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Abstract

The pKa estimation ability of the semiempirical PM6 method was evaluated across a broad range 

of oxyacids and compared to results obtained using the SPARC software program. Compound 

classes under consideration included acetic acids, alicyclic and aromatic heterocyclic acids, 

benzoic acids, boronic acids, hydroxamic acids, oximes, peroxides, peroxyacids, phenols, α-

saturated acids, α-saturated alcohols, sulfinic acids, α-unsaturated acids, and α-unsaturated 

alcohols. PM6 accurately predicts the acidity of acetic and benzoic acids and their derivatives, 

but is less reliable for alicyclic and aromatic heterocyclic acids and phenols. α-Saturated acids 

are reliably modeled by PM6 except for polyacid derivatives with α-alcohol moieties. α-

Saturated alcohols only appear to yield reliable PM6 results where an α-hydroxy or α-alkoxy 

moiety is absent. Carboxylic acids with simple α-alkene unsaturation are well approximated by 

PM6 except where alkyne α-unsaturation or α-carboxylation are also present. The PM6 and 

SPARC methods exhibit approximately equal pKa prediction performance for the acetic, 

alicyclic, and benzoic acids. SPARC outperforms PM6 on the peroxides, peroxyacids, phenols, 

and α-saturated acids and α-saturated alcohols. pKa values for boron, nitrogen, and sulfur 

oxyacids do not appear to be reliably estimated by either the PM6 or SPARC methods. The 

findings will help guide the potential appropriateness of results from the PM6 pKa estimation 

method for waste treatment and environmental fate investigations.

Keywords: pKa prediction; PM6 method; semiempirical; validation; oxyacids; SPARC
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1. Introduction

Predicting the acidity constant (pKa value) of compounds is a critical task in designing waste 

treatment methods and understanding the environmental fate of both contaminants and natural 

compounds. Historical approaches to pKa estimation typically involved linear free energy 

relationships [1-3], of which the Hammett-type correlations are perhaps the best known [4], and 

fragment-type, one- and two-dimensional, and topological/connectivity index methods [5,6]. 

However, these methods often have difficulty dealing with geometrical isomers, new substituent 

types, and intramolecular hydrogen-bonding effects due to the lack of dependence on three 

dimensional optimized molecular structures. Over the past few decades, and with the advent of 

lower cost, easy to use, and widely available computational methods, quantitative structure-

property relationships (QSPRs) based on three-dimensional molecular structures have increased 

in popularity, accuracy, and applicability domain for estimating pKa values [7-10]. Although ab 

initio computational approaches may offer the highest likelihood of accurate pKa estimation 

[8,11,12], particularly for new compounds without prior class-based training sets for model 

validation and assessment, the computational cost of ab initio methods, requirement for 

specialized software knowledge, and lack of a commonly agreed upon basis set types and levels 

of calculation among the various options precludes widespread application of these computations 

for rapid screening in applications such environmental assessments.

The recent development of the lower computational cost semiempirical PM6 method with its 

built-in pKa estimation function [13], and its application in new versions of the widely available 

MOPAC software packages (e.g., MOPAC 2007, MOPAC 2009) [14] may allow for accurate and 
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easily obtained reliable acidity constant estimates. While the PM6 method has been validated for 

a range of molecular properties [15,16], there have been no studies that assess the accuracy and 

range of its pKa estimation function, unlike other studies on related computational programs such 

as ACD/pKa, SPARC, COSMOtherm and others [5,17-19]. Although one recent study used the 

thermodynamic output from the PM6 method to calculate pKa values for a range of 4-aryl-2,4-

dioxobutanoic acids [20], the direct pKa estimation function in PM6 was not used. In previous 

work, we have shown that the PM6 method likely underestimates the pKa values for 

perfluorinated carboxylic acid contaminants [21] and likely overestimates the pKa values for 

perfluorinated sulfonic acid contaminants [22]. Here we investigate the pKa predictive capacity 

of the PM6 method across a wide range of carbon and non-carbon oxyacids (including 

environmental contaminants, natural products, industrial compounds, and medicinally active 

substances) in the hope of better defining the applicability domain of this computational 

approach.

