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Abstract 

 The population of most western countries is ageing and, therefore, the ageing issue 

now matters more than ever. According to the reports of the United Nations in 2017, 

there were a total of 15.8 million (26.9%) people over 60 years of age in the United 

Kindom, and the numbers are projected to reach 23.5 million (31.5%) by 2050. 

Spending on medical treatment and healthcare for older adults accounts for two-fifths 

of the UK National Health Service (NHS) budget. Keeping older people healthy is a 

challenge. In general, exercise is believed to benefit both mental and physical health. 

Specifically, resistance band exercises are proven by many studies that they have 

potentially positive effects on both mental and physical health. However, treatment 

using resistance band exercise is usually done in unmonitored environments, such as at 

home or in a rehabilitation centre; therefore, the exercise cannot be measured and/or 

quantified accurately. Despite many years of research, the true effectiveness of 

resistance band exercises remains unclear.  

 A possible method to objectively quantify the effectiveness of these exercises is to 

use sensors systems. There are many motion capture systems available, such as smart 

wristband, full-body motion capture suit based on Inertial Measurement Unit (IMU), 

and camera-based motion capture systems. However, they are either too simplified and 

therefore cannot accurately measure specific exercises, e.g. smart commercial 

wristbands fit onto one hand but provide inaccurate step count to the user, or too 

complicated to set up before measuring, e.g. full-body motion capture suits or camera-

based motion capture systems. As such, existing systems are not sufficient in measuring 

resistance band exercise remotely. A customised sensor system needs to be developed 

which capable of measuring remote exercise. Specifically, the goal is to answer the 

three main questions about remote exercise: “When was the exercise done?”, “What 

kind of exercise has been done?” and “How was the exercise done?” 
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 In order to achieve the above goals, a sensorised resistance band system (called 

WBR-SH2) was developed, which aims to measure the resistance band exercise 

remotely and accurately. The design was based on the “nearable” concept to improve 

the technology acceptance among older adults and provide a user-friendly interface for 

novices to operate. The WBR-SH2 system uses two sensorised handles (based on IMU 

and load cell) and a smartphone to monitor the exercise objectively.  

 In a multiple sensors network, such as WBR-SH2 system, synchronisation is 

fundamental. The available synchronisation methods are either not accurate enough or 

require hardware modification on the smartphone. A novel synchronisation method is 

proposed in this thesis based on time-aligned transactions of Bluetooth Low Energy 

messages. This method was tested with a few Android devices in a network, including 

five sensor nodes, and achieved sub-millisecond accuracy. Which is around 150 times 

better than generic BLE time service. 

 Sensor nodes can generate massive data during the measurements, which results in 

the need for a lot of wireless bandwidth and power to transmit for post-analysis. 

Alternatively, doing data processing entirely or partially in the sensor nodes reduces the 

need for an external receiver. Neural networks are good at aggregating information and 

reducing the data dimensions but are also computationally expensive. The recent 

developments in complex neural network structure allow higher power efficiency and 

a reduction in the size of memory which makes memory-constrained platforms (such 

as microcontrollers) capable of running complex neural networks. However, there is no 

library currently available for microcontrollers which can support complex network 

structures. Therefore, a high-level Neural Network on Microcontroller (NNoM) 

framework was developed. NNoM organises the complex structure model by using a 

compiler to identify the connection and running sequence in between layers. It also 

provided a user-friendly interface, optimised performance and a set of validation tools 

for developers to develop and deploy their models onto microcontrollers.  
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 As a proof of concept, experimental tests were undertaken both in the UK and in 

Italy to investigate the effectiveness of the proposed resistance exercise. The results 

proved that the WBR-SH2 system can recognise different types of exercises on its own 

without any external input from skilled operators, and can synchronise with Bluetooth 

Low Energy networks. A valuable resistance exercise dataset has also been collected, 

which can potentially help future researchers to understand and evaluate the resistance 

band exercise. 

 In conclusion, this work presents research and development of an intelligent sensor 

system, capable of answering all three questions in remote resistance band exercises: 

“When”, “What” and “How”. This work has the potential of contributing to future 

research in understanding the interventions with exercise, as well as other research 

fields requiring similar motion measurements, such as optimising athlete performance 

through objective exercise measurements, or help surgeons during their training and 

careers.  
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Chapter 1 Introduction 

1.1 Background 

1.1.1 Ageing 

 The global ageing issue now matters more than ever. According to the reports of 

the United Nations in 2017 [1], about 12% of people are aged 60 years or over globally. 

Figure 1-1 shows the projected percentage of older adults. In 2050, older adults are 

projected to account for one in five people globally. Europe is the most critical area in 

which over 25% of the population is predicted to consist of older adults by 2020. The 

ageing problem in the UK is also significant, there were a total of 15.8 million (26.9%) 

people over 60 years of age in 2017, and the numbers are projected to reach 23.5 million 

(31.5%) by 2050.  

 

Figure 1-1 Percentage of population aged 60 years or over by region, from 1980 to 2050 [1]. 

 An ageing society impacts many aspects such as pensions, healthcare, economics, 

taxes, and so on. Especially in the UK, the spending on medical treatment and 

healthcare for older adults takes two-fifths of the NHS budget [2]. Health spending per 
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person steeply increases after the age of 50, with people aged 85 and over costing the 

NHS an average of £7,000 per person per year. Although the impact on the NHS is 

tremendous, it is only a small part of the significant costs of which the majority is 

carried by older people and their families themselves. The health of older adults is also 

directly linked to the cost of medical help and healthcare. It is always more effective 

and cost-efficient to prevent instead of cure diseases.  

1.1.2 Mental and Physical Health of Older Adults   

1.1.2.1 Physical Health 

 Older people often suffer from poor physical health. Half of the people over the 

age of 80 was reported having long-standing physical problems in the survey of Adult 

health in Great Britain [3]. The survey revealed that 69% of people aged 75 and over 

reported having a long-standing illness compared with 15% of people aged 16–24. The 

WHO reports that those with physical health conditions, such as heart disease, have 

higher rates of depression than those who are physically well [4]. Results of a World 

Mental Health Survey published in 2007 highlighted that the risk of depression was 

over seven times more common in those with two or more long-term physical health 

conditions [4]. 

 These age-related changes affect a broad range of physiological functions, such as 

muscular, cardiovascular, pulmonary, body composition and in general the physical 

functional capacities. Cumulatively, this could impact the preservation of the activities 

of daily living and independence in older adults [5], [6]. In general, a decrease in muscle 

functionality, that can compromise muscle mass, regional adiposity, muscle strength, 

and motor control is considered one of the most important physiological change during 

the ageing process [7]. This decrease is involved in the pathogenesis of frailty and 

disability that leads to decreased autonomy in the activities of daily living, increasing 

the risk of falls, and the consequent risk of morbidity and mortality [8], [9]. However, 
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muscle strength can be improved in older adults through strength training exercises [7], 

[10]. 

1.1.2.2 Mental Health 

 In 2015, over 20% of adults aged 60 and above were suffering from a mental or 

neurological disorder according to the report from WHO [11]. The two main issues 

affecting older adults’ mental health are dementia and depression.  

 Dementia is caused by pathologies, such as Alzheimer’s disease, consisting of 

plaques and tangles. Dementia affects people differently, especially in the early stages; 

how others respond to the person and how much support they get from their surrounding 

will greatly affect their quality of life [12]. Dementia is a rising global issue, widely 

affecting the lifestyles of older adults, with annual global costs in excess of $ 800 billion 

USD. It was estimated that 46.8 million people worldwide were living with dementia 

predicted to increase in 2015. This number is increasing to 74.7 million by 2030 [13], 

[14]. In the UK, dementia costs society an estimated £26 billion a year or on average 

£32,250 per person with dementia, this is more than the costs of cancer, heart disease 

or stroke combined [15]. 

 Depression is another common issue among older adults which could lead to 

suffering and impaired functioning in daily life. Depression is characterized by sadness, 

loss of interest or pleasure, feelings of guilt or low self-worth, disturbed sleep or 

appetite, tiredness, and poor concentration [16]. Unipolar depression occurs in 7% of 

the general older population [11]. In England, depression affects around 22% of men 

and 28% of women aged 65 years and over [17], yet it is estimated that 85% of older 

people with depression receive no help at all from the NHS [18]. 

1.1.2.3 Exercise Treatment for Mental and Physical Health 

 The benefit of physical exercise for health is well known and documented. 

However, there are many studies which have not found this. Ageing is a complex 
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process that may lead to a decline in physical functions. The following sections will 

discuss both positive and negative evidence.  

1.1.2.4 Positive Evidence of Exercise 

 Progressive resistance training using weight resistance devices is a popular 

approach for strength and conditioning. Previous studies showed that the use of weight 

resistance devices improved muscle strength, power, functional skills and muscle mass 

in older adults [6], [7], [19], [20]. Resistance band training could be defined as 

progressive strength training, where the workout is against an external force that is 

increased as strength increases [7]. Considering that in general, the older adult’s 

population comprises of untrained or frailty older adults with functional limitations, i.e. 

with muscle and joint disorder, they may not be able to use the necessary weight 

required to produce positive muscle adaptation, due to the general physical inability, 

and decrease in motor control. Resistance-training program using resistance bands or 

tubing (e.g. TheraBands) to enhance their strength may offer a safe, inexpensive, and 

practical method for older adults [21]. 

 The study done by Loughborough University with sedentary older participants (40-

65 years old) showed that resistance exercise (30 min, 3 times a week for 12 weeks 

using resistance bands at home) had high adherence (88%) and improved memory, 

when compared to yoga exercises of a similar duration in an order, balanced cross over 

design [22]. However, the objective measurement and quantification of the exercises 

were limited to the number of repetitions and time. Also, the effectiveness of the form 

of exercise (such as how much, how long, how intense) in the exercise treatment was 

unknown.  

 The influence of exercise interventions is more significant in the long-term than 

the short-term. A large scale random-controlled 2-year multi-domain intervention with 

diet, exercise, and cognitive training to prevent cognitive decline in at-risk 

(Cardiovascular Risk Factors, Aging, and Dementia (CAIDE) with a Dementia Risk 
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Score of 6 points or higher) older adults was done by Ngando et al. in Finland [23]. 

1260 elderly subjects were included in this study, with subjects separated randomly into 

2 groups. One group was assigned to the intervention plan, while the other group was 

without intervention. Assessments of cognitive performance were done once a year, 

which was assessed at the beginning of the experiment, 1 year after the experiment 

began, and 2 years after the experiment began. The results are shown in Figure 1-2. It 

was clearly demonstrated that the long-term diet, exercise, and cognitive training 

intervention can slow down the cognition decline in at-risk older adults. Figure 1-2 

shows the estimated mean change in cognitive performance from baseline until 12 and 

24 months (higher scores suggest better performance) in the modified intention-to-treat 

population. Error bars are standard errors. Mixed-model repeated-measures analyses 

were used to assess between-group differences (group × time interaction) in changes 



Background 

6 

 

from baseline to 24 months based on data from all participants with at least one post-

baseline measurement.  

 

Figure 1-2 Change in cognitive performance during the 2-year intervention (NTB=neuropsychiatric test 

battery.) [23].  

 Many authors have also proposed that participating in physical and cognitive 

stimulating activities may improve memory, cognitive abilities and physical functions 

[24]–[27], in particular using resistance bands exercises [22], [28], [29]. 

In summary, exercises could have a positive influence on mental health among 

older adults in different aspects. However, it is not clear what kind of exercise is 

effective on what aspects of health specifically. In addition, many reviews have not 

shown constant beneficial effects of exercise for dementia or depression [30]–[32]. 

1.1.2.5 Neutral or Negative Evidence of Exercise 

 Although the above studies and others show that exercise benefits mental and 

physical health, there is limited definition of the intensity of exercise and the 

effectiveness of the exercise. A more recent study shows that exercise does not always 

benefit older adults with dementia [33].  
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 The Dementia And Physical Activity [33] (DAPA) trial of moderate to high-

intensity exercise for older adults was a long-term experiment involving abound 500 

dementia subjects [33]–[35]. DAPA is an exercise intervention protocol which was 

developed for improving cognitive functions in older adults with mild to moderate 

dementia. Many experiments were done using DAPA with different configurations.  

 The experiment was done with 494 subjects in the timespan of 12 months [33], 

[35]. Two-thirds of the subjects were assigned with exercise intervention as an 

experimental group, while the others remained with normal care as the control group. 

The exercise intervention in this experiment was divided into 2 sessions, a supervised 

session and a un-supervised session. The supervised session required the subjects to 

attend a 1-hour exercise class twice a week for 4 months. The exercise performed during 

the class were targeting at 50 minutes’ moderate-intensity to achieve a total of 150 

minutes per week. The exercises performed were a combination of aerobic and 

resistance exercises. The second session lasted for 8 months, in which the subjects 

performed all 150 minutes’ moderate-intensity exercise unsupervised. Phone calls were 

made approximately 2 to 3 weeks in the second session, and a single face-to-face 

meeting was completed during the second session to provide encouragement and 

assistance. The subjects were assessed before the experiment, at 6 months of the 

experiment, and at 12 months of the experiment using ADAS-cog score [34] which total 

scores ranging from 0–70, with higher scores (≥ 18) indicating greater cognitive 

impairment. The result of the study is shown in Figure 1-3, where the middle lines of 2 

groups in all assessments are similar, with the experimental group growing a little faster 

than the control group. Meanwhile, the diversity in the scores of the experimental group 

is larger than the control group.  
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Figure 1-3 Box plots of raw data for Alzheimer’s disease assessment scale-cognitive subscale (ADAS-

cog) at baseline and six and 12 months. Data are median (central line), interquartile range (box 

margins), adjacent values (whiskers), and outliers (dots) [34]. 

 DAPA was developed from the guidelines produced by the WHO, and the study 

completed a large-scale experiment including almost 500 subjects and 1-year timespan. 

However, the result shows that the effectiveness of DAPA intervention for some people 

with dementia is null or even slightly negative. The diversity of results is larger in the 

exercise group compared to the normal care group which indicates that some people 

have benefited from the exercise intervention, while others did not.  

 Reviews of exercise intervention for older adults with or without dementia are 

showing similar null effects for cognitive functions [30], [31], [36]. The reasons for the 

null or negative effects for some people in these studies might be due to the lack of 

personalised intervention plan for each individual. 

1.1.2.6 Summary of Exercise Treatment 

 In general, exercise is believed to be good for young or older adults. However, 

without knowing the exact types and intensities of exercise which leads to positive 

effects, partaking in exercise could also be harmful to some individuals. Therefore, 

personalisation is necessary for optimal exercise treatment. Understanding the true 

effectiveness of exercise is the first step to generate a personalised exercise plan. This 

is a challenging multi-discipline problem, for which the research has received 
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innumerable effort and resources, but which remain uncertain. In most of the studies 

mentioned above, the two major difficulties encountered are, how to measure the 

exercise objectively, and how to quantitate the exercise. This is especially challenging 

when the subjects return home and do the exercises unsupervised.  

 In the resistance exercise intervention, the exercise is always done by subjects 

remotely in their home without direct observation by researchers or monitors. Some 

studies used self-reporting from the subjects to evaluate the adherence between agreed 

exercise plan and actual exercise completed [37], [38]. However, researches also point 

out that self-report is not reliable when it comes to exercise[39], [40]. Normally, studies 

with exercise intervention for older adults assessed the subjects on weeks or months 

basis [34], [41], [42], the development progress within the assessment interval are 

missed.  

 In summary, the major limitations of the above studies are the loss of exercise 

tracking during the exercise intervention. Thus, the key points to understand the 

exercise effectiveness is to be able to answer the three questions of “when”, “what” and 

how the exercise has been conducted remotely.  

1.1.3 Exercises Intervention Model 

 In most of the previously mentioned studies, the tested subjects are assessed 

periodically either in hospital, a care home or in a laboratory environment, whilst most 

the exercises are done remotely at home. A review by Ashworth et al. [43] pointed out 

in most of the studies, home exercises are less effective compared to centre-based 

exercise in lab or hospital.  

 The traditional intervention models used by the studies discussed in section 1.1.2 

are summarised in Figure 1-4. In this model, a comprehensive assessment of the person 

will be done periodically with instruments available in the lab or hospital. However, 

when the person goes home, all of the therapy trackings is completely lost until the next 

time the person visits the doctor. The exercise that the person at home has done at home 
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is unsupervised and unmonitored. When the doctor wants to know how the exercise 

was completed during this time to adjust the intervention plan, they must rely on the 

self-reporting from the person. However, self-reporting has been proved to be 

unreliable, especially for evaluating exercise [44].  

Figure 1-4 Traditional exercise intervention model. Patients do exercise at home and frequently visit 

the hospital for assessment.  

 Wearable sensors have become increasingly popular in recent years. The most 

represented devices are commercial smart wristbands and smartwatches. These 

wearable devices implement many sensors, including motion sensors to measure 

activities, heart rate sensors to measure heart rate and SpO2 to monitor oxygenated 

haemoglobin. They not only provide a more frequent measurement compared to the 

traditional model (shown in Figure 1-4) from daily/weekly/monthly to minutes/seconds 

but also provide quantitative exercise feedback to the user such as step-count, heart rate 

and so on. This model can be summarised as the “Wristband Approach” which is shown 

in Figure 1-5. In the Wristband Approach, exercise is objectively measured, and the 

aggregate information is provided to the user.   
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Figure 1-5 Wristband Approach example. User does exercise (walking), whilst the wearable sensor 

(wristband) measures and quantitates the exercise (step counts). It is user’s options whether to use the 

feedback or not or how to use the feedback. 

 The objective measurement and aggregated feedback provided by the Wristband 

Approach should help people optimise the exercises, as they can get feedback about the 

exercise from the wristband directly. However, a recent study shows different results. 

A 2-year long-term experiment was done with 471 overweight volunteers (Body Mass 

Index (BMI) 25 to <40, age 18-45 years) who were asked to diet and do more exercise 

[45]. Half of the volunteers were given a fitness tracker to help themselves to monitor 

their exercise. The study results show the group which was given a tracker lost less 

weight than the other group. In summary, the devices which offer monitoring and 

feedback on physical exercise might not offer an advantage over standard behavioural 

weight loss approaches.  

The reasons for the Wristband Approach failing could be summarised by: 

1) The quantitative information is still meaningless for common users. Without 

involving the expert into the loop, the feedback to the user is less motivated and 

less reliable.  

2) The activities information from these sensors is too generic. It is not feasible to 

determine whether a particular exercise plan has been completed to the required 

standard or if the exercise plan is effective.  
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3) Minimalist commercial motion sensors such as wristband, smartwatch or 

smartphone couldn’t provide accurate enough measurement to assess the person 

and the exercise. 

 The improved Wristband Approach is shown in Figure 1-6, which can solve the 

above problems by involving an expert to assess and analyse the exercise and then 

provide the personalised reports to the user. In addition, the feedback and reports should 

be more convincing to the user if the reports and feedbacks are endorsed by the expert.  

 

Figure 1-6 Improved Wristband Approach. Instead of leaving feedback to user, this approach involves 

an expert to generate a personalised report for the user. 

 An improved remote exercise intervention model is proposed in Figure 1-7. This 

model uses modern technologies such as sensors, data links, and artificial intelligence, 

to remotely assess the patient, therefore reducing the need to visit an assessment centre 

and improve the assessment duration. The remote measurement tools are one of the key 

components in this model, which extended the assessment from the hospital to the 

patients’ home. This model takes advantage of the embedded sensors in people’s home 

or the portable sensorised devices to allows remote assessment. With this model, the 

patient can be assessed in their home in real-time, therefore, the requirement to visit the 

hospital is reduced and improved continuous assessment can be achieved. The main 

challenge of this model is to miniaturise the assessments tools without losing the 

accuracy and functionality compared to what has provided in the hospital.  
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Figure 1-7 Improved model using remote assessment. The measurement was in the hospital is extended 

to the user’s home by remote sensors.   

 A similar model (shown in Figure 1-8) was first introduced a decade ago (in 2009 

by Waseda University [46], [47]). However, there is no effective implementation based 

on this model until now. The reasons why are easily seen. Accurate exercise 

measurement needs comprehensive tools, which are still expensive and require 

professional skills to operate, no matter if they are put in a patient’s home or are located 

in a hospital. Novices or less capable older adults may have difficulty to operate the 

instruments. 

 

Figure 1-8 Exercise intervention with remote exercise measurement tools [48]. 

 To summarise, the exercise interventions could not be done if any one of the 

following factors cannot be fulfilled: 1) remote objective exercise measurement, 2) 

involving experts, and 3) quantitative feedbacks. Above all, the remoted objective 

exercise measurement is the cornerstone of the exercise interventions. Although there 

are plenty of off-the-shelf products that could measure the exercise very accurately, 

they are still not suitable to be implemented into a user’s home due to their complexity. 
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A few typical products using different technologies for motion tracking are discussed 

later in section 1.1.5.1. However, none of them can measure exercise while fulfilling 

all the needs at the same time. Thus, the purpose of presenting these approaches is to 

discuss the major limitation of the different types of technologies when applied to the 

exercise intervention model for long-term exercise measurement, real-time data 

collection, assessment and feedback. Further to establish the technological environment 

of building the exercise-specified nearable motion tracking sensors (in this case, the 

sensorised resistance band for resistance exercise) and evaluation tools which are 

proposed in the thesis.  

1.1.4 Couch Potatoes Resistance Exercise for Older Adult 

 An existing exercise protocol called Couch Potatoes for Cognition (CPC) was 

selected for the focus of this thesis. CPC is a sitting resistance band exercise protocol 

for older adults was provided by Loughborough University [49]. The exercise protocol 

has been proved to have a positive effect on cognition functions for people with 

dementia [22]. The CPC protocol aims to improve the upper and lower body strength 

for older adults. The CPC provides benefits for working, climbing stairs, standing from 

a chair, holding items and the coordination of the arms and hands in daily tasks. The 

only 2 instruments needed for doing the workout is a set of resistance bands and a 

comfortable chair. CPC suggests that the workout should be undertaken at least twice a 

week, for 30 minutes each session. CPC includes 4 types of activities. Each activity 

was developed for the help of particular daily tasks, including climbing stairs, standing, 

coordination, getting dressed, preventing falls, shopping, washing/taking a shower, 

standing from a chair and gardening. The full protocol can be found in Appendix A. 

1.1.5 Remote Exercise Measurement 

 Remote exercise measurement is the cornerstone to the implementation of the 

remote assessment model mentioned in section 1.1.3. The key aspect is to accurately 
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and continually track the motion of users while they are doing exercise at home. In this 

section 1.1.5, a few types of motion measurement system will be compared. 

1.1.5.1 A Survey of Motion Tracking System 

 In order to measure remotely, a motion tracking system is required to operate 

independently in the user’s home. Currently, there are a variety of commercially 

available products or systems in the markets for motion tracking. Depending on the 

technology of the tracking method, the available measurements are different, and the 

limitations are different.  

1) Mechanical Trackers 

 Mechanical trackers have been developed and used for a very long time, and are 

still being widely used due to their high accuracy and low latency. The most significant 

characteristic of mechanical trackers is the subjects must wear a mechanical frame 

similar to exoskeleton without support from motors. Waseda University developed a 

Bioinstrumentation System WB-1 Motion Capture Systems for human-robot 

interaction [50]. The WB-1 system includes 12 Degree of Freedom (DoF) angular 

measurement per arm, with a total weight of 2.2Kg. The authors claim that the system 

has sufficient accuracy to measure human consciousness direction in an interaction 

between a human and a robot, in which application, motion tracking is the necessary 

condition. 

 However, mechanical measurement systems are relatively heavy, adding extra load 

to the user while they are partaking in exercise, and they potentially restrict the natural 

motion.  

2) Camera‐based System 

 Camera-based systems can be separated into marker-based or markerless systems. 

Intuitively, the difference between them is whether the system requires some visual 

makers to be worn on the human body to help the systems to capture the motion.  
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 Marker-based camera systems (such as VICON [51]) are capable of tracking the 

motion of body accurately, however, the capture volume is limited, and the complexity 

of the system is high due to the requirement of multiple cameras and worn markers. On 

the contrary, markerless systems (such as Kinect [52], computer vision with regular 

RGB camera [53]) do not require the user to wear special marker for skeleton capture. 

Therefore, they are more feasible than a marker-based system in exercise. However, 

markerless motion capture has less accuracy if the line of sight is blocked. Additionally, 

both camera-based systems require subjects to do the exercise in a specific sensing 

volume, which is within the valid operating parameters of the capturing camera. 

 Due to the of reduced wearability in maker-based systems or accuracy with 

markerless systems, camera-based systems are not feasible for the remoted exercise 

measurement in people’s home.   

3) IMU‐based Measurement 

 In the last decade, the development of Micro-Electro-Mechanical Systems 

(MEMS) technology has reduced both the size and the cost of small Inertial 

Measurement Unit (IMU) sensors. An IMU consists of a 3-Axis gyroscope, a 3-Axis 

accelerometer, and sometimes also a 3-Axis magnetometer. IMUs are motion sensors 

which measure motion directly. IMUs are already widely used in a variety of research 

areas including gait measurement, skeleton motion extraction, surgical training, 

rehabilitation training and so on.  

 Commercial products such as Perception Neuron can provide out-of-box solutions, 

one of which is a motion capturing suits which consist of multiple miniature IMUs, and 

the software for complete skeleton capturing [54]. The WB-2R/3/4 suit is a lightweight 

motion tracking suit developed by Waseda University, which provides flexible 

configuration of IMUs and biological signal sensors. The system was evaluated by 

multiple studies [55]–[57] for different motion tracking tasks, and the accuracy and 

functionality are outstanding. Those own-built IMU systems are event more flexible 
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compared to commercial systems in sensor configurations and different scenarios, such 

as having synchronised Electromyography (EMG) sampling and IMU sampling.  

 There are also variable products including smartphone and wrist band which 

implemented a small amount of IMUs (usually one) for simple motion capturing and 

analysis. They are capable of providing aggregated information on some common 

metrics, such as steps counting, sleeping monitoring and activity timing. Due to the 

number of IMUs (normally one in each product) inside the device is small, these 

products are not accuracy when monitoring exercises. 

The largest advantage of IMU systems is flexibility. The scale of the IMU system 

range is from the complete full-body measurement, such as skeleton capturing, down 

to only one IMU measurement such as wristband or smartphone.  

1.1.5.2 Summary of Motion Tracking System 

 The remote measurement of the exercise done by the person is still a challenge 

utilising the systems shown above. Mechanical systems are not feasible due to the 

distraction for natural movement. Marker-based camera systems are highly accurate but 

bulky and complex to operate. The markerless camera system is more portable but less 

accurate in motion tracking.  

 The IMU-based system is a balanced method for remote exercise measurement, 

due to its flexible configuration in between system complexity and usability. It allows 

researchers to customise the system, using different numbers of IMUs and position of 

IMUs.  

 However, the configurations of the off-the-shelf IMU-based systems are polarised, 

either full-body capturing suits with tens of IMUs or oversimplified with only one IMU. 

The full-body IMU suits are still too complex for novice and less capable older adults 

to operate, while the simplest one IMU devices are not capable of measuring the 

required detailed exercise data.    



Background 

18 

 

1.1.5.3 Exercise Assessments with IMU 

 IMUs have been widely used during research into different types of exercise 

evaluation, recognition, and quantisation. This is due to their miniature size, accuracy, 

and low latency measuring, and the flexible system size. In the previous discussion, 

some studies use IMU and traditional cognitive scores for cross-assessment of people 

with mental impairment, and the results show the clear relationship between the gait 

disorder and mental impairment [58]–[60].   

 The study done by Velloso et al. [61] focused on qualitative activity recognition of 

weight lifting exercises by a few wearable IMU units and an IMU attached to a 

dumbbell. The configuration of the experiment is shown in Figure 1-9. In total, 4 IMUs 

are used to capture the motion of the parts of interest, which was the upper arm, forearm, 

waist, and dumbbell. The data analysis is separated into 3 parts, detecting mistakes, 

specify exercises (exercise recognition), and providing feedback to subjects. 6 young 

subjects were asked to perform one set of 10 repetitions of the Unilateral Dumbbell 

Biceps Curl in five different fashions. The first class (Class A) is exactly following the 

exercise specification, the rest classes (B, C, D, E) are 4 different common mistakes, 

throwing the elbows to the front (B), lifting the dumbbell only halfway (C), lowering 

the dumbbell only halfway (D), and throwing the hips to the front (E). In the data pre-

processing, 17 features are selected for 10-trees random forest classifier. The results 

show a 98.2% accuracy in all the data with 2.5second of sliding windows; however, 

when they trained the classifier with one subject for testing while other subject’s data 

for training, the accuracy drop to only 78.2 %. A repetition counter together with the 

features extracted previously is modelled and provide to the user as feedback. In 

general, with the help of the feedback provided by the researchers, the subjects make 

79.22% fewer mistakes in completing the biceps curl exercise. 
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Figure 1-9 Weight lifting with sensorised weights and wearable IMUs. [61] 

1.1.6 Synchronisation in Wireless Sensor Network 

 The proposed system should consist of multiple sensor nodes for detailed 

measurement in CPC resistance band exercise. Thus, the synchronisation between 

sensor nodes is fundamental to ensure the measurement in every sensor node is aligned 

on the same clock.  

 In a customised network with both ends (sensor end and central end) have fully 

MAC-layer (MAC ) timestamp accessibility, the sensor network can be synchronised 

down to a few microsecond level accuracy [62]–[64]. When one of the ends has no 

access to MAC-layer timestamp, the synchronisation accuracy is unknown. This 

situation is very common when the sensor system involving a standardised device 

instead of a customised device as a data receiver, such as a smartphone. 
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1.1.7 Exercise Recognition with Machine Learning 

 Exercise recognition of IMU data is basically a feature classification application.  

A review by S.B. Kotsiantis [65] compared multiple supervised machine learning 

techniques including Decision Trees, Neural Network (NN), Bayesian Networks, k-

Nearest Neighbour (kNN), Support Vector Machines (SVM). The author suggested that 

SVM and neural network tend to perform much better when dealing with multi-

dimensions and continuous features, which is similar to the data produced by an IMU-

based motion capture system.  

 Among SVM and NN techniques, NN classifiers have been proved to be effective 

in with IMU data for Human Activity Recognition (HAR) [66], as well as the 

implementation in gait analysis [67]. There are large quantities of studies on NN for 

different scenario IMU data classification [68], [69].  

 Normally, data from IMU is continuous measurements which then being 

segmented using a sliding windows technique. These segments then can be used as a 

training dataset to train a NN classifier, or as a testing dataset to evaluate the 

performance of a trained NN classifier. Public domain datasets are available, such as 

Human Activity Recognition Using Smartphones Data Set (UCI HAR [70]) which 

contains labelled 6-Axis IMU measurement (accelerometers and gyroscope data) in 6 

different types of daily activities which were captured by a waist-worn smartphone. 

These datasets allow studies to validate and assess the performance of the customised 

classifiers before putting efforts for doing an experiment in similar scenarios.  

1.1.8 Rethinking of Wearable Technology 

 Do wearable sensors really work in a real-life scenario? The question leads to 

another very important factor, which is the user’s (the older adults’) acceptance of using 

the wearable sensors. A study by Mercer et al. [71] recruited 32 older adults (ages over 

60) to evaluate the acceptance of a few motion trackers using the Technology 

Acceptance Model (TAM). Among the participants, 31% had never used a smartphone 
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or tablet, while the others used one every day. This is already much lower than young 

people; 85% (age below 50) of them use a smartphone or a tablet every day [72]. In the 

analysis, many participants have suggested that the presented tracking devices are only 

for young people because those sensors are not easy to understand or operate. The 

authors claim that it is a barrier to the actual system use and can imply to the user that 

they should be able to use the device and that difficulties are a personal failing. Many 

participants also claim that they are only interested in the numbers, graphics but not 

motivated by them. This comment is similar to the limitation discussed earlier in the 

Wristband Approach (1.1.3 and Figure 1-5) which is the lack of involvement with 

experts making the data less understandable for the user or less convincing. 

 Further, the actual acceptance of the wearable devices is still questionable. The 

study done by Kim et al. [37] investigated the acceptance of two wrist bands in 20 older 

adult participants aged 55 years old. 80% of them accepted a non-screen wrist band 

(Xiaomi Mi Band), while only 50% of them accepted a screen writs band (Microsoft 

band). The results show a large portion of older adults might simply refuse to use these 

devices. Additionally, the screen with numbers (information) might not attract older 

adults as there is a concern that excessive information will expose their defects and their 

ability to be compared to others. 

 The concept of “nearable” might be a solution to the potential low acceptance 

problem among older adult. Nearable is an idea that implements sensors into a person’s 

environment instead of being worn by the person (wearable concept) [73]. Sensors 

using this concept could be fitted into the improved model for remote assessment 

(Figure 1-7) like the idea of “smart home”. Nearable sensors are not cumbersome to the 

end user since the nearables do not alter the objects they represent. The idea is a very 

promising solution to the acceptance problem among older adults who tend to stay in 

their comfort zone of conventional equipment and not like to interact with “fancy” and 

“smarts” sensors and equipment.  
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1.1.9 Summary of Background 

 Ageing is a global issue but of particular concern in the UK due to the higher 

portion of older adults (26.9% people over 60 in 2017 [1]). The consequences of an 

ageing society can be summarised greater burden on a variety of aspects such as social 

services, healthcare, and labour shortage. Keeping older adults physically and mentally 

healthy is a big challenge, but will effectively lower the impact on society. Exercises 

are proven to be effective for not only physical health but also to potentially benefit 

mental health in improving cognitive functions and alleviating depression in older 

adults. However, exercise can also be harmful if it has not been done correctly. Many 

studies have tried to investigate the relationship between exercise intervention and 

mental health, and the effectiveness of exercise intervention in improving mental health 

or benefiting neurological disorder such as dementia, to date, these have not provided 

a definitive conclusion.  

