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spannende Zeit.
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arbeitern des Zentrums für Informationsdienste und Hochleistungsrechnen (ZIH) bedanken.



IV

Bei meinen Kollegen der Professur bedanke ich mich herzlichst für die gute Zusammenar-
beit, deren uneingeschränkte Hilfsbereitschaft sowie für das äußerst angenehme Arbeitsklima.
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Für die erfolgreiche Zusammenarbeit möchte ich mich ebenfalls bei allen Diplomanden,
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Kurzfassung

Die vorliegende Arbeit beschäftigt sich mit der Entwicklung einer numerischen Methode
zur Simulation von Problemstellungen der Fluid-Struktur-Interaktion (FSI) auf Hochleis-
tungsrechnern. Die Methode ist zugeschnitten auf die Interaktion von inkompressiblen New-
tonschen Fluiden mit einer großen Anzahl schlanker viskoelastischer Strukturen, wobei let-
ztere als Cosserat-Balken modelliert werden. Aufgrund der hohen Flexibilität und der ver-
gleichsweise geringen Masse der betrachteten Balkenstrukturen reagieren diese mit großen
Verformungen auf äußere Fluidlasten. Gleichzeitig beeinflusst die Strukturbewegung das
umgebende Fluid, welches wiederum auf die Struktur einwirkt. Diese aus numerischer Sicht
starke Kopplung von Fluid und Struktur erfordert spezielle Techniken, um die Stabilität der
Methode zu gewährleisten. Im Falle einer partitionierten Kopplung von Fluid und Struk-
tur wird dies üblicherweise mittels iterativer Kopplungsverfahren erreicht, was einen er-
höhten Rechenaufwand zur Folge hat. Die vorliegende Arbeit präsentiert einen alternativen
Kopplungsansatz auf Basis einer Immersed-Boundary-Methode (IBM). Das Kopplungss-
chema ist numerisch stabil und vermeidet eine globale Iteration zwischen beiden Teilprob-
lemen gänzlich. Neben der Bewertung der Genauigkeit und des Konvergenzverhaltens der
vorgeschlagenen IBM erfolgt eine gründliche Validierung mittels verschiedener Testkonfigu-
rationen. Zusätzlich zur numerischen Realisierung der Fluid-Struktur-Interaktion bietet die
entwickelte Methode ein Kollisionsmodell zur Berücksichtigung etwaiger Struktur-Struktur-
Interaktionen. Dadurch ist der FSI-Löser in der Lage, eine sehr allgemeine Klasse von
kollisionsbehafteten Fluid-Struktur-Interaktionen zu simulieren. Im Rahmen dieser Arbeit
wurde die Strömung über eine dichte Vegetationsschicht simuliert, welche sich durch eine
wellenartige Bewegung der Vegetationselemente sowie durch ausgeprägte turbulente Struk-
turen auszeichnet. Das hierfür verwendete abstrahierte Modell der Vegetationsschicht besteht
aus 800 regelmäßig angeordneten flexiblen Streifenstrukturen, was derzeit die größte skale-
nauflösende Simulation einer turbulenten Vegetationsschichtüberströmung darstellt. Die da-
raus gewonnenen Datensätze wurden mittels verschiedener Analysemethoden ausgewertet,
um ein tieferes Verständnis der physikalischen Vorgänge in Vegetationsschichten zu erhal-
ten, z.B. hinsichtlich der Existenz und Form kohärenter Strukturen. Hierbei offenbarte sich
eine einzigartige Klasse von Wirbelstrukturen, welche im Übergangsbereich der Vegetation-
sschicht zur darüber liegenden freien Strömung entstehen.





Abstract

This thesis presents a numerical method for the simulation of fluid-structure interaction (FSI)
problems on high-performance computers. The proposed method is specifically tailored to
interactions between Newtonian fluids and a large number of slender viscoelastic structures,
the latter being modeled as Cosserat rods. Because of their high flexibility and low weight,
the rods considered here respond by large deflections under the influence of external fluid
loads. This motion in turn modifies the flow, so that the fluid and the structures are strongly
coupled to each other. From a numerical point of view, such a strong coupling requires special
techniques to reach numerical stability. When using a partitioned fluid-structure coupling
approach this is usually achieved by an iterative procedure, which drastically increases the
computational effort. In the present work, an alternative coupling approach is developed
based on an immersed boundary method (IBM). It is unconditionally stable and exempt
from any global iteration between the fluid part and the structure part, outperforming pre-
vious approaches. The contribution presents the underlying methodology and its algorithmic
realization, including an assessment of accuracy and convergence by systematic studies. Var-
ious validation cases illustrate performance and versatility of the proposed IBM. In addition
to the numerical realization of fluid-structure interactions, the present method provides a
collision model able to capture possible structure-structure interactions. Consequently, this
enables the FSI-solver to simulate a very general class of fluid-structure interaction problems
prone to collisions. In the context of this work, the solver is employed to simulate the flow
over a dense layer of vegetation elements, usually designated as canopy flow. This flow is
characterized by an organized wave-like motion of the vegetation, caused by pronounced tur-
bulent structures on top of the canopy. The abstracted canopy model used in the simulation
consists of 800 regularly arranged strip-shaped blades, which is the largest canopy-resolving
simulation of this type done so far. The simulation data obtained are analyzed to get a
deeper understanding of the physics of aquatic canopy flows, e.g., concerning the existence
and shape of coherent structures. The analysis revealed a unique class of vortical structures,
developing in the transition zone from the vegetation layer to the free-flow region above.
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1 Introduction

1.1 Motivation and research aims

When a solid structure is influenced by a flow field in such a manner that it in turn modifies
the flow this is termed fluid-structure interaction (FSI). It is of crucial importance in various
areas, e.g. in the technical field to optimize the design of parachutes [39], in the medical sector
to support design processes of artificial heart valves [53], or in the biological field where FSI
is used by animals to aid locomotion [130]. In classical FSI problems, the structures involved
deform under the influence of external fluid loads. Depending on the specific shape of the
structures, their response can vary considerably, ranging from a flow-induced vibration of
massive solid bodies, up to the chaotic motion of thin flags subjected to wind.
This work focuses on a particular class of FSI problems which involve a large number of
long and slender elastic structures, commonly referred to as beams or rods. With sufficiently
slender rods, even low fluid loads may cause large displacements and a complex dynamic
behavior of the coupled system. The latter becomes even more complicated when the rods
interact with each other in a dense arrangement and thus influence the system behavior
through collisions. Examples of such kind of FSI problems prone to collisions are fiber flows
as a part of the production process of textiles [75] or natural vegetation flows with flexible
plants in an aquatic environment [169, 174]. In order to optimize technical processes or to
clarify physical processes in biological systems, the required information is usually gathered
using complementary experimental and numerical efforts. However, experimental observa-
tions are particularly difficult when slender rods are highly flexible and close to each other.
In such cases, an accurate measure of fluid and structure related quantities is often not fea-
sible due to various instrumental limitations [173]. The motivation of this work is to close
this gap by means of scale-resolving simulations with a minimum level of abstraction. With
this approach, a wealth of high-resolution data can be obtained to investigate the physical
processes involved, usually not accessible via experimental approaches. In order to provide
such data sets for the FSI problems considered here, enormous computational requirements
are placed on the numerical method employed. This defines the main research aim of the
present work:

Development of an efficient numerical method suited for scale-resolving sim-
ulations of a large number of slender flexible rods in a turbulent flow regime.

In this context, particular emphasis must be placed on the efficiency of the method, since
an analysis of turbulent flows usually requires long-term simulations over a substantial time
interval to accumulate statistics. In order to keep the overall computational time within rea-
sonable bounds, this is achieved by employing high-performance computers with thousands
of processors in combination with an own innovative, non-iterative coupling algorithm spe-
cially developed for this purpose.



2 1.1 Motivation and research aims

To demonstrate the ability of the proposed numerical approach, it is applied to the turbulent
flow over and trough a layer of densely arranged aquatic plants, usually denoted as canopy
flow. Figure 1.1a shows a seagrass canopy, frequently occurring in nature. Such aquatic
ecosystems constitute a topic of high relevance due to their abundance and their various
roles on different scales, ranging from the quality of drinking water taken from the local river
to the large-scale impact on climate change [46]. The interaction between the flow and the
flexible plants in an aquatic canopy plays a central role in hydraulics as well as transport of
sediment, nutrients and pollutants [109, 169]. Such vegetation flows are extremely difficult
to measure experimentally, especially within and on top of the canopy [173]. This is exactly
where numerical simulations can exploit their advantages and supplement missing informa-
tion. The numerical study of canopy flows is a rather young research field and there is a
need for scale-resolving flow data, since little is known about the three-dimensional nature
of turbulent structures in canopy flows. This lack of knowledge is addressed in this work by
conducting highly resolved simulations of a model canopy flow, shown in Fig. 1.1b. The data
obtained from the simulations are used to achieve the second research aim envisaged here:

Gaining a deeper understanding of the physics of flow-biota interaction in
aquatic canopy flows, with emphasis on the formation and importance of
three-dimensional coherent structures.

It will become apparent that unique vortical structures are generated at the top of the canopy,
exciting the plants to an organized wavelike motion. This interesting dynamic behavior has
often been observed in nature and is usually designated as monami (Japanese: mo=aquatic
plant, nami =wave [3, 179]). This may remind the reader of waving crop fields on a windy
day, known as honami (ho=cereal) in the context of terrestrial canopies.

a) b)

velocity mag.

plant heightz
x

y

flow

Figure 1.1: Seagrass meadow as an example of dense submerged canopies. a) Real configuration to
be found in nature [276]. b) Simplified model canopy employed for scale-resolving simulations. The
model vegetation is made out of flexible blades of equal properties, arranged uniformly in the fluid
domain (same spacing in x- and z-direction).



1 Introduction 3

1.2 Structure of the thesis

In order to achieve both research aims highlighted above, they have been divided into the
following consecutive methodical objectives. This separation is reflected by the overall struc-
ture of this thesis, so that each methodical objective is addressed in a separate chapter.

Chap. 1 – Physical model of the FSI problem: The first chapter presents the physical
model tailored to the present kind of FSI with slender flexible rods in a turbulent
environment. In this context, appropriate model assumptions and simplifications
are introduced to provide the basis for an efficient numerical method.

Chap. 2 – Numerical models of fluid and structure: Based on the continuous model
derived in the previous chapter, the governing equations of the fluid and the
structure motion are discretized in space and time. At this point, the coupling
between fluid and structure is not yet accounted for, allowing to use existing and
optimized solvers for the partitioned problems.

Chap. 3 – Numerical coupling of partitioned solvers∗: The solvers implemented for
the fluid and the structure need to be coupled by an appropriate algorithm to
describe the motion of the entire FSI system. This chapter presents the underlying
methodology and the algorithmic realization of the coupling scheme, including an
assessment of accuracy and convergence. In addition, the FSI-solver is validated
for selected benchmark cases taking into account the FSI of single elastic rods
subjected to flow.

