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Abstract. Intuitively, some predicates have a better fit with certain arguments than 
 others. Usage-based models of language emphasize the importance of semantic simi-
larity in shaping the structuring of constructions (form and meaning). In this study, 
we focus on modeling the semantics of transitive constructions in Finnish and  present 
an autoencoder-based neural network model trained on semantic vectors based on 
 Word2vec. This model builds on the distributional hypothesis according to which 
semantic information is primarily shaped by contextual information. Specifically, we 
focus on the realization of the object. The performance of the model is evaluated in 
two tasks: a pseudo-disambiguation and a cloze task. Additionally, we contrast the per-
formance of the autoencoder with a previously implemented neural model. In  general, 
the results show that our model achieves an excellent performance on these tasks in 
comparison to the other models. The results are discussed in terms of usage-based 
 construction grammar. 

Keywords: neural network, autoencoder, semantic vector, usage-based model, Finnish

DOI: https://doi.org/10.12697/jeful.2017.8.2.04

1.  Introduction

Intuitively it is clear that predicates have a better fit with certain 
arguments than others. For example, I ate is more likely to combine with 
apple than with car. In usage-based models of language, semantic simi-
larity plays a crucial role in the formation of constructions, mappings 
between form and meaning/function. Semantic similarity is assumed 
to be one of the primary factors that influences the formation of new 
usage patterns (Bybee and Eddington 2006, Kalyan 2012). Importantly, 
Goldberg (1995) has formulated the principle of semantic compat-
ibility that constrains the usage of argument structure constructions in 
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language. Thus, these types of models strongly rely on the notion of 
semantic similarity in determining the goodness-of-fit of a particular 
lexical item in a given construction. (Goldberg 2006, Bybee 2010) and 
there is ample evidence demonstrating how the goodness-of-fit also 
 influences processing as measured by eye-movements (Ehrlich and 
Rayner 1981) and event-related brain potentials (Kutas and Hillyard 
1984). It is, however, an open question how to exactly model the seman-
tics of constructions. In this study, we focus on modeling the seman-
tics of transitive constructions – who did what to whom – in Finnish. 
To model the semantic structure, we implemented a neural network to 
model the goodness- of-fit of lexical items in a given transitive construc-
tion. Specifically, we focus on the realization of the object in this argu-
ment structure construction as objects have shown to have high-cue 
validity in disambiguating the semantics of transitive constructions 
compared to predicates and subjects, at least in English (see Yarowsky 
1993). In this respect, this study is closely connected to models of selec-
tional preference, i.e., the semantic fit of a given word relative to its 
context (Erk, Padó and Padó 2010, Baroni and Lenci 2010, Lenci 2011, 
Van de Cruys 2014).

Usage-based models emphasize the role of the low-level gener-
alizations rather than abstract structures in the formation of semantic 
information. Additionally, these models assume that semantic informa-
tion is shaped by experience. Thus, semantic information is assumed 
to be formed by forming associations over usage patterns (see, for 
example, Bybee 2010, Ramscar et al. 2014). This notion follows the 
distributional hypothesis according to which the degree of semantic 
similarity between words is primarily driven by their context of use 
(Harris 1951, Firth 1957). Given that directly modeling prior experi-
ence is not feasible, there is a long tradition in computer and cogni-
tive science to utilize corpus-based co-occurrence information to model 
the structuring of semantic relations, such as the Hyperspace Analog 
to Language (HAL; Lund and Burgess 1996) and Latent Semantic 
Analysis (LSA; Landauer and Dumais 1997) commonly referred to as 
semantic vector models. Related to this, Suttle and Goldberg (2011) 
have shown using LSA that people are more confident in accepting a 
newly formed verb when it is semantically similar to existing ones in 
English. In general, the estimated semantic similarities based on these 
models have been extensively investigated in experimental and corpus 
settings as a general purpose model of semantic memory (see Durda and 
Buchanan 2008, Baroni and Lenci 2010). Thus, these types of models 
assume that words that share similar usage patterns are also likely to be 
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semanti cally similar. However, these types of models rely on counting 
the  co-occurrence of words in a given corpus and they can become 
computationally demanding when the co-occurrences are estimated 
based on a large-scale corpus.

Recently, a paradigm shift has emerged and, rather than counting the 
co-occurrence patterns of words, neural networks are used to model this 
type of structuring. Specifically, these types of models are used to predict 
the co-occurrence patterns associated with words in a language. Artifi-
cial neural networks are models originally inspired by the functioning 
of biological systems. These models consist of connected nodes called 
“neurons” and learning takes place by adjusting the activation weights 
of these nodes. Modeling linguistic structures with neural networks has 
a long tradition in usage-based models, i.e., connectionist models of 
language. Neural networks have been used to model the structuring of 
irregular verbs in English (Rumelhart and McClelland 1986), syntactic 
production (Chang, Dell, and Bock 2006) and morphological processing 
(Baayen et al. 2011), among others. Importantly, these types of models 
share the assumption of the distributional hypothesis with usage-based 
models. For the purposes of the present study, we implemented a neural 
network called word2vec to model semantic similarity relations among 
words (Mikolov et al. 2013). This algorithm has been shown to have 
excellent performance compared to the traditional count-based models 
(see Baroni, Dinu, and Kruszewski 2014, for example) and this model 
is discussed in detail in Section 2. Similar to count-based models, 
word2vec can be used to model the semantic similarity between pairs 
of words based on the contextual information of the words, for example, 
the similarity between eat and apple. However, the semantic structure 
of argument structure constructions such as the transitive construction 
investigated in this study do not necessarily depend solely on the rela-
tionship between word pairs, but also the semantics of the construction 
must also be considered in terms of the goodness-of-fit (see Suttle and 
Goldberg 2011: 1157, for discussion). This is an interesting empirical 
question given that a transitive construction minimally consists of three 
obligatory slots in Finnish: subject, verb and object. This allows us to 
test whether there is a substantial difference between models that rely 
on word pairs and those that include the whole structure of the argu-
ment structure construction. In this study, we specifically contrast the 
performance of these two types of models.

