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Abstract 29 

 30 

Lifestyle interventions, including exercise and dietary supplementation, can modify 31 

DNA methylation and exert health benefits; however, the underlying mechanisms are 32 

poorly understood. Here we investigated the impact of acute aerobic exercise and 33 

the supplementation of omega-3 polyunsaturated fatty acids (n-3 PUFA) and extra 34 

virgin olive oil (EVOO) on global and gene-specific (PPARGC1A, IL6 and TNF) DNA 35 

methylation, and DNMT mRNA expression in leukocytes of disease-free individuals. 36 

Eight trained male cyclists completed an exercise test before and after a four-week 37 

supplementation of n-3 PUFA and EVOO in a double-blind, randomised, repeated 38 

measures design. Exercise triggered global hypomethylation (Pre 79.2%; Post 39 

78.7%; p = 0.008), alongside, hypomethylation (Pre 6.9%; Post 6.3%; p < 0.001) and 40 

increased mRNA expression of PPARGC1A (p < 0.001). Associations between 41 

PPARGC1A methylation and exercise performance were also detected. An 42 

interaction between supplement and trial was detected for a single CpG of IL6 43 

indicating increased DNA methylation following n-3 PUFA and decreased 44 

methylation following EVOO (p = 0.038). Global and gene-specific DNA methylation 45 

associated with markers of inflammation and oxidative stress. The supplementation 46 

of EVOO reduced DNMT1 mRNA expression compared to n-3 PUFA 47 

supplementation (p = 0.048), whereas, DNMT3a (p=0.018) and DNMT3b (p=0.046) 48 

mRNA expression were decreased following exercise. In conclusion, we 49 

demonstrate that acute exercise and dietary supplementation of n-3 PUFAs and 50 

EVOO induce DNA methylation changes in leukocytes, potentially via the modulation 51 

of DNMT mRNA expression. Future studies are required to further elucidate the 52 

impact of lifestyle interventions on DNA methylation. 53 

 54 

 55 

Keywords: PPARGC1A, IL6, TNFa, DNMT, DNA methylation, exercise, 56 

inflammation, fatty acid, n-3 PUFA.  57 
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Introduction 58 

 59 

Environmental stimuli, including exercise and dietary interventions, can modify the 60 

DNA methylome at a global and gene-specific level [1]. Exercise training studies 61 

have demonstrated hypomethylation of the genome following exercise in both 62 

skeletal muscle [2–4] and blood leukocytes [5–7]. Within skeletal muscle, acute 63 

exercise has been demonstrated to induce hypomethylation [4,8–10]; however, the 64 

only investigation of DNA methylation in leukocytes following acute exercise failed to 65 

detect any changes in DNA methylation [11]. Despite the scarcity of literature 66 

surrounding the impact of acute exercise on DNA methylation in leukocytes, an 67 

epigenetic consequence is suggested by the remodelling of the leukocyte 68 

transcriptome [12–14].  69 

 70 

Acute exercise is associated with adjustments in the expression of genes involved in 71 

a variety of cellular processes, including immune response mitochondrial biogenesis, 72 

metabolism and muscle remodelling [14–16]. The PPARGC1A gene, which encodes 73 

for peroxisome proliferator-activated receptor gamma, co-activator alpha (PGC1-a), 74 

is known as the master regulator of mitochondrial biogenesis and plays an important 75 

role in aerobic training adaptation [17]. In immune cells, PPARGC1A is associated 76 

with anti-inflammatory [20,21] and anti-oxidant defence [22]; however, the impact of 77 

exercise-induced inflammation and oxidative stress on PPARGC1A DNA methylation 78 

is unknown.  Epigenetic studies have linked a CpG site -260 bases from the 79 

promoter of PPARCG1A with the regulation of mRNA expression. In skeletal muscle, 80 

exercise can demethylate the PPARGC1A -260 CpG site which has been shown to 81 

concurrently upregulate PPARGC1A mRNA expression [8,10,18]. Although well 82 

characterised in skeletal muscle, the regulation of PPARGC1A expression in other 83 

cells and tissues, including immune cells is poorly understood [19].  84 

 85 

Exercise of sufficient intensity and duration can cause tissue injury and lead to a 86 

systemic inflammatory response [14,23]. Increased circulating levels of the 87 

inflammatory cytokines IL-6 and TNFa are strongly correlated with the progression of 88 

sarcopenia and measures of physical performance [24,25]. Acute exercise can also 89 

increase the production of reactive oxygen species, in both skeletal muscle and 90 

immune cells [26], potentially leading to the development of oxidative stress and 91 
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damage to lipids, proteins and DNA [27,28]. Increases in markers of oxidative stress 92 

and circulating levels of inflammatory cytokines, such as IL-6 and TNFa, have been 93 

