information, it can make processing easier.

As colour information for display still makes use of RGB, images are often processed

within the RGB colourspace. RGB is designed to reflect how digital screens display images
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(which are themselves based on how human eyes detect chroma) with chroma, bright-

ness and saturation data intermingled in the three colour channels. Interpreting RGB as

a co-ordinate system, the colourspace is most easily represented as a cube, as shown in

Figure 6.24.

In a previous work Eaton (2015) [33], RGB colour information was used directly to

produce a classification estimate, similar to the result of the texture classifier suggested

above. To determine the most likely class based on colour alone, the entire colour spec-

trum was simplified to just 15 colours (12 different hues in addition to white, grey and

black). This small number of colour should be sufficient to different not only between

asphalt and surface markings, but also between the surface markings themselces (as run-

way markings are white, taxiway lines are a bright yellow/orange colour and instructional

markings are typically in red).

As determining the boundaries between colours is difficult (human perception of

colour is non-uniform) the domain of each discrete colour was mapped through a man-

ual training process. New data within the RGB colourspace was then assigned one of

the 15 discrete colour classes depending on these boundaries. Simple observation then

linked each discrete colour class with each object type. For example, a green cluster

would be assigned a high probability of being grass.

Although combining colour and texture data in this manner provided a better result

than texture alone, this simplistic implementation required that objects remain the same

colour. However, outdoor scenes are subject to atmospheric lighting conditions which

can dramatically alter the perceived colouration. During a single day the colour of an

object appears to change depending on cloud cover and the position of the sun in the

sky. For example, the yellowing effect of evening light can make white taxiway markings

appear yellow, while white taxiway markings in low light can be darker than asphalt in

bright light. (Seasonal effects can make the situation far more complex but have not

been considered in this work).

Although the RGB colourspace is highly practical for storage and display, it is not well-

suited for image processing. As simple changes (such as an increase in brightness) affect

all three channels at once, two visually similar colours may have dissimilar values in the

RGB colour channels, making it difficult to create rules for discretisation. As such, it was

concluded that attempting to use colour within the RGB colourspace was not the best

solution.

Machine vision tasks more commonly use other colourspaces instead. For example,

the Superpixel generation approach used in Chapter 5 made use of the Lab colourspace,



6.4 Colour 154

due to the colourspace being specific designed for uniform colour distance based on hu-

man interpretation. Both the Lab and YCbCr colourspaces have the advantage of sepa-

rating out the brightness component into independent channels. However, as both satu-

ration and chroma components remain combined, these colourspaces only offer a small

advantage over RGB. Instead for this work, colour classification is primarily achieved

within the HSV colourspace, which is commonly used for image classification [30].

6.4.2 Hue, Saturation and Value

As the name suggests, HSV is a representation of colour in which Hue, Saturation and

Value are entirely independent. Unlike most other colour components, Hue is continu-

ous and repeating, most common expressed using a ‘colour wheel’. As such, unlike RGB,

and YCbCr, when interpreting HSV as a co-ordinate system the colourspace is most easily

represented as a cylinder, as shown in Figure 6.24.

HSV is designed to make human interpretation easier, separating colour data into

channels reflecting how human vision functions. The main benefit is that the image

brightness (Value) is separated from the chroma information, making changes in bright-

ness easier to observe. For example, overcast skies will reduce the brightness of pixels

which make up a taxiway centreline. In RGB colourspace this would affect all three

colour channels making it difficult to anticipate the change. By contrast, in HSV only

the Value channel should be affected in any significant way. This separation allows Hue

based colour classification to be more robust to changes in lighting, as well as allowing

for intuitive rules to be established for classification.

As Hue is ‘circular’, directly extracting the average Hue from multiple pixels can be

difficult. Despite the cylindrical colour wheel fitting well with human understanding of

colour, in physics differences in Hue are caused by variance in the wavelength of light.

As the visible spectrum has two ends, the circular nature of hue is purely down to human

perception. Instead, the cluster data is first averaged within Lab colourspace, before con-

version to HSV. Once converted, the HSV colour can then undergo further discretisation.

Discretisation is commonly performed prior to classification as many classifiers can

only work with discrete data. In addition, a discrete data set is much smaller than the

original data, significantly increasing classifier performance. (As nearly all images are

stored using 8-bit integers, colour data is already discretised; however HSV colour is typ-

ically stored in 256 bins per channel, with each image potentially containing up to 16

million unique colours. Despite being discrete, the colours are far too numerous to be of
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Fig. 6.25 Potential colour extraction process, using the HSV colourspace

direct use and the data must be instead be binned into wider groups).

In practice, discretisation affects all three colour channels simultaneously. However,

the logic behind HSV classification is more easily thought of as a sequential process as

shown in Figure 6.25.

The ‘first’ channel to process is Value, which represents distance from black within

the cylindrical co-ordinates. Unlike luminance (which is true distance from black in

terms of photon intensity), the colour primaries (i.e. red, green and blue) and pure white

will all share the same maximum Value, despite primary blue only being around 10% as

bright as pure white. This is extremely useful, as it provides clear distinction between

dark coloured pixels and black, making colour classification more robust for classes such

as grass and asphalt. As all other classes are typically bright in colour, low Value is consid-

ered indicative of asphalt. The Saturation channel denotes the intensity of colour and is

therefore applicable to the classification of every region which is not identified as black.

Colourful objects have high Saturation values whilst grey objects have low values. Yellow
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Fig. 6.26 Image represented using discretised HSV colours only

and red surface markings, and grass were all expected to be colourful whilst white surface

markings and asphalt were not. To align with testing conditions, sky was assumed to be

grey to reflect the overcast skies typical of UK weather.

As both Saturation and Value are highly influenced by changes in lighting conditions,

large groupings were deemed appropriate to attempt to mitigate small fluctuations. As

such, both channels are only assigned 10 states, in increments of 0.1 between 0 and 1.

By comparison, small changes in Hue can dramatically alter the perception of an ob-

ject, especially at high levels of saturation. Therefore, Hue is discretised into 24 discrete

states. As hue represents the angular position within the cylindrical colourspace, it is

discretised in between 0 - 360◦ in 15◦ increments. As Hue and Saturation are difficult to
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Fig. 6.27 The 2161 discrete colours used for HSV discretisation, arranged in colour wheels

of equal Value with the angular change representing Hue and radial change representing

Saturation. The final colour wheel is solid black, as all Hue and Saturation data is dis-

carded once the Value drops below 0.1.

perceive at low Value, a further simplification is made that all colours below 10% Value

are considered black. This produces a colourspace with 2161 discrete colours in total.

Figure 6.27 shows these colours in multiple colour wheels seperated by value, while an

image converted to show these discrete colours is shown in Figure 6.26.

6.4.3 Normalised-Relative Luminance

The purpose of including HSV data within the classification process is to differentiate be-

tween surface types which have similar texture profiles. However, this technique cannot

be applied when classes have both similar texture and colour. Despite focusing on only a

small number of classes typical of most aerodromes, it has been found that several of the

classes used for this work cannot be reliably differentiated using the methods outlined

above.

If class colouration was consistent, further data extraction within the HSV colourspace

could provide a solution. Rather than only using the mean data, the distribution of pixel
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colours within each cluster could be compared to the expected distribution of colours

for each class, providing additional information for comparison. Alternatively, a more

advanced intermediary stage, such as SVM classification, could be used. However, due to

environmental factors, the colour of each class can vary quite substantially. Attempting

to include this variance in addition to differentiating between extremely similar classes

is an extremely challenging classification problem.

Specifically for this work, the classes with similar colour and texture are asphalt, white

surface markings and sky (during overcast weather). As the sky class has many other

features which allow it to be correctly classified (covered in more detail in Section 6.5) the

main requirement is a source of additional information to help differentiate aerodrome

surface markings from asphalt.

As aerodrome surface markings are highly similar to road markings, it would seem

sensible to review methods used within the related field of SDC. As with this work, colour

and texture data is commonly used to find surface markings. Although more recent

approaches make use of deep-learning (which conceals how the markings are actually

detected) the majority of manually defined techniques primarily identify the markings

based on image texture [106]. As with this work, there can be difficulty in confirming

the identity of surface markings, especially at range. As such, confidence in markings is

commonly increased through comparing the orientation of the markings to the overall

road. Using the effects of perspective, it is possible to increase the classification con-

fidence of markings which met the same vanishing point as the road boundaries [73].

However, as the boundaries of taxiways are runways are often denoted by surface mark-

ings themselves, this method is unsuitable for use in an aerodrome as parallel lines are

not indicative of surface markings alone.

Returning to the image itself, the main difficulty in differentiating the classes is caused

by both classes having low Saturation (i.e. they are grey). When the value of Saturation

is low, the Hue component of colour loses all importance. Therefore, the ability to differ-

entiate between colours depends on Value alone. As aforementioned, the Value channel

does not represent brightness in the same way as human vision. Human eyes recog-

nise specific frequencies of light more intensely than others, attributing different levels

of brightness based on Hue. A combination of all frequencies (i.e. white light) should be

recognisably brighter than any specific colour. By comparison, within the Value channel,

data is simply the maximum distance from black (equivalent to the largest component of

colour within the RGB colourspace).

Despite humans interpreting pure white as much brighter than pure blue (as shown
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Fig. 6.28 Example of colours which share the same V alue within HSV colourspace, (the

three colour primaries and white), indicating how V alue is visibly separate from the hu-

man interpretation of brightness.

in Figure 6.28), this interpretation of brightness results in all primary colours, secondary

colours and white sharing the same Value. As such, if the taxiway is not pure grey (e.g.

a concrete taxiway), the numeric difference between the white surface markings and as-

phalt is greatly diminished. Therefore other interpretations of colour (i.e. colourspaces)

are likely better at differentiating these classes than Value. A range of alternative methods

of expressing brightness within images are shown in Fig. 6.29.

The closest alternative colour space to HSV is Hue-Saturation-Lightness (HSL), an-

other cylindrical colour space which exchanges Value for Lightness. HSL was not selected

for colour classification as the three colour channels are not uniformly distributed. That

is, Lightness varies depending on Saturation, making it more difficult to use the colour

channels individually. Despite using the same name, the Saturation channel in HSL is

very different from that used in HSV. Shown in Fig. 6.29f, without data from the Satura-

tion channel, much of the detail in the image has been lost. As such, despite the Lightness

component always ranging between between pure white and black, it is too connected to

Saturation to be used alone, with even less to differentiate white surface markings from

asphalt than is present in when using Value.

Returning to the RGB colourspace, component average intensity is the simplest method

of producing a ‘greyscale’ image. However, it is not commonly used in computer vision as

it fails to represent brightness as a human would interpret it. As surface markings are of-

ten worn, an extremely sensitive measure of brightness is required. For humans, bright-

ness relates to the number of photons of certain wavelengths entering the pupil. As the

area of the pupil and the number of photons define the brightness, it is photometrically

the intensity of light incident on an area, commonly referred to as Luminance. In addi-

tion to absorption, Luminance can also be used to measure reflection. As the amount of

light reflected from an object depends upon it’s surface, accurate measures of Luminance

can be used for material classification. Therefore, Luminance would be extremely useful

as an additional data source for classification.

Unfortunately, when images are captured by a camera, automatic white-balancing

and aperture effects prevent the actual Luminance value from being captured. Moreover,
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(a) RGB colour image (b) CIELAB L*

(c) Relative Luminance
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Fig. 6.29 Comparison of different methods of representing brightness
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unless raw data is recorded, the storage format of digital images significantly alters the

Luminance values. As most image formats are 8-bit, only 256 possible levels of brightness

can be captured. Therefore, Luminance for images is commonly expressed relative to

a known baseline and as such is known as Relative Luminance. In order to operate in

a range of lighting conditions, the maximum and minimum Relative Luminance values

within an image typically correlate to maximum and minimum Luminance values within

the scene, rather than a fixed datum.

Further complicating the matter, Relative Luminance is not directly captured by most

camera systems. For cameras which directly capture RGB (using the International Telecom-

munication Union (ITU) Regulation BT.709 primaries), Relative Luminance can be calcu-

lated from the linear RGB components. Eq. 6.1 reflects how humans interpret light, with

green photons appearing over 10 times brighter than blue photons with the same inten-

sity.

Y ′
709 = 0.2126R +0.7152G +0.0722B (6.1)

However, during compression, many camera systems use Gamma-compression to

reduce file storage size. Unless a direct conversion from (gamma-corrected) R’G’B’ back

to RGB is known, Eq. 6.1 will instead calculate Luma. Despite the visual similarity, this

is another further step from actual Luminance, as the reference white level is also lost.

However, for this work, the actions outlined below (which make use of either Luma or

Relative Luminance) alter the data such that the difference between them is mostly unim-

portant. As such, this work uses the term Relative Luminance is used to refer to either.

This is of additional benefit as it allows cameras systems which both do and do not use

gamma-compression to make use of the same technique. Alternatively, the far more

complex but perceptually accurate CIELAB colourspace could be used, as the L* com-

ponent is essential based on Luma, with some slight modification to correct for human

vision at high chroma. However this has not been explored.

Cluster Normalisation

For human vision, the perceived intensity of colours is always influenced by other colours

within the same scene. The classic “Checker Shadow Illusion” [5] demonstrates how hu-

man perception is based on relative colours, rather than absolute. In an aerodrome en-

vironment, under low light, the white surface markings may be less bright than plain as-

phalt in direct sunlight. It is only through comparison to other clusters that their bright-
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Fig. 6.30 The “Checker Shadow Illusion”, intended to demonstrate how the perception of

a single colour is relative to its surroundings.

ness becomes apparent. Therefore, comparison between pixel clusters is the easiest way

to differentiate between them.

As the name suggests, Relative Luminance is already defined relative to the bright-

ness of the clusters within the image. For outdoors scenes the range of Luminance is

often greater than the sensor can capture. Aside from shaped materials which focus light

towards the camera, sky pixels should always be brighter than ground pixels [49]. As

such, the maximum Luminance value is usually defined by sky pixels, whereas the lowest

Relative Luminance is usually a dark material, such as asphalt. Therefore, the brightest

and darkest pixels are used to define the range for Relative Luminance.

As sky pixels are usually significantly brighter, the difference between asphalt and

white surface markings is usually limited to only a small fraction of the total range of Rel-

ative Luminance, despite them being extremely dissimilar to the human eye. As both sur-

face types are found on the ground, a better range of Relative Luminance can be found by

separating ground and sky region(s) within the image. Although sky clusters can be dif-

ficult to identify on colour and texture alone (as overcast clouds can be similar in texture

to examples of distant asphalt) additional information is readily available. Determining

which clusters represent sky is made easier as the sky is constrained in terms of posi-

tion (i.e. it always appear above the horizon line). For this work, an horizon detection

algorithm is used and high-Value low-Saturation regions which appear wholly above the

horizon are considered to be sky. (This information is also useful for classification and is

covered in greater detail in Section 6.5).

Once the sky has been identified, this work suggests increasing the perceived differ-
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ence between surface markings and asphalt by re-normalising the Relative Luminance

values within the image, relative to the maximum Relative Luminance of any region on

the ground. As the minimum value of Relative Luminance is often defined by asphalt

and the brightest pixels on the ground as often white surface markings, this new output,

which we refer to as NRL, then represents a fairly consistent measure of the brightness

of pixels on the ground. A benefit of this approach is that as NRL strongly emphasises

what appears bright to human eyes, it is also highly effective in detecting yellow surface

markings. Relative luminance can be derived from RGB colourspace using Eq. 6.2, where

R, G and B are the respective mean pixel values in each colour channel per cluster, and Y

is the relative luminosity of each cluster.

Yi = 0.2126R i +0.7152G i +0.0722B i (6.2)

NRL can then be calculated using Eq. 6.3.

N RLi =
Yi

Ymax
(6.3)

Figure 6.31 shows an example of NRL values for each cluster, clearly indicating the

suitability of NRL for surface marking detection.
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Fig. 6.31 Example of Normalised Relative Luminance, based on the original top image.

It should be observed that despite being the brightest object in the original image, the

sky region has been reduced to lowest likelihood of being classified as surface markings

through the use of horizon detection. Instead, the surface markings within the image

receive the highest NRL values, as intended. A more detailed evaluation of NRL imagery

occurs in Chapter 8.
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6.5 Horizon Line

In Section 6.4.3, the concept of NRL was established, in which luminance is re-normalised

with respect to the ground based maximum, rather than the image-wide maximum. In

order to achieve this, the terrestrial clusters in the image need to be identified. As this

process occurs prior to classification, the identity of each cluster is unknown. Therefore,

an independent method of reliably separating ground and sky is required. As the horizon

line is, by definition, the point at which the earth’s surface and the sky appear to meet,

the sky and ground regions can be reliably categorised based on their position relative to

the horizon line. However, as the horizon line itself is unknown, methods of determining

the horizon line are required.

This section outlines multiple approaches to horizon line detection. In addition,

the position of the horizon can be used to elicit additional information from the image.

Therefore, additional uses of the horizon position for classification are also discussed.

6.5.1 Straight Lines and Lens Distortion

When viewed from close to the ground, the horizon should appear as a straight line be-

tween the ground and the sky. However, the effects of some camera lenses can warp the

image such that the horizon line is curved. To ensure that the horizon line is straight,

the images used for this work have undergone correction to remove the effects of lens

distortion. This was simply achieved using software provided by the camera manufac-

turer, applied immediately after capture. As such, all the images used for this work were

already free from radial distortion and the horizon is assumed to be a straight line.

As all radial lens distortion can be corrected through software, it is assumed that any

future ATS will apply distortion correction prior to image processing. As methods of cor-

recting camera distortion are well established, they have not been explored in detail here.

6.5.2 Horizon Position Estimation

Although many UAS are fitted with rotating cameras for airborne observation, the as-

sumption for this work is that the camera is mounted on the aircraft in a fixed position,

without the ability to pan, tilt or zoom. As such, the position of the camera with respect

to the environment is dependant entirely on the movement and position of the aircraft.

As the aircraft is moving across flat ground and the height and mounting angle of the

camera are known, the simplest method would be to assume a static horizon line based
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on trigonometry. Similar work done in [111] estimates the location of features captured

by a camera for use with SDC. In this case, the work assumes a fixed angle between the

car and the ground. For road vehicles, this angle can be considered fairly constant, which

would allow ground and sky to be reliable separated using a static horizon line.

However, aircraft have comparatively flexible suspension (as the undercarriage is de-

signed to absorbed impacts during landing) and a high mounted thrust line which causes

aircraft to pitch and bounce as they taxi. Although the height of the camera will be sub-

ject to suspension flex as the UAS taxis, the variance is expected to be small enough so

as to have limited effect on the output. Of greater influence is the effect of pitch and

roll, where a small change can effect the accuracy of the output immensely. Therefore, a

static horizon line is not sufficient and the position of the horizon will need to be actively

estimated in order to produce an accurate result.

A non-visual solution would be to continue to use to height and angle of the camera,

but to alter the position based on inertial feedback. As INS is present on all unmanned

aircraft, both the attitude and angular rate of the aircraft can be calculated. From the in-

ertially derived angle of the aircraft travelling over flat ground, it is a matter of trigonom-

etry to determine the position of the horizon within the image. However, despite aircraft

INS being highly accurate, it is not attached to the camera. Any flex between the camera

mount and the aircraft can cause slight variance which produces a different angular re-

sult. In particular, the high frequency vibrations typical of ground vehicles tend to affect

smaller rigid objects more. During testing it was found that although inertially derived

horizon position was consistent close, it was often not precisely aligned with the horizon.

Furthermore, the discrepancy between when the image is taken and when the Inertial

Measurement Unit (IMU) data is obtained can make fusing inertial and visual informa-

tion very difficult. Any delay between the rates at which sensors operate can cause mas-

sive discrepancies when the vehicle is at speed, as described in [80]. The researchers at

Oxford University Robotics Research Group (OURRG) experienced such an issue when

combining data from both laser range finders and cameras. To overcome this, OURRG

put a great deal of work into software that could identify the phase shift between the ap-

paratus, factoring in hundreds of variables; such as temperature, humidity and electrical

draw of the system. The need to develop a similar system for this work would make the

project infeasible.

As the use of this data is in interpreting the image, it is sensible to consider methods

which attempt to determine the attitude of the aircraft from the image itself. Compared

to inertial estimates, visual estimation is far more processor intensive. However, if the
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horizon estimate is drawn from the same image as the clusters, there is no risk of mis-

match.

