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Abstract 

Objective: Using three European and two Chinese genome-wide association studies (GWAS), we 

investigated the performance of genetic risk scores (GRS) for predicting the susceptibility and 

severity of Systemic lupus erythematosus (SLE), using renal disease as a proxy for severity. 

Methods:  We used four GWASs to test the performance of GRS both cross validating within the 

European population and between European and Chinese populations. The performance of GRS in 

SLE risk prediction was evaluated by Receiver Operating Characteristic (ROC) curves.  We then 

analyzed the polygenic nature of SLE statistically.  We also partitioned patients according to their 

age-of-onset and evaluated the predictability of GRS in disease severity in each age group.  

Results: We found consistently that the best GRS in the prediction of SLE used SNPs associated at 

the level of P<1e-05 in all GWAS datasets and that SNPs with P-values above 0.2 were inflated for 

SLE true positive signals. The GRS results in an area under the ROC curve ranging between 0.64 and 

0.72, within European and between the European and Chinese populations.  We further showed a 

significant positive correlation between a GRS and renal disease in two independent European GWAS 

(Pcohort1=2.44e-08; Pcohort2=0.00205) and a significant negative correlation with age of SLE onset 

(Pcohort1=1.76e-12; Pcohort2=0.00384).  We found that the GRS performed better in prediction of renal 

disease in the ‘later onset’ compared to the ‘earlier onset’ group.   

Conclusion: The GRS predicts SLE in both European and Chinese populations and correlates with 

poorer prognostic factors: young age of onset and lupus nephritis.   
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Introduction 

Systemic lupus erythematosus (SLE [OMIM: 601744]) is a chronic inflammatory autoimmune 

disease characterized by a wide spectrum of signs and symptoms varying among affected individuals 

and can involve many organs and systems, including the skin, joints, kidneys, lungs, central nervous 

system, and haematopoietic system (1).  A recent report underscores that SLE is among the leading 

causes of death in young females, particular females among ages 15-24 years, in which SLE ranked 

tenth in the leading causes of death in all populations and fifth for African American and Hispanic 

females (2).  Lupus nephritis is the most common cause of morbidity and mortality.  Patients with 

kidney disease are likely to have more severe clinical outcomes and a shorter lifespan.  30-60% of 

adults and up to 70% of children with SLE have renal disease, characterized by the glomerular 

deposition of immune complexes and an ensuring inflammatory response (3).  Genetic ancestry 

influences the incidence and prevalence of SLE and kidney involvement, being more frequent in 

Hispanics, Africans and Asians than in European (4-7).   Currently, kidney disease in SLE is 

diagnosed by use of light microscopy, which drives therapeutic decision-making.  However, not all 

patients will respond to therapy, indicating that additional information focusing on the mechanism of 

tissue injury is required.   Moreover, early detection of kidney involvement in SLE is important 

because early treatment can be applied to reduce the accumulation of renal disability. 

Although the exact aetiology of lupus is not fully understood, a strong genetic link has been identified 

through the application of family (8, 9) and twins studies (10).  SLE does not follow a single locus 

Mendelian pattern of inheritance.  And as it involves both polygenic and environmental risk factors it 

is a complex trait. Complex traits are multi-factorial with both genetic and environmental 

contributions.  Genome-wide association studies (GWAS) have been successfully used to investigate 

the genetic basis of a disease and this has dramatically advanced knowledge of the genetic aetiology 

of SLE.  Our recent review summarized a total of 84 genetic loci that are implicated as SLE risk (11).  

Despite the advances in the genetics of SLE, it is not clear how to utilise genetic information for the 

prediction of SLE risk or severity.   
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A genetic risk score (GRS) summarizes risk-associated variations by aggregating information from 

multiple risk single nucleotide polymorphisms (SNPs).  The approach to calculate the GRS is to 

simply count disease-associated alleles or weighting the summed alleles by log Odds Ratios (OR).  

Recent studies (12, 13) have proposed methods which select SNPs from GWAS by LD (linkage 

disequilibrium) pruning and clumping and thresholding for GRS calculation.  As the number of SNPs 

included in a GRS increases, the distribution approaches normality, even when individual risk alleles 

are relatively uncommon. Therefore, a GRS can be an effective means of constructing a genome-wide 

risk measurement that summarises an individual’s genetic predisposition to SLE.  Moreover, as GRSs 

pool information from multiple SNPs, each individual SNP does not strongly influence the summary 

measurement. Thus, the GRS is more robust to imperfect linkage for any tag SNP and causal SNP, 

and less sensitive to minor allele frequencies for individual SNPs (14-17). 