shown to alter the expression of DNA methyltransferases (DNMTs) [29–33] and 94 

influence DNA methylation patterns [11,34]. DNA methylation of inflammatory 95 

cytokines have been associated with various inflammatory diseases including IL6 96 

with Rheumatoid Arthritis [35] and obesity [36]; TNF DNA methylation with type 2 97 

diabetes [37] and Alzheimer's disease [38]. Despite increased circulating levels of 98 

inflammatory cytokines post-exercise [14,23], the impact of exercise on the DNA 99 

methylation of genes encoding inflammatory cytokines such as IL6 and TNF remains 100 

unknown. 101 

 102 

There is the potential for the dietary supplementation of fatty acids (FAs) to prevent 103 

the exercise-induced inflammation via the modulation of DNA methylation. 104 

Supplementation of FAs, including omega-3 polyunsaturated FAs (n-3 PUFAs) and 105 

extra virgin olive oil (EVOO), are consumed to reduce levels of inflammation [39,40], 106 

however, the impact of these supplements on exercise-induced inflammation is 107 

equivocal. Some studies have detected reductions in inflammation post-exercise with 108 

FA supplementation [41,42], whereas, others have reported no change in 109 

inflammation [43,44]. An emerging mechanism for the anti-inflammatory impact of FA 110 

supplementation is via epigenetic modifications [45–48]. The supplementation of the 111 

diet with krill oil, high in n-3 PUFAs, has been demonstrated to reduce PPARGC1A 112 

mRNA expression and the change in mRNA expression was negatively correlated to 113 

the change in plasma n-3 PUFAs [49]. Total n-3 PUFA content is negatively 114 

correlated to both IL6 DNA methylation and IL-6 protein concentration [48]. 115 

 EVOO is a commonly used control in exercise studies to assess the impact of n-3 116 

PUFA; however, the supplementation of EVOO has also been reported to modify the 117 

DNA methylation of genes associated with inflammation [50]. It remains to be 118 

identified whether the supplementation of FAs have an epigenetic impact on 119 

exercise-induced inflammation.  120 

 121 

The present study investigated the impact of aerobic exercise on global and gene-122 

specific (PPARGC1A, IL6 and TNF) DNA methylation and DNMT mRNA expression 123 

in leukocytes of disease-free individuals. We also investigated whether these 124 

relationships could be modified by the supplementation of FAs. The association 125 
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between physiological markers related to exercise performance, inflammation and 126 

oxidative stress post exercise and DNA methylation were also investigated.  127 

 128 

 129 

Results 130 

 131 

Global cytosine methylation and DNMT mRNA expression  132 

One-hour of cycling reduced global methylation, assessed by the Luminometric 133 

Methylation Assay (LUMA; Figure 1A; Pre 79.2%; Post 78.7%, p = 0.008), and the 134 

mRNA expression of both DNMT3a (Figure 1C; p = 0.018) and DNMT3b (Figure 1D; 135 

p = 0.046). Supplementation of FAs did not alter global methylation or mRNA 136 

expression of DNMT3a or DNMT3b (Figure 2; p > 0.05). While DNMT1 mRNA 137 

expression was unaffected by exercise, a significant interaction was identified 138 

between supplement and trial (p = 0.048; Figure 2B) indicating differential effects on 139 

mRNA expression with the two supplements. No correlation was detected between 140 

global DNA methylation values and DNMT mRNA expression. 141 

 142 

Gene-specific DNA Methylation and mRNA expression 143 

PPARGC1A 144 

A reduction in PPARGC1A DNA methylation (Pre 6.9%; Post 6.3%, Figure 3A; p < 145 

0.001) and an increase in mRNA expression (Figure 3B; p < 0.001) were detected 146 

following exercise. The supplementation of FAs had no impact on PPARGC1A DNA 147 

methylation or mRNA expression (p > 0.05). Moderate but non-significant negative 148 

correlations were detected between PPARGC1A DNA methylation and DNMT3a and 149 

DNMT3b mRNA expression (Figure 5). 150 

 151 

IL6 152 

Despite an increase in IL-6 protein concentrations following exercise (Pre: 0.63 ± 153 

0.24 pg/mL, Post: 3.78 ± 0.55 pg/mL; p < 0.001), there was no change in IL6 DNA 154 

methylation (p > 0.05) or mRNA expression (p > 0.05) following exercise. A 155 

significant interaction was detected between supplement and trial for CpG3 (-1094) 156 

indicating increased DNA methylation following n-3 PUFA and decreased 157 
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methylation following EVOO (Figure 4A; p = 0.038). A similar, non-significant (p = 158 