2. Materials and methods

Two dimensional molecular structures were drawn in ACD/ChemSketch v. 11.02 (Build 25941, 

21 May 2008; Advanced Chemistry Development, Inc., Toronto, ON, Canada), exported into 

ACD/3D Viewer v. 11.01 (Build 22009, 04 Oct 2007; Advanced Chemistry Development, Inc., 

Toronto, ON, Canada), converted to three dimensional structures using the 3D Optimization 

function, and saved as MOPAC Z-matrix files. Geometry optimizations and pKa estimates in 

MOPAC 2009 v. 8.345W [14] were conducted using the PM6 method [13] with the following 

keywords in the input file header: PM6; PKA; BONDS; CHARGE=0; SINGLET; LET; 
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GNORM=0; CYCLES=10000; GRAPHF. pKa estimates using SPARC (v. March 2008 release 

w4.2.1405-s4.2.1408; The University of Georgia, Athens, GA, USA) [23] with its acidity 

function estimation algorithm [5] and SMILES [24,25] input structures based on the 2D 

structures in ACD/ChemSketch. Univariate regression analyses were performed using the KyPlot 

v. 2.0 b. 15 statistical package (Dr. Koichi Yoshioka, Department of Biochemistry and 

Biophysics, Graduate School of Allied Health Sciences, Tokyo Medical and Dental University, 

Tokyo, Japan).

3. Results and discussion

A comparison of pKa values for 68 compounds from the source validation set in the MOPAC 

2009 manual [14] and the current work is shown in Figure 2 and given in Electronic 

Supplementary Material Table S1. Excellent agreement exists between the two datasets, with a 

slope equal to unity (1.01±0.02 (±std. error)) and y-intercept of zero (-0.02±0.12) within the 

respective error ranges. A substantial deviation (ΔpKa >2) between the two datasets was observed 

for only the following two compounds whose estimated pKa values as stated in the MOPAC 2009 

manual we had difficulty reproducing: citric acid (ΔpKa=-2.1, pKa,MOPAC 2009=2.6; 1 in Figure 3) 

and salicylaldehyde (ΔpKa=2.6, pKa,MOPAC 2009=7.5; 2). The ionization of both compounds can be 

substantially influenced by intramolecular hydrogen bonding, as has been studied extensively for 

salicylaldehyde [26]. This process cannot be readily accounted for in the PM6 optimization 

process, and any such modeled effects will likely be dependent on starting geometries. We also 

note that the literature pKa value for salicylaldehyde from ref. [14] is 6.8, whereas the literature 

value we used from ref. [27] is 8.4.

5

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
09

.2
98

1.
1 

: P
os

te
d 

25
 M

ar
 2

00
9



Any small deviations between the two validation datasets shown in Figure 2 are likely due to 

possible differences between the starting geometries in both approaches. The starting geometries 

from ref. [14] are not available, but may be geometries from a centralized crystallographic 

database. However, the merit in the PM6 method is the capacity to rapidly (and ideally, reliably) 

predict pKa values for new compounds for which crystallographic data is not available. Thus, our 

validation approach approximates a real-world application of the software package, whereby a 

starting molecular geometry needs to be approximated using a readily available and rapid 

technique, after which the PM6 method can be applied for pKa estimation.

Having calibrated our validation approach against this source dataset, we then proceeded to 

calculate pKa values for a total of 284 oxyacids from the following compound classes using both 

the PM6 method and the well-established SPARC program: acetic acids, alicyclic and aromatic 

heterocyclic acids, benzoic acids, boronic acids, hydroxamic acids, oximes, peroxides, 

peroxyacids, phenols, α-saturated acids, α-saturated alcohols, sulfinic acids, α-unsaturated acids, 

and α-unsaturated alcohols. Summary statistics for the validation efforts are provided in Table 1, 

and comparisons between the predicted and literature pKa values are shown in Figure 4 and given 

in Electronic Supplementary Information Table S2. We note that not only are carbon oxyacid 

classes included in our investigation (acetic acids, alicyclic and aromatic heterocyclic acids, 

benzoic acids, phenols, α-saturated acids, α-saturated alcohols, α-unsaturated acids, and α-

unsaturated alcohols), but so are nitrogen oxyacids (hydroxamic acids and oximes), oxygen 

oxyacids (peroxides and peroxyacids), sulfur oxyacids (sulfinic acids), and boron oxyacids 