Several studies (18-23)  have looked at GRS for SLE, however many relied on very few SNPs (23), 

had sample sizes inadequate for GRS, did not compare results across populations or were restricted to 

SNPs on the Immunochip . We investigated, for the first time, the performance of genome-wide SNPs 

for predicting SLE. As in the most recent study of Lupus Nephritis (LN) (21) we also investigated the 

predictive performance of SNPs published  as associated with SLE for disease severity. This study 

used data on three European GWAS and two Chinese GWAS (Figure 1). We first tested whether a 

quantitative model - a GRS derived from SLE GWAS applying a range of methods using genome 

wide SNPs, was an effective way to distinguish SLE patients and controls in three independent 

European cohorts.  Next, we classified SLE patients into two groups: SLE renal+ (patients with renal 

disease) and SLE renal- (patients without renal disease), and performed a case-case Renal GWAS in 

two independent SLE cohorts with available renal data for the identification of SLE renal 

susceptibility loci.  We then tested whether a GRS derived from SLE GWAS or Renal GWAS was an 

effective way to distinguish SLE patients with or without renal disease in two independent cohorts. A 

GRS analysis for SLE was performed across Chinese and European data where we trained the GRS in 

one population and predicted in the other.  The SLE risk score was elevated in those with renal 
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disease (compared to those without) and it showed a negative correlation with age of onset of the 

disease.  

 

Results 

The best GRS in SLE prediction 

Among the GRSs generated from LD clumping and thresholding, the predictor with the best 

discriminative capacity was the one derived from SNPs clumping at P threshold (Pth) of 1e-05 with R
2
 

< 0.2 in the SLE main cohort and tested in both the SLEGEN (NSNPs = 66; AUC = 0.72; 95% C.I. = 

0.69-0.74) and Genentech (NSNPs = 79; AUC = 0.67; 95% C.I. = 0.66-0.69) cohorts (Figure 2 & 

Table S1), suggesting there may be more true positive signals than the genome-wide significant ones 

involved in the risk of SLE.  This performance was not due to population structure as the GRS added 

significantly more (P = 2.2e-16 and P = 7.78e-14) to the AUC than principal components in both 

Genentech and SLEGEN respectively. In fact, the predictive performance of the GRS using all pairs 

of training and test data was maximised using SNPs below the standard genome-wide threshold 

(Table S1). This evidence for polygenicity was also seen in an analysis of the association statistics (Z 

scores) in the Genentech GWAS polarised to the risk allele in the main GWAS, partitioned by their 

association P value in the main GWAS (see Methods). Here, we found evidence (Figure 3 & Table 

S2) against a zero mean (P = 3.91e-04) for the Z scores in Genentech data for SNPs with P values 

between 0.3 and 0.2 in the main GWAS. The GRS effect was independent of a sex effect (see Table 

S3) with no evidence of an interaction. 

We found that the genetic risk score trained in our European (EUR) data predicted SLE in the Chinese 

(CHN) data well (Figure 2C & 2D) with an AUC (0.64) when using the best approach for GRS in the 

Europeans (R
2
 < 0.2 for all SNP pairs and using SNPs that passed the P value threshold of 1e-05).  

The range of AUC values over all P value thresholds for SNP inclusion was [0.60 – 0.64]. The results 

when training in the CHN and predicting in EUR were similar: AUC = 0.64 when using the best 
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approach for GRS in the Europeans (R
2
 < 0.2 for all SNP pairs and using SNPs that passed the P 

value threshold of 1e-05) and range of AUC values over all P value thresholds for SNP inclusion was 

[0.55 – 0.64].  

 

Lupus Nephritis GWAS within SLE cases  

Lupus Nephritis (LN) occurs in approximately half of all SLE patients, and its frequency ranges from 

25% to 75% depending on the population studied (24).  About one third of European SLE patients 

experience renal disease (25). Until recently, one of the most common causes of death in SLE patients 

was kidney failure.  According to the lupus severity index (LSI) using the ACR criteria developed by 

Bello et al (26), renal involvement has the highest impact and particular strongly associated with 

disease severity, hence we chose LN as a proxy of SLE severity in this study. 