Chap. 4 – Collision model for Cosserat rods∗: One research aim of this thesis is to
provide a FSI-solver for large numbers of densely arranged rods prone to collide
with each other. Consequently, the basic FSI-solver addressed in Chapter 3 has
to be extended by an appropriate collision model for Cosserat rods. Chapter 4
presents a detailed derivation of the model, including contact detection and the
numerical treatment of multiple simultaneous collisions between numerous rods.
The efficiency and robustness of the approach is illustrated with a number of
simple basic tests as well as more realistic configurations.

Chap. 5 – Application of FSI-solver to canopy flows∗: In the final chapter, the FSI-
solver is employed to simulate the flow through an aquatic model canopy. The
high-resolution data obtained from the simulations are used to achieve the sec-
ond research aim, i.e. to gain fundamental information on the physics of aquatic
canopy flows. In particular, the hydrodynamic coupling between the flow and the
slender flexible blades shall be elucidated here. Questions to be answered include:
How is the fluid flow over and through a canopy affected by the flexible blades?
What is the relation between characteristics of blade motion and characteristics of
fluid motion? Which kind of three-dimensional coherent structures are observed
and what is their impact?

∗ Selected contents of the chapter have already been published by the present author in scientific journals
or presented at international conferences. The list of published contributions can be found on page 167.





2 Physical model and governing equations

2.1 Problem definition and assumptions

The physical configuration addressed here consists of a viscous fluid interacting with a large
number of slender flexible structures, e.g. a fiber suspension flow or a canopy flow illustrated
in Fig. 2.1. Moreover, the configurations are characterized by a pronounced emergent dy-
namic behavior resulting from a highly unsteady response of both the fluid and the structure
part. During their interaction, isothermal conditions are assumed, and thus a decoupling of
thermal and mechanical effects. The viscous fluid considered is incompressible and exhibits
constant material properties. All structures are completely immersed in the fluid and are
geometrically characterized by a long and slender shape with cross sections much smaller
than their longitudinal expansion. When the structures are subjected to fluid loads, local
deformations and associated internal strains are assumed to be small but may agglomerate
to large overall displacements in space. As a result, geometrically nonlinear effects are of
crucial importance and must be taken into account. During motion, the structures may lose
energy due to internal friction, but do not exhibit any plastic deformation. Consequently, a
viscoelastic material behavior is expected here. The corresponding material properties are
assumed to be isotropic and constant in time and space.
The domain of the entire physical configuration Ω ∈ R

3 consists of the closed subset Ωf ⊂ Ω,
defining the fluid domain, and a certain number of structures Ns, which combine to form the
closed subset Ωs ⊂ Ω, the structure domain. Therefore, the union of the fluid domain and
the set of all structures gives the entire domain Ω = Ωf ∪Ωs assumed to be time-independent
here. Despite this restriction, the fluid domain Ωf and the structure domain Ωs may change
their shape while interacting and thus are time-dependent. The associated boundaries of
both subdomains are ∂fΩ ⊂ Ωf and ∂Ωs ⊂ Ωs, respectively, so that their intersection defines
a time-dependent fluid-structure interface Γ = ∂Ωf∩∂Ωs. The boundary of the entire domain
is given by ∂Ω = (∂Ωf ∪ ∂Ωs) \ Γ.

Ω = Ωf ∪ Ωs

Ωf

∂ΩfΩs ∂Ωs

Γ = ∂Ωf ∩ ∂Ωs

Figure 2.1: Type of fluid-structure interaction considered in the present work, namely the inter-
action between viscous fluids and a larger number of slender flexible structures. The fluid domain
and structure domain are designated as Ωf and Ωs, respectively, with the corresponding boundaries
∂Ωf and ∂Ωs. The fluid-structure interface is referred to as Γ.
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2.2 Fluid mechanics

2.2.1 Navier-Stokes equations

The governing equations for the fluid motion are the unsteady three-dimensional Navier-
Stokes equations (NSE) for a Newtonian fluid of constant density [245, 39]

∂u

∂t
+∇ · (u⊗ u) =

1

ρf
∇ · σ + f (2.1a)

∇ · u = 0 (2.1b)

in the fluid domain Ωf , where u = (u, v, w)� designates the velocity vector in Cartesian
components along the Cartesian coordinates x, y, z, while t represents the time, p the pressure
field, and ρf the fluid density. The constitutive relations for the hydrodynamic stress tensor
σ are given by

σ = −p I+ μf (∇u+∇u�) , (2.2)

with μf=ρf νf the dynamic viscosity and νf the kinematic viscosity, I the identity matrix, and
f = (fx, fy, fz)

� a mass-specific force. The latter consists of two parts, f = fV + fΓ, where
fV is a mass-specific volume force like gravitational acceleration, e.g., and fΓ a coupling
force used to impose the no-slip condition on the fluid-structure interface Γ, as described
in Chapter 4 below. Depending on the physical scenario to be modeled, different boundary
conditions can be applied at ∂Ωf , e.g. Dirichlet conditions to realize velocity inlets or no-slip
walls, Neumann conditions to impose free-slip rigid lids or conditions of periodicity. Details
on their numerical realization are provided in [118].

2.2.2 Large eddy simulation and subgrid-scale model

The aim of this work is to provide time-dependent high-resolution data to study the dynamic
behavior of the coupled system and the role of coherent structures, also for higher turbulence
intensities of the fluid. Under the latter conditions, the direct numerical simulation (DNS)
of the Navier-Stokes equations (2.1), i.e. resolving all turbulent scales, is technically not
feasible with the present discretization technique (Section 3.1). In such cases, the large eddy
simulation (LES) approach is employed here [77, 70], which captures large scales of the flow
while small scale turbulence is modeled by an appropriate model. This approach is motivated
by the self-similarity hypothesis of Kolmorogov which states that large scales exhibit an
energy-carrying and anisotropic character while small scales reveal a universal and isotropic
nature. When performing an LES, the velocity vector u in the Navier-Stokes equations (2.1)
represents the resolved part of the velocity field while the influence of the unresolved scales
is captured by a subgrid-scale stress tensor τ sgs. It is introduced into the momentum balance
of the fluid replacing σ in Eq. (2.1) by σLES= σ−τ sgs. In the present work, the Smagorinsky
model [221] is employed which models the subgrid-scale stress as

τ sgs = −μsgs 2S +
1

3
tr(τ sgs) I , μsgs = ρf(Cs h)

2 ‖S‖ (2.3)

with the strain rate tensor S = (∇u +∇u�)/2 and its norm ‖S‖ =
√
2S :S. The isotropic

part of the stress tensor in Eq. (2.3) is added to the pressure p of the hydrodynamic stress
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tensor (2.2) so that, in case of an LES, the resulting modified pressure pLES= p− tr(τ sgs)/3
is computed instead of the filtered pressure p. The filter size is chosen to be h = 3

√
ΔxΔyΔz

based on the step sizes of the Cartesian grid in the x−, y− and z-direction. The Smagorinsky
constant Cs is assumed to be spatially and temporally constant, but tailored to the specific
physical problem (see Section 3.3.1 and Chapter 6).
In the present work it is assumed, that the grid spacing of the Eulerian grid is fine enough
to capture both the flow near the walls and at the fluid-structure interface Γ, so that no
additional modeling is required, e.g. by a wall function. However, it is well known that
the standard Smagorinsky model causes non-physical values of the eddy viscosity μsgs in
the region close to walls since the mean velocity gradient contributes to the eddy viscosity
supposed to model turbulent fluctuations. For this reason, μsgs is reduced near walls by a Van
Driest damping function [60]. A similar strategy is pursued here for movable fluid-structure
interfaces. As described in Section 4.3.1 below, the interface is represented by a finite set of
discrete surface marker points. At these points, a damping function D is introduced which
smoothly switches off μsgs in the range of a few steps of the Eulerian fluid grid in the vicinity

of the interface. The damping function is given by D = 1−(3
2
h
)3

δh, where δh is a regularized
delta function (4.19) defined in Section 4.3.2 below.

2.3 Structural mechanics

2.3.1 Continuum mechanical description

The governing equation for the structure motion is the balance of linear momentum. From
a Lagrangian point of view it is stated as [245, 39]

dv

dt
=

1

ρs
∇ ·P+ f , (2.4)

with the velocity vector v = dx/dt = ẋ of a material point x ∈ Ωs in the current configu-
ration of the structure Ωs. The structural motion is influenced by an external mass-specific
force f and internal stresses. These are measured via the 1st Piola-Kirchhoff stress tensor P
between the current configuration Ωs(t) and the reference configuration Ωs

0 = Ωs(t = 0) of
the undeformed structure at time t=0. The latter has a spatially constant density ρs. Each
material point x ∈ Ωs of the current state is related to a point X ∈ Ωs

0 of the reference
configuration by a smooth mapping x = χ(X, t), where χ : Ωs

0× [0, T ] → R
3. The associated

deformation gradient tensor

F =
∂ χ(X, t)

∂X
(2.5)

quantifies the overall rotation of the structure and its change in shape during motion, and
is employed to measure internal strains via the Green-Lagrange strain tensor

E =
1

2

(
F�·F− I

)
. (2.6)

Using a linear elastic constitutive relation between the strain tensor E and the internal
stresses, the 1st and 2nd Piola-Kirchhoff stress tensor are given by

P = S·F� , S = λs tr(E) I+ 2GsE , (2.7)
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respectively, with the first Lamé constant λs > 0 and the shear modulus Gs > 0. Both
material parameters are related to the Young’s modulus Es and the Poisson’s ratio νs via

λs =
Esνs

(1 + νs)(1− 2νs)
, Gs =

Es

2(1 + νs)
. (2.8)

Analogous to the Navier-Stokes equations (2.1), the mass-specific force f = fV − fΓ in the
momentum balance (2.4) consists of a volume force fV and a coupling force fΓ, whereby the
latter force captures the influence of fluid loads in case of a fluid-structure interaction. Note
that fΓ occurs with opposite sign in the momentum balance of fluid (2.1a) as required by
the dynamic coupling condition (principle of “actio et reactio”), described in Section 2.4.1
below.