(boronic acids) whereby the heteroatoms are connected to an organic carbon substituent.
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In general, the PM6 method adequately estimates the pKa values of carbon oxyacids for most 

subclasses over at least a substantial portion of the pKa range within a compound class (typically 

the mid-range of experimental pKa values within a class). For acetic, alicyclic, and benzoic acids, 

the PM6 predictive capacity is approximately equally distributed across the experimental pKa 

range, with average unsigned errors of 0.40 (n=34), 0.63 (n=10), and 0.46 (n=52), respectively. 

In contrast, the PM6 reliability decreases considerably with increasing experimental acidity for 

phenols, α-saturated alcohols and acids, and α-unsaturated acids, with average unsigned errors of 

1.06 (n=59), 0.49 (n=56), and 0.84 (n=8), and 0.78 (n=17), respectively. The PM6 method also 

has difficulty estimating the pKa values of the two α-unsaturated alcohols we examined (ΔpKa of 

0.7 for propargyl alcohol and -1.5 for allyl alcohol), with a similarly poor performance quality by 

SPARC (ΔpKa of 1.4 for propargyl alcohol and -0.3 for allyl alcohol). Weak PM6 predictive 

ability was found for the large polycyclic phytochemical oleanolic acid (3; ΔpKa=2.4; 

pKa,exp=2.5) and the strained 1,1-cyclopropanedicarboxylic acid (4; ΔpKa=-1.3; pKa,exp=1.8). 

SPARC also was not able to model these compounds effectively, with ΔpKa values of 2.29 and 

1.20 for 3 and 4, respectively. However, increasing molecular size does not necessarily diminish 

the PM6 predictive ability within the alicyclic acid class, as the pKa of the plant hormone 

gibberellic acid (5) is reasonably approximated by both the PM6 (ΔpKa=0.4; pKa,exp=4.0) and 

SPARC (ΔpKa=-0.1) methods.

Phenols with pKa values >7 are generally reliably estimated by PM6. Although some of the 

largest phenols, such as the more acidic visual acid-base indicators bromophenol blue (6; 

ΔpKa=4.4; pKa,exp=4.0), bromocresol green (7; ΔpKa=3.8; pKa,exp=4.7), bromocresol purple (8; 
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ΔpKa=2.6; pKa,exp=6.3), bromothymol blue (9; ΔpKa=3.1; pKa,exp=7.0), and cresol red (10; 

ΔpKa=2.1; pKa,exp=8.3), and the anticoagulant rodenticide bromadiolone (11; ΔpKa=4.7; 

pKa,exp=4.0), are poorly modeled by PM6, other large phenols - particularly the more basic visual 

acid-base indicator such as phenol red (12; ΔpKa=1.2; pKa,exp=7.9), the dye 2-cresolphthalein (13; 

ΔpKa=0.9; pKa,exp=9.4), as well as the chemotherapeutic teniposide (14; ΔpKa=0.6; pKa,exp=10.1), 

are reasonably well approximated with the PM6 method. SPARC also performs weakly on these 

compounds, with ΔpKa values of 2.6 for 6, 2.1 for 7, 2.7 for 8, 1.8 for 9, 1.8 for 10, 1.8 for 11, 

1.8 for 12, 0.6 for 13, and -0.8 for 14.

For α-saturated acids, the PM6 method displays strong predictive ability at pKa values >4, but 

generally underpredicts the pKa substantially (by up to several units) for polyacids with α-alcohol 

moieties (e.g., hydroxypropanedioic acid 15, ΔpKa=-2.2; pKa,exp=2.4; tartaric acid 16, ΔpKa=-2.8; 

pKa,exp=3.0; and isocitric acid 17, ΔpKa=-3.0; pKa,exp=3.3). By comparison, SPARC does not have 

difficulty accurately predicting the pKa values for any particular acidity range of α-saturated 

acids. Where an α-hydroxy or alkoxy group is present (i.e., glycerol, 1,2,3,4-butanetetrol, 

ethylene glycol and its monomethyl ether), the α-saturated alcohols are not very well modeled by 

the PM6 method throughout their acidity range, although the approach accurately predicts the 

pKa values of class members having simple hydrocarbon (i.e., methanol and ethanol) or 

halohydrocarbon (i.e., 2,2,2-trichloro- and trifluro-ethanols) α-substitution. Carboxylic acids 

with simple α-alkene unsaturation are very well modeled by PM6, but alkyne α-unsaturation 