The imputed within case LN GWAS in the SLE main cohort, which comprised 1152 SLE patients 

with renal disease (LN+) and 1949 patients without renal disease (LN-), did not identify any genome-

wide significant associated loci (P ≤ 5e-08) (Figure S1A). Consistently, no inflation (genomic 

inflation factor: λ = 1.014) was observed in the QQ plot (Figure S1D).  Similarly, none of the SNPs 

reached genome-wide significance in the SLEGEN cohort (27) (λ = 1.023) (Figure S1B & 1E).  In 

addition, no variant passed genome-wide significance in the meta-analysis of the SLE main cohort 

and SLEGEN cohort for Renal GWAS (λ = 0.9565) (Figure S1C & S1F).  Summary association 

statistics for SNPs with P ≤ 1e-05 are provided in Table S4 and S5. We also did not observe any 

significant associations when limiting the analysis to high quality (Imputation INFO = 1) and 

common (MAF   0.02) SNPs (see Figure S1G & S1H for QQ plot)  

We did, however, see evidence that SNPs with very strong evidence for association with SLE (P ≤ 1e-

05) were associated with LN.  This was evident from an analysis of the renal association statistics (Z 

scores) polarised to the risk allele for SLE.  There was strong evidence (Figure 3 & Table S2, P = 

8.72e-08) against a zero mean for the Renal Z scores for SNPs with P ≤ 1e-05 for SLE in the main 
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cohort. This result was replicated in the SLEGEN study with P = 2.42e-03 (Figure 3 & Table S2).  

The finding of renal association with SNPs showing very strong evidence for association with SLE 

could be exploited for prediction of disease progression and we explore this below.  

 

Genetic risk loading of SLE is significantly higher in LN+ patients 

While we observed that no individual SNPs were significantly associated with renal involvement in 

the SLE cases, we did show that there was a deviation from zero mean for renal Z scores taken from 

SNPs with very strong evidence for association with SLE.  We checked whether a renal GWAS 

derived GRS could predict renal disease, however the performance was not good (highest AUC = 

0.55 using SNPs with p < 0.1) and was outperformed by the SLE derived GRS (see Table S1). In 

view of this finding, we investigated the correlation between the SLE GRS and renal disease in all 

SLE cases.  To accomplish this, we used the GRS derived from a list of published SLE associated 

SNPs (See Methods) (28) for the comparison of the SLE genetic risk burden in patients with and 

without renal disease.  As expected, the GRS was higher in the SLE patients compared to healthy 

controls in both independent cohorts (Figure 4).    

A significantly higher GRS was observed in the group of patients with renal disease (LN+) compared 

to patients without renal disease (LN-) (Figure 4).  In the SLE main cohort, the mean (SD) of the 

GRS was 18.1 (1.64) for LN+ patients and 17.8 (1.65) for LN- patients (P = 1.60e-07); the mean (SD) 

for the SLEGEN cohort was 18.2 (1.66) for LN+ patients and 17.6 (1.69) for LN- patients (P = 

0.0010).  Moreover, we saw a significant increasing trend of GRS over levels of diseases:  Healthy 

control, LN- patients, and LN+ patients, in the SLE main cohort and the SLEGEN cohort (Figure 4). 
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Genetic risk of nephritis and age of onset in SLE  

We partitioned the SLE cases into five groups according to quintiles for GRS to show the risk of renal 

involvement.  We observed over 1.5 folds higher risk of renal disease (OR = 1.58; 95% C.I. = 1.25-

1.99; P = 0.00015) between the top and bottom quintiles of GRS in the SLE main cohort (Figure 

5A).  This is replicated in the SLEGEN cohort (Figure 5B), with odds ratios of 3.16 (95% C.I. = 

1.62-6.13; P = 0.00091).  A significantly earlier age of SLE onset was observed in those with renal 

disease compared to those without renal disease.  In the main cohort (Figure 6A), the mean (SD) for 

age of disease onset was 29yrs (12) for LN+ patients and 35yrs (13) for LN- patients (P = 2.8e-27); 

the means for the SLEGEN cohort (Figure 6B) were 28yrs (11) and 35yrs (13) for LN+ and LN-, 

respectively (P = 6.05e-09).  When testing the association of GRS with age-of-onset in the SLE main 

cohort, a significant correlation was present – the higher the GRS, the earlier age of SLE onset (P = 

4.59e-12).  This correlation was also detected in the SLEGEN cohort (P = 0.021) and the combined 

Chinese cohort (P = 1.57e-06). 

To test whether the GRS correlated with renal disease independently of age-of-onset, we partitioned 

SLE patients into two groups according to their age of onset, i.e. ‘Late age onset’ and ‘Early age onset’ 

and performed a two-way ANOVA test (See Methods).  The GRS was shown to positively correlate 

with both renal disease and early age-of-onset (PRenal = 7.64e-05 and Page-of-onset = 1.06e-09) in the SLE 

main cohort, with significant association with renal disease in the SLEGEN cohort but marginal 

evidence for age-of-onset (PRenal = 0.0288 and Page-of-onset = 0.0513), while we found that there was no 

statistically significant interaction between renal and early age-of-onset  in the SLE main cohort 

(PInteraction = 0.795) and marginal evidence in  the SLEGEN cohort (PInteraction = 0.0511) (Figure S2).  