2.3.2 Rod models for slender structures

The structures addressed here are characterized by a long and slender shape with cross
sections much smaller than their longitudinal expansion. Usually such kind of structure is
referred to as a beam, cantilever or rod, the latter term being used in the present work.
In principle, such geometrical constraints on shape can be used to employ model reduction
techniques which reduce the degrees of freedom required to describe the structure motion.
These techniques are of crucial importance when simulating large numbers of individual re-
solved rod structures due to the enormous reduction of computational effort. Especially for
the slender rods considered here, the general three-dimensional equations of motion (2.4) are
well approximated by one-dimensional rod models without loss of physical correctness. The
history on rod theories reaches far back into the 13th century and caught the attention of
many brilliant mathematicians, e.g. Galileo, the Bernoullis, Euler, Coulomb, Saint-Venant,
Poisson, to name just a few [139, 196]. Very comprehensive historic overviews of early devel-
opments in this field are given by Love [147] and Timoshenko [241]. It was discovered that
different loads acting on the rod cause four principal deformation modes designated as axial
extension (or compression), bending, shear and torsion. In the general case, these deforma-
tion modes may couple with each other due to nonlinear kinematic or constitutive relations.
As a result, various models for rod structures have been created with different complexity.
Even if no fully consistent nomenclature of different rod models can be found in the litera-
ture, a classification is provided in the comprehensive work of Meier [157]. Rod models which
capture axial tension, torsion and bending, are denoted as Euler-Bernoulli beams [241] when
initially straight rods with isotropic cross sections are considered. The Kirchhoff-Love beam
theory [147] provides an extension to arbitrary initial shapes and anisotropic cross-sections.
So-called inextensible Euler-Bernoulli beams and Kirchhoff-Love beams inhibit a longitudinal
elongation of the rod by additional constraints. All four modes, including shear, are captured
by the Simo-Reissner theory [215, 199] which is often denoted as Cosserat rod theory [45].
Shear-deformability in the geometrically linear regime is captured by so-called Timoshenko
beam models [240].
Here, the linear regime implies infinitesimally small displacements of the rod, so that the
kinematic relations can be linearized. This usually yields a decoupling of the principal modes
of deformation, i.e. extension, shear, bending and torsion. For finite displacements, however,
this is not the case and the deformation modes are geometrically coupled. In this regime, the
associated rod models are commonly specified as nonlinear, geometrically nonlinear or geo-
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metrically exact rod models. Geometrical (or kinematic) nonlinearities are not to be confused
with nonlinear constitutive relations that describe the relation between strains and resulting
internal stresses. Geometrical nonlinearities, on the other hand, refer to the relation between
displacements and strains.

2.3.3 Geometrically exact Cosserat rod model

One of the most complex rod models is the so-called geometrically exact Cosserat rod which
covers both the rigid body motion and the common deformation modes of a rod [215, 7, 9,
131]. This model is used in the present work, since it captures large structural displacements
to be considered here, and offers a broad range of applications. A discussion on less complex
rod models derived from the Cosserat rod model is provided in Appendix B. The basic idea
of the Cosserat rod theory is quite simple. From a kinematic point of view, each cross section
of the rod is assumed to remain rigid during deformation while internal strains are measured
by the relative position and orientation between adjacent cross sections. On the basis of
this kinematic constraint of rigid cross-sections, the three-dimensional linear momentum
balance (2.4) (and the angular momentum balance) can be converted into the equations of
motion of the Cosserat rod.

Derivation of the Cosserat rod equations. Starting point of the derivation are the
kinematic relations between a material point of the rod x ∈ Ωs in the current configuration
at time t and a material point X = (X, Y, Z)� ∈ Ωs

0 in the reference configuration at t=0.
As described in Section 2.3.1, these points are related to each other by a smooth mapping
χ : Ωs

0 × [0, T ] → R
3 with x = χ(X, t). In the Cosserat rod theory, a special parametrization

is used for χ given by

x(X, t) = c(Z, t) +X rX(Z, t) + Y rY (Z, t) , (2.9)

where c denotes the position vector to a point on the center line ζ ⊂ Ωs along the longi-
tudinal coordinate Z, and rX , rY are two direction vectors of unit length, which span the
cross sections of the rod in the lateral X- and Y -direction, respectively (see Fig. 2.2). By

∂Ωs

Υ

∂Ωs ∩Υ x
y

z
x

ξ

c

rZ

rX

rYc′ Y
X

Z

Figure 2.2: Instantaneous configuration of a deformed Cosserat rod Ωs at time t > 0. Each of the
cross sections Υ(Z) ⊂ Ωs along the arc length Z remains rigid and plane, while its orientation is
described by three orthonormal direction vectors. The latter can be combined to the rotation matrix
R = [rX rY rZ ]. The location of a material point x ∈ Ωs can be decomposed into a longitudinal part
along c and a lateral part ξ = R·ξ0 within the associated cross-section Υ, so that x = c +R·ξ0.
In cases where shear is generated in the rod, the direction vector rZ and the Z-direction are not
aligned, i.e. c′ · rZ ≤ ‖c′‖.
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introducing an additional direction vector rZ , the mapping (2.9) can be expressed in the
equivalent form

x(X, t) = c(Z, t) +R(Z, t) · ξ0(X, Y ) , (2.10)

with the matrix R(Z, t) = [rX rY rZ ] and the cross section vector ξ0 = (X, Y, 0)� in the
Lagrangian reference frame. Here, a specific cross-section Υ ⊂ Ωs is defined by

Υ : Z̃ 
→
{
x ∈ Ωs : x = χ

(
(X, Y, Z̃)�, t

)}
(2.11)

and is thus uniquely assigned to a selected arc length Z = Z̃. In case of long slender rods the
cross sections exhibit only small distortions and the Euler–Bernoulli hypothesis [21] states
that these remain plane during deformation. Consequently, the motion of the cross sections
is well approximated by a pure rigid body motion. The associated kinematic constraint
is incorporated into the mapping (2.10) by a special choice of the tensor R, which has to
feature the properties of a common rotation matrix R ∈ SO(3), as an element of the rotation
group SO(3) = {R ∈ R

3×3 : R·R�= R�·R = I, det(R)=1}. The corresponding equations of
motion of the rod can be derived by replacing x in the common linear and angular momentum
balance ∫

Ωs
0

dẋ

dt
dV0 = − 1

ρs

∫
∂Ωs

0

P�·n0 dS0 +

∫
Ωs

0

f dV0 (2.12a)

∫
Ωs

0

d

dt
(x× ẋ) dV0 = − 1

ρs

∫
∂Ωs

0

x× (P�·n0) dS0 +

∫
Ωs

0

x× f dV0 , (2.12b)

with the constrained mapping x = c+R·ξ0 and the inward pointing unit normal vector n0.
Both equations are then transferred into a linear and angular equation of motion for c and
R, respectively, both usually denoted as (geometrically exact) Cosserat rod equations (2.13).
Their derivation from Eq. (2.12) is very extensive and not provided here. For details, refer to
the comprehensive works of Auricchio [9] and Clerici [44]. It is important to note that in addi-
tion to the kinematic constraint (2.10), further assumptions and simplifications are required
to entirely derive the standard Cosserat rod equations (2.13). These can be summarized as
followed:

• The cross-sections feature a spatially constant density ρs, while their mass centroids co-
incide with the positions c(Z, t) of the center line ζ. Furthermore, the direction vectors
rX(Z, t) and rY (Z, t) are principal axes of the associated cross section Υ(Z).

• The constitutive relations are assumed to be linear elastic with two independent material
parameters, e.g. the Young’s modulus Es and the Poisson’s ratio νs (see Eq. (2.8)). In case
of rigid cross sections the constitutive relations are satisfied only with a Poisson’s ratio of
νs = 0, i.e. without a lateral contraction of the cross sections. However, in the common
Cosserat rod equations, νs usually remains adjustable and is used to influence the dynamic
behavior of the rod.

• It is well known that the cross sections of shorter rods warp under shear and torsional loads.
This warping effect can not be captured directly by the Cosserat rod, but is often modeled
by a shear corrected cross sectional area ksA and a torsion corrected polar moment of
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inertia ktJ . Selected shear correction factors ks and torsion correction factors kt of different
cross-sectional shapes are provided in [76].

• The reference rod Ωs
0 at time t = 0 is assumed to be straight. As shown in Li [140], an

initially curved reference configuration massively increases the complexity of the derivation
of the Cosserat equations. However, the error remains small for slightly curved reference
configurations with local curvatures of a rod κ � 1/W , with cross sections of width W .

The Cosserat rod equations. The derivation from the three-dimensional structural
equations (2.12) results in two spatially one-dimensional differential equations for the rod
motion. One equation describes the temporal evolution of c(Z, t) ∈ ζ, i.e. the positions of
the center line ζ ⊂ Ωs. The second equation describes the rotation of the cross sections
Υ(Z) ⊂ Ωs along the Lagrangian arc length coordinate Z, captured by the rotation ma-
trix R(Z, t) ∈ SO(3). Both equations are referred to as (geometrically exact) Cosserat rod
equations which are given by [215, 7, 131]

ρsA c̈ =
�
f ′ +

�
f (2.13a)

ρsI·ω̇ + ω × ρsI·ω =
�
m′ + c′ × �

f +
�
m , (2.13b)

where the first and second time derivative are abbreviated with v̇ = dv/dt and v̈ = d2v/dt2,
respectively, for an arbitrary vector v ∈ R

3. Furthermore, the spatial derivative along Z is
denoted as v′ = ∂v/∂Z. The angular equation of motion (2.13b) is not formulated directly
for the rotation matrix R(Z, t), but for the angular velocity ω(Z, t) of the cross sections.
Both quantities are related via

[ω]× = Ṙ·R�, (2.14)

where [ω]× is the skew matrix of ω, so that [ω]×·v = ω × v. The rods considered here have
spatially constant geometrical properties, i.e. a constant cross sectional area A and tensor
of inertia I0 = R�IR, as well as constant material properties, e.g. a constant density ρs.

Their motion governed by Eqs. (2.13) depends on the internal forces
�
f and moments

�
m,

as well as on the external forces
�
f and moments

�
m. The latter contain gravitational forces

�
fg = (ρs−ρf)Ag, and external fluid loads acting on the fluid-structure interface Γ, denoted as
�
fΓ and

�
mΓ. In case of a collision between rods these are additionally subjected to the collision

loads
�
f c and

�
mc. The internal forces

�
fΓ and moments

�
mΓ in Eqs. (2.13) are formulated for

a linear viscoelastic material of Kelvin-Voigt type [158, 131], i.e.