To model the whole semantic structure of the transitive construction, 
we implemented an autoencoder-based neural network architecture, as 
these are widely used in different scientific domains (Hinton and Zemel 
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1994, Bengio 2009). Autoencoders are a type of neural networks that 
encode the input by smoothing it and then reconstructing it. Often, these 
are used to create representations of the data in lower dimensionality. 
In cognitive science, autoencoders have been previously used to model, 
for example the structuring of categories in adults (Kurtz 2007) and 
the formation of categories in children (Mareschal, French, and Quinn 
2000). Conceptually, this makes the architecture of an autoencoder 
highly  suitable for modeling the semantics of constructions as construc-
tions are argued to be generalizations over usage patterns (see Goldberg 
2006, Bybee 2010, Croft 2001). The details of the implemented model 
are discussed in Section 3. At the same time, an autoencoder is only 
one possible neural network model that can be used to model semantic 
structuring. Recently, Van de Cruys (2014) implemented a binary neural 
classifier to model the semantics of transitive constructions in English. 
In order to compare the performance of the implemented autoencoder 
as a neural model of semantic information for constructions, we reim-
plemented the binary neural classifier for Finnish, discussed in Section 
4. Thus, this allows us to directly compare the performance of these two 
types of neural models.

To evaluate and compare the performance of the neural models, two 
tasks were implemented that have been previously used to model the 
structuring of semantic information. The first is a corpus-based pseudo-
disambiguation task (Yarowsky 1993). This task makes it possible to 
evaluate the performance of a model in terms of discriminating between 
semantically plausible and implausible realizations of the object in a 
given transitive construction. The details of this task are discussed in 
Section 5. The second task used in this study is a cloze task (Taylor 
1953) and it is commonly used in experimental studies to evaluate how 
predictable a specific completion is in a given context (see Rayner 
et al. 2011, for example). The task is described in Section 6. Finally, 
we discuss the performance of the models and their conceptual basis in 
relation to usage-based models and outline possible directions of future 
research in Section 7.

 2.  Modeling the semantic information of words with Word2vec

To approximate semantic structuring in language, semantic models 
are typically trained on some corpus data. For the purposes of the present 
study, the data were extracted from the Finnish Internet  Parsebank. This 
corpus contains approximately 3.7 billion tokens (Kanerva et al. 2014). 
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The corpus is automatically tagged for syntactic and  morphological 
information. The performance of the parser is estimated to have a 
labeled attachment score of 81.4%. The resources are publicly  available 
and can be found at <http://bionlp.utu.fi>. To construct the semantic 
vector  presentation for the Finnish lexicon, we used the skip-gram 
version of the Word2vec algorithm (Mikolov et al. 2013). This type 
of model learns to predict the context words of a given target word by 
changing the activation weights of the nodes in the hidden layer. This 
type of neural model is illustrated in Figure 1.

Figure 1. A visualization of the Word2vec neural model.

Given that we are interested in modeling the semantic structure of 
the transitive construction in Finnish, we used the lemmatized version 
of the corpus as we are not interested in morphological relations of the 
transitive construction. The skip-gram model was trained on the whole 
corpus using a window size of five, i.e., up to five words before and after 
a given target word as a larger window size has been shown to more 
closely reflect global semantic information (Levy and Goldberg 2014). 
Additionally, the semantic information associated with the words were 
represented using a semantic space of 200 dimensions.  Conceptually, 
these dimensions can be understood as variables that together form the 
semantic space. All the other parameters were kept at their default value.
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Once the model is trained, it is possible to compute a measure of 
semantic similarity in this space between words using a cosine  similarity. 
Cosine similarity ranges between -1 and 1 where -1 means that two 
words are diametrically opposite and 1 when they are the same. It is 
important to emphasize that, in this context, semantic similarity refers 
to degree of similarity between words based on their shared context (see 
Turney 2006 for discussion). Importantly, words can be semantically 
similar even if they do not co-occur in a given corpus. We illustrate 
these types of semantic relations for five Finnish words with pairwise 
semantic similarities in Table 1.

Table 1. Pairwise cosine similarities for five Finnish words.

äiti valtio hoitaa lapsi tehtävä
äiti ‘mother’ 1 0,058 0,152 0,759 0,104
valtio ‘government’ 0,058 1 0,19 0,201 0,402
hoitaa ‘take care of’ 0,152 0,19 1 0,202 0,246
lapsi ‘child’ 0,759 0,201 0,202 1 0,261
tehtävä ‘task’ 0,104 0,402 0,246 0,261 1

In Table 1, the diagonal is always one because the usage pattern 
of a given word is always identical to itself. The results indicate that 
äiti ‘mother’ is estimated to be highly semantically similar to lapsi 
‘child’, as expected, and dissimilar to tehtävä ‘task’. In terms of tran-
sitive constructions, it is now possible to estimate pairwise similari-
ties between lexical realizations of the arguments in a given transi-
tive construction. This model serves two purposes. First, we can use 
this semantic vector representation of words to estimate the pairwise 
semantic similarities among words in transitive constructions. For 
example, to represent the lexical realization of äiti ‘mother’ as a subject 
in a transitive construction relative to the realization of the object such 
as lapsi ‘child’. Second, we can use this type of semantic vector repre-
sentation of words as input for other neural models. For the purposes 
of the present study, the latter property is the most important because 
we can use these vectors to model the whole semantic structuring of the 
transitive construction. To achieve this, two neural models were imple-
mented and these are discussed in the following two sections.
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3.  Modeling the semantics of transitive constructions with an 
autoencoder

For the purpose of the present study, an autoencoder-based neural 
network architecture (AE) was implemented (Hinton and Zemel 1994, 
Bengio 2009). A simple autoencoder is a three-layer neural network 
where the input and the output are directly connected. The implemented 
model is visualized in Figure 2. This type of model first encodes the 
input in a lower dimensional space (hidden layer) and then tries to 
reconstruct the input (output layer). In our case, the model received 
as its input the word vectors of the subject and the verb, encoded them 
and, finally, reconstructed them. The semantic vectors of these words 
were estimated with word2vec as described in the previous section. The 
semantic vectors of the subject and the verb were concatenated to form a 
single vector, which was fed to a dense neural network layer with hyper-
bolic tangent activation and an output size of 200, the same size as a 
single word vector. The second part of our model architecture consists of 
the mapping function for the object. Given the encoded semantic vectors 
of the subject and verb, the model predicts the semantic vector of the 
object. Importantly, the realizations of the object were never given as an 
input for the model. Similarly, hyperbolic tangent was used as an acti-
vation function for this layer. In this respect, our system could be seen 
as a mapping in the vector space from the subject and verb vectors into 
their most probable object vector. In this model, the estimated semantic 
similarity of the mapped object is always relative to the subject and the 
verb slots. Following a standard practice, the network, implemented in 
Keras (Chollet 2015), was trained to minimize the mean squared error 
of these three vectors. The training data contained 1,428,439 unique 
transitive triplets consisting of a subject, verb and object.