(e.g., 2-propynoic acid 18, ΔpKa=1.6; pKa,exp=1.8; 2-butynoic acid 19, ΔpKa=2.2; pKa,exp=2.6) or 

α-carboxylation (Z-1-propene-1,2,3-tricarboxylic acid 20, ΔpKa=-2.8; pKa,exp=2.0) confound 

obtaining reliable results. SPARC performs very well for all α-saturated alcohols (including the 
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α-hydroxy and alkoxy members), performs better than PM6 for the α-unsaturated acids as a 

whole, but also has difficulty with the  alkyne α-unsaturation for compounds 18 (ΔpKa=2.3), 19 

(ΔpKa=1.9), and 20 (ΔpKa=1.1), as well as maleic acid (21, ΔpKa=1.6).

For all carbon oxyacids, we stress that for a number of compounds, there still remains debate in 

the literature regarding the acidity constants. Thus, the comparative analyses presented here may 

need to be refined as more accurate experimental data becomes available. For some specific sub-

classes where both the PM6 and SPARC methods agree with each other, but differ substantially 

from the experimental data in ref. [27] (e.g., sp-hybridized α-unsaturation on carboxylic acids), 

future studies and consensus in the literature may reveal that the computation methods were 

more accurate than the existing experimental data.

The validation dataset for the PM6 pKa method in ref. [14] is dominantly comprised of aliphatic 

and aromatic carbon oxyacids (107 of 109 compounds listed), although one hydroxamic acid 

(benzohydroxamic acid 22) and one oxime (benzophenone oxime 23) are also given (both 

nitrogen oxyacids) with good agreements between their experimental and estimated pKa values 

(ΔpKa=0.01 [pKa,exp=8.9] and ΔpKa=-0.12 [pKa,exp=11.3] for 22 and 23, respectively, from ref. 

[14]; we obtained respective values of ΔpKa=+0.00 and ΔpKa=0.65 for 22 and 23). The reported 

estimates for the pKa values of these two compounds led us to examine what other classes of 

non-carbon oxyacids (e.g., boronic, sulfinic, and peroxy acids, as well as peroxides), including 

other members of the hydroxamic acids and oximes, may be amenable to reliable pKa prediction 

using the PM6 method. Based on our studies, the PM6 method is not suitable for reliable 

estimation of any of these non-carbon oxyacids, including hydroxamic acids or oximes for which 
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we used a broader validation set than was given in ref. [14]. PM6 overestimates the pKa values of 

all non-carbon oxyacids, in some cases by >10 units for compounds such as the boronic and 

sulfinic acids. For the hydroxamic acids, PM6 overestimates the pKa at experimental values <9, 

and underestimates the pKa at values >9, with benzohydroxamic acid 22 being the only member 

of this class that is reliably modeled. Similarly, oximes appear to display the opposite error 

trendings about an experimental pKa value of 11. While SPARC cannot calculate the pKa of 

sulfinic acids (precluding a comparative analysis with the PM6 method), SPARC does perform 

reasonably well with the peroxides and peroxyacids (average unsigned errors of 0.53 and 0.43, 

respectively), but is also not well suited for acidity prediction of the boron or nitrogen acids.