 Investigating the effectiveness of exercise and mental health is difficult due to the 

multidisciplinary nature of the problem itself. In most of the studies mentioned above, 

subjects are assessed over a long period (4,6,12-month interval). These long periods 

cannot provide the details of a disease’s development or progression in shorter periods. 

Most of the studies have used supervised training at the beginning of their experiment, 

then followed by an unsupervised exercising plan. In the unsupervised session, 

researchers must encourage the subjects to follow the exercise plan by calling and 

visiting. To evaluate if the exercise has been done correctly, these studies have to rely 

on self-reporting from the subjects. Furthermore, it has been noted that self-reporting 

is not reliable in exercising scenarios [40]. 

 Motion tracking remotely in people’s home is a potential method to quantitate the 

exercise and provide a continual patient assessment. Potentially, the development 

progress of the mental disease can be assessed through motion measurement. It is 

therefore foreseeable that, a motion capturing system which can measure the exercise 
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continually in patient’s home will help in both to investigate the true effectiveness of 

exercise intervention and the progress of the disease.  

 Many commercial (VICON, Kinect, Perception Neuron etc.) and customised 

motion tracking systems (WB-2R/3/4 etc.) shown previously in section 1.1.5.1, none 

of them is feasible for remote exercise measurement. Table 1-1 summaries the 

performance and limitations of the different technologies.  

Table 1-1 A comparison of tracking technologies 

 Accuracy Price Wearability Portability Measurement 

volume 

Mechanical tracking Low Low Low High High 

Marker-based camera High High Mid Low Low 

Markerless camera Low Low High Mid Low 

Comprehensive IMU suits a  High Mid Low Mid High 

Single IMU devices b Low Low High High High 

Customised IMU system c  Mid Low Mid High High 

a Comprehensive IMU suits contain tens of IMUs which can provide a full-body measurement.  

b Smartphones, smartwatches, wristbands and other devices contain single IMU.  

c Customised measurement system with less than 10 IMU for interested parts measurement.  

 Among the listed technologies in Table 1-1, the customised IMU-based system 

with a small number of sensor nodes is a feasible choice for exercise measurement. The 

configuration of the IMU system is flexible between a comprehensive motion capturing 

system to simple system capturing only a few points of interest. The comprehensive 

system is not always required when measuring only a few certain exercises, this 

requires fewer measuring points to understand the exercise accurately. The IMU system 

can, therefore, be designed specifically for a certain type of exercise to reduce 

complexity. A sensor system for novice and less capable older adults must have good 

portability, wearability and be simple to operate. IMU systems are less environment-
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dependent, which allows the system to be set-up fast and produces fewer restrictions on 

the subject while measuring. When using a customised IMU-based system for motion 

tracking, the trade-off must be made between the number of IMU nodes which 

correspond to the measurement accuracy of the exercise and the usability which must 

be easy to operate for novice and less capable user. Additionally, the mobility of 

transferring the system must be considered. 

 Finally, the gap between the acceptance of wearable sensors by older adults and the 

functionality of wearable sensors are still large. Wearable sensors can measure very 

useful data whilst many older adults refuse to use them. The reasons are sometimes 

very different, such as the sensor/APP/instructions are not easy to understand by older 

adults, or older adults are more inclined to stay in the comfort zone without electronics 

devices. The concept of nearable sensors brings undistracted measurement to the users 

which could be the solution of exercise measurement among older adults. 

1.2 Problem Statement   

 Among studies discussed previously, there is a common need to measure exercise 

remotely, objectively and continually. Home exercise requires much less in time and 

resources costs compared to traditional centre-based intervention. Unless the exercise 

is supervised and instructed correctly at home, the home exercise is less effective than 

centre-based exercise. Therefore, objective and remote assessments are needed. 

Continuous measurement potentially provides tracking of the development progress in 

physical and mental disease. Once the exercise can be measured remotely, the experts 

could monitor the execution of the intervention continually. Commercial motion 

tracking systems are limited on measurement capabilities which require many 

preparations in setting up the system. For example, the VICON system requires the 

subject to wear retroreflective markers and calibrate cameras before the experiment can 

start. IMU systems could be feasible to undertaking the exercise measurement remotely, 

however, there are some limitations:  
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A) The comprehensive measuring tools, such as motion camera-based system or 

IMU-based motion tracking suits are too complicated to operate, while 

consumer wearable products such as a wristband, smart shoes, or smartphone 

itself are less capable of measuring exercise accurately. Nevertheless, most of 

the commercial measurement systems are for general measurement, which is 

too generic, so the operations of the systems are complicated (such as IMU 

suits) or inaccurate (such as smartphones, wristbands).  

B) Getting data is only the first step of the complete intervention model. The raw 

measurement from sensors is meaningless for an expert or the user to read. Data 

processing and quantitative reports must be generated. There still a lack of 

analysis tools for specific exercises such as resistance band exercise.  

C) The acceptance of new technologies (such as smartphone and wristband) among 

older adults is lower than younger adults. The sensor system or the sensorised 

instruments might be contradicted by the end-users (older adults).  

D) The megatrend of informatic decentralisation indicated that the sensors should 

be capable of processing the collected data and only provide aggregated 

information to an upper receiver instead of raw data. Many commercial tools 

for exercise measurement are still sending raw data which cost more power, 

results in less battery time.  

1.3 Goals of this Thesis 

1.3.1 Aims 

 A less-general measurement tool designed for a specific exercise not only reduces 

the complexity of the system, by reducing the unnecessary sensing node and simplify 

the human-machine interfaces but is also superior to consumer wearable products (such 

as wristbands) by providing much more detailed data and higher accuracy. In the 

previous reviews, resistance exercise has the potential benefit for the older adults in 

both mental and physical health, and it comes with standard exercise protocols (Couch 
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Potatoes for Cognition [49], section 1.1.4). The resistance band is a common, portable, 

and standalone exercise instrument which does not require users to “wear” it. Making 

resistance band sensorised fit the idea of nearable, which does not disturb the user when 

unnecessary. Thus, resistance band exercises are chosen as the focus exercise in this 

thesis.   

Therefore, the goal of this thesis is to research and develop an IMU-based sensor 

system for measuring resistance band exercise remotely and to research and develop 

the corresponding assessment methods for data collecting, processing, and exercise 

assessment. The goal can be separated into a few aims: 

1) To develop a robust IMU-based sensorised resistance band system which can 

measure exercise objectively and remotely. Use the concept of nearable instead 

of wearable to improve the acceptance of older users. The sensor must be with 

the minimum operating difficulty, user-friendly interfaces, and provide very 

detail raw data. 

2) To develop the methods and tools using the data provided from the sensorised 

resistance band for resistance exercise classification and exercise quantitation.  

3) To implement the above assessment methods into the sensorised resistance band 

to provide more real-time feedback to the user, and to provide aggregated 

information directly from the sensor to reduce the dependency of the additional 

data receiver, such as a PC or smartphone.  

4) To develop a time synchronisation method for the distributed sensor networks 

involving smartphone based on standardised communication protocols.  

5) Finally, the sensorised resistance band and tools must be verified by real end-

users, which are the older adults, with a complete exercise protocol to evaluate 

the functionality, the usability, and the limitations.  
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1.3.2 Novelty   

 This thesis demonstrates the general model for exercise intervention and the 

methodology for remoted exercise measurement and assessment.  

 The studies exploring exercise interventions are unreliable due to the lack of remote 

exercise measurement tools. This thesis proposes a sensorised resistance band system 

and related tools to allow exercise to be measured remotely.  

 The design of the sensorised resistance band system uses the concept of nearable 

instead of wearable. The wearable concept is to put sensors on the human body, while 

nearable is to implement sensors on the environment to reduce the interference of the 

user’s daily life. Therefore, sensor acceptance by older adults might be higher than 

traditional wearable sensors.  

 A neural network on microcontroller framework has been developed (NNoM). It 

enables the possibility of not only the sensorised resistance band but also a wide range 

of edge devices to perform machine learning locally.  

 Two sets of Couch Potatoes for Cognition resistance band experiments were 

completed locally in the UK and in Italy with the developed sensor system. The dataset 

is the first to record the motion in the resistance band exercises with 50 participants. 

1.3.3 Contribution of this Research 

 This thesis presents the research and development of a sensorised resistance band 

system for remoted exercise measurement which is not commercially available [74], 

[75]. 

 Two sets of experiments were done with the sensorised resistance band system. The 

system fulfilled the requirements of remote resistance band measurement in varying 

degrees. It provides rich and real-time raw data and aggregated information for data 

processing [74], [75] 
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 A neural network classifier was developed for resistance band exercise 

classification based on the experiment data [75]. The classifier achieves significant 

accuracy in variable testing data. 

 A novel synchronisation method based on Bluetooth Low Energy has been 

proposed with continuous synchronisation and no interference to original bandwidth 

[76].  

 A user-friendly neural network framework designed specifically for 

microcontroller called Neural Network on Microcontroller (NNoM) is developed. 

NNoM is capable of running state-of-the-art and complex NN models on a 

microcontroller with little effort.  

 Two datasets of resistance exercise are collected by the sensorised resistance band 

system. Both datasets record the exercise in detail with a wide range of participants, 

which are valuable for further research.  

1.4 Thesis Outline 

 The thesis contains seven major chapters. The background information has been 

shown in this chapter. The reminders of the thesis chapters are listed below.  

 Chapter 2 describes the preliminary resistance band experiment with Arm Curl 

Test using an experimental sensorised resistance band system. 

 Chapter 3 introduces the development of the sensorised resistance band system 

(labelled WBR-SH2). The WBR-SH2 system has the same sensor 

configuration of the experimental system, however, the usability is improved 

dramatically.  

 Chapter 4 presents a novel synchronisation method to synchronise multiple 

WBR-SH2s by an off-the-shelf Android phone based on generic Bluetooth 

Low Energy (BLE) protocols.  

 Chapter 5 shows the development of the compact Neural Network on 

Microcontroller (NNoM) framework, the implementation of the framework to 
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Microcontroller Unit (MCU), and the evaluation of the neural classifier on the 

MCU.  

 Chapter 6 presents the international experiment using WBR-SH2 with the 

range of people, including older adults, who is the real end-users of the system. 

The experiment data are analysed, and the feedback of the system are 

summarised.  

 Chapter 7 finally concludes the contribution and limitation of this thesis and 

propose the futures research directions.  

 

 The structure of the thesis is shown in Figure 1-10. 
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Figure 1-10 The overall thesis structures.  
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Chapter 2 Preliminary  Objective  Exercise 

Measurement using Arm Curl Test   

2.1 Introduction 

2.1.1 Background 

2.1.1.1 Lack of Objective Exercise Measurement   

 Several scientific studies discussed in Chapter 1 have shown that resistance or 

strength training is beneficial in slowing the cognitive and physical decline of people 

suffering from mental problems, such as cognitive decline and depression. Resistance 

band exercise seems to be a potential intervention for older adults that suffer from 

memory and cognitive decline [22], [77], [78]. However, there are some critical 

limitations among these studies: 

 The adherence between the agreed exercise plan and the actual exercise has 

been done is low. The evaluation of remote exercises is based on self-report, 

which is highly unreliable. 

 The effectiveness of exercise is hard to measure due to the lack of objective 

exercise assessment. 

 The development progress of the mental disorder cannot be tracked because the 

assessment intervals are long (4 months, 6 months or 12 months) 

 No instant feedback to the person during unsupervised intervention sessions.  

 Compared to the drug treatment [23], [79], the exercise interventions on cognitive 

rehabilitation usually takes a longer time to be effective in many studies (normally 

months to show cognitive changes). Due to the relatively longer reaction time in 

exercise treatment, the studies in exercise intervention are less time-efficient, therefore, 

take longer periods to seem.  
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 In general, the quantification of the resistance bands exercises is limited to the 

number of repetitions and total time. However, due to the variable loading patterns of 

resistance bands (greater stretch produces greater resistance) and other variants, simply 

counting the number cannot assess the performance accuracy. Ideally, the exact strength, 

intensity and speed can be used to identify the volume and intensity of training [80], 

therefore, to quantitate the exercise. Especially for older adults, there are large physical 

differences between individuals; it is fundamental to optimally assign tailored training 

programs to them. Prescribed resistance bands exercise could be too weak or too hard 

for some people, and consequently, they may be negatively affected. To understand the 

effectiveness of exercise, shorter assessment interval or continuous assessment is 

required, and objective exercise measurement is required.  

2.1.1.2 Arm Curl Test   

 Arm Curl Test (ACT) is a part of the American Alliance for Health, Physical 

Education, Recreation & Dance Functional Fitness Test (AAHPERD), shown in Figure 

2-1. This Chapter select ACT for the experiment protocols due to it is simple and well 

researched. The Functional Fitness Test was designed for adults over the age of 60 

years[81], [82]. Compared to the more recent and more specific Couch Potatoes for 

Cognition (CPC) [49]), the ACT is much simpler but has been developed for a longer 

period and has rich studies for comparison.  
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Figure 2-1 Traditional Arm Curl Test [83]. 

 The aim of ACT is to test the strength of upper body muscle using weights 

(dumbbell). The ACT is widely used in both research and fitness. However, the 

traditional ACT protocol is lack of detail assessment due to the assessment method is 

too simple, which is a score based on how many curl repetitions done in 30 seconds. 

The weights are different for men and women (5 lb for women, 8 lb for men) and a 

score table is used to assess the performance [84]. The performance and limitation have 

been discussed in many types of research [83], [85].  

2.1.1.3 Resistance Band Equipment and Exercises 

 Resistance bands are portable exercise equipment which has been widely used in 

different fitness and rehabilitation. Figure 2-2 shows one type of resistance band (with 

specific design handle). There are normally 5 different strength of resistances, which 

differed by the colour of the resistance bands.  
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Figure 2-2 A set of resistance bands equipment. Different colours on the resistance band indicate 

different strengths. There are also some accessories, including handles, for various exercises.  

 The lightest strength starts from the yellow band, while the heaviest resistance is 

the black band. There are some intermediate resistances in between the yellow and the 

black; they are the red, green and blue band.  

 The use of a resistance band can be accompanied with a specific handle, which can 

reduce the force applied on hand and for easier gripping. The handle is made with a 

hard-plastic hollow cylinder and covered by soft foam material to provide a buffer 

between handle and hand. A nylon band goes through the hollow cylinder and the 2 

ends of the band are hooked together by a metal ring. Then a range of resistance band 

can be hooked to the handle with a quick hook. Figure 2-3 shows the setup of a 

resistance band with handle. The selected yellow band is hooking on the handle by the 

fast hook.  
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Figure 2-3 Resistance band with a handle 

2.1.2 Problem Statement 

2.1.2.1 Limitation of Traditional Arm Curl Test 

 The limitation of ACT the assessment only based on only one score, which is the 

number of completed cycles in 30 seconds. Although some studies have expanded the 

scores by adding the ages and gender, it still seems insufficient. The score will then be 

classified into three levels broadly, such as below average, average, and above average. 

The more representative features such as frequency, power, energy, the timing of each 

repetition, the effects of the fatigue are completely ignored. 

 The detailed measurement in resistance band exercise is not available. For example, 

the ACT measures the performance based on only one score, and the CPC did not 

provide an evaluation method. These metrics are not enough to measure resistance band 

exercise or quantitate the exercise accurately.  

2.1.3 Objectives 

 Develop an experimental sensorised resistance band system for measuring 

resistance exercise. The system should have multiple sensors embedded into the 

resistance band handle to measure exercises objectively.  
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 Process the raw data and provided an evaluation method to quantitate the exercise 

objectively. Also, investigate the most related parameters in the performance and 

exercise quantitation.  

2.2 Methodology   

2.2.1 Revised Arm Curl Test 

A Revised ACT (RACT) protocol is proposed which replaces the dumbbells by a 

range of resistance bands, therefore, allows the experiment performed by a resistance 

band. In addition, the subjects are required to do the exercise in standing positions. 

2.2.2 Experimental Sensorised Resistance Band System 

 Multiple potential sensing parameters are discussed in the following sections, 

which capable of measuring the measure the resistance band exercise. A few types of 

sensors, including gyroscope, accelerometer, magnetometer, barometer and a load cell, 

are discussed and implemented into the handle. The development and sensor calibration 

are shown in Appendix B and Appendix C individually. 

2.2.2.1 Potential Sensing Parameters  

 Different sensing technology can measure the exercise from their perspectives. In 

this section, three types of parameters are discussed, which could be potentially 

meaningful to quantitate the exercise; they are motion data, human body data, and 

timing data.  

 First of all, the movement of the handle is potentially related to the exercise, 

including orientation, accelerations, rotations, and the features extracted from them. 

The physical status of the user is also essential, including power, heart rate, and blood 

pressure. The timings of exercises are also important. These data should be capable of 

answering the three questions of exercise proposed in Chapter 1: “when”, “how” and 

“what”.  

 The list of the key parameters is shown in Table 2-1: 
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Table 2-1 List of key parameters can potentially quantitate the ACT 

Parameters  Camera-based IMU Load Cell Barometer PPG 

Orientation of hands Y Y    

Rotation of hands Y Y    

Acceleration of hands Y Y    

Heading Y Y    

Relative Height Y E  Y  

Force on band   Y   

Gripping force   Y   

Power E E    

Heart rate     Y 

Timing Y Y Y Y  

Y: direct measurement; E: can be estimated; Blank: not able to measure 

  

 To conclude Table 2-1, most of the key parameters can be measured by the 5 types 

of sensors. In some of the parameters, such as orientation, rotation, acceleration, 

heading, and timing can be measured by 2 or more kinds of the sensor. The sensor 

selection will be discussed in detail in the following section.  

2.2.2.2 Sensor Selections for Sensorised Handle 

 As discussed in Chapter 1, other than camera-based systems, motion-sensing can 

also be done by IMU sensors. IMU normally consists of gyroscopes, accelerometers, 

and possibly magnetometers; they can measure the 3-Axis rotations speed, 3-Axis 

accelerations, and magnetism on the sensor’s location directly. These sensors are 

already commonly used in a smartphone to provide the orientation and motion data for 

gaming, Virtual Reality and other applications to provide the orientation of the devices. 

In addition, these MEMS IMUs are already widely used in many commercial wearable 

smart devices in fitness and healthcare, for example, wristbands are normally used to 
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record the step counts, exercise, sleep qualities and sometimes heart rate (recorded by 

photoplethysmogram (PPG) sensor).  

 Similar to wearable devices, the design of the experimental system is focused on 

implementing sensors into resistance band handle, therefore, the resistance exercise can 

be measured in the same way as these wearable devices. An IMU will be implemented 

into the handle for measurement of orientation, acceleration, and rotation. A barometer 

is also put in the handle to measure the atmospheric pressure and the temperature, which 

can be converted to the absolute height above sea level. Also, a load cell sensor is put 

in between the resistance band and the handle for measuring the force applied to the 

resistance band directly. An external housing is needed for the load cell sensor in 

between the main housing and resistance band.  

 To measure the heart rate of the exercise, a PPG sensor can be used. PPG sensors 

are widely integrated into many modern smart wristbands. PPG sensor is also 

considered to be put into the experimental system but has not yet implemented into the 

experimental system since, at the preliminary test, the experiment is more focus on 

exercise instead of the human body.  

 As a result, the selected sensors in the experimental system are IMU, barometer, 

and load cell.  

2.2.2.3 Overall Performance of the Experimental System.   

The specification of the experimental system is summarised as below in Table 2-2.  

Table 2-2 Sensorised resistance band handles of the experimental system 

Parameters Value  

Size [mm] L130 x D32 (cylinder), L50 x W24 x 18H (load cell housing) 

Weight [g] 120 Included Battery 

Working Current [mA] 153 

Power consumption [mW] 0.56 

Sensor 9-Axis motion sensor, barometer, load cell 
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Parameters Value  

Sampling rate [Hz] 500Hz 

Charging time [hour] 3 

Battery durability [hour] 8 

Communication method Bluetooth LE 4.2, Sub-1G wireless 

Communication distance [m] 10 with Bluetooth Low Energy 4.2, 100 with Sub-1G 

Data recording time Max 6 hour with 32G microSD card. 

MicroSD card capacity Up to 32GB 

Cost [GBP] ~70 

 The size of the sensorised handle is similar to the conventional non-sensorised 

handle. The sampling frequency can be up-to 500Hz, which is enough for human 

exercise measurement. The 1400mAh battery allows it to measure exercise continually 

for 8 hours. The comparison between the traditional handle and the sensorised handle 

is shown in Figure 2-4. The mechanical parts were built by Fused Deposition Modelling 

(FDM) 3D printer with Polylactic Acid  (PLA) materials. 
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Figure 2-4 Side by side comparison of the traditional handle and experimental sensorised handle. 

2.2.3 Experimental Setup 

 Two healthy volunteers participated in the preliminary experiments. Both were 

male, aged 24, and both were right-handed. The subjects were asked to do RACT in 30 

seconds for four times which each hand performed two times using two levels of 

resistance bands. The two levels are differed by the colours of the band in black or 

yellow. The black band (22 lb) is stronger than the yellow band (8 lb). The subjects 

were asked to complete every cycle by pulling the resistance band from waist to 

shoulder and then releasing to the initial position. In between each test, there was 10 

minutes’ interval for rest to avoid the effect of fatigue across the exercise. However, the 

protocols need to be revised for older adults who might be weaker in physical strength. 

The data is recorded into the internal microSD card Comma Separated Values 

(CSV) file during experiments. The recording was started by pressing the push button 

which located on the face of the handle. In the recording state, the sensorised handle 

blinked the onboard LED at 10Hz, to shows the user that the data is recording correctly. 



Chapter 2 Preliminary Objective Exercise Measurement using Arm Curl Test 

41 

 

The button is pressed 3 seconds before the subject start to do the exercise to create a 

new data logging file in SD card. The data recording is stopped by pressing the button 

again. 

Additionally, the subjects are asked to do one more curl after the 30 seconds. Which 

will provide the redundancy for data analysis. The recorded files are copied to PC after 

each test is finished and the subject is on rest.  

The sensorised handle and conventional handle, shown in Figure 2-4, are similar 

in dimensions to avoid the unnatural feeling to the user. However, during the exercise, 

the load cell housing might collide to the user’s hand when the resistance band handle 

is lifting to the top position. The collision might lead to some different feeling compared 

to the traditional handle.  

 

 

Figure 2-5 Revised Arm Curl Test. The band is fixed by foot, and the user lifts the handle from waist to 

shoulder then release to the initial position. 

 The experiment setup is shown in Figure 2-5. The selected handgrip the handle and 

the lower end of the resistance band are fixed by the same side foot. The length of 

resistance band is adjusted differently according to the height of the subject. The 
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resistance band should be initially tightened slightly. In the test, the subject followed 

the procedure of lifting the handle from waist to shoulder, after reaching the shoulder, 

the handle is released to the waist. 

2.2.4 Available Measurements 

 Multiple sensors are available in the experimental system. These data are listed in 

Table 2-3. Besides, the timestamps of the sampling were recorded in millisecond 

resolution.  

Table 2-3 The available sensors on the experimental system 

Sensors Measurement  Axis / Channel Resolution  Ranges 

Gyroscope Angular velocity  3 16 [bit] ±125/±250/±500/ 

±1000/ ±2000 [dpsa] 

Accelerometer Acceleration 3 16 [bit] ±2/±4/±8/±16 [G] 

Magnetometer Magnetism 3 16 [bit] ±4/ ±8/ ±12/ ±16 [Guass] 

Barometer Air Pressure 1 24 [bit] 450 to 1100 [mBar] 

Air Temperature 1 24 [bit] -40 ~+85[°C] 

Load Cell Force 1 24 [bit] 0~500[N] 

 adps, Degree Per Second  

 With the timestamping and the raw data listed above, many features and timings 

can be extracted.  

Table 2-4 Extracted features 

Types Features Notes 

Timing Duration of each repetition Measured by the start of the repetition to end.  

Time of lifting The time taken for pulling the resistance band 

Time of falling The time taken for releasing the resistance band 

Energy Potential Energy of lifting The energy absorbed by the resistance band while 

pulling 



Chapter 2 Preliminary Objective Exercise Measurement using Arm Curl Test 

43 

 

Types Features Notes 

Power Average power  The mean power while pulling 

 Peak power The peak power while pulling.  

Frequency Frequency changes The change of frequency in each repetition during 

30 seconds. 

  

The features shown in Table 2-4 are some parameters potentially meaningful to 

evaluate the performance using RACT. The timings are very sensitive parameters which 

might be affected by fatigue and strength of muscle. For example, the weaker hand 

might take longer to curl than the stronger hand. The timing of each cycle might take 

longer at the end of the test compared to the beginning due to fatigue. Potential energy 

and power indicate the changes during the process of exercise. The frequency change 

is also interested, which can use to describe the trend of curling.  

2.2.5 Data Processing   

 The raw data lists in Table 2-3 was recorded both onboard and on a PC. The data 

was post-analysed by Python after the experiments. To reduce the noise, a Butterworth 

Low-Pass Filter () with 10Hz cut-off frequency was applied to the raw data: force, 

rotations, acceleration, magnetism. An LPF with 5Hz cut-off frequency was applied to 

air pressure. 

 The raw data was read out and segmented into single repetitions for further feature 

extraction. Python programming language and several open-source scientific libraries 

including NumPy, Pandas and Matplotlib were used for the data analysis and plotting. 

NumPy is the fundamental package for scientific computing with Python, which 

provides different data types, multiples data processing method, and matrices 

mathematics [86]. Pandas provide high-performance, easy-to-use data structures and 

data analysis tools [87]. It contains many other features such as a powerful N-

dimensional array object, sophisticated (broadcasting) functions, tools for integrating 
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C/C++ and Fortran code, linear algebra functions, Fourier transform functions, and 

random number capabilities. Matplotlib is a plotting library which produces publication 

quality figures in a variety of hardcopy formats and interactive environments across 

platforms [88]. 

2.2.5.1 Data Segmentation 

 The data from each repetition (lifting from waist to shoulder then back to waist) 

needs to be segmented from the continuous measurement signals. Each repetition starts 

from where the resistance band is lifted from the waist (bottom position) to shoulder 

(top position) and ends by the resistance band is released back to the waist. The force 

applied on the resistance band is increasing through the elevating, reaching the peak 

forces while it is lifted to the shoulder, and then decreasing associated with the band 

releasing. Thus, the method to segment the data can be straight forward. Simply find 

out where is the peak force (the band lifted to shoulder) and where is the smallest force 

(the band at the waist). Thanks for the load cell sensor, the force applied on the 

resistance band is measured directly. Therefore, the data segmentation can base on the 

peak and minimum force data. However, by looking into the raw data, there were many 

peaks and distraction in some repetitions, which affect reduces the reliability of 

segmentation. The distraction is shown in Figure 2-6, marked by the red circle. The 

distractions are worse when exercising with a heavier band.  

 

Figure 2-6 Raw data plotting and distractions (marked by the red circle). 

  Therefore, a more reliable segmentation method is needed. Besides, the top 

position, the start position and the end position should be considered individually for 
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each repetition. Due to the distractions shown in Figure 2-6, the force data alone cannot 

be used along to locate the top position. By plotting the force data with the rotation of 

the resistance band handle together, we found that the actual peak of the force is always 

associated with the zero-crossings of rotation (from negative to positive or reversed). 

For example, Figure 2-7 shows the first 2 repetitions of the ACT; the zero-crossing of 

the rotation is at the same timing (which is identified by the red lines) when the force 

reaches to the peak. The combination of both rotation’s zero-crossing timing and peak 

force detection can be the more robust method for identifying the top position in 

segmentation.  

 To compare, by using peak detection with the force data along, the number of 

repetition detected is more than the trust of observation due to the small peaks around 

the main peak. By using the combined method only the main peaks are detected. 

Therefore, the segmentation relied on the combined method.  

 

Figure 2-7 Peak force associated with zero crossings of rotation. 

 The combined method above has located the top position of the segmentation. 

However, the top position alone is not enough for data segmenting. The start and end 

position is also needed, where the subject just starts to lift the band and where the handle 

just arrived at its start position. The method to locate the cutting point between the two 
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peak forces is to find the middle time from the 30% force of the last repetition to the 

30% force of the next repetition.  

 Specifically, an estimated starting point is used at the very first raising and an 

estimated cutting point is used after the last falling. In these cases, the estimated cutting 

point will be calculated separately from the other middle repetitions. Usually, the force 

before the first raising is at an initial position, where the subject standstill and the 

resistance band tighten in a light force. The data before the first repetition started is not 

concerned. During the ACT experiment, the time of the initial position was not 

controlled. The time before the first curl was related to the subject’s preparation and 

their own decision.  

 The start point cutting does not need to be accurate, because the aim to segment 

the repetition is to separate each repetition from a continuous data sequences, not to 

identify the length of the repetition or to extract the features. To estimate the start point, 

we find the points that the force rises from idle (could be non-zero) to 30% of the peak 

force. Then identify the time from 30% force to the top position (peak force). After that, 

we estimate the start point will be within the range of half time that from 30% to peak 

force ahead of the 30% force. Figure 2-8 shows how the start point is estimated in real 

data.  

Figure 2-8 Start point estimation of the first curl. 

 The same estimation is applied to the segmentation of the last repetition. 

Correspondingly, the estimated point is located after the top position and the 30% to 

peak force in the falling phase. 
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2.3 Experiment   

The experimental sensorised resistance band system was used during the 

experiment to measure the exercise. The data is plotted and discussed in the next few 

sections. The result shows a significant improvement in understanding of the exercise 

by using the experimental system to measure the RACT compared to the traditional 

ACT scores. 

2.3.1 Results 

 After the data segmentation, the details of each repetition are plotted and analysed 

from a different perspective. The segmented force data for both subjects are shown in 

Figure 2-9 and Figure 2-10.  

 

Figure 2-9 Subject 1 segmented force data. 
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Figure 2-10 Subject 2 segmented force data. 

2.3.1.1 Timing 

 In each repetition, 3 different timings are extracted, they are: 

 the lifting time	ݐ௥௜௦௘, from 10% of the peak force to 90% of the peak force during 

the rising phase. 

 the falling time	ݐ௙௔௟௟ , from 90% of the peak force to 10% of the peak force 

during the falling phase. 

 the duration	 ௗܶ௨௥௔௧௜௢௡, which is measured from 10% of the peak force during 

raise phase to 10% of the peak force during the falling phase. 

 The timings are extracted from force measurement only. The example of timings 

extraction in one complete repetition is graphically shown in Figure 2-11. The blue curl 

represents the percentage of the peak force. The red dots represent the timing which 

should be captured. They are 10% of the peak force and 90% of the peak in both lifting 

and falling phases. These timings are captured and recorded separately for more feature 

extractions.  
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Figure 2-11 Example of the 4 key timing points.  

After the timings are captured, the ݐ௥௜௦௘, ݐ௙௔௟௟, and ௗܶ௨௥௔௧௜௢௡ can be calculated 

individually. The method is to find the peak force of each segment, then find the time 

that the force reaches 10% and 90% of the peak force. Additionally, the force that 

considered is the delta force. Because the resistance band was tightened at the initial 

state before the subject started to do RACT. Therefore, a small amount of force is 

applied even in an initial state, which means the 10% peak force might be larger than 

the initial force. To avoid this problem, the timings are extracted by the delta of the 

force (from initial force to peak force). The initial force of each repetition is calculated 

individually, which is set to the minimum force of the specific segment.  

 The three parameters (ݐ௥௜௦௘, ݐ௙௔௟௟, and ௗܶ௨௥௔௧௜௢௡) are plotted with the number of 

repetition and the regression lines. The figures from the two subjects are placed side by 

side in Figure 2-12, Figure 2-13 and Figure 2-14. The lifting time	ݐ௥௜௦௘ and the duration 

of repetition ௗܶ௨௥௔௧௜௢௡  clearly show the impact of fatigue, where the timings have 

increased associated with the number of repetitions. In both subjects, the tests with 

black band (heavier band) are quicker to be affected while the tests with the yellow 

band (lighter band) performed more insistently.  
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Figure 2-12 Rising time of each repetition. 

 

Figure 2-13 Falling time of each repetition. 
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Figure 2-14 Duration of each repetition. 

 The distributions and standard errors of the timings in each repetition in the rising 

phase, falling phase, and the total timing are shown in Figure 2-15, Figure 2-16, and 

Figure 2-17. The standard error charts show the same results as above; the test with the 

yellow band is more constant than the black band.  

Figure 2-15 Standard error of rising time. 
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Figure 2-16 Standard error of falling time. 

 

Figure 2-17 Standard error of duration. 

2.3.1.2 Peak Force 

 The maximum forces measurement during each repetition is peak forces. Different 

weight levels of the resistance bands provide a different tensile force when extended to 

the same length. The force data is measured by a load cell sensor directly which was 

calibrated before the experiment. After the segmentation, the peak force of each 

segment is extracted by the maximum measurement. The peak forces are plotted with 

the repetition number to show the trends through the repetitions, which is shown in 

Figure 2-18. The peak force measurement should be reached around the shoulder which 

is the position top position. The tests with the yellow band in both subjects have proven 

the argument. Unexpectedly, with subject 1, the peak forces with the black band on both 
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hands are increasing with the number of repetitions. The maximum increase is over 10% 

when the subject 1 was doing exercise with the black band using the right hand. This 

might indicate the incorrect postures which might be affected by the fatigue. 

 The standard errors are shown in Figure 2-19. The graph from both subjects shows 

a stable peak forces measurement.  

Figure 2-18 Peak force. 

 

Figure 2-19 Standard error of peak force. 

2.3.1.3 Frequencies 

 The frequencies are calculated by the reciprocal of the timing in between two 

adjoining repetition’s top position. The reciprocal of the frequency is different from the  

ௗܶ௨௥௔௧௜௢௡  but very similar to the traditional ACT score, which is the number of 

repetitions done in 30 seconds. The results are plotted in Figure 2-20. The frequency of 
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both subjects is decreasing during the test. The subject 1 was curling faster than the 

subject 2 in the test with a black band at the beginning, later, they were reaching the 

same frequency at the end of the test at around 0.6 Hz.  