Figure 2. A visualization of the implemented autoencoder model.
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The model both reconstructs the original subject and verb word 
vectors, and also produces a predicted word vector for the object. 
Since the model predicts an object which is based on examples on the 
training corpus, we can use the distance between the predicted, mapped 
object vector, and an arbitrary object vector to model the semantic fit 
of a given lexical realization of the object in a transitive construction. 
This semantic fit can be expressed using a cosine similarity between 
the predicted object vector and the semantic vector of the object. We 
 illustrate the semantic structure learnt by the AE with the verb hoitaa 
‘take care of’ in Table 2. The left side of the table contains the estimated 
six closest semantic neighbors for the object when the subject slot was 
filled with äiti ‘mother’. On the right side, the semantic neighbors are 
given for the object when the subject slot was filled with hallinto ‘gover-
ment’. Additionally, the cosine similarity for the six closest semantic 
neighbors is provided in the table.

Table 2. Estimated best objects with the autoencoder based on the 
realization of the subject argument with the verb hoitaa ‘take care of’.

äiti hoitaa hallinto hoitaa
Object Cosine 

similarity
Object Cosine 

similarity
lapsi ‘child’ 0,662 tehtävä ‘task’ 0,772
vauva ‘baby’ 0,642 käytäntö ‘practice’ 0,665
vanhempi ‘parent’ 0,597 asia ‘thing’ 0,659
koira ‘dog’ 0,568 perustehtävä ‘basic task’ 0,655
perhe ‘family’ 0,568 toimenpide ‘procedure’ 0,653
koti ‘home’ 0,55 toimi ‘deed, post’ 0,641

At least from a qualitative perspective, the implemented model 
appears to be capable of modeling selectional preference in simplex 
transitive constructions as the semantic fit of the object is modulated 
by the realization of the subject and the verb as expected. However, the 
goal of this study is to test how well the implemented model generalizes 
across different tasks. Before evaluating the performance of this model, 
we will introduce a previously implemented neural network model in 
the following section. In this way, it is possible to compare the impact 
of different architectures on modeling semantic similarity relations in 
Finnish transitive constructions.



  Autoencoder and selectional preference   101

 4.  Modeling the semantics of transitive constructions with a 
binary neural classifier

To contrast the performance of the autoencoder, we also imple-
mented a binary neural network classifier (BiNN) based on the work 
of Van de Cruys (2014). Van de Cruys (2014) used this architecture to 
model selectional preference in English, i.e., the realization of the object 
in a transitive construction. The architecture is visualized in Figure 
3. Similar to the AE, this model was trained on the semantic vectors 
estimated with the word2vec and the model was also implemented in 
Keras. The structure of the BiNN is a feed-forward neural network, 
which receives as its input word vectors consisting of a triplet, i.e., the 
subject, verb and object. During the training of the model, these vectors 
were fed into a dense neural network layer consisting of 200 neurons 
and the output of this hidden layer was fed to another neural network 
layer with a single output, ranging from zero to one. Because the output 
value is a measure of probability, we can use this model to evaluate and 
rank subject-verb-object triplets on their meaningfulness.

Figure 3. A visualization of the implemented binary neural 
 classifier (BiNN) after Van de Cruys (2014).

There are, however, critical differences between these two architec-
tures implemented in this study. The first difference concerns the number 
of inputs available in the models. The AE predicts the object vector 
based on the combination of a subject and verb vector. In contrast, the 
predictions of the BiNN are based on the whole triplet, i.e., subject, verb 
and object. The second difference concerns the estimates. The BiNN 
produces a single estimate of goodness-of-fit whereas the AE produces 
an estimate for the object given the semantic structure of the subject 
and the verb. The third difference concerns the training of these models. 
The AE was only trained on positive instances. In contrast, the BiNN 
is a binary classifier and requires that the input for the model explicitly 
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contain both positive and negative instances in order for this type of 
model to learn representations. We followed the same training proce-
dure as was used in Van de Cruys (2014). To reconstruct false instance 
of the transitive construction, we implemented the same procedure as 
in the case of the pseudo-disambiguation task described in Section 
5. For example, the training data contained pairs of attested triplets 
such as subject mies ‘man’, verb dokata ‘booze’ and object sossuraha 
‘social security money’ and unattested instances in which the object was 
replaced with a random object such as rikollispomo ‘kingpin’. Thus, the 
AE was only trained on the attested instances of the transitive construc-
tion whereas the BiNN also received false instances.

5 .  Experiment 1: pseudo-disambiguation task

To evaluate the performance of the neural network models, we 
implemented a pseudo-disambiguation task (see Yarowsky 1993) as it 
has been previously used to model selectional preference in English 
transitive constructions (Van de Cruys 2014, Erk, Padó, and Padó 
2010). The task itself is effectively a binary classification task where 
the performance of the a given model is evaluated in terms of its ability 
to discriminate between true and false objects in a given transitive 
construction. This is a purely corpus-based task but it can be understood 
as mimicking a plausibility rating task were participants are asked to 
rate the goodness-of-fit of a given object in a sentence (see Rayner et al. 
2004 for example).

In order to implement the task, we first created a corpus of lemma-
tized triplets consisting of a subject, verb and object extracted from the 
Finnish Internet Parsebank. In total, this corpus contained 2000 lemma-
tized triplets, for example subject mies ‘man’, verb dokata ‘booze’ and 
object sossuraha ‘social security money’ and all verbs were unique in 
these transitive constructions. Importantly, these instances were not 
part of the data set used to train the neural networks in order to avoid 
overfitting, i.e., a model simply learned the distributional properties of 
the training data but cannot properly generalize to unseen data. In the 
pseudo-disambiguation task, the objects of these triplets are considered 
as the true instances. In order to create the false instances, we extracted 
all the objects from the triplets to form a corpus of possible objects. 
In the pseudo-disambiguation task, the true object of a given transi-
tive construction is replaced with an object selected at random from the 
corpus of possible objects, for example subject mies ‘man’, verb dokata 
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‘booze’ and object rikollispomo ‘kingpin’. In this vein, the task tests 
whether the models can discriminate between these two types objects 
by selecting the true/original object of a given transitive construction.

For the purposes of the present study, we implemented two versions 
of this task. In the first one, the false objects are assigned at random. We 
will refer to this as the random condition. In the second one, not only are 
the object assigned at random but they were also matched in frequency 
(see Dagan, Lee, and Pereira 1999). We will refer to this as the matched 
condition. Count-based models such as HAL have been shown to be 
highly sensitive to differences in frequency distributions (Shaoul and 
Westbury 2010). The inclusion of the latter condition allows us to see 
the possible impact of frequency on the performance of the models. 
However, it is currently unclear whether frequency also influences the 
performance of word2vec. At the same time, it is worth pointing out that 
naturally occurring linguistic elements are not balanced in frequency but 
the matching condition, nonetheless, enables us to evaluate the potential 
impact of frequency (see also Erk, Padó, and Padó 2010: 737–738, for 
discussion).