�
f = Cε ·(ε − ε|t=0) + Cε̇ ·ε̇ (2.15a)
�
m = Cκ ·(κ− κ|t=0) + Cκ̇ ·κ̇ . (2.15b)

Here, the first term on the right-hand side of Eq. (2.15a) and (2.15b) constitutes the linear

elastic part of
�
f and

�
m. Internal strains generated during deformation are measured by the

strain vector ε and the curvature vector κ. Both vectors are defined by [131]

ε = c′ and [κ]× = R′ , (2.16)

respectively, which can be interpreted as the relative change of position and orientation of

adjoining cross sections. Their linear relation to the internal loads
�
f and

�
m are represented
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by the two constitutive matrices Cε = R·Cε0·R� with Cε0 = diag(ks1Gs, ks2Gs, Es)A, and
Cκ = R ·Cκ0·R� with Cκ0 = diag(Es, Es, ktGs) I0. Here, the geometric tensor of inertia
I0= diag(IX , IY , J) contains the 2nd moments of area IX , IY and J = IZ around the rX-,
rY - and rZ-axis of the cross section. The shear and torsion correction factors ks1 , ks2 and kt
are used to model the influence of warping effects in case of shear and torsional loads.
The second term on the right-hand side of Eq. (2.15) takes into account the dissipative part

of the internal loads
�
f and

�
m due to internal friction. For the Kelvin-Voigt material used here,

these depend linearly on the strain rate ε̇ and the curvature rate κ̇, respectively, while the
corresponding constitutive matrices are given byCε̇ = R·Cε̇0·R� withCε̇0 = diag(cs1, cs2, ce),
andCκ̇ = R·Cκ̇0·R� withCκ̇0 = diag(cb1, cb2, ct). The subscript of each damping parameter c
denotes the associated deformation mode, i.e. shear, extension, bending and torsion.
A useful feature of the kinematic constraint (2.10) is that each vector quantity described
in the global Eulerian frame can be transformed very easily into the Lagrangian frame of
the reference configuration Ωs

0 at t=0. At a specific arc length Z, it is realized by a linear
transformation via the rotation matrix R(Z, t), e.g. to obtain

ω0= R�·ω , I0= R�·I·R,
�
f 0= R�·�f , �

m0= R�· �
m , . . . , (2.17)

in the co-rotated Lagrangian frame [rX rY rZ ] of an individual cross section, labeled with a
subscript zero.

2.4 Fluid-structure coupling

2.4.1 Coupling conditions

The coupling between the Navier-Stokes equations (2.1) and the structure equations (2.4)
is realized by the kinematic and the dynamic coupling condition. Both take place at the
common fluid-structure interface Γ. The dynamic condition addresses the balance of forces
between the fluid and the structure on Γ. This implies the equality of their stress vectors,
i.e.

σ ·n = σs ·n ∀x ∈ Γ , (2.18)

with the hydrodynamic stress tensor σ, the structural Cauchy stress tensor σs=det(F)−1F·P,
and the unit normal vector n pointing from the fluid domain Ωf into the solid domain Ωs.
From a different point of view, the stress vector can be interpreted as a surface-specific cou-
pling force fS = σ·n connecting both parts of the coupled system at the interface Γ. In order
to impose the dynamic coupling condition (2.18), fS has to be introduced in the momentum
balances of the fluid and the structure with opposite sign, according to the principle of actio
et reactio. In particular for the one-dimensional Cosserat rod considered here, the coupling
force is transformed into an appropriate one-dimensional variant, consisting of a coupling

force
�
fΓ(Z, t) and a coupling moment

�
mΓ(Z, t). These are given by

�
fΓ = −

∫
Γ∩Υ

fS dC ,
�
mΓ = −

∫
Γ∩Υ

x× fS dC (2.19)

and are obtained by integrating the hydrodynamic stress vector fS = σ · n along the fluid-
solid contour Γ ∩Υ(Z) of an individual cross section Υ(Z) (see Fig. 2.2).
In general, the viscous fluids considered here stick at the surface of the rod structure without
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any mass transfer across the fluid-structure interface Γ. Consequently, the kinematic coupling
is realized by the no-slip boundary condition

u = v ∀x ∈ Γ , (2.20)

which imposes the equality of the fluid velocity u and the structure velocity v = dx/dt at
their common moving interface Γ. Concerning the kinematic constraint (2.10) of the Cosserat
rod, i.e. x = c+R·ξ0, the no-slip condition (2.20) can be transferred into

u = ċ+ ω × ξ ∀X ∈ Γ0 , (2.21)

with the linear velocity ċ of an individual cross section Υ(Z), its angular velocity ω and the
cross section vector ξ = R·ξ0 ∈ Υ(Z) (see Fig. 2.2).

2.4.2 Zero-thickness assumption and jump conditions

The long slender rods considered in this work have cross sections much smaller than their
longitudinal expansion. Especially when focusing on FSI problems with a large number of
slender rods in an appropriately large fluid domain, the exact geometrical shape of the cross
sections is usually of less importance for the global dynamic behavior of the fluid. Con-
sequently, the rods are sufficiently well represented in the fluid as simple one-dimensional
curves, e.g. to model fibers, or as two-dimensional geometries in case of strip-shaped rods
(Fig. 2.3). Since at least one lateral expansion of the structure is neglected, this strategy is
often referred to as zero-thickness assumption (approximation) which is widely used in the
literature to model rods or membranes, e.g. [39, 56, 102, 135, 273, 239, 53]. This strategy
is pursued here as well. The present FSI model is tailored to rectangular cross sections of
width W and thickness T , with an aspect ratio of T � W . While the Cosserat-rod equa-
tions (2.13) are solved for the three-dimensional volumetric rod with T > 0, it is represented
in the fluid as a two-dimensional version with T = 0, illustrated in Fig. 2.3. When applying

Ω

Γ

Υ
x

y
z

xc
rZ

rY
rX

Y

Z

Figure 2.3: Representation of a strip-shaped rod in the fluid domain Ωf = Ω as an infinitely thin
Cosserat rod Ωs = Γ. In contrast to the three-dimensional volumetric rod shown in Fig.2 2, the
cross sections Υ(Z) are one-dimensional and a subset of the fluid-structure interface Γ.

the zero-thickness assumption in the fluid domain, the structure domain Ωs completely co-
incides with the fluid-structure interface Γ, so that Ωs = Γ. Moreover, the fluid domain now
represents the entire domain of the coupled problem, i.e. Ω = Ωf ∪ Ωs = Ωf , and contains
the structure as an embedded fluid-structure interface Γ. To discuss this issue the limiting
case of a so-called interface problem is considered, where the entire fluid domain Ω is sepa-
rated by the interface Γ into two disjoint regions. If differential equations are used to model
such an interface problem, quantities in the governing equations are discontinuous across the
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interface [142], as demonstrated in the following. For this purpose, consider a small finite
volume ω ⊂ Ω which is entirely cut by the interface γ ⊂ Γ into two subdomains ω+ ⊂ ω
and ω− ⊂ ω, as illustrated in Fig. 2.4. The fluid inside ω is described by the Navier-Stokes

∂ω+
ω+

∂ω−
ω−

∂ω

γ
λ

dΛ

n+

n−
n

x

y
z

Γ

Ω

ω

∂Γ
ω = ω+ ∪ ω− (2.22a)

γ = ∂ω+ ∩ ∂ω− (2.22b)

∂ω = (∂ω+ ∪ ∂ω−) \ γ (2.22c)

Figure 2.4: Illustration of an interface problem in which the fluid domain Ω is cut by the interface
Γ. On a smaller scale, the finite volume ω ⊂ Ω is separated into two subdomains ω+ and ω−. The
intersection of their boundaries ∂ω+and ∂ω− defines the common interface γ ⊂ Γ. The vectors
n, n+ and n− are out-pointing unit normal vectors at the boundaries ∂ω, ∂ω+and ∂ω−. The gray
shaded area around γ represents a compact, volumetric layer λ of infinitesimally small thickness
dΛ → 0, as described in Section 2.4.3.

equations (2.1), where the velocity field u+ and u− belongs to the associated subdomain ω+

and ω−, respectively. Concerning Eq. (2.1a), the corresponding integral momentum balances
of both subdomains are given by∫

ω+

(
ρf

du+

dt
− f+V

)
dV =

∫
∂ω+

σ+·n+ dS (2.23a)∫
ω−

(
ρf

du−

dt
− f−V

)
dV =

∫
∂ω−

σ−·n− dS , (2.23b)

with the hydrodynamic stress tensors σ+ and σ−, according to Eq. (2.2), being defined in ω+

and ω−, respectively. From the boundary integrals over ∂ω+ and ∂ω−, the common part of
the interface γ can be isolated formally concerning definition (2.22c). Doing so, Eq. (2.23a)
and Eq. (2.23b) can be converted into∫

ω+

(
ρf

du+

dt
− f+V

)
dV =

∫
∂ω+\γ

σ+·n+ dS +

∫
γ

σ+·n+ dS (2.24a)∫
ω−

(
ρf

du−

dt
− f−V

)
dV =

∫
∂ω−\γ

σ−·n− dS +

∫
γ

σ−·n− dS . (2.24b)

To access the behavior of the entire domain ω cut by γ, both momentum balances, separated
so far in ω+ and ω−, are added to obtain their union ω = ω+ ∪ ω−, i.e.∫

ω+

(
ρf

du+

dt
− f+V

)
dV +

∫
ω−

(
ρf

du−

dt
− f−V

)
dV︸ ︷︷ ︸

ω=ω+∪ω−

=

∫
∂ω+\γ

σ+·n+ dS +

∫
∂ω−\γ

σ−·n− dS︸ ︷︷ ︸
∂ω=(∂ω+∪ ∂ω−)\γ

+ ...

... +

∫
γ

(
σ+·n+ + σ−·n−) dS . (2.25)
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By renaming the field quantities belonging to ω and setting n = n+ = −n−, the momentum
balance over ω is given by∫

ω

(
ρf

du

dt
− fV

)
dV =

∫
∂ω

σ ·n dS +

∫
γ

(σ+− σ−)·n dS︸ ︷︷ ︸
jump term

. (2.26)

Here, the second term on the right-hand side of Eq. (2.26) is referred to as jump term. The
associated jump in the stress vectors, i.e. (σ+−σ−)·n, has the unit of a surface-specific force
fS related to the interface γ [187, 142, 133]. Using this force, the jump term can be expressed
as ∫

γ

fS dS =

∫
γ

σ+·n dS −
∫
γ

σ−·n dS , (2.27)

which illustrates, that fS is the resulting fluid load caused by the hydrodynamic stresses σ+

and σ− acting on γ from both sides, i.e. from ω+ and ω−, respectively. Only in cases where
the stresses across γ are discontinuous, the force fS does not vanish. This is obviously the
reason for the designation “jump term” in Eq. 2.26.
As described in the previous Section 2.4.1, the force fS can also be interpreted as a coupling
force introduced into the Navier-Stokes equations (2.1) and the Cosserat rod equations (2.13)
to impose the kinematic and dynamic coupling condition. In this context, the coupling force
is defined locally at each point on x ∈ Γ, opposed to its integral formulation according to
Eq. (2.27). However, if the control volume ω shown in Fig. 2.4 is decreased to an infinitesi-
mally small size, Eq. (2.27) can be transferred to a local relation between the coupling force
and the hydrodynamic stresses, so that fS = (σ+−σ−)·n ∀x ∈ Γ. At the interface edge ∂Γ
the local force fS vanishes, since σ+ and σ− coincide in the free flow region without Γ.
The analysis of the cut volume ω via the momentum balance (2.1a) revealed that the hy-
drodynamic stresses σ are discontinuous at γ. To gain information about the velocity field
u cut by γ, the same procedure is applied to the continuity equation (2.1b). This results in∫