Ground based horizon estimation methods are also commonly found in SDC research,

such as [115]. The work in [115] makes use of ‘vanishing points’ to estimate the horizon.

On a straight road, the parallel edges of the lanes will appear to converge over distance.

As these features are ground based, the convergence point should be on the horizon line,

even if the horizon itself is not visible. Whilst this has been shown to be highly effec-

tive for road traffic, it requires many features to be present in every frame to correctly

estimate the horizon position. Often aircraft will leave taxiways for apron areas where

there are no suitable markings on which to apply this technique. In addition, taxiways

do not have lanes, so the technique would have to use the edges of the taxiway and the

taxiway centreline instead. This is an issue as not all taxiways have borders, and where

borders are present they are not always parallel. With so many limitations, this technique

is considered to difficult to reliably implement.

The simplest horizon detection methods work on the assumption that ground and

sky pixels differ dramatically, even on overcast days. The horizon line can be extracted

by examining the edge between the two regions. In aviation, methods such as the dark

channel approach (similar to that outlined in [124]) are already used extensively on Micro

Unmanned Aircraft System (MUAS) and have been found to be highly effective at provid-

ing an additional source of attitude data to compliment the output from the IMU.

The obvious limitation of this approach is that the system is compromised by the

presence of any foreground object, such as buildings or other vehicles. As these objects

are not classed as sky, they result in the horizon line shifting ‘upwards’, making the result

inaccurate. As such, a method which uses both inertial and visual data has been im-

plemented. Despite the image and sensor data always being slightly offset, an inertial-

derived horizon position should still be fairly accurate. As such, for this work a second

horizon line is also calculated based on the roll and pitch angles provided by the aircraft

IMU.

6.5.3 Dark Channel Horizon Estimation

The visual horizon detection process uses a dark channel method, as described in [125].

This works on the assumption that ground pixels will always have darker components

when compared to sky pixels. Working in RGB, each pixel in the original image is replaced

by the lowest value in either R,G or B within the local neighbourhood. This is achieved
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Fig. 6.32 Example of Dark Channel Extraction, based on the original top image. The dis-

tinct difference between sky and ground pixels allows the horizon line to be easily deter-

mined.

by first replacing each pixel in the image matrix with the minimal value along the third

dimension, before applying a morphological erosion. This produces a dark channel im-

age, as shown in Figure 6.32. From this example the split between ground and sky pixel

is clear, allowing for the horizon line to be extracted.

For images such as the one shown in Figure 6.32, horizon extraction is simple. How-

ever, the horizon line is often partly obscured, preventing the use of straightforward line

estimation techniques, such as regressive least squares. Instead, a techniques which piv-

ots potential horizon lines around the lowest sky pixels in the image is used. The horizon



6.5 Horizon Line 169

line detection process is as follows:

• An initial horizon estimate is created based on camera and aircraft geometry

• The inertial sensor readings are used to correct the horizon estimate based on the

attitude of the UAS.

• Visual horizon extraction occurs:

– A dark channel representation of the image is created

– A threshold is applied to create a binary image of sky/ground pixels.

– Connected component analysis is applied to the ‘sky’ region.

– A potential horizon line then pivots around the lowest sky pixels(s) in the im-

age. The angle which minimises the amount of ground pixels above the line

whilst never crossing into the sky region is then taken as the horizon.

• The horizon line from each captured frame is used as the initial estimate for the

next, ensuring the horizon line is consistent over time.

As ground objects can completely obscure the horizon, the dark channel derived

horizon line cannot differ from the attitude derived horizon line too greatly. If it does

so, the assumption is made that the UAS is facing a large object (such as a building) and

therefore a visually derived horizon line will not be accurate. Instead, the inertial esti-

mate will be used.

6.5.4 Additional Uses of Horizon Line

In addition to separating the image into ground/sky clusters for NRL extraction, the hori-

zon line can be used for several other applications. Used directly, the horizon line can

reduce the amount of the image in which classification is required. As image processing

algorithms can be highly computationally intensive, a common approach is to restrict

the image area to only that where the feature will lie, commonly referred to as a ROI. By

bisecting the image with the horizon, only the bottom half needs to be processed when

seeking features only found on the ground (e.g. taxiway markings). Using ground feature

detection algorithm on the region above the horizon line is simply a waste of processing

power.

In addition, the position of the horizon line can also be used to determine the atti-

tude of the camera. Just as the inertial attitude of the aircraft can be used to provide an
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Fig. 6.33 Example of Visual Horizon detection, implemented within MVTec Halcon. This

figure shows the extracted horizon line, in addition to the true vertical relative to the

camera, allowing both pitch and yaw to be calculated.

horizon line estimate, the opposite is also true; with the angle of the horizon line within

representing the camera’s roll, whilst the vertical position of the horizon line within the

image indicative of pitch. Finally, the position of a cluster relative to the horizon can also

be used directly as an indicator of class, which is discussed further in the next section.

6.6 Spatial Data

In addition to the contents of each cluster, the position of the cluster within an image can

also be used to help with classification. Four types of spatial information are considered

here:

• Horizon relative

• Immediate foreground

• Context from Neighbours

• Aerodrome map



6.6 Spatial Data 171

6.6.1 Horizon Relative Classification Data

For use in data extraction, the position of a cluster relative to the horizon can be used

directly as an indicator of class. Continuing to use the method first suggested by Eaton

and Coombes (2016) [24], the position of each cluster relative to the horizon can be con-

sidered a logical check, limiting potential classes during classification. Each cluster can

be assigned one of three possible states, based on it’s position relative to the horizon:

1. Above - Clusters entirely above the horizon are either airborne or the object repre-

sents sky. In either case, such clusters are not relevant for ground operations and

the probability of being a collision risk is low.

2. Bel ow - Clusters which are wholly below the horizon line can be considered on the

ground and require the other forms of data to aid in classification

3. Inter cept - Clusters which extend across the horizon line and have a significant

portion either side of the horizon are objects that extend up from the ground and

therefore represents a possible collision risk.

As the bottom of the sky region was used as the basis for horizon line, practically all

ground clusters which border the sky will be classed as intercept. As such, a large cluster

(such as the taxiway) which extends only a single pixel over the horizon line would be

incorrectly considered as an intercept class. To avoid this, the horizon line is treated as a

20 pixel tall band rather than a pixel tall line. As shown in Figure 6.34, horizon detection

alone is capable of detecting potential collision risks, when a larger cluster extends across

the horizon line.

6.6.2 Immediate Foreground Classification

Similar to logical check used in Section 6.6.1, an additional assumption can be made

regarding the immediate foreground in front of the camera (i.e. the lower-most region in

the image).

Assuming that the UAS begins navigating from a position of safety (i.e. on top of

a navigable surface such as asphalt) if the ATS does not err in its navigation, the UAS

should still be positioned on a navigable surface. As this surface extends throughout

the clusters, the closest collision risk possible occurs at the uppermost edges of these

bottom regions. If the system ever fails to identify the surface it is presently on top of

(perhaps due to shadows or water reflections) the safest method of continuing would be
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Fig. 6.34 Horizon based cluster classification. In the original image to the left, the only

object which extends to each side of the horizon line is the building. This result is clearly

reflected the horizon based classification on the right, where only the building cluster

has been assigned the Inter cept class. Although the windows in the building are not

classified as intercept, as collision avoidance should always estimate to the bottom of

objects, this collision risk has been potentially detection through horizon line extraction

alone.

to remain within the bounds of whichever region it is currently sat upon. As such, simply

identifying the closest cluster to the aircraft provides a method of potential collision risk

detection, entirely without classification. This assumption is used in [97] as part of an

image process strategy which allows a small robot to perform visual collision avoidance

without classification.

However, as the edges of the lowermost clusters can only be used to suggest the limits

of known safety, the clusters beyond are no more likely to represent collision risks. As the

segmentation process aims for an over-segmentation, and taxiways have surface mark-

ings, the likelihood of the lowermost clusters meeting directly with collision risks is fairly

low. As such, the most appropriate use of this information would be that each cluster

which is present at the bottom of the image should receive a unique data type, signifying

it is less likely to be a collision risk.

Furthermore, as the camera is mounted straight forward and mounted high on the

airframe, the minimum distance at which the ground can be seen is over 10 metres. As

such, the possibility exists that a large collision risk close to the camera could prevent the

ground itself from being seen. If the bottom of the image was simpled labelled as safe,

this would likely result in collision.

Despite successful application of this approach in [97] for a small robot, due to the

different mounting position of the camera, this approach will not be pursued in this

work.
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6.6.3 Classification through Neighbour Cluster Context

Aside from the absolute position of the cluster within each captured image, additional in-

formation can be extracted from the local position of a cluster relative to its neighbours.

When a human observes a scene, each object is identified using not only its own appear-

ance, but also the context of its surroundings. For example, a distant brightly coloured

object might be hard to classify alone, but if it were located on a road it would most likely

be a car. For terrain classification, contextual clues such as ‘grass is usually alongside

taxiway’ and ’taxiway centre lines should be bordered either side by asphalt’ are useful.

As the relationship between clusters depends on adjacency, the spatial relationship

between regions can be modelled through the use of probabilistic graphical models, e.g.

Conditional Random Field (CRF) or Markov Random Field (MRF).Previous works have al-

ready included contextual information within the classification process; the method de-

scribed in [9] uses the edges within a graph to represent the relationships between neigh-

bouring clusters. Although a graph based classifier is required to incorporate this spatial

information directly, the relationships between clusters could instead be amended in a

subsequent graphical stage, just as the colour distance between superpixels was used to

form clusters after the initial over-segmentation in Section 6.1.2.

Although the inclusion of spatial data has been shown to improve classification of

known classes, as with other classifiers the use of prior knowledge can bias the classifier

towards expected conditions. For example, the expectation that a taxiways are bordered

by grass may cause difficulties where the taxiway was bordered by a different material,

such as an asphalt road for ground vehicles. When working in a controlled environment

with known terrain features, this form of contextual classification may actually hamper

performance; any misclassified terrain clusters make it more difficult to match the UAS

location to a map.

For collision risk detection, as all objects on taxiways pose collision risks, there is lit-

tle context that can be used. Any object which is not clearly a terrain feature is already

considered a potential risk. As such, the inclusion of graph-based contextual classifica-

tion is not useful for such a small number of classes and will not be included within the

classifier. As introducing data from neighbouring clusters will bias unknown regions

towards known classes through expectancy, the contents of neighbouring regions are

not used to help identify clusters in this work.
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6.6.4 Map Data

Similar to how context for each cluster can be obtained from neighbouring clusters, the

aerodrome map can also be used as additional source of information. As GPS data should

be available, the position and heading of the UAS is known. Using a model of the cam-

era and representing the aerodrome map as a flat plane within 3D space, a image of the

aerodrome terrain from the perspective of the camera can be created. This allows an

additional source of classification data for each cluster.

Several attempts to incorporate this data within the classifier were made for this work.

However, many issues were found. Certain issues were able to be resolved, such as the

lack of building occlusion when using a 2D map. (Despite being present on the aero-

drome map, when projected into 3D space the buildings were simply 2D terrain features.

As such, when the clusters which represented the building were aligned with the data in

the map, they were instead associated with the objects behind the building. Therefore,

all buildings and known collision risks on the map were given 3D height in order to create

occlusion).

However, occlusion in the opposite direction was much harder to resolve. When an

unknown collision risk appeared in the original image, the collision risk object would

receive an artificially increased score of belonging to which ever class would be visible to

the camera, had the collision obstacle not been present. As this is typically a terrain, the

chance of an unknown risk being detected is reduced.

Although methods of overcoming this issue were tested, (such as comparing the shape

of clusters to the known terrain features and only assigning a classification estimate if the

shapes were similar) the biggest issue was that of GPS position accuracy. During testing,

GPS position was only accurate to within a few meters, resulting in the virtual camera po-

sition producing a distinctly different image, as shown in Figure 6.35. As such, the terrain

features being used to provide an additional classification estimate could not be relied

upon to be correct.

The UAS localisation has already been identified as a potential area which could ben-

efit from visual data, by using the visual obtained data to verify the externally derived po-

sition data for the UAS. However, if the visually extracted information has already been

influenced by the GPS derived position of the UAS, the biasing towards the expected po-

sition would limits the methods effectiveness for localisation correction. As such, no

spatial information is included within the classifier - either from the aerodrome map or

neighbouring clusters within the image.
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Fig. 6.35 Example of the difference between simulated camera position and actual image

from camera, based on test data at Walney Airport
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6.7 Summary and Conclusion

After reviewing many potential methods of achieving image segmentation in Chapter 5,

this chapter has focussed on the actual implementation used. In the prior chapter it was

established that the ideal result would be ‘object specific segmentation’, in which each

cluster would not only represent a single object, but would also contain as much of that

object as possible. This approach was intended to capture more information per cluster,

strengthening the confidence in the final classification.

The selected approach consists of two stages; a superpixel-segmentation process which

creates an initial over segmentation and reachability re-clustering to achieve as close to

‘object specific segmentation’ as possible. SLIC was once again selected for the initial

over-segmentation as the method produces superpixels which are an ideal size for reach-

ability clustering. In addition, using both colour and spatial distance to cluster ensures

that even subtle edges in the original image are reflected in the position of the superpixel

borders. This minimises the risk that any superpixel will contain more than one category

of object, whilst also ensuring that superpixel boundaries conform to the boundaries of

objects within the image.

Although the DBSCAN algorithm was presented in the previous chapter and has been

used in prior work [33], a novel form of reachability clustering has been introduced here.

This graph-based process was found to be more computationally efficient, whilst also

restricting reachability to only neighbouring superpixels, ensuring that superpixels must

be both adjacent and similar for the cluster to expand. After comparing aerodrome im-

ages segmented both manually and using the automated approach, it was empirically

determined that the chosen method was nearly as capable as a human, with only minor

discrepancies under aerodrome conditions.

Although object specific segmentation is not always achieved, this is difficult in en-

vironments where objects can have varying colours per object. Furthermore, as under-

segmention is potentially very dangerous (with potential collision risks being ‘merged’

into larger terrain clusters and therefore not identified) the re-clustering is undertaken to

ensure that an over-segmentation is always more likely to remain. Despite this change,

the algorithm produced large, single-class clusters suitable for data extraction and clas-

sification.

Following the successful implementation of the segmentation stage, ’Data Extraction’

is required to allow the classifier to determine the contents of each cluster. For some

types of data, the extraction approach includes training a pre-classifier such that the out-
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put is an estimate of class. In comparison, other data can already be used to provide an

estimate of class, based on human interpretation. To use both types of data together,

the data extraction process collects useful information, all of which is then passed to a

subsequent stage for data fusion and final classification.

As different forms of image data have different strengths and weaknesses, the adopted

approach begins with Texture data, as this allows a good estimate of class without any

additional information. Two different forms of feature descriptor were chosen (MR8 fil-

ter bank and LBP), due to the different scales in which they operate. As MR8 data has

many millions of potential outputs, a closest-texton based representation is used for easy

comparison to instances of known classes. Actual comparison is achieved using a pre-

classifier, which provides an full estimate of class. From a comparison of several tech-

niques, an SVM approach which uses a BDT to minimise the processing cost has been

chosen.

Although texture data provides an estimate of class directly, it is shown to be only

around 90% accurate. Therefore, additional information can be passed to the classi-

fier to improve this result. This additional data includes colour data, which is used to

help differentiate between classes with similar textures. To minimise the effects of vari-

able lighting conditions, the HSV colourspace is used due to having separate chroma and

luma components.

As surface markings are of particular interest for localisation, an additional method

of detecting highly reflective surface clusters has been introduced, known as NRL. Unlike

luma, which varies with the lighting conditions, NRL is relative to other ground clusters

within the same image. This ensures that NRL should highlight surface markings until

it is too dark for the camera to function. Finally, potential collision risk estimation is

extracted, based solely on cluster position relative to the horizon line. Clusters which

intercept the horizon can be considered less likely to be terrain features and more likely

to be an object which poses a risk to the UAS.

As classification accuracy typically dependant on the amount of information pro-

vided, nearly all forms of data that could be extracted have been incorporated. However,

data which could artificially bias the classifier have not. Therefore, data which is not di-

rectly drawn from a cluster, such as map data and contextual information based on the

classification of neighbouring clusters, has not been used.
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Fig. 7.1 Stages of the semantic segmentation process, showing how the classification pro-

cess is divided into a prior ’Training’ stage as well as the ’Classifying’ stage during opera-

tion.

Following on from data extraction, this chapter covers the final stage of semantic

segmentation, in which the clusters are classified. Returning to the three stage process

shown in Figure 7.1, it can be seen that classification is achieved in two parts; training the

classifier, and using that classifier to determine the class of each cluster. However, before

this is possible, the classifier itself must be selected. Despite having covered SVM clas-

sification in Chapter 6, the classifier required for the final result is quite different. This

is due to the different types of information that must be incorporated within the final

output. Essentially, the final classifier must be capable of working with three levels of
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information:

1. Raw data, such as discretised HSV

2. Indicators of class, such as horizon intercept category

3. Estimates of class, such as the Texture classification results

In addition to combining data from different sources, the classifier must also be ca-

pable of incorporating the suitability of each type of data, in reference to the output class.

For example, if the texture classification result suggests that a cluster is asphalt, the clas-

sifier must include the understanding that painted surface markings are also highly likely,

and that colour information should be used to differentiate. As such, a classifier which

can interpret highly diverse data within context is required. Beyond simply relying on

certain sources more than others, functioning without certain sources of data is also im-

portant. Although texture data is used as the primary source of data, some surfaces may

provide insufficient data for a classification. Despite the likelihood that this represents an

unknown, the rest of the data sources would still be available and therefore an estimate

should still be produced.

Finally, the classification process presented in this chapter is intended to only work

with visually obtained data. As stated in Chapter 6, fusion with other types of non-visual

data tends to bias the visual results towards expected classes. Therefore, even though

fusion with other sources of data could be achieved simultaneously with visual classifi-

cation, it is considered more appropriate to first obtain a final visual classification result

for each cluster. This result can then be compared with other data sources, in which ever

manner is most appropriate.

This chapter contains the contribution of a representative probability calculation for

texton classification data, specifically for converting a BDT based SVM classification into

a probabilistic output, covered in Section 7.3.1.

7.1 Previous Work

Throughout much of this thesis, the previous work of Eaton (2015) [33] has been refer-

enced, as many of the selected data extraction techniques were present in that paper,

albeit in early iterations. However, the final classification approach used by Eaton (2015)
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has not been brought into this work, as the results proved to be unsatisfactory. The fol-

lowing section explores why these results were insufficient, and the progress made in

improving upon them.

7.1.1 Attribute-Value System

As previously established in Chapter 6, Eaton (2015) [33] used both texture and discrete

colour as data for classification. For texture, rather than provide a direct class estimate,

the Bhattacharyya coefficient was used to compare each cluster to examples of each

known class. The average Bhattacharyya distance between the cluster and class was then

used as a measure of similarity. (Despite working well, this method was not pursued due

to being extremely computationally inefficient, with more efficient distance metrics pro-

ducing similar results). Data fusion between colour and texture was achieved through

an Attribute-Value System (AVS). By manually defining the likelihood of each class be-

ing a specific colour, the Bhattacharyya distance was artificially multiplied to increase or

decrease the probability that that class would be the closest. For example, the distance

between a cluster and the ‘yellow paint’ class would have been artificially reduced if the

cluster colour was yellow.

Including colour data within the classification process produced a more accurate re-

sult than texture alone, with the average correct classification rate rising from 65.6% to

74.5% per class, and 86.2% to 89.3% per cluster. However, as the approach fused data in

a simplistic and naïve fashion, the colour data did not consistently improve each class.

As shown in Table 7.1, the success varied depending upon the surface type being clas-

sified. For asphalt, the successful classification result was over 90%. However, classes

which could not be easily defined by colour (such as buildings) only had around a 50%

successful classification rate.