0.080) trend was detected for IL6 mRNA expression following supplementation 159 

(Figure 4B). A significant correlation was detected between the mean IL6 160 

methylation across all CpG sites and DNMT3b mRNA expression (Figure 5, p = 161 

0.007). 162 

 163 

TNF  164 

Neither exercise or the supplementation of fatty acids altered TNF DNA methylation 165 

or mRNA expression. Trends were identified between 3 TNF CpG sites and 166 

differential methylation following supplementation (CpG2 p = 0.069; CpG3 p = 0.098; 167 

CpG4 p = 0.067; CpGmean p = 0.077). TNF DNA methylation was negatively 168 

correlated with TNF mRNA expression (Figure 5; p = 0.007). Moderate, however, 169 

non-significant correlations were detected between both IL6 and DNMT3a mRNA 170 

expression, and TNF DNA methylation (Figure 5). 171 

 172 

 173 

Associations between DNA methylation and post-exercise physiology markers  174 

Figure 6 demonstrates the association between post-exercise DNA methylation and 175 

physiological markers related to exercise, oxidative stress and inflammation. Prior to 176 

FA supplementation, both PPARGC1A and TNF methylation post-exercise are 177 

significantly correlated with Time Trial (TT) performance (Figure 6, p < 0.05). 178 

Following the supplementation of n-3 PUFA and EVOO, correlations between TT 179 

performance and both PPARGC1A and TNF DNA methylation are weakened and no 180 

longer significant (Figure 6). A negative correlation was detected between peripheral 181 

blood mononuclear cell (PBMC) protein carbonyl (PC) concentration, an intracellular 182 

measure of oxidative stress, and both global and PPARGC1A methylation prior to 183 

supplementation of FAs, however, no association was detected following n-3 PUFA 184 

supplementation (Figure 6). The concentration of PC in serum, a systemic measure 185 

of oxidative stress, was uncorrelated with DNA methylation at baseline, however, 186 

following EVOO supplementation significant correlations existed between serum PCs 187 

and both PPARGC1A and TNF DNA methylation (Figure 6). The only significant 188 

correlation between DNA methylation and serum IL-6 concentration was a negative 189 

correlation with global DNA methylation following n-3 PUFA supplementation (Figure 190 

6). 191 
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 192 

Discussion 193 

A single bout of aerobic exercise and supplementation of FAs can modulate 194 

leukocyte DNA methylation and mRNA expression patterns. A one-hour cycling bout 195 

decreased global and PPARGC1A DNA methylation and mRNA expression of 196 

DNMT3a, DNMT3b and PPARGC1A. The supplementation of FAs induced 197 

differential effects on the DNA methylation of a CpG site in the promoter region of 198 

IL6; n-3 PUFA increased methylation, whereas, EVOO supplementation decreased 199 

methylation. The same result was identified for mRNA expression of DNMT1 and 200 

trends existed for 3 CpG sites in the promoter region TNF. Significant correlations 201 

were identified between global DNA methylation; PPARGC1A, IL6 and TNF DNA 202 

methylation post-exercise; and physiological markers related to exercise 203 

performance, inflammation and oxidative stress indicating that the epigenetic 204 

modifications have functional effects.  205 

 206 

For the first time we report, global hypomethylation in leukocytes following an acute 207 

bout of exercise. The only previous study to investigate the impact of acute exercise 208 

in blood cells failed to detect any change in DNA methylation following correction for 209 

multiple testing [11]. The results of the present study are in accordance with previous 210 

reports of a net hypomethylation following chronic exercise training [2–7] and acute 211 

bouts of exercise in plasma [51] and skeletal muscle [4,8]. Other studies have failed 212 

to detect any change in global DNA methylation [52,53]; however, this can be 213 

explained by a similar number of CpG sites increasing and decreasing in DNA 214 

methylation [52]. It has also been demonstrated that exercise-induced 215 

hypomethylation is retained during periods of detraining, allowing it to become 216 

further hypomethylated following further training [4]. These data suggest that both 217 

acute and chronic exercise is sufficient to alter DNA methylation patterns typically 218 

resulting in hypomethylation. 219 

 220 

The lack of concordance between a single bout of exercise and chronic exercise 221 

training interventions indicates exercise may induce a transient state of 222 

hypomethylation and repeated bouts of exercise reduce the impact of the stimulus. 223 

 224 
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In the present study, a 4-week supplementation of FAs did not influence global DNA 225 

methylation. In contrast, a 6-month supplementation of n-3 PUFA decreased LINE-1 226 

DNA methylation, a surrogate for global DNA methylation, in Alzheimer’s patients 227 

[54]. However, LINE-1 methylation is increased in Alzheimer’s patients compared to 228 

healthy controls [55], therefore, the supplementation of n-3 PUFA in these individuals 229 

may act to restore global DNA methylation to the normal level detected in healthy 230 

individuals. The use of different surrogate measures of global methylation (LUMA vs 231 

