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Beauty1 is a characteristic of objects that provides a perceptual experience of 
pleasure. In nature, aesthetic appreciation thereof has given rise to the 
mathematical search for good series (e.g. the Fibonacci series) and proportions 
(e.g. the Golden proportion) as important elements of beauty. In 1928 the 
mathematician George David Birkhoff2 introduced a formula for aesthetic 
measurement of an object. Birkhoff’s equation defines the aesthetic value as the 
amount of order divided by the complexity of the product. These two features can 
be measured easily in poetry, music, painting, architecture, etc. In the fine arts, it 
is the artist who manipulates both these features, but how does nature manage 
order and complexity in living organisms or their parts? Here we show how 
Birkhoff’s equation, applied to the mammalian vascular system of eight 
representative animals, results in new insights into the organization of the animal 
vascular system. We found that order and complexity are highly correlated in the 
mammalian vascular system (R2=0.9511). Accordingly, in nature both features are 
not independently managed in the manner of artists. We found significant 
differences among the Birkhoff aesthetic values in the mammalian arterial system, 
whereas no such differences exist in the venous system. We anticipate our 
approach to be useful in the study of morphogenesis and evolution of tree-like 
structures, employing the Birkhoff aesthetic value as a simple tool for conducting 
such studies. 
 
 

Aesthetic appreciation1 of nature has always been a common attitude in poets, 

musicians, and artists, and this does not differ from the appreciation of beauty in 

naturalists and scientists. In the 19th century the American mathematician George 

David Birkhoff2 introduced an equation to measure levels of aesthetics M based on a 

ratio of order O and complexity C: 

OM
C

=    (1) 

The original equation had an artistic aim, assigning a high Birkhoff aesthetic value to 

orderliness and a low one to complexity. A good example of how to apply this equation 

can be found in music and poetry. Birkhoff assigned a value O for a piece of music3, 

considering how much pattern underlies a piece, and C by how many notes its contains. 

In the case of poetry3 the order O is given by aa + 2r + 2m – 2ae – 2ce, where aa stands 

for alliteration and assonance, r for rhyme, n for musical sounds, ae for alliterative 

excess, and ce for excess of consonant sounds. Birkhoff’s equation appears to derive 

from St. Augustine’s and Thomas Aquinas’ definition of beauty as coherent complexity, 

or quality that “being perceived, pleases”. For these philosophers beauty was difficult to 
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directly define and measure, and they therefore used a trick: beauty was defined through 

other attributes which are easier to study. According to Birkhoff’s equation, beauty 

increases as complexity decreases, a theory that can have a deep impact when applied to 

paintings, music, poetry, architecture or other fine arts. For example, a poem written by 

Alfred Lord Tennyson ranks nears the top on Birkhoff's aesthetic scale (0.77), whereas 

for a type of ancient Chinese vase, M was only 0.16. In the fine arts is the artist who 

manipulates both features of M, orderliness O and complexity C, but how does nature 

manage the order and complexity of a given structure? What is the aesthetic value of 

molecules, cells, tissues, organs, systems, or individuals?  Here we show how 

Birkhoff’s equation can be applied in the physiological study of living organisms, for 

example, to obtain new insights into the organization of the animal vascular system. For 

instance, how do we compare the embryonic circulatory system of two chicken eggs? 

By calculating Birkhoff's aesthetic value in 4 day-old (4.86) and 6 day-old (4.59) 

chicken embryos (Fig. 1), we found how the aesthetic value describes well changes in 

the egg during development4. 

 

An outstanding fact regarding many animals involves the presence of a circulatory 

system5-7. A circulatory system provides a blood distribution network that moves 

nutrients, gases, and wastes to and from cells. Furthermore, the circulatory system helps 

to stabilize body temperature and pH and maintains homeostasis. The more primitive 

animal phyla lack a circulatory system. Arthropods and most mollusks have an open 

circulatory system. In this type of system, there is neither a true heart nor capillaries, as 

found in humans and other animals. In contrast, the closed circulatory system of some 

mollusks and of all higher invertebrates and vertebrates is a much more efficient system. 

Compared with annelids such as the earthworm, the mammalian circulatory system is a 

highly evolved structure.   