In order to make the possible contribution of frequency even more 
tangible, we implemented a simple fallback n-gram model (Ngram) 
for the pseudo-disambiguation task. This model first attempts to 
 discriminate between the true and false object based on a trigram (SVO) 
frequency. In the case that the trigram frequency is not observed in the 
corpus, this model falls back to a bigram frequency (verb and object) 
and, finally, to a unigram frequency (object) if the bigram frequency 
was not covered in the corpus. These frequency counts are based on 
the whole Finnish Internet Parsebank. For this corpus-based task, this 
n-gram model also serves as a baseline. In sum, the following models 
were evaluated in this task: 1) n-gram (Ngram), 2) word2vec-based 
pairwise similarity between the subject and the object  (Word2vec_
SO), 3) word2vec-based pairwise similarity between the verb and the 
object (Word2vec_VO), 4) an autoencoder (AE) and 5) a binary neural 
 classifier (BiNN).

5 .1.  Evaluation of the models in a pseudo-disambiguation task

Given that the false objects were sampled at random, the pseudo-
disambiguation task was repeated 1000 in each condition as this also 
allows us to construct confidence intervals for accuracy (Efron and 
Tibshirani 1993). For the vector-based models, the correct instances 
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corresponded to those cases where a given model assigned a higher 
cosine similarity to the true object relative to the false one. In the case 
of the fallback n-gram model, the difference in frequency was used as a 
measure of accuracy where the correct instances correspond to the true 
object that received a higher frequency. Finally, in the case of BiNN, a 
classification was considered correct if it received a higher probability 
than the false instance. To evaluate the performance of the models in 
this task, we report the average classification accuracy, i.e., the average 
accuracy of a particular model in a given run over the 2000 triplets. The 
distribution of the classification accuracy of the models is visualized in 
Figure 4 using a violin plot that combines a boxplot and a density plot.

Figure 4. A zoomed in violin plot for the distribution of the 
classi fication accuracy of the models in the pseudo-disambigua-
tion task across the two conditions. Each condition was repeated 
1000 times.

In general, the results show that all the models performed well above 
chance which would correspond to an average classification accuracy 
of 0.5. Additionally, all the models obtained the best performance in 
the random condition. The density plots indicate that all the models 
appeared to be fairly consistent as the peak of the distributions is located 
around the median classification accuracy (bar inside the boxplot). In 
terms of the random condition, the AE achieved the highest average 
classification accuracy (M = 0.923, 95% CI [0.914, 0.933]) compared 
to all the other models. The BiNN obtained the second best performance 
(M = 0.905, 95% CI [0.894, 0.916]) and the difference, albeit small, 
between it and the AE was statistically significant, t(1944.8) = 80.2, 
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 p < .001. Importantly, both neural network models outperformed 
the simple Ngram model and the two purely vector-based models in 
this task, although the average classification accuracy of the Ngram 
model was not overly poor, M = 0.906, 95% CI [0.9, 0.912]. Inter-
estingly, both of the simple vector-based models were outperformed by 
the other models: cosine similarity between the subject and the object 
(Word2vec_SO) or between the verb and the object (Word2vec_VO). 
At the same time, the results suggest that a relatively decent average 
classification accuracy can be obtained even by simply computing the 
similarity between the subject and object, M = 0.811, 95% CI [0.797, 
0.824], in the random condition.

In terms of the matched condition, all the models performed worse 
than in the random condition. However, the performance of the AE 
dropped drastically, M = 0.828, 95% CI [0.816, 0.842], in contrast 
to the BiNN, M = 0.893, 95% CI [0.883, 0.905]. In this respect, the 
BiNN appears fairly immune to differences in frequency distributions, 
although the difference in the average classification accuracy between 
the matched and the random conditions was statistically significant 
even with the BiNN, t(1996.2) = –44.469, p < .001. As expected, a 
similar decrease in performance was observed with the Ngram model, 
which only reached an average classification accuracy of 0.781 (95% 
CI [0.768, 0.794]), although it outperformed both purely vector-based 
models.

5. 2.  Discussion

The results of the pseudo-disambiguation task showed that an excel-
lent average classification accuracy can be obtained with distributional 
models of semantics and, importantly, the models also appear to be 
consistent in their predictions. In this experiment, we included two pure 
semantic vector models based on the word2vec algorithm (Word2vec_SO 
and Word2vec_VO) as these can be viewed as serving as a baseline for 
distributional models of semantics. The former model is based on the 
semantic similarity between the subject and the object and the latter on 
the similarity between verb and the object. The results of these semantic 
vector models demonstrate that these types of models are capable of 
learning basic semantic structures. Specifically, subject and object argu-
ments of a transitive construction appear to be in closer proximity in 
the vector space than verbs and object arguments as expected since 
these arguments tend to be realized as nominals. This indicates that 
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the word2vec model has implicitly learnt basic part-of-speech informa-
tion based on similar usage patterns of words in a text, as the under-
lying model has never seen information associated with part-of-speech. 
Given a large enough corpus, the word2vec model appears to be able to 
learn similarity relations among words and, importantly, abstract over 
them. Interestingly, the results presented here show that by combining 
these semantic vector models with neural networks, even better average 
classi fication accuracy can be obtained, at least in the pseudo-disam-
biguation task. At the same time, this is to be expected as both the AE 
and the BiNN have access to a greater amount of information, specifi-
cally to the semantic vectors associated with the verbs (see Erk, Padó, 
and Padó 2010 for discussion).