Figure 2-20 The frequency trends. 

2.3.1.4 Maximum Rotation Speed of Lifting 

 The maximum lifting rotation speed is the maximum rotation measurement in the 

handle during the lifting phase. The results are shown in Figure 2-21 and Figure 2-22. 

Both subjects performed differently in the maximum rotation speed. In the tests with 

the yellow band, the maximum rotation speeds are more varied than the black band in 

both subjects.  

Figure 2-21 Maximum rotation of lifting. 
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Figure 2-22 Standard error of maximum rotation of lifting. 

2.3.1.5 Potential Energy 

 The potential energy represents the energy absorbed by the resistance band while 

it was being pulled. The resistance band can be described by a spring model ݈ ൌ ݂/݇. 

Where the ݇ is the resistance band’s elastic coefficient, which is calibrated before the 

experiment, and 	݂  is the force applied to the resistance band. The energy in each 

repetition is calculated independently by (2-1). The results are shown in Figure 2-23. 

The energy plotting is similar to the peak forces due to they are all based on the force 

measurements.  

௣ܧ  ൌ
1
2
݈݇ଶ (2-1) 

 

Figure 2-23 The potential energy.  
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2.3.1.6 Average Lifting Power 

 The average power is calculated by ݌ ൌ ௥௜௦௘ݐ/௣ܧ , where ܧ௣  is the potential 

energy that absorbed by the resistance band during the lifting phase, and the ݐ௥௜௦௘ is 

the lifting time from 10% peak force to 90% peak forces. The results are shown in 

Figure 2-24. The power shows a similar argument to the frequency measurement, which 

is subject 1 can output more power than subject 2 at the beginning, but subject 1 is 

easier to be affected by fatigue than subject 2.  

Figure 2-24 The average power in lifting. 

2.3.2 Summary of Results 

 The results above show a few parameters and features that were extracted from the 

raw data collected by the experimental system. The selected features show a 

comparison between the 2 subjects and 4 configurations in different perspectives. 

 Some of the features have clearly shown the effect of fatigue, such as the average 

lifting power, the frequencies, the lifting time, and the repetition duration. The trends 

of these data are decreased with the number of repetition done while the other 

parameters show less correlation to the fatigue. 
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2.4 Discussion   

 The experimental sensorised resistance band system was the first trial to develop a 

sensorised exercise instrument specifically for resistance band exercise. Meanwhile, the 

application scenarios are narrowed; thus, the measurement is less general than the 

existing commercial motion trackers. The benefit of the narrowed application is it is 

more straightforward in the designing and potentially have a more accurate 

measurement for the specific exercise. The reduced number of sensor nodes (only 

requires two sensor nodes) compared to other comprehensive systems has avoided the 

interference on the user’s natural movement.  

The experiment and the results show the advantages of using the sensor system in 

RACT while compared the traditional ACT. Basing on the detailed exercise data, the 

assessment of the subject’s performance can be achieved from different perspectives, 

which is superior to the only one score assessment in the traditional ACT. 

 Among the experiment results, more comparisons can be made. For example, the 

average lifting power shows both subjects have declined performance during the 

number of repetitions. Beyond these, it shows that the performance of subject 1 is 

declined more than subject 2, which can be concluded in subject 1 is more explosive 

while subject 2 is more endurable. Another example is the data of peak forces and the 

potential energy in each repetition. Subject 1 has increased force measurements in the 

black band (heavier band) during the number of repetitions. It can be inferred that the 

subject 1 might involve more muscles including the waist and shoulders, which is not 

a correct motion.  

 Besides the above measurements, some data seems less correlated to the 

performance, such as the peak rotation speed of the handle. Also, there are still some 

features that have not been extracted from the raw data, such as the orientations, the 

rotation of other axes, the accelerometer’s measurements and others. Those features 
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also describe the exercise from their perspectives but have not been investigated during 

the data analysis.  

During the experiment, the experimental system has shown its capability of 

objective resistance band exercise measurement. The data recording was robust, and 

the raw data certainly have fulfilled the requirement of objective exercise measurement. 

2.5 Conclusion   

To conclude, exercise treatment on cognitive rehabilitation normally takes a longer 

time to be effective compared to other treatments like drug treatment. Which brings 

many difficulties for understanding the effectiveness of exercise intervention. These 

problems are lack of objective exercise measurement, lack of intermediate data while 

subjects are doing exercise remotely. To understand the effectiveness of exercise, a 

shorter assessment interval or even continuous assessment is required, and objective 

exercise measurement is required.  

Therefore, this chapter has presented the resistance band experiment (revised of 

Arm Curl Test) which is objectively measured by an experimental sensor system.  

In this chapter, the traditional ACT protocol is revised to use the resistance band 

instead of weights. By analysing the raw data, a few features are selected and plotted 

for analysis. Some features, such as timing and energies, has a strong relation to the 

fatigues. Some features, such as peak forces, potentially capable of tracing the mistakes 

in exercise. However, the findings above are still preliminary, further study with a larger 

number of participants is needed.  

The functionalities of the experimental system are validated during the experiment 

and the data analysis, which has fulfilled the needs of objective resistance band exercise. 

However, there were some major limitations which prevent it from wider applications 

and further data analysis, including the IMU placement and the lack of multi-sensor 

networking.  
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In the next chapter, the limitations of experimental systems will be further 

discussed, and the development of a robust sensorised resistance band is presented.  
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Chapter 3 Development  of  the  Sensorised 

Resistance Band System 

3.1 Introduction   

3.1.1 Background 

 Motion tracking systems have been widely used in recent years. Some of them are 

highly accurate and complex for professed applications, such as marker-based cameras 

system, VICON [89], and full-body IMU suit [54]. First, accurate measurement can be 

achieved in a lab with nessesary instruments, but they are too cumbersome for users to 

bring home. Second, the measurement from commercial wearable sensors such as 

wristbands is too simplistic and less accurate. As discussed in Chapter 1, customised 

IMU-based measurement system (containing only a few sensor nodes) can balance the 

system complexity, measurement accuracy and usability. In Chapter 2, an experiment 

using the experimental sensorised resistance band system shows the objective 

measurement capability using IMU and a load cell in resistance exercises. Multiple 

sensors were placed inside the resistance band handle to measure the motion and force. 

The experimental system has achieved a very detailed measurement, which was capable 

to measure the Arm Curl Test objectively and has provided much more details compared 

to the single scores in traditional Arm Curl Test. However, the experimental system was 

not designed for remote measurement but to validate the capability of objective 

measurement using IMU. It is not feasible for long-term remote measurement.  

 Many wireless sensor systems, such as WB3/4 motion tracking suit (by Waseda 

University [55]–[57]) and the experimental system used in Chapter 2, can be described 

as Figure 3-1. These systems usually consist of multiple sensor nodes, a wireless adapter, 

a dedicated PC and customised software. These systems also require professional skills 

to operate, which is not simple for novices or less capable older adults.  
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Figure 3-1 Conventional wireless sensor system structure. Consist of a few sensor nodes, a wireless 

adapter, a dedicated PC and customised software. 

3.1.1.1 Concept of “Nearables” 

 Wearable sensing technology is already widely used by the public. Nowadays, 

smart devices such as watches, wristbands, clothes, shoes, glasses, helmets and so on 

implemented battery, multiple sensors, and wireless communication are commercially 

available in the markets. They can be classified into the concept of wearable 

technologies, which aims to be worn as close as possible on the human body. These 

products are normally placed close to the human body, which allows the embedded 

sensors to capture bio-electro signals, motion, temperatures, and others from the closest 

distance to bodies. However, these wearable sensors are required to be small, flexible, 

low power, wireless, and easy to maintain, thus, to be less burdensome to the natural 

movement and natural feeling. But even with the state-of-the-art of wearable 

technology, the user can still feel the existing of these wearable sensors while they are 

wearing them. The wearable devices are still not small enough, some people simply 

refuse to wear these wearable devices because of the cumbersome feeling. Especially 

with older adults, the acceptance of these wearable devices is questionable as discussed. 

 On the contrary, instead of putting sensors into wearable devices, putting them into 

the surrounding environments might be a better solution to solve the acceptance 
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problem among older adults. While these sensors are embedded into the exercise 

instrument, which will have the same functionality and the same method of usage, but 

with the extra capability to sense and analyses the exercise, the instrument might be 

more acceptable than the wearable sensors for them. For users who tend to stay in the 

comfort zone of conventional instruments, these sensors could be easily ignored during 

exercise and can then be neglected after exercise. This discussion is the main idea of a 

new concept which introduced in 2014 by Estimote Inc (https://estimote.com/) called 

“nearables”. In this thesis, the developments of sensorised devices are following the 

concept of nearable. Specifically, sensors will be integrated into the resistance band 

other than being worn by the user to avoid encumbrance to the natural feeling and the 

natural movement when doing exercise.  

 

3.1.2 Problems Statement 

3.1.2.1 Limitation of the Experimental Systems 

 The desired sensor system should be simple enough for novices and accurate 

enough in measurement. For example, the preparation of the system should be simple 

enough for novices or older adults to operate during the exercise. As discussed in 3.1.1, 

a sensor system with more sensor nodes provides more data that leads to a better 

understanding of the motion, while the fewer sensor nodes provide better usability for 

the users. The number of sensor node needs to be compromised for accuracy and 

usability.  

 The new system is required to be: 

 Capable of working remotely.  

 Capable of recognising what resistance band exercise has been done.  

 Capable of quantitating resistance band exercise. 

 User-friendly.  
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 According to the requirements above, a new sensor system structure is proposed, 

which is shown in Figure 3-2. Comparing the conventional structure (Figure 3-1) and 

new structure (Figure 3-2), the new structure requires the sensor to communicate with 

a smartphone directly with the standardised wireless communication protocols, such as 

Wi-Fi and Bluetooth. In the new structure, the smartphone collects the data from sensor 

nodes and send the data to a cloud server for the Artificial Intelligence (AI) inspection 

and the expert assessment. The reports can be sent to the sensors or the smartphone for 

giving instant feedback to the user. This new structure reduces the complexity of the 

sensor system massively from the end-users’ perspective. The simplification is achieved 

by avoiding the customised wireless adapter, the bulky dedicated PC and the needs of 

an expert around. To implement the system as shown in Figure 3-2, the very first step 

is to develop a suitable sensor node.  

Figure 3-2 New sensor system model. Instead of using a customised wireless adapter, the sensors send 

the data to the user’s smartphone through a standardised wireless network, such as Bluetooth. The data 

is then processed on the remote servers. 

3.1.2.2 Reflection of the Experimental System 

The new structure is desired but not implementable by previous developed 

experimental sensorised resistance band system.Which the system structure is similar 

to the conventional multi-sensor system, shown previously in Figure 3-1. The system 

includes a customised wireless protocol, a wireless adapter, a dedicated PC and a 
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researcher to monitor. Thus, the experimental system cannot fulfil the requirements 

listed above. There are also other limitations: 

 Lack of resistance band direction measurement. The IMU was placed inside the 

handle, which was rotating during the exercise. Thus, the direction of the 

resistance band cannot be measured. 

 Non-synced between multiple sensors. The experimental system is not capable 

of synchronising multiple sensor nodes. 

 

 The experimental system has partly fulfilled the needs for objective exercise 

measurement, but these limitations have appeared gradually during the previous 

experiment. The experimental system has redesigned the resistance band handle by a 

3D-printed housing, shows in Figure 3-3. The housing is separated into 2 parts: one is 

the handle part which case the main electronics boards and battery; the other one is the 

load cell housing, which contains a load cell and its driver. The mainboard and the load 

cell driver are connected by a set of wires. It is unavoidable to have external wires 

outside of the protected structures. The wires can be broken very easily during the 

usages.  
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Figure 3-3 Concept of the experimental system. The system is consist of the mainboard, battery, 

extension wires, remote load cell and load cell driver.  

 The circuit design of the experimental system was not optimised for the low power 

consumption scenarios. It requires users to turn on and off the system manually. This 

operation must be repeated every time before the system is used. It increases the 

complexity in operation.  

 The experimental system also requires a customised wireless adapter to 

communicate with a dedicated PC for configuration and data acquisition. The extra 

adapter and the dedicated PC make the system complex and difficult to use.  

 Most importantly, many resistance band exercises require both hands to complete 

together. Two sensorised handles must be used in each hand individually for accurate 

measurement. While two devices are working independently, the synchronisation 

between the devices is fundamental. Without synchronisation, due to the minor 

difference inside the device’s local clock, the sampling timestamp error will drift 

randomly and finally makes the data unusable.  
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3.1.3 Objectives 

 The objectives of the new sensor system focus on overcoming the limitations of 

the experimental system. The new sensor system should fulfil the requirement of: 

 Similar sensor set-up as the experimental system (IMU, barometer and load cell). 

 A durable structures. 

 The physical dimension should be similar to commercial handles.  

 At least 2 devices could be synchronised. 

 Further improvement in usability. 

 This chapter design a new sensorised resistance band system named WBR-SH2 

(Wearable BioRobotics – Sensorised Handle version 2). The overall requirements of 

WBR-SH2 should be user-friendly and straightforward for a wide range of people to 

use at home, and working remotely but can still provide accurate measurement of the 

resistance band exercises.  

3.2 Design of WBR‐SH2 System 

3.2.1 System Specification 

 In the design of WBR-SH2 system, user-friendly interface is one of the 

requirements that less considered in the experimental system. The Product Design 

Specification (PDS) is listing the ideal, realistic and minimum requirements of WBR-

SH2 system. The requirements are separated into a few subtypes, which shown in Table 

3-1. 

Table 3-1 Product Design Specification of WBR-SH2 

Parameter Ideal Realistic Minimum 

Usability:  

Measuring 

Operation for user 

No extra operation 

needed before and after 

exercising.  

Use APP on a 

smartphone to start 

measuring.  

User must turn on / off 

the sensor, retrieve data 

manually.  
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Parameter Ideal Realistic Minimum 

Power  An internal rechargeable 

battery can be charged 

automatically through 

wireless charging 

And internal 

rechargeable Li-ion 

battery with micro 

USB charging  

Use standard 

disposable batteries  

Battery Life 6+ Months Larger than 

traditional assessment 

interval (6 months) 

A few hours measuring 

with standby for 

weeks.  

40 minutes (about 1 set 

of resistance exercise) 

Data Acquisition Sensor automatic upload 

to the cloud 

Onboard storage and 

upload through a 

smartphone  

Store in SD card, 

retrieve manually to PC 

Exercise Reports Real-time report, 

visualization. 

Real-time raw data 

visualization with 

afterwards report.  

Afterwards reports 

Technical Spec.:  

Operational in high 

thermal exposure 

-20 ~ +80°C  

 

0 ~ +50°C  

 

0 ~ +45°C  

 

Weight <20 grams  <100 grams <200 grams 

Dimensions and 

appearance 

Sensorised handle 

should have the same 

dimensions and 

appearance as the non-

sensorised handle 

Same dimensions, but 

with a minimum 

different appearance. 

The dimension changed 

for placing measuring 

devices. Different 

appearance 

Functional in wet 

environments 

Water & dustproof Dustproof None 

Communication  Multiple wireless 

protocols 

Single wireless 

protocol 

Physical wires 

connection 
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Parameter Ideal Realistic Minimum 

Casing Free from burrs, sharp 

edges or projections 

Free from burrs, sharp 

edges or projections 

Temporary case  

Internal Electronics Compact, all-in-one 

board design 

Reasonable separate 

boards 

Consist of separate 

modules 

Sensor IMU, Barometer, PPG, 

Temperature, Load cell 

IMU, Barometer, PPG, 

Load cell 

IMU, Load cell 

Sampling frequency 200Hz 25Hz 10Hz  

Feedback to user Visual, Sound, and 

Vibration 

Visual and Sound None 

Onboard data 

storage 

A few hours’ 100 Hz raw 

data storages 

40 minutes (about 1 set 

of resistance exercise) 

40 minutes (about 1 set 

of resistance exercise) 

Others:  

Cost Commercial wristbands 

ranges (20~100 GBP) 

Commercial 

smartphone ranges 

(100~500 GBP) 

Over 500 GBP 

 

3.2.2 Design Concepts 

 Two concepts ranked out from a few drafting designs. Concept 1 is shown in Figure 

3-4. The main idea of Concept 1 is putting all the electronics into a single box to reduce 

the complexity and improve the reliability. This design is reusing the most 

commercially available parts, which can be purchased in the market. The foreseeable 

disadvantage is the internal space left for electronics is small, which brings difficulty 

in hardware design. Also, due to the motion sensors are placed remotely to the user’s 

hands, the measurements are not presenting the motion of the hands but the motion of 

the box. The soft connection between the sensor box and the cylinder also increase the 

difficulty to measure the exact hand movement. For example, the rotation of the handle 
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cannot be measure. However, the result of Chapter 2 rotation measurement shows that 

the rotation is less significant compared to other data, such as force and timing.  

Figure 3-4 Concept 1: All electronics placed in one customised box. This concept aims to minimise the 

customised parts and to reuse most commercial part handles. 

 Concept 2 is an improved design of the experimental system, shown in Figure 3-5. 

This concept tries to use a hard case to protect the easily broken extension wires. In this 

concept, the load cell and its driver are placed remotely to the main circuit board. These 

extension wires are mandatory to measure the force applied to the resistance band. This 

design leaves the largest spaces for electronics and battery. The box should keep small 

for not extend ing the length of the commercial handle too much. However, it increases 

the difficulty in mechanical design. 
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Figure 3-5 Concept 2: Redesign the casing of the experimental system. The handle housing will be 

rebuilt completely. 

 The two concepts are compared in a matrix for decision making, which is shown 

in Table 3-2. Each concept is scored from 5 to 1, larger numbers indicate better 

performance in the category. In most of the comparison, concept 1 is superior to concept 

2. The only downside for concept 1 is the space limitation for electronics. However, the 

space limitation is the most significant factor. It is depended on whether the electronics 

design is small enough to be put into the small space. With the current electronics from 

the experimental system, it is impossible to put all the sensor into the customised box 

in Concept 1 without making the box bulky. To use the design of Concept 1, the 

electronics need to be redesigned to reduce the size, and the electronics need to be lower 

power consumption to reduce the size of the battery.  
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Table 3-2 Comparison of the two concepts. 

 Concept 1 

One-Box design 

Concept 2 

Improved design of the experimental 

system 

Durability  5 3 

Reliability 5 3 

Ease of manufacturing 4 1 

Ease of mechanical design  3 1 

Housing weight 4 2 

Internal space for electronics 2 5 

Total Score 23 15 

 To summarise the comparison, Concept 1 is selected for WBR-SH2. With the latest 

Bluetooth Low Energy 5 System-on-Chip (SoC) nRF52832, it is possible to achieve 

low power consumption, high performance (225 CoreMark), fast wireless link speed (2 

Mbit/s data rate), and compact size (6x6x1mm) [90]. The new design based on Concept 

1 will be presented in the following sections.  

3.2.3 WBR‐SH2 System Overview 

 The system overview of WBR-SH2 is shown in Figure 3-6. The WBR-SH2 

system consists of a few sensor nodes (typically 2 sensor nodes) and an Android phone 

with a customised App. Although the WBR-SH2 can measure and store data 

individually, it can work with an Android smartphone for better data acquisition, 

recording, processing, real-time visualisation and continuous synchronisation. WBR-

SH2 communicate with a mobile phone through BLE. Different from the experimental 

system which put most of the electronic components into the handle, the WBR-SH2 

uses one-box design. All of the electronics are placed and covered by a single housing. 

During measurement, this box is attached between a commercial handle and resistance 
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band. The design details among hardware, firmware, and the software will be discussed 

in the following sections. 

Figure 3-6 The WBR-SH2 system overview. The system is consist of a set of sensorised resistance 

band handle and a smartphone with a customised App. (Not scaled) 

 

3.2.4 Hardware Development 

 Hardware development is a challenge due to space limitation and the low power 

consumption requirement in Concept 1. The block diagram of WBR-SH2 is shown in 

Figure 3-7. The overall design is more compact and low-power consumption-oriented.  
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Figure 3-7 Block diagram of WBR-SH2.  

 The circuit board is separated into 2 domains, the main circuit domain (3V Domain) 

and the power supply domain. The power supply domain is responsible for supplying 

the main domain with proper voltages and managing the charging and discharging of 

the Li-ion battery. The power domain consists of a micro USB socket for the input 

power source, a power management IC for automatic power switching and battery 

management (Linear, Inc. LTC4055), a 3 V Low-Dropout Regulator (, XC6202) to 

supply 3 volts power source, and a battery fuel gauge for precise battery measurement 

(Linear, Inc. LTC2942-1).  

 The main domain (3V Power Domain) is responsible for presenting the 

functionalities of WBR-SH2. It consists of a BLE 5 SoC (Nordic, Inc. nRF52832) for 

control logic and radio communication, a customised debug port for hardware 

debugging, 128Mbits Nor Flash for local data storage, an extension pad for connecting 
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load cell driver (Avia Semiconductor HX711) for force measurement, a set of MOS-

FETs for driving RGB-LEDs and a Buzzer, and the following sensors: a 9-Axis motion 

sensor (InvenSense MPU9250 integrated 3-Axis gyroscope, 3-Axis accelerometer, and 

3-Axis magnetometers), and a high-resolution barometer (STMicroelectronics. 

LPS22HB).   

 The Printed Circuit Board (PCB)) and the placement of the components are shown 

in Figure 3-8. The PCB is designed using CircuitMaker (Altium, Inc). It contains 4 

copper layers for signalling, power and ground to keep the size compact. All 

components are placed on the top side of the PCB. The main characteristics of the 

sensors are shown in Table 3-3. The schematics and layouts are shown in Appendix B. 

Figure 3-8 Main circuits of WBR-SH2 (version 2.0). 

Table 3-3 Main characteristics of sensors in WBR-SH2 

 MPU9250 LPS22HB HX711 

Category Gyro Accelerometer Magnetometer 

(embedded 

AK8963) 

Barometer Full bridge 

driver  

(Load cell) 

Num. of Axis 

(channel) 

3 3 3 1 2 
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 MPU9250 LPS22HB HX711 

Category Gyro Accelerometer Magnetometer 

(embedded 

AK8963) 

Barometer Full bridge 

driver  

(Load cell) 

Voltage 2.4-3.6V 1.7-3.6V 2.7-5.5V 

Working 

Current 

3.2mA 450μA 280μA @ 8Hz 12μA @ 

ODR=1Hz* 

<1.5mA 

Power down 

Current 

8μA 1μA < 1μA 

Temperature -40 ~ +85°C -40 ~ +85°C -40 ~ +85°C 

Resolution 16 bits 16 bits 14 bits 24 bits 24 bits 

Range ±2000º ±16g ±4800μT 260~1260hPa  

Sample rate 4~8000Hz 4~4000Hz 130Hz (7.2ms) 1~75Hz 10 or 80Hz 

Linearity ±0.1% ±0.5%    

Noise (RMS) 0.1º/s 8mg  0.75Pa 90nV 

*ODR: Output Data Rate  

3.2.4.1 Power Management Circuit   

 The power management circuit consists of a micro USB socket, a power switch & 

Li-ion battery charger Integrated Circuit (IC), an LDO and a battery fuel gauge. The 

power supply domain in Figure 3-7 shows the structure of the power management 

circuit. LTC4055 [91] (4 x 4 x 0.75mm) is a power switch and Li-ion battery charger, 

which supports up to 1 Amp charging current. A 1.5Amp fuse is placed in between 

micro USB and the power switch. The power switch automatically changes the power 

sources between USB and battery automatically depending on the availability. A small 

LED is also connected to its charging state pin to indicate the charging states. A battery 

fuel gauge (LTC2942-1 [92]) is placed between battery and charger to measure the 

voltage, the current, and the accumulated battery charge and discharge. The SoC 
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communicate to the fuel gauge by the I2C interface. A small LDO (XC6206 [93]) 

voltage regulator takes the power output from the switch and converts to the 3V power 

domain. Due to the small package size, the maximum current of the LDO is limited to 

150mA. Thus, to reduce the load of LDO, the power supply circuit also output the 

unregulated voltage to higher current demanded and less voltage-sensitive parts, such 

as MOS-FET drove RGB-LEDs and a buzzer.  

3.2.4.2 Bluetooth Low Energy (BLE) SoC and Radio Frequency (RF) 

 To keep the circuit small and low-power, a BLE SoC nRF52832 (Nordic, Inc. [90] 

) is selected to undertake both logic controlling and wireless communication. This SoC 

has implemented a high-performance ARM-Cortex-M4F core which runs at maximum 

64MHz with Floating Point Unit. The 64kBytes Random Access Memory (RAM) and 

the 512kBytes embedded flash memory are capable of undertaking complex operation 

and signal processing. The QFN-48 (6x6x1mm) package is compact while keeps 

enough General-Purpose Input/Output (GPIO) for multipurpose applications. It also 

contains a range of embedded peripherals, including multiple Analog to Digital 

Converter (ADC), Serial Peripheral Interface (SPI), Secure Digital Input Output 

(SDIO), Universal Asynchronous Receiver-Transmitter (UART), Direct Memory 

Access (DMA), Universal Serial Bus (USB). The power supply voltage from 1.7V – 

3.6V with automatic embedded LDO and DC/DC regulator which is suitable for an 

embedded system with limited battery.  

 More importantly, the SoC has embedded a built-in high-efficiency 2.4GHz 

transceiver, with -96 dBm sensitivity and -20 to +4 dBm TX power, supports the up-to-

date Bluetooth 5 Low Energy and other protocols. Thanks to the on-chip radio and 

Balun circuit, the size of PCB and the RF circuit complexity are reduced.  

 The design of the RF circuit (included: C23, L3, C22, L4, L5 and the antenna on 

the left) is shown in Figure 3-9. A ceramic 2.4G mini antenna 2450AT18B100 [94] 

(Johanson Technology, Inc.) is used to minimise the size and increase the connectivity 
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performance. The feed line from SoC to the antenna is designed to be 50  impedance 

according to the material and capabilities of the selected PCB manufacturer (JLCPCB 

Ltd.. The PCBs were manufactured by the 7628 structure [95], which is shown in Table 

3-4). The width and clearance of the feed line are calculated by AppCAD (Agilent 

Technologies). The Antenna matching circuit (L4, L5, C22) is designed per the 

antenna’s recommendation. Due to the lack of radio testing instruments, the RF design 

is only guaranteed by calculation. Antenna tuning is available by PCB manufacturer or 

special service when mass production is needed. 

Table 3-4 1mm thickness 7268 4-layer PCB structure by JLCPCB [95] 

Layers Structures Materials Permittivity Thickness[mm] 

Top Layer-1  Copper  0.035 

Pre-impregnated 

composite fibers 

7628 FR-4 4.6 0.2 

Medium layer-2  Copper  0.0175 

Core core FR-4 4.6 0.465 

Medium layer-3  Copper  0.0175 

Pre-impregnated 

composite fibers 

7628 FR-4 4.6 0.2 

Bottom Layer-4  Copper  0.035 
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Figure 3-9 Radio Frequency circuits layout. The RC components are marked in red 

rectangle C23, L3, C22, L4, L5 and the ceramic chip antenna. 

 

3.2.4.3 9‐Axis Motion Sensor 

 MPU-9250 [96] is a 9-Axis MEMS motion sensor which combines a 3-axis 

gyroscope, a 3-axis accelerometer, a 3-axis magnetometer and an embedded Digital 

Motion Processor™ (DMP), while keeping the size small (3x3x1mm). The gyroscope 

has a range of ±2000°/sec and an embedded 16-bit ADC, with factory calibrated scale 

factor. The gyroscope is capable of sampling up to 8kHz. The accelerometer has a range 

of ±16g and an embedded 16-bit ADC. The accelerometer is capable of sampling up to 

4kHz. The embedded magnetometer is a separate die of AK8963 [96] provided by Asahi 

Kasei Microdevices Corporation. It has a maximum measurement range of ±4800μT, 

with a 14-bit embedded ADC. The minimum sampling time is 7.5ms. The additional 

features include FIFO, auxiliary I2C, digital temperatures sensor, programmable digital 

filters for each sensor, I2C and SPI interfaces, supply voltage from 2.4-3.6V, low power 

mode, and DMP.  

3.2.4.4 Barometer 

 The LPS22HB [97] (STMicroelectronics, Inc.) is a small size (2x2x0.76mm), low 

power (down to 3 μA), high resolution (24-bit pressure data). The barometer is factory 

calibrated to provide accurate out-of-box pressure measurement. The absolute pressure 
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accuracy after one-point calibration is 0.1hPa. Supply voltage range from 1.7V - 3.6V. 

The maximum output data rate is 75Hz.   

3.2.4.5 Load Cell and Driver 

 Accurate load cell sensors usually are costly; however, there are much low-cost 

luggage weigh scales (under £5 per each) available on the market. These scales are 

using customised load cell for weight measurement. The disassembly is shown in 

Figure 3-10. The range of the scale is defined as 0 to 50kg, which contains the range of 

resistance band exercise (<10kg), and the size of the load cell (35x18x2.8mm) is small 

enough to be embedded to the resistance band housing. Therefore, for testing purposes, 

WBR-SH2 uses the load cell taken from the language weigh scales. The actual ranges 

and linearity are tested and calibrated after the PCB is built.  

 

Figure 3-10 Luggage weight scale disassembly. The red square indicated the customised load cell. 

 The load cells disassembled from the weigh scale are a type of Wheatstone bridge 

bending beam load cell. A specific driver circuit is needed to drive the resistance bridge 

and getting the fore measurement. Thus, a highly integrated 24-bit Analog-to-Digital 

Converter for weight scales (HX711 [98], Avia Semiconductor, Inc.) module is selected. 

HX711 is a low power, high accuracy IC designed specifically for weight scales. It has 
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2 sets of input channels which allows it to measure 2 load cells respectively. The supply 

voltage ranges from 2.6V to 5.5V, with working current less than 1.5mA, and power-

down current less than 1μA. It has a maximum sampling frequency of 80Hz. The 

communication between SoC and HX711 is not a standardised interface. It uses 2 wires 

for communication, one is the bit clock signal (PD_SCK) while the other is the data 

output signal (DOUT). The channel and gain selections are controlled by the number 

of PD_SCK in each sampling. The 2 signals are connected to 2 GPIOs on SoC to sample 

the load cell.  

 

3.2.4.6 MOS‐FETs Drove RGB‐LED and Buzzer 

 The RGB-LEDs (Avago Technologies, ASMB-MTB1-0A3A2) and a buzzer are 

used for runtime visual and sound feedback to the user while they are doing exercise. 

Four N-Channel small sizes MOS-FETs (SI2302 [99], Vishay Siliconix, Inc.) are 

implemented to the circuit board. One of the four is for driving external passive buzzer 

(through connector), the other three are for driving each colour of the LED. The gates 

of the MOS-FETs are driven by SoC’s Pulse Width Modulation (PWM) signal through 

4 selected GPIOs. These RGB-LEDs and buzzer are powered by the unconverted power 

supply (3.5V to 5V) to reduce the load of the 3V power domain, which has mentioned 

in 3.2.4.1.  

3.2.4.7 Conclusion of Hardware Development   

 The hardware design is low-power consumption oriented. All the components are 

capable of being shut down or set to low-power mode. Thus, it is not necessary to 

completely disconnect the power while WBR-SH2 is not in use. Therefore, the WBR-

SH2 is always connected to the battery without a physical power switch. In total, the 

circuit board size of WBR-SH2 has reduced 50% from the main circuit board of the 

experimental system.  
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3.2.5 Mechanical Design 

 Concept 1 requires the housing to be mounted in between the commercially 

available resistance band handle and the band. There are a few considerations for 

designing the housing of WBR-SH2:  

 The load cell sensor is direction sensitive; it should be placed with the direction 

of the resistance band.  

 The housing structure should be strong enough to support the load from the 

resistance band. 

 The housing can collaborate with the commercial resistance band handle and its 

handle, which maximise the use of the commercial parts.  

 It should provide good protection for internal electronics. 

 The housing should be short enough to avoid adding too much extra length 

compared to the original setup.  

 It should be 3D-Printing-friendly to reduce the difficulty in prototyping.  

 The prototype design is shown in Figure 3-11 and Figure 3-12. The housing is 

designed to be two halves. There are many round corners in the design to reduce the 

potential stress concentration. The two halves are fixed together by four standard M3 

hexagon socket head screws, M3 nuts, and wall guides. The housing is mounting to the 

commercial handle by two-cylinder bars at the top, which also shortens the total length. 

The inner space is separated into three compartments by some supporting walls. There 

are through holes between each compartment for wiring. The three compartments are 

arranging from top to bottom. The top compartment is designed for the main circuit of 

WBR-SH2. Two windows on the side walls are reserved for LED. The middle 

compartment (46x20x7mm) is reserved for the battery. The bottom compartment is 

reserved for the load cell and the load cell driver module. The structures around the 

load cell have been reinforced. The most surfaces are flat and perpendicular walls. 
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Which makes the housing are friendly to FDM 3D-printer for low-cost and fast 

prototyping.  

 

Figure 3-11 One of the two halves housing. The three compartments are separated by the highlighted 

wall and the supporting wall under the main circuit.  
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Figure 3-12 Assembly view of the housing. The housing mostly consists of flat surfaces and 

perpendicular walls. Two halves are secured by M3 screws and nuts.  

 The housing is designed by using Fusion 360 (Autodesk, Inc.). Then the 2 halves 

of housing are built separately with a 3D-Printer, using transparent PLA materials. The 

housing is estimated to consume 36g PLA material in 3D-printing.   

