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Abstract 

We present a framework for reconstructing structure of complete neural circuits 

in the brain using collections of independent measurements of connectivity 

performed with existing anatomical or functional fluorescent probes, and 

designed to provide complementary information about neural circuit’s structure 

by targeting slightly different its parts either in deterministic or stochastic 

succession. We discuss specific implementation of this procedure using 

synaptic fluorescent marker GRASP and Cre/Lox system Brainbow to collect 

ensemble of observations of the sets of synapses between stochastically labeled 

samples of neurons. By representing such measurements mathematically as 

weak constraints on circuit’s connectivity matrix and by solving a constrained 

optimization problem, we are able to exactly deduce the wiring diagram in C. 

Elegans in an in-silico experiment from only ~10,000 measurements. This 

offers possibility for routinely reconstructing complete connectivity in smaller 

organisms, such as C. Elegans, using exclusively light microscopy instruments 

over the span of single weeks.  
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 1

The problem of acquiring detailed and complete structure of neural circuits in the brain is 

the fundamental century-old challenge of neuroscience. Accurate knowledge of such 

structure is the key to testing many theoretical propositions about processing of information 

in the brain
1-3
, but also such knowledge is essential for seeking the principles of brain 

organization experimentally
4-7
. Until now, the only approach with the potential to produce 

such data was neural circuit reconstruction using serial section electron microscopy 

(ssEM)
8-15

. Although the only existing wiring diagram for a complete neural circuit was 

indeed obtained with ssEM (i.e. the circuit of about 300 neurons and 6000 synapses in C. 

Elegans
8-10, 15

), this technique is known to be extremely labor intensive, slow and 

vulnerable to errors. The abovementioned circuit in C. Elegans took over a decade to 

complete, and yet its recent revision led to changes in nearly 10% of synapses affecting as 

many as 40% of all neurons
8, 9

.  

In this paper we argue that recent developments in fluorescent connectivity probes
16-22

, 

genetic targeting techniques
23-28

 and mathematical sparse data analysis
29-31

 permit 

reconstructions of complete neural circuits using only light microscopy tools, thus, 

providing for a much cheaper, faster and more reliable alternative to ssEM. In particular, 

we show that in smaller organisms, such as C. Elegans, reconstructions of their complete 

wiring diagram may be acquired with such tools routinely over the span of single weeks. 

Unprecedented ability to produce such reconstructions fast, routinely and under variety of 

conditions should prove invaluable for neuroscience. E.g., by reconstructing a number of 

same neural circuit instances in a smaller model organism one may be able to directly 

observe conserved and variable structures there and relate them to behavior. Likewise, by 

reconstructing circuit in different mutants of the same organism one may be able to directly 

identify structural signatures of behavior anomalies, etc. 

Below we present a systematic framework for such reconstructions based on collecting 

large numbers of simple measurements of connectivity performed with existing anatomical 

or functional fluorescent probes. Different such probes should be designed to target 

different parts of studied circuit in either deterministic or stochastic succession, thus, 

offering complementary information about circuit’s structure. We recognize that each 

measurement typically will only provide limited amount of information; yet, strong 

statements about circuit’s connectivity may be made from a collection of such 

measurements by systematically representing them as mathematical constraints on the 

connectivity matrix and then resolving these “weak” constraints to identify the most likely 

circuit configuration consistent with all observations. We specifically describe how such 

procedure may be implemented using Cre/Lox system Brainbow
24
 and fluorescent synaptic 

marker GRASP
19
, and show that in organism as large as C. Elegans complete 

reconstruction of its wiring diagram will require only ~10,000 measurements, entirely 

within reach of existing technologies. Described general paradigm may be applied with 

variety of other connectivity probes including functional probes with calcium
17
 or voltage

16
 

sensitive dyes, circuit mapping with glutamate uncaging
18
 or light-gated ion channel 

ChR2
21
, transsynaptic viruses

22
, etc., and genetic targeting techniques such as mosaic 

analysis MARCM
23
 or MADM

25
 and libraries of Gal4-lines

27
. 

