
A new mathematical model for radiation cell killing 

mechanism: Target cumulating model 

Zhao Liang, Wu Shixiu, Xie Congyin, Zhang Li 

Abstract 

There are numerous mathematical or statistical models have been given out for radiation cell 

killing mechanism. Unfortunately, none of the model could explain the mechanism perfectly. The 

more advanced model for it is still necessary to be researched. Following common assumption, a 

new theoretical model named “target cumulating” model is induced from the molecular and 

particle physics level. The result of theoretical calculation gives the equation of cell survival rate 

corresponding to delivered dose and other sensitivity parameters. 

In addition to fit the cell survival curve well, the new model showed advantages with 

comparing to previous models. Also, the new model predicts or explains some phenomenon that 

had been observed in laboratory (e.g. dose rate effect and low dose hypersensitivity). 
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Introduction 

Since the technology was developing, the research of cancer was deep into the cell level and 

then the molecular. There is no doubt that radiobiology has been very fruitful in generation of 

new ideas and in the identification of potentially exploitable mechanisms in cancer cells and 

molecules. Research in radiobiology deals at the fundamental level with molecular, biochemical 

and biophysical mature of radiation damage. Models are a necessary part and the model of 

predicting the DNA damage and cell killing that caused by radiation was considered as the key to 

specific treatment strategies. There were numerous models in past decades. Some were based on 
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experience and another some were combined with theoretical induction. Unfortunately few of 

these have so far led to demonstrable clinical gains, though some models such as linear-quadratic 

equation seem to be successful. Beyond this, the ability of laboratory science to guide the 

radiotherapist in choice of specific protocols is limited by the inadequacy of the theoretical and 

experimental models. 

Two of the most successful models are the multi-target single-hit model and linear-quadratic 

model. But both of them happened to “disaster” at low or high dose region. This situation 

occurred many times in science history, such as the problem of “black body” irradiation. What 

for we necessary to do is that just like Planck had done, combining the theory and conquer the 

“disaster”. 

 The new model named “target cumulating” model was induced in this paper from the 

physical and biological model under reasonable assumptions. The final result gives the equation 

for cell survival in form as follow: 
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 In addition to fit the cell survival curve well, the new model showed advantages with 

comparing to previous models. Also, the new model predicts or explains some phenomenon that 

had been observed in laboratory (e.g. dose rate effect and low dose hypersensitivity). All these 

indicate that this new model could be a good choice of theory with regard to the molecular level. 

 

Theory and method 
Previous models 

The target theory is one of the simplest and basically model. The idea of how radiation might 



kill cells is that there may be specific regions of the DNA that are important to maintain the 

reproductive ability of cells. These sensitive regions could be thought of as specific targets for 

radiation exposure would be related to the number of targets inactivated. To derive an equation for 

this survival curve, Poisson statistics can be applied. The formula for multi-target single-hit 

inactivation cell survival is: P(survival)=1-[1-exp(-D/D0)]n where the n was considered to be the 

number of the sensitive targets. While n=1, it becomes the single-target single hit model. The key 

difficulty with this concept is that so far the specific radiation targets have not been identified for 

mammalian cells, despite considerable effort to search for them. And an obvious shortcoming of 

the multi-target model is that, it predicts a response that is flat for very low doses. This is not 

supported by experimental data: there is good evidence for significant cell killing at low dose and 

for cell survival curves that have a finite initial slope.[1] 

The Linear-quadratic model (Chadwick and Leenhouts, 1973) [2] is now in widespread use in both 

experimental and clinical radiobiology and generally works well in describing responses to 

radiation in vitro and also in vivo. The formula for cell survival is: P(survival)=exp( -αD -βD2). 

The simple is that the linear component [exp( -αD)] might be due to single-track events while the 

quadratic component [exp( -βD2)] might arise from two-track events. Besides the continually 

downward bending of the cell survival curve is not fit the clinical results at the high dose region, 

the nature of the interactions between separate tracks is still a matter of considerable debate. 

Curits(1986) [3] proposed the lethal, potentially lethal damage (LPL) model as a ‘unified repair 

model’ of cell killing. Ionizing radiation is considered to produce two different types of lesion: 

repairable lesions and non-repairable lesion. The non-repairable lesions produce single-hit lethal 

effects and therefore give rise to a linear component of cell killing [=exp(-αD)]. The eventual 



effect of the repairable lesions depends on competing process of repair and binary misrepair. It is 

this latter process that leads to a quadratic component in cell killing. The model have two 

sensitivity parameters (ηL determines the number of non-repairable lesions produced per unit dose, 

and  ηPL the number of repairable lesions) There are also two constants (εPL determines the rate of 

repair of repairable lesions, andε2PL the rate at which they undergo interaction and thus misrepair). 