LINE-1) prevents the direct comparison between studies because of the different 232 

region which these assays investigate. Two separate studies have indicated that the 233 

methylation estimates provided by LINE-1 and LUMA are poorly correlated [56,57].  234 

 235 

For the first time, post-exercise decreased methylation and concurrent increased 236 

mRNA expression of PPARGC1A following a bout of aerobic exercise have been 237 

detected in leukocytes. The results from the present study match previous reports of 238 

aerobic exercise-induced hypomethylation in skeletal muscle [2,8,10] potentially 239 

indicating a systemic impact of exercise on PPARGC1A DNA methylation. The 240 

mRNA expression profile of skeletal muscle and PBMCs have been shown to be 241 

highly associated following an 8-week supplementation of n-3 PUFAs [58]. Although 242 

we do not find any association with PPARGC1A methylation / mRNA expression and 243 

n-3 PUFA supplementation in the present study, the hypomethylation detected in the 244 

present study is consistent with the impact of exercise in skeletal muscle providing 245 

further evidence for blood-derived expression profiles to be used as a surrogate for 246 

skeletal muscle.  247 

 248 

The only previous report of PPARGC1A methylation from leukocytes failed to detect 249 

an association with physical activity [59]. The lack of previous association could be 250 

the result of the investigation of different CpG sites in the promoter region of 251 

PPARGC1A. Alternatively, the discordance in these results could reflect the 252 

heterogeneity in methylation pattern of immune cells [60]. Exercise increases the 253 

number of circulating leukocytes, therefore, changes in methylation may be the result 254 

of different proportions of leukocytes rather than a change in DNA methylation 255 

patterns [61]. The present study has adjusted DNA methylation values to account for 256 

the number of leukocytes (lymphocytes, neutrophils, monocytes, basophils and 257 
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eosinophils) [60], whereas, previous reports have failed to account for this critical 258 

variable.  259 

 260 

The positive correlation between leukocyte PPARGC1A methylation and exercise 261 

performance indicates that increased DNA methylation may provide a performance 262 

advantage. PPARGC1A is thought to upregulate mitochondrial biogenesis in 263 

monocytes to induce a shift towards an anti-inflammatory phenotype [20,21] and 264 

antioxidant defence in lymphocytes [22]. Although we did not find an association with 265 

IL-6 protein concentration, a negative association was detected between 266 

PPARGC1A DNA methylation and PC concentration indicating epigenetic control of 267 

the antioxidant role of PPARGC1A. There is limited literature comparing 268 

mitochondrial function in leukocytes and skeletal muscle following exercise; 269 

however, the association between gait speed and mitochondrial function in both 270 

skeletal muscle tissue and PBMCs provides a conserved mechanism between 271 

mitochondrial function in skeletal muscle and blood-derived mitochondria [62]. 272 

Further evidence of a conserved mechanism is suggested with genes related to 273 

mitochondrial structure and function found to be co-expressed in skeletal muscle and 274 

neutrophils following aerobic exercise [63]. Future studies are required to detect if 275 

the same phenotypic associations exist in skeletal muscle as detected in leukocytes 276 

in the present study. 277 

 278 

Aerobic exercise did not alter the DNA methylation or mRNA expression of either IL6 279 

or TNF. The epigenetic impact of exercise on inflammatory cytokines is relatively 280 

unknown, however, several studies have indicated a role for cytokine DNA 281 

methylation in inflammatory disease [35–38]. Although no association between TNF 282 

DNA methylation and mRNA expression was detected in the present study, n-3 283 

PUFAs have previously been demonstrated to reverse the epigenetic changes 284 

observed with inflammation in skeletal muscle cells. The administration of TNF 285 

induced hypermethylation and decreased mRNA expression of MyoD [64], whereas 286 

the supplementation of EPA dampens the impact of TNF in muscle and restores 287 

MyoD mRNA expression [45]. Despite an increase in the circulating protein 288 

concentration of IL-6 in the present study, the exercise bout may have not increased 289 

TNFa protein concentration and induced an inflammatory response sufficient to 290 

modify DNA methylation patterns of inflammatory cytokines. TNF hypermethylation is 291 
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reported in elderly individuals who maintained or increased their energy expenditure 292 

by 500 kcal/wk over an 8-year period compared to those who decreased energy 293 

expenditure over the same period [65]. The same TNF CpG sites as the present 294 

study have previously been shown to negatively associate with mRNA expression, 295 

plasma concentrations and measures of adiposity [66,67]. In the present study, a 296 

significant negative correlation was detected between TNF DNA methylation post-297 

exercise and BMI, exercise performance and TNF mRNA expression. These data 298 

suggest an acute bout of exercise may not regulate TNF DNA methylation, however, 299 

the long-term benefits of regular exercise, such as reduced adiposity, may 300 

subsequently increase TNF DNA methylation levels and as a result, reduce TNF 301 

mRNA expression and the chronic low-grade inflammation levels associated with 302 

increased adiposity. 303 

 304 

Previously decreased methylation in a region ~600 bp upstream of the IL6 promoter 305 

has been associated with increased erythrocyte n-3 PUFA concentrations and 306 

mRNA expression [48]. In the present study, the supplementation of EVOO and n-3 307 