Notably, we found that GRS was a better predictor of renal disease in the ‘Late age onset’ group 

(AUC = 0.62) compared with the ‘Early age onset’ group (Figure 7). We also find that age-of-onset 

as a continuous trait using logistic regression is correlated with renal disease independently of the 

GRS (Page-of-onset = 7.54e-23, PGRS = 2.98e-04 in the main cohort, and Page-of-onset = 3.68e-07, PGRS = 

3.2e-02 in the SLEGEN cohort) with no evidence of an interaction term.    
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Finally, we assessed the predictive ability of the partitioned SLE GRS (quintile GRS, see methods) 

over the two age-of-onset groups.  In the main SLE cohort there is a clear and significant risk effect 

for renal involvement with increasing GRS in the ‘Late age of onset’ group, but no significant effect 

in the early onset group.  We observed over two folds higher risk of renal disease (OR = 2.33; 95% 

C.I. = 1.57-3.47; P = 3.76-05) between the upper fourth quintile and the bottom quintile in the ‘Late 

age onset’ group in the SLE main cohort (Figure 5A).  The results were similar in the SLEGEN 

cohort, with the risk of renal disease between the top and bottom quintile of GRS being over five 

times (OR = 5.48; 95% C.I. = 1.65-18.3; P = 0.00664) (Figure 5B & Table S6) in patients of ‘Late 

age onset’ but no significant differences in those with ‘Early age onset’. These results are robust to the 

chosen threshold in the definition of ‘Late age onset’ and ‘Early age onset’ (Table S6) 

 

Discussion 

GRS has been showed to be predictive for several diseases including cardiovascular disease (AUC = 

0.81, 95% C.I. = 0.81-0.81) (12), inflammatory bowel disease (AUC = 0.63, 95% C.I. = 0.62–0.64) 

(12) and breast cancer (AUC = 0.63, 95% C.I. = 0.63-0.65) (29). However, in many of these 

applications the AUC values are dependent on inclusion of age and sex for prediction and so the AUC 

due to genetics alone would have been substantially lower (30).  We have shown that a SLE GRS 

using only SNPs has good predictive power with AUC approaching 0.7 over a range of settings when 

trained and tested between three European GWAS. We also used two combined Chinese studies’ data 

as both independent validation and a test of cross populations prediction performance. In both 

populations we show that, when using GWAS data as a training set, a GRS using SNPs with 

association P values well below genome-wide levels of significance has the best predictive 

performance. This, along with other studies that have reinvestigated SLE GWAS data (31), is further 

evidence that SLE is a polygenic disease with many risk variants as yet undiscovered, and that more 

powerful studies could lead to useful predictive models.  While we did find that the GRS correlated 

with SLE independently of a sex effect (risk for females), with no evidence of interaction, the low 
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prevalence of male SLE (approximately 10% of cases in our data) meant that we could not determine 

if a GRS could predict one sex better than the other. Multiple well powered GWAS in terms of 

sample sizes for male cases for training and predicting would help determine the utility of sex specific 

risk scores. Genetic risk scores may also have utility in prediction of disease severity and we find 

evidence for this to be so for SLE. Our data show that renal involvement is not related to specific 

genetic factors or particular genes but simply to genetic load of risk alleles.    

Until recently, the most common cause of death in SLE patients was kidney failure.  Though the 

frequency of death from kidney disease has decreased sharply due to better therapies (e.g. dialysis and 

kidney transplantation), kidney failure is still potentially fatal in some people with SLE and causes 

significant morbidity.  According to the lupus severity index (LSI) using the ACR criteria developed 

by Bello et al (26), renal involvement had the highest impact and particularly more strongly 

associated with disease severity, hence we used renal involvement as a proxy of SLE severity in this 

study.  In the SLE within-case renal GWASs, we observed no genome-wide significant signals in 

either the SLE main cohort or the SLEGEN cohort, or meta-analysis of these two.  Both datasets had 

genetic variants with less stringent P values (P ≤ 1e-05) for renal association, but none of them were 

replicated in the other cohort.  Considering the sample size of both cohorts are relatively small, we 

applied an online genetic power calculator (http://zzz.bwh.harvard.edu/gpc/) to calculate the power of 

our current sample size for the GWAS study (Table S7).  We assumed the effect sizes of SLE renal 

risk alleles is similar to that seen in SLE GWAS, so the odds ratio (OR) of the risk allele would be 

between 1.0 and 2.0.  Therefore, we calculated power under a variety of parameters, including OR, 

risk allele frequency (RAF) and alpha.   As showed in Table S7, we have a power of ≥ 0.8 to detect a 

genetic risk variant with an OR = 1.4 and RAF = 0.3 or an OR = 1.5 and RAF = 0.2 when alpha = 5e-