From the results of Eaton (2015), several conclusions could be drawn. One conclu-

sion (for which a solution has already been implemented in this work) was that under-

segmentation would nearly always produce a misclassification. In Eaton (2015), the seg-

mentation approach aimed to produce as close to “single-object segmentation” as possi-

ble. To achieve this, reachability clustering was performed with a high threshold, which

would occasionally group super pixels belonging to multiple classes. Despite only hav-

ing a small proportion of each cluster from another class, it was found that even small

errors in cluster borders could produce misclassification (or rather, clusters which con-

tain more than one class cannot be classified correctly). As such, all subsequent work has
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Manual

Classification

Automatic Segmentation Output as Percentage of Manually Segmented Classes

Unknown Asphalt Grass Sky White paint Trees/plants Buildings Yellow paint Vehicle

Asphalt 0.02 94.83 0.62 0.23 0.65 0.42 1.74 0.2 1.28

Grass 0.02 24.41 68.07 0.01 0.09 2.79 0.8 0.9 2.91

Sky 0.11 0.11 0.01 97.87 0.15 0.16 1.32 0.18 0.1

White paint 0.04 18.16 0.89 0.4 66.16 0.37 8.35 3.1 2.52

Trees/plants 0.18 5.49 6 0.86 0.37 61.91 16.12 0.12 8.96

Buildings 2.51 2.26 5.97 3.04 3.47 12.12 55.52 0.08 15.02

Yellow paint 0.13 13.8 5.54 0.06 3.46 0.13 0.72 74.93 1.24

Vehicle 3.58 2.03 2.32 2.08 6.32 19.19 9.4 2.82 52.27

Table 7.1 Per-pixel classification results, using Texture and colour data with “naïve" AVS

classifier for ten aerodrome images. The diagonal results highlighted in bold represent

successful classification, in line with the manual classification of that cluster.

consistently aimed to produce a slight over-segmentation, so as to prevent multi-class

clusters from being created.

Returning to the results of Table 7.1, the worst performing classes were those which

appeared least regularly but had high internal class variance; i.e. Buildings, vehicles and

plants/trees. As the data set has very few trees (due to the aerodrome used for testing

having very few trees nearby) it was decided to remove this class entirely. Similarly, the

vehicle class had limited data, as only a few other aircraft were present during testing.

Attempting to use a small dataset to train a classifier should over-fit the class to this par-

ticular vehicle. However, the limited data available and the similarity in colour of the

vehicle to nearby building produced poor results. Therefore, the decision was made to

revert to detecting vehicles as generic collision risks. As buildings are static, their detec-

tion is not vital as they can be avoided from using map data and localisation. Therefore,

map data is used as part of the guidance system, but is used as a source of information

to aid visual classification. Despite this, the building class was retained during testing to

determine if a new classification method could improve the result, even with a limited

and highly variable data set.

Finally, for classification it was identified that a more coetmplex relationship between

surface-type and data-type confidence was required. Due to the wide variety of data

types, a probabilistic approach to data fusion was pursued; specifically using a Probabilistic

Graphical Model (PGM).

7.1.2 Probabilistic Graphical Models

When selecting a classification approach for this work, PGMs were considered highly

appropriate. PGMs are data fusion techniques which allow information from multiple
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sources to be combined to provide a final classification result. One of the biggest chal-

lenges in data fusion is combining multiple types of information, when the knowledge

is originally expressed in a function unique to each data type. (e.g. colour is provided

as a discrete section of colourspace, whereas texture is provided as an estimate of class).

As the name suggests, PGMs use probability in order to fuse multiple sources of data to-

gether. The overall probability of a cluster being a certain class is then inferred from all

sources of data, increasing the overall classification accuracy compared to what could be

achieved with each individual source.

In addition, by representing the relationship between sources of data as a graph, the

conditional relationship between sources of data can also be modelled, allowing confi-

dence in data source to directly affect the classification result. As such, PGM offer signif-

icant advantages when compared to the AVS data fusion approach used in Eaton (2015)

[33].

Within machine vision, PGM are commonly used for semantic segmentation, with

MRFs, CRFs and BN being some of the most popular implementations. Both MRF and

CRF use undirected graphs, in which the classification result can be altered multiple

times during classification. For example, classification of a superpixel could be under-

taken in isolation to produce a final result. These final results can then be compared to

multiple local superpixels, with the possibility of altering the final result if another class

is then more likely. As this form of classification can be applied at the pixel level, both

MRF and CRF are highly appropriate for classifier led segmentation.

BN are also commonly used for classifier-led-segmentation, (such as [67] and [17])

however they use a Directed Acyclic Graph (DAG), in which information flow within the

network always proceeds towards the final classification result. This makes BN more

efficient, however they cannot incorporate information which depends on feedback from

further down the classification path.

As discussed in Chapter 5, for this work segmentation has already been achieved

in a separate stage. With cluster borders remaining static and no-relationship between

neighbouring clusters included in the extracted data, there is no need to alter the clas-

sification result multiple times. As such, PGM for classifying pre-segmented images can

use a simpler ‘directed graph’. Work by Zhang et al. (2011) [126] discusses multiple PGM

methods which could be used to classify superpixels. As PGM with undirected graphs are

typically inefficient, methods which use directed graphs are more common for pure im-

age classification. As such, Zhang et al (2011) conclude that without the need to perform

the initial segmentation, a BN approach is both far more efficient, whilst allowing data to
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be incorporated more easily.

Compared to the original AVS data fusion approach, a BN should not only improve

the classification performance but also provide a solution more robust to changing con-

ditions. As such, a BN approach was adopted for data fusion and classification for all

subsequent work. Since Eaton (2015), the use of the BN for cluster classification has

been covered in two additional conference papers, both by Coombes and Eaton in 2016;

[24] introduced a BN for data fusion of colour and texture data to provide a better result,

followed by [25], which improved upon this result by introducing additional data types

and soft (probabilistic) evidence.

This culminated in a journal paper (Coombes and Eaton (2017) [26]) in which a final

BN implementation was established and an in depth review of the results was under-

taken. As further work on the ATS focussed on the collision avoidance and localisation

elements, the classification method has not been improved upon since this paper. As

such, the results presented below are in line with [26].

7.2 Bayesian Networks

A Bayesian network is a PGM that represents a set of random variables and their con-

ditional dependencies. The primary variables for a BN are those which can be directly

observed; commonly referred to as ‘evidence’. Each of the independent data extraction

techniques described in Chapter 6 as input as ‘evidence’ into the graph. Secondary vari-

ables can then be inferred from the ‘evidence’, using the conditional dependencies that

link each variable.

An assumption is made in a Bayesian network that all variables are independent from

one another, aside from direct dependants. The advantage of using this method is that

an intuitive graphical model can be used to represent the whole structure. Provided suf-

ficient evidence is available, a BN can be used to represent the knowledge of an expert.

By using inference techniques, the network can effectively be asked questions about the

probability of something happening.

When creating the BN, the relationship between input data and class can either be

manually input, or obtained through machine learning techniques. As manually defined

relationships impart human knowledge directly into the network, they should be used

where appropriate. For example, the relationship between horizon intercept data and

output class is simple for a human to input; (any ‘intercept’ clusters have a higher prob-

ability of being a collision risk). Attempting to extract this same relationship through
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data analysis would be needlessly complex. As such, manual input should be used where

possible to ensure the network is simplified.

However, other parts of this network will need to be trained from manual classifica-

tion data using BN machine learning techniques. This will help in determining many

of the probability distributions which are used to fuse the information sources. As the

data sets required will be very large, this will decrease the development time, as these

distributions would alternatively need to be populated manually by an expert. In addi-

tion, directly linking data to classification result for complex evidence will dramatically

increase the accuracy of the classification compared to what an ‘expert’ could achieve.

There are a number of further advantages in the use of BNs beyond the increase in

performance. Due to the flexible, and probabilistic nature of BNs, both partial and un-

certain information can be handled. For example, should the texture classifier fail to

provide a result (e.g. if condensation formed on the inside of the camera enclosure, blur-

ring the image) the other data sources will ‘take over’ and still provide a prediction of the

class, albeit with a reduced confidence. In comparison, the AVS data fusion approach

would fail completely.

In addition to a discrete class estimate, the final output from a BN includes a proba-

bility for each cluster belonging to the most likely class. As this final value incorporates

all previous information, a simple threshold can be applied below which all clusters are

simply considered unknowns. This provides a simplistic method of tuning the classifier

in order to detect potential collision risks.

7.2.1 Generic Structure

The structure of a Bayesian network is similar to other PGM, consisting of a collection of

nodes and edges. Each node represents a random variable, and each edge represents the

conditional relationship between the connected nodes.

Unlike some other PGM, every Bayesian network is a Directed Acyclic Graph (DAG).

DAGs enforce directional dependency, in which information starts at the ’evidence’ nodes

and permeates directly to the classification. This is done directly, through the use of di-

rected edges ( i.e. nodes cannot be mutually dependant upon each other and information

only flows one way) and indirectly through being ‘Acyclic’ (additional nodes cannot form

a path to bring data back to an earlier node). Within a DAG, there is no way to start at a

node and follow a sequence of edges that eventually loops back to the same node again.

The directionality is enforced to ensure that Bayes’ theorem can be used throughout the



7.2 Bayesian Networks 185

network.

When information is fed into a node, a Conditional Probability Distribution (CPD) is

required to ‘interpret’ the input, providing the probability of each potential output. As

this is achieved using Bayes’ formula it can be done sequentially, with the posterior dis-

tribution of each node used as the prior for the next. By defining the CPD for each node

within the entire network, a full Joint Probability Distribution (JPD) can be calculated. A

JPD represents the probability of the occurrence of every possible combination of states,

across all the random variables in the network. This can be calculated using the chain

rule shown below in Eq. (7.1), where A and B are random variables, and i is the number

of discrete states of A.

P (B) =
∑

i

P (B |A = i )P (A = i ) (7.1)

As JPD include every possible combination of states, they can become unmanageably

large with only a small number of nodes. Instead, a more useful consolidation of a BN

is the total probability for each variable. To calculate this, a probability distribution for

a small subset of variables can be extracted from the JPD. This is achieved by summing

all the probabilities in the JPD for each combination of variables that are not required, as

shown in Eq. (7.2). This process is known as ‘Marginalisation’.

P (A) =
∏

x∈A

P (A|
∏

x

). (7.2)

At the conclusion of the network, a final classification distribution will be created,

providing the probability that each cluster belongs to each class. Rather than draw di-

rectly on evidence, there are typically several layers between the observable data and the

final result, as data is combined to provide a better result. As such, within a BN, only cer-

tain nodes will contain data which can be directly observed (i.e. evidence). However, a

large benefit of BN is the ability to create nodes which are not directly based on evidence.

The variables for these nodes are ‘inferred’ from observable data and the BN structure.

Using probability to infer an unobservable variable is known as ‘Diagnostic reason-

ing’. The change from Causal reasoning (top to bottom), to Diagnostic reasoning (bot-

tom to top) can be achieved using the Bayes Rule shown in Eq. (7.3); where P (B |A) is the

likelihood which will be obtained from the CPD of B , P (A) is the prior, and P (B) is the

marginal likelihood, which is used to normalise the probability.

P (A|B) =
P (B |A)P (A)

P (B)
(7.3)
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7.2.2 Scalability

Although these equations form the basis of the BN approach, directly using these equa-

tions for conducting inference is only sensible for small networks. BN for classification

typical consist of multiple nodes, each with several states. For example, if a network con-

sisted of just 6 nodes, each with 4 states, this would require 4096 entries in the JPDs.

Instead, methods such as belief propagation [84], or junction trees [27] are used to

speed up calculating an exact solution. In using these methods, direct marginalisation of

the joint distribution is not required. For an approximate solution (usually for extremely

large Bayesian networks) various statistical sampling techniques can be used; such as

Markov-chain Monte-Carlo sampling.
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Horizon Class Probability Texture Class Probability

Below 0 Asphalt 0.29

Intercept 1 Grass 0.05

Above 0 Sky 0.08

White Paint 0.2

Yellow Paint 0.14

Red Paint 0.18

Building 0.06

Table 7.2 Example of hard evidence (left) and soft evidence (right) for use in a Bayesian

Network. Although the probabilities in both tables sum to one, only the soft evidence

provides any indication of confidence in the data.

7.3 Bringing Evidence into the Bayesian Network

As each node within a BN works using Bayes’ theorem, both the input and output are

in the form of a probability distribution. This applies not only to the nodes, but also

to the BN as a whole. As such, each type of data used within the network must first be

converted into a probabilistic form. Although any form of probability distribution can

be used, to make calculations simpler, it is typical to work with either discrete data or

Gaussian distributions within a BN.

As stated in Chapter 6, the primary data sources for classification are cluster colour

and texture. Due to the texture data extraction method providing a direct estimate of

class, it is difficult to represent texture data using a Gaussian distribution. Therefore,

a discrete BN implementation has been chosen. This is also useful for the inclusion of

additional data, such as the relative position of the horizon line, which is already discre-

tised. As the method of discretisation is unique to the data type, the following section will

describe how the data is discretised for use in the BN, (if required).

Aside from discretisation, the data must either be submitted as ’Hard’ or ’Soft’ evi-

dence. Hard evidence is suitable for data which is known to be certain. For example, for

the ‘Horizon’ intercept data is best submitted as ’hard evidence’; having only three mu-

tually exclusive classes of above, below or intercept. By comparison, soft evidence allows

uncertainty to be represented within the network. For a classification based result, such

as texture, the additional information informs the network of how ‘confident’ the results

are, allowing weighting to be applied. (The techniques used for solving and conducting

interference on a Bayesian network for soft evidence are based on the work in [16]).

The difference between hard and soft evidence can be seen in Table 7.2. On the left,
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horizon data is simply submitted with a winning class, whereas the texture data on the

right is submitted as a distribution. If hard evidence were to be used for texture data, the

asphalt class would have simply been assigned the entire probability, despite the fact that

several other classes also have a high probability of being the correct class. As such, in

addition to discussing discretisation, a method of converting the data into a probability

distribution will also be established in the following section.

Fusion between data sources will be achieved using the concept of ’sub-networks’. Al-

though each source of evidence will provide data in a probabilistic form, the states may

differ widely from the final classification (e.g. the horizon intercept states are above,

i nter cept and bel ow , rather than g r ass, asphal t , sk y etc). As such, each sub-network

is intended to associate the input data with the probability of that cluster belonging to

each class. A final node will then be used to combine the probabilities from each sub-

network into a final class estimate. A simplistic overview of the Bayesian structure, show-

ing only the sub-networks, is shown in Figure 7.2.

Surface Marking Class

[Line]

Texture Class

[Tex]

Final Class Estimate

[Class]

Colour Class

[Col]

Horizon Intercept Class 

[Hoz]

Discrete HSV MR8 LBP NRL Horizon Line Position

Fig. 7.2 Simplistic Overview of Bayesian Sub-Network Structure

In order to complete the network, the Conditional Probability Distributions (CPDs)

need to be determined. For each node, the CPD states the marginal probability of each

variable with respect to the other variables within that node. Unlike the intuitive network

structure, some numerical parameters are harder to elicit using human expertise. For ex-

ample, despite the significant decrease from 16 million to 2161 colours for HSV colour

classification, there are still far too many discrete colours for manual conversion. There-

fore, where suitable, parameter estimation techniques will be used to calculate the CPDs.

As large data sets are common for problems which require classification, the use of Pa-

rameter estimation for Bayesian networks is well established. Many different techniques

are proposed in literature but for this work Maximum Likelihood Estimation (MLE) has

been selected, as it has established use for image classification, having already been

demonstrated to improve performance in texture based classification, specifically for
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skin detection [95].

MLE is designed to work with a small sample of a complete population. Despite us-

ing many training images, it is impossible (or at least highly impractical) to record ever

possible type of surface relevant to each class. As such, the training data set can only

be considered a small percentage of the total population. However, assuming that the

samples are distributed much like the full data set, MLE assumes that the observed data

represents the most likely results, as they have actually been observed. The parametric

values for the model are then determined by maximising the likelihood function, i.e. the

model is made to fit the observed data as well as possible. The application of MLE to BN

is explained in detail in [62].

In order to minimise complexity, each CPD is trained within it’s sub-network, reduc-

ing the number of examples required for each training set. Therefore, a training set of

100 manually classified images are used to determine each CPD.

7.3.1 Texture Data

From the example shown in Table 7.2, it is clear that asphalt has the highest probability

of being the correct class. If texture data were to be used in isolation, there would be little

to gain in submitting soft evidence as it would be easier to simply identify which class

was most likely. However, as the BN fuses data from multiple sources, this probabilistic

data can be essential. For example, if the associated colour data for this cluster were to

be overwhelmingly yellow, it would be more likely that yellow paint is being observed. If

texture data was taken as hard evidence, this would already have been discounted. As

such, texture data will be added to the network as soft evidence.

In order for this to be possible, the texture classification output must be converted

from a distance function into individual class probabilities for each cluster. As estab-

lished in Section 6.3.9, for both MR8 and LBP feature descriptors, the texture classifica-

tion is achieved using SVMs within a BDT. There are two major difficulties in extracting

a probability distribution from this result:

1. SVM classification distance is not probabilistic.

2. Multiple classes were grouped together during each vote.

Beginning with the first problem, drawing probability directly from an SVM is diffi-

cult. For all SVMs, increased distance from the hyperplane does not linearly correspond

to increased confidence of being the winning class. Work undertaken by Platt (1999)[85]
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recognises this, and suggests a method of using an additional trained function to convert

the output of an SVM into probability. However, this assumes that the SVM is isolated,

and is used to directly estimate probability between two classes. Figure 7.3b is intended

to demonstrate how each SVM vote works within the same feature space when using tex-

ture data. As such, a multi-class SVM BDT is used to establish regions within the feature

space which correspond to each class. (As these regions have extremely high dimension-

ality, SVM is far more efficient than attempting to define the boundaries of each region.)

Each vote can be considered as a line dividing the texture feature space. Each time the

space is bisected, the side of the line on which the cluster falls helps to narrow it’s class.

Typically when using a BDT, probability is extracted from each vote, and Bayes rule is

used to track the flow of probability through the tree. However, as the distance between

the cluster data and each hyperplane are directly comparable, cumulative probability is

not appropriate. (Despite being further from the cluster, classes which appear higher in

the BDT (i.e. those which are most distinct) would receive an artificially higher probabil-

ity). Instead, it is more accurate to preserve the distance to each voting hyperplane, and

assign probability in a single step once voting is complete.

The second difficulty in using the texture data is that the BDT method groups multiple

classes together. Although this quickly determines the final result (by minimising the

number of ‘votes’ required overall), it fails to provide a ‘texture distance’ for every possible

class. As shown in Figure 7.3, the final classification result is found through only 3 votes,

with most of the potential classes having no data associated within them, beyond the

group level.

When building the BDT, each voting layer is built using maximum dissimilarity, with

the two groups selected such that the distance between their centres is maximised. Al-

though the distance to each member of the losing group will differ, the maximum po-

tential likelihood of the cluster being each class will be the distance in the loosing vote.

(i.e. further dividing the feature space can only increase the distance between each class

and the cluster data). Therefore, the last vote in which each class appears is found, and

the distance of the entire subset is used for each individual class with that group. As

the more likely classes are compared more closely as votes progress down the BDT, the

overall precision loss is considered negligible.

As recovering an exact probability for each class is extremely complex due to the vot-

ing method, this work instead aims to produce a ‘representative probability’, based on

the distance from the hyperplane. In order to represent distance as a probability, the dis-

tance is assumed to be proportional to the likelihood of being class (simply assuming that
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(a) SVM voting within the BDT.
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(b) SVM voting within feature space.

Fig. 7.3 Examples of SVM voting, both within the BDT and the Texture feature space. For

each vote, the distance from the hyperplane into the class is expressed below each class

in the BDT. Losing classes receive negative values as the data point is the wrong side of

the hyperplane.

the cluster distance from each hyperplane is indicative of the confidence of belonging to

that class). However, prior to this, the directionality of the distance to each hyperplane

must be accounted for.

For each vote, the loosing group is assigned the distance from the hyperplane in the

negative direction, aside from the final result, which is assigned a positive. This raw re-

sult can be considered the “SVM Distance from Hyperplane”. As the winning class may

be close to the final hyperplane, the significance of actually being on the correct side of

the hyperplane should be recognised. As distance is being used as the metric for conver-

sion, a positive/negative distance is not useful. Instead, the winning result should have a

distance of zero, to demonstrate maximum confidence. As such, the maximum value (i.e.

the winning distance from the hyperplane) is subtracted from all other results, providing

an adjusted absolute distance between the cluster and each class. This will be referred to

as the “Adjusted Distance from Hyperplane”.

The adjusted distance from the hyperplane can now be converted to Likelihood [41].