PUFA had contrasting effects on a single CpG (-1094) of IL6 (increased methylation 308 

following n-3 PUFA and decreased methylation with EVOO). The region ~1,000 bp 309 

from upstream of was investigated in the present study because of previous 310 

associations between DNA methylation and both inflammatory diseases [35,36] and 311 

mRNA expression[35]. Conflicting results between studies may indicate that distinct 312 

regions of the promoter regulate IL6 expression differently. Supplementation of n-3 313 

PUFA and OO have been shown to induce differential methylation of elongase and 314 

desaturase enzymes which are responsible for the metabolism of FAs [68]. The 315 

differential DNA methylation of these enzymes indicates the potential for n-3 PUFAs 316 

to switch towards the production of less inflammatory eicosanoids. Although the DNA 317 

methylation of desaturase and elongase enzymes have not been measured in the 318 

present study, a switch towards n-3 PUFA derived eicosanoid production, such as 3-319 

series rather than 2-series prostaglandins, has been shown to reduce cytokine 320 

expression [39] which is potentially indicated by the increased DNA methylation of 321 

IL6 following n-3 PUFA, but not EVOO, supplementation. 322 

 323 

The impact of exercise and FA supplementation on DNMT mRNA expression was 324 

investigated to identify whether changes in DNMT mRNA expression could be a 325 
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potential mechanism underlying modulated DNA methylation. DNMT1 mRNA 326 

expression was modulated by FA supplementation, whereas, exercise reduced the 327 

expression of both DNMT3a and DNMT3b. This is the first demonstration of reduced 328 

expression of DNMT3a following acute exercise, whereas, the reduction in DNMT3b 329 

expression has previously been reported [32,69]. The inclusion of DNA methylation 330 

assessment in the present study allows the confirmation that following a single bout 331 

of aerobic exercise DNMT expression is decreased alongside decreases in global 332 

and gene-specific DNA methylation. The only previous report of concurrent 333 

assessment of exercise-induced DNMT expression and DNA methylation was 334 

following an 8-week resistance training program [6]. The genome-wide method of 335 

methylation does not identify a net increase or decrease in global methylation; 336 

therefore, further studies are required to identify whether the modulation of DNMT3b 337 

causes hypomethylation or if it is important in both hyper- and hypomethylation. 338 

 339 

The present study detects contrasting effects of n-3 PUFA and EVOO 340 

supplementation on DNMT1 mRNA expression. There is a paucity of literature 341 

surrounding the impact the FA supplementation and DNMT expression in humans, 342 

whereas, animal models have associated supplementation of alpha-linolenic acid 343 

supplementation, a n-3 PUFA, with changes in DNMT mRNA expression [70,71]. 344 

Interestingly, similar to the present study, no change in global DNA methylation was 345 

detected alongside modulated DNMT1 expression [70]. A change in global DNA 346 

methylation potentially would not be expected with increased in DNMT1 mRNA 347 

expression because DNMT1 functions to maintain DNA methylation. The impact of 348 

EVOO on DNMT expression is unknown, however, EVOO contains phenolic 349 

compounds, including decarboxymethyl oleuropein aglycone (DOA) [72], which 350 

reduce DNMT activity via competitive inhibition [73]. The absence of a measure of 351 

DNMT activity is a limitation of the present study, however, parallel changes in 352 

DNMT mRNA expression and activity have previously been reported [74]. A measure 353 

of activity could potentially explain the lack of association between altered DNMT 354 

mRNA expression and modulated DNA methylation following supplementation which 355 

should be considered in future studies.  356 

 357 

 358 
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While exercise and FA supplementation may directly influence DNMT expression, 359 

these interventions may modulate DNMT expression by intermediary mechanisms. 360 

The expression of several miRNAs, including miRNA-29 -130 and -148, are 361 

associated with: DNMT expression [75–78], exercise [79] and FA supplementation 362 

[80–82]. IL-6 protein levels have been reported to regulate DNMT mRNA expression 363 

[31–33] via the modulation of miRNA [30]. The small increase in IL-6 protein 364 

expression following exercise in the present study may be insufficient to modulate 365 