08.  However, if we assume the renal associated variants are as weak as most of the SLE associated 

variants (OR < 1.2), then we are under powered (< 0.8) to detect the true renal associations at the 

GWAS significant threshold of P = 5e-08 in the current study. 

We did however find evidence that SNPs most associated with SLE (P < 1e-05) were enriched for 

associations with SLE renal involvement.  Specifically, the renal association P values of the 95 SNPs 
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(of 77 published SLE risk loci) in the SLE main cohort and the SLEGEN cohort are strongly inflated 

as shown in the QQ plots (Figure S3), suggesting the cumulative genetic burden from multiple SLE 

risk genes with modest effect.  So we then tested the hypothesis that the genetic risk loading of SLE 

may correlate with kidney involvement.  Therefore, a genetic risk score (GRS) using published SNPs 

with robust evidence for association with SLE was derived for the prediction of SLE renal disease.  In 

both European cohorts, the SLE main cohort and the SLEGEN cohort, the GRS was significantly 

higher in patients with renal disease than patients without. In addition, patients with a higher GRS 

were more likely to have renal involvement at a younger age, indicating the strong genetic 

background of SLE development.  These findings provide more evidence to support the opinion that 

younger-age onset lupus is generally more severe than older-onset lupus as reported previously (32-

34). An improvement to our study would be to use the Imputed SLE GWAS as a reference dataset. 

This would derive a better fine-mapped set of SNPs which, as the performance of the published SNPs 

suggest, may have better predictive performance, however imputed data must be converted to 

genotype calls for LD clumping and this loss of information reduces accuracy and so only very high 

quality imputed SNPs can be used which reduces the utility. The next release of the 1Kg data will 

have higher coverage outside of coding regions, which is where the majority of SLE associated 

variants are, and should result in more accurate imputation and useful data for GRS. 

Our analysis of Renal disease in SLE patients has shown that, while we find no SNPs significantly 

associated with renal disease, the fact that SLE associated variants correlated with renal using a GRS 

suggests that many SLE associated variants are also risk for renal involvement albeit with likely 

weaker effects (Odds ratios). We find that the GRS and age-of-onset are correlated but the GRS is 

associated with renal involvement independently of age-of-onset with no interaction observed. The 

GRS performs better for predicting renal disease in patients with late age-of-onset.  We also find that 

a stratified GRS may be a more viable option for predicting renal disease, where we estimate 

significantly high relative risks for those in the tails of the GRS distribution in both of our European 

studies that had renal data.  
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A limitation of this study is that we were not able to replicate our renal results in the Chinese as renal 

data were not available. Renal involvement in Chinese is more common than in Europeans; the 

Chinese SLE patients are more heterogeneous, suffer from more severe clinical manifestations and 

earlier age of onset. The use of GRS for predicting SLE severity in Chinese may not have the same 

utility as in Europeans where we find the stronger association in the late onset patients. Nevertheless, 

our results in Chinese showing a correlation between age of onset and SLE GRS suggest that in this 

population disease severity is also driven by load of disease associated variants.  

This is the first study to investigate accumulated genetic risk and its relationship with the 

susceptibility and severity of SLE with data in Chinese and European populations.  We found that the 

higher the GRS, the younger onset of SLE in both populations. Within the European population and 

across the Chinese and European populations we find that a genetic risk score incorporating LD 

pruned SNPs (at R
2
 = 0.2) with modest (P < 1e-05) evidence for association with disease predicts SLE 

with AUC of 0.64 and above.  In the European data we see that in patients of late onset, a higher GRS 

means patients are more likely to suffer from more severe disease.  In brief, age of onset incorporating 

a GRS may assist early prediction of lupus nephritis in a clinical setting.  Nevertheless, more clinical 

studies and multi population data are needed to validate the usefulness of this application.  