For this, a Gaussian distribution is considered appropriate, as it quickly saturates to low

probability when the hyperplane is far from the cluster data point. As the number of
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Class
SVM Distance

From Hyperplane

Adjusted Distance

From Hyperplace
Likelihood

Representative

Probability

Asphalt 0.15 0 0.7979 0.3411

Yellow Paint
-0.15 0.3 0.6664 0.2848

White Paint

Grass

-0.3 0.45 0.5322 0.2275
Plants

Buildings

Vehicles

Sky -0.5 0.65 0.3427 0.1465

Table 7.3 Example of converting Texture SVM distance to Representative Probability

dimensions is known, and the results are normalised based on cluster size for compari-

son, the maximum texture distance can be calculated. This allows a standard Gaussian

Probability Density Function (PDF) to be created with µ= 0 and σ= 0.5. By applying the

PDF to each adjusted distance, the “Likelihood” is obtained as shown in Equation 7.4,

where D is the adjusted distance.

L(C l ass) =
1

σ
p

2π
e

−(DC l ass−µ)2

2σ2 (7.4)

However, as the final probability distribution must sum to one (for compatibility with

the BN), the final stage is to normalise the results, with respect to the sum of all probabil-

ity. This is then known as the ‘Representative Probability”, which is highly representative

of the actual probability, but is calculated with a much lower computational cost. This is

then ready to be provided to the BN. An example of converting from raw SVM distance

to the representative probability distribution is shown in Table 7.3, based on the voting

undertaken in Figure 7.3.

P (C l ass) =
L(C l ass)
∑n

i=1 L(n)
(7.5)

7.3.2 Combined Texture Node

As stated in Section 6.3.3, two different texture descriptors have been used for this work,

such that the strength of one method accounts for a weakness in the other. As MR8 sam-

ples from a large area, it should benefit from the additional information when classify-

ing large clusters, but risks including too much data from neighbouring clusters when

attempting to classify small clusters. By contrast, as LBP is extremely localised, is is typ-
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Fig. 7.4 Representation of the entire Texture classification process

ically more accurate on small clusters. However, the small sample size decreases the

expected accuracy overall.

Throughout the prior stages, the MR8 and LBP texture descriptors have been pro-

cessed separately. However, for use in the BN, MR8 and LBP data are combined together

for the final classification. Although both sources of data could be passed to the final clas-

sifier independently, a ’Texture classifier’ node (Tex) is established which fuses the data

before the final node. This allows the entire texture classification process to be assessed

and trained separately, with the relationship between MR8 and LBP explored without the

influence of other sources of data. The entire texture classification process can be seen

in Figure 7.4.
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Data fusion within the texture node (Tex) could be achieved by simply averaging the

LBP and MR8 result for each class. However, this would fail to include the knowledge that

cluster size influences the relative success of each classifier. Instead, the size of the clus-

ter will be used to proportionally weight the contribution of each classifier, based on the

accuracy of each technique when compared to manually classified images in the training

set. The correlation better texture descriptor accuracy/weighting and cluster size could

be manually included in the CPD of the combined texture class node (Tex). However, de-

termining how to bias these results would require a great deal of manual effort. Instead,

these differences in performance can be captured more accurately by using parameter

estimation techniques. For this work, every cluster in the training set has undergone

manual classification, providing a ‘complete’ data set. This allows MLE to be used. Us-

ing MLE, a training set of 100 manually classified images are used to determine the CPD

P (Tex | MR8,LBP ).

Figure 7.5 depicts the classification results achieved using BDT based SVM within the

BN. Figures 7.5a and 7.5b show the individual result of using from the MR8 and LBP

nodes, based on the highest probability being the winning class. At a pixel level, this

achieves results of 93.5 % and 92.19 % respectively. For comparison, Figure 7.5c shows the

output from the [Tex] node, in which MR8 and LBP have been combined. The winning

class within [Tex] satisfies the condition:

Ti = argmax
Tex

P (Tex | MR8,LBP ) (7.6)

Using the combined classification produces an improved result of 94.1 %. Although

this is only a small improvement, the improvement in surface marking classification in

Figure 7.5 demonstrate that the concept is working as intended.
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(a) MR8 Only Classification (b) LBP Only Classification

(c) Combined Texture Classification

Fig. 7.5 Comparison of texture classification results for LBP, MR8 and Combined Texture

classification nodes.
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Fig. 7.6 Representation of the entire Horizon Intercept classification process

7.3.3 Horizon Intercept

In comparison to the effort required to extract a texture classification, the horizon in-

tercept classification is far more straightforward. As the remaining BN sub-networks all

follow a similar approach, and the Horizon Intercept sub-network is the least complex, it

is introduced first to establish the concept.

As described in section 6.5, the position of each cluster relative to the horizon line has

already be discretised into only three potential states: Above, Bel ow and Inter cept . As

all three states are mutually exclusive, for each cluster the sum of the input data is always
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Asphalt Grass Sky White Paint Yellow Paint Red Paint Building

Above 0.1 0.1 0.4 0.1 0.1 0.1 0.1

Below 1/6 1/6 0.0 1/6 1/6 1/6 1/6

Intercept 0.1 0.1 0.1 0.1 0.1 0.1 0.4

Table 7.4 CPD for Horizon Intercept Sub-Network

one, satisfying the BN requirement. Shown in Figure 7.6, the entire Horizon Intercept

Bayesian sub-network consists of a single node [Hoz]. The ‘Horizon Intercept Logic’ is

then applied to the network within the [Hoz] node’s CPD. For each cluster, the proba-

bility of being each class, based on the horizon intercept data alone, is shown in Table

7.4.

For clusters with the Above state, the probability of that cluster being any class other

than Sk y is drastically reduced, as objects are unlikely to pose a collision risk when en-

tirely above the ground. Conversely, for clusters with the Hor i zon state Bel ow , the

probability of that cluster being Sk y is reduced to zero, to prevent false classifications

of sky on the ground. Finally, if the Hor i zon state is Inter cept , all classes aside from

Bui ldi ng are dramatically decreased. Although the horizon line should be entirely be-

low the sky area and therefore small sky clusters could be captured in the intercept class,

the failure for the reachability clustering to merge this cluster into the greater sky suggests

it is not a typical sky cluster. Despite this, the presence of such a cluster at the horizon

implies that whatever object is represented by this cluster is likely a very long distance

from the UAS, and therefore does not pose significant risk.
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Fig. 7.7 Representation of the entire Surface Marking classification process

7.3.4 Surface Markings

Due to the benefits of accurately extracting surface markings for localisation, a separate

sub-network has been created specifically to aid in their classification. As shown in Fig-

ure 7.7, the primary source of information for Surface Marking classification is NRL, for

which the extraction process is detailed in Section 6.4.3. In order to redefine the lumi-

nosity value for each cluster on the ground (relative to the maximum luminosity value

on the ground), the position of the horizon line is also required. Therefore, unlike the

other sub-networks, the Surface-Marking Classification sub-network draws from multi-

ple sources of information. Should the camera be positioned such that the horizon is

not visible, both Surface Marking classification and Horizon Intercept classification will

depend on inertial measurements from the IMU aboard the UAS.

Prior to use within the BN, the NRL data needs to undergo discretisation. In Section

6.4, the discretisation of HSV data was achieved using 2161 states. By contrast, just three
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states were found to be sufficient for NRL: Hi g h, Medi um and Low . Initially it was

intended that only two states would exist (Hi g h and Low), separating surface markings

from other ground clusters through a single threshold. Obvious surface markings should

be captured within the Hi g h state and all other clusters should fall within the Low state.

However, the quality of surface markings is highly variable, with worn and faded lines

often sharing similar NRL values to other classes. As extending the Hi g h state to in-

clude these values would lower the confidence in the classification, a third state was in-

troduced. This Medi um state, cannot be considered as indicative of surface markings as

the Hi g h state, and therefore will have a lower probability of representing surface mark-

ings within the CPD. The values used to define each state are shown in Table 7.5, having

been determined empirically from test images.

NRL states

High N RLi > 0.77

Medium 0.65 < N RLi < 0.77

Low N RLi < 0.65

Table 7.5 NRL discrete states

Despite NRL being a clear indicator of surface markings in the foreground, atmo-

spheric effects can alter the NRL values of distant clusters. On clear days, Rayleigh scat-

tering scatters blue light more than red, lowering the NRL values of objects in the dis-

tance. Conversely, on overcast/rainy days, the presence of water droplets in the air intro-

duces haze/fog, which scatters all light wavelengths equally, shifting the colour towards

white. As photons from objects in the distance must pass through more haze, the NRL

value for all clusters is increased with distance from the camera.

As the image data set was captured entirely on wet, overcast days, NRL values can be

observed to increase towards the horizon. Consequently, classes which would have Low

NRL states in the foreground gain Medi um or Hi g h states when far from the camera.

As the distance to these clusters is fairly large, even if potential collision risks are miss-

classified as surface markings there is minimal risk to the aircraft. However, as surface

markings are some of the few terrain features common to most aerodromes, they are

extremely useful for localisation. With specific surface features (such as bends or junc-

tions) being hundreds of metres apart, localising the aircraft requires that lines be cor-

rectly identified even at range. Therefore, the correction of false positives is a necessary

step.

In order to correct for the atmospheric effects, the NRL state must be fused with the
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Fig. 7.8 Pinhole camera model used for depth estimation

estimated cluster distance from the camera. As only distant clusters are affected signif-

icantly, precise distance estimation is not required. Therefore, for simplicity of concept,

distance to cluster is approximated using the pinhole camera model. Using the camera’s

focal length ( f ) and height above the ground (Ycam), similar triangles can be used to map

between the 3D position of the point P (X ,Y , Z ) and the position of the point within the

image Pc (u, v), as shown in Figure 7.8. Simple trigonometry can then be used to find the

ground distance Dc , as stated in Eq. 7.7.

Z =
f .Ycam

v

X =
u.Ycam

v

Dc =
√

Z 2 +X 2

(7.7)

The estimated distance from camera (Dc ) must also be discretised to be used within

the BN. The discretised distance (Di st ) is similar to N RL, using just three states: C l ose,

Mi d and F ar , as shown in Table 7.6. As both N RL and Di st are intended solely to im-

prove the classification of lines, both are combined within the same sub-network of the

BN, as shown in Fig. 7.7. The sub-network concludes with the Surface Marking Class

node, which uses the variable Li ne to represent the probability that each cluster is a

surface marking. Li ne has two states, true (T ) and false (F ), which represent the proba-

bilities of a cluster being a surface marking class. The CPD of the Li ne node is shown in

Table 7.7.
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[Di st ] states

Close Dc < 20m

Mid 20m < Dc < 55m

Far Dc > 55m

Table 7.6 Discrete states for estimated cluster distance from camera [Di st ]

NRL state Dist state True False

Low Close 0 1

Medium Close 0.75 0.25

High Close 0.9 0.1

Low Mid 0 1

Medium Mid 0.55 0.45

High Mid 0.8 0.2

Low Far 0 1

Medium Far 0.2 0.8

High Far 0.6 0.4

Table 7.7 CPD for surface marking classification node - P (Li ne|NRL,Di st )

a) Original Image b) Discretised Distance

c) NRL Cluster State d) NRL Cluster State with 

discretised Distance overlayed

e) NRL Cluster State with

Distance Correction

Far

Mid

Close

Fig. 7.9 Demonstration of using Di st to improve N RL classification result. In (a), the

original image features some distant asphalt which is given a Medi um N RL state due

to damp conditions and distance from the camera. By extracting the relative distances,

shown in (b) and overlaid in(d), the final classification has correctly lowered the clusters

N RL state to Low in (e).
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Fig. 7.10 Representation of the entire Colour classification process

7.3.5 Hue, Saturation and Value

Compared to the simplicity of the single nodes used for the other classification sub-

networks, the HSV “Colour Classifier” sub-network is more complex. Shown in Figure

7.10, the HSV sub-network provides a classification estimate using colour data alone.

Unlike texture, where data can be directly related to a single class, multiple classes can

share the same colour information. As such, the likelihood of a cluster belonging to each

class must be determined independently, resulting in an individual node for each poten-

tial class. The only exception is the “Building” class, as building colour is too variable
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(a) Discrete Hue

(b) Discrete Saturation

(c) Discrete Value

Fig. 7.11 Discrete individual H S V channels for example aerodrome image

to determine correlation. Therefore, only the other six possible classes are represented.

Each node has just two discrete states: true (T ) and false (F ).

The process of colour extraction and discretisation has already been covered in Sec-

tion 6.4. From the original 16 million possible colours, the colour space has been simpli-

fied down to just 2161, in order to allow a between association between colour and class.

Conversion to probability is achieved by submitting the colour data as hard evidence

within the three colour channels.

As discussed in Section 6.4.2, all three colour channels will not be useful for every

class. Instead, only relevant information is passed through the sub-network. The edges

in Figure 7.10 indicate which classes are conditioned using which inputs. Satur ati on

is present for all classes as the difference between colourful/grey is useful in all cases.

V alue is nearly as useful as the brightness of a cluster is indicative of its class. The only
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class which does not use Value during classification is ‘Red surface markings’, as the Value

range has been found to be too great to be meaningful.

Figure 7.11a shows the effects of equalising Saturation and Value for every pixel in the

image. When only Hue varies, the usefulness of this colour channel is highly apparent.

For clusters where Saturation is high, a similar representation is common. For exam-

ple, red surface markings are clear to observe. However, when the saturation is low, Hue

has no meaning. This can be seen in the unusual colours shown within the asphalt and

white surface markings. As such, although Hue is useful, it can only be of use in clusters

with high saturation. The Hue colour channel is used to differentiate regions with high

Saturation and Value. Only surface markings (red and yellow) and grass use Hue during

classification.

As all three colour channels are influenced by light levels and atmospheric condi-

tions, the colour range of each class varies dramatically, even during a single day. There-

fore, it is extremely difficult to define typical levels for each class node manually. Instead,

using the same methodology as used for the texture node, MLE has been used to train

each of the CPDs.

7.3.6 Colour Class Node

The Colour class node Col is a hidden node which simply combines the individual true/false

probabilities into a single node. This simplifies the network, making it easier to observe

the output of the colour classifier, as all classes can be compared in a single node. In ad-

dition, this also makes the CPD of the final cl ass estimate node much simpler, as it will

have only a single parent. As this final fusion is easy to understand, for this node the CPD

has been completed manually.

Using the sky class as an example, there are three potential outputs from the hidden

node for each class. As the colour of a single cluster could be indicative of belonging

to several classes, the number of classes which could match on colour alone must be

taken into account. If the cluster colour is such that only this class (i.e. sky) is likely, the

probability that the colour derived class is sky, given the sky node is true and all others

are false, is one. This is shown in Eq. (7.8).

P (Colour cl asssk y |asphal t F , g r assF , sk yT , whi teF , yel low F ,r ed F ) = 1 (7.8)

Equally, if this class has no association with the cluster colour, then the relevant class
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parent will be false and the probability will be set to zero, as shown in Eq (7.9).

P (Colour cl asssk y |asphal t F , g r assT , sk yF , whi teF , yel low F ,r ed F ) = 0 (7.9)

Finally, if several classes are possible based on colour alone, the probability is uni-

formly distributed between them. This is shown in Eq.(7.10), where there are two poten-

tial classes which each receive a probability of 0.5.

P (Col our cl asssk y |asphal t F , g r assT , sk yT , whi teF , yel low F ,r ed F ) = 0.5 (7.10)

An example of the classifier output is shown in Figure 7.12. In this figure, the top

image shows a typical aerodrome scene which has undergone discretisation in HSV. The

class probabilities of each cluster are calculated from P (Colour cl ass|H ,S,V ), which is

the marginal probability distribution of Colour cl ass with H ,S,V entered as evidence.

The winning class is selected using Eq 7.11. Where multiple classes are equally likely, the

first node in sequence is selected.

ci = arg max
ColourC l assi

P (ColourC l assi |Hi ,Si ,Vi ) (7.11)

Using only the HSV colour classifier, the percentage of correctly classified pixels in

Figure 7.12 is 95.6 %. It can be clearly seen that the largest source of error is the misclas-

sification of white surface markings as sky. This is due to the two classes sharing the same

discrete colour and performing classification without any additional context. By simply

factoring the relative horizon position, this error could be removed. An additional error

has been introduced by having no possible class for building. As such, the building has

been classified as asphalt with a probability of 0.5778, due to similarly low Saturation and

Value. Despite this, as colour classification is only intended to add the texture classifica-

tion process, the accuracy of these results confirms that colour is a useful addition to the

BN.
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Fig. 7.12 Example of an image progressing through colour-only classification. The top-

most image shows the original 24-Bit colour representation. The middle image shows the

Discretised HSV colour representation, with only 2161 colours. The bottom image shows

the trained Bayesian network output, using only colour classification.
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[Col ] Colour Class

[H ] Discrete Mean Hue

[S] Discrete Mean Saturation

[V ] Discrete Mean Value

[Tex] Texture Class
[MR8] MR8 Texture classification estimate

[LBP ] LBP Texture classification estimate

[Li ne] Surface Marking Class
[N RL] Normalised Relative Luminance

[Di st ] Estimated cluster distance from camera

[Hoz] Horizon Intercept Class [Hor i zon] Relative horizon position

Table 7.8 The four sub-networks of the Bayesian network, with their associated input

evidence.

7.4 Complete Bayesian Network

For each individual cluster in the original image, data is extracted and provided to the

BN, as displayed in Table 7.8. At the conclusion of the previous section, the BN con-

sisted of four separate sub-networks, each providing independent probabilities that the

a cluster belongs to each class. To complete the BN, the output of the four sub-networks

must be combined. Section 7.3 discussed each of the sub-networks; establishing their

strengths, weaknesses and intended roles within the BN. Using this information, the

four sub-networks can be fused using manually determined logic and therefore the CPD

for the Final Class Estimate [C l ass] has been created manually.

As the output of each sub-network is a direct estimate of class, further data-type

conversion is not required. The outputs of all the sub-networks are multiplied together

within each class, using experimentally determined weighting in order to achieve the

best result. Combining the elements of classification together, the entire classification

process is now defined, as shown in Figure 7.13.

One of the main motivations for using a BN approach is the ability to include proba-

bility within each stage of the classification process. Not only does this allow the fusion of

widely different data types, but it also provides confidence in the output from each sub-

network, and the final result overall. From the final BN node [C l ass], the final output is a

probability of the cluster belonging to each class, with the highest probability indicating

the most likely class. This is summarised in Equation 7.12, where ci is the class assigned

to cluster i .

ci = arg max
C l assi

P (C l assi |Hi ,Si ,Vi , MR8i ,LBPi , N RLi ,Di sti , Hor i zoni ) (7.12)
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7.5 Unknown classes from uncertainty

As established in Chapter 4, attempting to detect every possible object that could ap-

pear within an aerodrome environment is highly impractical. Instead, the intention of

this work is to detect and classify terrain features, inferring the presence of other objects

(i.e. collision risks) from regions within an image which cannot be classified. Therefore,

recognising when a cluster is not classified is just as important as determining the most

likely class.

Returning to the BN, the final result is the probability of each cluster belonging to

each class. As established in Equation 7.12, the overall winning class can be determined

by simply selecting the class with the greatest probability. However, if a winning class is

always declared regardless of the confidence in classification, this classification method

fails to include the concept of ‘Unknown’ classes, essential for collision risk detection.

In cases where the cluster class is ‘Unknown’, the combined result of the BN should

produce a low probability of being any of the known classes. Therefore, as the final win-

ning class is associated with a probability of actually being that class, ‘Unknown’ clusters

can be identified when confidence in the winning class is low. As the probability of the

winning class will always be between zero and one, a simple threshold can be applied.

Equation 7.13 represents the method used to determined unknown classes, where (Ci ) is

a cluster, Unknown is an unknown collision risk state and U is the probability threshold.

If the maximum class probability for a cluster does not exceed U , it will be classified as

unknown potential collision risk.

{

ci =Unknown for maxC l assi
P (C l assi ) <U

ci ̸=Unknown for other wi se
(7.13)

7.5.1 Parameter Sensitivity

For any BN, the final classification result is entirely dependant on the parameters used to

weight the internal elements. Even between dissimilar classes, small changes to param-

eters can effect the confidence in the result significantly, or even change the ‘winning’

class. If a small change in internal parameters alters the final result, the BN is said to be

highly ‘sensitive’ to parameter tuning.