Limiting our study to mammals, we answered the following question: what is the 

aesthetic value of the circulatory system? To address this question, we selected the 

circulatory system of eight representative mammalians: dogs, cats, horses, pigs, cows, 

sheep, goats and humans. The mammalian circulatory system was represented as a 

Beck’s map8 (Fig. 2), and therefore like a map of the London Underground. 

Subsequently, the order O and complexity C of each vascular tree was calculated as a 

Shannon entropy H and a fractal dimension D, respectively. We then calculated the 
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Birkhoff aesthetic value M1 and an alternative aesthetic measure M2. Once these 

aesthetic measures were obtained, a statistical analysis was conducted.  

 

 

To examine how mammalians manage the order and complexity of the vascular 

system, we obtained the regression line equation between entropy H and complexity D. 

The curve H = -0.56 + 5.47 D is shown in Fig. 3a. Our findings show that H and D are 

highly correlated in the mammalian vascular system. Indeed, this correlation suggests 

that order and complexity are not mutually independent. The beauty of the mammalian 

vascular system tallies with the theological interpretation of beauty provided by St. 

Augustine and Thomas Aquinas9: ‘beauty consists of unit and order which emerge from 

complexity’. However, artists are able to manage both features independently. Thus, the 

beauty of paintings, music, poetry, etc. is in consonance with Pythagoras’ and the 

Renaissance1 view of beauty. Indeed, during the Renaissance, artists and architects used 

to create their works choosing determined proportions (e.g. 1:1.62 or the so-called 

golden section) considered to constitute important attributes of objects. 

We next tested the correlation between the Birkhoff aesthetic value M1 and the 

alternative aesthetic measure M2. The regression line (Fig. 3b) M1 = 4.75 – 14.54 M2 

shows that both aesthetic measures are also correlated in the mammalian vascular 

system. We found significant differences between the Birkhoff aesthetic value M1 in the 

arterial and venous systems (Birkhoff’s aesthetic M1 median value was 4.63, compared 

with 4.68; Kruskall-Wallis test, P=0.007). In addition, in the case of the arterial system 

in the eight selected mammalians (Fig. 4a), our study reveals significant differences 

among individuals. As a result, from a lower to higher M1, mammalians are arranged as 

follows:  humans (4.28) < dogs=cats=horses (4.60) < pigs (4.73) < cows=sheep=goats 

or ruminants (4.79) (Kruskall-Wallis test, P=0.006). However, when the value M1 was 

studied in the venous systems of the eight selected mammals (Fig. 4b), we found no 

significant differences among these systems (Kruskall-Wallis test, P=0.2052). The 

likely explanation is as follows. Order O (or entropy H) is a measure of relationship 

among the nodes of blood vessel networks in the vascular tree. Complexity C (or the 

fractal dimension D) evaluates the number of nodes involved in blood vessel networks. 

Therefore, the high correlation between H and D responds to an optimised topology of 

the vascular tree. It should be noted that the vascular tree develops according to demand 

of nutrients by tissues. Likewise, the lines of the underground transport system grow 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
09

.2
97

6.
1 

: P
os

te
d 

25
 M

ar
 2

00
9



according to demand by suburban dwellers. The classification of mammalians in 

accordance with the Birkhoff M1 value in the arterial system provides similar groups of 

animals that can be obtained according to the left subclavian artery. This artery is one of 

the major arteries that supplies blood mainly to the head and front legs (or arms). 

Demand of nutrients by tissues and organs might be equivalent to the role played by 

population density during city formation10 and the evolution of the urban layout. We 

anticipate our approach to be useful in the study of morphogenesis and evolution of 

tree-like structures11, using Birkhoff aesthetic value as a simple tool for conducting such 

studies 

 

METHODS 

Beck representation. Beck’s map is a schematic diagram, rather than a geographic 

map, showing the lines, stations and zones of the London underground. The map is 

based upon the relative positions of stations along the lines, as well as the connective 

relations of one station with another. One of the main features of Beck’s map is that 

lines are drawn only horizontally, vertically or at 45 degrees. The result is a topological 

map that emphasizes connections bearing a resemblance with electrical circuit 

diagrams. We represented a circulatory system showing the connective relationships 

among blood vessels, and therefore, arteries, capillaries and veins, as a schematic 

Beck’s diagram (Fig. 2). A similar schematic approach has been used for illustrating 

protein molecules12 and to plot the molecular circuitry of cancer13. 