 

Materials and Methods 

Samples source 

European samples were from three previously published SLE GWAS – the SLE main cohort (35), the 

SLEGEN cohort (27), and the Genentech cohort (36).  The SLE main cohort (35) was the biggest SLE 

GWAS, which consisted of 4,036 SLE patients and 6,959 healthy controls.  A total number of 

603,208 SNPs were available post quality control.  The SLEGEN cohort (27) was carried out by The 

International Consortium for Systemic Lupus Erythematosus Genetics (SLEGEN) on women of 

European ancestry, which comprised 283,211 SNPs genotyped for 2,542 controls and 533 SLE 

patients.  The Genentech cohort (36) was performed by Genentech on North American individuals of 
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European descent, which comprised 487,208 SNPs genotyped for 1,165 cases and 2,107 controls.  

The samples used from the three European GWAS were independent: the main GWAS publication 

used Identity by descent (IBD) analysis in PLINK 1.9b (www.cog-genomics.org/plink/1.9/) (37)  to 

remove individuals from Genentech with IBD > 0.125, we used these data and applied the same 

analysis to the SLEGEN data. 

Chinese samples were from previously published GWAS from Anhui (1,047 cases and 1,205 controls) 

(38) and Hong Kong (612 cases and 2,193 controls) (39, 40).  

Clinical sub-phenotypes were available for the SLE main cohort and SLEGEN cohort, which were 

documented according to the standard American College of Rheumatology (ACR) classification 

criteria.  Subgroups of patients with renal disease or without renal disease were identified according to 

the sub-phenotype data using ACR classification.   Following quality control, the sample size of 

patients with renal disease, lupus nephritis (LN+) were 1,152 and 146; while patients without renal 

disease (LN-) were 1,949 and 378 in the SLE main cohort and SLEGEN cohort, respectively.  More 

details are presented in Table S8.  

 

Genome-wide association study (GWAS)  

SLE GWAS 

SLE GWASs were performed in genotyped SNPs including principal components consistent with the 

original publications in all three independent cohorts. The two post quality control Chinese datasets, 

which were both typed on the Illumina 610-Quad Human beadchip, from the original studies were 

combined. The combined data were subjected to standard GWAS quality control and in addition we 

tested for differential missing and relatedness between the two studies. Post quality control there were 

484,813 SNPs. The combined Chinese GWAS used a covariate for study. The original studies did not 

use principal components as covariates as the PCs clustered well due to the samples being recruited 

relatively locally. We conducted PCA on the combined data. See supplementary Figure S4 for the 
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PCA plot. The Anhui data has a single cluster. The Hong Kong (HK) data is mostly clustered to the 

right of the Anhui samples on PC1. There are some HK samples (40 cases and 249 controls) clustered 

with the Anhui samples, however these had both cases and controls represented (7% of cases and 11% 

of controls).    

 

SLE Renal GWAS within SLE cases  

The SLE Renal GWASs were performed within SLE cases, i.e., genome-wide associations of patients 

with renal disease (SLE Renal+, cases) and patients without renal disease (SLE Renal-, controls) in 

two independent cohorts, i.e., the SLE main cohort and the SLEGEN cohort.  For Renal GWASs, we 

pre-phased the genotyped data using the SHAPEIT algorithm (41) and then used IMPUTE2 (42) to 

impute to the density of the 1000 Genome reference data (phase 3 integrated set, release 20130502) 

(43) (data unpublished).  All case-control analysis was carried out using the SNPTEST algorithm (44).  

SNPs with imputation INFO scores of < 0.7 and MAF (minor allele frequency) < 0.001 were removed.  

After quality control (QC), there were 21,431,070 SNPs left for further analysis.  Moreover, a 

genome-wide association meta-analysis of the SLE main cohort and SLEGEN cohort was performed 

using the summary statistics derived from the two Renal GWASs.  A standard threshold of P   5e-08 

was used to report genome-wide significance and a P   1e-05 was used to report suggestive 

associated signals.    

 

Polygenic analysis 

We tested for non-zero standardized effect sizes (Z scores) for SLE association in the Genentech data 

for groups of SNPs stratified by their P values in the SLE main cohort. The Z scores in the Genentech 

data were polarized with respect to the SLE main cohort in that the effect allele was set to be the risk 

allele in the SLE main cohort. Under the null hypothesis the Z scores will have zero mean, while 

under the alternative the mean will be positive. SNPs were stratified by P value intervals of 1-0.9, 0.9-
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0.8, 0.8-0.7, 0.7-0.6, 0.6-0.5, 0.5-0.4, 0.4-0.3, 0.3-0.2, 0.2-0.1, 0.1-0.00. We would expect a positive 

mean for SNPs with very small P values in the main SLE cohort as these will be enriched for true 

positives, while the same is not necessarily true over other P values ranges unless there are more 

widespread true associations with very weak effects.  We also ran this analysis on renal association 

standardized effect sizes (Z scores) again polarized with respect to SLE association and stratified by 

SLE P values.  In all analyses, we used an LD clumped set of SNPs with an R
2
 threshold of 0.1.  