For this Bayesian network, the internal parameters were ascertained through ‘trial-

and-error’, comparing the output to manual classification results. As the test set used

was limited by the amount of images that could be manually classified in a reasonable
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time, it is likely that the final parameters are not optimal. However, the design of this BN

is intended to reduce the sensitivity. Typically, extremely precise tuning is only required

for two situations:

• Where the final result is equally similar to multiple classes.

• Where the final result is dissimilar to all known classes.

When classes are very similar (such as surface markings and asphalt), the final out-

put can be sensitive even to the precision of the parameters used. To account for this,

the overall design of the BN is specifically intended to ‘resolve disputes’ between sub-

networks based on the classes. By experimentally confirming a good response to known

classes within each sub-network, the overall parameters used to integrate the sub-networks

together do not need to be as precise to produce a correct result. Furthermore, for any

result which is dissimilar to all known classes, the inclusion of the ‘unknown’ class lim-

its the impact of parameter precision; as results below a threshold are simply discarded,

there is no need for highly accurate parameter tuning. As such, the parameters within

the overall BN are less sensitive due to the sub-network structure and inclusion of the

‘unknown’ class.

7.5.2 Testing Unknown Risk Detection

To confirm that a ‘confidence-based’ approach is a suitable method of detecting collision

risks, the first requirement is that unknown objects are reliably classed as ‘Unknowns’. In

order to demonstrate this, the upper half of Figure 7.14 depicts a common aerodrome

scene, in which the UAS cannot continue along a taxiway due to another vehicle block-

ing its path. As the vehicle occupies the taxiway directly ahead of the UAS, it represents

an actual collision risk and therefore its detection is critical. The lower half of Figure 7.14

shows the per-cluster results of classification for the same scene, using the full BN. To de-

tect unknown objects, the confidence threshold (U ) has been set to 0.5, with ‘Unknown’

clusters depicted in orange.

From Figure 7.14 it can be seen that the majority of the vehicle has been classified as

an unknown, although some elements have been classified as asphalt. Looking specifi-

cally at the outline of the clusters, the fact that the vehicle has received multiple classifi-

cations indicates that reachability clustering has not produced a object-specific segmen-

tation. This is due to the dissimilarity of certain sections when compared to the vehicle

as a whole. Although most of the vehicle is dark green in colour, sections of the vehicle
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are visibly very different, such as the roof and the windows. The top of the vehicle has

simply been misclassified as asphalt, likely due to being a small cluster very close to the

horizon.

Although the rear window has also been classified as asphalt, this cannot be consid-

ered a misclassification. Looking at the original image reveals that asphalt can be seen

when looking directly through the vehicle. Therefore, the cluster classification is correct,

albeit not useful. As transparent objects are extremely difficult to detect using a camera,

the assumption is made that detecting the rest of the vehicle should be sufficient. As the

lower-most clusters have been correctly labelled, depth estimation can be achieved us-

ing the point at which the vehicle meets the ground. Therefore, despite some error, the

majority of the vehicle has been labelled as a collision risk. As additional collision risks

within the scene have also been classified as unknowns (specifically the marking boards

to each side of the taxiway) this method is capable of detecting unknown objects.

However, not all unknowns are collision risks. The largest unknown object in Figure

7.14 is the Irish sea, which is visible just below the horizon. As there is no ‘ocean’ class,

this has correctly been identified as an unknown. If large bodies of water were very close

to the taxiway (which is uncommon), they would be best avoided using map data. As

small bodies of water tend to represent puddles on the taxiway, they have been included

within the training data set and should be classified as asphalt. Additional unknowns

include the yellow taxiway stop bar, at which the other vehicle is currently waiting. The

main reason for this is that the clusters are very small at this distance, lacking sufficient

data for confidence in the final classification. As the UAS moves closer (with over 30

meters range between the camera and these clusters) the increase in cluster pixel count

should help to correct this misclassification.

Closer to the camera, there are several clusters around the edge of the taxiway that

have a low enough certainty to be classified as unknowns. As grass will inevitably grow

to overlap the taxiway edge, superpixels which contain both asphalt and grass are more

difficult to cluster, resulting in isolated small clusters which are difficult to classify. How-

ever, some of the patches in Figure 7.14 are much larger. Reviewing this particular section

of taxiway, the original taxiway surface appears to have been slightly wider. Although the

centre of the taxiway has been replaced, the original asphalt at the borders is slowly be-

ing reclaimed by the grass. As such, these clusters are unique terrain features not found

elsewhere, nor in the training set. They are correctly identified as unknown due to the

atypical texture which is not comparable to normal grass. Although no specific class ex-

ists for this situation, as grass is not considered a navigable surface for this aerodrome it
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Grass Asphalt

Yellow Surface Markings

Red Surface Markings

UnknownSky

Fig. 7.14 Example of ‘Unknown’ object detection through classification confidence. The

uppermost original aerodrome image shows an ground vehicle positioned around 30

metres ahead of the camera at a stop bar. The bottom image shows the most likely

classes, with unknown collision risks detected via low probabilities of being any one class.

is unlikely that the UAS would need to venture onto the grass. As such this form of miss-

classification is not expected to pose any risk to a taxiing UAS. If a much large training set

were available for both the colour and texture classifiers, then it is likely these borderline

cases could be resolved, however the eventual combination of visually detected risks and

aerodrome map at a later point in the ATS should be enough to permit safe navigation.
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7.6 Conclusions

This chapter has covered the final element of the classification process, in which the ex-

tracted data is fused and a final classification assigned to each cluster. Beginning with a

summary of previous work, the difficulties of fusing different types of information were

presented. Assessing why a previous AVS based classification approach was insufficient,

the conclusion was drawn that data fusion must not only fuse disparate data types, but

must also recognise the relative strengths of the individual data, on a per-class basis. As

a probabilistic approach allows practically any form of data to be combined for classifi-

cation, a BN was selected, in line with the previous publications [24], [25] and [26].

As BNs require evidence to be submitted in terms of probability, the conversion from

the original data type was investigated for each data source. Although most sources were

simply discretised and submitted as hard evidence, texture data required a more complex

approach. As texture data undergoes ‘pre-classification’, the raw data provided to the BN

is already an estimate of class, which forms the basis of the greater BN. However sim-

ply selecting the winning class prevents the associated confidence in the classification

from being used. As multiple classes can have similar textures, the decision was made to

submit texture data as soft-evidence.

However, as both MR8 and LBP classifications were undertaken using BDT based

SVM, the grouping of classes resulted in an incomplete confidence set for each class.

Therefore, representative probability was generated, based on the distance between the

cluster data and the SVM hyperplane, for the last group in which each class was present.

With all evidence converted into probability, the final Bayesian structure was intro-

duced and the concept of sub-networks was explored. Although some nodes were manu-

ally defined, other sources of data were too broad for human interpretation, with param-

eter estimation techniques (specifically MLE) used to obtain the CPD. By designing each

sub-network to output the ‘per-class’ probability, the final node logic could be manually

entered into the CPD.

Based on the final result, the winning class was determined based on probability,

with the most likely class being selected. Where confidence in the winning class was low,

(specifically below 50%) the object was considered to be an ‘Unknown’ class. As unknown

classes are essential for the concept of generic object detection. The ability to detect risks

was briefly explored, with promising results. Further results from the full classification

process, including the detection of generic risks, will be explored in greater detail in the

next chapter.



Chapter 8

Semantic Segmentation Case Study

This chapter presents a case study into the results of the combined segmentation and

classification process. Before it is possible to use the classification approach as part of the

ATS, the validity of the final output must be assessed. In order for the assessment method

to be credible, the data used must be representative of what would be encountered in

actual use. Therefore, this Chapter begins with a description of how the test data was

acquired.

Fig. 8.1 Satellite Image of Walney Island Airport, from which the test data for the case

study was acquired. Imagery ©2017 Infoterra Ltd & Bluesky, Landsat / Copernicus, Data

SIO, NIOAA, U.S. Navy, NGA, GEBCO. Map data ©2017 Google.
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8.1 Data Acquisition

8.1.1 Location

To ensure the test environment was as representative as possible, data was collected from

an active aerodrome; specifically Walney Island Airport in the UK (also known as Barrow

Island Airport). Shown in Figure 8.1 [45], Walney Airport is a small aerodrome located on

an island in the Irish sea. Originally built as a Royal Air Force (RAF) base, the aerodrome

is now privately owned by BAE systems, allowing for full control of the test scenario.

The aerodrome map data for Walney Island Airport is shown in Figure 8.2 [109]. De-

spite originally having three runways, the northernmost runway (Runway 12) and the

associated taxiways are now entirely disused, and have fallen into disrepair. As such, the

35

05

23

17

PAPI (3.5°)
MEHT 39

PAPI (3.5°)
MEHT 33

B

A

Disused

Disused

Disused

P
e
rim

e
te

r T
ra

c
k

(D
is

u
s
e
d
)

1
0
1
1
m

 x
 4

5
m

Control
Tower

ILS

GP

Unlic
ense

d

Perimeter Track

(Disused)

1
6
9
°M

3
4
9
°M

Twy A

Twy B
60m

Starter
Extension

Fig. 8.2 Extract from Aerodrome map of Walney Island Airport. As the disused sections

are not viable for taxiing, all data was collected from runway 17 and taxiways A and B.
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northern side of the aerodrome has not been used for testing. The southernmost runway

(Runway 05) is still maintained but is considered ’unlicensed’ and is no longer used dur-

ing commercial operation. When the aerodrome is in use, Runway 05 is primarily being

used as a large ‘taxiway’, linking the hangers to the remaining runway via a more direct

route. The westernmost runway (Runway 17), is the only active runway and therefore has

been used for all runway image capture. Finally, at the far south end of the aerodrome, a

small number of hangers and other buildings are linked via a section of curved taxiway,

which is also used by ground vehicles.

Although small, the aerodrome offers a high-variety of terrain features, such as sur-

face markings and asphalt. Due to the long operational history, the runways and taxi-

ways within the aerodrome vary in accordance with the era in which they were last over-

hauled. For example, Runway 05 has not been active for several decades, resulting in the

surface markings being both worn and out-of-date (the runway is missing the "precision-

instrument" landing markings associated with ILS, which are present on Runway 17). For

taxiways, some of the surfaces near to the hanger area are relatively new, with clearly de-

fined surface markings similar to those found at newer aerodromes. However, just a short

distance away the surface of the same taxiway becomes aged and worn, with inconsis-

tent surface textures where repairs have been made. As such, Walney airport provides a

wide variety of surface types, in excess of what is found at newer aerodromes, providing

a significant challenge to the classifiers.

8.1.2 Conditions

As Walney Island airport is wholly owned by BAE Systems, it was possible to gain exclu-

sive use of the aerodrome for testing. However, although Walney Island is not a large

commercial aerodrome, there are regular flights and many other aerodrome users which

limit the amount of time available and increase the cost of testing. As such, the aero-

drome dataset was created over the course of a single day, (on the 7th August 2015).

Although the short testing window has inevitably limited the range of conditions cap-

tured during the test, weather and lighting conditions did vary quite significantly, reduc-

ing the risk of over fitting. Testing began at the conclusion of a rain shower, with the

initial footage obtained in damp conditions, with puddles and water-droplets visible to

the camera; as shown in Figure 8.3a. Although much of the testing was then conducted

in overcast conditions, clearer skies had emerged by the end of the day, allowing a signif-

icantly different data set to be obtained; as shown in Figure 8.3b.
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(a) Damp conditions at the start of testing.

(b) Clear conditions at the end of testing.

Fig. 8.3 Comparison of testing conditions at the beginning and conclusion of the test day

As overcast and clear skies differ in both colour and texture, this provided a much

better cross sample of the sky class, making sky classification more robust. As the hori-

zon detection algorithm is also used to provide additional weighting to sky classification,

even this limited data set should be sufficient to classify sky clusters. For all other classes,

by using image features such as texture and separating colour components using the HSV

colourspace, the effects of illumination changes should be minimal. Therefore, the wide
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(a) Test vehicle used for data capture. (b) Camera set up within test vehicle.

Fig. 8.4 Test vehicle and camera set up used for data capture.

range of in-class surface types combined with the varied weather conditions has pro-

vided a highly challenging and realistic data set.

Although the amount of data within this training set is insufficient for classification

to be robust at any other aerodrome, the data collected here could form part of the train-

ing set for the eventual system. As the ideal set would consist of data collected at a great

number of aerodromes (throughout the course of a day and in various weather condi-

tions) this data is highly appropriate.

8.1.3 Equipment

Despite the intention to use the ATS on the BAe Jetstream surrogate UAS, for practical

purposes testing was achieved using a terrestrial vehicle. To replicate both the height of

the Jetstream camera as well as the ‘rolling motion’ typical of aircraft turning when on the

ground, the aerodrome fire engine was used, as shown in Figure 8.4a. A benefit of using

this vehicle is the inclusion of a roof mounted GPS receiver, replicating the set up found

on most UAS.

To ensure a representative image was captured, the camera height and mounting po-

sition were similar to that on the Jetstream, with the camera mounted on vehicle cen-

treline, as shown in Figure 8.4b. The camera selected was a GoPro HERO3 Black, which

is well suited to this task; primarily designed to be used for dynamic motion video in

outdoor conditions, it features a very short exposure time to eliminate blur, and a large

dynamic range which allows the vehicle to head towards the sun without over-exposure.

The output video was captured at a resolution of 1920 by 1080 pixels at 30fps. As already

mentioned in a previous chapter, the effects of lens distortion were rectified using the
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manufacturers software, allowing both horizon line estimation and depth extraction to

function without issue.

To provide additional data for later chapters, the GPS position and inertial sensor

readings were recorded, in addition to the video footage. As the fire engine lacked any

form of inertial sensors, a tablet computer was mounted directly below the camera to

capture this information, in addition to the GPS position from the receiver on the vehi-

cle’s roof.
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Fig. 8.5 GPS position data (shown in red) for each of the nineteen test runs, overlaid onto

the map of Walney Island Airport. Aside from the ’disused’ runway and taxiway which

were not accessible, the entire aerodrome has been sampled for testing.
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8.1.4 Methodology

Testing was conducted in a series of ‘runs’, most of which were intended to mimic a typi-

cal taxiing activity for an aircraft. To include as much footage as possible, a small number

of runs took unconventional paths around the aerodrome. Figure 8.5 show each of the

nineteen routes taken by the vehicle during testing, with the entire aerodrome being cov-

ered.

In addition to moving the camera vehicle, other vehicles were moved about the aero-

drome to provide test footage for collision risk detection. As no aircraft were available, a

ground vehicle was used as a substitute, as previously described in Section 7.5. As ground

vehicles are typically smaller than aircraft and are quite common on taxiways, this was

considered an acceptable substitution.
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8.2 Comparative Data

After the data acquisition was complete, additional work was required to ready the data

for classification. This included the creation of ground truth images, as well as deciding

upon the format of the results used for this chapter.

8.2.1 Ground Truth

After the data acquisition is complete, a final stage is required before the data can be

used. In order to train the classifiers (and for comparison against the classifier results),

the raw data must be associated with its relevant class. To achieve this, ‘Ground truth’

images need to be created. This process begins by selecting a suitable range of images

from the entire set. From the nineteen taxiing runs, a smaller data set of 100 images was

extracted:

• Fifty images were selected entirely at random

• Fifty images were manually chosen to ensure sufficient examples of each class would

be present in the data set

As a human should achieve a near optimal result, each of the 100 hundred images un-

derwent manual segmentation and classification. To avoid introducing data which could

hinder classification, only regions which belonged to expected classes were included. Al-

though the segmentation of the training images could be achieved automatically (using

SLIC segmentation and reachability re-clustering) training is best achieved using clear

examples of each class. To prevent including data which did not improve the classifier

(such as sampling from regions of asphalt with moss, which incorrectly associates green

with asphalt)Any region whose contents did not belong to an expected class were sim-

ply labelled as ’unclassified-regions’ and not included in the training process. A typical

ground truth image is shown in Figure 8.6.

The one hundred image pairs (the selected images and their associated ground truths)

serve two purposes; training and testing. As such, an 80:20 split has been adopted, with

80% of the images used for training (both MR8 and LBP texture classifiers, and the full

BN). As the methods of training have already been established in Chapters 6 and 7 they

will not be explored here. The remaining 20% of the images which have not been used

for training are used for validation and provide the results for this chapter.



8.2 Comparative Data 223

Sky

White Lines

Yellow Lines

Red Lines

Building

Grass

Asphalt

Not manually classified

Fig. 8.6 Example of ‘Ground truth’ image used for classifier training, for the original aero-

drome image shown in Figure 8.7.

8.2.2 Result Format

To evaluate the entire classification process, the results from the complete BN are com-

pared to the manually created ground truth images. As the BN should provide a sig-

nificant improvements over the previous texture only methods, the classification results

from the individual MR8 and LBP texture classifiers are also presented.

Although each of the other sub-networks within the BN also provide information on

each class, they cannot be considered standalone estimates. Due to many of the results

providing equal weighting to multiple classes, direct comparison between the output

of the each sub-network and the final BN result is difficult. As these additional sub-

networks are responsible for the change in result between the texture classifiers and the

complete BN, any improvement in the output is assumed to be due to the additional

sources of information.

Using the twenty images specifically reserved for testing, the results will be compared

in numerous ways; including per class, per cluster, per pixel and the overall classification

performance. However, prior to this, a single image will be used to demonstrate each

stage of the classification process, and assess how they impact the final result.
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8.3 Single Image Classification Review

In order to accurately assess the overall performance of the classifiers, data needs to be

drawn from a large number of images. However, this form of mass data cannot demon-

strate the data progression between each stage. Therefore, an example image will be pre-

sented here and used to demonstrate the majority of the classification process; assessing

how each stage impacts the final result.

To be able to determine the accuracy of each classification stage, the example image

has been selected from the twenty images within the data test set so that ground truth

is available. However, as these images were selected at random, many depict parts of

the aerodrome which are limited in the number of classes present. Therefore, an exam-

ple image has been specifically selected which contains regions of all known classes, as

shown in Figure 8.7.

8.3.1 Segmentation

Although this chapter mainly studies the output from each of the classifiers, the segmen-

tation process is also of great importance. As all classification results are based on the

initial segmentation, errors introduced at the earliest stage will remain in the final clas-

sification result. As stated in Chapter 5, separate segmentation and classification stages

were primarily implemented due to the need to segment unknown objects, which can be

difficult to achieve using classifier led segmentation. However, by using separate stages,

Fig. 8.7 Example image used to compare classifier results.
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there are effectively two different types of error which occur: misclassification and seg-

mentation error. Segmentation error occurs when a cluster contains multiple classes.

This may be a result of reachability clusters erroneously combining superpixels from dif-

ferent classes, or may occur at the superpixel level, if the boundary between two regions

is sufficiently gradual.

The segmentation results for the example image are shown in Figure 8.8. (Although

the segmentation process begins with a superpixel over-segmentation, it is difficult to

draw strong conclusions from superpixels alone. Therefore only the final segmentation

result, produced by reachability clustering, is shown). The superpixel segmentation and

reachability clustering approach was chosen as it is capable of precise cluster border ex-

traction, whilst also maximising the size of each cluster provided to the classifier. As such,

the expected output should be large continuous clusters, with precise boundaries. How-

ever, as throughout the entirety of this work, the reachability clustering threshold has

been set to produce an over-segmentation, in order to ensure that under classification

does not occur.

From Figure 8.8 the effects of the oversegmentation are clear, as many additional clus-

ters exist when compared to the human defined ground truth, shown in Figure 8.6. Al-

though this works well in preventing segmentation error through reachability clustering,

it cannot prevent superpixels from forming on imprecise regions between borders. As

such, a number of smaller clusters have formed within the image between the taxiway

Fig. 8.8 Example image having undergone superpixel segmentation and reachability

clustering.



8.3 Single Image Classification Review 226

and the surrounding grass. Depending on the content of each superpixel, these may be

classed as taxiway, grass or unknowns in the final result.

Despite this, it can be seen that there is minimal segmentation error where the un-

derlying features in the image are clear, with cluster boundaries closely following the

surface markings. Although the surface markings are also over-segmented, the original

border lines within the image are well preserved.

For this image, the final segmentation is considered acceptable, with only a very small

number of clusters containing any form of segmentation error. Although the end results

cannot be deduced from the segmentation stage alone, the superpixels bordering the

taxiway are the most likely to be falsely classified as ‘unknowns’. As these borders are

visibly imprecise, as well as being both distant and not in the direct path of the UAS, they

should have minimum effect on the vehicles taxiing (especially as the errors are likely to

be rectified as the camera gets closer).