4. Conclusion

The pKa estimation ability of the semiempirical PM6 method was evaluated across a broad range 

of oxyacids and compared to results obtained using the SPARC software program. The acidity of 

acetic and benzoic acids and their derivatives are well modeled by the PM6 method across their 

pKa ranges, with weaker predictive capacity for alicyclic and aromatic heterocyclic acids, and 

phenols. α-Saturated acids are reliably modeled except for polyacid derivatives with α-alcohol 

moieties. α-Saturated alcohols only appear to yield reliable PM6 results where an α-hydroxy or 

α-alkoxy moiety is absent. Carboxylic acids with simple α-alkene unsaturation are very well 

modeled, but alkyne α-unsaturation or α-carboxylation confound obtaining reliable results. pKa 

values for non-carbon oxyacids (e.g., boronic, sulfinic, hydroxamic, and peroxy acids, as well as 

oximes and peroxides) do not appear to be reliably modeled by the PM6 method. The PM6 and 

SPARC methods exhibit approximately equal pKa prediction performance for the acetic, 
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alicyclic, and benzoic acids. SPARC outperforms PM6 on the peroxides, peroxyacids, phenols, 

and α-saturated acids and alcohols, is not capable of estimating acidity constants for sulfinic 

acids, and is also not suitable for reliable pKa estimation for boron and nitrogen oxyacids. The 

findings from the current study will help constrain and validate efforts at using the PM6 method 

in estimating pKa values of environmentally relevant compounds for the design and optimization 

of waste treatment methods, environmental fate investigations, and toxicological studies.

Acknowledgements

S.R. thanks the Natural Sciences and Engineering Research Council (NSERC) of Canada for 

financial support.

11

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
09

.2
98

1.
1 

: P
os

te
d 

25
 M

ar
 2

00
9



References

[1] H.H. Jaffe, A reexamination of the Hammett equation, Chem. Rev. 53 (1953) 191-261

[2] C. Hansch, A. Leo, Substituent Constants for Correlation Analysis in Chemistry and Biology, 

Wiley, New York, 1979.

[3] J. Clark , D.D. Perrin, Prediction of the strengths of organic bases, Q. Rev. Chem. Soc. 18 

(1964) 295-320.

[4] D.D. Perrin, B. Dempsey, E.P. Serjeant, pKa Prediction for Organic Acids and Bases, 

Chapman and Hall, London, 1981.

[5] S.H. Hilal, S.W. Karickhoff, A rigorous test for SPARC's chemical reactivity models: 

Estimation of more than 4300 ionization pKas, Quant. Struc.-Act. Relat. 14 (1995) 348-355.

[6] A.C. Lee, J.Y. Yu, G.M. Crippen, pKa prediction of monoprotic small molecules the SMARTS 

way, J. Chem. Inf. Model. 48 (2008) 2042-2053.

[7] S.L. Dixon, P.C. Jurs, Estimation of pKa for organic oxyacids using calculated atomic 

charges, J. Comp. Chem. 14 (1993) 1460-1467.

[8] G. Schuurmann, Modelling pKa of carboxylic acids and phenols, Quant. Struc.-Act. Relat. 15 

12

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
09

.2
98

1.
1 

: P
os

te
d 

25
 M

ar
 2

00
9



(1996) 121-132.

[9] M.J. Citra, Estimating the pKa of phenols, carboxylic acids and alcohols from semi-empirical 

quantum chemical methods, Chemosphere 38 (1999) 191-206.

[10] E. Soriano, S. Cerdan, P. Ballestros, Computational determination of pKa values. A 

comparison of different theoretical approaches and a novel procedure, J. Mol. Struct. 

(Theochem) 684 (2004) 121-128.

[11] W.H. Richardson, C. Peng, D. Bashford, L. Noodleman, D.A. Case, Incorporating solvation 

effects into density functional theory: Calculation of absolute acidities, Int. J. Quant. Chem. 61 

(1997) 207-217.

[12] A. Klamt, F. Eckert, M. Diedenhofen, M.E. Beck, First principles calculations of aqueous 

pKa values for organic and inorganic acids using COSMO-RS reveal an inconsistency in the 

slope of the pKa scale, J. Phys. Chem. A 107 (2003) 9380-9386.

[13] J.J.P. Stewart, Optimization of parameters for semiempirical methods V: Modification of 

NDDO approximations and application to 70 elements, J. Mol. Model. 13 (2007) 1173-1213.

[14] J.J.P. Stewart, MOPAC 2009, http://openmopac.net, Accessed 11 Dec 2008.

[15] T. Puzyn, N. Suzuki, M. Haranczyk, J. Rak, Calculation of quantum-mechanical descriptors 

13

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
09

.2
98

1.
1 

: P
os

te
d 

25
 M

ar
 2

00
9



for QSPR at the DFT Level: Is it necessary?, J. Chem. Inf. Model. 48 (2008) 1174-1180.