DNMT expression explaining the lack of agreement with previous reports. Future 366 

studies should use a bout of exercise with a greater inflammatory response, such as 367 

eccentric exercise, to examine the effect of exercise-induced inflammation on DNMT 368 

expression. The capability of exercise and n-3 PUFA supplementation to modify the 369 

expression of the same miRNAs which control the expression of DNMTs suggests 370 

miRNA expression could be one of the underlying mechanisms controlling DNA 371 

methylation. 372 

 373 

The use of a homogenous population of trained cyclists in the present study 374 

potentially limits the generalisability of the results to other populations. Trained male 375 

cyclists were selected as the population for the present study because they are the 376 

most familiar with the exercise stimuli and we would expect this to reflect in the 377 

smallest epigenetic response. Previously it has been demonstrated a single bout of 378 

exercise was sufficient to reduce global DNA methylation in plasma of COPD 379 

patients; however, following a training intervention the exercise bout was no longer 380 

sufficient to reduce global DNA methylation [51]. Exercise training has previously 381 

been demonstrated to alter DNA methylation patterns differently depending on family 382 

history of diabetes [2]. Future studies should compare the impact of exercise in 383 

trained athletes and sedentary individuals or a disease cohort to determine whether 384 

exercise-induced alterations to the DNA methylome are contributors to health and 385 

disease in diverse populations.  386 

 387 

In conclusion, the present study highlights the impact of an acute bout of aerobic 388 

exercise and the supplementation of FAs on DNA methylation and mRNA expression 389 

in leukocytes of trained male cyclists. Alterations in the epigenetic control of these 390 

genes are associated with physiological markers related to exercise performance 391 

and inflammation / oxidative stress, however, a more extensive study is required to 392 
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confirm these associations. The observational nature of the present study prevents 393 

the identification of the underlying mechanisms controlling altered DNA methylation 394 

following exercise and FA supplementation, therefore, future mechanistic studies are 395 

required to identify such mechanisms. Here we suggest that modulation of DNMT 396 

mRNA expression may be one such mechanism for future research. Future studies 397 

should compare multiple tissue types to examine whether exercise and 398 

supplementation of FAs have systemic effects on DNA methylation.  399 

 400 

Methods 401 

Participants 402 

Complete sets of data were available for eight participants whose characteristics are 403 

described in table 1. Prior to participation, informed written consent was provided by 404 

each participant. Participants were healthy, non-smokers with no history of metabolic 405 

or cardiovascular disease. In the six-months prior to the study, participants had no 406 

history of n-3 PUFA, anti-oxidant or anti-inflammatory supplementation. Participants 407 

recorded their physical activity and maintained habitual diet throughout the study. 408 

The experimental protocol was approved by the Loughborough University Ethics 409 

Human Participants sub-committee and performed in accordance with the 410 

Declaration of Helsinki 1975. 411 

 412 

Study overview 413 

The study consisted of a pre-test and four experimental trials. Experimental trials 414 

were completed before and after a four-week supplementation of n-3 PUFA and 415 

EVOO in a double-blind, randomised, repeated measures design. A four-week 416 

washout was included between each supplementation period (Figure 7).   417 

 418 

Pre-test 419 

Participants underwent anthropometric assessment for height, body mass and eight-420 

skinfold measurements prior to the start of the study. Maximal aerobic work rate 421 

(Wmax) and maximal oxygen uptake (V̇O2max) were determined using a graded 422 

exercise test on a Lode Excalibur Sport ergometer (Lode B.V, Netherlands). The 423 
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exercise test began with a warm-up period of 5-min cycling at 100 W. Workload then 424 

increased by 50 W every 3-min until volitional fatigue (decrease in self-selected 425 

cadence of 20 revs∙min-1). Expired air was collected in the final minute of each stage 426 

to allow V̇O2max determination using primary and secondary criteria [83]. Wmax was 427 

calculated using the formula: 428 

Wmax = Workload ÷ [(t/180) x 50] 429 

Where t is the time in seconds completed in the final stage. Following the completion 430 

of the incremental cycling test, participants received a 10-minute rest before 431 

completing a 15-minute TT familiarisation.  432 

 433 

Experimental trials  434 

Trials were conducted in the morning (7-9 am) following a 10-hour overnight fast. 435 

Participants were asked to complete a 3-day food diary, refrain from strenuous 436 

exercise and the consumption of alcohol or caffeine for the 24-hours prior to the trial. 437 

The performance test consisted of 45-minutes cycling at 70% Wmax, followed by a 438 

15-minute TT [84].  439 

 440 

Supplementation 441 

Both n-3 PUFA (Holland and Barrett, Warwickshire, UK) and EVOO (Puritan’s Pride, 442 