Following on from segmentation, each of the data extraction techniques are applied

to the image. Of a final note, the cyan dot in the bottom of Figure 8.8 has been placed to

highlight a particular cluster, for which the classification results will be discussed.
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8.3.2 Horizon Intercept

One of the most straightforward forms of data to assess is the Horizon Intercept Class

[Hoz]. As the horizon considered to be is a twenty pixel tall band, only clusters which

lie on both sides of that band (or wholly within it) receive the Inter cept category. For

the example image, only a few clusters fall into this category. Figure 8.9 shows that the

Inter cept category includes the building at the left side of the image, and three small

clusters on the horizon. Reviewing the original image in Figure 8.7, these results are con-

sidered to be nearly entirely accurate.

Clusters which have somewhat erroneous classification include the windows on the

building to the left of the image. As the windows within the building rise out of the hori-

zon band but not below, they are considered sky. However, as the bottom of the building

is entirely classed as Inter cept , this should have minimal effect. Finally, although one

of the clusters identified on the horizon is a building, the other two are not. However, as

these objects are very far from the camera, there is not need for precise classification. As

such, the horizon detection results are unlikely to be a source of misclassification.

As the example cluster (highlighted in cyan in Figure 8.8 is far from the horizon line,

the horizon intercept classification of Bel ow is correct.

Intercept AboveBelow

Fig. 8.9 Example image having undergone horizon intercept categorisation. The Above

category is shown in light blue, the Inter cept category is shown in red and the Bel ow

category is shown in pale green.
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8.3.3 Normalised Relative Luminance

As with the horizon intercept data, the evidence provided to the Surface Marking Class

[Li ne] is also categorised into three states, based on the brightness of the clusters. NRL

data was specifically intended to help detect white and yellow surface markings. As such,

Figure 8.10 can be considered a near ideal example, with nearly all yellow and white

markings segmented from the other clusters using NRL values alone. Although small

clusters within the surface marking are occasionally categorised as Low , this is due to

the wear on the paintwork producing a broken surface, which is far less reflective than

surface markings should typically be.

The only other objects which have received Hi g h or Mi d values for [N RL] consist of

a puddle (which is highly reflective and does not pose a risk) and reflective markers defin-

ing the edge of the taxiway. As [N RL] is strongly associated with surface markings in the

BN, the presence of ‘upright’ objects which share high [N RL] values is of some concern.

However, as the markers have different colours and textures (as shown in Figures 8.11

and 8.12) they are not classified as surface markings in the final result.

Of note, the example cluster (highlighted in cyan in Figure 8.8) has received a Low

[N RL] classification, despite being a surface marking. This is due to red surface markings

having low reflectivity and therefore very low luminance when compared to the white

Mid HighLow

Fig. 8.10 Example image having undergone [N RL] data extraction. The Hi g h category is

shown in white, the Mi d category is shown in yellow and the Low category is shown in

grey.
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and yellow aerodrome paint. As low variance is typical of red surface markings, this has

been taken into account within the final classification node [C l ass] of the BN. As such,

it should have no impact on the final classification result.
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8.3.4 HSV colour

The HSV Colour Classification [Col ] is the first sub-network to provide an actual esti-

mate of class. As such, the final results are directly comparable to the ground truth image

shown in Figure 8.6. However, even without the ground truth for comparison, the rel-

ative strengths and weaknesses of the colour class estimation are apparent from a brief

inspection of Figure 8.11.

Overall the image has been mostly classified correctly, with elements such as the grass

border, taxiway and sky, all appearing as expected. However, significant misclassification

has also occurred. Towards the top left of the image, the entire building (shown in Figure

8.7) has been misclassified as ‘asphalt’. Although this does seem like a significant issue,

it is to be expected. As in-class variation was too great, the ‘building’ class has not been

included within the colour classifier. As such, misclassification is inevitable, and for this

reason colour data does not effect the building class estimate in the final combined node

of the BN.

The other significant misclassification within the image are the white surface mark-

ings which form the words ‘NO ENTRY’. Unlike the building class, white surface markings

can be associated with colour (as the name would suggest) and therefore should be clas-

sifiable using HSV data. However, although other white lines are correctly classified, only

Sky

White Lines

Yellow Lines

Red LinesGrass

Asphalt

Fig. 8.11 Results of colour classification sub-network [Col ] when applied to the example

image shown in Figure 8.7.
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around 65% of the pixels within the lettering are labelled as white lines, with the rest

being classified as either sky or asphalt.

Although the over-segmentation does limit the amount of data provided by each clus-

ter, as the colour data is simply the mean value of all pixels, the size of the cluster should

not have significant impact on the end result. Instead, the main problem is that overcast

skies are so similar to the surface markings that the two are indistinguishable on colour

alone. As colour cannot be directly linked to each class, the regions of colour space which

correspond to each class overlap. As this would have been vastly time consuming for a

human to manually input, parameter estimation (i.e. MLE) was used to establish the CPD

which provides the final estimate of class. As such, it is very likely that multiple class have

very similar probabilities for many of the 2161 possible colours.

During the development of the BN, the difficulty found in using colour data to classify

surface markings (which would seem to be apparent on colour alone) was the primary

motivator for the development of NRL, and one of the reasons for the inclusion of horizon

data within the BN. Looking ahead, the misclassification is resolved in full BN result

(shown in Figure 8.13). As the lettering is well below the horizon line, the sky class will

receive a strong reduction in probability, with the contribution from the [N RL] ensuring

that the letting is classified correctly.

Of note, the example cluster (highlighted in cyan in Figure 8.8) has been correctly

classified as a ‘Red Surface Marking’. As this colour is the primary method of distinguish-

ing the surface markings (aside from NRL) this data will be highly influential in the final

result.
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8.3.5 Combined Texture

As established in Chapter 6, texture is the primary source of information for classifica-

tion, with the addition of other data intended to refine the result. Due to the comparative

benefits of LBP and MR8 texture classifiers having already been assessed in both Chap-

ters 6 and 7, the results of the combined texture node are presented here for brevity. As

the two sources of texture data are combined within their own texture sub-network, this

allows a direct comparison to the results of the other sub-networks previous discussed

above.

Unlike the colour classifier, the combined Texture Classifier node [Tex] has been

trained using data from all classes, including buildings. Comparing the texture based

results in Figure 8.12 to the colour based result in Figure 8.11, the most obvious improve-

ment is that the building has been (mostly) classified correctly.

In addition, despite colour data being the obvious method of differentiating the coloured

surface markings, the texture-only classification actually outperforms the colour classi-

fier in this task, for both the white lettering and yellow taxiway centreline. This is mainly

due to these particular surface markings being well maintained; with fresh paint hav-

ing a strong and well defined texture which is clearly sufficient to distinguish the surface

type. However, although this is successful, it should be considered a case of over-fitting

Sky

White Lines

Yellow Lines

Red Lines

Building

Grass

Asphalt

Fig. 8.12 Results of combined texture classification sub-network [Tex] when applied to

the example image shown in Figure 8.7.
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as other aerodromes are unlikely to have the exact same paint. Therefore, the NRL and

colour data should be more useful for generic terrain identification for paints with differ-

ent textures.

This is immediately apparent when returning to the example cluster (highlighted in

cyan in Figure 8.8). Unlike the white and yellow surface markings, the red-surface mark-

ing has been misclassified as asphalt. Although the yellow centreline and white lettering

are new, the red surface markings are very old and worn, resulting in a very similar ap-

pearance to asphalt; resulting in the texture misclassification. As such, the overall result

will depend upon the final CPD to correctly associate the surface type based on colour

rather than texture.
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8.3.6 Final BN Classification

Figure 8.13 shows the final BN classification results, based on the original image shown

in Figure 8.7. As with colour and texture data, comparison to the Ground Truth image

(shown in Figure 8.6) can be used to determine how accurate the result is. However, in

addition to each of the expected classes, the results also include clusters of ‘unknown’

class, where confidence is not high enough to determine an outright winner. As these are

of particular importance, they will be reviewed using an additional figure below.

Focusing on classes with have received an estimate of class, it is clear that many of

the clusters which were misclassified in the individual sub-networks have been correctly

classified using the full BN. For example, the building in the top left of the image was

completely misclassified in the colour classification. However, as colour data has no ef-

fect on the probability of the cluster being a building, the texture and horizon intercept

data were sufficient for the building to be correctly classified. Furthermore, the white

lettering on the taxiway has received a far better classification, although a small number

of clusters are still misclassified.

Sky

White Lines

Yellow Lines

Red Lines

Building

UnknownGrass

Asphalt

Fig. 8.13 Results of full Bayesian network [C l ass] when applied to the example image

shown in Figure 8.7.
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Returning to the example cluster (highlighted in cyan in Figure 8.8) the final BN result

can be assessed in more detail. Moving through the sub-networks:

• The Horizon intercept state [Hoz] identifies the cluster as being Bel ow the hori-

zon. As such it has a zero probability of being a sky cluster, but all other classes

remain equally likely.

• The Surface Marking Class [Li ne] has an N RL state of Low . When combined with

the distance state of C l ose, the cluster receives a near-zero probability of being a

white or yellow surface marking (as shown in Table 7.7).

• The Texture Class [Tex] provides a direct probability of belonging to each class. Al-

though the surface is painted, the region is extremely worn with the surface more

indicative of asphalt. As such, the combined texture classification approach identi-

fies asphalt as having the highest probability of a match, albeit with only with only

52.92% confidence.

• Finally, the Colour class [Col ] is strongly weighted towards being a red surface

marking, based on hue, with a very high probability of 0.9592.

Despite the texture classifier identifying asphalt as the most likely class, the BN class

has been correctly identified as ‘Red-surface marking’. As the main contributors to this

result are colour and texture data, the posterior distributions for the Colour Class sub-

network and Texture Class sub-network, are shown alongside the final BN probability in

Table 8.1.

Within the CPD for the final node [C l ass], each of the surface markings are heavily

weighted towards the results of the colour classifier. As the colour classifier identified

that the cluster was most likely to be red surface marking (with a very high probability

of 0.9592), this has a strong effect on the final results; with a 76.04% probability that the

final result is a red surface marking, compared to just 19.05% for asphalt.

At this point, the benefit of using soft evidence becomes clear. Although colour data

was the primary reason for the correct classification, had the winning class from the tex-

ture classifier been submitted as hard evidence, the texture sub-network would have pro-

vide a 100% probability of the result being asphalt. Although weighting within the final

node could still have adjusted the result based on colour, a near doubling in texture con-

fidence (from just 52.92%) would have made it far less likely to correctly identify the clus-

ter.
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Class Colour Texture Final Class

Asphalt 0.0408 0.5292 0.1905

Grass 0.0000 0.0271 0.0008

Sky 0.0000 0.0225 0.0000

White line 0.0000 0.1043 0.0204

Yellow Line 0.0000 0.1036 0.0203

Red Line 0.9592 0.0932 0.7604

Building - 0.1202 0.0000

Table 8.1 Marginal posterior distribution for HSV colour sub-network (Col our ), the com-

bined texture sub-network (Tex) and the complete BN (C l ass) for the highlighted cluster

shown in Figure 8.8.

8.3.7 Discrepancies between Classifier and the Ground Truth

Unlike the highlighted cluster, a number of the other clusters within the example image

did not match their expected class from with the ground truth image. Figure 8.14 high-

lights the clusters where ground truth and the BN results differ. As is apparent from this

figure, there are several different reasons for the discrepancies.

One reason which is not an issue with the classification process, is the presence of

regions of uncertain class within the original image. For example, the surface markings

on the right side of the taxiway (near the very centre of the image) are at such an oblique

angle to the camera that the edges of the clusters are difficult to define. To avoid intro-

Misclassification Unknown ResultCorrectly Classified No comparison data

Fig. 8.14 Discrepancies between the Bayesian network result and the Ground Truth image
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ducing data from the wrong class into the training process, the entire area was labelled

as as ‘unclassified-region’ and not used. As such, there is no method of judging the clas-

sification result either correct or incorrect; therefore clusters without a manual class for

comparison are simply shown in black in Figure 8.14.(Despite this, the classifier has iden-

tified these clusters as asphalt in Figure 8.13, which would seem to be an appropriate

result.)

The second cause of discrepancy is uncertainty, where clusters with less than 50%

confidence in the final result have been categorised as ‘unknown’. These ‘unknown’ class

clusters are shown in magenta in Figure 8.13. As generic object detection relies on un-

known clusters, it is important that clusters which are an unexpected collision risk fail to

gain the necessary confidence to be labelled as a class. At the same time, as the collision

risk detection strategy is to avoid all unknown clusters, false labelling terrain clusters as

collision risks would have a direct influence on the course of the UAS. Therefore it is vital

to assess if the ‘unknown’ classification of each cluster can be assumed valid.

From Figure 8.13 it can be seen that a significant number of clusters have been classed

as unknown, almost entirely in the upper half of the image. The main source of un-

knowns within the image is the building in the upper left. As this is a collision risk, parts of

the building which were not sufficiently close to the building class should be identified as

unknowns. For this building in particular, each of the windows has been labelled an un-

known. This is almost certainly due to the windows not being included within the ‘build-

ing’ training set. However, as all parts the building represent an unknown and therefore

a collision risk, this classification is correct.

A small number of unknowns have also occurred very close to the horizon line. Al-

though simply labelled as ‘grass’ in the ground-truth, when examined in detail there are

numerous distant objects close to the horizon. Although this was detected in the seg-

mentation process, the size of each superpixel is too large to individually contain such

distance objects. Although this could be considered misclassification, the extreme dis-

tance between the camera and the object not only makes the actual class difficult to de-

termine, but also implies that these objects will never impact the safety of the taxiing

aircraft. As such, these unknowns are acceptable.

Finally, unknown results have occured along the border between the taxiway and the

grass. This is mainly due to inconsistencies in the border, where grass and taxiway have

been included with a single cluster, due to a segmentation error. This is less likely to occur

closer to the camera, due to a more obvious border between grass and asphalt. As the

grass/asphalt border is a common case, but has minimal effect on the taxiing process, it is
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not considered an issue. Furthermore, as the segmentation is undertaken independently

on each frame, without a strong underlying feature it is unlikely that the segmentation

error will persist, with unknown clusters only becoming collision risks once they have

been consistently identified.

The final discrepancies are misclassification, in which the BN has provided a confi-

dent result in direct contrast to the manually selected class. Although there are no un-

known results on the taxiway surface for this image, there are clusters which have been

misclassified. Depending on the exchange of object type, this has the biggest potential

for danger, as the ATS may have entirely missed a collision risk.

However, looking at this image, the majority of mis-classifications occur in the highly

over-segmented surface markings. As with the example cluster, the surface markings are

so worn as to be difficult to classify correctly. As the discrepancies are all between naviga-

ble types of ground, this issue is not considered too great and could likely be resolved with

a larger dataset. As Walney Island Airport has only a limited amount of surface markings

(other than the centre line), very few images within the training set contained red from

which to train.

Overall, the segmentation and classification of this image is suitably accurate for taxi-

ing. The vast majority of clusters (and pixels) have been correctly identified, with the BN

showing significant improvement over each of the internal sub-network results. Finally,

this image is viewed in isolation, whereas the collision risk system will process multiple

images over time. In doing so, the small discrepancies should be resolved with the help

of ‘neighbouring’ frames.
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8.4 Full Dataset Results

Having reviewed the application of the entire classification process to a single image, the

overall accuracy of the BN can be more thoroughly established by using the full test data

set.

8.4.1 Cluster error and pixel error

In the example image above, error was most easily discussed by referring to the individual

clusters created by the segmentation process. This would seem reasonable as classifica-

tion is performed on a per-cluster basis. However, as clusters can be drastically different

in size, the significance of the final result can be lost if only the cluster based result is re-

viewed. For example, a image could only contain two grass clusters; one taking up most

of the terrain and one which is just a single superpixel. If the single superpixel were to

be misclassified, the per cluster accuracy of the result would be only 50%, which greatly

skews the perceived quality of the results.

When referring to segmented images, there are two way to statistically represent the

result; per cluster or per pixel. Table 8.2 shows the ‘per cluster’ and ‘per pixel’ error for

each of the results applied to the entire data set. Before any numeric review is under-

taken, simply comparing the cluster error percentage to pixel error percentage shows

that clusters conceal the actual result. As smaller clusters are more likely to have difficul-

ties in classification whilst being more numerous, the results can appear to be extremely

poor, despite the majority of the image having been classified correctly. Therefore, the

classification results for the rest of this section will be provided in terms of pixels.

8.4.2 Comparison of Classifiers - Total Errors per Classifier

Table 8.2 shows the relative performance across the entire data set for both the texture-

only classifiers, in addition to the full BN. A comparison between the results of the BN

Classification Method Pixel Error Cluster Error

MR8 5.12% 57.67%

LBP 6.29% 52.81%

Bayesian network - hard evidence 1.48% 19.82%

Bayesian network - soft evidence 0.72% 13.40%

Table 8.2 Comparison of classification error between the MR8 and LBP texture classifiers

and the full Bayesian network.
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when using hard evidence instead of soft are also shown.

Beginning with the comparison between the two types of evidence, it is clear that

using soft evidence within the BN has significantly improved the final result. Reiterating

the conclusion drawn from the single cluster example in Section 8.3.6, by submitting the

texture class as the confidence in the result, the texture node [Tex] is typically far less

dominant within the overall BN. This allows other sources of data, such as colour, to

improve the final result. As such, all comparison to the BN going forward will refer to the

full BN using soft evidence.

As expected, the Bayesian network shows a significant increase in classification accu-

racy when compared to the texture only methods. The largest per cluster improvement

in result is between the MR8 classifier and the full BN, with a 44.27% decrease in error.

As the same improvement in pixel terms is only 4.4%, the conclusion can be drawn that

the main impact of the BN is in the improved classification of smaller clusters. This is

corroborated by the LBP results; with a 39.41% increase in cluster classification corre-

sponding to a 5.57% increase in pixel performance. Although slight, the difference be-

tween the results suggests that fewer clusters contributed to the BN improvement over

the LBP, supporting the concept that the highly localised LBP feature, should be better at

identifying smaller clusters when compared to MR8.
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8.4.3 Comparison of Classifiers - Total Errors per Class

Aside from the influence of cluster size, it is difficult to determine much about the rela-

tive accuracy of the classifiers from the overall error rate alone. As such, tables 8.3, 8.4

and 8.5 show the pixel level classification results for each class, for the MR8, LBP and BN

classification results, respectively. Within these tables, each row represents the ground

truth classification of each pixel within the twenty image test set. The columns then de-

fine the response of each classifier, with the highlighted cells representing the percentage

of correct classification.

Beginning with asphalt, all three classification methods produce extremely strong re-

sults, with LBP having the highest error of 4.5%. Although painted surface markings are

more visibly similar, grass was the most common misclassification for all three classifica-

tion methods. As grass and asphalt as visibly dissimilar, almost all error in this class can

MR8 Texture Classification Result

Asphalt Grass Sky
White

Line

Yellow

Line

Red

Line
Building

Asphalt 98.971 0.487 0.000 0.169 0.330 0.010 0.033

Grass 10.068 87.900 0.000 0.971 0.870 0.000 0.191

Sky 0.000 0.000 98.924 1.076 0.000 0.000 0.000

White Line 3.546 0.032 0.000 77.260 19.162 0.000 0.000

Yellow Line 2.540 0.000 0.000 2.115 95.345 0.000 0.000

Red Line 86.534 0.000 0.000 0.838 0.873 9.388 2.267
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Building 2.177 0.000 0.000 0.000 0.175 0.000 97.648

Table 8.3 Class-based comparison between the MR8 texture classification results and the

manually created ground truth.

LBP Texture Classification Result

Asphalt Grass Sky
White

Line

Yellow

Line

Red

Line
Building

Asphalt 95.493 2.656 1.301 0.420 0.064 0.003 0.063

Grass 3.459 94.473 0.000 1.784 0.250 0.000 0.033

Sky 0.414 0.566 98.897 0.013 0.010 0.000 0.099

White Line 4.218 1.649 0.000 86.482 7.632 0.000 0.019

Yellow Line 5.353 1.694 0.000 16.955 75.998 0.000 0.000

Red Line 86.469 11.261 0.000 2.004 0.104 0.085 0.077
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Building 2.157 0.082 0.000 0.245 0.397 0.000 97.119

Table 8.4 Class-based comparison between the LBP texture classification results and the

manually created ground truth.
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be assumed to be the result of segmentation errors along taxiway borders. As such, the

BN has only slightly improved upon the results of the individual texture classifiers, as it

also depends directly on the segmentation results.