Our AE model showed the best performance in the random condi-
tion, indicating that this architecture is fully capable of generalizing to 
unseen data and outperformed the BiNN model. Importantly, both of the 
neural network models outperformed the simple fallback n-gram model 
in this task. This suggests that by combining the semantic vectors asso-
ciated with the subject and the verb, these models learn a vector repre-
sentation that affords a meaningful mapping to the object argument. In 
this way, the model appears to capture a low-level semantic representa-
tion of a transitive construction. For example, in the case of the verb 
hoitaa ‘take care of’, the realization of the subject argument influences 
the semantic fit of the object argument. Surprisingly, the AE model 
showed a drop in performance when the frequency of the objects was 
matched but this was not the case with the BiNN. Given that both of the 
neural network models were trained on the same semantic vectors, this 
difference is unlikely to be simply related to frequency distri butions. 
The simplest explanation for this difference is most likely related to 
the amount of information available to a given model. The AE model 
was only trained on positive instances whereas the BiNN was explic-
itly trained also on negative instances. This appears to offer a greater 
degree of discriminatory power. Another possibility could be related 
to the semantic structuring learnt by the AE. Specifically, the model 
predicts the most probable object vectors. In case of low frequency 
objects, both true and false instances could be located further away 
from the predicted most probable object vector, making it difficult to 
discriminate between them. We will leave this type of investigation for 
future studies. However, it is also possible that the predictions of these 
models are qualitatively different. We will investigate this  property of 
the models in the following cloze task.
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6.   Experiment 2: cloze task

Another aspect related to goodness-of-fit is the lexical predictability 
of a given item in a sentence. Lexical predictability has been shown 
to influence language processing in experimental studies as measured 
by eye-movements and event-related brain potentials (Ehrlich and 
Rayner 1981, Kutas and Hillyard 1984). A commonly used method to 
measure lexical predictability is a cloze task in which people are asked 
to complete a given sentence and the probability that a particular lexical 
item was used as a completion is referred to as cloze probability (Taylor 
1953). In order to implement the present cloze task, several measures 
were taken. First, 5000 transitive verbs were extracted from the Finnish 
Internet Parsebank. Second, these verbs were divided into three quantile 
groups based on frequency. Third, we sampled 50 verbs from each of 
the three quantile groups, i.e., 150 verbs in total. These two measures 
were taken to ensure that a wide range of verbs based on frequency was 
included in the cloze task. Fourth, for each verb we constructed subject 
arguments that referred to human and each subject argument was unique 
in the task. Fifth, all of the verbs were presented in imperfect tense, for 
example subject tutkija ‘researcher’ and verb kloonasi ‘cloned’.

For a typical cloze task, participants are instructed to produce a single 
completion. However, it is plausible that typical transitive construc-
tions tend not to be highly constrained lexically, reducing cloze prob-
ability. Therefore, there might be multiple possible completions for a 
given combination of subject and verb, thus creating noise (see Shaoul, 
Baayen and Westbury 2014: 440–441, for discussion). In order to 
reduce this potential source of noise, the participants were instructed to 
produce three completions for a given combination of subject and verb 
(see Federmeier et al. 2007). We will refer to these preference groups 
simply the first, the second and the third. Given that this procedure 
increases the time required to complete the experiment, the 150 verbs 
were first randomized and then divided into three list, each containing 
50 combinations of subjects and verbs. Thus, each participants produced 
150 completions. We used an on-line questionnaire to collect the 
completions, with each participant providing completions for a single 
list. In total, 69 participants (Age: M = 28.1, SD = 14.3, 12 men) from 
across Finland voluntarily took part in the experiment. The participants 
appeared to represent a diverse population as they reported 44 different 
birth places and 17 different current places of living and an average year 
of education of 17.7 (SD = 3.42). Each list had 23 participants and, in 
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total, 10,350 completions were produced. The completions were auto-
matically lemmatized and morphologically tagged using the software 
OMorFi (Pirinen 2011). After which, the results were manually verified 
and cleaned by removing words containing typographical errors (less 
than 1% of the data). For the purposes of the present study, we only 
included in the final data set those instances that can be considered to 
function as objects in the transitive construction excluding, for example, 
adverbs. The final data set contains 9681 completions.

For the purposes of this study, we present two analyzes of the data 
in which the performance of the vector-based models are compared 
to the productions in the cloze task. The first one concentrates on the 
correlation between the estimated semantic fit by the models and cloze 
probability discussed in Section 6.1. Cloze probability reflects the prob-
ability of producing a particular lexical item for a given combination 
of the subject and verb. For example, in case of isoveli asensi ‘the big 
brother installed’ the most probable object was lamppu ‘lamp’ with a 
cloze probability of 0.09. The second one focuses on the frequency 
of producing a given object for a particular transitive construction 
presented in Section 6.2. In this respect, this variable can be understood 
as measuring subjective frequency that has been shown to influence, 
for example, processing times similar to objective frequency (Balota, 
Pilotti, and Cortese 2001). It is plausible that cloze probability does not 
necessarily capture production preferences in its totality for transitive 
constructions that are associated with low lexical predictability.

6. 1. Model estimates and cloze probability

For these data, the cloze probability was calculated separately for 
each of the preference groups as the participants were instructed to 
produce three completions in order of preference. For example, the 
following combination of the subject and verb lääkäri amputoi ‘the 
doctor amputated’ was most often completed with the word jalka ‘foot’, 
n = 20, in the first preference group. Thus, the cloze probability for this 
realization is showing a high degree of lexical predictability for this 
particular combination. In general, cloze probability values between 0.7 
and 0.9 are considered to indicate high lexical predictability whereas 
values 0.1 and less are taken to indicate low predictability. We illustrate 
completions associated with high and low cloze probability in Table 3. 
In the case of the amputate event, the produced completions indicate a 
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high degree of lexical specificity in the first preference group as only 
two lexical realizations were produced.

Table 3. High and low cloze probability completions for two transi-
tive constructions.

lääkäri amputoi ‘the doctor amputated’
Object Cloze probability
jalka ‘foot’ 0.87
raaja ‘limb’ 0.13

puuseppä aitasi ‘the carpenter enclosed’
object Cloze probability
piha ‘yard’ 0.35
alue ‘area’ 0.13
pelto ‘fi eld’ 0.90

The distribution of the cloze probability across the preference groups 
is visualized with a boxplot in Figure 5.

Figure 5. The distribution of the cloze probability across the three 
preference groups in the cloze task. The horizontal line indicates 
the cloze probability value of 0.1.
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The distribution of the cloze probability across the preference groups 
indicates that most of the transitive constructions used in this experi-
ment, do not appear to pertain to semantic domains with a high degree 
of lexical specificity as the mass of the probability distribution is located 
below the threshold value of 0.1. Only certain lexical combinations 
evoked a high cloze probability. These extreme values of the cloze prob-
ability are depicted with a dot in the figure. Out of the 150 verbs only 13 
were associated with a cloze probability value equal to or greater than 
0.7, such as tyrehdyttää ‘suppress’, raottaa ‘open slightly’ and jynssätä 
‘scrub’. Additionally, the distribution clearly brings forth the nature of 
the task, i.e., cloze probability steadily declines when moving from the 
first preference group to the third. For most transitive events there are 
multiple possible lexical completions for objects and only those events 
which appear to be associated with a higher degree of lexical specificity 
such as the amputation event, do we find high values of cloze prob-
ability. Consequently, this demonstrate that cloze task is an expensive 
task; hundreds of participants would be required to obtain stable esti-
mates for cloze probability for transitive events in general (see Shaoul, 
Baayen, and Westbury 2014 for discussion).