∂ω

u · n dS +

∫
γ

(u+− u−) · n dS = 0 , (2.28)

with the velocities u+ and u− evaluated as the upper and lower limit, respectively, with
respect to both sides of γ. Due to continuity at the outer boundary ∂ω, the first integral on
the left-hand side vanishes, so that Eq. (2.28) turns into the kinematic relation∫

γ

(u+− u−) · n dS = 0 , (2.29)

between the upper and the lower limit of u on γ. Following the argumentation above, this
integral formulation can be transferred into the local condition u+·n = u−·n ∀x ∈ Γ, which
implies the continuity of u(x, t) in normal direction of Γ. With the no-slip condition (2.20)
assumed in Section 2.4.1, the tangential part of the velocity must coincide as well, so that
u+= u− ∀x ∈ Γ. Therefore, the velocity field u(x, t) is continuous in the entire fluid domain,
in contrast to the hydrodynamic stresses σ ·n as described above. However, the discontinuity
of the stresses (σ+−σ−)·n �= 0 implies that the velocity field does not need to be differentiable
at Γ. As a result u(x, t) exhibits a continuity of class C0.
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2.4.3 Coupling via distributive sources

In the previous sections, the coupling force fS = (σ+−σ−)·n was derived as a surface-specific
force acting on the fluid-structure interface Γ with the associated coupling term appearing
as an additional surface integral in the momentum balance (2.26) of the fluid. The IBM
coupling strategy used here is based on the idea of converting this surface integral into a
volume integral. For this purpose, the surface-specific coupling force fS is transformed into
a mass-specific coupling force fΓ. As a result, fΓ can be introduced directly into the differen-
tial momentum balance (2.1a) as a regular volume force, such as gravitational acceleration.
This simplifies the numerical treatment of the Navier-Stokes equations (2.1), since a special
handling of surface-specific quantities is not necessary.
The transformation of the integral coupling term is realized by using common techniques
of distribution theory. In this context, a properly defined delta function δV allows replacing
the surface-specific force fS by its volumetric complement fΓ, in such a way that the same
momentum is transferred to the fluid [180, 66], i.e.∫

γ

fS dS =

∫
ω

δV fS dV =

∫
λ

ρf fΓ dV , (2.30)

where λ ⊂ Λ is the compact, volumetric support of the delta function δV enveloping the
interface γ ⊂ Γ in the cut volume ω ⊂ Ω (see Fig. 2.4 above). On a larger scale, this
support constitutes a thin “coating” layer Λ enclosing entirely the interface Γ. For the exact
continuous problem the thickness of Λ is infinitesimally small, i.e. dΛ → 0. Thus, fΓ applies
a finite amount of “force” to the fluid in an arbitrarily thin layer Λ, which indicates the
distributive nature of the coupling force. This perspective constitutes the basis for the later
discrete formulation of the FSI problem via an immersed boundary method, described in
Chapter 4 below.
According to the principle of actio et reactio, the distributive force fΓ, introduced into the
momentum balance of the fluid, must also appear in the equations of motion of the Cosserat

rod, with opposite sign. So far, the forces
�
fΓ and moments

�
mΓ acting on the rod are defined

via fS, according to Eq. (2.19). Considering the zero-thickness approximation with Γ∩Υ = Υ,
both are given by

�
fΓ(Z) = −

∫
Υ

fS dY ,
�
mΓ(Z) = −

∫
Υ

ξ × fS dY , (2.31)

with fS = (σ+− σ−) ·n. According to transformation (2.30), fΓ emerges from a surface

integration of fS. Instead, Eq. (2.31) provides a line integral over Υ(Z). Consequently,
�
fΓ(Z)

and
�
mΓ(Z) must be integrated along the arc length Z to enable an incorporation of fΓ via∫

ζ

�
fΓ dZ = −

∫
Γ

fS dS = −
∫
Λ

ρf fΓ dV (2.32a)∫
ζ

�
mΓ dZ = −

∫
Γ

ξ × fS dS = −
∫
Λ

ξ × (ρf fΓ) dV , (2.32b)

taking advantage of the fact that the interface Γ equals the union of the cross-sections Υ(Z)
(Fig. 2.3), i.e. Γ =

⋃
Z∈ζΥ(Z). At a later stage, this relation is of crucial importance for

the spatial discretization of the Cosserat rod by a finite set of structural elements e. In this
context, the average hydrodynamic loads acting on the element interface Γe are given by
�
fΓe =

∫
ζe

�
fΓdZ/ΔZ and

�
mΓe =

∫
ζe

�
mΓdZ/ΔZ, with ζe ⊂ ζ and ΔZ =

∫
ζe
dZ.
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3.1 Navier Stokes equations

3.1.1 Temporal discretization

The basic fluid solver was adopted from the in-house code PRIME (Phase-Resolving sIMu-
lation Environment), primarily implemented by Kempe in 2011 [118, 119]. Due to its high
efficiency and capability for IBMs, it is frequently employed in simulations of coupled prob-
lems [251, 119, 35, 246]. This section shortly summarizes relevant information in terms of the
temporal and spatial discretization. Remaining technical details are provided in [118, 119].
The time integration of the Navier-Stokes equations (2.1) is accomplished by a special vari-
ant of the pressure projection method [43, 123, 194, 37], used to impose the incompressibility
constraint (2.1b). In PRIME the variant of Uhlmann [251] is used which combines an ex-
plicit three-step third-order low-storage Runge-Kutta scheme for the convective term and
a second-order implicit Crank-Nicolson scheme for the viscous term in each Runge-Kutta
sub-step. Furthermore, in this variant the pressure is considered in the predictor step of
the projection method which conserves an overall second order accuracy in time for both,
the pressure as well as the velocity [37]. Numerical stability of the Runge-Kutta scheme is
achieved for Courant numbers CFL <

√
3 [194] which extends to the entire time advance-

ment scheme. In each Runge-Kutta sub-step r = 1, 2, 3 the following equations need to be
solved:

ũ− ur−1

Δt
= 2αr νf ∇2u r−1 − 2αr ∇

(
p

ρf

r−1
)
− γr ∇·(u⊗ u) r−1 − ζr ∇·(u⊗ u) r−2 + fV

(3.1a)

∇2u∗ − u∗

αr νf Δt
= ∇2ur−1 − ũ+ 2αr Δt fΓ

αr νf Δt
(3.1b)

∇2φr = ∇ · u∗ (3.1c)

ur = u∗ −∇φr (3.1d)

p

ρf

r

=
p

ρf

r−1

+
φr

2 αr Δt
− νf

2
∇2φr , (3.1e)

where the coefficients αr, γr and ζr of the present Runge-Kutta scheme can be found in [194,
251]. At level r = 1, the velocity field u0 and the pressure field p0 provide the initial conditions
of the current time step and are identical to field variables of the previous time level tn, i.e.
u0 = un and p0 = pn. For the three-step scheme employed here, the velocity field u3 = un+1

and the pressure field p3 = pn+1 constitute field variables at the new time tn+1 = tn + Δt,
with the current time step size Δt = tn+1 − tn.
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Initially, in each Runge-Kutta step r, a preliminary velocity field ũ is determined by a fully
explicit Runge-Kutta sub-step. Afterwards, the viscous term is treated implicitly by the
Helmholtz equation (3.1b) yielding a non-divergence free velocity field u∗. The force fΓ in
Eq. (3.1b) is used at a later stage for the fluid-structure coupling, described in Chapter 4
below. In the next step, the scalar pressure correction field φ is determined by the Poisson
equation (3.1c). Subsequently, it is used to correct u∗ to a divergence free field ur by means of
the projection (3.1d). Finally, the pressure field pr at the new time level is obtained explicitly
from the pressure correction field φ via Eq. (3.1e).
In this scheme the main computational effort is consumed by the Helmholtz equation (3.1b)
and the Poisson equation (3.1c). Hence, the performance and efficiency of the fluid solver
depends essentially on the computational approaches applied to solve these systems. As
described in Section 4.6, this issue is outsourced by using parallel solvers of the modern
libraries PETSc [13] and Hypre [132].

3.1.2 Spatial discretization

The spatial discretization of the system (3.1) is performed by a second-order finite-volume
scheme of Ham [94] on a staggered Eulerian grid. Here, the pressures pijk are stored in
the cell centers of the control volumes, while the velocity components are shifted by a half
cell width in the corresponding direction and thus are located at the cell faces, so that
uijk = (ui,j− 1

2
,k, vi,j− 1

2
,k, wi,j,k− 1

2
)�. The discretization scheme fully conserves mass, momen-

tum and energy even on non-uniform grids and avoids checkerboard oscillations of the pres-
sure [118]. In the present work the computational domain Ω = [0;Lx] × [0;Ly] × [0;Lz] has
a rectangular shape, where Lx, Ly and Lz denote the extend of the domain in x-, y- and
z-direction, respectively. Different boundary conditions were implemented for the velocity
field: a Dirichlet boundary condition to realize velocity inlets or no-slip walls, a Neumann
condition to impose free-slip rigid lids and periodicity conditions, connecting two opposite
boundaries in one direction. Furthermore, a convective outlet condition [191, 118] is provided,
enabling flow structures to leave the domain almost without affecting the interior flow field.
In terms of the pressure correction field φ a zero gradient condition [88] is used for all types
of boundary conditions except for periodic boundaries.