As expected, a near identical situation exists for grass, where asphalt is the class most

likely for grass-clusters to be misclassified as. Of some note, unlike asphalt, there has

been around a 10% improvement between the MR8 classifier and the final BN. This indi-

cates that the texture of grass is better detected by the LBP, and that fusing texture with

colour provides a very good final result.

For all three classification methods, the sky class is by far the most well classified;

having results of 98.9% correct for both MR8 and LBP, and increasing to 99.6% for the

final BN. This highly accurate result is due to the sky representing a huge proportion of

each image, with segmentation between ground and sky usually highly accurate. The

slight errors which remain are most likely due to discrepancies between the borders in

the automatic segmentation compared to the manual ground truth.

Considering all three types of surface marking together, tables 8.3 and 8.4 re-affirm

that texture data alone is insufficient for classification, with poor results for white and

yellow surface markings, and extremely poor results for red surface markings. For both

MR8 and LBP, the white and yellow surface markings are more likely to be misclassified

as each other than as asphalt, with 19% of white lines being misclassified as yellow lines

by MR8, and 16% of yellow lines being misclassified as white line by LBP. This is to be

expected, as the texture of paint is sufficiently distinct to differentiate it from asphalt, but

is not distinct enough to determine the colour. By contrast, due to the poor state of red

surface markings, they are almost entirely misclassified as asphalt, with only 9% of MR8

classifications being accurate, compared to far less than 1% for LBP. As the paint has

worn away, the underlying asphalt becomes more apparent, eliminating any distinguish

Full Bayesian Network Classification Result

Asphalt Grass Sky
White

Line

Yellow

Line

Red

Line
Building Unknown

Asphalt 98.976 0.543 0.000 0.044 0.012 0.010 0.000 0.41

Grass 1.600 98.327 0.000 0.000 0.014 0.000 0.000 0.06

Sky 0.042 0.000 99.554 0.000 0.000 0.000 0.000 0.04

White Line 0.897 0.000 0.005 95.317 0.767 0.228 0.000 2.78

Yellow Line 0.063 1.259 0.000 2.051 93.647 0.000 0.000 2.98

Red Line 2.489 0.100 0.000 0.013 0.000 97.384 0.000 0.014
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Building 3.952 0.000 0.000 0.000 0.000 0.000 96.048 0.000

Table 8.5 Class-based comparison between the full BN classification results and the man-

ually created ground truth.
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features. As asphalt is the more common class, it’s feature space is better defined and

therefore more likely to be selected when working with texture alone.

With poor surface-marking texture-classification results prompting the inclusion of

other types of data, the improvements shown in Table 8.5 are as expected. By includ-

ing NRL and HSV within the BN, the final results are significantly improved, increasingly

classification of white, yellow and red surface markings to 95.32%, 93.65% and 97.38% re-

spectively. Although red surface markings are still misclassified as asphalt for 2.49%, the

quality of the surface markings within the test set makes further improvements unlikely.

For yellow and white surface markings, high NRL values helps to isolate the classes.

However, differentiating between the two colours depends on primarily on Saturation of

HSV data, resulting in the the two classes still sharing slight misclassification between

each other. However, rather than misclassification, the most common results for white

and yellow surface markings, (aside from correct classification) within the BN is ‘un-

known’. This is due to clusters having low confidence in the texture result, with the

added information from colour and NRL insufficient to bring the confidence back over

the threshold. As these are likely to be small clusters which do not adhere to the actual

surface contents, they should only appear in individual frames and not affect the taxiing

overall.

Finally, the building class has received a remarkably high classification result for all

three classification methods. Although buildings should be easily separable from other

classes on texture alone, the overall range of potential material should introduce a greater

degree of error, with more clusters being identified as unknowns. As all data has been

acquired from a single aerodrome, it is likely that ‘over-fitting’ has occurred; with the

small number of buildings sampled creating a texture feature space which would not be

representative of conditions at other aerodromes. Despite this, as stated in Chapter 7, the

building class was primarily included within the BN to assess the ability of the classifier

to deal with a highly varied class. As buildings are static collision risks and can therefore

be avoided using position data alone, the overall impact of the over fitting is minimal.
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8.5 Conclusions

This chapter has applied the classification framework to a dataset acquired from a real-

world aerodrome, with images captured from positions representative of a taxiing air-

craft. Although the test environment was small, sufficient examples of each class were

available for training. Selecting one hundred images from the entire dataset, manual

ground truth images were created, with eighty images used for training the classifiers,

whilst the remaining twenty were used to create the results above.

The BN framework has been shown to near universally improve classification perfor-

mance when compared to the individual texture classifiers. By including the confidence

of the texture classification result, as opposed to just the winning class, the overall classi-

fication performance improved by around 5%. Unlike similar methods of achieving this

result (such as ANN), the BN process is deterministic. As such, the flow of information

through the BN can be easily monitored and verified; as required for safety critical aircraft

systems. As the BN allows for further extension, additional sources of information could

be included going forward, such as cluster adjacency. (However, as cluster adjacency re-

quires a multi-pass approach, it was not included here as a significant modification to

the BN would be required).

The greatest limitation of this study is the test set; consisting of a single aerodrome

and with images captured during the course of a single day. Although some variance in

weather and lighting was incorporated, it was insufficient to have a major consequence

in the test results. To produce a more universal system, data would ideally be sourced

from multiple aerodromes, in varying conditions and seasons. However, due to restric-

tions of time and cost involved, this has not been possible.

As the training and test data are sourced from the same dataset, over-fitting is un-

avoidable. However, the basic principles of the BN approach have been validated, a larger

data training set should be all that is required. Therefore, although the classifications re-

sults may have been over-fitted to the conditions, the output is considered sufficiently

accurate for further interpretation.



Chapter 9

Depth Exaction and Collision Risk

Localisation

At the conclusion of the classification stage, each pixel within the captured image has

been assigned a state; either as a known class useful for localisation, or as an unknown

class useful for collision avoidance. Despite the great deal of processing required to reach

this stage, the data within the image is still not directly usable. Although the presence of

collision risks within the image can be determined, without range or bearing data the ATS

has knowledge of where collision risks are actually located. Similarly, although terrain

features have been identified, they have no context to aid in localisation. As such, this

chapter focuses on converting the image data into more useful information.

9.1 Class Amalgamation

Prior to determining the real-world position of each cluster, the data obtained from clas-

sification can be simplified to make processing more straightforward. As many of ex-

tracted classes are no-longer relevant by themselves, it is possible to combine the classi-

fication output into new ‘amalgamated’ classes. Specifically for collision risk detection,

only 2 classes are required:

• Risk Class - ‘Unknown’ and ‘Building’ classes are combined into a class which

tracks all clusters which could present a collision risk.

• Navigable class - ‘Asphalt’ and all three ‘Surface Marking’ classes are combined into

a single class which tracks the extents of the navigable terrain.
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Although not directly part of collision risk detection, the ‘Navigable’ class is useful as

it represents the area in which the area can manoeuvre. As the limits of navigable space

may be defined by non-risk clusters (such as grass) the navigable surface is important

when attempting to confirm a route is valid (leaving the navigable area should not occur

in standard operation conditions). Finally, the remaining classes, (‘Sky’ and ‘Grass’) are

simply not considered within the collision risk process. An example of the amalgamated

classes is shown in Figure 9.1b.

(a) Original image with collision risks and taxiway

Risk OtherNavigable

(b) Amalgamated classes for collision risk detection.

Fig. 9.1 Comparison of original aerodrome image with amalgamated classes.
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9.2 Temporal Smoothing

Following on from class amalgamation, all potential collision risks are stored within a

single class. However, this final class is only based the instantaneous classification of

all objects present in the input image. As no data is exchanged between frames, both

segmentation and classification occur on a per-frame basis. Therefore, exact borders of

objects will vary over time, even for static objects when the camera is not in motion.

The significance of this variance depends on the size of each cluster. Large clus-

ters,(such as taxiway surfaces), remain consistent as small changes in border position

have little effect on the cluster overall. However, smaller clusters are far more likely to

vary over time. As shown in column (b) of Figure 9.2, the shape of each cluster depends

on the underlying superpixels.

If an unknown cluster represents a moving collision risk, the changing position of the

cluster combined with varying borders can make the boundaries of the object inconsis-

tent, even within just a few image frames. This makes collision risk detection far more

difficult. If range and bearing estimates were extracted from individual frames, the posi-

tion of risks will rapidly change. Therefore, to limit the influence of inter-frame variance,

Multiple-Frame Averaging (MFA) has been introduced. This form of ‘temporal smooth-

ing’ is intended to minimise the influence of single frame misclassification, whilst better

defining the boundaries of collision risks.

9.2.1 Multi-Frame Averaging

Methods which combine data from multiple sequential image frames to produce an im-

proved output are commonly referred to as MFA. This form of filtering is often used

in machine vision for noise reduction, where repeatedly sampling a scene can help to

remove instantaneous artefacts in any one frame. This is very commonly used to re-

move rain from video footage for films and television [60]. Multi-frame sampling can

also be used for background subtraction [34]. Rather than attempting to remove anoma-

lous data, background subtraction works by averaging multiple frames to determine the

static components of a scene, allowing moving objects to be segmented on even the most

cluttered of backgrounds. (As what is not the background must be the foreground, this

can also be referred to as foreground detection).

For this work, MFA is applied differently as there is no need to perform background

subtraction; all regions within each image which are not considered to be a collision risk

are already a known value within the Navigable image. Instead, it is used only to increase
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certainty that a collision risk exists through repeated observation. Rather than isolate

the background of an entire image, it seeks to isolate the ‘core’ regions of collision risk

clusters.

The temporal smoothing process begins by creating a separate ‘risk’ image for each

frame. This consists of a binary image in which every pixel in each risk cluster is labelled

as a 1. Morphological dilation is then applied, with the intention of connecting discon-

nected elements of the same objects (as shown in column (c) of Figure 9.2). Although

this slightly expands the borders of detected risks, this can only make the risk larger and

therefore should never decrease the safety of the UAS. Temporal smoothing can then be

applied by comparing the current frame to previous observations. Various methods of

MFA exist:

• Direct Frame Difference - Comparing only neighbouring sequential frames.

• Running Average - Average the value of each pixel over several previous frames.

• Running Median - Median value of each pixel over several previous frames.

• Running Gaussian Average - One dimensional Gaussian smoothing over time.

As the purpose of temporal smoothing is to remove instantaneous errors, directly

comparing neighbouring frames is insufficient, making Direct Frame Difference unsuit-

able. (Therefore, in addition to selecting a method, the number of frames over which

to sample must also be decided and will be further discussed in Section 9.2.2). Further-

more, as the input image is binary, a median filter can only ever produce a binary result.

As this is equivalent to an average filter with a fixed threshold, a running median filter

was not used.

Gaussian averaging is well established as producing a good result in colour images

[72]. However, as with all MFA methods, Gaussian smoothing is typically intended to be

applied in post-process, with results about the current frame drawn from both future and

previous frames. With only previous results to draw from, the Gaussian approach would

be half a bell curve if applied to only the latest frame. This would bias the data to suggest

that the most current footage is also the most accurate. Whilst this would be the best

approach for removing noise from colour footage, this use case is highly difference. For

collision risk detection, a risk spotted in an earlier frame may be missed in the most cur-

rent and each frame within the running set should be given equal weighting. Therefore,

a running average is considered to be appropriate for this scenario.
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(a) (b) (c)

(d) (e)

Fig. 9.2 Stages of temporal smoothing, showing: (a) the original image, (b) the classified

image with superpixel borders overlayed, (c) the ‘risk’ layer after class amalgamation, (d)

the ‘rolling risk’ layer and (e) the temporally-smoothed collision risk cluster.
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• To incorporate data from multiple frames, a ‘running risk image’ is created, in which

the previous N -risk images are summed together. (To ensure the information is en-

tirely relevant, all clusters older than N frames are discarded.) As the risk layer is a

binary image, the value of each pixel number within the rolling risk layer is a direct

count of how many frames that pixel has been identified as collision risk (as shown

in image (d) of Figure 9.2).

• By determining a suitable threshold, only clusters which have appeared enough

times within the last N -frames are considered actual risks; other clusters are con-

sidered to be noise.

• Using the newly extracted ’cores’, connected components are again extracted, us-

ing a binary version of the entire rolling risk image in which all non-zero pixels are

considered. This ensures that even if only a part of the object has been classified in

enough frames, the entire suspected cluster is extracted (as shown in image (e) of

Figure 9.2).

Figure 9.3 shows the results applied to a full image. As both the camera and the other

ground vehicle are in motion, there is significant variance in the position of the cluster

from frame to frame. Despite this, a clear ‘core’ can be observed, allowing the position of

the risk to be determined more consistently.

9.2.2 Risk Frame-Buffer Size

Previously referred to as N , the number of frames used within the running risk image (i.e.

the image buffer size) has a large effect on the final result. If too many frames are used,

rapidly moving objects are unlikely to reach the threshold so will not be considered risks.

Conversely, if too few frames are used, single frame misclassification noise may introduce

false ‘risks’ into the scene. Therefore, selecting the appropriate number is critical.
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(a) Original Image when approaching collision risks

N=0 N=1 N=2 N=3

(b) Temporally smoothed collision risks, where N indicates the number of frames for

which a risk has been observed.

Fig. 9.3 Comparison of original aerodrome image with temporally extracted collision risk

image. The added motion of the vehicle results in a less clearly defined risk.
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Determining an acceptable number of frames is simplified by the fact that the camera

can move. As the UAS is in motion, each frame will have a maximum expected change,

restricting the amount of frames which can be used. Although the maximum forward

velocity of the UAS could be used to define the expected change, the borders of objects

change with respect to their distance from the camera. As such, until the objects are

close, the rate of change will be low. Instead, using the rotational velocity of the aircraft is

a better indication of how many frames an object can be expected to remain in a similar

position within the image.

Observing aircraft taxiing around an airport, it was concluded that the forward speed

of an aircraft affects the radius of the turn, but not the rate of turn itself. By watching a

taxiway corner at East Midlands Airport in the UK, it was observed that smaller general-

aviation aircraft were able to make a 90◦ turn in approximately five seconds. However,

the size and role of the aircraft can affect this, with large airliners taking between 20 to 30

seconds to make the same turn. Despite not being large, UAS are remotely guided and

thus are unlikely to be making the rapid taxiing manoeuvres common to general aviation

pilots. Therefore, 15 seconds for a 90◦ turn was considered appropriate.

This results in a turn rate of 6 degrees per second. The camera captures images at 30

frames per second, and has a 94.4 degree horizontal field of view. With 960 pixels in the

horizontal image dimension, during rotation static objects within the image should differ

at most by 8 pixels per frame. As a collision risk smaller than 40 pixels in width is unlikely

to be an imminent threat to the UAS, a four frame buffer was chosen to be the maximum

allowable. As such, the temporal smoothing uses four frames to create the ‘rolling risk’

image, with a minimum of three appearances required for a cluster to be declared a risk.
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9.3 Depth Extraction

After temporal smoothing has been applied, the clusters should be consistent enough

for depth extraction to be performed. The term ‘depth extraction’ relates to the fact that

when a camera captures an image, the visible scene undergoes a transformation from

three dimensions down to two. Depth extraction then seeks to restore the third dimen-

sion to the image, by mapping each pixel to a point in 3D space.

9.3.1 Methods of monocular depth extraction

In Chapter 7, a simplistic method of distance estimation (depth extraction) was intro-

duced to help combat the influence of atmospheric effects on the detection of surface

markings. As NRL itself is broadly discretised, a precise measure of distance was not re-

quired. Therefore, the pin-hole camera model was used. This provided a simple estimate

which was then further grouped into either near, mid or far categories. Although these

results proved to be sufficient for roughly grouping clusters, the actual estimate of dis-

tance was quite poor. As such, a more reliable method of determining the distance to

‘risk’ clusters is required. Although cameras lack any inherent depth data, they are com-

monly used to track objects in 3D space. There are two primary methods for achieving

this: stereo-vision and in-image context.

Stereo-vision is the concept of combing multiple image from known positions to cre-

ate a depth map, without the need for classification. As previous covered in Section 4.3.1,

this can either be achieved using multiple cameras at fixed distance from each other, or

using a single moving camera with a known path. As the UAS hardware has been defined

as a single forward facing camera, multi-camera stereo is not possible. In addition, as the

act of moving the UAS to detect collision risks is inherently dangerous, this is also not a

viable option. For these reasons, and for the reasons described in more detail in Section

4.3.1, a stereo based system is not viable.

In-image context is a far broader set of techniques used to elicit information from a

scene. Monocular depth extraction relies on being able to extract ‘depth cues’ from the

image; features from which scale and distance can be estimated. As lines and corner

points alone provide little context, this usually requires classification of entire objects

which can be isolated from their surroundings. For example, processing an image con-

taining a car on a road would begin by separating the car from the background. If the

physical dimensions of the vehicle are known, the size of the vehicle within the image

can be used to infer distance. As with stereo vision, the concept of known object detec-
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tion was already covered in Section 4.2. Due to numerous difficulties in isolating vehicles

and the immense data set required to detect all possible objects, the generic method of

object detection through terrain classification was chosen instead. As all risk clusters are

detected using a generic method, the dimensions of each object are wholly unknown and

therefore depth estimation through object size cannot be used.

Distance estimation through terrain classification is a fairly new method of eliciting

depth information. Just as the effects of atmospheric scattering are proportional to the

objects distance from the camera (as discussed in Chapter 7) similar contextual clues can

be extracted from clusters to provide an estimate of depth. Techniques such as [93] have

demonstrated the ability to extract depth maps from monocular images through com-

parison to known data sets, essentially classifying the image into distance clusters based

on known data, with neighbouring superpixels used to smooth the final result. As the

data used here is already broken into superpixels, a similar application could be viable.

However, although this contextual approach was shown to perform well at producing a

‘relative’ depth map, it was less successful at producing an absolute depth map. As col-

lision risks at an aerodrome are typically the only object within view, a relative distance

map is difficult to incorporate. In addition, as this method is highly dependant on tex-

ture, different weather conditions can render the method unusable.

As such, the contact point between the object and the ground is again determined

to be the most reliable source of contextual information, linking the camera to the colli-

sion risk. Assuming that the ground is flat and that the risk clusters within the image lie

on the ground, the intersection of objects within the 2D image space can provide con-

text to where they lie in 3D. This is essentially a plane-to-plane mapping, from the image

plane to the ground plane, using the perspective of the camera to determine the results.

As such, the methods which use this approach are commonly referred to as Inverse Per-

spective Mapping (IPM). Despite using principles similar to the pinhole camera model,

IPM represents a far more accurate mapping and should always provide a more accurate

result.
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9.3.2 Inverse Perspective Mapping

When an image is taken, each object within the camera’s field of view is mapped onto the

image plane as a cluster of representative pixels. In converting between 3D and 2D, the

exact location of the representative pixels is determined by the effects of perspective. As

the name suggests, an Inverse Perspective Mapping is intended to ‘reverse’ this process,

returning pixels to their 3D coordinates from when the image was taken.

As objects have the potential to be anywhere in the scene, restoring all pixel data is

impossible. Instead, an IPM can only be established for pixels where the original object

had a known relationship with the camera. Despite this limitation, IPM has many appli-

cations; with by far the most common being for Self Driving Cars (SDCs), where remov-

ing the effects perspective can assist in lane marking detection. As such, there is already

great precedent for the use of IPM from a forward facing monocular camera, mounted

on a moving vehicle. As IPM is simply a concept, there are numerous ways in which it

can be implemented. For this work a combination of solutions has been applied.

The concept of IPM for road vehicles was first introduced by Bertozzi et al. (1998)

[15] and the equations from this paper are still in general use. The IPM process begins

by defining two euclidean spaces: W = (x, y, z), the 3D world space and I = (u, v) the 2D

image space. Although information can be mapped in either direction, only the I → W

mapping is of interest. The general concept of IPM is shown in Figure 9.4.
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Fig. 9.4 Inverse Perspective Mapping overview, showing the physical distances and angles

required to map a point in image space onto the ground plane in world space.
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In order to calculate an IPM the following parameters are required:

• Half the angular aperture of the camera al pha.

• The resolution of the image (m ×n).

• The position of camera in world co-ordinates (l ,d ,h).