Spatial codification. Although the circulatory system is represented as a 2D Beck’s 

map, each vessel has a label with information (coded with a single letter) regarding its 

geographical or real spatial position. 

Vascular tree quantification. First, using vascular tree data14-16, we build a standard 

model of a 3D vascular tree preserving the relationships among nodes. Data were stored 

in a customized database named NAVI_NA written in Borland Turbo C++ by the first 

author17. We then constructed a sample of vascular trees, changing the branches angles 

at random. Given a branch angle, its value is modified by adding a random value. These 

random values were set empirically. The former operation introduces some variability, 

which can be observed in real vascular trees. 

In the present study we obtained a sample with N=30 vascular trees, where the fractal 

dimension D was measured. The results obtained were registered. The method described 

was conducted with Fractal3D, a program also written by the first author17. The 
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program draws any of the reconstructed vascular trees, showing the box-counting step 

sequence. Secondly, the Shannon entropy H was calculated: 

1
( )

n

i i
i

H p ln p
=

= −∑  (2) 

In the equation, the probability of a given symbol pi is replaced by the node probability 

in a vascular tree. Thus, given the arborisation level bi (bi = 1, 2, 3 …), pi is calculated 

as the number of nodes or cardinal C(i), being ln (pi) the neperian logarithm of the 

number of branches arising from node i (i = 1, 2, 3 …). Assuming that we are 

measuring entropy macroscopically in a vascular tree, n was set up equal to 14. In 

addition, we calculated another measure labelled as H*  

H* =
1

( ) .
n

i
i

C i b
=
∑   (3) 

Note how H* is a measure of the number of nodes C(i) in a vascular tree, but weighted 

with the arborisation level bi. In third place, for each of the reconstructed vascular trees, 

the fractal dimension D is calculated by applying the box-counting method18. Thus, D 

was obtained by counting the boxes (dn) filled with a section of the vascular tree at 

iteration n. The fractal dimension value is the average of the number of sample trees: 

1

N

i
i

K
D

N
==
∑

   (4) 

calculating the Kolmogorov entropy value, one per vascular tree: 

1

1
1 1log log
2 2

n n
i

n n

d dK −

−

−=
⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

   (5) 

The results obtained were registered in an output file. The program17 draws any of the 

reconstructed vascular trees, showing the box-counting step sequence. Finally, and in 

fourth place, the beauty or aesthetic measure of the vascular trees was obtained by 

means of the following expressions: 

1
HM
D

=  (6) 

being (6) a Birkhoff aesthetic expression, and: 

2 *

HM
H

=  (7) 

an aesthetic measure introduced by us in this study. As with D, the value of H* is a 

measure of complexity, but without the spatial information included in D. 
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Fig. 1 
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Fig. 2  
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Fig. 3a 

 
Fig. 3b 
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Fig. 4a 

 
Fig. 4b
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Figure 1. Birkhoff aesthetic value M1 in chicken embryo. a, 4 day-old egg (M1=4.86, 

H=2.63, D=0.54). b, 6 day-old egg (M1=4.59, H=3.43, D=0.74). 

 

Figure 2.  Schematic diagrams representing the mammalian vascular networks in 

a manner similar to Beck’s Underground map. a, Arterial circle of the brain. b, 

Subclavian arterial circuit. c, Craneal venous sinus system.  

 

Figure 3. Multicollinearity in the vascular system of mammalians. a, Order (entropy 

H) versus complexity (fractal dimension D). For standard linear regression, R2 = 0.9511, 

P=0.0000. b, Birkhoff aesthetic value (M1) versus M2. For standard linear regression, R2 

= 0.5241, P=0.0000. 

 
Figure 4. Birkhoff’s aesthetic value M1 of the mammalian vascular system. 

Distribution of variation according animals, shown as a notched-box-and-whisker plot. 

The edges of the box correspond to quartiles; the notches to the standard error of the 

median; crosses inside boxes are means; crosses outside boxes are outliers; and the 

vertical whiskers correspond to range. a, Box plot in the arterial system. b, Box plot in 

the venous system. 
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