3.2 Cosserat rod equations

3.2.1 Parametrization of finite rotations

The Cosserat rod equations (2.13b) are constituted by a linear and an angular equation of
motion. The former equation describes the motion of the center line position c which is a
vector quantity c ∈ R

3. The angular equation of motion is formulated in terms of the rotation
matrix R ∈ SO(3) additionally subjected to the properties of the rotation group SO(3), i.e.
the orthogonality constraint R ·R� = R�·R = I. Consequently, this constraint needs to be
taken into account when parameterizing R. Several approaches were developed and applied
to rod models in the recent past, all accompanied by advantages and disadvantages [104,
262, 140, 148]. Common variants are the formulation via Euler angles, by means of the
Rodriques formula or hybrid forms [29, 236]. In principle, only three degrees of freedom are
required to describe uniquely a finite rotation in space due to the orthogonality of R. State
of the art is to describe rotations via quaternions. Among other advantages, these avoid the
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gimbal lock effect or singularities [129]. A quaternion q exhibits four degrees of freedom, i.e.
q = (qr; q̂) ∈ S

3, where S3 = {q ∈ H : ‖q‖ = 1} ⊂ H is the set of unit quaternions, a subgroup
of the multiplicative quaternionic group H [129]. The real part of the quaternion is given
by �(q) = qr ∈ R. Furthermore, the imaginary part is �(q) = q̂ ∈ R

3, while q = (qr;−q̂)
denotes the conjugate of a quaternion q, such that q∗q = (‖q‖2; 0). The multiplication of
two quaternions p,q ∈ H is defined as

p∗q = prqr − p̂·q̂ + prq̂ + qrp̂+ p̂× q̂ for p,q ∈ H (3.2)

and thus is non-commutative. The multiplication between a matrix M ∈ R
4×4 and a quater-

nion q ∈ S
3 is treated as a common matrix vector multiplication M ·q, while a scalar

multiplication sq, with s ∈ R, is executed componentwise. The dot-product is defined as
p·q = prqr + p̂·q̂ and the cross-product is given by p× q = (p∗q− q∗p)/2. Using these defi-
nitions, a rotation of any vector quantity v ∈ R

3 between a local and the global coordinate
frame can be formulated as follows:

v = R·v0 = q∗v0∗q (forward rotation) (3.3a)

v0= R�·v = q∗v∗q (backward rotation) (3.3b)

Recall that vectors indicated with index zero, e.g. v0∈ R
3, are given in the local co-rotated

Lagrangian frame of a cross section and conventional letters, v ∈ R
3, in the global Eulerian

frame. Furthermore, �(H) = R
3 stating that each vector v ∈ R

3 is treated as a pure imag-
inary quaternion v = v̂. For a quaternion q the corresponding rotation R = [rX rY rZ ] of a
cross section is given by the Euler map [131]

R(q) =
(
2q2r − ‖q‖2) I + 2q̂ ⊗ q̂ + 2qr [q̂]× for q ∈ H . (3.4)

In the present context, Lang et al. [131] showed that the Cosserat rod equations (2.13) can
be reformulated by standard index reduction techniques as an equivalent system

c̈ =
1

ρsA

{(
q∗

�
f 0∗q

)′
+

�
f

}
(3.5a)

q̈ =
2

ρs
M·

{
4ρs q̇∗I0 ·

(
q̇∗q

)
+ c′∗q∗

�
f 0 +

(
q∗ �

m0

)′
+ q′∗ �

m0 +
�
m∗q

}
− ‖q̇‖2q , (3.5b)

with the quaternion matrix of inertia I0 = 0 ⊕ I0 and the “inverse” quaternion matrix of
inertia M = 1

4
Q ·I−1

0 ·Q�. Here, the matrix Q allows to express a multiplication of p,q ∈ S
3

as a matrix-vector product, i.e. p ∗q = Q(p)·q [131]. According to Eq. (2.15), internal forces
�
f 0 and internal moments

�
m0 are formulated in terms of the strain vector ε0 and the curvature

vector κ0, respectively. Their quaternionic expressions are given by

ε0= q∗c′ ∗q and κ0= 2q∗q′ . (3.6)

In contrast to the conventional formulation of the Cosserat rod equations (2.13), the quater-
nionic form (3.5) can be transformed into a system of first-order ordinary differential equa-
tions (3.8), which is advantageous from a numerical point of view.
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3.2.2 Temporal and spatial discretization

In the literature, the Cosserat rod equations (2.13) are usually discretized by finite element
methods (FEM), e.g. in [20, 217, 105, 107, 202, 99, 275] to name just a few. In rare cases finite
difference methods (FDM) are used [57, 25, 131, 110]. Usually, FE methods are preferred as
they provide a simple way to assemble numerous rod structures to complex supporting struc-
tures. Due to technical issues which may arise for low-order schemes, e.g. the “shear locking”
effect [128, 6], high expertise is required when employing FEM for this purpose. In contrast
to that, a discretization via FDM is more straightforward, which reduces the implementation
effort. In addition, rod models discretized with finite differences are often employed in real-
time applications [131] as they keep the computational effort as small as possible. This is
especially important when simulating a large number of rods simultaneously. For these rea-
sons, the FDM approach is favored in the present work as well. Following recommendations
of Lang et al. [131], the rod equations (3.5) are discretized with an equidistant staggered
grid to achieve a second order accuracy in space. As shown in Fig.3.1, the centroids of the
cross sections are located at the edges of an element e which are denoted by a half-index,
i.e. ce− 1

2
and ce+ 1

2
with e = 1, ..., Ne. The rotations of the cross sections are located between

these centroids and are denoted by qe. Corresponding centroid velocities and quaternionic
velocities are staggered identically and are given by ċe− 1

2
, ce+ 1

2
and q̇e, respectively. After

discretization the rod structure can be interpreted as a set of rigid structural elements con-
nected by numerical joints along the arc length coordinate Z, as illustrated in Fig. 3.1.
The boundary conditions of the rod equations required at both ends of the rod, i.e. at Z = 0
and Z = L, are treated as follows. In case of freely movable unconstrained ends internal
forces and internal moments vanish, which can simply be incorporated into the equations of
motion discretized. Constrained and fixed ends of a rod correspond to Dirichlet conditions
in terms of the center line, i.e. c 1

2
or cNe+

1
2
, depending on the specific end to be fixed. The

handling of predefined rotations is more difficult since no discrete quaternions are available at
the lower end and the upper end of the rod due to the staggered discretization employed (see
Fig.3.1). Instead, so-called ghost-quaternions are used, e.g. q0 at the lower end, determined
in such a way that a desired rotation q 1

2
is realized at Z = 0. Based on the well-known

SLERP interpolation technique [213] – used here as an extrapolation technique to obtain
ghost-values – the ghost-quaternion and the corresponding time derivative are given by

q0 = 2 (q 1
2
· q1)q 1

2
− q1 and q̇0 =

∂q0

∂q1

· q̇1 . (3.7)

The ghost-quaternion qNe+1 at the upper end of the rod at Z = L is computed analogously.
Boundary conditions just mentioned also can be mixed, e.g. to realize a revolute joint, where
the rod is fixed at one end but is able to rotate freely around this fixation.
The spatial discretization of the Cosserat equations via FDM results in a system of first-order
ordinary differential equations (ODE) of the form

ż = rhs(z, t), z =
(
c 1

2
, ċ 1

2
, q̇1,q1, c 3

2
, ċ 3

2
, ... , q̇Ne

,qNe
, cNe+

1
2
, ċNe+

1
2

)�
. (3.8)

Compared to other nonlinear differential equations ODEs are well understood and can be
treated very efficient by optimized solvers to save computational time. Moreover, the present
rod model is free of higher algebraic or transcendental functions which additionally reduces
the computational effort [131]. As a result, it allows the simulation of multibody dynamics
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with large numbers of rods, so that the model is well-suited for the specific requirements of
the present FSI approach.
The time integration of system (3.8) can be done by an appropriate ODE-solver, adapted
to the numerical properties of the ODE. Following recommendations of Lang et al. [131] the
non-commercial solver RADAU5 [93, 91] is employed here for time integration. It is based on
an implicit Runge-Kutta method of order 5 and is able to solve stiff problems. In principle,
fully explicit solvers can be used as well, e.g. the non-commercial solver DOPRI5 [92, 91],
provided the ODE has a moderate stiffness. In the present scenario, the numerical stiffness
depends on the physical properties of the Cosserat rod and mainly is proportional to the
rigidity of the rod and the speed of wave propagation. For rods of moderate stiffness focused
here, RAUDAU5 turned out to be the best choice in terms of the computational effort.
To obtain the state vector zn+1 at the new time level tn+1 = tn +Δt from zn at the previous
time level tn, the following system of equations is solved iteratively by RADAU5:

z̃i = zn +Δt

3∑
j=1

aij rhs (z̃j, t
n+cjΔt) for i = 1, ... , 3 , (3.9a)

zn+1 = zn +Δt
3∑

j=1

bj rhs (z̃j, t
n+cjΔt) , (3.9b)

where the coefficients aij, bj and cj can be found in [93]. While computing, RADAU5 requires
the Jacobian of the differential equation (3.8), i.e. J = ∂rhs/∂z, where an analytical deriva-
tion of J is laborious due to the nonlinear character of the rod equations (3.5). However,
the RADAU5 package provides a FDM approximation of J. It turned to be out, that this
approximation performs very similarly to the analytical one and saves computational time
in case of a fine spatial discretization of the rod, i.e. more degrees of freedom.
Successfully solving the differential equations (3.5) does not necessarily impose the constraint
of unit length, i.e. ‖q‖ = 1, required to describe rotations in space. As described in [131], the
quaternion q drifts quadratically from this constraint which, however, can be counteracted
by the projection

q ← q/‖q‖ and q̇ ← q̇− (q·q̇)q , (3.10)

applied after each time integration step for the entire set of quaternions qn+1
e , e = 1, ..., Ne.

ċ 1
2

c 1
2 q1

q̇1

ċ 3
2c 3

2
q2
q̇2

ċNe+
1
2

cNe+
1
2qNe q̇Ne

qNe+1 q̇Ne+1
q0 q̇0

Z

Figure 3.1: Spatial discretization of the rod along the arc length Z by Ne elements of equal
geometrical and material properties. Shown are discrete centroid positions ce− 1

2
and velocities ċe− 1

2
,

as well as the rotational degree of freedom represented by quaternions qe and q̇e, with e = 1, ..., Ne.
The dashed lines indicate the connection to ghost-quaternions q0 and qNe+1 and ghost-velocities q̇0

and q̇Ne+1 required to impose the boundary conditions at both ends.
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3.3 Validation

The present fluid solver described in Section 3.1 was already employed and excessively val-
idated in earlier works [118, 209, 211, 246]. Therefore, only the following validation case is
presented here which covers the scope of applications focused in the present work, namely
turbulent channel flows later interacting with highly flexible rods (see Chapter 6).
In terms of the validation of the structure solver, a huge amount of benchmark tests for the
dynamic and static response of nonlinear rod models can be found in the literature. In this
work three test configurations were selected, where one setup is used to validate the static
response of the rod, the second test focuses on the application of co-rotating and fixed pres-
sure loads, and the third test case captures the fully three-dimensional dynamic response of
the rod. Supplementary validation studies are presented in Appendix A.

3.3.1 Turbulent channel flow

physical parameters:

δ = 1m channel half-width

U = 1m/s bulk velocity

νf = 1.4531 · 10−4m2/s kinematic viscosity

dimensionless quantities:

Reδ = Uδ/νf ≈ 6882 Reynolds number

Reτ = uτδ/νf ≈ 395 Reynolds number,

based on friction vel. uτ

〈u〉(y)

no-slip

no-slip 2δ

π δ

2π δ

x

y

z

Figure 3.2: Configuration of a turbulent channel flow driven by a spatially constant pressure
gradient. In y-direction the channel is bounded by an upper and a lower no-slip wall, while the
extension in streamwise and spanwise direction is assumed to be infinitely large. From a numerical
point of view, this is approximated by periodic boundary conditions in x- and z-direction and a
sufficiently large finite domain Ω = [0;Lx]× [0;Ly]× [0;Lz] with Lx = 2πδ, Ly = 2δ and Lz = πδ,
so that statistical quantities are correctly covered [165], e.g. the time-averaged velocity profile 〈u〉(y).