This model produces almost identical cell survival curves to LQ equation, down to a survival level 

of perhaps 10-2. It can therefore be taken to provide one possible mechanistic interpretation of the 

LQ equation. 

Model designation and consideration  

Though we believe that DNA damage is critical event in radiation cell killing and mutation, 

the number of lesions induced by radiation in DNA is far greater than those that eventually lead to 

cell killing. In a variety of experimental situations it has been found that the incidence of cell 

killing fails to correlate with the number of single strand break (SSB) induced, but relates better to 

the incidence of double strand break (DSB).[4] On this basis it is generally believed that DSB are 

the critical lesions for radiation cell killing in most cell types. Reference from the previous 

theories, the new model of radiation cell killing is built on simple physics and biology as follow. 

There are two basic assumptions for the theory： 

1. Cells are lethally damaged by radiation through breaks in the DNA molecule that lead to cell 

death at mitosis although in some cases cell death may occur before this (apoptosis). It is also 

the main assumption of most of the previous model (e.g. L-Q model et al).  

2. Some of these lethal breaks are produced by a single photon track that causes an unrepairable 

double-strand break (DSB) – “one track action”. Other lethal lesions are caused by incorrectly 

repaired near pairs of DSB’s resulting from the passage of pairs of photons within the 



timescale that it takes to repair DNA damage. In these cases, the individual DSB’s may not 

have been lethal on their own but when another lesion nearby occurring within the repair time 

scale, the unrepaired DSB is lethal. 

The occurring of one track action of DSBs could be simply described as a statistic probability 

for every delivered dose. The most challenge is how to describe the sublethal deposits, although 

the LPL model presented this problem by parametersηPL ,εPL and ε2PL. To solve the problem, we 

set a model as follow: The realization that radiation produces ‘hot spots’ in which clusters of 

ionizations may occur within a diameter of a few nanometers has led to the notion that such an 

event may produce a particularly severe lesion if it impinges on the DNA molecule, such as DSB. 

Assuming the DSB creates a sublethal, thus another lesion nearby occurring within the repair time 

scale will make the unrepaired DSB lethal. In other word, this DSB creates a target region for next 

DSB to hit (Fig.1). However, every sublethal DSB falls on the sensitivity of DNA may create 

target for hit (Fig.2). While these targets are hit before repaired, the lesion could be lethal (Fig.3). 

It is suitable to term this model as “target cumulating” (TC) model . 

On this hypothesis, the dynamics of radiation cell killing could be explained as follow. 

Calculation 
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Where, NΔ  is the number of increased target regions, C is the maximum number of the sensitive 
regions that could be contained in the DNA, N(d) is the number of existed target in the DNA after 

radiation of dose d was delivered, β  (dimensioned times/Gy) is the frequency of the sublethal 

DSB occurring during the dose dΔ  was delivered. 

While take dΔ  as a fractional dose d∂ , thus NΔ  becomes )(dN∂ . It gives  
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Solve the equation (2), the result gives
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determined by condition. When d=0, N (d) should be zero as the virgin cell. Then, K1=lnC. 
Assume the rate of DNA repairing for specific cell is invariableness that corresponds to cell 
variety and phase. Considering the repairing, the equation (1) should be  

trd
C

dNCN Δ−Δ××−=Δ β)(
         (3) 

Where r is the DNA repairing rate, and tΔ  is the time duration of dΔ  deliver. When the 
radiation out put rate set to u, dΔ =u tΔ . For fractional radiation, it has 
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One hypothesis is: the probability of immediate lethal DSB occurring is a constant value that 
determined by the character of the specific DNA. Thus, the probability of killing cell by single 

DSB could be presented as n
dDSBp kill

Δ×= α)( , where the α  (dimensioned times/Gy) 

is the frequency of lethal DSB occurring during the delivered dose dΔ , and n is the number of 
cell correspond to the one photon’s energy transfer. In most of cases, single photon track could 
only cause damage to one cell, thus n=1. It’s no matter whether the lethal DSB hit the target region 
created by sublethal DSB or not.  
Since we assumed one sublethal DSB hit on the target region could also lead to cell death. The 
probability of such cell killing could be deduced as follow: 
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delivered dose dΔ  could be presented as follow: 