For the purposes of the present study, we focus on the lexical 
completions for the objects that had the highest cloze probability in 
the first preference group as this set appears to be the most stable, as 
expected. Thus, we extracted the highest cloze probability associated 
with the object in a given combination of the subject and verb allowing 
us to evaluate the degree of correspondence between the distributional 
models and average subjective preference indexed by the cloze prob-
ability. Given that the BiNN is a binary classifier, we used the predicted 
probability for the object in a given transitive construction as a proxy for 
semantic fit. For the other distributional models, cosine similarity was 
used as a measure of semantic fit. For all four distributional models, a 
Pearson correlation was calculated between these measures of semantic 
fit and the cloze probability. The results are given in Table 4.

Table 4. Pearson correlation coefficients between the model estima-
tes of selectional preference and cloze probability.

Model r Lower bound Upper bound P-Value
AE 0.35 0.29 0.49 < 0.001
BiNN 0.31 0.16 0.45 < 0.001
Word2vec_VO 0.29 0.14 0.44 < 0.001
Word2vec_SO 0.26 0.09 0.39 < 0.001
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The results showed that all the models captured some facets of cloze 
probability in this task as all the estimated correlations were statistically 
significant. Additionally, all the correlations displayed the expected sign 
where an increase in cloze probability was positively correlated with 
an increase in semantic similarity in the distributional models and, in 
the case of the BiNN, with increased probability. The AE achieved the 
highest correlation with cloze probability compared to all other models 
investigated in this study. Finally, we evaluated the difference in the 
correlations between the AE against all the other models based on Fish-
er’s r-to-z transformation (Cohen and Cohen 1983). Although numeri-
cally the estimated correlation with the AE was the highest, the differ-
ences were not statistically significant as all p-values were greater than 
0.05 at the nominal α-level of 0.05. In sum, the results show that the 
different methods implemented in this study to model semantic simi-
larity are correlated with cloze probability. This demonstrates that these 
models are able to capture, at least, certain aspects of lexical predict-
ability.

 6.2.  Model estimates and cloze frequency

To further evaluate the fit of the models and the productions in a 
cloze task, we calculated the frequency of the lexical completions for 
the objects across the three preference group for a particular combina-
tion of subject and verb, for example, the frequency of the completions 
for the combination tutkija kloonasi ‘the researcher cloned’. From this 
set, the realization with the highest frequency was extracted. We will 
refer to this measure as cloze frequency. Thus, the difference between 
these two constructs is how well they can approximate lexical predict-
ability. It is worth pointing out that the lexical items are the same when 
calculated either based on cloze frequency or cloze probability.

The results indicated that the cloze frequency displayed a greater 
variation than the cloze probability for these transitive constructions, 
M = 13.18, SD = 5.74. This suggests that cloze frequency might be a 
better construct for constructions with lower lexical predictability.

Similar to the evaluation of cloze probability, we calculated Pearson 
correlations between the semantic similarity measures estimated with 
the implemented models and the cloze frequency. The results are given 
in Table 5.
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Table 5. Pearson correlation coefficients between the model estima-
tes of selectional preference and cloze frequency.

Model r Lower bound Upper bound P-Value
AE 0.45 0.31 0.57 < 0.001
BiNN 0.35 0.2 0.48 < 0.001
Word2vec_VO 0.34 0.19 0.47 < 0.001
Word2vec_SO 0.2 0.04 0.35 0,015

Similar to the results presented in Section 6.1 for cloze probability, 
all the estimations of semantic fit were correlated with cloze frequency 
and were statistically significant. Additionally, these correlations 
displayed the same pattern were higher cloze frequency was positively 
correlated with increase in semantic fit, as expected. Interestingly, the 
estimated correlations indicated, however, a considerably better corre-
spondence between the models and cloze frequency in contrast to cloze 
probability, although the correlation with Word2vect_SO was numeri-
cally lower. It seems that cloze frequency appeared to approximate 
lexical preference better in comparison to cloze probability, at least for 
these data. Finally, we evaluated the statistical significance of the differ-
ence between the models, similar to the evaluation procedure for cloze 
probability. The results indicated that only the difference between the 
AE and the Word2vec_SO was statistically significant, p = 0.015, at the 
nominal α-level of 0.05.

 6.3.  Discussion

We investigated the correspondence between the implemented 
models and two subjective measures of lexical predictability estimated 
based on a cloze task. In the task, the participants were instructed to 
produce three completions in order of preference for a given transitive 
construction, for example tutkija kloonasi ‘the researcher cloned’. This 
design was implemented to obtain a large number of completions for a 
particular transitive construction and possibly stabilize the estimates in 
the task. For the purposes of the present study, two subjective measures 
of lexical predictability were constructed, specifically cloze probability 
and cloze frequency. The former was constructed based on the prob-
ability of producing a given lexical item in the first preference group 
and the most probable completion was used to index cloze probability. 
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This is the commonly used construct in experimental studies. The latter 
measure was calculated over all the three preference groups and simply 
represents the frequency of occurrence of a particular completion with 
a given combination of the subject and verb. The results showed that 
although both of the constructs selected the same lexical items, cloze 
frequency appeared to offer a better fit, at least for these constructions.

The analysis indicated that all the implemented models were corre-
lated with the subjective measures of lexical predictability, although 
the correlation between the cloze frequency and the cosine similarity 
between the subject and the object was not statistically significant. 
Additionally, the analysis based on the correlations implied that the AE 
offered the best fit to these data. The difference between the AE and the 
BiNN, however, was not statistically significant. This is most likely an 
issue of statistical power and a larger number of transitive constructions 
would be required.

Interestingly, the results presented in the previous sections suggest 
that there are distributional differences between the cloze probability 
and the cloze frequency, although both subjective measures selected 
the same lexical items. This appears to be the case at least for transitive 
constructions associated with low lexical predictability. To gain a better 
understanding of the correspondence between the model estimates and 
the subjective measures, we visualized the distributions in Figure 6. 
The density plots are given on the inherent scale of a given measure; 
it should be noted that scaling the distributions did not influence the 
shape of the distributions. The cloze probability ranges between 0 and 
1 and the cloze frequency is simply a count variable. The estimates of 
the BiNN also range between 0 and 1 as it is a binary classifier. The 
other neural network models are all based on cosine similarity ranging 
between -1 and 1. For the purposes of the present study, the impor-
tant aspect is the shape of the distribution (see Griffiths et al. 2007 for 
discussion about distributions and categorization).