– Where h is the height of the camera above the ground plane and l and d can

be set to zero when working in camera local co-ordinates.

• Attitude of the camera: pitch angle θ and yaw angle γ.

• The image co-ordinates of the point being mapped (u, v).

– In contrast to the more typical one-based co-ordinate system, zero-based co-

ordindates are used here to simplify the equations.

As all of these vairables are known, the (x, y, z) position of Point P can then be deter-

mined using Eq. (9.1):
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(9.1)

Originally, the intention was to directly replicate the IPM method used by Bertozzi et

al. without modification. However, one drawback of this early method was the assump-

tion that the yaw and pitch angles of the vehicle were fixed, with the only offset due to the

mounting angle between the camera and vehicle. As such, the estimated distance would

vary during acceleration and cornering. Later work by Kheyrollahi et al. (2012) [58] en-

deavoured to solve this using visually determined features to estimate yaw and pitch. In

Kheyrollahi et al. (2012), the World space coordinate system was relative to the road cen-

treline, with the two sides of the road used to detect a vanishing point at the horizon. The

position of the vanishing point was then used to calculate pitch and yaw.

As calculations for this work are performed relative to the camera, the yaw angle does

not require calculation. However, an accurate estimate of pitch is useful to minimise the

effects of braking and cornering, in addition to the general flexibility of aircraft undercar-

riage. Rather than perform an addition estimate of vanishing points, the visually derived

horizon position (from Chapter 6) is used instead.
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As with temporal smoothing of the risk clusters, the horizon line position is also

smoothed. As the horizon line is stored using the straight line equation, the temporally

smoothed horizon line can be calculated by averaging the y-intercept and gradient over

the last 4 frames. The y-co-ordinate of the vanishing point yv p is then assumed to occur

at the intersection of the horizon line and the centre of the image, as shown in Figure

6.33. The pitch of the vehicle relative to the horizon can then be estimated using using

Eq. (9.2):

θ = arctan(1− (
2yv p

n
)) (9.2)

Although this estimate is only valid for small angles, the horizon line detection al-

gorithm within this work is already limited. Should the visually derived horizon differ

significantly from the inertial sensor readings, the horizon is assumed to be obscured

and an inertially derived horizon line is used instead. For use here, when the horizon is

data is no longer available, the inertial pitch angle is used directly.

9.3.3 Detection range and error

An unavoidable limitation of all visual distance estimation methods is range. As objects

become more distant from the camera, their associated clusters decrease in area and

move vertically in the image plane towards the horizon. As every object within an im-

age is made of pixels, the absolute range is determined by the ability of the classifier to

discern the object. Just as fewer pixels are available to define the object, there are also

fewer pixels available to define the difference in object position. As such, the functional

range is the distance at which results can be considered accurate; which is dictated by

the resolution of the image.

Due to the oblique angle and low height of the camera, significant differences in dis-

tance can be represented by just a few pixels. As the camera is attached to a moving

vehicle, the accuracy of depth estimation is further reduced based on the stability of the

camera. Despite the use of the horizon line to attempt to mitigate the effects of vibration,

even small differences in camera attitude can have a significant impact on the distance

estimate. Although collision risks objects can be detected at a long range using the clas-

sification approach, without confidence in the distance estimate the position data is not

useful for either localisation or collision avoidance.

The use of IPM for SDC is similarly range limited. Although the majority of publica-

tions choose not to specify their maximum range, 28 metres was chosen as a functional
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limit by Gang et al. (2000) [54]. More recent work has selected a similar limit, with a

system specifically designed to monitor road traffic, classifying objects at 30m as ‘dis-

tant’ [108]. As aerodromes are far larger in scale than roads, relevant collision objects

are often further than 30 metres ahead, requiring a longer detection range. Therefore, a

maximum viable ‘depth’ range has been defined.

As the accuracy of the IPM is discrete, the distance relative error can be calculated by

determining the equivalent distance estimate (and therefore the error) if the cluster was

offset by a small number of pixels. Figure 9.5 shows the estimated maximum IPM error

over distance, for two different pixel offsets.

To determine these errors, a representative image was created with a flat and cen-

tralised horizon line. Using the same camera parameters as the physical camera, for

each pixel below the horizon, the associated world-space distance was calculated. As

cluster border precision is likely to be the largest source of inaccuracy, the relative differ-

ence between results was found if the cluster border was shifted by either 1 or 5 pixels.

(This is considered the ‘maximum’ error as the pixel offset was always directed towards

the horizon line. However, larger pixel offsets will obviously produce larger errors).

From Figure 9.5, the expected trend can be seen; with a consistent cluster border shift
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resulting in larger distance estimate errors, as the camera moves away from the object. As

the error is not linear, smaller distances see almost no error with a single pixel variance,

where as the same border offset can cause a 20 metre position shift when the object is 90

metres away. In order to select an appropriate maximum detection range, two separate

issues must be balanced:

• The accuracy of objects further from the camera cannot be relied upon, with colli-

sion risks potentially moving rapidly between frames.

• Collision risks must be detected with sufficient distance to allow the UAS to stop.

At the most basic, collision risk detection is used for detecting risks which will cause

the UAS to stop. Therefore, the maximum detection range should allow both detection

and braking to occur. As aircraft taxiing speeds are not regulated, the exact speed at

which the UAS will travel is unknown. Instead, taxiing speed is typically limited by the

size of the aircraft; as smaller aircraft often gain sufficient lift at lower speeds to lose con-

trol, they must taxi slower than larger aircraft. For most small aircraft, 20kts (∼ 10ms−1) is

the maximum taxiing speed. Although braking distance is vehicle specific, as the equiv-

alent braking distance for road vehicles is 14 metres (at 10ms−1), a 50 metre distance is

considered an acceptable maximum range for both detection and braking.

As highlighted on the graph, 50 metres also represents the approximate distance at

which a 5 pixel shift will result in only 10% error. Although still large, a 5 m position error

can be likely be resolved by filtering over time.

9.3.4 Nearest point approximation

In order for an IPM to provide an estimate of distance, the assumption is made that all

collision risks are in contact with the ground. However, as the actual identity of each

collision risk is unknown, the exact points of contact are not defined. To avoid having

multiple distance estimates for a single object, IPM are commonly applied to bounding

boxes, rather than the outline of the object itself. This is especially common in SDC re-

search (both [120] and [102] use bounding boxes to represent other vehicles, despite very

different overall approaches). Using the lower edge of a bounding box as the contact

point with the ground ensures that the minimum distance to the camera is associated

with the entire object, rather than just the closest point.

Despite this benefit, the applicability of a bounding box approach for the aerodrome

environment is debatable. Although the tracking of vehicles would benefit from a single
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(a) Image with collision risks (b) Closest Point on Clusters

Fig. 9.6 Example of Nearest point approximation for distance estimation

point approximation of distance, bounding boxes are only appropriate where an object

will present a consistent face to the camera (such as the back of a preceding road vehicle).

Attempting to fit a bounding box representations to larger and less uniform objects

can dramatically alter the position estimate, especially at range. Just as it is important to

define the boundaries of an object for collision avoidance, it is also important to avoid

introducing false detections which would impede progress. For example, if a long build-

ing runs along the side of the taxiway, the bounding box will likely infer onto the asphalt,

due to the effects of perspective.

Instead, as the risks are already segmented into clusters, the closest point of risk to the

camera is most easily determined by finding the lowest ‘risk’ pixels within each column

of the risk layer. Although the lowest pixel is not always the closest point, by selecting the

entire lower edge of each cluster, all contacts points with the ground must be sampled,

with the closest point found from amongst them.

For objects which are partially suspended (such as aircraft and road vehicles mounted

on wheels) only a small amount of the bottom edge actually represents points at which

the object meets the ground, with most of the vehicle detected further away. As such, de-

spite not using a bounding box, the closet point on each cluster will need to be associated

with the cluster as a whole.

9.3.5 Homogeneous Perspective Transformation

In addition to being able to apply an IPM to individual points within the image plane,

IPM is also commonly used to transform the entire image. By mapping the terrain fea-

tures back onto a ground plane (to where they originally were), image processing can be

performed as if the image were taken from above. Although the features have already

been extracted during the classification process, techniques such as map matching and
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surface marking inspection can still benefit from whole image perspective transform.

For this work, the MVTec HALCON image processing library [79] has been used to

map from the image plane into the world plane, using a homogeneous perspective trans-

formation. This process is achieved by establishing a quadrilateral within the image

plane and then determining the associated quadrilateral in the world plane, using the

IPM. Figure 9.7 shows the results of applying the IPM when the camera is still.

Returning to the collision risk image shown in Figure 9.3, the IPM was applied in order

to determine the distance of the collision risks from the camera. Despite all collision

risks occupying a relatively similar vertical position within the original image, the two

buildings are both far outside the 50 metre accuracy range. As such, only the road vehicle

(and the small signpost) were close enough for the results to be considered accurate. As

GPS data was only recorded for the camera vehicle, map data has been used to obtain

an approximate distance to the ‘collision risk vehicle’, of 36 metres. Using the IPM, the

closest point on the other vehicle is 33 metres. Although this difference could simply be

down to cluster border error, the shorter distance estimate is partly due to the effects

of temporal smoothing, which extend the size of the cluster to include it’s position in

previous frames. As the most recent frame is also included in the risk cluster, this should

not impact the time taken to detect a collision risk.

(a) Image taken on taxiway ramp (b) Inverse Perspective Mapping

Fig. 9.7 Application of Inverse Perspective Mapping using Homogeneous Perspective

Transformation
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(a) Original Image (b) Nearest Points to Camera

(c) Inverse Perspective Mapping of Nearest Points, combined with original image trans-

formed using a Homogeneous Perspective Transformation.

Fig. 9.8 Summary of stages in determining the relative position of collision risks
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9.4 Results

A brief study has been undertaken to determine the accuracy of the IPM approach using

real-world data. Five sections of the data set were chosen in which the camera moved

steadily towards a known static object at the aerodrome (for which both the control tower

and the hanger were used). For each frame the IPM distance was calculated, using the

closest point on the detected cluster. As known objects were selected, a comparative dis-

tance was found using map data and the GPS position of the camera vehicle. (Although

the GPS derived data cannot be considered accurate, it should be sufficient for a general

comparison).

Despite only using five short periods of footage, as the IPM distance was calculated

for each frame the object was in view, several thousand data points were generated. As

the five sections of footage were taken from different positions and at different speeds (to

ensure that a broad spectrum of the working range was captured), the error between IPM

and GPS data was calculated and the results grouped corresponding to the nearest (GPS)

metre from the object. Two metrics have been selected for comparison: the maximum

absolute error and the average absolute error. Figure 9.9 shows the combined results.

From the graph it can be observed that the results follow the expected pattern, with

greater separation between the camera and the object resulting in noticeably decreased

accuracy. Despite the most extreme error being an overestimation of distance, under-
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estimated distance error occurred more frequently. As this could very well be caused

by an unintended offset between the GPS position of the vehicle and the map-derived

location of the building, absolute error is displayed.

The following conclusions can be drawn from this result:

• As the maximum absolute error has been demonstrated to approach five metres at

fifty metres range, the decision to limit sensing to this point is justified.

• The steadily increasing maximum error but fairly stable average error suggests a

source of inaccuracy which is highly influential but also irregular and brief. This

directly supports the idea that variance in the pitch of of the camera is the biggest

cause of error, even with the inclusion of visually derived horizon correction. An

application of filtering could be capable of resolving the position estimation error,

either within the image plane or after the transform is complete.

• The fairly constant average error suggests that the overall accuracy of both the IPM

and the temporally-extracted cluster border is acceptable. Further testing using

a static camera would better determine the maximum effective range without the

inclusion of additional sources of error.

9.5 Conclusions

This chapter has covered a basic process for extracting position data from the classified

image. At the conclusion of the classification process, each cluster within the image has

either been assigned a known class, or identified as an unknown cluster. With the as-

sumption that an unknown clusters is likely to represent a collision risk, a position esti-

mate of each cluster relative to the camera is sought.

As static elements such as buildings are commonly classed as unknowns despite hav-

ing their own class, a class amalgamation is used to combine them into a single layer.

This is done with the intention of providing an output which consists of just navigable

space and detected risks, similar to the range and bearing output produced by a LIDAR

system.

To combat the effects of single frame classification error, temporal smoothing has

been applied by combining the position of clusters in sequential frames, whilst remov-

ing clusters which don’t consistently appear. After reviewing the distance through which
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an object is likely to move per frame, a four frame image buffer was selected. In combin-

ing the perimeter of a cluster from multiple frames, a better representation of the actual

position of the cluster is achieved.

With the final position of clusters considered to be accurate, depth extraction meth-

ods were reviewed for monocular cameras. After a brief investigation, it is concluded

that there are very few methods of accurately determining the distance to unknown ob-

jects at range using a monocular camera. Therefore, as IPM has been demonstrated to

produce good results in the associated field of self-driving cars, the same approach was

adopted here. The equations and underlying principles of IPM are stated and its limi-

tations are reviewed with specific consideration given to the maximum effective range.

Due to the depth estimation being based directly on pixels, the resolution of the image

and proximity of the cluster to the horizon line limit then accuracy of extraction. As such,

a maximum viable detection of 50 metres was selected.

To help limit the influence of error on the detected range of objects, the principle of

assigning the distance of the nearest point to the entire object was stated. In addition,

the relative merits of image wide transforms using a homogeneous perspective transfor-

mation were discussed, with use cases including the suitability for localisation through

map matching. Finally, real-world data is presented having been extracted from the data

set and using GPS co-ordinates to provide a comparison. From the test results, the main

concern is the quickly varying accuracy due to vibrations. Therefore, methods of stabiliz-

ing the position estimate, either within the image plane or world space will be required.

In conclusion, a method of determining the position of unknown collision risks rela-

tive to the aircraft has been demonstrated, typically accurate to within five metres at fifty

metres range. As the position of collision relative to the aircraft is now known, localis-

ing the aircraft within the aerodrome is the next step. This will involve the combination

of directly extracted data with prior knowledge about the aerodrome layout, which have

been deliberately kept separate up until this point.



Chapter 10

Conclusions

10.1 Summary

This thesis has approached the issue of civil surface operations for UAS, specifically with

with the intention of producing an ATS. It has been predicted that UAS will require this

capability in order to share ground facilities with manned aircraft in the coming decade.

This thesis has considered the extreme case, in which no specific accommodation is

made for UAS activities, with all capability located on board the aircraft. In addition,

limitations were placed upon this work both in terms of regulations and hardware; with

only a forward facing monocular camera available for sensing, and with all interpretation

achieved using deterministic techniques.

The ability of a UAS to move through an aerodrome is highly dependant on the ability

to perceive risks and self-localise. Although localisation is already aided by external sys-

tems such as GPS, there is no existing method for UAS to detect other vehicles whilst on

the ground. For collision risk detection to be meaningful, it must not be limited to only

detecting specific objects. Therefore, this thesis has endeavoured to produce a generic

method of detecting risk. As visual localisation is also a useful output, generic object

detection through terrain classification was chosen as the focus of this thesis.

The terrain classification problem is identified as belonging to the field of seman-

tic segmentation, in which every pixel within the input image should be classified. This

has been broken down into three distinct stages; segmentation, data extraction and clas-

sification. A segmentation approach has been developed based upon the existing SLIC

superpixel segmentation technique in addition to re-clustering using graph based reach-

ability. For each cluster created in this process, data is then extracted and provided to a

Bayesian network for probabilistic classification. It has been assumed that a prior survey
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of the aerodrome environment will be required in order to obtain the training data for

this process.

Data extraction for texture involves a texton based approach, in which a texture re-

sponse is generated for each pixel, allowing each cluster to be classified through Support

Vector Machine (SVM) voting within a BDT. As evidence for the Bayesian network must

be provided in a probabilistic form, a novel method of assigning representative proba-

bility is introduced, based on the position of the texture point (texton) within the tex-

ture feature space and its distance to class boundaries. Further data extraction includes

the use of NRL, a novel fusion of distance and brightness data for ground pixels, using

horizon detection to both re-normalise the luma component whilst also countering the

effects of atmospheric scattering.

The classification stage consists of a Bayesian network, believed to be novel in the

area of detecting generic collision risks through terrain classification. A sub-network

framework is introduced, in which each sub-network provides an independent estimate

of class, allowing a manually defined CPD to determine the final result by weighting the

results as appropriate. As the winning classification is associated with a confidence in

the final result, a simple threshold is used to distinguish uncertainties within the final

result. This has been shown to be an effective and reliable method of detecting unknown

objects within images. For extraction into the world-space, a brief review of monocu-

lar depth extraction techniques has concluded that IPM is the most suitable, capable of

localising extracted objects within five metres at fifty metres range.

10.2 Contributions

As surface operations for civil UAS is not an area of previous academic research, the ap-

plication area itself can be considered novel. However, this thesis has made more specific

contributions to knowledge:

1. A deterministic machine vision system for semantic segmentation of outdoor scenes,

using a Bayesian Network.

2. A novel method of graphical reachability, intended for use in combining superpix-

els into larger regions without sudden changes in colour.

3. The specification of Normalised Relative Luminance (NRL) and its relationship

with distance for surface marking extraction.
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4. The representative probability calculation for texton classification data, specifi-

cally for converting a BDT based SVM classification into a probabilistic output.

10.3 Recommendations for future work

10.3.1 Further testing - Multi-platform and Other Locations

Throughout this work, the development and testing have been undertaken using the data

captured by BAE Systems equipment. Although highly appropriate for the task, this lim-

ited dataset only validates the machine vision approach for this hardware configuration.

As the system is intended to provide a generic solution which can be used on many air-

craft without the need for hardware modification, further testing with multiple camera

types should be undertaken. In addition, as the mounting height of the camera directly

effects the range that can be observed within the image, a study into the necessary height

requirement for the camera should also be undertaken.

Furthermore, as Walney Island Airport was the single aerodrome from which images

were captured, further testing at highly contrasting civil aerodromes is required to truly

validate the approach. With UAS being globally developed, this would ideally include

aerodromes from many different countries. Not only should this include the effects of

differing climates, weather conditions and terrain, but it would also provide information

on the surface markings and aerodrome conventions used internationally.

10.3.2 Expansion to a Full ATS

As is likely apparent, there is still much work required in order to produce a full ATS.

Specifically for this thesis, additional chapters pertaining to visual localisation were not

completed due to the limitations of time. The original concept consisted of a particle

filter based tracking system, to facilitate map matching in addition to tracking poten-

tial collision risks over time. With both collision risk detection and improved localisa-

tion achieved, the remaining major element would be a decision making process which

would be required to allow the UAS to act on the data without direct human input. Prior

to the future recommendation suggestion below, the rest of the ATS system should be

completed, to verify that automated taxiing is possible under the original constraints as-

signed to this work.
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10.3.3 Deep Learning

Despite much of this thesis being specifically tailored to only use method which avoid

deep learning, the future viability of these methods should be recognised. When consid-

ering the recent advent of ANN and the many benefits they bring it is clear that the future

of autonomous vehicles will likely depend on machine-learning. With related technol-

ogy fields (such as self driving cars) already making use of machine learning for control,

it is likely that future aircraft will do the same.

As the potential risks of an single aerodrome collision are far greater than the equiv-

alent dangers in a SDC, only systems with the highest level of certainty will be permitted

to operate. As such, any review of machine-learning for use in surface operations should

ideally focus on the confidence of the output.

10.3.4 Task Specific Hardware

As this work was aimed to function with specific UAS hardware, the available sensors

were defined from the start. Although a review of other sensor types concluded that vi-

sual camera systems were amongst the most appropriate for the task, there has been little

investigation into alternative configurations.

Although this could include other sensor types, an investigation into the use of addi-

tional cameras would likely be more appropriate as a follow up to this thesis. For exam-

ple, the inclusion of cameras positioned to provide continuous views around the aircraft

would allow the existing system to detect risks in all directions.

Additional experiments in the use of stereoscopic depth extraction would also be rec-

ommended. As the operating range of stereoscopic depth extraction depends on the sep-

aration between cameras, replacing the singular monocular camera with dual cameras

would only allow for short range depth estimation, suitable for immediate risk detection.

However, as aircraft have wide wingspans, an additional study into wing tip mounted

cameras may provide long range stereo vision for aircraft, suitable for both use on the

ground and when airborne. As wing tips are highly dynamic, the tracking of the relative

motion of the cameras to each other would be a challenging problem.
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