New York, USA) supplements were provided in capsule form. Participants were 443 

instructed to take 6 capsules per day providing 5.7g of n-3 PUFA and 0.01g per day 444 

of α-Tocopherol or 6 g per day of EVOO. The n-3 PUFA dose was chosen based on 445 

previous findings showing the dose was sufficient to induce changes in the lipid 446 

profile of human blood over four weeks [85,86]. Compliance of supplementation was 447 

monitored by capsule counts. 448 

 449 

Analytic Procedures 450 

Blood Sampling 451 
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Venous blood was sampled via an intravenous catheter inserted into an antecubital 452 

vein of the non-dominant arm for the collection of whole blood pre and immediately 453 

post-exercise (Figure 7) for DNA methylation analysis, mRNA expression and a 454 

whole blood cell count using the COULTER® Ac·T™ 5diff (Beckman Coulter, UK). 455 

PBMCs were isolated from whole blood by density gradient centrifugation using 456 

Ficoll-Paque Premium (GE healthcare, USA) according to manufacturer’s 457 

instructions. The resulting PBMC cell pellet was suspended in 200μl RIPA buffer for 458 

analysis of protein carbonyls. Whole blood collected in vacutainers (Becton, Dickson 459 

& Company, UK) that contained no anticoagulant was allowed to clot at room 460 

temperature and centrifuged at 2800 rpm for 15 minutes for analysis of serum 461 

protein carbonyls and IL-6.  462 

 463 

Nucleic acid isolation 464 

Genomic DNA (gDNA) was isolated from 2mL of whole blood using the QIAamp 465 

DNA Blood Midi kit (Qiagen, Germany) according to the manufacturer’s instructions. 466 

RNA was isolated from whole blood collected in Tempus Blood RNA tubes using the 467 

Tempus Spin RNA Isolation Kit (Applied Biosystems, USA) according to the 468 

manufacturer’s instructions. The concentration (mean ± SD) and purity (absorbance 469 

ratio A260/A280 ± SD) of isolated DNA and RNA were determined using a Nanodrop 470 

2000 (ThermoScientific, USA). The mean concentration of isolated gDNA was 471 

183.50 ± 54.48 ng/μL with a A260/A280 ratio of 1.90 ± 0.02, whereas, RNA 472 

concentration was 120.32 ± 41.02 ng/μL with an A260/A280 ratio of 2.09 ± 0.02. 473 

Following extraction, DNA and RNA were stored at -20 oC and -80 oC respectively. 474 

 475 

Luminometric Methylation Assay  476 

LUMA was used as a marker of global DNA methylation as previously described 477 

[87], with minor adjustments. Briefly, two reactions containing 200 ng of gDNA were 478 

set up per sample, one with the methylation-sensitive enzyme FastDigest HpaII and 479 

one FastDigest MspI (Thermo Scientific, USA) and incubated for 20 min at 37 ˚C. 480 

Following incubation, 13 µL of each reaction were mixed with annealing buffer and 481 

added to a separate well of a Pyromark Q24 plate and analysed using a PyroMark 482 

Q24 MDx system (Qiagen, Germany) with the following dispensation order: 483 

ACTCGA. Peak heights were exported, and methylation percentage was calculated 484 

using the following formula: 485 
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Methylation = (1 - (HpaII peak 2 / HpaII peak 1) / (MspI peak 2 / MspI peak 1)) x 100. 486 

 487 

Bisulfite pyrosequencing 488 

gDNA samples were bisulfite converted using the EpiTect Fast Bisulfite Conversion 489 

Kit (Qiagen, Germany) according to the manufacturer’s instructions. PCR of bisulfite 490 

converted DNA samples was performed using the PyroMark PCR Kit (Qiagen, 491 

Germany) according to the manufacturer’s instructions. For all assays, an initial 492 

activation period of 15 min at 95˚C was followed by a 3-stage cycling process of 493 

denaturation (95°C for 30s), annealing (56°C for 30 s) and extension (72°C for 30 s) 494 

for 45 cycles. The PCR process was finished with a final extension period of 72°C for 495 

10 min.  Pyromark custom assay (Qiagen, Germany) genomic location, primer 496 

sequences and the sequence to analyse are presented in Table 2. To confirm a 497 

single PCR product, amplicons were analysed by gel electrophoresis and visualised 498 

by ultraviolet trans-illuminator (BioRad, USA). The absence of PCR amplification of 499 

non-bisulfite converted DNA confirmed the specificity of each assay for bisulfite 500 

converted DNA. DNA methylation was assessed using a PyroMark Q48 Autoprep 501 

system (Qiagen, Germany) using PyroMark Q48 Advanced CpG Reagents (Qiagen, 502 

Germany). The nucleotide dispensation order was generated by entering the 503 

sequence to analyse into the PyroMark Q48 Autoprep software version 2.4.2 504 

(Qiagen, Germany). A non-CpG cytosine was included in the nucleotide dispensation 505 

order to detect incomplete bisulfite conversion. The methylation at each CpG site 506 

was determined using the PyroMark Q48 Autoprep software set in CpG mode. The 507 

mean methylation of all CpG sites within the target region was determined using the 508 

methylation at the individual CpG sites. Standards of known methylation percentages 509 