 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
09

.2
66

9.
2 

: P
os

te
d 

2 
M

ar
 2

00
9



 2

RESULTS 

Reconstruction of neural circuits using broad fluorescent connectivity probes  

Our approach is based on accumulation of a large number of simple measurements of 

connectivity in a neural circuit, possibly performed in different animals, each represented as 

a constraint on its connectivity matrix. Mathematically, such constraints are described with 

a probe-dependent posterior likelihood function ( )iOCP |  for the connectivity matrix C 

given one observation Oi. E.g., below we discuss circuit reconstruction procedure based on 

observation of the set of synapses between two general populations of neurons, labeled with 

fluorescent synaptic marker GRASP, and the measurement of their combined size 

represented by combined fluorescence from all observed synaptic puncta (we assume that 

fluorescence from a labeled puncta may be viewed as a proxy for synapse’s physical size). 

Each such measurement constrains C a bit – i.e. it specifies how many synapses may exist 

between two given populations of neurons. However, individually each such constraint is 

very weak – there may be many circuit configurations all consistent with single observation 

Oi. Nevertheless, by combining information from different measurements the uncertainty in 

C may be dramatically reduced. In particular, if sufficient number of measurements may be 

acquired, the connectivity matrix may be identified exactly by finding the maximum of full 

posterior likelihood on C given the measurements {Oi}, { }( )iOCP |  ~ ( ) )(| CPCOP i∏ .  

The central piece of our framework, therefore, is systematic collation of the information 

obtained about a neural circuit from multiple experiments. Because different such 

experiments may need to be carried out in different animals, essential to this framework is 

the condition that structures thus observed in different animals may be explicitly related.  

This implies description of the neural circuit in terms of certain units and connectivity 

among them that are stereotypical from animal to animal, i.e. such that may be separately 

identified in individual animals and corresponded across different animals. E.g., in simpler 

animals, such as C. Elegans, individual neurons are known to be identifiable. (In larger 

animals, however, identification of such units is not straightforward, although certain 

alternatives may exist
26
.) One may take units to be individual neurons or, more generally, 

they may be defined as genetically, anatomically or functionally identified neural 

populations. Connections between units may be characterized by counts or combined size 

of synapses formed by their neurons, strength of post-synaptic excitation in one unit given 

activity in the other, correlation in neural activity, etc. In all above cases our framework 

will be applicable; the aim of the reconstruction being the stereotypical matrix of 

connection weights between such units. 

We further focus on the use of GRASP and Brainbow genetic constructs for 

implementation of the above general paradigm. GRASP is recently developed genetic 

construct which uses so called split-GFP to fluorescently label synapses between two 

cells
19
. Split-GFP is a molecule of Green Fluorescent Protein (GFP) broken into two 

fragments which themselves do not fluoresce but recover fluorescence if brought into 

proximity and allowed to reassemble. In GRASP, split-GFP is genetically tailored to 

endogenous synaptic proteins and separately expressed in two cells. At the location of 

synaptic junctions such split-GFP reassemble, thus, rendering selected synapses visible 

with light microscope
19
. Brainbow is a genetic construct which uses Cre/Lox recombination 
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 3

system to stochastically express a set of fluorescent proteins (FP) in different cells
24
. In one 

Brainbow version, FP sequences in genome are flanked with inversely oriented loxP-sites 

and exposed to action of Cre-recombinase. With Cre, such sequences begin to randomly 

flip until a distribution of direct and inverted orientations is established. Only those cells 

where FP sequence assumed direct orientation are able to transcribe it. Livet et al. report 

that each FP typically expresses in random 50% of cells
24
. We use this Cre/Lox system with 

GRASP to express GRASP stochastically (Figure 1). Each stochastic such expression 

pattern, therefore, allows to fluorescently label a collection of synaptic puncta between two 

sets of pre- and post-synaptic neurons. To identify which cells participate in each pattern 

we need an additional helper construct. For that, we may bundle split-GFP sequence with a 

sequence for nuclei-targeted FP inside loxP bracket (Figure 1A), thus, making sure to 

always express split-GFP together with associated nuclei-targeted FP and allowing 

identification of expression patterns using thus labeled cell-nuclei. 