The visualization of the distributions brings forth the functional form 
learnt by the neural models. As the BiNN is a binary classifier, the mass 
of the distribution is located around 0.9 and 1 as all these completions 
are plausible and, importantly, suitable completions for these transitive 
constructions. In contrast, the functional form estimated with the AE 
appears to follow a normal distribution and the mass of the distribution 
is located around the value 0.5.
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Figure 6. The distribution of the estimated lexical preferences 
across the models in the cloze task in comparison to cloze prob-
ability and cloze frequency. The distributions are given on the 
inherent scale of a given model.

Given that the AE has access to more information compared to the 
two word2vec models, the distribution of the cosine similarity appears 
to be shifted more towards 1, indicating a better completion. In terms of 
the subjective measures, we can see that the shape of the distribution 
estimated with the cloze frequency is closer to the cosine similarities. It 
seems that people tend to produce similar completions in a cloze task, 
as expected, but for less predictable completions this systematicity is 
not reflected in the cloze probability unless the participant pool were 
considerably larger. In contrast, the cloze frequency appears to offer a 
smooth distribution across the productions. This appears to make the fit 
better between the cloze frequency and the model estimates.
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7 .  General discussion

In this study, we explored the use of semantic vectors in modeling 
the semantic structure of transitive constructions in Finnish. This type 
of argument structure constructions follows the semantics of who did 
what to whom. Specifically, we focused on modeling the lexical real-
ization of the object, i.e., selectional preference, for example tutkija 
kloonasi X ‘the researcher cloned X’ where the X denotes the lexical 
realization of the object. Intuitively, it is clear that the object can be 
filled with a number of different lexical realizations and the semantic 
fit of a given realization forms a continuum. Related to this, usage-
based models emphasize the role of semantic similarity in the forma-
tion of the structure of argument constructions (Bybee 2010, Goldberg 
2006). Importantly, these types of models assume that semantic infor-
mation and, ultimately the structuring of the mental lexicon, is shaped 
by  experience. The role of experience is connected to the concept of 
distributional properties where the structuring of a given construction 
is connected to the context in which it occurs. These types of co-occur-
rence patterns form the basis of distributional models and they have 
a long traditional in cognitive science to model semantic information 
(Lund and Burgess 1996, Landauer and Dumais 1997). In this respect, 
distributional models of semantic structure follow the same fundamental 
assumptions of usage-based models. Recent developments in distribu-
tional models, however, have shifted away from counting co-occur-
rences to predicting them using neural networks such as the word2vec 
model. Here, we extended this line of investigation by implementing an 
autoencoder-based neural network to model selectional preference in 
the Finnish transitive construction. Specifically, in this model, the reali-
zation of the object in the  transitive construction is achieved through 
mapping in semantic space. This mapping function can be viewed as 
forming an abstract representation for the object given the realization 
of the subject and the verb in the transitive construction. In this study, 
we took the first steps in evaluating the performance of this model in a 
pseudo-disambiguation and cloze task. Additionally, we contrasted the 
performance of the AE model relative to a binary neural classifier and 
word2vec.

In the pseudo-disambiguation task, the AE offered the best perfor-
mance when the objects were not matched in frequency. Interestingly, 
both the AE and the BiNN outperformed a purely frequency-based 
model in this task. Importantly, people have been shown to be sensitive 
to differences in frequency distributions, even in the case of multi-word 
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units. For example, Arnon and Snider (2010) showed that people read 
multi-word phrases faster when the unit as a whole is more frequent 
(see also Tremblay and Baayen 2010 for EEG results). However, this 
raises the question about the size of the mental lexicon as is discussed, 
for example, in Baayen, Hendrix, and Ramscar (2013). If people store 
distributional information associated with multi-word units as such, in 
addition to word frequency information, the size of the mental lexicon 
is drastically increased. In this respect, both of the neural networks 
offer a more economical model of semantic memory compared to a 
purely frequency-based model because these types of models smooth 
the semantic space. In the case of the AE, the subject and the verb are 
represented by a layer of 200 neurons. This is an additional smoothing 
because the underlying word2vec model already represents the semantic 
space as a smooth distribution.

Interestingly, we saw a reduction in performance with the AE when 
the objects were matched in frequency, although naturally occurring 
realizations of the transitive construction are unlikely to be matched 
in frequency. In contrast, the BiNN displayed only a minor reduc-
tion in performance. This results indicated that the AE was substan-
tially more sensitive to difference in the distributional properties of the 
input. Furthermore, the BiNN also has access to a greater amount of 
information compared to the AE as it was explicitly trained on nega-
tive instances. This leads to an important difference in the architec-
ture between these two models, specifically, in terms of the concep-
tual basis of how semantic memory is structured. The use of negative 
evidence is problematic if a model is assumed mirror, at least up to a 
degree, the formation of semantic memory. It is highly unlikely that 
during language acquisition people are exposed to negative evidence to 
the extent that the positive and the negative evidence are balanced (see 
Ambridge et al. 2009, Bowerman 1988). From this perspective, the AE 
offers a cognitively more plausible model of semantic memory.

A cloze task was implemented in this study to further evaluate the 
performance of the models. A cloze task is often used to measure the 
degree of lexical predictability in a particular construction in experi-
mental studies. Additionally, the role of cloze probability has been 
shown to influence reading times, for example (see Matsuki et al. 2011, 
Rayner et al. 2004). From this perspective, it is desirable to estimate the 
degree of correspondence between models of semantic fit and subjective 
estimates. Two subjective measures were constructed for the purposes 
of the present study, namely cloze probability and cloze frequency. The 
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results showed for low predictability constructs the cloze frequency 
might offer a better estimate for the degree of lexical predictability 
compared to the traditional measure of cloze probability. Importantly, 
the analysis indicated that all the implemented models captured certain 
aspects of these two subjective estimates. Additionally, the AE offered 
the best fit to the data, although the correlations were only statistically 
significant between the AE and the pairwise semantic similarity between 
the subject and object.