(0%, 12.5%, 25%, 50%, 75%, 87.5%, 100%) were created using the EpiTect PCR 510 

control DNA set (Qiagen, Germany) and underwent pyrosequencing analysis to 511 

generate standard curves between the expected and observed methylation 512 

percentage to check the assays for PCR bias. A high coefficient of determination (R2 513 

> 0.99) was determined for each assay indicating the absence of PCR bias. 514 

 515 

mRNA expression  516 

A minimum of 1 µg of RNA was reverse transcribed into complementary DNA 517 

(cDNA) using the High-Capacity RNA-to-cDNA™ Kit (Applied Biosystems, USA) 518 
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according to the manufacturer’s instructions and diluted to a concentration of 5 ng/µL 519 

in double-distilled water. Relative mRNA expression was performed by quantitative 520 

PCR (qPCR) for each gene of interest and normalised to the expression of GAPDH 521 

using a Viia7 Real-Time PCR system (Applied Biosystems, USA). Each reaction 522 

contained 5 µL of SybrGreen PrecisionPlus qPCR Master Mix (PrimerDesign, UK), 523 

0.5 µL of forward and reverse primer (Table 3) and 4 µL of 5 ng/µL cDNA. All 524 

samples were run in duplicate using the following cycling conditions: initial 525 

denaturation at 95oC for 2 min, followed by 40 cycles of 95oC for 15 s and 60oC for 526 

60 s. Melt curves were visually inspected for a single peak indicating the generation 527 

of a single product. The relative mRNA expression of the genes of interest were 528 

calculated using the 2-(∆∆Ct) formula; the pooled group mean pre-exercise Ct from the 529 

initial trial was used as the control. The mean Ct value of GAPDH across all 530 

participants and experimental conditions was 17.13 ± 0.41 with low variation of 531 

2.40%. The efficiency of each mRNA expression assay was determined (Table 3) 532 

using standard curves generated from a serial dilution of a cDNA sample. The 533 

efficiency was calculated using the formula: 534 

E = ((10(-1/slope)) – 1) x 100, where the slope is the gradient of the linear regression 535 

fitted to the standard curve. The efficiency of each assay was between 90 and 105% 536 

with a R2 > 0.99. 537 

 538 

Interleukin-6 (IL-6) 539 

Serum IL-6 concentrations prior to and immediately post-exercise were determined 540 

using high sensitivity enzyme immunoassay kits (R & D Systems, USA). Haematocrit 541 

and haemoglobin were used to ascertain plasma volume changes that were used to 542 

adjust serum IL-6 values [88]. 543 

Protein Carbonyls (PC) 544 

PC was assessed by an in-house ELISA [89,90]. Serum samples, PBMC lysates and 545 

standards were diluted in coating buffer (50mM sodium carbonate, pH = 9.2) to a 546 

concentration of 0.05mg/mL using the bicinchoninic assay method. Protein carbonyls 547 

groups were derivatised with 2, 4-dinitrophenylhydrazine (1mM, in 2M HCl) and 548 

incubated with monoclonal mouse anti-DNP antibody (Sigma Aldrich, UK) and rat 549 
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anti-mouse IgE, conjugated to HRP (AbD Serotec, UK). Well absorbance was 550 

measured at 490nm and the PC concentration determined by using absorbance 551 

values of known PC standards made in our laboratory (1.28-5.20 nmol/mg protein). 552 

PC concentration in PBMCs was adjusted for changes in protein concentration and 553 

cell number (Beckman Coulter, UK) induced by acute exercise.  554 

Statistical Analysis 555 

All statistical analysis was performed using IBM SPSS Statistics software (SPSS 556 

version 23). The data were assessed for normality by Shapiro-Wilk's test. The 557 

composition of white blood cells from which the DNA is extracted is an important 558 

consideration in DNA methylation research; therefore, all DNA methylation analysis 559 

was conducted on cell heterogeneity adjusted values [60]. Analysis of mRNA 560 

expression was performed on log fold change data. DNA methylation and mRNA 561 

expression values were analysed using a 2 (supplement) x 2 (trial) x 2 (time) 562 

repeated measures ANOVA. The impact of exercise is presented using the absolute 563 

values (mean of all trials for each time point), whereas, the impact of 564 

supplementation of FAs is presented as the relative change (∆) between pre and 565 

post supplementation trials (post supplementation – pre supplementation). Values 566 

represented as mean ± 95% CI. 567 

Spearman’s Rho correlation analysis was used to assess the relationship between 568 

DNA methylation values, mRNA expression values and physiological markers 569 

related to exercise performance, inflammation and oxidative stress. A p-value < 0.05 570 

was considered as statistically significant. Moderate (>0.5) correlation coefficients 571 

were considered to be of interest; however, only large (> 0.7) correlation coefficients 572 

were deemed statistically significant. 573 
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