 The housing is simulated by software to determine whether it can undertake the 

maximum force. Two pull-up forces marked as the blue arrows are applied to each half 

which shows in Figure 3-13, while the plate for supporting load cell is locked to its 

position. Each force is 100N, together 400N is applied to the assembly. This force is 2 

times larger than the heavy load resistance band. The simulation of the assembly is done 

by finite element analysis using Fusion 360, shown in Figure 3-14. The results show 

the stress and deformation with visible adjustment (not the actual deformation). 

Acrylonitrile Butadiene Styrene (ABS) is selected for simulation, which is normally 

used for manufacturing instead of PLA for prototyping. However, the property of both 

materials is similar in 3D-printing scenarios [100]. The maximum stress is in the holes 

reserved for charging socket. However, the maximum stress at 6.6MPa is still 

acceptable for the selected materials with a safety factor larger than 3. Due to the 
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simulated force is already 2 times of the maximum force, the safety factor, in this case, 

is larger than 6.   

 

Figure 3-13 Load simulation using ABS materials (half view). 
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#

Figure 3-14 Load simulation using ABS materials (assembly view). 

The comparison of prototype WBR-SH2 handle, and the commercial off-the-shelf 

handle is shown in Figure 3-15. The length of the prototype is similar to the commercial 

handle. However, it is foreseeable that the prototype housing will bring some 

restrictions to the user while doing exercise due to the physical interaction from the 

sensor. Also, the extra weight might affect the feeling of exercise. 
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Figure 3-15 Comparison of WBR-SH2 prototype (left) and commercial off-the-shelf handle (right) 

 

3.2.6 Firmware Development   

The firmware development is based on a Real-Time Operation System (RTOS)  

named RT-Thread v2.1 for better multi-task scheduling. RT-Thread is a community-

maintained open-source RTOS design for the Internet of Things (IoT). Using an RTOS 

will reduce the design firmware complexity, especially for sharing resources and low 

power scheduling. The working flow of the main tasks is shown in Figure 3-16. Due to 

the nature of multi-threading, each operation is running individually in their cycle. The 

inter-threading operations like mutexes, semaphores, message queues, mailbox, and 

events are widely used in the firmware. The main tasks are the BLE task, the sampling 
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task, the recording task, and a few miscellaneous tasks. Each of these tasks contains a 

single worker thread or multiple worker threads.  

Figure 3-16 Working flow of WBR-SH2. The working flow includes many parallel tasks. These 

asynchronous tasks are scheduled by different priorities to ensure the most time-critical task is 

completed in time.  

 The design of WBR-SH2 hardware has avoided unnecessary hardware interaction 

to the user (buttons, data cables) to reduce the system complexity, which results in the 

BLE is the only method to control and acquire data. This function is achieved by setting 

up a customised BLE service, called WBR Sensor Service (WSS). A service in BLE 

acts as a data provider, which provides data input and output interfaces for clients. The 

WSS is consist of many customised characteristics (Char), including Config Char (CC), 

Real-Time Raw Data Char (RRDC), Advance Battery Data Char (ABDC) and Raw Ctrl 

Char (RCC). Among those characteristics, CC is for the general setting of WBR-SH2. 

The client can set and read the status of WBR-SH2 through CC. ABDC is for the client 

to read the battery details, such as the remaining battery volume, the voltage, the current, 

and the temperature. RCC is to control the output data, such as sampling frequency, 
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data source selection of real-time data or recorded data. RRDC is for output the raw 

data only, which will be described in detail below. 

 The value in RRDC contains one or more raw data frame(s). Each data frame 

includes a sampling timestamp, calibrated raw data from each sensor, and the 

orientation’s quaternion representation. The format is shown in Appendix C. To 

maximise the data rate by BLE’s new feature, the Date Length Extension (4.2 and later, 

allows maximum 251 Bytes PDU instead of 31 Bytes [101]), the length of RRDC value 

is variable. Each raw data frame is 64 bytes fixed length (with a few reserve bytes for 

future uses), and each RRDC value might contain 1 to 3 frames depending on the 

queueing data. 

 While offline measuring is required, the raw data frame can be recorded into the 

onboard SPI nor flash memory, then acquire later. The memory in the selected nor flash 

(W25Q128 [102]) is separated into blocks (64KB), sectors (4KB) and pages (256 Byte). 

The memory needs to be erased before writing data. The minimum erase size is one 

sector and the minimum write size is one page. To reduce the complexity, raw data 

frames are stored in a bundle of 4 frames which is the same size as one page (256 Byte). 

While the sampling rate is relatively high (such as 100Hz), the erase operation (erasing 

one sector takes 45ms normally and up to 400ms in the worst case) might not be 

completed before a new data frame arrives. Thus, the data recording is asynchronised 

to sensor sampling to avoid blocking. The asynchronisation is implemented by using a 

First-In-First-Out (FIFO) message queue between the sampling thread and the recorder 

thread. The sampling thread pushes a new raw data frame into the message queue and 

continues its work immediately, while the recorder thread takes out the available frames 

and write to the flash memory. The message queue with a size of 40 frames (relevant to 

400ms @ 100Hz) is maintained by the RT-Thread. The capacity of the selected flash 

(W25Q128) is 16,777,216 bytes, therefore, the maximum frame number that can be 

recorded without overwriting previous data is 262,144. When the sampling frequency 
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is set to 100Hz, the maximum recording time is about 43 min. When the sampling 

frequency is set to higher than 100Hz, a full-chip erase needs to be performed prior to 

data recording. A prior full-chip erase will avoid the sector erase delay which potentially 

causes the loss of frames, but this operation will take about 40 secs usually and up-to 

200 secs in the worst cases [102].  

 WBR-SH2s are usually operated in pairs; the time synchronisation between 2 

separate wireless sensors, such as WBR-SH2, is fundamental but also a challenge. A 

novel synchronisation method for BLE sensor network using unmodified Android 

phone will be presented in Chapter 4. When a few WBR-SH2s are synchronised, data 

is only captured when the timestamps are an integer multiple of a reciprocal of the 

sampling frequency. The synchronisation is to align the capturing moments in every 

device. For example, if the sampling frequency is set to 100Hz, then, its reciprocal is 

10ms; the WBR-SH2 only sample when the local timestamps are integer multiple of 

10ms, such as 30 or 1,518,438,268,990 (when WBR-SH2s are synchronised with UTC 

64-bit millisecond timestamps).  

3.2.7 Android App Development   

 The new wireless sensor model is discussed in Figure 3-2. In the model, the 

smartphone is the key bridge which collects the data from the sensors and sends them 

to the remote cloud server. In the preliminary prototype without a cloud, the smartphone 

acts as a data recorder. WBR-SH2 only support BLE as communication. Thus, it is 

needed to develop application software (App) to acquire the data. Therefore, an Android 

App called SmartBand2 is developed specifically for interaction with WBR-SH2. 

SmartBand2 is written by JAVA programming language in Android Studio. SmartBand2 

can run on variable Android devices which has BLE hardware available and Android 

version 5.1 or later. The App supports multiple WBR-SH2 (tested up to 8) connection 

and synchronised data recording [76]. While receiving data, a few selections of data 

can be plotted on screen in real-time. The data from multiple WBR-SH2 is converted 
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into metric units and recorded into one .csv file. The data from different sensors can be 

distinguished by the sensor’s BLE physical addresses recorded in each frame. The data 

format record by SmartBand is shown in Appendix C. 

3.3 Evaluation   

3.3.1 Sensor Calibration   

 Some of the sensors come with factory pre-calibration and/or runtime calibration, 

for those sensors, no offline calibration is needed. Those sensors include the gyroscope, 

the magnetometer and the barometer. The gyroscope is factory-calibrated during 

manufacturing and runtime calibration is available in its Software Development Kit 

(SDK) [96][103]. The magnetometer is runtime calibrated by its SDK [103]. The 

barometer is factory calibrated, however, performing a one-point calibration will 

increase the relative accuracy [97].   

 The load cell used in the WBR-SH2 (as well as the experimental system) has no 

specifications available. So, the calibration of the load cell is needed. The accelerometer 

has not been calibrated during manufacturing. Therefore, the calibration for 

accelerometer and load cell is needed. 

3.3.1.1 Load Cell Calibration   

  The load cells used in experimental system & WBR-SH2 are disassembled from 

a low-cost commercial weight scales, which is unbranded. Thus, the calibration for the 

load cell is not only to eliminate the measurement errors but also to develop a model to 

fit the sensor. The load cell in the experimental system was calibrated by using a linear 

model (3-1), described in Appendix D.1.3. The calibration which has been done in the 

experimental system is a 2 points calibration (weights applied by 0 and 5kg). The 

calibration results for the specific load cell used in the experimental system are: gain 

G =5835.92, bias b =8265300. In the previous calibration, the non-linearity and the 

cross-sensor stability are not evaluated.  
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 dmൌGሺdr‐bሻ (3-1) 

 During the use of the experimental system, the bias of the load cell was found that 

is not fixed. Therefore, an auto-zero calibration for bias is implemented in the WBR-

SH2’s firmware to calibrate the bias automatically while the non-motion state is 

detected. The calibration uses the previous calibrated gain G=5835.92 and the previous 

linear model provided by an experimental system to verify the cross-sensor stability.   

 The calibration with WBR-SH2 is similar to the experimental system, but with 

more devices (2x WBR-SH2s), more precise (calibration-level weights compared to 

regular weights) and more calibration points (5 calibration points: 100g, 200g, 500g, 

1000g, 1500g, compared to 2 points, 0 and 5kg). The calibration set up is shown in 

Figure 3-17. The WBR-SH2 was left still and unloaded for a moment until the auto-

zero calibration performed, which compromised the weight of the loading box. Then 

the calibration weight is applied immediately. Thus, only the increment of force is 

recorded. The sample rate is set to 100Hz, however, the actual update rate from the load 

cell is 80Hz. The data is recorded for 3 secs after the weight is applied and the loading 

boxed is stable. The procedure is repeated for 3 times for each weight.  
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Figure 3-17 Load cell calibrations set up. 

 The results are shown in Figure 3-18. All the test points from both devices are 

plotted into the same graph. The linear regression lines are calculated by data from each 

sensor individually. The linear regression results are shown in Table 3-5. The regression 

line matched well, and the linearity is high.  
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Figure 3-18 Cross-sensor stability of load cell. 

Table 3-5 Linear regression parameters. 

 Slope Intercept Correlation Coefficient p-value Std. error 

Experimental 

System* 

1.0* 0*    

WBR-SH2 #1 1.0053 -0.0104 0.999977 0.0 0.00009967 

WBR-SH2 #2 1.0101 -0.0612 0.999959 0.0 0.00013233 

 *Using the results of the previous calibration for the experimental system as the reference 

 Thus, the load cells are approved to have high linearity, low noise level and stability 

for a range of resistance band measuring. The gain is stable across sensors. While with 

auto-zero calibration, the force measurement is accurate across two WBR-SH2 systems.  

3.3.1.2 Accelerometer Calibration   

The calibration of accelerometers on WBR-SH2 is the same as the accelerometer 

calibration on the experimental system, which shown in Appendix D.1.1. Each WBR-
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SH2 has been calibrated individually and the calibration parameters are written into 

their firmware.  

3.4 Overall System Performance of WBR‐SH2   

 The sampling frequency for WBR-SH2 is adjustable from 1Hz to 200Hz to adapt 

to the variety of requirements in different scenarios. The provided sampling rates should 

be compatible with the resistance band exercise monitoring. If only raw data is needed 

(onboard sensor fusion is not needed), the WBR-SH2 can sample and transfer real-time 

raw data up to 800Hz with a single sensor node or 2 x 500Hz with the double sensor 

nodes to the same receiver in real-time (the receiver must support BLE 5.0 or later).  

 Thanks to the low-power oriented design, the sensorised handle in WBR-SH2 

system can support up to 12 hours’ full sensor sampling with a small 300mAh battery 

(@100Hz full sensor sampling, visual feedback, and real-time data acquisition or 

onboard recording), or up to 90 days standby. The handle will last at least four weeks 

with a single charge in a typical exercise intensity in resistance band intervention plan 

(e.g. Couch Potatoes for Recognition, three days per week, 40 minutes each day). Also, 

the battery life might extend further in the actual application. Because in real-life 

scenarios, only the aggregated information is necessary to transfer to a smartphone, the 

data size is much smaller than raw data. The SoC in the sensor is capable of processing 

data. Also, the sampling frequency can be lower to reduce power. The low-power neural 

network classifier for exercise recognition which runs on the SoC directly will be 

discussed later in Chapter 5. 

 Benefiting from the ultra-miniaturised design, the powerful onboard SoC, and the 

flexible configuration, the main circuit of WBR-SH2 also can measure the motion as a 

conventional motion sensor in variable applications. A comparison between the 

experimental system and WBR-SH2 is listed in Table 3-6. The specification which 

WBR-SH2 is superior to its predecessor is highlighted. 
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Table 3-6 Performance comparison of the experimental system and WBR-SH2. 

 Experimental System WBR-SH2 System 

Circuit Size [mm] 55x28x5 45x18x1 

Circuit Weight [g] 15 4 

Working Current [mA] 130 22 

Standby Current [mA] 15 < 0.1 

Battery Capacity [mAh] 1400 300/400 

Storage  Micro SDHC Card  

(up to 32GB) 

Onboard Flash 

16MB 

Working Time [hour] 8  12/16 

Standby Time [day] 2.5 90 

Sampling Rate (Local 

storage) [Hz] 

100, 200, 500  1, 10, 20, 50, 100  

Sampling Rate (Over-the-

Air) [Hz] 

500 1, 10, 20, 50, 100, 500* 

Offline Data Download 

Speed  

1x (100Hz) 13x (100Hz) 

Sensor Types Gyroscopes,  

Accelerometers,  

Magnetometers,  

Barometer,  

Load cell 

Gyroscopes,  

Accelerometers,  

Magnetometers,  

Barometer,  

Load cell 

Synchronised Sampling None Yes 

Interaction with user None RGB-LED, Buzzer* 

NFC None Yes* 

Communication CAN Bus, 

UART, 

UART 

 (debugging only), 
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 Experimental System WBR-SH2 System 

Sub-G wireless, 

BLE 4.2 UART module 

BLE 5.0 

Maximum Over-the-Air 

Bandwidth [kbps] 

250 1300* 

BOM Cost [GBP] ~70 ~35 

* support with the first revision. 

3.5 Preliminary Public Patient Involvement 

 As discussed in Chapter 1, the acceptance of the real end-users (older adults) is 

equally important to the performance of the devices. Thus, a preliminary Public Patient 

Involvement (PPI) with mild dementia patients was done involving the WBR-SH2 

system. The PPI was led by Professor Eef Hogervorst at Loughborough University to 

investigate the acceptance of new technologies in people with dementia. The WBR-

SH2 system presented in the PPI as one feedback tools for the exercise interventions. 

 During the PPI, the sensorised handles are configured to light up using its onboard 

RGB LEDs according to the force applied to the resistance band. The LEDs were 

lighted up from 5 newtons force measurement with blue colour, gradual changed to 

green and stopped with red at 35 newtons measurement. In total three sessions were 

done. In each session, a patient and his/her carer were invited to a special room 

decorated with different kind of technologies which would be potentially helpful in 

interventions for dementia. WBR-SH2 system is one of the equipment that researchers 

discussed with the participants. The patients and their carers were asked the questions 

about usability, appearance, and suggestions. The feedback related to WBR-SH2 is 

shown below. 

 In the general feedback, all subjects (including carers) showed their acceptance and 

approval to the visual feedback. One carer pointed out that the colour encoding should 

be clearly informed to the carer who could explain this later to the patient during the 
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intervention because the patient might not be able to understand the meaning of 

different colours. Besides visual feedback, a carer also suggested a simple “beeping” 

sound feedback to the patient. Then, the patient would not need to look at the resistance 

band all the time.  

 Another feedback was the lack of motivation for doing exercises. One patient has 

successfully built a routine with cycling because “the exercise is very simple and there 

is a physical piece of apparatus” (as said by the carer). The carer also mentioned that if 

there is no one around to motivate the patient, the patient will not do the exercise. 

Possibly, built-in voice reminder with comments to encourage people of the resistance 

band when the band has not been moved for some time could be included. 

 One patient showed more interests in seeing data as he mentioned his background 

is a software engineer. He claimed the numeric feedback (data showing on screen) is 

more attractive to him, while colour feedback is more for other peoples.  

 Overall, most feedback on WBR-SH2 was positive. with some neutral feedback on 

motivations, the band selection and the colour of the bands.   

3.6 Discussion   

One of the improvements from WBR-SH2 system to the experimental system is 

the optimised power consumption, the better integration and the simplified operations. 

These improvements finally result in less complexity and better usability.   

The ultra-compact BLE SoC, which comes with the built-in radio transceiver, 

primarily reduce the needs of space on the PCB. The onboard storage provides just 

enough space for 43 minutes of raw data measurement (@100Hz sampling rate), but 

the PCB size is reduced dramatically.  

 This new design reduced the size of PCB, reduce the operational complexity, and 

avoid the connector which could potentially be broken during exercise. The 

experimental extension pads on the experimental system have been abandoned to 

reduce the size.  
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 The power strategies of WBR-SH2 system is low-power oriented. The working 

power consumption and standby power consumption are the key parameters for 

component selection. The layout and the passive component design of PCB are also 

low-power oriented. Comparing to the experimental system, the sensorised handle in 

WBR-SH2 system has 5 times lesser working current and 150 times lesser standby 

current, which allows it to work on a much smaller battery (300mAh compared to 

1300mAh) but still capable of performing. The standby time is also increased from 2.5 

days to about 90 days.  

 WBR-SH2 uses BLE as the only communication method. With a large amount of 

supported smartphone, WBR-SH2 can communicate with a wide range of existing 

Android device, including the end user's Android phones. It reduces the cost of the 

system and improves the usability dramatically while compared to the conventional 

wireless sensor system, which requires a wireless adapter and bulky software for data 

acquisition. The use of BLE also allows multiple WBR-SH2s to connect to the same 

Android device and transfer real-time data simultaneously. The novel synchronisation 

method (will be presented in Chapter 4) allows multiple sensors are working with sub-

milliseconds synchronisation accuracy, which is enough for body motion measurement.  

 The completely redesigned housings have improved the reliability massively. The 

hardware and firmware designs are button-less and always-power-on. The design of the 

housing has avoided the movable part and reduced the numbers of holes which can 

weaken the structures. The 2 halves housing is fixed by standard M4 screws and nuts, 

and the prototype design comes with a large flat surface which is 3D-Printing friendly. 

The cost of mechanical parts is lower and the manufacturing is easier compared to the 

experimental system.  

 However, in the WBR-SH2 system, the IMU is placed in a remote position (the 

sensor box) to the user’s hands, where the IMU cannot measure the movement of the 
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user’s hand directly. This limitation should be considered in experiments and data 

analysis in the following studies.  

Thanks to the good computational power and rich memory resources in the selected 

BLE SoC, the firmware is multi-functional. The use of RTOS reduces the complexity 

to manage the shared resources and multi-thread scheduling. Taking advantage of the 

computational power, WBR-SH2 can not only act as a measuring unit (data provider) 

but also a processor (data consumer). The sensor calibration, data filtering, and 

orientation computing are done by the device directly instead of a dedicated computer. 

The data output from WBR-SH2 is calibrated and normalised, which is readable for 

researchers or experts without doing extra data processing. As the data consumer, a 

neural network classifier is also implemented into the SoC for exercise recognition, 

allowing the sensor to aware of what kind of exercise is performing by the user (will be 

discussed in Chapter 5 and Chapter 6). 

Although the preliminary PPI is not widely covered by the number of participants, 

it is very valuable to the development of the WBR-SH2. The results have proven the 

overall design of WBR-SH2 is successful in many aspects such as usability and the 

acceptances. The sound feedback which was produced by the PPI has been added to the 

WBR-SH2 in the first revision. The PPI also pointed out that with the nearable concept, 

WBR-SH2 might be easier to be forgotten by the user because of the lesser motivation 

compared to traditional exercise instruments. A better instruction of the sensor, local 

group exercise, or online community and doctor’s endorsement might help to improve 

the motivation.  

 Overall, the WBR-SH2 is superior to the experimental system in most aspects and 

as well as the real-life application. The WBR-SH2 is the key component of the 

resistance band intervention model, which discuss in 3.1. The prototype has fulfilled 

most of the requirements in PDS and the objective described in 3.2.1, and it is proven 

that design concept 1 is achievable.  
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3.7 Conclusion 

 The limitations in the experimental system prevent it from being widely used in a 

further experiment. Therefore, a new sensor was built to overcome these problems. A 

development process of the new WBR-SH2 system is then shown in this chapter, 

including the problem statement, objectives, system specifications, initial design 

concepts, hardware (PCB) development, firmware (embedded software) development, 

Android App development, evaluation with load cell and accelerometer calibrations.  

 In the problem statement, the problem and limitations of the experimental system 

are summarised and shown. They are: 

 Lack of band direction sensing. 

 Power shortage. 

 No synchronisation between multiple sensors. 

 Required extra wireless adapter. 

 The general objective of building a new resistance band system (WBR-SH2) are 

discussed. They are: 

 Similar sensor set-up as the experimental system (IMU, barometer and load cell). 

 Durable structures. 

 At least 2 devices could be synchronised. 

 Improve usability. 

 The design of WBR-SH2 is shown in 3.2. Starts from providing a PDS, which list 

the minimum, realistic and ideal requirement of the new sensors. Following the PDS, 2 

main concepts of WBR-SH2 are ranked out for the final decision. Concept 1 is a 

completely new concept with one-box design; Concept 2 is an improved design of the 

experimental system. The decision is made to Concept 1 in the comparison. Concept 1 

has many advantages such as robust housing, less mechanical design difficulty, reused 

commercial handles to reduce the cost, and can measure resistance band direction. The 

challenge of Concept 1 is the space for electrics and battery are limited.  
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The limited space challenge is solved by low-power oriented hardware design and 

optimised compact multi-layer PCB design. The former reduces the size of the battery 

dramatically, while the latter reduces the size of PCB. To have better interaction with 

the end-user, WBR-SH2 also includes a set of RGB-LED and a buzzer, which provides 

visual and sound feedback to the user. The optimised hardware design reduces 50% in 

PCB area, 5 times lesser working current and 150 times lesser standby current.  

The mechanical part of the housing is designed to be 2 halves, which assembly 

together by the standard screws and nuts. The housing is 3D-printing friendly, allowing 

fast and low-cost prototyping.  

The firmware is designed to be multi-threading. Thanks to the rich computational 

and memory resources available in the selected SoC, the WBR-SH2 can not only 

measure data but also process the data. The built-in high-speed BLE radio allows fast 

real-time raw data transmitting to Android phone up-to 500Hz with a pair of WBR-

SH2s. Synchronisation in a distributed sensor network is fundamental but challenging, 

especially with a wireless sensor system. A novel synchronisation method is 

implemented into the firmware and Android App to ensure multiple WBR-SH2s are 

synchronised within 1ms.  

The load cell on WBR-SH2 is calibrated by using the linear model. The linear 

model is validated with WBR-SH2s, and the accuracy and range are for resistance band 

exercise measurement.  

The overall performance indicates that WBR-SH2 is capable of undertaking the 

works done by the experimental system with much better usability and functionality. 

The PPI has proven the acceptance of WBR-SH2 with the real-life end users to a certain 

extent. 

The development of WBR-SH2 is only the first step for remote exercise 

measurement. The following Chapter 4 will describe the problem of synchronisation in 

BLE sensor network and provide a novel method to overcome the problem using an 
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unmodified Android device and multiple WBR-SH2. The latter Chapter 5 presents the 

development of a high-level neural network framework for microcontrollers, and it is 

successfully implemented into WBR-SH2 in Chapter 6. 
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Chapter 4 Sub‐millisecond 

Synchronisation of Bluetooth Low Energy 

Network 

4.1 Introduction 

 During the last 2 decades, wearable inertial sensors are widely used by researchers 

to investigate the potential risks and the motor function of human bodies. In the past, 

most sensor systems are scanning measurement through physical wired connections 

which links up all sensor nodes. These sensor systems usually consist of one central 

device and multiple sensor nodes [104], [105]. Data are exchanged through physical 

wires by serial communication interfaces (CAN, RS485, I2C). The wired systems are 

capable reliable but also have some clear limitations: (1) Physical interference between 

sensors. (2) Complex to set-up. (3) Uncomfortable wearing. Recently, many sensor 

systems are basing on wireless communication and distributed powered nodes [54]. 

Wireless sensors aim to avoid the needs of physical wires. Those wireless sensor 

systems are taking advantages of less inconvenient and less interference by physical 

connections between each sensor node. However, wireless sensor systems are always 

suffering from unstable communication latency and power shortage in remote nodes.  

 Back in 2010, the first Bluetooth Low Energy (BLE) was introduced in Bluetooth 

4.0 specifications. BLE aims to provide low data latency, reliable data transmission and 

low energy consumption features, which makes BLE an ideal wireless network protocol 

for Wireless Body Area Network (WBAN). Most importantly, BLE is already widely 

implemented in most of the smartphones which released after 2011 [106]. If a WBAN 

could be formed with a smartphone and many sensor nodes, the cost of the system will 

be lower and usability will be improved dramatically. In this ideal WBAN, wireless 
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sensors nodes responsible for measuring, while smartphone acts as a central device to 

process data.   

 To accurately measure motion data, other than the sensor accuracy, the timing of 

the measurement is also important. Timestamping the data on the receiver side is 

inaccurate due to the possible loss of messages or delayed by retransmission in a 

crowded wireless environment. The ideal method is to timestamp the measurement 

immediately on the sensor node before being sent out to the data receiver. This method 

requires the sensor node is synchronised and has an accuracy local clock. Once the data 

is timestamped, no matter whether the data is delayed or not, the timestamps on the data 

are still accurate when the master receive it. 

 Therefore, the sensor needs to be synchronised before starts sampling and during 

the sampling. This chapter presents a novel method to synchronise the timing between 

sensor nodes in a connection-oriented BLE network by using an Android phone. It is 

implemented by an unmodified off-the-shelf Android phone as a central device and 

multiple embedded systems as sensor nodes. A specific Android App to perform the 

necessary operation on the Android side is installed on the testing smartphones. The 

results show a maximum synchronisation error within 1.2ms across 5 sensors with 

variable unmodified Android Device. 

4.1.1 Bluetooth Low Energy Overview 

 In the view of transmitting data using BLE, there are mainly two methods of doing 

this: advertising and scanning (connectionless-oriented) or connection (connection-

oriented). Figure 4-1 shows the difference between both methods.  

 In connectionless-oriented BLE network, there are 2 kinds of devices, “beacons” 

and “scanners”. Beacons broadcast messages occasionally, while the scanner keeps 

scanning whenever it is available. In this network, data will be broadcast in limited 

length messages by beacons. Acknowledgement from the scanner to beacons is not 

available. This method can easily achieve multiple TX to multiple RX topology because 
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no connection and synchronised channel hopping are required. However, there are some 

limitations, including (1) limited length of the payload. (2) limited data bandwidth (3) 

single direction communication. (4) no acknowledgement, i.e. messages are not 

guaranteed to be received [101]. 

Figure 4-1 (a) Connectionless-oriented BLE network. (b) Connection-oriented BLE network. 

 In connection-oriented BLE network, there are two kinds of devices, “master” and 

“slaves”. Typically, in one connection-oriented BLE network, there is only one master 

and one, or multiple slave(s). In contrast to connectionless-oriented BLE, a connection 

is established after an advertising device broadcasts connectable advertising message, 

and a scanning device initiates a connection with it. After initialisation, the advertising 

device will perform the slave role, and the scanning device will perform the master role. 

Data will be exchanged by one of the 37 physical channels with channel-hopping 

technology. In the connection state, the master is responsible for organising the timing 

of communication with each slave, while the slaves follow the timing strictly. 

Communication only happens when the timing is agreed. When not actively 

communicating, the slave will enter radio idle or system sleep state, to reduce power 

consumption. In connection-oriented BLE, each slave is invisible to others. 
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Figure 4-2 Simplified BLE structures involving Android and microcontroller. Layers marked by green 

shades are time-critical while others may not. Radio events are available in some microcontrollers 

which allows applications to access low-level timing. 

 In connection-oriented BLE network, the low-level timing is critical. The Structure 

of the BLE stack is shown in Figure 4-2. The timing is guaranteed by Link Layer in 

both ends; any upper-layer has no access to the timing information. Figure 4-3 shows a 

typical BLE network contains one Master and two Slaves. A timeslot that Master and 

Slaves exchange message called Connection Event (CE). A CE is started at a specific 

timing point called Anchor Point (AP), which is controlled by Master and strictly 

followed by Slave. The AP is triggered at a fixed interval called Connection Interval 

(CI). The length of the CE is not fixed. It might be ended by the Master or Slave actively 

or passively. However, a CE is always started at the AP. At the AP, the Master will 

always transfer the first message to the Slave to indicates a start of CE as well as for 

Slave to recalibrate the AP. There is an optional Slave Latency indicating a maximum 

number that Slave could ignore (not respond to Master) the number of CE without being 

considered that the connection is lost. The AP is resynchronised in Slave’s Link Layer 

whenever a new message is received (where a CE is started). To be noticed, if there is 

no data to transmit, an empty Protocol Data Unit (PDU) will still be transferred from 

Master to Slave to start a CE. 
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Figure 4-3 Connection Event in BLE connection. 

 

4.1.2 Related Works 

 Synchronisation for distributed sensor system has been researched and 

implemented for decades. However, those distributed systems that use BLE do not 

benefit from the existing works, such as the Reference Broadcast Time Synchronisation 

(RBS [107]) and the Timing-sync Protocol for Sensor Networks (TPSN  [108]). Many 

studies have explored the synchronisation of BLE sensor network since the first BLE 

version was released. 

 Accurate synchronisation using BLE can be achieved when both ends could access 

the accurate timing information in the BLE stack. Some of them are implemented in 

connectionless-oriented BLE networks. BlueSync [109] focuses on synchronising a 

Beacon with a Scanner by timestamping the fixed-length advertising message on both 

sides. A similar setup by CheepSync [110] used modified Android phones and beacon 

units. The authors modified Android firmware to access timing information down to the 

device driver to avoid the unpredictable delay that causes by BLE stack. Both methods 
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require accessing very low-level timing, and both reach almost the same level of 

accuracy at about 10μs.  

 There are some studies that focus on the synchronisation in connection-oriented 

BLE network. A study by Dian et al. [111]  has further assessed the method provide 

by Bideaux et al. [112]. Their method is to timestamp the “connected-event” that is 

generated on both sides while a new BLE connection is established. In Bideaux’s 

method [112], two embedded BLE modules were used to perform the synchronisation. 

One module acts as an advertiser and the other acts as a scanner. The scanner initialises 

a connection with the advertiser, then both wait for the “connected-event”. Once the 

event is triggered, both devices output pulses to an oscilloscope, and a microcontroller 

for data logging. The results show the accuracy of the synchronisation during 

connection establishment is around ±750μs. Since this method can only be applied at 

the beginning of each connection, it cannot continually calibrate the clock drift in sensor 

nodes.  

 There are also some studies that use external measurement methods for 

synchronisation. A study by Somaratne et al. [111] uses the current consumption pattern 

during the connection to synchronise the device, with an accuracy of 19μs being 

achieved.  

 To conclude, the results of the methodologies described above are good enough for 

some limited distributed sensor network application. Some of the methods focus on 

reaching the low-level timing information to avoid unpredictable stack accessing delay, 

whilst, others require external hardware for capturing radio power pattern. The methods 

described are incompatible with BLE sensors systems using an off-the-shelf stock 

smartphone.  

4.1.3 Problem Statement   

 In wireless sensors systems, synchronisation between sensor nodes is a 

fundamental issue. Especially when the system is involving a user’s smartphone for the 
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only method of data acquisition and control. In these cases, only standards protocols 

(such as Bluetooth, WiFi) can be used by the sensors, while they are reliable in 

transmission but less time-critical.  

 In Chapter 3, BLE is selected as the only communication method for WBR-SH2. 

When there is a need to involve both hands for resistance exercise, the two WBR-SH2s 

must be synchronised. However, the accuracy of generic BLE Time Service is not 

accurate enough (Time Service resolution is 1/8 secs)[113]; while the motion sensing 

is always requiring higher accuracy [114]–[116]. The methods discussed in 4.1.2 have 

tried to solve the problem from different perspectives, but all require modification of 

the user’s smartphone, which is not suitable in our application scenarios.  

4.1.4 Objectives 

 The objective is to develop a synchronisation method for typical applications 

involving customised sensors and off-the-shelf smartphones. The study should fulfil the 

requirements of: 

 The method must base on the standard BLE protocols.  

 The method can synchronise at least 2 sensors at a time. 

 Able to synchronise sensor with miniature impact on the original bandwidth. 

 The synchronisation accuracy must be less than 10ms (at 100Hz sampling rate). 

4.2 Methodology 

 It is essential to capture the system time as time-critical as possible when 

synchronising networks. The more critical usually means better synchronisation 

accuracy. The targeting BLE network consists of two kinds of non-equivalence devices, 

one Android device, and multiple customised sensor nodes. The major difference 

between the two types of devices is the accessibility of the BLE stack. Without 

modification on Android firmware, the programming is restricted to the very top App-

level, which is less time-critical. On the contrary, the programming on sensor nodes 

(embedded system) could be more time-critical. Although the Android application level 
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is less time-critical, the timing is still guaranteed in the Link Layer which is always 

time-critical as required by the Bluetooth core specification [101].  

 The method proposed in this chapter is based on the accurate timing within the 

Android’s Link Layer, even though the time is not accessible to the App-level. Sensor 

nodes use their time-critical programming to synchronise with Android’s Link Layer 

timing. Whilst the Android device identifies the biases between sensor nodes by 

timestamping BLE transaction callbacks in App-level programming. 