With the above construct, therefore, one is able to produce a variety of GRASP expression 

patterns within single genetic line and, thus, observe synapses corresponding to different 

random samples of pre- and post-synaptic neurons. Because all synaptic puncta still have 

the same color, only the total count or combined size of observed puncta in each such 

single animal constitutes the available information (assuming no prior knowledge about 

position or size of synapses). The measurement Oi, therefore, is such total count or size of 

all visible puncta from one animal. Such measurements Oi along with the identities of 

corresponding pre- and post-synaptic cells are the pieces of information we propose to 

collect. From a sufficiently large collection of these, as we show below, complete wiring 

diagram may be recovered. 

 

Determining circuit structure from collection of Brainbow-guided GRASP probes 

To understand how complete wiring diagram may be reconstructed from the above data 

consider the following scenario. Let O be a single observation of the total fluorescence 

from GRASP in one animal. On average 2][E SfO ≈ , where S is the total size of all 

synapses in the circuit and f=0.5 is the probability for one neuron to express GRASP in one 

trial with Brainbow. Now, consider two neurons A and B that are strongly connected with 

each other, and let’s pay attention to the trials where neurons A and B simultaneously 

express GRASP. If we are careful, we will notice that in such trials measurements O will be 

on average higher than 2][E SfO ≈ . This is because in each such trial a very large synapse 

between A and B will be invariably observed unlike in the rest of the measurements O. The 

stronger the connection between A and B, the stronger the deviation will be. In this way the 

information about connectivity between all neurons gets encoded in the fluctuations of 

measurement O in relation to GRASP expression patterns. The connection strength between 

any two neurons A and B may be calculated from such data specifically as 

[ ] [ ] [ ] [ ]BAOBAOBAOOC AB |E|E|EAB|E −−+= .                             (1) 

Here [ ] [ ] [ ] [ ]BAOBAOBAOO |E,|E,|E,AB|E  are the triggered averages given A and B 

simultaneously express GRASP, neither A nor B express GRASP, etc. Although Eq.(1) is 

straightforward and computationally simple, it is not practical requiring a huge number of 
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 4

trials before convergence (Figure 2A and C). Here we only discuss it to illustrate the 

principles behind encoding of information in Brainbow + GRASP. 

In reality, circuit structure may be calculated from far smaller number of such observations. 

We first observe that each measurement Oi may be viewed as a linear constraint on the 

connectivity matrix C,  

  ∑ ∑
∈ ∈

≈
)( )(iPREA iPOSTB

ABi CO ,                                                     (2) 

where summation is over the sample PRE(i) of neurons expressing pre-synaptic GRASP 

construct in animal i and the sample POST(i) of neurons expressing post-synaptic construct 

(Figure 1B). Eq.(2) is a simple representation of the information gained by observing the 

set of identically labeled synapses between two populations of neurons, assuming no 

additional knowledge about synapses’ positions or sizes. (Here we intentionally assume no 

such detailed prior, although where it is available one may write stronger constraints and 

further speedup the reconstruction.)  

Second key observation is that the connectivity matrix is sparse – e.g. in C. Elegans only 

2,000 neuronal pairs are connected out of total 80,000 possibilities
8
, and in larger animals 

connectivity gets progressively sparser. Sparseness is a powerful additional constraint; in 

particular, it can be rigorously shown that sparse matrix may be reconstructed exactly from 

only ~ �� p log  of nearly arbitrary measurements (2)
30
. �p here is the number of nonzero 

elements in the matrix and � is its size. Sought reconstruction is almost always the smallest 

l1-norm solution of the full linear problem (2). l1-norm in our case corresponds simply to 

the total strength of all synapses in the circuit S. Therefore, having acquired M observations 

{Oi}, the circuit’s connectivity matrix may be found by solving for matrix C satisfying all 

constraints (2) with the smallest total synaptic strength, and such solution will converge to 

the true connectivity matrix with the exact answer attained at M~ �� p log  observations. 

Minimizing l1-norm under set of linear constraints (2) is a standard linear-programming 

problem; it is computationally tractable. In Methods we describe few algorithms for solving 

it efficiently.  