When comparing the SLE main cohort to the Genentech cohort or the SLEGEN cohort, we limited the 

clumping to SNPs that overlap the GWASs. 

 

Genetic risk score derivation 

A Genetic risk score (GRS) is a quantitative trait of an individual’s inherited risk based on the 

cumulative impact of many genetic variants, which is calculated according to the method described by 

Hughes et al (45).  

We used two approaches to select SNPs for GRS calculation.  The first approach – a weighted GRS 

was derived from all published independent SLE risk SNPs (Table S9) – including 78 SLE 

susceptibility loci (without the X chromosome), consisting of 93 SNPs outside of the MHC region and 

2 independent tag SNPs in the MHC region for two well-known HLA haplotypes in SLE, i.e. 

rs2187668 for HLA-DRB1*03:01 and rs9267992 for HLA-DRB1*15:01 for the European cohort and 

rs9271366 for HLA-DRB1/HLA-DQA1 and rs9275328 for HLA-DQB1/HLA-DQA2 for the Chinese 

cohort (Table S9).  The risk allele for each SNP is derived from its original publication, which is 

summarized in a recent review (28) and the effect size used in the GRS was generated from each 

GWAS used as a training set. Each GRS for four SLE cohorts (27, 35, 38-40) was generated using R 

version 3.4.3.  

The second approach – LD clumping and thresholding – was used to build 32 GRSs.  Clumping and 

thresholding scores were built using a P value and linkage disequilibrium (LD)-driven clumping 
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threshold in PLINK version 1.90b (www.cog-genomics.org/plink/1.9/) (37).  In brief, the algorithm 

forms clumps around SNPs with association P values less than a provided threshold (Index SNPs).  

Each clump contains all SNPs within a specified window of the index SNP that are also in LD with 

the index SNP as determined by a provided pairwise correlation threshold (r
2
) in the training data.  

The algorithm loops through all index SNPs, beginning with the smallest P value and only allowing 

each SNP to appear in one clump.  The final output should contain the most significant disease-

associated SNP for each LD-based clump across the genome. We found that including the MHC 

region in the clumping algorithm performed worse that a GRS excluding the MHC, which could be 

due to overfitting in the training set and different LD patterns across data, so we included tag SNPs 

for the well-known MHC risk haplotypes.  When performing LD clumping, we firstly removed the X-

chromosome and the MHC extended region (24-36MB) and kept all other autosomal SNPs.  Then we 

included the MHC region by using two tag SNPs for two well-known HLA haplotypes in SLE (Table 

S9).  The MHC tagSNPs were only added to the GRS in the cross validation within the European 

population.  A GRS was built using the genotypes for the index SNPs weighted by the estimated 

effect sizes (β).  Specifically, when training the GRS in the SLE main cohort and testing in the 

SLEGEN cohort, we performed a GWAS on the genotyped SNPs in the SLE main cohort and 

generated 32 lists of clumped SNPs over a set of P values (--clump-p1: 0.1, 0.01, 1e-03, 1e-04, 1e-05, 

1e-06, 1e-07,and 5e-08),  r
2
 (--clump-r2: 0.2 and 0,5) and clumping radius (--clump-kb: 250 and 1000).  

The 32 lists of SNPs were then used to generate 32 GRSs by summing across all variants weighted by 

their respective effect size for samples in the SLEGEN cohort.  We performed this analysis using all 

three cohorts in European population with one dataset as training and the other as a test set, generating 

six training-and-testing pairs. We also performed a cross population analysis between European and 

Chinese populations. There were 270,268 SNPs overlapping the European and Chinese data.  
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Receiver Operating Characteristic (ROC) curves for model evaluation 

The GRS with the best discriminative capacity was determined based on the maximal Area under the 

ROC curve (AUC) with SLE or RENAL as the outcome and the candidate GRS as the predictor.  

AUC confidence intervals were calculated using the ‘pROC’ package within R and the difference 

between the ROC curves was determined with the ‘roc.test’ function, which used a non-parametric 

approach, as described by De Long et al  (46).  To assess the degree to which the age of SLE onset 

contributes to the prediction of renal involvement within SLE cases, we generated ROCs as above 

with the GRS and compared to ROC curves with SLE age onset as a single predictor and the ROC 

with both GRS and age onset as predictor(s).   