 To clearly explain the method, the principle of connection-oriented BLE needs to 

be introduced first. The principle and related background information of BLE is 

described in section 4.1.1. In section 4.2.1, the detail of our approach and the evaluation 

method is discussed.  

4.2.1 Synchronisation Method 

 The key to synchronising the network is to identify the biases and clock rate in 

every slave. As mention in 4.1.1, while in the connection state, the timing of AP is 

already guaranteed by the Link Layers at both sides. Therefore, it is ideal to calibrate 

the Slave’s local clock by referencing AP. The principle of our method is to use captured 

AP on the slave side as a time reference, by adding bias to the AP to match the other 

slaves. Once AP and bias are known in a slave, the networks it can adjust its local clock 

to match the network’s clock. 

  For example, in Figure 4-3, assuming the two slaves are connected to the master 

with the same CI, once the bias (ܤଵ) and AP are known by slave 1, then slave 1 can add 

the bias to its AP (s1
ଵܶ ൅ ଵ ) to match the other slave’s AP (s2ܤ

ଵܶ). Then, the two sensors 

are synchronised.  

 Due to the nature of the BLE connection, each connected slave is invisible to other 

slaves, the master is then responsible for identifying the biases between slaves.  

 Beside the biases, the clock rate is also calibrated in the slaves to improve the 

accuracy. This is done by using linear regression with multiple APs in the slave. 
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4.2.1.1 Clock Calibration Model in Slaves 

 A clock calibration on Slave can be described as a linear model referring to (4-1). 

If we assume that the clock of the network is based on the master’s Link Layer, then 

 ௜ is theܴܥ ,ே௘௧௪௢௥௞ represents the time of Master, ௜ܶ is the local time of the slavesߒ

clock rates in the slaves, and ܤ௜ is the bias for the slaves.  

ே௘௧௪௢௥௞ߒ  ൌ ௜ܴܥ ∙ ௜ܶ	 ൅  ௜  (4-1)ܤ

  

4.2.1.2 Slave (Sensor Nodes) 

 In the Slave side, the slope Aଵ,ଶ,ଷ… could be calculated by using the local timer to 

capture the local timing of AP. Each Slave needs to know when is the AP for its 

connection. Although the Link Layer is calibrating AP automatically, there isn’t access 

to this information if the BLE stack is close-sourced or pre-compiled.  

 However, there is a possibility to estimate when is the AP from variable aspects. In 

many of the commercial BLE chips or SoCs, there is an interrupt indicated that the next 

CE is started in a range of time ahead. Specifically, with Nordic BLE SoCs, there are a 

few RF events can be used to capture the radio hardware directly by linking them to its 

specific designed Programmable Peripherals Interface. A comparison of different 

events is described in this study [117]. Although one of them could capture the AP 

directly, the timings of them are related to AP. For example, the Address Matched Event 

(AME) is triggered whenever the RF PHY capture the Access Address, which is always 

triggered at the beginning of receiving a message. As mention at 4.1.1, no matter there 

is data to send or not, the Master will always send a message to Slave at the AP to 

initiate a new CE. Therefore, an AME is always triggered when a CE is started unless 

there is interference in the environment resulting in hardware failing to capture the 

message. We assume the timing of Address Event to AP is relatively fixed, then the 

slope can be calculated using Address Matched Event.  
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4.2.1.3 Master (Android Device) 

 As discussed previously, the Master is responsible to identify the biases across each 

Slave. Considering the complexity of the Android system and the limited information 

in App-level programming, it is hard to know when is the AP exactly. One of the 

previous studies, CheepSync, modified the USART driver to timestamp the messages 

in HCI, which are transferred between Link Layer and upper BLE stack. This has 

avoided the delay of processing package through upper BLE stack. However, without 

modifying Android firmware, this method cannot be done. In this chapter, we 

timestamp transaction’s callbacks to estimate the biases between different Slave’s AP. 

Specifically, a Write transaction and its callback are used to calculate these timings. The 

procedure of transaction is shown in Figure 4-4.  For each Slave, the Master sends a 

WRITE transaction and timestamp right after the Write callback is called. By 

comparing the timestamps delays across Slaves, the bias of each Slave can be estimated.   

4.2.1.4 Bias Estimation 

 In the previous discussion, biases can be identified by the APs of different Slaves, 

and the biases estimation must be done in Master side. In the Android App-level 

programming, there is no access to the timing of AP directly. By using BLE transactions, 

there is a chance to estimate the bias, because the Response of transaction is always 

close to one of the APs. In our method, a default Write transaction. The transaction is 

performed by Master write a characteristic on Slave which requests acknowledgement 

(Response) from the Slave. The Response is then used to estimate bias. The transaction 

is shown in Figure 4-4, where clearly shows how a Response for Write transaction is 

related to an AP. In Android, receiving a Response will trigger a callback to App-level. 

Then, these callbacks are timestamped individually according to different Slaves. Due 

to Android’s multiple task and nonpreemptive nature, the delay from the actual AP to 

the callback is unpredictable. If we assume the delay is standard distributed and the 
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mean delays are equal across Slaves, then the actual biases can be estimated by linear 

regression.  

 In the practice, a Write transaction is started with App sets up a message and uses 

BluetoothGatt.writeCharacteristic() to write the message into Android’s Bluetooth 

stack, where timestamped as ௠ܶ௦. The message must wait for the next available CE to 

be sent out. When the message is transmitting, an Address Matched Event (AME) will 

be triggered in the embedded system (Slave) at the very beginning of transmitting with 

minor fixed delay to AP [101].  After the message is received and the CRC (Cyclic 

Redundancy Check) is checked, a Response is sent from the embedded system to 

acknowledge the message. The Response must wait for the next available CE to be sent 

out. In the next CE, an empty PDU or a new message will be sent from Android to 

indicate a new CE started. The empty message takes ݐ௦ to for transmitting. Then both 

sides will wait for an Inter Frame Space (T_IFS: 	ݐூிௌ). After T_IFS, Slave sends out a 

Response. The transmission takes ݐ௥  to complete. When Android receives the 

Response, it takes ݐ௣ to process the Response within Android and its Bluetooth stack, 

and then trigger a write-completed call-back, 

BluetoothGattCallback.onCharacteristicWrite(), where timestamped as ௠ܶ௥.  
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Figure 4-4 A completed Transition using WRITE transaction. 

 In Android App-level programming, only ௠ܶ௦  and ௠ܶ௥  is known. The 

relationship between AME timestamp ( ஺ܶொ) and  ௠ܶ௥ is shown in (4-2). Per BLE 

spec [101], the ݐ௦ , ݐ௣ and ݐ௥ are relatively constant.  The length of the message, 

Empty PDU and Response PDU are known and can be estimated by over-the-air bitrate, 

and the T_IFS is also fixed to 150μs. The Response processing time ݐ௣ is the only 

unpredictable parameter. We assume ݐ௣is normally distributed. If the transaction has 

been repeated many times, then the average ̅ݐ௣ should be stable. 

 ஺ܶொ ൌ ௠ܶ௥ െ ሺݐ௦ ൅ ௥ሻݐூிௌ൅ݐ െ  ௣ (4-2)ݐ

 In BLE network with multiple Slaves, if we select one of the Slave’s ஺ܶொ  as 

clock reference ௥ܶ௘௙. Then the bias of other Slaves could be calculated by (4-3). 

௜ܤ  ൌ ௠ܶ௥೔ െ 	 ௥ܶ௘௙  (4-3) 

 However, the process that described above is valid only when: 

 1) The connection is idle, but only the synchronisation transactions are transmitting. 

 2) No interference leads to message retransmitting.  

 While there is some interference in the environment, retransmission will be 

performed by the Logical Link Control and Adaptation Protocol Layer (L2CAP, one of 

the BLE layers above Link Layer) without notifying the upper layers and App. 

Retransmission leads to an unpredictable time delay, which could be an integer of CI. 
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To detect the retransmission, a Write-to-Response delay should be identified which can 

be calculated by ݐ௪௥ ൌ 	 ௠ܶ௥െ	 ௠ܶ௦.   

 While a Write-to-Response is delayed, it is unclear whether the delay happens on 

sending Write message or on receiving Response. Due to this uncertainty, the procedure 

described above cannot be performed. Therefore, the transaction should be considered 

as invalid. The Write-to-Response delay of the last operation will be included in the 

next Write message and sent to the slave.  

 On the Slave side, it is never known whether the current message is valid until the 

next message arrives. While calibrating the local clock, Write-to-Response delay (ݐ௪௥) 

that are larger than two times the CI will be excluded. Linear regression is used to 

estimate the next AP when the transaction is delayed.  

 Due to the nature of BLE, it is important to note that the connection parameters are 

set by the master and will not tend to change unless required. Once the estimated biases 

are steady, the continuous bias estimation is not necessary. The link resources occupied 

by the synchronisation can, therefore, be released. 

4.2.1.5 Clock Rate Calibration 

 To reduce the power consumption, BLE devices could use low power, low accuracy 

clock source (maximum 500 parts-per-million [ppm] on each side) for sleeping clock 

[101]. In our method, the clock drifting is eliminated at each AME once a new CE is 

established. The clock synchronisation period is the same as CI. Therefore, when a CI 

(from 7.5ms to 4s [101]) is relatively long, Slave Latency is enabled, or interference 

that leads to an unsuccessful transaction, the synchronisation period will increase 

respectively. In these cases, the clock drifting within one synchronisation period might 

be significant. To reduce the clock drifting within a synchronisation period, the clock 

rate in Slave needs to be calibrated to match Master’s clock rate. The calibration is done 

by linear regression with multiple AME timestamps. The slope of the regression line is 

the Slave’s clock rate.  
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4.2.2 Evaluation Method 

 To evaluate the effectiveness of the synchronisation, we need to measure the local 

timing on each Slave. The Slave was configured to output a pulse signal per its 

calibrated timer. The pulse interval was set larger than BLE interval to avoid 

misunderstanding. An external development board will be used to record the pules.  

4.3 Experiment   

 To validate the method performance, the method was implemented into a small 

network which included a stock Android device. Two tests have been done to evaluate 

the effectiveness of synchronisation. The cost of computational resources and memory 

is recorded.   

4.3.1 Experimental Setup   

 In the practice, the synchronisation method is evaluated in a small BLE network, 

which is consist of 5 customised sensor nodes (WBR-SH2 [75]as slaves) and one of the 

variable Android smartphones (as the master). WBR-SH2 is an embedded sensor node 

designed for exercise monitoring using multiple sensors. The WBR-SH2 is controlled 

by a high-performance low-power Bluetooth SoC, Nordic nRF52832. In the previous 

study, the clock drifting of WBR-SH2 was measured and was found to be as large as 

1.5% base on its low power clock source [76]. The inaccurate clock makes WBR-SH2 

an ideal device for evaluating this synchronisation method. In the experiment, WBR-

SH2s were configured to output pulses per its local clock though a GPIO (General 

Purpose Input/Output). Additionally, an nRF52DK development board was physically 

connected to these WBR-SH2s to capture the pulses. The experimental setup is shown 

in Figure 4-5.  
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Figure 4-5 System view. (a). A connection-oriented BLE networks, consisting of one Android 

smartphone and 5 WBR-SH2. They are performing synchronisation. (b). The external testing device to 

capture pules and calculate sync error. 

 To be simplified, the same BLE connection parameters are set for each Slave during 

the experiments:  

1. Connection interval: 25ms 

2. Slaver Latency: 0 

 The tested clock source in Slave was set to the default 1MHz low-power clock 

source in each sensor node. The resolution of the timers was set to 1μs.  

 On the smartphones (Master), a customised App was installed to perform the time 

synchronisation. The screen on all smartphones was set to remain on during the tests. 

When all slaves are connected to the master, the master started to send Write messages 

to every Slave with a fixed interval of 100ms. The slaves then outputted the pulse signal 

with a frequency of 5 Hz, and 50% duty per its calibrated local clock. Ideally, after 

synchronisation, the edges of output signals from the 5 devices should be closely 

matched.  

 The selected Android device are listed in Table 4-1 with Bluetooth version from 

4.0, 4.2, and 5.0, the SoCs from low-end to flagship, and the variable Android versions 

including 5.1.1, 6.0, 7.1.1, 8.0. AnTuTu is a benchmarking tool commonly used to 
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benchmark phones and devices. The Central Processing Unit (CPU) performances of 

AnTuTu Benchmarks for each device are listed for performance comparison, the higher 

the score, the better the performance [118]. 

Table 4-1 Selected Android Device (Ranked by CPU performances) 

Phone Model AnTuTu Benchmark (CPU) Android  BLE  Test 

One Plus 5T 72541 8.0 5.0 1 

Xiaomi Mi 6 72454a 8.0 5.0 1/2 

Xiaomi Mi 6 70193 7.1.1 5.0 1 

One Plus 3T 54053 8.0 4.2 1 

Sony Xperia Z2 33132a 5.1.1 4.0 1/2 

LG Nexus 5 22393a 6.0.1 4.1 2 

Galaxy TAB Active T365 15578 a 5.1.1 4.0 1/2 

a Benchmarking is done by the tested devices with AnTuTu 7.1.0. 

4.3.2 Evaluations Method 

  The evaluation of the synchronisation effectiveness is based on the pulses output 

from 5 Slaves. As shown in Figure 4-5, the Slaves continually output the pules through 

one GPIO per its local clock. Each of them is connected directly to one of the GPIO on 

the nRF52DK. These GPIOs on nRF52DK are configured to captured both rising and 

falling edges of the input signal. A set of Programmable Peripheral Interconnect 

channels are used to link GPIOTE event with timer capturing task. The clock source 

for the capturing timer is set to high accuracy (20ppm) onboard crystal. Once an edge 

of the pules was detected, the timer captured the current counter to the corresponded 

channels’ register. The values in the register were read, stored and then transferred to 

another phone for data recording. Finally, values were saved in the recorder (another 

smartphone) using a .csv (Comma-Separated Values) formats for post-analysis.  
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4.3.3 Experiment Protocols 

 The tested BLE network is consist of 5 Slaves and 1 Android Device. The selected 

Android device acted as the Master separately.  

 The experiment is separated into two individual tests.  

4.3.3.1 Test 1: Time Stability Test 

 Test 1 evaluated continuous synchronisation effectiveness. First, the network was 

set up (5 Slaves were connected to the Master). Then, 30 seconds continually 

synchronisation followed. The 30 seconds of synchronisation allows about 300 

transactions for the initial bias estimation. The synchronisation was continually 

performing while the pulses were recorded for 3 minutes. 

4.3.3.2 Test 2: Network Initiating Stability Test 

 Test 2 evaluated the stability of initiating a new network. After the network was set 

up, the network will perform the synchronisation for 30 seconds for initiation. Then, 

the synchronisation was performed continually, the pulses of 5 channels were recorded 

for 30 seconds. Test 2 was initialled 12 repetitions for each tested Android device. 

4.3.4 Resources Consumption Analysis 

4.3.4.1 Master 

 Master is responsible for calculating the biases across Slaves. It requires the 

smartphone to keep a limited length queue (300 timestamps, 30 seconds) for the bias 

estimation for each Slave. As mentioned in 4.2, once biases are stable, there are not any 

other works needed for synchronisation but keeping connected.  

4.3.4.2 Slave 

 The clock calibration is based on linear regression, which requests dedicated 

memory and computational power. In the experiment, Slaves maintained a queue of 256 

AME timestamps and a queue of 64 Write messages timestamps. The cost of CPU and 

memory used to perform a completed calibration were recorded in the experiment. 
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4.4 Results   

 Table 4-1 shows the selected devices, the benchmark, Android Version, Bluetooth 

Version and the test that the device did. In total, 6 devices have done Test 1 and 4 

devices have done Test 2. 

 During data processing, the synchronisation error of each slave ܧ௜	ሺ݅ ൌ 1,2,3,4,5ሻ, 

at each interval, was calculated by (4-4), where ௜ܶ is the timestamps of the edges of 

the pulses captured by the nRF52DK. The maximum network error ሺܧ௠௔௫ ) at each 

interval is calculated by (4-5).  

௜ܧ  ൌ ௜ܶ െ ݉݁ܽ݊ሺ ௜ܶሻ  (4-4) 

௠௔௫ܧ  ൌ ሺ	ݔܽ݉ ௜ܶሻ െ ݉݅݊ሺ ௜ܶሻ (4-5) 

 

4.4.1 Test 1: Time Stability Test 

 The synchronisation errors of each Slave ሺܧ௜) are shown in Figure 4-6. During the 

180 seconds, about 9000 timestamps were captured for each tested Android device (5ch 

x 10Hz x 180sec = 9000). In the test with all the devices, the distribution of each channel 

at a fixed position during the 180 seconds. The actual bias of each channel does not 

drift. The clock drift in WBR-SH2 is eliminated by the synchronisation method.   

 The synchronisation effectiveness seems unrelated to the performance of the 

devices. The Galaxy TAB Active T365 (T365) is considered as a lower performance 

device (15.5k CPU scores), however, the synchronisation error is smaller than both 

Xiaomi Mi6s (Mi6) and the other One Plus 5T (5T), with both Mi6 and 5T being 

considered high-end smartphones (70k CPU scores).  

 The version of Android and BLE are also not linked directly to effectiveness. The 

Sony Xperia Z2 (XZ2, Android 5.1.1, BLE 4.0) and One Plus 3T (3T, Android 8.0, BLE 

5.0) are both high-performance phones. They provide similar distribution and the errors 

are smaller than all other devices.  The Xiaomi Mi6 with different versions (Android 

7.1.1 and 8.0, different device) results in different synchronisation effectiveness. The 
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possible causes are different Bluetooth stack version or different power saving 

strategies lead to different delays in App level.  

Figure 4-6 Distribution of synchronisation error for 5 sensors across tested Android Devices. 
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4.4.2 Test 2: Network Initiating Stability Test 

The synchronisation was repeated 12 times for each of the 4 selected devices. In 

Figure 4-7, 5 channels and 12 repetitions (about 5 x 10 x 180 x 12 = 18000 timestamps) 

for each device are plotted in the same box. 3 devices (Mi6, XZ2, T365) did both tests; 

Nexus 5 did only Test 2. After 12 cycles of initialling and detaching networks, the 

overall synchronisation effectiveness of XZ2 is better than Mi6 and T365, which is 

similar to the argument in Test 1. The Nexus 5 comes with an Android 6.0.1, but it 

performs within the same range of all other Android versions.  

In all the timestamps that collected in Test 2, the absolute channel error (ܧଵ,ଶ,ଷ,ସ,ହ) 

is 0.829ms, CDF95% (Cumulative Distribution Function at 95%) of ܧଵ,ଶ,ଷ,ସ,ହ  is at 

0.47ms. The standard deviation of ܧଵ,ଶ,ଷ,ସ,ହ is 0.217ms. The maximum network error 

 .of all collected data is 1.284ms (௠௔௫ܧ)

 

Figure 4-7 The distribution of synchronisation error in 12 initialling repetitions. 

4.4.3 Computational Cost 

 The cost of resources was assessed individually in the smartphone and sensors. The 

memory and computational cost used by the App on the smartphone are small compared 
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to the resources available in a modern smartphone. We consider that the cost of 

resources in the modern Android device is, therefore, negligible. Sensors used as part 

of an embedded system, usually possess limited computational capabilities and limited 

battery power. Thus, the computational cost is more relevant.  

 In WBR-SH2, a set of timestamps needs to be kept in the memory for the bias 

estimation using linear regression. In the experiment, 256 timestamps were kept, and 

64 message timestamps were kept. Each timestamp is comprised of a 32-bits unsigned 

integer, so the extra memory cost for synchronisation and local clock calibration were 

1280 bytes. There is 64kB RAM available in the SoC, thus, the memory cost by 

synchronisation is about 2%.   

 To perform each clock calibration with 256 points linear-regression, the SoC takes 

average 230μs per round. The calibration is performed every CI, which is 25ms in the 

experiment. The computational cost in the sensors was 0.92%.  It is important to note 

that the memory and computational costs in the sensors is highly related to the 

experimental setting. These parameters can be adjusted depending on the needs of the 

application. 

4.5 Discussion 

 The results of both tests have proven that our synchronisation method can eliminate 

the clock drift in WBR-SH2 as an example. This method does not require extra 

hardware on both sides, so it can be implemented into generic microcontrollers which 

support related radio events. For other microcontrollers without radio events, this 

method can also be performed by using transaction callback instead of radio events. 

However, the accuracy might be lower since which introduce the uncertain process time 

in its Bluetooth stack.  

In Test 1, the synchronisation error of each channel is not drifting but stable at some 

fixed error within 180 seconds in all the tested Android devices. The synchronisation 

effectiveness seems different between devices. The distribution of S2 and S5 matched 
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closely while S1, S3 and S6 distribute separately. However, in Test 2, after 12 times of 

repetition, the distribution ranges cross devices are similar. The differences between 

tested devices are lesser than Test 1. Thus, the argument of Test 1 can be a special case 

of Test 2. There is not much evidence showing the synchronisation effectiveness is 

irrelated the Android version, Bluetooth version or the performance.  

The results show that the method has met the requirement of the objectives in 1) 

The method can work on a customised sensor network involving variable stock Android 

devices. 2) The accuracy (Std: 0.217ms, CDF95% 0.47ms, maximum network error: 

1.284ms) is enough for motion sensing (100Hz, required synchronisation error below 

10ms). 3) This method can provide high-frequency continually clock synchronisation 

without compromising for the bandwidth. Therefore, this method is superior to other 

methods discussed in the introduction section for WBR-SH2’s typical application.  

The limitations of the experiment are: 1) Did not test while the android phone is 

off-screen. 2) Other operating systems are not tested. 3) the method is not guaranteed 

in the future development of Android. These limitations are discussed below.  

The tests were only done while the tested devices are screen on, and the App was 

on the foreground, which gave the App the highest priority to run the synchronising 

algorithm. Thus, the messages from the sensor nodes were responded in time. When the 

App was in the background or the Android device screen off to entre low power mode, 

the responses, which could affect the calculation of the biases at the beginning of the 

connection. This test only is done with Android device, other systems such as Windows, 

Linux, are not tested. Although the method is proposed for stock Android, it can also 

be used with traditional embedded wireless adapter. In this case, the accuracy will be 

improved because the embedded wireless adapter can normally measure the biases 

more accurate than Android. The method is validated with the up-to Android system 

(version 8.0), which could be invalided during the development of Android.  
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4.6 Conclusion 

 The synchronisation method provided by this chapter has been tested with variable 

off-the-shelf unmodified Android devices; the results (Std: 0.217ms, CDF95% 0.47ms, 

maximum network error: 1.284ms) are significant, compared to the generic time service 

(1/8 secs). However, the synchronisation error is larger than the previous works which 

including modified Android devices and SoC or using SoCs only.  

 This method has been proved that is working on variable Bluetooth version from 

4.0 to 5.0, variable Android version (from 5.1.1 to 8.0), and it performs stable from low 

to high-performance device. The experiment showed a minimum performance for 

running this synchronisation method is AnTuTu CPU score 15k, Android version 5.1.1, 

BLE version 4.0.  

 This method does not require additional hardware or modification on the stock 

Android, which means the already sold sensor systems are also capable of 

implementing this method by On-the-Air firmware upgrade and App upgrade. The 

application scenario is not limited to wearable sensors. It can also be implemented in 

many different applications that have higher synchronisation requirement.  

 There are currently a few notable limitations: 1) Testing while the Android device 

screen is off was not conducted. 2) Other smartphone operating systems have not been 

tested. 3) Have not been tested in a controlled environment with radio frequency 

interference to validate the stability. Future work is to understand and overcome these 

limitations and provide a robust method. 

 Overall, this chapter has presented a novel synchronisation method for generic 

devices using BLE such as WBR-SH2 system. The following Chapter 5 will discuss a 

high-level neural network framework for edge devices.  
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Chapter 5 Development  of  a  Compact 

Neural  Network  Framework  for 

Microcontroller 

5.1 Introduction   

5.1.1 Background 

 As mentioned in Chapter 1, the three questions in “when”, “what” and “how” is 

the exercise done are the keys to understand exercise interventions. Among the 

questions, the “when” and the “how” can be answered by the initial data analysis from 

smart sensors such as WBR-SH2. However, to answer the question of “what” kind of 

exercise is done is still relying on the post data analysis on higher performance platform 

(such as smartphone and PC). As discussed in Chapter 1 neural network is effective in 

exercise classification. Thus, is it recognise exercise on the sensorised handle alone? In 

this chapter, an initial trial to run neural network classifier on small footprint 

microcontroller is presented. 

5.1.1.1 Exercise Monitoring   

 The lack of remote exercise monitoring (discussed in Chapter 1) can be solved by 

wearable sensors or nearable devices, which continually assess exercise even the patient 

had left the hospital [48]. The type, the frequency and the intensity of exercise can be 

understood by using the motion data captured by these sensors. By sharing the 

information to the doctors or experts, they can assess the user remotely. The WBR-SH2 

system aims to measure the resistance band exercise remotely in people’s home.   

 Especially, WBR-SH2 has improved in most of the specification compared to the 

experimental system. It provides up to 12 DoF measurement. The available sensors 

include 3-Axis gyroscopes, 3-Axis accelerometers, 3-Axis magnetometers, barometer, 

temperatures sensors, and a load cell sensor to measure the force. WBR-SH2 has not 
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only provided a strong measurement ability but also provided the easy-to-use human-

machine-interfaces for users to measure their exercise fluently. The development of 

WBR-SH2 has been presented in Chapter 3 and Chapter 4. 

5.1.1.2 Convolutional Neural Network Classifier 

 Convolutional Neural network classifiers for exercise recognition has been 

discussed in Chapter 1 briefly. Convolutional Neural Network (CNN) models have been 

proved to be effective in many data processing applications, including voice keyword 

spotting, human motion recognition and bio-signal sensing [75], [119]. Although CNNs 

are great tools to understand the raw data and to aggregate information out of these raw 

data, they also require high computational cost to run the arithmetic. For example, a 

NN model trained for exercise classification can take 2.8MB for storing weights and 

take 9.2M Floating-Point Operation (FLOP) for one inference cannot run on a typical 

microcontroller used in WBR-SH2 system (512KB ROM, 64KB RAM, 64MHz CPU 

frequency) [75]. 

 Network efficiency is one of the diversities that attracted more and more focused. 

New structures such as Inception (2014) [120], Residual Net (2015) [121], [122], and 

DenseNet (2016) [123] has successfully improved the efficiency and performance by 

optimising the network structures. Some more recent achievements are also based on 

the above structures, such as Inception V3 [124] (further reduces the computational cost 

by using separately convolutional computation), and Octave-Convolution (2019) [125] 

(replace the traditional convolution by a low-frequency and a high-frequency subpath). 

However, due to the lack of higher-level library for MCU level, MCUs are not 

benefiting from these structures. 

5.1.1.3 Neural Network Classifier for Resistance Band Exercise 

 One resistance band exercise using Couch Potatoes for Cognition has been done 

previously by us [75]. In the experiment, 6 healthy volunteers participated, 5 males and 

1 female, aged from 23 to 40, right-handed. The participants were required to do 4 



Introduction 

128 

 

different activities, each consisting of 20 repetitions followed by 1 minute of rest to 

avoid the accumulation of fatigue. The experiment was measured by the WBR-SH2 

system and the raw data are stored in the computer for post-analysis. 

 A multiple-layers neural network classifier was built for exercise data recognition. 

The classifier consists of 2 convolutional layer blocks and 2 layers of a fully connected 

layer, together with 716k weights and 9.2MFLOP. The classifier was trained using 60% 

of the data and then tested by the other 40% of data. The results show 97% accuracy in 

the test dataset. However, the classifier was too large to deploy to MCU. More detail 

will be discussed in the following sections. 

5.1.1.4 Data Decentralisation   

 The trend of data decentralisation is emerging in recent days. Edge devices, which 

previously acted as the data provider, are now being utilised in many applications [126]. 

In particular, edge devices should be able to understand what it has measurement and 

provide precise and aggregated feedback to the upper-level receivers. WBR-SH2 is one 

representative of the modern edge devices which is also required to understand what 

has been measured. To date, this concept is known by the public by its other name, the 

Artificial Intelligent in Edge devices (Edge AI).  

5.1.1.5 CMSIS‐NN 

 CMSIS-NN [119] is a software library which is a collection of efficient neural 

network kernels developed to maximise the performance and minimise the memory 

footprint of the neural network on Cortex-M processor cores. The library is a fixed-

point arithmetic library providing a very basic and low-level function set for NN 

operations. This library makes NN possible to run on low-performance microcontrollers.  

5.1.2 Problem Statement 

 NN classifiers are performing extraordinary well on PC for post data analysis. 

However, transferring real-time raw data from sensor to PC is not always possible in 

real-life scenarios. In the model of remote exercise intervention, which was presented 
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in Figure 3-2 and was discussed previously in Chapter 3, the smartphone is a key bridge 

to collect data from the sensor then send it to the cloud server. If the smartphone is not 

presented during the exercise, The sensorised handle of WBR-SH2 system can only 

record the raw data for around 43 minutes (@100Hz sampling rate). The measurement 

for the last exercise could be lost if the data cannot be sent out in time due to the memory 

is overwritten by the new incoming data. Nevertheless, the more data transferring in 

between each component increase the latency of responses, reduce the reliability and 

reduce the security. An example of latency and the processing platform is shown in 

Figure 5-1. To avoid the dependency of the smartphone, as well as to solve the above 

problem, the raw data must be analysed locally inside the sensor.  

 

Figure 5-1 Example of latency in responding vs. processing platform. 

 Implementing NNs into MCUs is desirable, but there are still many barriers. Most 

currently available libraries for MCUs are incomplete. Some of them, such as tinn [127] 

and uNeural [128], support fully-connected layers only. uTensor [129] relies on the 

TensorFlow model alone. Table 5-1 lists the available NN tools/libraries comparison on 

three platforms. The lack of high-level libraries for MCUs increases the difficulty and 

time cost to implement NNs into MCUs.  
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Table 5-1 Available software packs in different platforms 

Level Platform (Performance FLOPS a) 

Computer / Servers 

(~T-FLOPS) 

Smartphone 

(~G-FLOPS) 

MCU 

(~k or M-FLOPS) 

Higher Keras, PyTorch, etc. None 

Middle TensorFlow, 

Theano, etc. 

TensorFlow Lite, 

ARM-NN, etc. 

CMSIS-NN/DSP, 

uTensor, uNeural, etc. 

Lower cuDNN, etc. OpenCL/DSP, etc. 

a. Floating-point operations per second 

 The lack of tools not only increase the difficulty of implementing NN into a 

microcontroller but also impact the motivation of trying the latest research outcomes. 

Figure 5-2 shows a brief timeline comparison of the research outcomes in the general-

purpose computer and the implementation states in MCU level. The implementation in 

the MCU stays far behind to the latest models, while the recent researches are more 

focus on reducing the resources, the complexity and improve the power-efficiency than 

it was before. Those new specifications are essential, especially for the resources-

limited platforms, such as the MCUs. The latest models are optimised from different 

aspects, one of the most effective aspects is modified structures, such as Inception uses 

a few parallel operations [120], [124], Residual Network uses a few skipped 

connections jumping over several layers [121], and the DenseNet are concatenating 

every layer’s output and input in a single dense block [123]. These networks are mostly 

optimised from the perspective of modifying structures, and they achieve better power-

efficiency by lower the computational complexity. However, due to the multiple links 

between the layers and the increased complexity in the structures, the difficulty of 

implementation on MCU growth dramatically while uses the currently available lower-

level library to build the model, such as CMSIS-NN. Currently, building or deploying 

a model on an MCU is tedious work due to the lack of a higher-level framework. 
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Developers must manually manage the memory exchanges, the running sequences of 

each layer, the memory copies, and the matrix arithmetic. 

Figure 5-2 Timeline of ML research outcomes for general purposes computers [130] compared to the 

implementation of MCUs, which is struggling at complex structures. 

5.1.3 Objectives 

 The objective of this chapter is to develop a high-level neural network framework 

for microcontrollers, which is more user-friendly, more flexible, and more capable than 

CMSIS-NN. Specifically, the library should allow developers to build complex models 

fast and conveniently. The implementation of the neural network model based on it 

must also be verified for performance and accuracy.  

5.2 Methodology 

5.2.1 Model Development Process 

 Currently, training NN models are computationally expensive but can be relatively 

low-cost when making predictions. Therefore, the development of NN models for 

embedded systems is usually separated into two steps [131], training and deploying. 

NN models are trained on higher performance platforms such as computers or the cloud 
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for fast training speed, then deployed to lower capability platforms such as smartphones 

or in this case MCUs. The development procedures to develop a NN model for an MCU 

is shown in Figure 5-3. 

Figure 5-3 An example of developing NN classifier for edge device with a PC. The process contains 3 

steps. 1). Collect a dataset for training the model. 2). Train the model. 3). Deploy the model into MCU 

for real-life data classification.  

 Training models on a PC usually use floating-point arithmetic. A floating-point 

calculation on MCUs is less efficient due to its lesser FLOPS (Floating-point Operation 

Per Second) performance compared to a PC. A conventional method to reduce the size 

and computational cost is to quantise the model. A floating-point model can be 

quantised into the fixed-point representative while deploying to MCU. 

 MCUs are sensitive to memory and computational cost. A larger size model may 

result in small improvements in accuracy but takes times of costs in memory or time 

while running in MCU. After quantisation, the resolution of a model has been changed 

so the performance of a model needs to be evaluated after deployed the model into 

MCU. Other sensitive performance such as computation complexity and run time also 
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need to be evaluated directly on the MCU. The floating-point NN tools and libraries 

running on the PC are lack of capabilities of simulating the fixed-point implementation 

on MCUs. Also, after the model has been deployed, any tuning in model structure or 

parameters will lead to a massive programming work in the MCU side.  