In-silico reconstruction of complete wiring diagram in C. Elegans using Brainbow-

guided GRASP probes 

We performed a test of the above approach using in-silico model for Brainbow + GRASP 

experiment in C. Elegans, using actual complete wiring diagram known from electron 

microscopy
8
. In this model, we also considered noise factors that are likely to affect real-

life experiment: biological variability (i.e. connectivity changes from one animal to 

another), observation noise (i.e. errors in assessing combined puncta fluorescence in each 

animal) and errors in identifying cells in GRASP expression pattern (see Methods). 

Assuming different noise levels, we generated collections of 500 to 12,000 in-silico 

Brainbow + GRASP measurements and attempted recovery of C. Elegans wiring diagram 

from these.     

Obtained reconstructions were inspected visually as matrices (Supplementary Figure 1) and 

as scatter plots showing reconstructed vs. actual connection weights (Figures 2C-D and 

Supplementary Figure 2). Quantitatively, we characterized reconstructions quality with the 
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 5

correlation coefficient r
2 
between reconstructed and actual connection weights.  We 

observed that in C. Elegans reasonable reconstructions of its wiring diagram were obtained 

already from 5,000-10,000 measurements (Figure 2B). Reconstructions were sensitive to 

noise in observations Oi and cell-id errors, thus, imposing stringent requirements on both 

(Figures 3B-C). Degradation from biological variability was less substantial (Figure 3A). 

Changing the fraction f of neurons expressing GRASP in each trial allowed to improve 

reconstruction robustness to observation noise (Figure 3D), but not cell-id errors or 

biological variability (data not shown). 

 

DISCUSSIO0 

We argue that reconstruction of complete wiring diagram in an animal as large as C. 

Elegans may be attainable using the above approach and existing optical and genetic tools 

in a short amount of time. Given small size (100 µm diameter and 1000 µm long) and fast 

development (2 -3 days), 10,000 C. Elegans may be incubated rapidly on a single Petri-

dish. In fact, modern C. Elegans phenotype screens already routinely pay attention to 

populations that big.  The measurement of the combined fluorescence from GRASP may be 

quickly obtained with a low resolution snapshot of each animal. Identities of the neurons 

expressing GRASP may be determined from a high resolution 3D scan of nuclei-bound 

fluorescence with a computer algorithm such as in Long et al.
32
 Such scans may be 

performed in about 1 minute or less with an off-the-shelf light microscopes, assuming 

10MHz acquisition rate and voxel size of (0.5µm)
3
. Given all of the above, such 

reconstructions of complete circuit in C. Elegans appear plausible to complete in about one 

week. The only essential prerequisite for such reconstructions is the creation of Brainbow + 

GRASP transgenic animal. 

Described general framework may be applied to neural circuits in larger organisms such as 

Drosophila, zebrafish, leech, mouse, etc., with different connectivity probes such as 

calcium indicators, neuronal tracers, ChR2 or transsynaptic viruses, and different targeting 

techniques such as MARCM, MADM or UAS/Gal4. Importantly, stochasticity of the 

expression patterns is not a necessary feature of our approach. On the contrary, connectivity 

may be equally well recovered from nearly arbitrary sets of expression patterns, e.g. such as 

produced with libraries of Gal4-lines. Furthermore, ability to target individual or small 

groups of neurons, e.g. with UAS/Gal4, is also not necessary here. With broad probes we 

are able to constrain the circuit effectively in just ~ �� p log  time, comparable to ~ p�  

time that would be necessary to determine connectivity with precise probes, such as whole-

cell patches, by directly probing connections between individual neurons when it is already 

known which pairs should be tested. Finally, although the connectivity matrix here was by 

construction nonnegative, one can still map inhibitory or other types of connections with 

this approach by designing measurements targeting exclusively inhibitory synapses or 

employing arrays of distinct markers.  