Fig. 3.2 illustrates the configuration of a wall-bounded turbulent channel flow. Since the flow
reveals a statistical stationarity and homogeneity in streamwise and spanwise direction the
present validation is performed by means of temporally and spatially averaged quantities.
These are the mean velocity profile 〈u〉 and relevant Reynolds stresses 〈u′u′〉, 〈u′v′〉 and
〈w′w′〉. The average of the fluid field 〈u〉 = (〈u〉, 〈v〉, 〈w〉)� is defined by

〈u〉(y) = 1

TLzLx

∫ T

0

∫ Lz

0

∫ Lx

0

u(x, t) dx dz dt , (3.11)

where the velocity fluctuations u′ = (u′, v′, w′)� are obtained from the Reynolds decom-
position of the instantaneous velocity field u, i.e. u = 〈u〉 + u′. Velocities and Reynolds
stresses labeled with a superscript (.)+ are nondimensionalized with the friction velocity
uτ =

√
νf ∂〈u〉/∂y |y=0. In general, turbulent channel flows are fully characterized by one

dimensionless quantity, usually given by the friction Reynolds number Reτ = uτδ/νf or,
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alternatively, by the bulk Reynolds number Reδ = Uδ/νf . Both are related via

Reδ =

∫ δ+=Reτ

0

〈u〉+ dy+ , (3.12)

with y+ = y uτ/ν being the dimensionless wall coordinate, and δ+ = y+(y = δ) the dimen-
sionless channel width. In the present numerical approach a specific bulk Reynolds num-
ber Reδ = Uδ/ν is realized by a spatially constant but temporally variable volume force
fV = (fV (t), 0, 0)

� added to the momentum balance of the fluid (2.1a). By means of a
PI-controller [118] the force fV (t) is dynamically adjusted to maintain a temporally constant
bulk velocity

U =

∫
Ω

u(x, t) dV = const. , (3.13)

so that Reδ is kept constant as well. Consequently, the friction velocity uτ and the Reynolds
number Reτ are not adjusted and are a result of the simulation. Here, the reference simulation
data of Moser et al. [165] at Reτ = 392.24 (Reδ ≈ 6682) is used for validating the present
fluid solver in both cases, a DNS and an LES.
In case of the DNS, the fluid domain Ωf is discretized with Nx ×Ny ×Nz = 256× 128× 256
grid cells in x-, y- and z-direction, while the grid is refined towards the wall by means of
a hyperbolic stretching in y-direction, i.e. yi = δ {1 − tanh[ β (1 − 2i/Ny) ]/ tanh β} with
i = 0, . . . , Ny. The stretching factor was chosen to be β = 2 which realizes a sufficiently
fine resolution y+1 ≈ 1 of the viscous sublayer. For the LES a much coarser grid is employed
with Nx × Ny × Nz = 64 × 32 × 64, whereas the sublayer also is resolved with y+1 ≈ 1,
obtained for a stretching factor β = 2.93. The Smagorinsky constant is set to Cs = 0.065 as
proposed in [77] for the present Reτ . It is well known, that the standard Smagorinsky model
causes non-physical values of the eddy viscosity νsgs in the near-wall region since the mean
velocity gradient contributes to the eddy viscosity supposed to model turbulent fluctuations.
For this reason, a Van Driest damping function D(y+) = 1−exp[−(y+/25)3] is applied which
smoothly switches off νsgs near the wall [60]. Regarding the temporal discretization the time
step size Δt is adjusted to realize a CFL number of 0.5 for both simulations. A physical
time of 150 flow-through times Tft = 2πδ/U was simulated to reach statistical convergence
of average quantities.
For Reδ = 6882 adjusted, the present DNS results in a friction Reynolds number of Reτ ≈ 390
which is very close to the reference value of Reτ ≈ 392.24 given by Moser et al. [165]. A
slightly lower value of Reτ ≈ 380 is computed by the LES. Fig. 3.3 presents the results
of the averaged normalized velocity profile 〈u〉+ and relevant normalized Reynolds stresses
〈u′u′〉+, 〈w′w′〉+ and 〈u′v′〉+. Furthermore, the data is compared to the results obtained with
a spectral method by Moser et al. [165], and compared to the data of Kawamura et al. [117, 1]
which employed a second order finite-volume discretization. Obviously, the present DNS data
nearly coincide with the results of Kawamura et al. [117, 1], while small differences occur
in comparison to Moser et al. [165] for the peak region of 〈u′u′〉+. Regarding the present
LES the statistical data are represented sufficiently well, with slightly larger deviations in
the peak region of 〈u′u′〉+ and 〈w′w′〉+. However, the much coarser discretization achieves a
significant reduction of the computational effort to 0.3% of the effort required for the present
DNS. In this context, the results obtained are very satisfactory.
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Figure 3.3: Averaged normalized velocity profile 〈u〉+ and relevant Reynolds stresses 〈u′u′〉+,
〈w′w′〉+ and 〈u′v′〉+ at Reτ =395. The present results of the DNS and the wall-resolving LES with
a Smagorinsky constant of Cs=0.065 are compared with the results obtained by Moser et al. [165]
and the data of Kawamura et al. [117, 1].

3.3.2 Cantilever subjected to a transversal load

R = 1m radial distance

φ = 45 ◦ angle

F = 0, 3, 6N vertical loads

structure properties:

L = π/4m rod length

W = 0.01m rod width (square)

J = W 4/6 polar moment

Es = 109N/m2 Young’s modulus

νs = 0 Poisson’s ratio F = 0N

F = 3N

F = 6N

R = 1m

φ = 45 ◦

x

z

y

Figure 3.4: Setup of the well-known configuration of a cantilever 45-degree bend proposed by Bathe
and Bolourchi in 1979 [20]. The rod is clamped at one end and subjected to a transversal constant
force F at the other end. Geometrical nonlinear effects yield a three-dimensional static response of
the rod depending on the magnitude of F employed.

The cantilever 45-degree bend scenario, proposed by Bathe and Bolourchi [20], is the most
frequently applied setup used for benchmarking the three-dimensional static response of rod
models. Furthermore, it is recommended by the National Agency for Finite Element Methods
and Standards as a benchmark for geometric nonlinearities (NAFEMS, 3DNLG-5). As shown
in Fig. 3.4 the initial shape of the rod is an arc of a circle of radius R = 1m located in the
horizontal plane z = 0 of the global frame. Other geometrical and material properties of the
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rod are provided in Fig. 3.4. At one end the rod is clamped to the plane y = 0 and is freely
movable at the other end, while the free-end is subjected to a transversal tip force oriented in
z-direction. Two different loads of constant magnitude F = 3N and F = 6N are employed in
the present work, both yielding a different three-dimensional static equilibrium, as depicted
in Fig. 3.4. Due to the curved rod shape all modes of deformation, i.e. extension, shear,
bending and torsion, are geometrically nonlinear coupled resulting in a three-dimensional
static response of the rod. The orientation of the tip cross section changes with increasing
load while the force remains aligned in vertical direction of the global frame.
Since the present rod model is tailored for a dynamic response, a static equilibrium only
can be obtained by introducing dissipative terms to the Cosserat rod equations. In principle,
the internal viscous damping can be used for this purpose, but the equilibrium is reached

more quickly with an external damping force
�
f ∝ −ċ and a damping moment

�
m ∝ −q̇.

Note, that the choice of the damping parameters affects the spatial path of the tip during
deformation but does not change the static equilibrium. This confirms the path independence
of the present rod model, as discussed by several authors [107, 202, 274]. Tab. 3.1 shows the
equilibrium positions of the tip for different spatial resolutions of the rod, reaching from
Ne = 8 structural elements up to Ne = 256. Already for a coarse resolution with 8 rod
elements the deformation is captured very well and differs from the fine resolution with 256
by less than 1% for the loads applied here. Table 3.2 compares the converged results of
the tip position to the values obtained by selected authors. Between the different numerical
approaches, a slight variation of the solutions is observed with a maximum deviation of 2%
from the averaged values. Compared to the other methods, the present results exhibit the
smallest deviation from the mean values which is very satisfactory.

F = 3N F = 6N

Ne xtip (cm) ytip (cm) ztip (cm) xtip (cm) ytip (cm) ztip (cm)

8 22.24 58.61 40.53 15.66 46.79 54.00

16 22.24 58.74 40.27 15.68 47.06 53.60

32 22.24 58.77 40.21 15.68 47.13 53.51

64 22.24 58.78 40.20 15.68 47.15 53.48

128 22.24 58.78 40.19 15.68 47.15 53.48

256 22.24 58.78 40.19 15.68 47.15 53.48

Table 3.1: Numerical results of rod tip positions xtip = (xtip, ytip, ztip)
� for both employed mag-

nitudes F = 3N and F = 6N as well as different spatial resolutions, i.e. number of structural
elements Ne.
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F = 3N F = 6N

xtip (cm) ytip (cm) ztip (cm) xtip (cm) ytip (cm) ztip (cm)

present (Ne = 256) 22.24 58.78 40.19 15.68 47.15 53.48

Vetter et al. [256] 22.28 58.77 40.25 15.73 47.11 53.58

Li [141] 22.28 58.78 40.15 15.74 47.15 53.43

Zupan et al. [274] 22.28 58.78 40.16 15.74 47.15 53.43

Leung and Wong [137] 22.23 58.51 40.46 15.76 46.82 53.6

Li [140] 22.12 58.54 40.48 15.57 46.89 53.61

Rhim and Lee [200] 22.16 58.58 40.31 15.59 47.07 53.46

Crivelli and Felippa [49] 22.31 58.85 40.08 15.75 47.25 53.37

Lo [146] 22.3 58.8 40.1 15.8 47.2 53.4

Crisfield [48] 22.16 58.53 40.53 15.61 46.84 53.71

Sandhu et al. [206] 22.36 58.85 40.04 15.88 47.27 53.34

Cardona and Geradin [40] 22.14 58.64 40.35 15.55 47.04 53.50

Simo and Vu-Quoc [217] 22.33 58.84 40.08 15.79 47.23 53.37

Bathe and Bolourchi [20] 22.5 59.2 39.5 15.9 47.2 53.4

minimum value 22.12 58.51 39.5 15.55 46.82 53.34

maximum value 22.5 59.2 40.53 15.9 47.27 53.71

average value 22.26 58.75 40.19 15.72 47.10 53.48

Table 3.2: Comparison of tip positions xtip = (xtip, ytip, ztip)
� at different loads F . The main part

of the listed references was adopted from [256]. The present results exhibit the smallest deviation
from the average values.