[16] A. Alparone, V. Librando, Z. Minniti, Validation of semiempirical PM6 method for the 

prediction of molecular properties of polycyclic aromatic hydrocarbons and fullerenes, Chem. 

Phys. Lett. 460 (2008) 151-154.

[17] J.C. Dearden, M.T.D. Cronin, D.C. Lappin, A comparison of commercially available 

software for the prediction of pKa, J. Pharm. Pharmacol. 59 (2007) 1-16.

[18] B. Slater, A. McCormack, A. Avdeef, J.E.A. Commer, pH-Metric log P. 4. Comparison of 

partition coefficients determined by HPLC and potentiometric methods to literature values, 

Pharm. Sci. 83 (1994) 1280-1283.

[19] M. Meloun, S. Bordovska, Benchmarking pKa prediction and algorithm validation for 

accurate pKa of drugs estimated from their molecular structures, Anal. Bioanal. Chem. 389 

(2007) 1267-1281.

[20] T.Z. Verbic, B.J. Drakulic, M.F. Zloh, J.R. Pecelj, G.V. Popovic, I.O. Juranic IO, An LFER 

study of 4-aryl-2,4-dioxobutanoic acids protolytic equilibria in aqueous solutions, J. Serb. Chem. 

Soc. 72 (2007) 1201-1216.

[21] S. Rayne, K. Forest, K.J. Friesen, Computational approaches may underestimate pKa values 

of longer-chain perfluorinated carboxylic acids: Implications for assessing environmental and 

14

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
09

.2
98

1.
1 

: P
os

te
d 

25
 M

ar
 2

00
9



biological effects, J. Env. Sci. Health A 44 (2009) DOI: 10.1080/10934520802659620.

[22] S. Rayne, K. Forest, K.J. Friesen, Extending the semi-empirical PM6 method for carbon 

oxyacid pKa prediction to sulfonic acids: Application towards congener-specific estimates for the 

environmentally and toxicologically relevant C1 through C8 perfluoroalkyl derivatives, Lett. Org. 

Chem., submitted.

[23] L.A. Carreira, S. Hilal, S.W. Karickhoff, Estimation of chemical reactivity parameters and 

physical properties of organic molecules using SPARC, in: P. Politzer, J. S. Murray (Eds.), 

Theoretical and Computational Chemistry - Quantitative Treatment of Solute/Solvent 

Interactions, Elsevier Publishers, St. Louis, MO, USA, 1994.

[24] D. Weininger, SMILES, a chemical language and information system. 1. Introduction to 

methodology and encoding rules, J. Chem. Inf. Comp. Sci. 28 (1988) 31-36.

[25] D. Weininger, A. Weininger, J.L. Weininger, SMILES. 2. Algorithm for generation of unique 

SMILES notation, J. Chem. Inf. Comp. Sci. 29 (1989) 97-101.

[26] A. Ebrahimi, S.M. Habibi, R.S. Neyband, Substituent effect on intramolecular hydrogen 

bonding in 2-hydroxybenzaldehyde, Int. J. Quant. Chem. (2009) DOI:10.1002/qua.21947.

[27] D.R. Lide, CRC Handbook of Chemistry and Physics, 87th edition, Taylor and Francis, 

Boca Raton, FL, USA, 2007.

15

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
09

.2
98

1.
1 

: P
os

te
d 

25
 M

ar
 2

00
9



Figure Captions

Fig. 1. General structures for the compounds classes under consideration.

Fig. 2. Comparison between the source validation predicted pKa values using the PM6 method in 

MOPAC 2009 from ref. [14] and the current work. A 1:1 line is shown for comparison.

Fig. 3. Structures of compounds discussed in the text.

Fig. 4. Comparison between experimentally observed (x-axis) and predicted (y-axis) pKa values 

using the semiempirical PM6 method in MOPAC 2009 (▢) and the SPARC method (○) by 

compound class. 1:1 lines are shown in each plot.
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Fig. 1
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Fig. 2
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Fig. 3
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Fig. 4
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