Although we show that in C. Elegans described approach should be successful with 

existing tools, applications in larger circuits will require meeting a number of challenges. In 

larger circuits unfavorable size scaling should be overcome: circuits get physically bigger, 

and so imaging gets harder, while the complexity gets higher and so more measurements 
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 6

are needed. Transgenic models allowing for multiple connectivity probes, such as multi-

color GRASP, is the likely answer to this problem. Improvement of the reconstruction 

algorithm aimed at reduction of the number of measurements may also be possible. While 

Candes et al. discuss exact reconstruction of sparse matrices with theoretical performance 

bound
30
, faster algorithms may be possible if certain error is tolerated or if detailed priors 

are available. Even greater challenge is determination of the probe expression patterns in 

different animals. In larger animals it is not known how to perform such determination or 

even what stereotypical units of connectivity might be. The progress in designing 

transgenic systems allowing for cell-type identification, or systems where probes may be 

driven in specific classes of cells, e.g. using UAS/Gal4, may be advantageous. Finally, it 

may be possible for the reconstruction algorithm to rely to much lesser degree on the prior 

knowledge of expression patterns than what is described here. 

 

METHODS 

Computational reconstruction problem for Brainbow + GRASP. Specific 

computational reconstruction problem for a collection of M Brainbow + GRASP 

measurements, taking into account sparseness of the objective matrix, is formulated as 

following linearly constrained l1-optimization: 

subject to  , minmin
1 1

1
∑∑
= =

=
�

A

�

B

ABl
CC                            (3a) 

( ) ( ) MiCiiO
�

A

�

B

ABBAi ...1,
1 1

==∑∑
= =

βα ,                             (3b) 

( ) ( )
( )




∉

∈
=

iPREA

iPREA
iA

,0

,1
α  ,                                                 (3c) 

( ) ( )
( )




∉

∈
=

iPOSTB

iPOSTB
iB

,0

,1
β .                                                (3d) 

( )iAα  and ( )iBβ  are the indicator functions for the sets PRE(i) and POST(i), and describe 

GRASP expression patterns in different animals. By construction, these are determined 

independently in each animal, e.g., from nuclei-targeted fluorescence. Problem (3) 

corresponds to maximizing { }( )iOCP | ~ ( ) ( )CPCOP i∏ |  assuming normal distribution of 

noise in observations and its constant variance and exponential sparseness prior on the 

connectivity ( )CP ~ ( )∑− ABCλexp , 0→λ . Optimization problem (3) is a standard 

linear-program and vast literature exists about solving it efficiently
33
. For larger � the 

following approximate but less demanding algorithm is advantageous. If total synaptic 

strength S is known in advance (in our case 2][E fOS ≈ ), the solution to (3) may be 

found as the intersection of two convex sets – SC
l
=

1

 and the hyperplane of linear 

constraints (3b)
29
. By Candes et al.

30
, for sufficiently large M such intersection contains 

single point. Such intersection may be found even for problems of very large size by 

alternately projecting on these two sets
34
.  
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 7

In-silico model for circuit reconstruction using Brainbow + GRASP in C. Elegans. In-

silico model for C. Elegans circuit reconstruction using Brainbow + GRASP is set as 

follows. Complete wiring diagram for C. Elegans is available from electron microscopy in 

the form of integer counts of distinct synapses between different pairs of neurons CAB
8
, as 

first documented by White et al.
15
 Thus, instead of measuring combined size of synaptic 

puncta, we here adopt the convention that Oi represents the count of synapses labeled in 

each Brainbow + GRASP animal. To account for possible biological variability, i.e. 

variability in the connection weights from animal to animal, we replace such connection 

weights in each individual animal as in ( ) [ ]ABbbABAB CaPaCC +−→ 1 , where [ ]xP  is 

Poisson-distributed random number with mean x. Parameter ab controls the degree of 

expected variability: ab=0 corresponds to no variability at all, and ab=1 corresponds to the 

case where synapses are formed completely at random with CAB synapses on average. Next, 

we assume that samples of neurons PRE and POST are formed with Brainbow, i.e. each 

neuron is led to express pre- and post-synaptic constructs of GRASP with constant 

probability f=0.5. Corresponding to the above CAB, and chosen PRE and POST expression 

patterns, for each animal we record the number of selected synapses Oi. We add Gaussian 

noise to this count to model observation errors as follows: [ ]( )oii a�OO ,01+→ . [ ]oa� ,0  

is Normally-distributed random number with zero mean and variance ao. We assume that 

identities of cells in GRASP expression patterns are recovered with computer algorithm 

from associated nuclei-bound fluorescence. Possible error in such identification is modeled 

by all-to-all shuffling of cell-identities in a small fraction ai of randomly chosen neurons. 