)]()([)()()( killkill SUBpDSBpdSdSddS +×−=−Δ+     (7) 

Where S(d) is the survival fraction after total dose d has been delivered. Transfer 

)()( dSddS −Δ+ to )(dSΔ , and take the fractional form similar as we done to equation (1) 

and (3). Then substitute N(d), p(DSBkill) and p(SUBkill) to equation (7), consider n=1, it becomes  
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Solve the equation, we get  
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Substitute d=0, S(d)=1, it gives 
βu

CrCK −=3 ，thus we get  
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Result and discussion 

Evaluation parameter D 

Seeing equation (10), the single lethal DSB contribute the part -αd and the sublethal DSB 

contribute the part ⎥
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parameter D=α/β in LQ, similar D value in the TC model could be given as the solution of the 

Transcendental equation ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −=×⎟
⎠
⎞

⎜
⎝
⎛ −− d

Cu
CrCd

u
r β

β
αβ exp1 . 

Slope k and comparing 

It is common to scale the cell survival curve in log(or ln) with the survival rate, transfer equation 

(10) as  

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −+×⎟
⎠
⎞

⎜
⎝
⎛ −+−= d

Cu
CrCd

u
rdS β

β
βα exp1)(ln           (11) 



The slope k of )(ln dS  could be calculated as d
dS
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high enough, )(
u
rk −+−= βα . It indicates: at low dose region, single lethal DSB dominate 

the cell killing; at high dose region, both the lethal and sublethal DSB contribute to cell killing. 

This case could be explained as: after the delivered high dose, the cell is “weak” enough and full 

of sensitivity “target”, thus all the sublethal DSB occurring could be lethal. 

Comparing to LQ model, multi-target single-hit model and LPL model 

Contrast to the LQ model, the TC model also presents radio-sensitivity increasing while the 

delivered dose increasing. But the TC model predicts a killing rate limit, which dose not exist in 

the LQ model for the continue bending tail. (Fig.4) 

Contrast to the Multi-target single-hit model, the TC model don’t have the problem with the 

low dose flat, and also the key difficulty with the concept of “target” was well explained in 

molecular mechanics. 

Contrast to the LPL model, the TC model extends the simple parameters to α, β, C and r/u 

with reasonable physics and biology explanations. 

And comparing to the other model (LQ, multi-target single-hit and LPL), the TC model 

directly gives the dose rate as a sensitivity parameter in the equation. It indicate the increasing 

dose rate provide inverse effect to repairing ability in normal situation (C>0). This result also 

accords to some early studies [5,6,7]. But the reported inverse dose rate effect [8,9] still can’t be 

explained by this equation unless the C<0. 

Low dose hypersensitivity 

There has been considerable interest in studies indicating that some cell lines respond to low 



radiation doses with an increased cell kill per Gy, termed “low dose hypersensitivity” (HRS). This 

phenomenon has been demonstrated in vitro and in vivo[10 – 14]. The “Induced-Repair”(IR) 

model based on LQ model explained this phenomenon by assuming the α value in LQ model was 

not a constant at the sub-gray level [15,16]. In the TC model, if we consider the idea of 

“Induced-Repair” for the parameter r. It is reasonable to assume the r with the form like 

( )[ ]drr m λ−−= exp1 , where rm is the threshold of molecular repairing ability, λ is the 

sensitivity parameter of DNA repairing response after delivered dose d. Then, equation (10) 

become  
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The evaluation of equation (12) plot showed in Fig.5 fit well with the observed data including 

sub-dose hypersensitivity region. 

 

Conclusion 

The TC model showed advantages to the previous three models (LQ, multi-target single-hit 

and LPL model).  

1. It solves the problem that happened to LQ model at high dose region for its continuous 

bending tail. 

2. It doesn’t have the unreasonable flat at low dose region of multi-target single-hit model. 

3. It gives the quantitative parameters in form of equation for evaluating the survival rate. 

4. It was directly Inferential reasoning from the physical and biological model under reasonable 

assumptions. 

5. It directly gives the effect of dose rate in the equation. 



6. It could also explain the low dose hypersensitivity well by combining with the IR model.  

Thus, we conclude the TC model the new advanced model of radiation cell killing and fit the 

cell survival curve well. 
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