Intuitively, it seems clear that the frequency of use in itself cannot be 
the only factor driving semantic fit. In the case of the transitive construc-
tion, it is conceivable that certain realizations of the object may not be 
frequent but can belong to the same semantic domain as a frequent reali-
zation, for example (see Goldberg 2006, Barðdal 2008). We illustrate 
this possibility with the transitive construction tutkija kloonasi X ‘the 
researcher cloned X’ and lääkäri amputoi X ‘the doctor amputated X’. 
The former appears to represent a lexically more open-ended event type 
compared to the latter. This is also reflected in the number of unique 
completions produced in the task for these combinations of the subject 
and the verb; see Appendix for the full list. For example, the participants 
produced such completions for the tutkija kloonasi X ‘the researcher 
cloned X’ as ihminen ‘human’, itse ‘oneself’, koira ‘dog’ and hevonen 
‘horse’. This suggests that there is more structure in the data than is 
actually reflected either in cloze probability or cloze frequency for these 
completions. To bring forth this type of structuring, we extracted the 
semantic vectors for these completions and visualized them using t-SNE 
via Barnes-Hut algorithm (Van Der Maaten 2014) and the visualization 
is given in Figure 7. Additionally, we included for both constructions 
the mapped semantic vector of the object estimated with the AE denoted 
with the label mapped in the Figure 7.

The similarity relations among the objects appear to form small 
clusters indicating the presence of semantic subdomains as have been 
previously proposed for argument structure constructions (Goldberg 
2006, Barðdal 2008). The amputate event appears to contain two clus-
ters and the clone event three or four. Additionally, the visualization 
highlights the properties of the AE. The semantic structure learnt by the 
AE represents low-level generalizations over event structures as advo-
cated in constructionist approaches to argument structures (see Suttle 
and Goldberg 2011 for recent discussion). The mapped object repre-
sents an abstraction over the distributional properties associated with the 
lexical realization of the object with a particular relation of the transitive 
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construction. As supported by the results of this study, this type of repre-
sentation of semantic information is suitable for modeling plausibility 
and predictability of lexical items. These results strongly support the 
view that the AE offers an attractive model for estimating the semantic 
fit of particular constructions.

Figure 7. Visualization of the semantic similarity relations 
among the objects produced in the cloze task for two transitive 
constructions in vector space using word2vec. The mapped object 
of these two constructions predicted by the AE is indicated with 
the label mapped and a filled dot. The translations for the objects 
are provided in Appendix.

In this study, we have, however, only focused on the realization of the 
object in a transitive construction. Furthermore, we utilized only corpus 
and off-line data in the evaluation of the models. Off-line tasks such 
as the cloze task are known to be sensitive to decision processes. For 
example, cloze probability is known to be modulated by the frequency 
of the word itself, among other variables (see Smith and Levy 2011 for 
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discussion). To further substantiate the results presented here, the evalu-
ation of the models should be carried out based on tasks that are not or 
are, at least, less sensitive to decision processes. We are currently evalu-
ating the performance of these models relative to online processing of 
transitive constructions using eye-tracking. This method offers an online 
measure associated with processing cost that are not influenced by deci-
sion making processes. This allows us to compare the performance of 
the AE and the BiNN in relation to online processing. We will, however, 
leave this type of inquiry for future studies.

8.  Conclusion

We presented a neural network, i.e., an autoencoder, for modeling 
the semantic structure of transitive constructions in Finnish. The model 
received as its input semantic vectors based on the word2vec algorithm 
and the architecture of this model consists of two parts. The first encodes 
the subject and the verb slots in a transitive construction following a 
standard autoencoder model architecture. The second part of the model 
contains a mapping function from the encoded representation of the 
subject and verb to the object. The mapping function can be understood 
as an abstract representation of the most probable object in a given reali-
zation of the transitive construction. Thus, the conceptual basis of the 
proposed model follows the basic premise of usage-based construction 
grammar by representing low-level semantic generalizations of a transi-
tive construction. In order to evaluate the performance of this model, 
we concentrated on the realization of the object in a given transitive 
construction, i.e., on selectional preference. Two tasks were imple-
mented to evaluate the performance of the proposed model: a pseudo-
disambiguation and a cloze task in Finnish. Additionally, we compared 
the performance of the proposed model to a neural binary classifier that 
has been previously used to model selectional preferences in English, to 
a semantic-based similarity measure obtained from word2vec algorithm 
and a to a purely frequency-based n-gram model. The results showed 
that the AE offered the best fit to the data in the pseudo-disambiguation 
task and it obtained the highest correlation with human productions in 
the cloze task. In sum, the results presented here take the first steps 
towards representing the semantic structure of an argument construction 
in a conceptually and computationally harmonious manner.
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Appendix: List of all the unique objects produced in the cloze for 
two subject and verb combinations

tutkija kloonasi X ‘the researcher cloned X’
Object Translation Object Translation
apina monkey lakritsi licorice
armeija armey lammas sheep
bakteeri bacteria lehmä cow
dna dna materiaali material
eläin animal mutantti mutant
geeni gene potilas patient
hevonen horse rotta rat
hiiri mouse siemen seed
hirviö monster sika pig
ihminen human solu cell
isä father tulos result
itse oneself tutkimustulos fi nding
kala fi sh varpaankynsi toenail
kohde target
koira dog

lääkäri amputoi X ‘the doctor amputated X’
Object Translation Object Translation
jalka foot osa part
käsi hand pikkurilli little fi nger
käsivarsi arm potilas patient
korva ear raaja limb
mieli mind sormi fi nger
nenä nose varvas toe
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Kokkuvõte. Aki-Juhani Kyröläinen, M. Juhani Luotolahti ja Filip Ginter: 
Autokoodril põhinev närvivõrkude mudel valikulisel eelistamisel. Intui-
tiivselt tundub, et mõned argumendid sobivad teatud predikaatidega paremini 
kokku kui teised. Kasutuspõhised keelemudelid rõhutavad konstruktsioonide 
struktuuri (nii vormi kui tähenduse) kujunemisel tähendusliku sarnasuse oluli-
sust. Selles uurimuses modelleerime soome keele transitiivsete konstrukt-
sioonide semantikat ja esitame närvivõrkude mudeli ehk autokoodri. Mudel 
põhineb distributiivse semantika hüpoteesil, mille järgi kujuneb semantiline 
info peamiselt konteksti põhjal. Täpsemalt keskendume uurimuses objektile. 
Mudelit hindame nii valeühestamise kui ka lünkülesande abil. Kõrvutame auto-
koodri tulemusi varem välja töötatud neurovõrgumudelitega ja tõestame, et 
meie mudel töötab võrreldes teiste mudelitega väga hästi. Tulemused esitame 
kasutuspõhise konstruktsioonigrammatika kontekstis.

Võtmesõnad: neurovõrk, autokooder, tähendusvektor, kasutuspõhine mudel, 
soome keel 