This is a rather pessimistic model: in reality some cells will be better identified than others 

and the confusions will not be all-to-all but only with the nearby cells. Thus, Figure 3C 

should be viewed as an upper bound on these error-rates and actual experiments may 

tolerate this kind of errors better. Finally, connectivity matrix is calculated from thus 

produced collection of noisy measurements {Oi, PRE(i), POST(i)} by solving Eqs.(3) with 

the method of alternate projections above.  

 

ACK0OWLEDGEME0TS 

The author would like to acknowledge essential discussions with Shiv V. Vitaladevuni, 

Veit Elser, Max Nikitchenko and Liam Paninski. This work was partially carried out at 

Janelia Farm Research Campus, HHMI and Aspen Center for Physics. 

 

FIGURE LEGE0DS 

Figure 1: Reconstructing neural circuits with Brainbow + GRASP. A) Pre- and post-

synaptic split-GFP (sGFP) are bundled with sequences for two nuclei-targeted FP (nFP), 

and separately flanked with inverted loxP. The construct allows producing variety of 

GRASP expression patterns within single genetic line, while nFP allows identifying 

populations of cells thus probed in different animals. B) In each Brainbow + GRASP trial 

two random sets of neurons express pre-synaptic (red) and post-synaptic (green) sGFP. 

Whenever a synapse is present between any two from pre/post-synaptic neurons, sGFP 

reassemble and create fluorescent puncta (yellow). Combined fluorescence strength of all 

puncta is measured, corresponding mathematically to a constraint on the connection 
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 8

weights at the intersection of selected pre-synaptic rows and post-synaptic columns. When 

large number of such measurements is obtained, connectivity may be recovered from the 

fluctuations in O in relation to GRASP expression patterns. Three trials are shown for 

illustration. 

Figure 2: In-silico reconstruction of complete connectivity in C. Elegans using Brainbow + 

GRASP, based on the actual wiring diagram known from electron microscopy
8
. (A) Quality 

of the reconstructed connectivity matrix with triggered-average method, as measured by the 

correlation coefficient r
2
 between reconstructed and actual connection weights. (B) Quality 

of the reconstruction using the method of alternate projections. (C) Example of best 

reconstruction using triggered-averaging with M=300K measurements, r
2
=0.4. (D) 

Example of reconstruction using the method of alternate projections for M=8K 

measurements, r
2
=0.9. 

Figure 3: Impact of different noise factors on the reconstruction using Brainbow + GRASP 

in C. Elegans, as measured by the correlation coefficient r
2
 between reconstructed and 

actual connection weights. (A) Biological variability is of lesser concern with good 

reconstructions obtained even when synaptic weights in different animal are Poisson 

random with given mean. (B) Cell-identification errors have significant impact on 

reconstructions implying that the fraction of misidentified neurons should be kept below 3-

5%. (C) Observation noise has significant impact on reconstructions implying that the 

measurements should be obtained with relative error better than 3%. (D) Impact of 

observation noise may be effectively controlled by reducing expression frequency f: larger 

amount of observation noise may be tolerated for f=0.1-0.2. Changing f has no impact in 

case of biological variability or cell-id errors (data not shown). 
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Figure 3
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Supplementary Figure 1: (A-C) Reconstructed connectivity matrix for 

M=1,000, M=6,000 and M=11,000 trials, and corresponding r2, under 

noiseless conditions. 
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Supplementary Figure 2: Scatter plots of reconstructed vs. actual 

connection strengths. (A) Noiseless reconstruction with M=11,000 trials 

gives the exact answer. (B) Noiseless reconstruction with M=8,000 is 

very close to the exact answer. (C) Noisy reconstruction with 

connection strengths from trial-to-trial given by fully Poisson random 

and M=8,000 is very close to the exact answer. (D) Noisy 

reconstruction with 6% of injected observation noise and M=8,000 is 

not very useful.
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