5.2.2 Quantisation   

 The quantisation of a floating-point model can accelerate the speed especially in 

MCU which always suffered from limited floating-point capability [131]–[133]. The 

quantisation method in this chapter is adapted from the method developed by Han et al. 

[131]. The selected backend, CMSIS-NN [119], is a fixed-point library, therefore, 

quantisation is necessary to deploy an NN model into an MCU. A quantisation of a 

neural network model can be done with a few steps, firstly, quantise input data, secondly, 

training with quantised layers, and finally, quantise weights and biases and deploy.  

Models are normally trained with floating-point data and parameters for better 

performances, while the quantised model only accepts fixed-point data and weights as 

input. Due to the representation range of an integer is much lesser than the same width 

floating-point variable, directly convert a floating-point variable to a fixed-point 

variable will lead to the saturation or the loss of resolution.  

Q-format can be used to solve the above problem. Q-format can match variety 

ranges of numbers with same resolution with in the ranges. Q-formats are bit-level 

formats for storing numeric values [119]. In Q-format, the precision of the number can 

be defined by the length of total bits. The integer part can be defined according to the 

range required by the data. The form of a Q-format is Qm.n, where m is the number of 

bits before a notional binary point, and n is the number of bits that follow it. For 

example, an 8-bit integer (byte) can hold values in a signed Q4.3 format. This covers 

the range -8 to (almost) +8, with 256 unique values available in that range. The number 

m and n could be negative, in this case, the other part gain better range than the original 

same bit integer. For example, Q10.-3 gives the maximum range of -1024 to +1016 to 
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an 8-bit integer, which is larger than the original range of an 8-bit integer (-128 to +127). 

A conversion from floating-point to Q-format can be done by (5-1). 

 ܳ ൌ 2ି௡(1-5) ݔ 

 The number n can be set to an integer in Q-format, however, a good n value must 

maximise the use of its resolution without being saturation. The best n number must be 

tested with the whole dataset. The number n can be calculated by (5-2), where ݓ is 

the width of bits in the Q-format, ݔ is the set of floating-point values for conversion. 

 ݊ ൌ ݓ െ ݈ܿ݁݅ሺ݈݃݋ଶሺ݉ܽݔሺܾܽݏሺݔሻሻሻሻ (5-2) 

 As shown in Figure 5-3, the quantisation process is compulsory for training and 

deploying a quantised model. Both input data and the weights must be quantised [134]. 

With the quantisation process, the NN models for MCU can be built and trained similar 

to they have been done in PC while the performance in MCU is acceptable with minor 

loss on accuracy [131]–[133].  

5.2.2.1 Quantise Input Data 

If the input data is the same width of the model’s input, such as an image with RGB 

(8-8-8) format can be stored in an 8-bit array without losing any features, the Q-format 

is a particular case where n number is 0. Input data such as 32-bit floating-point time 

sequence signal cannot be stored into fixed-point array directly. They must be converted 

into Q-format using the above methods. 

5.2.2.2 Training with Quantised Layers 

An NN model usually consists of multiple operations. Each operation takes input 

data, does arithmetic, and output data. The operations are abstracted as layers. Training 

model on PC is using floating-point for better accuracy, so the data passing through 

layers is also floating-point. Fixed-point models, however, will only pass the fixed-

point data. A model which trained with floating-point output in each layer, cannot 

simulate the loss of resolution and data saturation in the quantised model. Therefore, to 



Chapter 5 Development of a Compact Neural Network Framework for Microcontroller 

135 

 

achieve the best performance, the training of the model must simulate the loss of 

resolution and saturation in the quantised model to adapt to the limitation.  

 To solve the above problem, a layer level quantitation needs to be performed. This 

can be done by inserting a quantising layer in between each of 2 layers. Practically, a 

Lambda layer is used to quantise the output of the previous layer, then pass the data to 

the next layer as its input. During the training, the weights and biases are changed after 

each training batch, thus the maximum and minimum ranges are variable through each 

training batch. After training is done, the model will run again with the training and 

testing dataset to get the output range of each layer. The Q-format can then be calculated 

through the range of the output of each layer. After new Q-format for each layer is set, 

the model will then need to be trained to adapt for the new resolution. The procedure 

will repeat until the best Q-formats for each layer are determined. The working flow is 

shown in Figure 5-4. 
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Figure 5-4 Working flow of training with the quantised output. 

5.2.2.3 Quantise Weights and Biases 

 The weights and biases are generally floating-point while training. They must be 

quantised using Q-format to be imported into the quantised model. The weights and 

biases quantisation are done finally. It is optional to convert the quantised weights and 

biases back to the floating-point model to validate the effect of quantisation because the 

model can be validated in the quantised model.  

5.2.3 Deploy Quantised Mode to MCU 

 Once the weights are quantised, the model can then be deployed into MCU’s 

development environment by rebuilding the model with the targeted programming 

languages such as C programming language.  

 Currently, building a model on an MCU is a tedious work due to the complicated 

deploying process and the lack of a high-level NN framework for MCU. Developers 
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must figure out the structures of the model, the data format between layers, the 

parameters for each layer, and how the memory is passing between layers. After the 

model has been deployed, any tuning in the model structure or parameters will lead to 

a massive reworking in the MCU side.  

5.2.4 Development of NNoM 

5.2.4.1 Overviews of NNoM 

 NNoM aims to provide a higher level, user-friendly and flexible NN framework 

with statistics analysis abilities. NNoM releases the developer from miscellaneous low-

level programming to more meaningful works such as structure and parameter fine-

tuning. The interfaces of NNoM is similar to Keras (a popular and user-friendly 

machine learning framework written in Python [135]) but with a different 

implementation and adaption for C language and MCUs. NNoM is working closely 

with Keras and providing tools to convert Keras model to NNoM model directly. Thus, 

developers will not need to learn other lower-level frameworks such as TensorFlow. 

The structure of NNoM is shown in Figure 5-5, which consists of a few construction 

Application Programming Interfaces (APIs), evaluation APIs and layer APIs.  
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Figure 5-5 Framework of NNoM. NNoM provides three types of APIs for developers and supports two 

types of backends. Local backend is a pure C language implementation of NN functions while 

*CMSIS-NN backend [136] provides up to 5x performance for ARM Cortex-M MCUs. 

5.2.4.2 Construction‐compiling Method 

 The most limitation of CMSIS-NN is that there are too many user-configurable 

arguments to distract developers, while most of them are context-related arguments 

related to the output of the previous operations. To overcome this problem, NNoM must 

be capable of figuring out these context-related arguments for the developer, which 

allows the developer to focus on more important parameters and the structures.  

 Thus, a construction-compiling method is used by NNoM to separate the building 

of the model into two separate stages, which is similar to the coding-compiling 

procedures in many programming languages. Firstly, in the construction stage, the 

developer constructs the model by specifying the links between layers and setting some 

compulsory parameters. Secondly, in the compiling stage, NNoM is responsible to fill 

in the rest context-related arguments such as output shapes, type, layer buffers and the 

running orders.  
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5.2.4.3 Layer‐based Structure 

 To support complex NN structures, NNoM uses a layer-based structure, shown in 

Figure 5-6. A layer is a container class which contains the parameters, the links to other 

layers, and a set of backend interfaces. The actual operations (the worker functions that 

actually do mathematic on the data) are wrapped by the corresponding layer. The 

operation can be convolution, max pooling, concatenate, and others. The data passing 

logic and the data buffers are stored in the Input/Output modules (I/O). Each layer 

maintains a list of input modules and a list of output modules. 

Figure 5-6 NNoM layer-based showing an Inception structure. Each operation, i.e., 

convolution, dense, etc., is wrapped inside a layer. The multiple sub-paths are 

achieved by multiple Hooks 

   

 The link between layers is defined in the Hook module. Each I/O also maintain a 

list of Hooks. While building a model, developers only need to specify the links by 

construction APIs. The I/Os and Hooks are not seen by developers and should not be 

configured by developers.  
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5.2.4.4 Layers Classes 

To construct a fully functional model, the developers should create a few layer 

instances for the different operations. These layer instances are created by Layer APIs. 

There are two types of layer, Base Layer and Extended Layer. Every Layer API returns 

a layer instance in either type of classes: 

 Base Layer class contains only necessary modules, argument and methods. 

 Extended Layers class is a child class which inherited from the Base Layer. 

Besides, it includes many private arguments and/or more I/O modules.  

 

Figure 5-7 Layer structure. (a) Base layer class. (b) Extended layer classes. 

A Base Layer class consists of one Input module, one Output module, and three 

public methods. Three methods are (1) layer.free() for releasing resources while the 

layer is deleted, (2) layer.output_shape() for calculating the output data shape during 

compiling, and (3) layer.run() for executing the operation which will actually call a 

backend worker function.  
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Different kinds of Extended Layers are defined by the actual operations. For 

example, Convolution layer containing the convolution operation and the private 

arguments for convolution. A list of pre-built Layers for NNoM is shown in Table 5-2. 

A special example for an Extended Layer is the Lambda Layer, which is an anonymous 

layer and brings much flexibility inside layer-level. Lambda Layer allows developers 

to use customised the worker functions on a standard layer interface. Thus, it can be 

used in the same way as other prebuilt layers to build a model. 

Table 5-2 Pre-Built Layers 

Layer Opta Notes 

Core Layers   

Convolutions, Pointwise Conv Yes  

Depthwise Convolution Yes  

Densely Connected Network Yes Fully-connected network 

Batch Normalization  Fused to Conv 

Lambda  A user-defined anonymous	layer	

Activation Yes A layer wrapper for activations 

Zero Padding   

Cropping   

Flatten   

Pooling Layers   

Max Pooling Yes  

Average Pooling Yes  

Sum Pooling   

Global Max Pooling Yes  

Global Average Pooling Yes  

Global Sum Pooling   

Up Sampling  Enlarge the image by an integer scale. 
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Layer Opta Notes 

Activations Layers   

ReLU Yes Rectified Linear Unit 

Sigmoid Yes  

TanH Yes  

SoftMax Yes  

Merging Layers   

Concatenate  Concatenate two input on the specified axis. 

Multiplier Yes Elementwise multiplication 

Addition Yes Elementwise addiction 

Subtraction Yes Elementwise substraction 

aThe layer is optimized for ARM Cortex-M core when CMSIS-NN backend is selected. 

5.2.4.5 Model Construction     

The Layer-based structure allows developers to build and modify the model 

quickly and conveniently using standard construction interfaces. In a complex structure 

model, if every operation is wrapped into a layer, then complex network topologies can 

be broken down into many microstructures basing on the 2 basic structures, branch-

structure and merging-structure. The basic structures are shown in Figure 5-8. Thus, 

any complex model can be built by the corresponding construction APIs of the 2 basic 

structures. A branch-structure or single line topology can be built with model.hook(). A 

merging-structure is constructed using model.merge(). 

The Layer-based structure allows developers to build and modify the model 

quickly and conveniently. Based on the layer-based structures, NNoM provides two 

types of model, sequential and functional model, which is similar to Keras. The 

construction can be done by the construction APIs. On the one hand, sequential models 

are built by model.add(), which is a simple interface to avoid manually specify the links 

between layers. On the other hand, the functional model can be built by model.hook() 
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and model.merge(). These APIs are more flexible, which allows the developer to 

manually build complex structures, such as Inception structures are with several sub-

paths [120] or Residual Network with skipped connection jumping over several layers 

[137]. This simple interface allows developers to focus on improving model structures 

and critical parameters. 

 

Figure 5-8 Basic topology for model structures and the corresponding construction APIs (a) micro-

branch-structure, single layer’s output data is sharing with multiple layers. (b) merging-structure, single 

layer takes multiple layer’s output data as its input.  

5.2.4.6 Compiler and Memory Management 

The compiling stage is done by a compiler. The compiler is to complete the 

miscellaneous works left by the developers. To compile a model, call model.compile(). 

The compiling is done by nested calling a layer compiler, named compile_layer() 

method. The job of the layer compiler is to analyse the topology of the models, create 

an interlayer shortcut lists, to calculate the output shapes of each layer, to fill in relevant 

parameters, to analyse the memory lifetime, and finally to assign the memory for each 

layer.  

The layer compiler will start from the first layer of a model, which usually is the 

Input Layer. The working flow is shown in Figure 5-9. Firstly, it checks whether the 

current layer’s input buffer(s) are all fulfilled by another layer (s). The multiple input 

buffers checking is for the layers using merging-topology. Secondly, it calls the 

output_shape() method to calculate the current layer’s output shape and the needs for 
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the extra buffer (i.e. buffer for arithmetic), and then it allocates the memory for the layer. 

Thirdly, it will check whether the layer has multiple hooked layers to its output buffer. 

The multiple hooks are for the layers with micro-branch-topologies. If the layer is 

hooked by multiple layers, then a new nested call to the layer compiler will be 

performed for each of the hooked layers.  

 

Figure 5-9 Layer compiler (compile_layer()) working procedure.   

 To analyse the model topology, the compiler starts with the Input Layer and iterates 

each layer which is hooked on the current layer’s I/O module. After all the layers are 

iterated, the running order of these layers is fixed. The compiler creates an interlayer 

shortcuts list by the running order. To run a model, instead of analysing topology again, 

simply iterate the list to avoid the impact of the performance.  
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 layer.output_shapes() method is called during the compiling which is responsible 

to calculate the layer’s output shape according to its input shape and the related 

arguments, such as the output shape of the convolution layer is depended on the kernel 

size, filter size, padding method, and the input shape. The input shape of a layer is 

inherited from its hooked previous layer.  

 The memory management is performed simultaneously with the topology analysis. 

To avoid runtime memory allocation, the requirement of memory in each layer is 

calculated beforehand in compiling stages. To minimise the memory cost of the model, 

memory is reused across layers. The minimum memory unit is a block. Each layer is 

permitted to take one private memory block for arithmetic if needed and several blocks 

for I/O buffer(s). These memory blocks can be marked as temporary or reserved by the 

layer. A temporary block is released after the layer finished its job and will be reused 

by the next layers; while a reserved block is reserved for the specified layer and will 

not be reused by other layers or released after an epoch ended. To avoid memory copy 

in between layers, the block used by the current layer’s output is shared to the input of 

“next layers”. The “next layers” means those layers’ input modules are hooked to the 

output module of the current layer. When there are multiple layers which are hooked to 

the current layers’ output, the lifetime of the output block will be retained until the last 

hooked layer is called. The maximum required size for each block is recorded while 

compiling and the memory is assigned after compiling.  

 The RAM complexity in space is o(n) + o(0), where o(n) is the memory cost by 

instancing layers, which is relatively small (100~200 bytes per layers), and where o(0) 

is the maximum reserved memory block size plus the maximum temporary retained 

memory size. 

5.2.4.7 Backend Functions 

 As mention previously, backend functions are the functions which complete the 

computation. When the model is compiled, the run-order for layers is fixed. Before a 
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layer.run() is called, the input data for this layer is prepared. The backend functions are 

called inside of layer.run() to do the actual calculation. With NNoM, porting a backend 

is relatively straightforward; the corresponding backend function is put into each layer’s 

layer.run() and the configuration from layer’s parameters are passed to it. There is no 

need for the developers to organise buffers or to calculate the parameters manually.  

 NNoM currently supports two different backends. NNoM by default runs on a local 

pure C implementation backend which completely supports every operation in NNoM. 

The second backend is CMSIS-NN backend which is optimised for ARM cortex-M 

microcontrollers. CMSIS-NN is not completely supporting every available operation in 

NNoM, thus, the local implementation is called when the setting or the operation is not 

supported in CMSIS-NN. 

5.2.4.8 Automatic Converter 

 NNoM was designed to have a similar user interface to the Keras, which is popular 

by its ease to use. However, due to the necessary process of quantisation the model, it 

is still complicated for developers. Therefore, an automatic converter has been 

developed to convert Keras model to NNoM directly. The converter is written by 

Python which can be called directly after a model has been trained with Keras. To 

convert a Keras model to NNoM model, firstly, it calculates the Q-format of each 

layer’s output range. Secondly, it performs the quantisation of each layer’s weights and 

bias. Also, it merges the Batch Normalisation layer’s parameters to the previous 

convolution layer. Thirdly, it automatically generates a C language header file in a 

readable form. This C header is the only files contains the NNoM model which includes 

necessary parameters, weights, biases and a model creating method. The developer can 

call this method in their embedded developing environment to create and run the model 

in the MCU.  
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5.2.4.9 Evaluation Functions 

 Evaluation of the quantised model is also necessary since the model’s resolution 

has been changed and the runtime is sensitive on MCU. NNoM provides the evaluation 

method of the model directly on the target devices. When connecting MCU with a 

terminal, the evaluation can be done online with NNoM. Thanks to the CMSIS-NN and 

NNoM are compliance with ISO/IEC 9899:1999 (known as “C99”), the framework can 

be compiled for PC and validated the quantised model directly on PC.  

1) Layer‐by‐layer Analysis 

 The layer-by-layer analysis is a part of the compiling process. The result includes 

the running order of layers, the output shape of each layer, the estimated computational 

cost fused Multiply-Add/Accumulate (MAC) count for each computational layer, the 

required memory for each layer, and which memory block is assigned in each layer. 

Besides, a summary of memory cost and maximum memory required for each block is 

printed.  

2) Runtime Statistics 

 The runtime statistics are measured by the time cost required to run each layer. The 

time for running layers is recorded individually for each layer. stat() can be used to print 

the statistics. Runtime statistic also lists the MAC ops/us, which indicate the efficiency 

of the layer. A summary of statistic lists the total MAC number, the total running time 

for a model, the MAC ops/us of the model, and the average running time of the model 

for a period.  

3) Prediction on MCU 

 To validate the implementation, during the training, the test data set is exported 

into a binary file. This file can be used to evaluate NN implementation. NNoM provides 

a prediction API predic() to use those data for prediction. The prediction result from 

MCU can be compared side-by-side with the result from PC to validate the 
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implementation. The prediction API provides Top-k accuracy, as well as a confusion 

matrix. In addition, it also summarises the runtime statistics during the test. 

5.3 Experiment   

5.3.1 Experiment Protocol 

The Couch Potatoes for Cognition [49] is produced by Loughborough University 

specifically for older adults and dementia people, and it consists of 4 types of low-

intensity resistance band activities, shown in Figure 5-10. The detailed protocol has 

been discussed in Chapter 2 and shown in Appendix A. These activities are mainly 

focussed on improving the upper body muscle strength, as the previous studies have 

proven that training of the upper body will slow down the process of dementia [49], 

[138]. During the exercise, subjects were asked to sit on a chair to minimise the chance 

of falling.  

Figure 5-10 Couch Potatoes for Cognition. The red arrow shows the movement of each activity. 

 In the preliminary experiment, six healthy volunteers participated, five males and 

one female, aged from 23 to 40, dominated on right-hand. The experimental procedures 

involving human subject described in this chapter were approved by the Institutional 

Review Board. The participants were required to do four different activities, each 

consisting of 20 repetitions followed by 1 minute of rest to avoid the accumulation of 

fatigue.  
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5.3.2 Data Processing 

5.3.2.1 Raw Data Frame 

 During the experiment, all data were collected at a frequency ƒ = 100Hz and stored 

in a CSV file for further processing. 12 DoF data were available including 3-Axis 

accelerometer, 3-Axis gyroscope, 3-Axis magnetometer, barometer, load cell and 

temperature. In this preliminary experiment, only accelerometer data is used. Each 

frame consists of 3-Axis acceleration data from both left-hand and right-hand sensors. 

No filtering of raw data is required while using a CNN [139].  

5.3.2.2 Overlapping Windows 

 Sliding windows technique are widely used by many classifiers to split data into 

small segments [140]. In data processing, an overlapping windows technique is used to 

segment the raw data. Each segmented data size of 2.5 seconds (including 250 frames) 

with 2/3 window overlapping [140]. The sliding windows are shown in Figure 5-11. 

 

Figure 5-11 Sliding windows. Each segment overlapping the previous segment by two thirds. 

5.3.2.3 Sensor Position Switching 

 Each frame consists of two sets of acceleration data from the two handles. However, 

in real-life scenarios, the allocation of the resistance band handles to the hands is 

randomised.  To reduce the correlation, the position is switched in the segmentation 

process. This position switching generates another set of segmented data. Both 

segmentations are put into the same neural network for training. Figure 5-12 shows the 

segmented raw data and position-switched data.  
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Figure 5-12 Position-switched segment. 

5.3.2.4 Training and Testing Dataset 

 The training dataset and testing dataset were randomly picked from the segmented 

data with a ratio of 60% and 40%, respectively. In total, the training dataset 

contains1919 segments, while the testing dataset contains 1271 segments.  

5.3.3 Convolutional Neural Network Classifier 

 The neural network classifier is built using Keras with Tensorflow backend. The 

structure of the classifier is shown in Figure 5-13, and the layer’s structure is shown in 

Table 5-3. The classifier consists of 2 convolutional layers, 2 fully-connected layers, a 

few functional layers between and finally a SoftMax layer for the probability of the 

prediction. To be noticed, the quantised layers (using Lambda layer) are inserted after 

some layers (highlighted in Table 5-3) which potentially changed the range of the output 

data. 
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Figure 5-13 Convolution Neural Network Architecture (ReLu layers are hidden)[75]. 

 

Table 5-3 Layer structures of the Neural Network Classifier 

Layer Output shape 

(W×C) 

Kernel Stride Parameters Operations 

(MAC) 

Input 250×6     

Conv_1 113×120 25 2 18120   2.034M 

Quantised 

(Lambda) 

113×120     

Max Pool_1 56×120 2 2   

ReLU_1 56×120     

Conv_2 25×240 7 2 201840 5.04M 

Quantised 

(Lambda) 

25×240     

Max Pool_2 12×240 2 2   

ReLU_2 12×240     
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Layer Output shape 

(W×C) 

Kernel Stride Parameters Operations 

(MAC) 

Flatten 22800     

Dense_1 100   288100 228.8k 

Quantised 

(Lambda) 

100     

ReLU_3 100     

Dense_2 4   404 400 

Quantised 

(Lambda) 

4     

SoftMax 4 types     

Total    508.5k 7.36M 

 

 The dataset (range -13.11 to +11.67) is quantised to 8-bit Q-format representative 

with n = 3, thus, the quantised dataset range is -105 to + 93. 

 The classifier is trained with the quantised dataset using CPU (Intel i5 3475S). 

Adaptive Moment Estimation (Adam [141]) optimisation algorithm is used for training 

and the training was stopped at the 20th epochs; the accuracy and confusion matrix was 

stored after the training was done. The final output Q-format of the quantised layer was 

determined and listed in Table 5-4 together with the Q-format of weights and biases. 

All arithmetic and intermediate data are using 8-bit quantisation. 

Table 5-4 The Q-format of output and trainable parameters 

Layers Output 

Q-Format(n) 

Weights  

Q-Format (n)  

Biases  

Q-Format(n)  

Input 3 N/A N/A 

Conv_1 1 10 11 

Conv_2 0 10 11 
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Layers Output 

Q-Format(n) 

Weights  

Q-Format (n)  

Biases  

Q-Format(n)  

Dense_1 1 10 11 

Dense_2 0 8 12 

  

 An STM32L476-Discovery board is used to experiment. The MCU (STM32F476, 

STMicroelectronics) is based on an ARM Cortex-M4F core which running on 80MHz 

with the performance of 3.42 CoreMark/MHz or 1.25 DMIPS/MHz (Drystone 2.1) 

[142]. STM32L476 is a typical configuration of MCU in edge devices provided high-

performance and high power-efficiency.  

After the classifier has been trained on PC, the model was deployed to the MCU 

projects using NNoM framework by the model converting tools. The Q-formats, 

weights and biases were written into a C language header file to be compiled into the 

MCU project. The discovery board was connected to the PC through a serial port. The 

quantised model summary was printed to a terminal through the serial port, shown in 

Figure 5-14. After the model is compiled, the testing dataset was sent to the MCU for 

NNoM to validate. The prediction results including Top-k accuracy and confusion 

matrix were printed to the terminal.  
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Figure 5-14 Quantised model summary printed by NNoM (Rotated).  

5.3.4 Results 

 The evaluation of MCU is done by using the evaluation APIs provided by NNoM. 

The Top-k accuracy and confusion matrix from both quantised and floating-point model 

will be compared in this section. The performance of the two models will be compared 

and discussed in the later section.   
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5.3.4.1 Accuracy and Confusion Matrix 

 The Top-k (k=1) accuracy of the original classifier and NNoM classifier are shown 

in Table 5-5. Both models have the same accuracy for Top-k accuracy. The confusion 

matrix is shown in Figure 5-15. The difference between the distribution is very minor 

across all the classes.  

Table 5-5 Top-1,2 accuracy comparison 

Accuracy Classifier 

Floating Point  

Original 

(on PC) 

Fixed-Point  

Quantised 

(on MCU) 

Difference 

Top-1 99.45% 99.45% 0.0% 

   

 

Figure 5-15 Confusion matrixes. (a) Original classifier using floating-point arithmetic on PC. (b) 

Quantised classifier using fixed-point arithmetic deployed to MCU. 

5.3.4.2 Performance 

The time for a single prediction was recorded in both MCU and PC sides. The 

prediction time on MCU was 290ms, while on the PC was 405us, which is~716x faster.  

The memory utilisation is separated into two parts, non-volatile memory and 

volatile memory. Non-volatile memory is for storing weights and biases which are fixed 
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after the model is trained, located in embedded Flash. Volatile memory is occupied by 

the data buffers and arithmetic buffers, which is located in RAM. The classifier built 

previously takes 508.5KB for weights and biases and 32.28KB for volatile memory. 

Besides, NNoM also took a small amount of memory for the layer instances and APIs. 

In the classifier, 13 Layer instances were created and took 1704 bytes of volatile 

memory. The non-volatile memory can be seen by the map file which presented the 

compiling summary of the MCU project. The total non-volatile memory cost by NNoM 

files was 7744 bytes. 

The summary of the comparison of the implementation versus PC is shown in Table 

5-6.  

Table 5-6 Summary of comparison 

Item Neural Network Libraries 

Keras with 

TensorFlow backend 

(PC or Server) 

NNoM with CMSIS-NN 

(MCU) 

CMSIS-NN 

(MCU) 

Platform Intel i5-3475S 

4 cores 2.9-3.6 GHz 

STM32L476VGT6   

Single code Cortex M4F 80MHz 

Data format 32bit-float 8bit-int 8bit-int 

Code Length 13 linesa 13 lines 20 linesb (1.5x) 

User configured 

parameter 

~19 30 (1.5x) 86b (4.5x) 

Weights / bias 

memory [bytes] 

2.034M 508.5k (0.25x) 508.5k (0.25x) 

Complexity 14.72M-FLOPS 7.36M-MACOPS 7.36M-MACOPS 

 Model Performance  

Top 1 Accuracy 99.45% 99.45%  N/A 

Top 2 Accuracy  99.92% 99.92%  
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Item Neural Network Libraries 

Keras with 

TensorFlow backend 

(PC or Server) 

NNoM with CMSIS-NN 

(MCU) 

CMSIS-NN 

(MCU) 

Prediction time 404us 290ms (717x) 

Efficiency 

[MAC ops/Hz] 

6.28 0.317 (~20x)  

 Implementation on MCU 

Code size [byte] N/A Baseline  

+ 7.7k bytes  

Baseline 

RAM cost [byte] 32.28k (NN buffer) 

+1.7k (NNoM instances)  

51.2k 

(without manual memory 

optimisation) 

Interlayer switching 

time 

<1us N/A 

a.Exclude the training only operation, such as dropout and fake clips  

b.Estimated per CMSIS-NN/CIFAR-10 example 

 

5.4 Discussion 

In the experiment, the classifier was built on PC then deployed to MCU using 

quantised arithmetic. The results showed the completely same accuracy thought the 

testing dataset. However, there are minor differences in the comparison of the confusion 

matrix, shown in Figure 5-15, which indicates that the fixed-point implementation of 

the floating-point classifier has not completely reproduced the same results. The 

difference is due to the resolution has changed during the quantisation process. 

Considering the difference are minor, the methods discussed in section 5.2 for neural 

model training and deploying is effective in real-life implementation. 
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 One of the most concerns is whether the MCU is capable of undertaking the 

computational requirement of neural network models. Although quantisation and fixed-

point neural network have reduced the computational complexity dramatically[134], 

[143], it still requires massive computational power (~Mops per prediction) and 

relatively large memory to run. In the experiment, the quantised model implemented 

with NNoM took 508.5KB ROM and 32.28KB RAM. It took 7.36MOPS for single 

prediction which results in nearly 0.3sec on the selected STM32L476 @ 80MHz (1MB 

Flash, 128KB RAM). The classifier has occupied over half of the available embedded 

flash and 1/4 RAM in the MCU, which might be less feasible to implement into those 

applications already required large memory. However, the classifier built in this chapter 

is a classic single path feed-forward network designed for PCs or other higher power 

platform, which could be overkill for the exercise classification. Further optimisation 

on structures and configuration might bring down the requirement of resources. 

 On the positive side, NNoM largely simplifies the development process of 

quantising a neural network model, and it makes the implementation on MCU more 

flexible and convenient, with a small trade-off in code size (7.7KB) occupying extra 

non-volatile space. From the developer’s perspective, NNoM has provided similar 

interfaces to Keras, which is famous for its usability. Comparing to CMSIS-NN, NNoM 

has much lesser (3x lesser) parameters which must be configured by the developer. 

Most importantly, NNoM provides the functionality to build complex model structures, 

though it is not presented in this chapter.  

 

5.5 Conclusion 

To conclude, CNN classifier has shown its potential in data analysis. The trend of 

data decentralisation is pushing edge devices to undertake more works than before. 

Those edge devices now need to know what has measured by themselves and only send 

the aggregated information, such as WBR-SH2 must know what exercise is the user 
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performing. These required the neural network being implemented into MCU.   

However, neural networks tend to be bulky in both memory utilisation and computation 

cost, which restrict the implementation into MCU. Model compressing methods such 

as fixed-point quantisation help to reduce both memory and computation complexity, 

which allows the neural network to run on MCU. Unfortunately, there are very limited 

available neural network lib or implementation on MCU level programming. Moreover, 

most of them are either has limited supported operation or less user-friendly due to its 

low-level APIs. There is a significant need for a higher-level framework, specifically 

for MCU level programming. 

 Therefore, this chapter shows the development of Neural Network on 

Microcontroller framework, which is a higher-level framework designed specifically 

for microcontrollers using fixed-point arithmetic. It provides a layer-based structure for 

building complex network topology, minimises the user-configurable parameters, the 

abstracted layer interfaces, and the necessary methods for evaluating the 

implementation directly on MCU. NNoM is written with C programming language 

which is compliance with ISO/IEC 9899:1999 allows it to be implemented to other 

platforms such as PC or other embedded systems.  

 A multi-layer convolutional neural network classifier was built, and it was trained 

and validated with the dataset from resistance band exercise using WBR-SH2. Then 

classifier is then quantised and implemented into MCU using NNoM framework for 

validation. Both models provide the same prediction accuracy on the same test dataset, 

with little difference in the confusion matrix.  

 However, there are limitations to this experiment: 

1. The model is still too large for many MCU application. The classifier tested in 

this chapter cannot be deployed into smaller footprint MCUs such as nRF52832, 

the one in WBR-SH2 contains only 512k embedded flash and 64k RAM.  
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2. The exercise dataset is small (data collected on six subjects), which might not 

be sufficient to classifier data from unseen people.  

 In this chapter, a preliminary experiment was done for resistance band exercise 

recognition. Two major limitations are 1) Lack of exercise data. 2) the classifier is not 

optimised for MCU. A further study will be presented in the next chapter, using more 

data from resistance band exercise with ranges of ages (including older adults) and a 

more compact classifier designed especially for MCU.  
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Chapter 6 Resistance  Band  Exercise 

Recognition with Older Adults 

6.1 Introduction   

6.1.1 Background 

 WBR-SH2 system is a purpose-built sensorised instrument for resistance band 

exercise. Together with the novel synchronisation method, WBR-SH2 can provide very 

detailed and very accurate motion measurement during resistance band exercise. In the 

previous chapter, the development of NNoM framework was presented, and it proved 

that MCU is possible to run exercise recognition. 

To assess the performance and capability of NNoM implementation on MCU, a 

classic CNN classifier was developed and validated with the data from a small 

resistance exercise experiment. However, the CNN model was still too complex 

(~500KB parameters, ~32KB RAM) for the MCU in WBR-SH2 (~100KB ROM and 

~8KB RAM left after other functions). Thus, to deploy the classifier into WBR-SH2, 

the model must be further scaled down.  

NNoM, discussed in Chapter 5, provides user-friendly and flexible interfaces 

which make the building of these state-of-the-art structures much easier than ever 

before. Edge devices such as the WBR-SH2 are now free to try these new structures to 

improve the model performances.  

After the development, WBR-SH2 were used in an international experiment to 

assess the resistance band exercise with older adults. Three sets of WBR-SH2s and a 

few types of resistance bands were sent to Italy. The experiment used Couch Potatoes 

for Cognition [49] as the experiment protocols. During the 2-month experiment, 40 

participants with an age range from 18 to 80 have completed the test. The raw data from 

both hands were recorded into a smartphone and sent back for data analysis. The dataset 
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is much larger (40 subjects) and more diverse in ages from 18 to 80 than the previous 

preliminary experiment with six subjects age from 24 to 40. This dataset is surely 

valuable for the training of neural network classifier.  

6.1.2 Objectives 

 The first objective of this chapter is to scale down the NN classifier to an acceptable 

size for the MCU in WBR-SH2. Allows WBR-SH2 to run the classifier locally, thus, to 

answer the question of “what” type of exercise that the person is doing.  

 The second objective is to use the data from the international experiment to validate 

the above implementation and discuss the feedbacks on WBR-SH2. 

 Furthermore, this chapter should prove that NNoM is sufficient for running NN 

classifier on a resource-constrained platform (such as WBR-SH2). Also to evaluate the 

performance of a few scale configurations.  