 

Partitioning the genetic risk of renal disease 

Since a continuous score is difficult to interpret on an individual level when a physician needs to 

explain the results of the GRS to a patient, we partitioned SLE patients into quintile according to 

genetic dosage (SLE GRS).  We used a chi-square test to study the association of the partitioned GRS 

and renal risk.  The odds ratios of renal risk were then calculated compared to the reference group - 

the first quintile GRS group.   

To test whether the GRS correlated with renal disease independently of age-of-onset, we partitioned 

SLE patients into two groups according to their age of onset, with a cut-off at age of 30 - patients with 

age above 30 were defined as ‘Late age onset’ and others as ‘Early age onset’.  A two-way ANOVA 

test was then performed with the function ‘aov’ in R, with aov(GRS ~ age group * renal group).  All 

statistical analyses were conducted using R version 3.4.3 software (https://www.r-project.org/). 
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Figures Legends 

Figure 1. Overview study design. 
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Figure 2. ROCs and AUCs of models in SLE prediction in European cohorts and between 

ancestries. 

GRSs for the prediction of SLE in the SLEGEN cohort (A) and Genentech cohort (B) were generated 

from SNPs of LD clumping and threshold derived from the SLE main cohort.  All GRSs for the 

training-and-validation in European cohorts were generated with two MHC tag SNPs derived from 

the European GWAS (See Methods). GRSs for the prediction of SLE across populations (C) and (D) 

were generated from SNPs of LD clumping and threshold without MHC tag SNPs.  The ‘GRS at Pth’ 

represented the GRS in the SLE prediction model, which was derived from the LD clumping at the 

according GWAS P value threshold. 
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Figure 3. Polygenic test of SLE and Renal disease. 

Polygenic test of SLE in Genentech cohort (A & B) and polygenic test of Renal disease in the SLE 

main cohort (C & D) and SLEGEN cohort (E & F).  The SLE main cohort was used to generate a P 

value for each SNP, to stratify the SNPs into groups for the Z score calculation of SLE association or 

Renal association.   
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Figure 4. GRS over levels of disease: Controls / SLE Renal (-) / SLE Renal (+). 

The violin-and-box plots show the summary GRS for each level of the disease in the SLE main cohort 

(A) and the SLEGEN cohort (B).  The violins show the distribution of the GRS across each group. 

The bottom line of the box inside the violin is the 1st quantile, the top line is the 3rd quantile, and the 

box is divided at the median.  Sample size (N) of each group is showed within brackets below the 

group name.  Note that GRS for SLE main cohort and SLEGEN cohort are generated by 93 non-MHC 

SNPs and 2 MHC tag SNPs - a total of 95 SNPs (Table S9).   
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Figure 5. Relationship of quintiles of the GRS and risk of renal disease within SLE patients.  

Plots show the odds ratios of Renal disease for the SLE main cohort (A) and the SLEGEN cohort (B), 

comparing each of the upper four GRS quintiles with the lowest quintile; dotted lines represent the 95% 

confidence intervals (C.I.); horizontal black dotted lines represent OR = 1.  
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Figure 6. Age of SLE onset in patients of Renal(-) / Renal(+). 

The violin-and-box plots show the age of SLE onset for each level of the disease in the SLE main 

cohort (A) and the SLEGEN cohort (B).  The violins show the distribution of the Age of SLE onset 

across each group.  The bottom line of the box inside the violin is the 1st quantile, the top line is the 

3rd quantile, and the box is divided at the median.  Sample size (N) of each group is showed within 

brackets below the group name.   
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Figure 7. ROC Curves for models predicting a diagnosis of Renal disease in SLE patients using 

GRS, split by age-of-onset. 

The models were trained in the SLE main cohort and tested in the SLEGEN cohort.  The plots showed 

the ROC curves in the prediction of renal disease in SLE patients with GRS as a predictor, The ROC 

curve in black was trained and tested with all SLE samples, the purple curve was trained and tested in 

the ‘Early age onset’ patients (≤ 30yrs), and the red curve was trained and tested in the ‘Late age onset’ 

group.  AUC, area under the ROC curve is showed with 95% C.I. in brackets. 
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Abbreviations 

GRS: genetic risk scores 

GWAS: genome-wide association studies 

LD: linkage disequilibrium 

LN: Lupus Nephritis 

OR: odds ratio 

ROC: Receiver Operating Characteristic 

SLE: Systemic lupus erythematosus 

SNP: single nucleotide polymorphisms 
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