6.2 Methodology 

6.2.1 Hardware Capability of WBR‐SH2 

 The overall performance of WBR-SH2 has been presented in Chapter 3. It is 

controlled by a Bluetooth SoC nRF52832 (Nordic Inc.), with single-core ARM-Cortex-

M4F running at 64MHz. The core has the performance of 215 EEMBC CoreMark (3.36 

CoreMark/MHz)[90]. This MCU has 512KB embedded flash (ROM) and 64KB RAM. 

However, after other functions were implemented, only 100KB ROM and 8KB RAM 

are left for the NN classifier. In regular measuring scenario (sampling of all sensors at 

100Hz, real-time data sent to a smartphone, and synchronising), other tasks take 15% 

of CPU time, leaving 80+% CPU time available for a NN classifier. However, the more 

CPU time the NN takes, the more power it will consume. In a battery-powered scenario 

such as WBR-SH2, less CPU occupation is always the goal.  
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6.2.2 Data Selection 

 WBR-SH2 has collected 12 DoF measurement for each hand. The raw data 

includes 3-axis rotations speed, 3-axis accelerations, 3-axis magnetic field, atmospheric 

pressure, atmospheric temperature and force applied on the resistance band. Each data 

series is in resolution range from 16-bit to 24-bit. Some processed data can be calculated 

from the raw data, such as the orientation in quaternion form, the linear acceleration 

without gravity components, and others. Among the data, some features that used for 

traditional data analysis can be extracted, such as the maximum and minimum values, 

the frequency range of each series, and others. Table 6-1 summarises the available data 

in WBR-SH2.  

Table 6-1 Summary of available data in WBR-SH2 

Raw data 

(Low computational cost) 

Processed data 

(Medium computational cost) 

Features 

(High computational cost) 

Rotation  Quaternion Frequency Spectrum 

Acceleration Linear acceleration Cepstrum 

Magnet field Gravity vectors  

Force Maximum, minimum  

Atmospheric pressure   

Atmospheric temperature   

 In the above data, the raw data requires the least computational cost which can be 

read out directly from the sensors. Processed data requires medium calculation 

complexity, the calculation normally requires some multiplication and/or addition. 

Features normally require the most computational power, such a Fourier transform, and 

sorting. Although some studies propose that adding features in a neural network can 

improve accuracy [67], [145], [146], the accuracy improvement is not significant. Many 

studies also use raw motion data similar to what has provided by WBR-SH2, which 
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also achieve competitive accuracy. Therefore, to reduce power consumption, features 

are excluded.  

 Physical exercises are a set of motions, thus, motion data are promising for 

representing the exercise. In Chapter 5, the raw accelerometer data from both hands are 

selected for training classifier, and the results were accurate. The previous training of 

the classifier used across position method to reduce the correlation of sensor placement, 

for example, sensor #1 is allocated to the left hand while sensor #2 is allocated the right 

hand, but the exercise should be considered the same type even when the sensor position 

is switched. When the classifier is moved to the edge (the sensorised handle), one 

handle will never know the raw data from the other hands, thus the Cross-Position 

Method introduced in Chapter 5 cannot be applied. Although it enlarges the dataset, it 

is still not enough to solve the dependency problem since the data it uses are vectors (3 

axis acceleration) and the dataset is too small to reproduce all the states.  

 To further reduce the correlation on sensor positioning and to enhance the 

adaptability of the classifier, vectors such as 3-axis gyroscope data and accelerometers 

data are not selected for training classifier. These data are sensitive to the orientation of 

the sensor placements. However, in real-life scenarios, each type of exercise may have 

many sensor placements. Instead, the magnitudes of rotation and acceleration vectors 

are selected in two considerations. Firstly, they are the representatives of motion, only 

without the orientation. Secondly, the arithmetic of them is simple enough which can 

be done in MCU fast and efficiently. Both rotation speed and acceleration magnitude 

are calculated using (6-1), where |݉|  is the magniude and ݔ, ,ݕ  .are the vectors  ݖ

Besides, the force measurement of the resistance band is also selected. Since the force 

is applied directly on the resistance band, the force measurement should also be a direct 

representation of the exercise.  

 |݉| ൌ ඥݔଶ ൅ ଶݕ ൅  ଶ (6-1)ݖ
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 To summarise, the rotation speed magnitude, acceleration magnitude, and force 

measurement are selected for exercise recognition.  

6.2.3 Compact Classifier for Microcontroller 

6.2.3.1 Complex Structures 

 Recently, there are three representative feedforward neural network structures 

(Inception [120], Residual Network. [121], [122], and DenseNet [123]) showed their 

competitive results with lesser parameters and computational complexity compared to 

classic single path convolution. One common idea of them is they optimised from 

model structures (except Inception V3 and variants using separable convolution). In 

this thesis, those network structures have multiple connections between layers called 

complex structures; correspondingly, the single path networks called classic structure. 

The three complex structures can be summarised in Figure 6-1, Figure 6-2 and Figure 

6-3.  

 

Figure 6-1 The Inception structure contains multiple parallel paths which take the same data as input. The 

results are concatenated on channel-wises [120]. 
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Figure 6-2 The Residual net structure contains skipping links from the input to the output of a block. 

The input data and output data of a residual block are merged by point-wise addition. [121], [122]  

 

Figure 6-3 Dense Net contains a set of dense connection between each layer in a dense block. Data is 

concatenated on channel-wise. [123] 
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 NNoM provided concatenate and additional layers which are necessary for these 

complex structures. Thus, those complex structures can be implemented into MCU with 

little effort.  

 Among the three candidate structures, Residual Net and DenseNet are designed for 

a very deep neural network (up-to thousands of layers [121], [123]). They are less 

meaningful in the edge devices which are limited by the memory. The Inception was 

produced for less deep neural networks (tens layers [120]) which depth is similar to the 

classic deep neural network. Therefore, the Inception structures are selected to build 

the classifier for WBR-SH2.  

6.2.3.2 Compact Classifier 

 A CNN classifier was built with Inception structure, shown in Figure 6-4. As shown 

in the figure, a single block of Inception structure was embedded into the classifier. 

When running a NN in MCU, the size of the model needs to be considered carefully. 

To compare the different sizes of the classifier and its performance, the classifier was 

tested with 3 configurations distinguished by the size, so-called “small”, “medium” and 

“large”, shown in Table 6-2. Additionally, a much larger configuration, namely 

“classic”, was also tested to provide a ground reference on the dataset. 

 The classifier has multiple layers in-depth and the maximum three layers in parallel. 

All trainable layers were l-D, multiple channels convolutional layers. Dropout layers 

were added after each convolutional layer with different dropout rate (Conv-1: 0.1, 

Conv-2x: 0.2, Conv-3: 0.5, Conv-4: None). The Conv-1 was the initial scanning of the 

data. The output was then shared with the three convolutional layers named Conv-2x 

(x=a, b, c). The kernel sizes of the three parallel convolutions were set to 7, 3, and 1 

individually. The outputs of the parallel layers were concatenated along the channel axis 

(called channel-wise concatenate). The concatenated output was then fed to the Conv-

3 for deeper features extractions, following by a final convolutional layer Conv-4 to 
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compress the output channel to 4 which match the number of classifications. Finally, a 

Global Average Pooling (GAP) was applied to generate a size of 4 output. 

 Additionally, a Softmax layer was attached at last for calculating the probability. 

Using GAP instead of fully connected layer has many advantages [124], one of them is 

it avoids the massive weights contributed by fully connected layers. Without a fully 

connected layer, the number of weights was reduced massively. 

 Due to the very limited resolution of 8-bit integer, GAP layer might perform very 

differently in the quantised model while the kernel setting (the input size in GAP) is 

relatively large. Calculating average with small integer data and output into the same 

format results in the vanishing of the data. This defect will be even worse when the size 

of the average windows (kernels) is relatively large. To solve this problem, the GAP 

layer in the floating-point classifier will be replaced by a Global Sum Pulling (GSP) 

layer in NNoM. The advantage of using GSP over GAP is avoiding the integer dividing, 

which is the reason for the small data vanishing. The transform between GAP and GSP 

layer is linear. Thus, this operation will not cause a different result in the following 

Softmax layer. However, the GSP layer might cause data overflowing on the size of the 

output integer. The customised GSP layer uses a dynamic shifting method to solve the 

problem. Firstly, the sums will be store in a larger integer array (32-bit integer). 

Secondly, the maximum absolute value among the array will be sorted out. Thirdly, the 

best shifting number (the power of 2) which can store the maximum value without 

overflowing will be identified. Finally, all the sums stored in the temporary array will 

be shifted by the best shifting number and store to the output buffer. Thus, the massive 

resolution loss on GAP layer is solved by the customised GSP layer. 

 The different configurations of the classifier are listed in Table 6-2. They are 

considered much smaller than what was proposed in Chapter 5 as well as other studies 

[75], [147]. The memory cost and the computational complexity will be discussed in 

following sections. 
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Figure 6-4 Compact classifiers with Inception structures.  

 

Table 6-2 Trainable layer configuration of the classifier 

Layers Kernel size * Small 

(filter) 

Medium 

(filter) 

Large 

(filter) 

Classic 

(filter) 

Conv-1  7 (stride 2) 4 8 16 64 

Conv-2a 7 4 8 16 64 

Conv-2b 3 4 8 16 64 

Conv-2c 1 4 8 16 64 

Conv-3 3 16 24 48 192 

Conv-4 4 4 

* Stride = 1 if not specified  
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 The classifier was first built on PC using Keras with Tensorflow backend [148], 

then it was quantised and deployed into WBR-SH2 using NNoM framework. The 

training and deploying followed the procedure discussed in 5.2 Methodology.  

6.3 Experiment 

6.3.1 International Experiment with WBR‐SH2 

 During the development, 3x WBR-SH2 and an Android phone were sent to Italy 

for a collaborative experiment (the experiment involving human subjects was approved 

by the University of Torino Ethics Committee). The aims of the experiment were to 

understand the resistance band exercise in a wide range of people through the very 

detail data measured by the WBR-SH2 and to assess the usability and functionality of 

WBR-SH2 itself. The protocol used in the experiment was the Couch Potatoes for 

Cognition [49] which has been discussed previously. Each subject was asked to do 4 

types of activities each for 30 seconds. Especially, activity 4 is done twice, on both legs 

for 30 seconds. Most of the subjects have done three repetitions of exercise during the 

experiment. In total, 40 subjects (16 males, 24 females, aged from 18 to 80) have 

completed the full protocol. The ages among participants were not evenly distributed, 

20 people aged below 60 years old (included) and 20 people aged above 60 years old. 

The age distribution is shown in Figure 6-5.  
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Figure 6-5 Age distribution among participants 

6.3.2 Data Pre‐processing 

 During the experiment, around 10 hours of continuous exercise data (around 18000 

seconds for each hand) was recorded at a 100Hz sampling rate. Each sample contained 

12 DoF measurement and a millisecond accuracy timestamp. However, not all 12 DoF 

measurements were used for training the classifier due to the performance of the MCU 

is very limited. As discussed in previous sections, three magnitude measurement 

sequences were selected as the dataset for training and testing the classifier. The dataset 

was quantised with the resolution of 8-bit integer (256 levels) to simulate the accuracy 

in the quantised classifier.  

 Testing dataset and training dataset is generated individually from the original 

dataset. Different from the method in Chapter 5 which was randomly select the pieces 

of data in the whole dataset, the training dataset and the testing dataset was selected by 

the subjects. Data from 30 out of 40 subjects (75%) was assigned for training dataset 

while the data from the rest 10 subjects (25%) (6 subjects over 60 years old, 4 subjects 

below 60 years old) was assigned to testing dataset. In this case, the data from testing 
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subjects were completely invisible by the classifier during the training. In total, the 

training dataset includes 71148 samples, and the testing dataset includes 5998 samples. 

 Both training dataset and testing dataset were sliced separately into same length 

pieces for feeding into the classifier. The training dataset was sliced by a sliding 

windows technique with a sliding rate of 1/8 window size, while the testing dataset as 

sliced with a sliding rate of 1/2 window size. To further reduce the size of the input data, 

the data were resampled at a frequency of 50Hz similar to the public domain dataset 

UCI HAR (Human activity recognition) [145]. The size of windows was set to 128 

timestamps which corresponded to 2.56 seconds [145]. Thus, each sample of data size 

128 × 3 (timestamp × channel). Additionally, the training dataset was reproduced by 4 

levels of magnitudes (1x, 0.8x, 0.64x, 0.512x) to improve the generalisation of the 

classifier [149].  

6.3.3 Evaluation 

 The classifier was trained with the training dataset on PC (Intel i7 4770, 4 cores @ 

3.7GHz) with the four configurations shown previously. The classifier was then 

validated using the test dataset. The hyperparameters for training are set to epoch = 20, 

batch size =128, used Adam optimiser with default learning rate on categorical cross-

entropy loss functions. The best classifier was saved per the test accuracy during 

training. Each configuration was trained for 3 times, and only the best classifier for each 

configuration was recorded.  

 The best classifier was quantised and deployed into MCU for validation. To 

simplify the testing, the WBR-SH2s were not used for testing directly due to the limited 

resources and already running multiple tasks. Instead, an STM32L476 (ARM Cortex-

M4F core was set to 64MHz) was used to simulate the performance of the MCU 

(NRF52832, ARM Cortex-M4F @ 64MHz) inside the WBR-SH2. The performance of 

both MCUs is very similar since they are the same cores, with very little performance 

difference, 3.36 CoreMark/MHz with nRF52832 [90] and 3.42 CoreMark/MHz (1.8% 
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faster) with STM32L476 [142]. The optimised configuration is implemented into 

WBR-SH2 directly after the experiment.  

 The confusion matrix, the Top-k (k=1) accuracy on both training and testing sets, 

and the times cost for single prediction are recorded on both PC and MCU side. In 

addition, the total MAC operation and the memory utilisation on the MCU side are 

recorded.  

6.4 Results 

 The complexity in memory and computation is shown in Table 6-3. The 

performance and complexity are compared through all the 4 configurations. 

Table 6-3 Complexity and performance comparison in different configurations. 

 Small Medium Large Classic 

Operations [MAC-Ops] 20.1k 65.6k 231.4k 3,334k 

Trainable Parameters 

(ROM cost [byte])  

868 2,948 10,756 159,748 

RAM by NN buffers 912 1,440 2,880 11,520 

Total RAM (Inc. memory 

cost by NNoM) 

3,276 3,804 5,244 13,884 

Run-time (PC) [us] 24 28 33 120 

Run-time (MCU) [us] 2,543 5,317 13,987 149,143 

Speed difference [PC/MCU] 106x 190x 424x 1242x 

Efficiency [MAC-Ops/MHz] 0.124M 0.192M 0.258M 0.349M 

Training Top-1 (PC) 91.49% 93.93% 96.21% 99.55% 

Testing Top-1 (PC) 93.11% 94.16% 94.71% 95.41% 

Testing Top-1 (MCU) 91.88% 93.90% 94.20% 94.70% 

 In the 4 configurations, 3 of them (small, medium, large) met the memory 

requirement of WBR-SH2. Figure 6-6 shows the interrelation between the 

configuration size and the performance of the classifier.  
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Figure 6-6 Accuracy comparison. Training with the floating-point model, testing on the floating-point 

model, and testing on the fixed-point model. 

 The confusion matrix comparisons of each configuration shown below in Figure 

6-7, Figure 6-8, Figure 6-9 and Figure 6-10. 
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Figure 6-7 Confusion matrix comparison of the floating-point model on the PC and the fixed-point 

model on the MCU. Model size in the small configuration. 

  

Figure 6-8 Confusion matrix comparison of the floating-point model on the PC and the fixed-point 

model on the MCU. Model size in the medium configuration. 
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Figure 6-9 Confusion matrix comparison of the floating-point model on the PC and the fixed-point 

model on the MCU. Model size in the large configuration. 

 

Figure 6-10 Confusion matrix comparison of the floating-point model on the PC and the fixed-point 

model on the MCU. Model size in the classic configuration.  
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6.5 Discussion   

6.5.1 Results 

 Overall, the results show that the quantised classifier can perform exercise 

recognition accurately and efficiently (e.g. the medium configuration achieve 93.9% 

accuracy only takes ~5ms for one prediction). It is generally believed the size of the 

neural network model is related to its recognition performance. This test result also 

shows the same pattern (Figure 6-6, Table 6-3). In the training accuracy comparison, 

the larger configuration always results in better accuracy in training. The crossing point 

on the accuracy of training dataset and the testing dataset is where the optimal model 

size for the dataset (around the medium configuration). The model size smaller than the 

point is insufficient to classifier the data, while the model size larger than the point is 

overfitting the training dataset with a little accuracy increment on the testing dataset. 

The increase of testing accuracy could meet the ceiling (around 95%) when further size 

increment no longer corresponded to better testing accuracy.  

 To find the optimal size of configurations, 4 different configurations have been 

tested (3 of them were relatively small which aimed to run on MCU, the other one was 

much larger for comparison). As envisioned, all the quantised classifiers were less 

accurate compared to its floating-point versions. Contrary to the previous conclusions 

in Chapter 5 (both models have the same accuracy), the difference between floating-

point and the quantised classifier is larger (up to 1.23% difference in the small 

configuration). However, the classifier in Chapter 5 is much larger than the classifier in 

this chapter. The gap between floating-point and quantised classifier might shrink as 

the model capacity grows larger. 

 Although the smallest configuration achieves a 91.88% accuracy in the testing 

dataset, it only contains 868 trainable weights, occupies ~3.2KB RAM, and takes the 

minimum 2.5ms for a single prediction. In the models which is larger than the medium-

size configuration, the accuracy increment no longer corresponds to the complexity of 
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the model. Which could be the natural difference between the training dataset and the 

testing dataset. The medium configuration achieved similar accuracy (93.90%) 

compared to the large configuration (94.20%) with 2.6x less the running time. The best 

accuracy was achieved by the classic configuration at 94.70%. Overall, the medium 

configuration is the balance configuration for WBR-SH2 considering both complexity 

and accuracy.  

 Comparing to the classifier built in Chapter 5, all the configuration tested for MCU 

in this chapter are much smaller (20k, 66k, 231k MAC-ops compared to 7.36M 

previously), that can be embedded into WBR-SH2 for exercise recognition. Thus, the 

final question of “what” kind of exercise the person is doing is now can be answered 

by the sensorised handle itself.   

 The experiment result has proven that the data from older adults can also be used 

for classification with reasonable accuracy. Though they performed differently due to 

weaker strength and the decreased mobility, once enough data is used to train the NN 

classifier, it is sufficient to recognise the exercise in most of the cases.   

 Finally, the type of exercises was small (only four types of exercise) and the dataset 

is lack of an idle status (which indicate no exercise has ever performed). Future studies 

should consider adding more statuses.  

6.5.2 Neural Network Power Efficiency on WBR‐SH2   

 The time for a single prediction is recorded on both PC and MCU. Even though, 

the quantised model requires lesser computational power than the floating-point model, 

due to the significant performance gap between PC and MCU, the floating-point model 

running on PC was still much faster than the quantised model on the tested MCU (up 

to ~1200x faster in the classic configuration). However, the time for one prediction with 

the medium configuration (5.3ms) was still faster than the default data sampling period 

on the WBR-SH2 (10ms). On the one hand, with the medium or small configuration, 

the classifier is capable of running the prediction on each new sampling for the best 
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performance. On the other hand, in the low-power scenarios, with sampling windows 

size of 2.56secs and 50% overlapping, the classifier could run as slow as 1.28secs per 

round without missing data. Thus, the estimated CPU utilisation by the classifier is 

about 0.41%. The nRF52832 consumes 3.7 mA while running in full speed with the 

DC/DC and cache enable [90]. In this case, the classifier only takes an average 15uA 

for the classification, which is ignorable compared to the working current (22mA) of 

WBR-SH2 (per Table 3-6).  

6.5.3 International Experiment 

 The international experiment done in Italy is also the first time for WBR-SH2 to 

be operated by researchers with less engineering background. With the help of an 

instruction manual, they were able to operate the sensors well during the experiment. 

The experiment not only shows WBR-SH2 has the necessary capability to measure the 

exercise remotely and precisely but also shows the considerable improvement in the 

usability than its predecessors (the experimental system).  

 A list of feedback about the system and the exercise protocols was sent back from 

Italy, shown in Appendix F. The most comments are related to the Couch Potatoes for 

Cognition protocols. Firstly, the length of the resistance band was too long for the 

exercise. This was foreseen before the study but could not be solved. One of the 

challenges is to personalised the exercise instrument and the treatment. Changing the 

length of a band for an individual is one of the options for personalised treatment. 

Secondly, in activity 4, the band can easily slip out from the foot. The securing of the 

resistance band is also an old problem; this problem can be fixed by using a flattened 

resistance band instead of the current tube type resistance band. 

6.5.4 Reflection of WBR‐SH2 

 The aim of WBR-SH2 was to measure the exercise objectively. To measure the 

exercise, the three questions related to the exercise must be answered. With embedded 

sensors, WBR-SH2 can answer the “when” and “how” already. The final question of 
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“what” is now can be answered by the embedded neural network classifier in real-time. 

These features together make WBR-SH2 an intelligent standalone device for measuring 

resistance band exercise.  

 The improvement of usability is more significant than what was expected during 

the development. Without good usability, the experiment cannot be done easily with 

non-engineering background users. Even though the current system is still requiring 

many preparations before exercise, such as connecting the devices to smartphone 

manually and recording data manually.  

6.6 Conclusion 

 This chapter presents the design of a compact and effective neural network 

classifier using state-of-the-art structures. The aim was to develop a neural network 

which is feasible to run on MCU for exercise recognition. Thus, the question of “what” 

type of exercise is done could be answered by the device directly. The results show the 

implementation was capable of recognising the 4 types of exercise with an identical 

accuracy at 93.9% in real-time. Although the performance was not competitive to the 

classic model runs on PC, the outcome was still significant which has genuinely moved 

the Artificial Intelligence to the edge. Thus, the dependency of having a smartphone 

present during exercise was reduced. 

 The international experiment using WBR-SH2 has proven the usability and shown 

the potential of real-life applications, such as exercise intervention in the user’s home 

or rehabilitation centres. The new classifier was beneficial from the much larger dataset 

collected in the experiment. The feedback from the experiment is also valuable, which 

has pointed out the limitations and the defects in both Couch Potatoes for Cognitive 

exercise protocols and the sensorised resistance band.  

 The experiment in this chapter proved that the NNoM is sufficient of running NN 

classifier in WBR-SH2 and it further proved that NNoM is potentially effective in other 
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similar application scenarios, which use a neural network to process data in a resource-

constrained platform. 

 However, there are some limitations: 1) Only one specific model was tested in this 

chapter. 2) No supports for Recurrent Neural networks.  
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Chapter 7 Conclusion  and  Future 

Directions 

7.1 Backgrounds   

 More and more evidence shows the potential benefits of exercise to a portion of 

diseases. There are already massive efforts put into the field to investigate the true 

effectiveness of the exercise. However, the interrelation remains unclear. Both positive 

and negative evidence was shown in previous studies. Without the understanding of 

precisely what kind of exercise with how much intensity is positive and how much is 

negative, the exercise intervention cannot be performed with confidence. Most of the 

studies were restricted by the lack of long-term objective measurement tools, resulted 

in relatively long assessment period (4, 6, or 12 months). 

 Nevertheless, follow-up experiments usually are unsupervised and unmonitored. 

The quantity and quality of the remote exercise were never known. Thus, there is a clear 

need for a sensing system which can measure exercise remotely, objectively, and 

accurately, especially for the studies with long-term exercise intervention. 

 By using some remote measurement tools, the proposed models in Chapter 1 can 

be achieved. However, the current measurement devices in the market are either too 

simple (such as wristband and smartphone contains only one IMU sensor) that are 

unable to measure exercise accurately or are too complex to use (such as motion capture 

suits) which requires professional skills to operate. A simple, user-friendly and accurate 

measurement device is needed for exercise measurement remotely and continually.  

 The acceptance of wearable devices among older adults is also relatively lower 

than in younger people. Which means they tend not to use that new technology when 

the appearance of the sensor systems is prominent. While designing new sensorised 

devices, the acceptance of the sensor must be the priority. The concept of nearable might 
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be the potential solution to improve the acceptance which hides the sensors, pretends 

to a conventional instrument and brings less cumbrance to the user.  

 Therefore, this thesis presented the development of the innovative intelligent 

sensors system as the solution for remote exercise measurement. The system 

implements multiple state-of-the-art technologies and the nearable concept. The 

outcomes of this thesis (the WBR-SH2 system) have achieved the requirements above. 

WBR-SH2 can provide very detail measurement of resistance band exercise remotely 

by its onboard sensors. It reused most of the parts from a commercial resistance band 

handle to avoid the distraction of the natural motion while doing exercise. The robust 

mechanical design protects internal electronics in typical usage scenarios, which also 

dramatically reduces the needs of maintenance. The concept of nearable brings less 

disturbance to the user’s natural feeling of exercise compared to existing sensor systems. 

Finally, the embedded neural network makes WBR-SH2 an innovative and intelligent 

device. 

7.2 Conclusions   

 In this thesis, the road towards monitored exercise intervention has been presented. 

After the review of the state-of-the-art, the model of remote exercise intervention with 

older adults was proposed. The cornerstone of the model is a system which is capable 

of measuring the exercises remotely, objectively, and accurately. The three major 

questions about remote exercise ( “what”, “when” and “how”) must be answered to 

assess the exercise objectively. Thus, an innovative intelligent sensor system (WBR-

SH2) based on motion sensing and force sensing has been proposed. It provides 

promising results on both functionality and usability. The state-of-the-art neural 

network implementation fit the megatrend of pushing the AI to the Edge. Most 

importantly, the WBR-SH2 is generally acceptable by the real end-user (older adults) 

from the functionality and usability aspect. Overall, the sensor is very promising for 

remote exercise interventions with resistance band exercise. 
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 The thesis is divided into seven chapters. The recalled messages for every chapter 

are discussed below. 

 Chapter 1 has generally discussed the ageing problem, the links between exercise 

and the health among older adults, and the current limitation on most of the studies. 

After that, the goals, the novelty and the structures of this thesis are presented.  

 Chapter 2 has shown the preliminary experiment using an experimental sensorised 

resistance band system to do the Arm Curl Test. The experiment aimed to validate the 

capability of using IMU and load cell sensor to measure resistance band exercise 

objectively. The experiment was done with two young subjects. The data analysis on 

the raw data already shows much more detail compared to the traditional method, which 

only counts the repetitions done in 30seconds. Parameters such as the power, peak 

forces, frequency and their changes over time have proven that the exercise can be 

understood in detail. The limitation of the experimental system has been discussed, 

which can be concluded to 1) unable to measure the direction of the resistance band, 2) 

the usability is still not enough for novices. Therefore, a new sensor must be built to 

overcome these limitations. 

 Chapter 3 has presented the development of the new sensorised resistance band 

system, named WBR-SH2. This system aimed to fulfil the principle goals shown in 

Chapter 1 and overcome the limitations found in the experimental system during Arm 

Curl Test experiment (Chapter 2). An all-in-one box design concept was selected as the 

final design. WBR-SH2 uses Bluetooth Low Energy 5.0 for the only communication 

method to reduce the complexity in usage. The sensors in WBR-SH2 are capable of 

measuring the orientation of the resistance band. The low-power design dramatically 

improves the working time (12/16 hours compared to 8 hours) as well as the standby 

time (90 days compared to 2 days in the experimental system). By using the low-power 

motion wake-up function, WBR-SH2 can measure the exercise only when it is needed. 

It saves power and reduces the operations needed by the user. Thus, a single charge 
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allows the sensor to work for at least four weeks in an exercise plan with the 

recommended intensity (120~150 min per week). After the development, a preliminary 

PPI was done with the real end-users (older adult with mild dementia and their carers). 

The results suggested that acceptance was high, and the simplified RGB colour 

feedback was understandable and attractive to them.  

 Chapter 4 has discussed the principled problem of synchronising multiple sensors 

nodes in a wireless network. The solution was focused on the wireless network with 

BLE, which has been widely implemented into most of the smartphones. A novel 

method to synchronise sensors nodes based on the generic BLE protocol without 

modifying the Android devices have been proposed and tested with five sensor nodes 

(WBR-SH2). The results are significant with Std: 0.217ms, CDF95%: 0.47ms, 

Maximum Network Error: 1.284ms. The result is much better compared to the generic 

time services in BLE (resolution at 1/8 sec). This result is accurate enough for human 

body sensing. Moreover, this method can be implemented to other sensors even those 

already sold to the customer by updating the firmware, since it does not require 

modification on the sensor node’s hardware or user’s smartphone. Finally, this method 

improved the WBR-SH2 synchronisation accuracy for measuring resistance band 

exercises.  

 Chapter 5 has presented the development of the Neural Network on 

Microcontroller framework, which designed for a wide range of small footprint 

platforms. With the new megatrend of data decentralisation, edge devices are pushed to 

understand what has been measured instead of transferring raw data to the remote 

servers. The neural network has shown its ability for data classifications or other 

precession. However, there are still many barriers such as limited resources with MCU 

and lack of higher-level tools which make the implements of AI into edges more 

difficult than other platforms. Therefore, this chapter showed the development of a 

high-level Neural Network on Microcontroller (called NNoM). The details of the ideas, 
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the model quantisation technique, the framework structures, and a preliminary 

experiment for comparing the classifier on PC and MCU have been discussed. The 

experiment results showed that the MCU implementation (fixed-point arithmetic) has 

the same accuracy (99.45%) as the model trained on PC with floating-point arithmetic. 

The classifier takes 508.5KB ROM and 32.28KB RAM on the MCU and 7.36Mops for 

single prediction which results in nearly 0.3sec on STM32L476 @ 80MHz. Even 

though the tested classifier is still too large to be implemented into WBR-SH2, it shows 

the possibility to optimise further and scale down the model for lesser resources. 

 Chapter 6 has presented the evaluation of the NN model in the small footprint as 

same as WBR-SH2. It also discussed the actual usage of WBR-SH2 in an international 

resistance band exercise experiment using WBR-SH2 for measurement and Couch 

Potatoes for Cognition as protocol. In total, 40 subjects (20 of them aged above 60) 

participated, and a large dataset was collected. By using this dataset, four different size 

configurations of neural network classifier have been tested and discussed. The optimal 

configuration is 2.9k weights, 3.9k RAM, and 66k MAC ops, which has achieved an 

accuracy of 93.90% on MCU (94.16% on PC). This classifier took only 5.3ms for one 

prediction. Due to the difference in dataset and data processing method, the accuracy 

between Chapter 5 and Chapter 6 are not comparable. However, the size (508k to 2.9k) 

and the running time (300ms to 5.8ms) were reduced dramatically while both of them 

can achieve similar (same) accuracy level. Nevertheless, the experiment also collected 

valuable feedback to the protocols and the system which has approved the efforts in 

improving the usability of WBR-SH2. Overall, this chapter presented the real-life 

application of the works done in previous chapters, and the promising results allow 

WBR-SH2 to answer the three major problems of “when”, “what” and “how” is the 

exercise done remotely by its own, which has achieved the concept of edge AI.  

 Chapter 7 finally concludes the thesis and points out the possible future direction 

after this work.  
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7.3 Highlights of Outcomes 

 The goals proposed in Chapter 1 have been fully fulfilled by the outcomes from 

the above chapters. Under the remote exercise intervention framework proposed in 

Chapter 1 (Figure 1-7), three highlighted outcomes have been presented and validated. 

  Firstly, the sensorised resistance bands system have been built for remote 

exercise measurement. The new developed WBR-SH2 system has dramatically 

improved the usability while keeping a similar sensor setup as the experimental system. 

Both developments were following the concept of “nearable”, which is none disturbed 

during measurement. A preliminary PPI with older adults has shown the high potential 

acceptance of WBR-SH2 among real end-users. Overall, this outcome can be the 

cornerstone of not only resistance band exercise but also wide ranges of researches 

requiring remote exercise measurement.  

 Secondly, a novel synchronisation method base on generic BLE stack has been 

proposed. This method did not require hardware or firmware modification on a 

smartphone like other existing methods. It can provide continuous and accurate 

synchronisation on many existing sensor systems. This method could synchronise small 

sensors network with an unmodified Android device without impact on BLE bandwidth. 

It allowed WBR-SH2 and similar sensor systems to achieve sub-millisecond accuracy 

synchronisation based on the user’s smartphone (Std: 0.217ms, CDF95%: 0.47ms, 

maximum network error: 1.284ms). This outcome has solved the principled problem 

for every sensor network involving a user’s smartphone which is not allowed to be 

modified.  

 Thirdly, a higher-level Neural Network on Microcontroller (NNoM) 

framework has been developed. This framework was aimed to overcome the 

difficulties in deploying the neural network model into edge devices (e.g. a 

microcontroller). The comparison has shown 3x less user-configurable parameters 

compared to the existing lower-level library (Chapter 5, Table 5-6). It finally made 
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WBR-SH2 an artificial intelligent sensor which can answer all three problems of 

“when”, “what” and “how” about remote exercise on its own. In the trend of “data 

decentralisation”, the concept of “Edge AI”, this outcome is significantly valuable for 

developers to deploy the neural network fast to edge devices. This framework has been 

open-sourced since January 2019 on GitHub. To September 2019, the repository has 

received 169 stars.  

 As the results, the outcomes above have been formed as the “Innovative Intelligent 

Sensors” (WBR-SH2 and its tools), which is a robust and promising device to 

“Objectively Understand Exercise Interventions for Older Adults” — finally 

completing the title of the thesis.  

 This thesis contributes by providing the innovative intelligent sensor for remote 

objective measurement. It helps not only researchers but also a variety of people who 

want to understand the exercise and their health better. Foreseeable, the contributions 

of this thesis will improve the health among older adult; therefore, benefit the global 

society. The technologies developed and assessed by these works will not only benefit 

for exercise measurement but also extensively contribute to many other fields. For 

example, 1) NNoM provides a unique opportunity for countless edge devices to catch 

up the mage-trend of data decentralisation, and finally achieve the concept of “Edge 

AI”. 2) the synchronisation method in BLE provide good accuracy for the sensors 

network using user’s devices. 3) the small design of WBR-SH2 allows it to be used in 

other scenarios, such as swimming and cycling, while benefited from its networking 

and intelligent advantages.  

 In the next section, the auspicious directions for future works will be discussed.  

7.4 Future Directions 

7.4.1 WBR‐SH2 in Comprehensive Assisted Environments 

 Although WBR-SH2 has fulfilled the needs of objective measurement, it is still not 

enough for exercise interventions with older adults. Measuring is only a small part of 
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exercise intervention. Especially with older adults and people with chronic physical or 

mental diseases, they need a more comprehensive environment to perform the exercise 

safely. Therefore, WBR-SH2 is required to cooperate with other surrounding smart 

devices to provide systematic supports and assistance for the user.  

7.4.2 Motion Diagnosis for Mental Health 

 The traditional diagnoses for mental diseases are using well-developed recognition 

and memory testing protocols and brain scanning such as Magnetic Resonance Imaging 

(MRI) and Computed Tomography (CT). However, these methods are costly, 

complicated and time-consuming. Most importantly, the disease development process 

cannot be tracked continually due to the relatively longer diagnosis interval (years, 

month). Recently, many studies have been done to discover the potential interrelation 

of motor function to mental health. A portent of mental diseases can potentially be 

perceived under motor functional testing. A systemic review concluded that reduce limb 

motor functions were associated with an increased risk of developing dementia [150]. 

The study [24] has shown mental neurological disorders can affect the performance in 

motor functioning, and vice versa, it might be possible to assess the mental problems 

and to track their developing process continually by more frequently motor testing and 

motion tracking (real-time, minutes, hours, days).  

 If the exercise or activities can be monitored accurately and continually through 

the days, months of the intervention, and combined with the state-of-the-art cognitive 

assessment scores, the interrelation between exercise and cognitive may be clearer. 

Thus, the effectiveness of the exercise intervention could be clearer, and the diagnosis 

of cognitive functions might also be possible through exercises measurement and using 

the clearer interrelation of cognitive and motor functions. Although the sensor has not 

tested in the PPI with people with depression, people with dementia have given positive 

feedback during the PPI. Future work in PPI for people with depression needs to be 

done.  
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7.4.3 Technical Improvement 

 WBR-SH2 is the physical combination of the most significant outcomes from this 

thesis, which had implemented the state-of-the-art technologies by the time of 

development. However, the development of technology never stops. The sensor can be 

improved by implementing new technologies.  

 One example is in the wireless sensor model proposed in Figure 3-2 required a 

smartphone to act as a bridge to forward data from sensors to the data server. Thus, a 

smartphone must be present sometime during or after the sensors have collected data. 

Although with the neural network embedded, information and measurement are 

aggregated, so the size is much smaller, this aggregated information still needs to be 

sent out at some time. The sensor is then dependent on the smartphone. If the new 5G / 

Narrow Band-IoT can be implemented into the sensors, then it can access the Internet 

alone. The dependency of a smartphone is avoided.  

 Other possible technical improvements are: 1) Implement wireless charging 

capability to improve the usability further. 2) Improve Android App interfaces. 3) Train 

neural network from different aspects, such as the quality classification to see if the 

person is doing good or bad. 4) Improve and implement quantitative exercise algorithm 

into sensors. 5) Develop more general software and hardware interfaces for use in other 

related fields. 6) Research in better motion feature extraction with both time and 

frequency patterns. 

7.4.4 Exploring New Research Fields 

 The WBR-SHx sensors and the tools have provided an unprecedented 

measurement tool for remote exercise, which could be a game-changer in the related 

fields. When countless studies are struggling in how to measure the remote exercise, 

the thesis has already provided a solution which has been validated by a post-

experiment. This is done only because the configuration of the sensors and tools are 

carefully designed to be 1) Optimised in usability. 2) Using “nearable concept” to 
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improve acceptance by older adults. 3) Minimised but enough number of sensor nodes 

for accurate measurement. 4) Only understandable and straightforward feedback for 

older adults. Thus, any studies doing exercise measurement especially requiring one or 

more principles above will potentially benefit from this thesis and the WBR-SH sensors. 

The principles are nearly desired by all physical exercises, especially the exercise 

involving instruments.  

 An example is cycling which requires no disturbance to the user and the exercise 

involving standalone instruments, namely the bicycle. A preliminary configuration can 

be done by implementing 4 x WBR-SH2 sensors onto the bicycle with one sensor on 

the handle, one on the seat and two for each pedal. 1) Sensors on pedals can measure 

the force, rotation speed, and others, 2) sensor on the seat can measure the bicycle’s 

orientation, acceleration and the weights on the seat, 3) and the sensor in the handle can 

measure the movement of the hand. All sensors are not measuring the body directly, but 

measuring the interface between the user and the equipment, which this thesis has 

shown to result in an understanding of the exercise potentially. All sensors together can 

give much more detail to describe the exercise better. Most importantly, this 

configuration has no interference to user’s natural motions. Thus, a more realistic 

measurement can be achieved.  

 Other than measuring performance, further investigating mental and physical 

disease diagnosis through long-term exercise measurement is a direction that potential 

can be impactive, but has not yet been widely studied. The reviews discussed in Chapter 

1 has shown that early signs can be tracked through motion assessment before they are 

serious enough to affect the person’s lifestyle. Continuous measurement of dedicated 

exercise can easily extract the features and patterns changes alongside the development 

of the diseases. Therefore, the development of diseases might seem through the decline 

in exercise performance. This work has provided researchers with the necessary 

measurement tools to pursue their research goals. 
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Appendix A Couch Potatoes for Cognition 

 Couch Potatoes for Cognition is a workout developed by Loughborough University 

that aims to improve upper and lower body strength of older adults. It consists of 4 

different activities and usually takes 40 minutes to complete. The original protocols 

document can be found in [49]. The 4 activities are discussed below individually.  

A.1 Tummy Rotation 

 The first activity is “Tummy Rotation”, shown in Figure A-1. The tummy rotation 

is a training of the stomach muscles, which improve the function of the waist. This 

activity improves the function of co-coordination, preventing falls, and standing from 

a chair.  
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Figure A-1 Tummy rotation [49]. 

 

A.2 Straight Arm Pull 

 The second activity is “Straight Arm Pull”, which is shown in Figure A-2. This 

activity aims at improving dressing and standing from chair.  
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Figure A-2 Straight arm puling [49]. 

A.3 Cross and Pull 

 The third activity is “Cross and Pull”, which aims to improve standing from a chair, 

gardening, and washing/taking shower capabilities. The activity is shown in Figure A-3.  
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Figure A-3 Cross and pull [49]. 

A.4 Leg Press 

 The “Leg Press” activity is to improve the lower part muscles, which is shown in 

Figure A-4. This activity will benefit the climbing stairs, standing, shopping, preventing 

falls, and standing from chair. 
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Figure A-4 Leg press [49]. 
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Appendix B Experimental  Sensorised 

Resistance Band System 

B.1   Design  of  Experimental  Sensorised  Resistance 

Band System 

 This section shows the development of the experimental sensorised resistance band 

system, including general objectives, hardware development, firmware development 

and software development.  

B.1.1 Objectives and Requirements   

 The objective for this section is to design an experimental sensorised resistance 

band system that can be used in researches scenarios to investigate the needs and 

performances in measuring resistance band exercise. To achieve the objective, the 

following fundamental requirements for the experimental system should be fulfilled.  

 Motion sensors (Gyroscopes, Accelerometers which can measure the motion 

directly) must be integrated.  

 Force sensing on the resistance band. The resistance band can measure the force 

applied to the hands for exercise quantitation. 

 Same dimensions as a traditional none sensorised handle. This new design must 

be similar to the commercial resistance band handle to avoid unnatural feeling 

to the user.   

 The device must have wireless communication for real-time data collections.  

B.1.2 Hardware Design 

 The experimental system is a highly integrated embedded system which contains 

multiple sensors, data recording, wireless communication and long-life battery for 
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resistance band exercises. An overview of the circuit board, sensor selection, 

component placement and the block diagram of the hardware are shown in this section.   

 

Figure B-1 Board layout (top view) 

 

 

Figure B-2 Board layout (bottom view) 

 The main circuit board is shown in Figure B-1 and Figure B-2. The board is consist 

of an STM32F405RGT6 MCU [151] (or in low power configuration, a more advanced 

low power microcontroller is used, STM32L476RGT6 [142]), a USB power 
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management circuit, a Bluetooth 4.2 module DA14580 [152], a SPIRIT1 Sub-1GHz 

wireless module [153] and the following sensors: I-NEMO digital 3-Axis gyroscope & 

3-Axis accelerometer module LSM6DS3 [154], 3-Axis magnetometer LIS3MDL [155], 

and Barometer MS5611 [156]. A 6x10 extension pad is reserved with 10 programmable 

GPIO and power ports for the possibility of adding new sensors. Currently, the load cell 

is connected to the board thought the extension pads. The major characteristics of the 

onboard sensors are listed in Table B-1. The configuration block diagram main circuit 

board is shown in Figure B-3. 

Table B-1 Main Characteristics of the Sensors 

 Sensors 

LSM6DS3 LIS3MDL MS5611 

Category Gyroscope Accelerometer Magnetometer Barometer 

Axis 3-axis 3-axis 3-axis N/A 

Size 2.5 x 3 x 0.83 [mm] 2x2x1[mm] 5x3x1[mm] 

Range ±125/±250/ ±500/ 

±1000/ ±2000 [dps] 

±2/±4/±8/±16 

[G] 

±4/ ±8/ ±12/ ±16 

[Guass] 

450 to 1100 

[mBar] 

Resolution 16 [bit] 16 [bit] 16 [bit] 24 [bit] 

Bandwidth 830 [Hz] 3.3k [Hz] 500 [Hz] 250 [Hz] 

Currenta 1.25 [mA] 0.24 [mA] 0.27 [mA] 1.4 [mA] 

a. the maximum current during the measuring. 
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Figure B-3 Configuration block diagram  

B.1.3 Microcontroller 

 For the prototype and lab-based short-term experiment purpose, the power 

consumption by MCU is not a core consideration. Instead, the MCU must be powerful 

enough to undertake data collection and other potential works. Thus, a high-

performance STM32F405RGT6 microcontroller based on advance ARM Cortex-M4F 

architecture with the package LQFP48 (7x7x1.4 mm) is implemented to the board. Its 

high-performance ARM® Cortex™-M4F 32-bit RISC core running on 168MHz with a 

variety of peripherals (including multiple ADC, SPI, SDIO, UART, DMA, USB, CAN), 

etc.) which capable for running multiple tasks in real-time, such as data processing, data 

recording, and wireless communication. The memory contains 1MB programmable 

flash and 192KB RAM which includes 64KB single-cycle access Core-Coupled-

Memory (CCM). With the operation voltage range from 2.0V to 3.6V, it is suitable for 

the battery used.  
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 For a long-term experiment, the microcontroller can be replaced by a pin-to-pin 

compatible, low-power, high power efficiency MCU, STM32L476RGT6. This MCU 

contains most of the peripherals similar to the implemented one but with more advanced 

low-power performance and features, such as higher running power efficiency (100 

μA/MHz compares to 238 µA/MHz), faster start-up clock system (Internal multispeed 

100 kHz to 48 MHz oscillator), lower power standby mode (420 nA Standby mode with 

RTC).  

B.1.4 Sensors   

B.1.4.1 Gyroscope & Accelerometer 

 In order to measure the orientation of the resistance band handle, the measurement 

of 3-Axis angular velocity and 3-Axis acceleration is needed. The I-NEMO inertial 

module LSM6DS3 consists of 3-Axis gyroscope and 3-Axis accelerometer as well as a 

master I2C interfaces and sensor hub function. With the low-power feature (0.9 mA 

combo normal mode) and compact design (size 2.5 x 3 x 0.83 mm), it is possible to 

reduce both the size of the circuit board and battery compared to the existing system. 

The scales of the gyroscope can be selected from ±125 to ±2000 dps (degree per second) 

and the scales of the accelerometer can be selected from ±2 to 16G by configuring the 

registers inside the module. The sensor hub function enables the LSM6DS3 to act as an 

I2C master to collect data from other sensors by I2C. In the case of the sensorised 

handle, the I-NEMO model acquires data from magnetometer by its I2C interface. The 

communication interface between the master microcontroller and LSM6DS3 is SPI. 

B.1.4.2 Magnetometer 

 The 3-Axis magnetometer LIS3MDL is an ultra-low-power, high-performance and 

small design (2.0 x 2.0 x 1mm) three-axis magnetic sensor, with a full scale of ±16 

Gauss. The magnetometer could measure the magnetic field of the earth to provide a 

reference vector.  
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B.1.4.3 Barometer 

 The barometer is the device to measure the temperatures and atmospheric pressure. 

With the sea level height information, the barometer will help to correct drifting of 

height estimation from IMUs. With the high-resolution barometer, it might be possible 

to identify the relative height difference between the two sensorised handles. Which 

could be potentially useful when the motion difference between hands are different. 

The barometer, MS5611, is a high-performance ultra-accurate sensor with 24-bits ADC 

and factory calibration, which provide height resolution in 10 cm in size of 5 x 3 x 1mm.  

B.1.4.4 Load Cell & Driver 

 The load cell is a full bridge transducer that is used to create an electrical signal 

whose magnitude is directly proportional to the force being measured. Load cell could 

be driven and measured by specified driver chips which automatically provide voltage 

bias and differential measurement on the load cell. HX711[98] is a low-power 24-bits 

ADC one-chip solution for load cell measurement, with the maximum 80 samples per 

second output rate. A commercial standalone HX711 development board is used and is 

placed close to the load cell. Combine with an unbranded 50kg range load cell which 

is disassembled from low cost a luggage weight (~£5/pcs on Amazon), the combination 

is capable of measuring the force applied on the resistance band up to 50kg, which 

provide the essential measurement for the quantification of exercise. The selected load 

cell is shown in Figure B-4.  
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Figure B-4 Load cell sensor. 

B.1.5 Wireless Communication   

 Two different wireless modalities are integrated into the circuit for prototyping and 

testing. They are BLE module and Sub 1GHz wireless module. BLE which capable of 

transmitting data between smartphone could be useful in the long-term monitoring. The 

sub 1GHz with higher bandwidth compared to BLE is for real-time data monitoring 

during experiments and data synchronising while two sensorised handles being used at 

the same time.  

B.1.5.1 Bluetooth Module 

 The Bluetooth 4.2 module used in the sensorised handle is an ultra-small DA14580 

module with a dimension of 5 x 6.2 x 1mm. The module is configured to the serial port 

mode during the lab-based experiment to transmit raw data to the PC. After the 

experiments, the module could be connected to a smartphone. The power consumption 

is about 5mA/3V at 0dBm output. 
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B.1.5.2 SPIRIT1 (Sub 1GHz) Wireless Module 

 Alternatively, the second wireless module SPIRIT1 is also implemented. The 

SPIRIT1 is a very low-power RF transceiver, intended for RF wireless applications in 

the sub-1 GHz band. The over-air data rate can be set from 1 to 500 kbps. It is also with 

low power consumption (9 mA RX and 21 mA TX at +11 dBm). The SPIRIT1 is used 

in an experiment for data synchronisation between two sensorised handles. The 

communication between handle and PC based one SPIRIT1 wireless module, the air 

bandwidth is set to 500kbps. 

B.1.6 Power Management & Battery Charger 

 The power management circuit is consist of a USB power controller and Li-ion 

linear charger LTC4055-1, a battery gas gauge LTC2942 [157] and multiple LDOs 

XC6206 [93] (Low Dropout linear regulators). Due to 2 ideal diodes in the LTC4055-

1[91], the power switch between USB power and the battery is smooth and fast. The 

maximum charging current is 500mAh with the maximum output current at 1500mAh. 

The analogue power supply and the digital power supply is supplied individually by 

separate LDO to reduce the noise interference to the analogue power supply. 

Additionally, the USB power controller is protected from overheating by the internal 

thermal switch above 105°C. 

B.1.7 Battery 

 One standard 18500 Li-Ion battery (size of Φ18x50mm) with battery protect circuit 

is selected for powering the device. The maximum capability of the battery is 1400mAh 

while the average working current is estimated at 150mA in full data acquisition states. 

Therefore, the battery could support about 9 hours of working time on a single charge. 

Thanks to power management, the battery can be charged without taking the battery out 

of the handle by directly connecting the USB port to a computer or a USB power 

adapter. 
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B.1.8 Firmware 

 The handle can directly measure the angular velocity and acceleration by 3-Axis 

gyroscope and 3-Axis accelerometer. With the 3-Axis magnetometer and barometer, 

which measure the magnet field of the earth and the air pressure of current position, the 

handle capable of estimating the orientation and the relative height during time by using 

Complementary Filter [158].  

B.1.8.1 RT‐Thread Real‐Time Operating System 

 To manage multiple tasks on the sensorised handle, an RTOS is introduced as the 

scheduler and base for different tasks. RT-Thread [159] is a lightweight RTOS which 

capable of running on the most of ARM-based CPU. It includes the necessary 

components of real-time embedded system, including but not limited to real-time 

operating system kernel, TCP/IP protocol stack, Portable Operating System Interface 

(POSIX) compatibility file system, libc interface, graphics interface, and so on.  

 In the handle, some peripherals interfaces are simultaneously used by multiple 

tasks as share resources. The program must avoid conflict in the use of these share 

interfaces (resources). With the completed and powerful driver frameworks and the 

objective-oriented kernel objects in RT-Thread, the hardware resources sharing (such 

as SPI, I2C)  interfaces), CPU sharing, and data sharing can be simple achieve within 

critical timing. Using an RTOS not only helps with the management of multiple tasks 

(sharing CPU) but also reduce the difficulty in power management. When the user tasks 

are finished, the scheduler will switch to an always-ready task, called idle task, where 

an instruction for CPU to enter low-power mode can be inserted. The CPU is stopped 

until the next hardware event to reduce the power consumption during the idle time. 

The power consumption can be reduced in variable degree depending on the system 

loads.   

 The brief working flow is shown in Figure B-5. Introducing RTOS allows multiple 

tasks to run “simultaneously” on single CPU by time-division multiplexing. The 
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working flow shows the logical description of the system. The process starts from 

initialling the microcontroller, then initialling RT-Thread including memory 

initialisation, tasks initialisations, driver registrations, and filesystem initialisation. 

After the initialisation process, the hardware interfaces (SPI, I2C, SDIO and so on) and 

filesystem are ready. The next work is to do the sensor initiations and to create logging 

files on SD Card. After the initialisation works, the system is driven by the sensor data 

update event, and the firmware will run into the circle of collecting measurements, pre-

processing and calculation, and storing data/sending data.  

 

Figure B-5 Working flow of the experimental system. 

 The raw sensing data will be stored locally into the SD Card in a file of 100Hz and 

be sent out to PC up to 500Hz through SPIRIT1 wireless module. 
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B.1.9 Mechanical Design 

 The mechanical design mainly focuses on the housing of the main circuit board, 

which is also the handle replacement of the conventional handle. The handle (housing) 

is designed to be the same size as the commercial band handle to minimise the 

difference. The housing uses a 2-halves design for easy accessing to the circuit board 

during the debugging process. The housings are built by a 3D-printer using Polylactic 

Acid (PLA). Additionally, the housing for load cell is built separately by the same 3D-

printing process.  

 Figure B-6 and Figure B-7 show the upper and lower half of the housing. The 2 

halves are fixed together by screws. The ball heads on 2 sides are used to mount the 

nylon bands which will be connected to the load cell housing. The space on the right is 

dedicated for 18500 Lithium battery and the space on the left is dedicated for electronics 

and wires. There is a hole reserved for the multiple purpose button on the upper half. 

The circuit board is fixed inside the left space by 4 mounting hollows. The 4 mounting 

points around the circuit board (shown in Figure B-1) will fit into these hollows to 

secure the circuit board. There is also a hole in the wall of the lower half, which is 

reserved for the micro USB charging connector.   
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Figure B-6 Upper half of handle housing. 

 



Experimental Sensorised Resistance Band System 

221 

 

 

Figure B-7 Lower half of handle housing. 

 

 

Figure B-8 Housing of load cell sensor. 

 The load cell sensor is placed separately to the main circuit board in its own 

housing. The load cell housing is to place the load cell sensor and the load cell driver. 

The housing is shown in Figure B-8. There are two square holes on the sidewall which 
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is for the nylon bands to go through. The hole on the bottom is where the resistance 

band is connected to the load cell.  

B.1.10 Working Prototype   

 The housings were printed using a 3D-printer. the prototype included the main 

circuit board (Figure B-1 and Figure B-2), load cell sensor and its driver, battery, wires, 

and the 3D printed housings. Figure B-9 shows the assembly of the experimental system 

and the comparison of the traditional resistance band handle.  

 

Figure B-9 Side by side comparison of the traditional handle and sensorised handle. 

B.1.11 Software Design 

 Although the data is already recorded in the onboard microSD card by its firmware, 

it is still a complicated procedure to get the data from the sensorised handle. Firstly, the 

sensorised handle must be disassembled to take the microSD card out. Secondly, the 

data then can be read by plugging the microSD to the computer and copy the data file. 

Thirdly, the handle should be assembled again for the next experiment. To simplify the 



Experimental Sensorised Resistance Band System 

223 

 

process, the data should be sent and received wirelessly. Thus, PC software is needed 

to acquire data accomplished with the sensorised handle. By using the onboard wireless 

module, the measurement can be transferred from the sensorised handle to PC in real-

time.  

 

Figure B-10 Data recorder. 

 A software tool is explicitly written to record data from sensorised handle onto PC, 

shown in Figure B-10. The aims for the software are to provide a friendly interface and 

easy to a used tool to acquire data and to check the working state of the sensor. The 

wireless communication between sensorised handle and PC is done by SPIRIT1 module. 

The data receiving on PC is done by a customised wireless dongle, which is consist of 

SPIRIT1 module and an STM32 microcontroller with customised firmware. The 

STM32 act as a USB-to-Serial bridge. Messages received by dongle are bridged to a 

virtual serial port on the PC. Then, the software tool can read the message from the 

virtual serial port. The communication protocol is shown in Table B-2. 
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 Data is recorded in a .csv format on the PC, which is the same as it is saved to the 

onboard microSD card to keep the compatibility in the data processing.  

Table B-2 Communication protocol between sensorised handle and PC 

 header ts a gyro a acc a mag a temp a load cell quaternion checksum 

Size 

(bytes) 

4 4 3 x 2 3 x 2 3 x 2 4 4 4 x 4 2 

type binary uint

32 

int16 int16 int16 float float float uint16 

a ts: timestamp, gyro: gyroscope, acc: accelerometer, mag: magnetometer 
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Appendix C Data Format for WBR‐SH2 

 The raw data frame format is shown in Table C-1. Each raw data frame contains 54 

bytes valid data but is padded by zero to 64 bytes in length with the last 2 bytes for 

CRC checksum inclusive.  

Table C-1 Raw data frame structures.  

*Name ID TS Gyro Acc Mag Res AP AT LC QT 

Data 

Type 

Uint8 Uint64 Int16 Int16 Int16 Uint8 Uin24 Int16 Uint24 Float32 

x 4 

Size 

(Byte) 

1 8 6 6 6 3 3 2 3 16 

*ID: device’s identity number, TS: timestamps in milliseconds, Gyro: Gyroscope, Acc: Accelerometer, 

Mag: Magnetometer, Res: Resolution (scales) of gyroscope, accelerometer and magnetometer, AP: 

Atmospheric Pressure, AT: Atmospheric Temperature, LC: Load Cell, QT: orientation in quaternion.   

 

 The data format for CSV file recorded by SmartBand App is shown in.Table C-2  

Table C-2 CSV file recorded by SmartBand App 
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F
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Appendix D Sensor  Calibration  of 

Experimental System 

D.1 Sensor Calibration   

 There are many sensors inside the sensorised handle of the experimental system, 

most of them are based on MEMS technology, including a gyroscope, an accelerometer, 

a magnetometer, and a barometer. Besides, the load cell sensor, which consists of four 

strain gauges in a Wheatstone bridge configuration. All of them requires calibration 

before measuring correctly.  

 The IMU sensors used here are based on MEMS technology. In an ideal IMU 

sensor, the tri-axial cluster should be the same 3D orthogonal sensitivity axes that span 

in a 3D space, as well as the same scale factor. However, these low-cost MEMS sensors 

suffer more variance than traditional IMU sensors results in inaccurate scaling, axis 

misalignments, cross-axis sensitivities, and non-zero biases. Therefore, the calibration 

on the IMU sensor is needed. In the following section, each sensor is calibrated except 

the barometer which is already calibrated by the manufacturer during its production. 

D.1.1 Inertial Measurement Unit 

 The misalignment and cross-axis sensitivities of the MEMS sensor are not 

mentioned in the selected sensor [154]. The bias for gyroscope is ±10 dps and the bias 

for the accelerometer is ±40mg. Temperatures sensitivity is relatively small with ±1% 

for accelerometer and ±1% for gyroscope from -40°C to +85°C. Considering the 

experiment environment usually is in room temperature, the sensor can be considered 

stable. Therefore, ignoring the misalignment error, cross-axis sensitivities and the 

temperatures sensitivity, the gyroscope can be described by the model: 
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 ቎

d௚௫
d௚௬
d௚௭

቏ൌ ቎
G௚௫ 0 0
0 G௚௬ 0
0 0 G௚௭

቏ ቌ቎

d௥௚௭
d௥௚௭
d௥௚௭

቏ ‐ ቎
b௚௫
b௚௬
b௚௭

቏ቍ (D-1) 

 In (D-1), d௚௫,  d௚௬,  d௚௭ represent the ideal measurement result of the sensor; 

d௥௚௫, d௥௚௬, d௥௚௭ represent the actual output by the sensor. G௚௫, G௚௬, G௚௭ are the 

gains of each axis; b௚௫ , b௚௬ , b௚௭  are the bias of each axis. The calibration of the 

gyroscope is divided into 2 steps.  

 The first step is to measure the biases of each axis. To measure the biases in the 

gyroscope, the measurement is recorded for 10 seconds while the sensors are stationary. 

However, the temperature changed by the thermal release by other components such as 

power chips and microcontroller might affect the measurement. Therefore, the 

calibration was performed after the circuit board is powered on for 10 minutes to reduce 

the effect of heating. By looking into the measurement during the calibration, 10 

minutes is an acceptable time to ensure the data is stable. The data is collected for 1 

minute. The means of the measurements are the biases of each axis. 

 The second step is to calculate the gains of each axis. To calculate the gains, we 

need a controllable rotating platform which can rotate at a constant speed. In the 

calibration, a turntable is introduced to provide stable rotation as the reference. The 

turntable is the rotating platform of a phonograph which can provide multiple constant 

rotations. A 3D printed frame is then used for mounting the circuit board onto an 

orthogonal cube which can be fixed on to the rotating disc. In this way, we measured 

the positive and negative rotation of every axis in a constant rotating speed. The same 

power-up process in the first step is also performed in the second step. The system will 

first power up for 10 minutes, then the actual calibration is performed for 1 minute.  

 The same model is also used in the accelerometer calibration. An accelerometer is 

an electromechanical device used to measure acceleration forces. Such forces may be 

static, like the continuous force of gravity or, as is the case with many mobile devices, 
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dynamic to sense movement or vibrations. Acceleration is the measurement of the 

change in velocity divided by time. 

 ቎
d௔௫
d௔௬
d௔௭

቏ൌ ቎
G௔௫ 0 0
0 G௔௬ 0
0 0 G௔௭

቏ ቌ቎
d௥௔௫
d௥௔௬
d௥௔௭

቏ ‐ ቎
b௔௫
b௔௬
b௔௭

቏ቍ (D-2) 

 In (D-2), d௔௫ , d௔௬ , d௔௭  represent the ideal measurement result of the sensor; 

d௥௔௫, d௥௔௬, d௥௔௭ represent the actual output by the sensor. G௔௫, G௔௬, G௔௭ are the 

gains of each axis; b௔௫ , b௔௬ , b௔௭  are the bias of each axis. The calibration of the 

accelerometer was performed by an orthogonal cube and a table which is adjusted to 

horizontal by a level. The circuit board is mounted on the cube. After powered up for 

10 minutes, in proper order, collect the accelerometer data from 6 faces, each one was 

faced to the ground. The biases then can be calculated by positive value plus negative 

value. The gain is calculated by dividing the magnitude by gravity.  

 After calibration, the results of the above parameters are written into the firmware. 

The results are listed in Table D-1. For gyroscope, the range is set to ±1000dps, thus 

the gains are for converting the raw data to degrees per second. For the accelerometer, 

the range is set to ±8G. Thus the gains are for converting raw data to unit gravity.  

Table D-1 Calibration results for gyroscope and accelerometer 

Gyroscope Value Accelerometer Value 

G୥୶ 3336.09214 Gୟ୶ 4113.2107 

G୥୷ 3315.430283 Gୟ୷ 4090.90895 

G୥୸ 3320.939663 Gୟ୸ 4097.68905 

b୥୶ 78.8308 bୟ୶ -28.3004 

b୥୷ -223.0551 bୟ୷ 68.1639 

b୥୸ -156.763 bୟ୸ -229.1807 
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D.1.2 Magnetometer 

A simple calibration is performed for the soft ion distortion and hard ion distortion 

which is shown by (3).  
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In (D-3), d௠௫, d௠௬, d௠௭ represent the ideal measurement result of the sensor; 

d௥௠௫ , d௥௠௬ , dௗ௠௭  represent the actual output by the sensor. G௠௫ , G௠௬ , G௠௭  are 

the gains of each axis; b௠௫, b௠௬, b௠௭ are the maximum measurement in all direction 

of each axis. The calibration of the magnetometer is similar to gyroscope and 

accelerometer, except the gains are different, and the biases are determined differently. 

The bias ܾ௠ is defined by the half of the sum of maximum and minimum measurement 

in each axis. In one of the axes, the gain is set to 1 constantly, while other axes use the 

scale of the axis for its gain. To calibrate, the sensorised handle was rotated manually 

in all possible direction for 5 minutes. The calibration results are shown in Table D-2. 

Table D-2 Magnetometer calibration results 

Parameters Value 

G୫୶ 1.0 

G୫୷ 0.991480611 

G୫୸ 1.026459854 

b୫୶ 402.5 

b୫୷ 1863.983549 

b୫୸ -2740.64781 

D.1.3 Load Cell Sensor 

 The load cell is a full-bridge resistance network and it is measured by a specific 

weight driver (HX711). The load cell can be described as a linear model in (D-4). 
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 dmൌGሺdr‐bሻ (D-4) 

 In the model, dm  represents the ideal result by load cell sensor; dr  is the real 

output of the sensor; G is the gain and b is the bias. 

 The calibration of the load cell sensor is to measure a constant weight. The weights 

that used to calibrate is 5kg. Firstly, the load cell is zero calibrated without load. After 

that, the 5kg weight was put on the load cell and record the measurement. Then the 

results were averaged and divided by the gravity of 5kg to get the gain. The calibration 

process was repeated for 5 times and the results were averaged to improve the accuracy. 

Additionally, the calibration of load cell sensor does not need to follow the 10 minutes’ 

power-up procedure due to the load power of load cell measurement and the load cell 

is not integrated on the main circuit board and therefore not affected by the heating.  

 The calibration result shows the gain from raw data to kg Gൌ5835.9 and the bias	

ܾ ൌ 8265300.	
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Appendix E Schematics  and  Layouts  of 

WBR‐SH2 
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Figure E-1 Circuit schematics of WBR-SH2 motherboard (1/5). 
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Figure E-2 Circuit schematics of WBR-SH2 motherboard (2/5). 
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Figure E-3 Circuit schematics of WBR-SH2 motherboard (3/5). 
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Figure E-4 Circuit schematics of WBR-SH2 motherboard (4/5). 
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Figure E-5 Circuit schematics of WBR-SH2 motherboard (5/5). 

 

 

Figure E-6 Top-layer layout of WBR-SH2 motherboard.  

 

Figure E-7 Ground-layer layout of WBR-SH2 motherboard.  

 

Figure E-8 Power-layer layout of WBR-SH2 motherboard.  
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Figure E-9 Bottom-layer layout of WBR-SH2 motherboard.  

 

Figure E-10 Assembly of WBR-SH2 motherboard. 
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Appendix F User  Feedback  of  WBR‐SH2 

and Resistance Band Exercise   

Feedback for resistance band exercise 
 

1. Elastico troppo lungo  

2. Paura che scivoli da sotto il piede nell'ultimo esercizio  

3. Le persone anziane tendono a modificare l'esercizio gli ultimi secondi di esecuzione  

4. Negli anziani, non tutti, problemi nel ruotare il bacino a destra e sinistra nel primo 

esercizio, senza utilizzare le braccia  

5. Terzo esercizio difficile da capire come esecuzione, dato che molti compiono il 

movimento per fare meno fatica  

6. Esercizi complicati per anziani che non fanno attività fisica 

7. Uomini più in difficoltà delle donne 

 
 

English (translation) 

1. Elastic too long 

2. Fear that the band slips from under the foot in the last exercise 

3. Older people tend to modify the exercise during the last seconds of execution 

4. In some of the elderly, there are problems in rotating the pelvis right and left in the 

first exercise, without using the arms 

5. The third exercise is difficult to understand in terms of execution, as many subjects 

perform the movement to make it less physically demanding  

6. The exercises are complicated for elderly people who do not exercise 

7. Men are in greater difficulty than women 
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