3.3.3 Cantilever subjected to distributed loads

F = 1, 3, . . . , 25N total load

f = F/L distributed load

structure properties:

L = 0.5m rod length

W = 0.01m rod width (square)

Es = 1.2 · 107N/m2 Young’s modulus

νs = 0 Poisson’s ratio

dimensionless quantity:

FL2/EsI = 1, 3, . . . , 25 load parameter

x

y

non-conservative
distributed load

conservative
distributed load

FL2/EsI = 25

Figure 3.5: Cantilever rod subjected to distributed conservative and non-conservative loads, as
proposed by Kondoh and Atluri in 1987 [127]. For large load parameters FL2/EsI the deflection
shapes are very different, as shown for FL2/EsI = 25.

The second test case shown in Fig. 3.5 is used to validate the response of the rod in terms of
two different types of distributed loads, which are of crucial importance for fluid-structure
interaction problems. The first load is spatially fixed and coincides with the y-direction in the
present situation. The load acting on the rod is independent from the current deformation of
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the rod and maintains its orientation. For example, this type of load is given by a gravitational
load or buoyancy often considered in FSI problems. Furthermore, it counts to the conservative
loads since the force distribution is expressible by a potential. The second type of distributed
load is a non-conservative one, where its orientation depends on the current rod deformation.
In this example, the force distribution remains locally perpendicular to the center line of
the rod, such as a fluid pressure load acting on a structure in FSI problems. As stated
in [140], for small loading parameters FL2/EsI the deflections are almost the same for
conservative and non-conservative loads, while the deflections are very different for large
FL2/EsI and, thus, large displacements. This emphasizes the importance of taking into
account geometrically nonlinear effects in the rod model if large displacements are considered.
The deformed shapes of the rod for a conservative and non-conservative load at a load
parameter of value FL2/EsI = 25 are shown in Fig. 3.5. The tip position of the rod for
various FL2/EsI and both load cases are given in Fig. 3.6. Furthermore, the results are
compared to the original data of Kondoh and Atluri [127] and to a later simulation of
Li [140]. Over the entire range of FL2/EsI = 1, 3, ..., 25 the present results are in very good
accordance with the reference data.

load conservative non-conservative

FL2/EsI xtip/L ytip/L xtip/L ytip/L

1 0.1251 0.9910 0.1241 0.9912

3 0.3622 0.9213 0.3411 0.9309

5 0.5628 0.7935 0.4976 0.8455

7 0.7121 0.6265 0.6031 0.7613

9 0.8049 0.4422 0.6745 0.6874

11 0.8451 0.2596 0.7243 0.6249

13 0.8420 0.9255 0.7603 0.5724

15 0.8071 -0.5085 0.7871 0.5281

17 0.7513 -0.1677 0.8077 0.4906

19 0.6840 -0.2585 0.8239 0.4584

21 0.6123 -0.3258 0.8370 0.4306

23 0.5411 -0.3731 0.8478 0.4064

25 0.4734 -0.4042 0.8568 0.3851
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Figure 3.6: Normalized tip positions of the rod xtip/L = (xtip/L, ytip/L)
� caused by a non-

conservative and conservative distributed load of magnitude FL2/EsI. The present converged results,
obtained with Ne = 256, are listed in the left table for selected load cases FL2/EsI. In the right
graph, these results (black circle) are compared to the original data of Kondoh and Atluri [127]
as well as to Li [140] which provided a continuous relation between the tip position and the load
parameter (solid and dashed lines).
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3.3.4 Tumbling unconstrained rod

Lx = 6m horizontal distance

Lz = 8m vertical distance

F (t) = 20λ(t)N force along x-axis

My(t) = 200λ(t)N moment around z-axis

Mz(t) = 100λ(t)N moment around y-axis

structure properties:

L = 10m rod length

inertia of cross section:

ρsA = 1kg/m

ρsIα = 10 kgm α = X, 2

ρsJ = 20 kgm

rigidities of cross section:

EsIα = GsJ = 500Nm2 bending, torsion

EsA = GsJ = 1 · 104N extension, shear

Fx(t)My(t)

Mz(t)

λ(t)

t52.50

1

0

Lz

Lx

x
z

y

Figure 3.7: Configuration of a spatially unconstrained flexible rod subjected to impulsive loads
at one end, consisting of a conservative force Fx(t) aligned in x-direction and two conservative
moments My an Mz oriented along the y-direction and z-direction, respectively. The applied loads
cause a complex three-dimensional dynamic response of the rod with large overall deflections. Note
that gravitational effects are not considered in the present setup.

The setup shown in Fig. 3.7 is used to demonstrate the ability of the rod model for the most
complex situation of a dynamically three-dimensional response of the rod undergoing a large
overall motion in space with a finite rod deformation. The problem first was proposed by
Simo and Vu-Quoc in 1988 [218] and was employed to validate geometrically nonlinear rod
models [259, 101, 99, 275, 216]. The initial condition is an unconstrained inclined rod posi-
tioned in the x-z plane. It is then subjected to a set of time dependent impulsive loads acting
at one end of the rod, as depicted in Fig. 3.7. During the time interval [0 s, 5 s], the force
Fx(t) causes a translational motion of the rod in x-direction, while the applied momentMy(t)
yields a forward rotation around the y-axis. This planar motion is supplemented by an out-of
plane motion induced by Mz(t). At t=5 s the magnitude of the loads completely vanish and
leave the rod in a three-dimensional motion, having certain similarities to a periodic “kayak-
rowing” motion [218, 259], as illustrated in Fig. 3.8a. Since no internal or external viscous
damping is considered in the present setup, the rod continues its motion without loss of en-
ergy, making the setup well-suited to test the long-term behavior of implemented rod models
concerning the conservation of energy and momentum. As in the work of Simo et al. [216]
this test was performed for the present implementation in a time interval of [0 s, 500 s]. Since
the time integrator RADAU5 employed here is an energy conserving integration scheme, no
loss of energy occurred during the simulation. Furthermore, the usage of quaternions for the
rotational degree of freedom allows very large overall rotations of the rod without changing
the properties of the numerical system, as already verified in [275].
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The converged results of the center line of the rod, obtained with Ne = 256 and Δt = 0.01 s,
are shown in Fig. 3.8 for selected instances in time. Furthermore, in Fig. 3.8b,c the deformed
center lines are compared to the solutions of Hesse and Palacios [99] and Hsiao et al. [101],
both are in very good agreement with the present results. While the results of Hesse and
Palacios [99] coincide perfectly with the present observations, smaller deviations occur in
comparison to Hsiao et al. [101]. A quantitative comparison to the original data published
by Simo and Vu-Quoc [218] is not provided here since much larger deviations occur, which was
already observed and reported by other authors [101, 99]. Hesse and Palacios [99] achieved a
better match by increasing the torsional stiffness to EsIα = GsJ = 1 · 103 Nm2, i.e. the rod
appears to be much stiffer than the results presented.
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Figure 3.8: Three-dimensional motion and deformation of the rod at selected times t. a) Perspective
view of the center line of the rod (black lines) and trajectory of both rod ends (blue lines) as well as
the corresponding projections b) on the x− z plane and c) on the y− z plane. The projection views
provide a comparison of the present data to the results by Hesse and Palacios [99] and Hsiao et
al. [101], both obtained with a finite element method. The converged results were obtained with
Ne = 256 structural elements and a time step size of Δt = 0.01 s as in [99].





4 Numerical fluid-structure coupling

4.1 Fundamentals and state of the art

Clarification of terminology. During the last decades, various numerical approaches
have been developed for the simulation of fluid-structure interactions, including the interac-
tion with complex shaped rigid particles or flexible structures, e.g. rods, membranes, bubbles,
etc. These numerical methods differ in the manner in which the fluid and the structure are
coupled in time and space.
The temporal coupling can either be monolithic, defining a single discrete system comprising
the fluid and the structure, or partitioned. With the partitioned approach, discrete equations
for the fluid and the structure are solved separately and then coupled by an appropriate cou-
pling algorithm. This strategy is versatile as it allows to use existing and optimized solvers.
Hence, it is employed in most cases. The price to be paid is that the coupling can become un-
stable which requires substantial care and often generates problems. In this context, one can
distinguish between weak and strong coupling strategies. With the former, also designated
as explicit coupling schemes, the fluid and the structural part are solved once within each
time step with an exchange of coupling quantities, such as the instantaneous fluid loads on
the structure. This exchange is often performed in a sequential manner which allows a simple
implementation. With this approach, however, it is not guaranteed that the kinematic and
dynamic coupling condition at the interface are fulfilled accurately. In addition, weak cou-
pling schemes become numerically unstable if structures are highly flexible and lightweight,
so that the added mass effect of the fluid becomes important [73, 154]. Such kind of FSI
problems strictly require a strong coupling strategy also termed implicit coupling. Then, the
fluid and solid part are usually solved repeatedly, iterating within each time step until the
coupling condition at the interface satisfies a certain convergence criterion. As demonstrated
in the subsequent sections, an iterative procedure with a multiple exchange of the coupling
quantities is not necessarily required to ensure numerical stability. However, some iteration
between the fluid and structural part can achieve a more accurate satisfaction of the coupling
conditions, comparable to monolithic FSI-methods.
In addition to the temporal coupling of the fluid and the structure part, both need to be
spatially coupled at their common interface after discretization in space. The most com-
mon approach is to use a boundary fitted mesh to represent the structure within the fluid
domain [261, 39, 97]. Here, the fluid and the structure grid share the same grid points at
the fluid-structure interface, which enables a simple exchange of coupling quantities. As a
result, however, the fluid grid has to be adjusted in time when structures move and deform
in space. As an alternative to moving mesh techniques, approaches using a spatially uniform
Eulerian background grid for the fluid part and a Lagrangian representation of the struc-
tures become increasingly popular [162, 222]. This is due to various advantages over moving
mesh methods like algorithmic simplicity, higher efficiency of the background fluid solver, etc.
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With a structure-independent, temporally constant fluid grid, the structures can be repre-
sented by various techniques, such as level-set (LS) methods [232, 47], volume-of-fluid (VOF)
methods [100, 229, 183], phase field (PF) methods [5, 164] or immersed boundary methods
[222, 239, 53, 125]. Especially for simulations of flow through or around complex mobile ge-
ometries, the immersed boundary method (IBM) has been applied with great success during
the past decade. Closely related is the so-called fictitious domain method [87] which was
developed within the FEM framework. As stated in [253], in the strong form the fictitious
domain method does not differ from the immersed boundary method, but in the weak form
when using an integral formulation of the FSI problem. Since these methods turned out to
be well suited for scenarios with a large number of immersed mobile structures, e.g. partic-
ulate flows with thousands of particles [258, 121], the IBM approach is used in this work as
well. This is reasonable, since the generation of an adapted grid is technically exceptionally
difficult for scenarios with a large number of colliding slender structures considered here.

Immersed boundary methods for FSI problems. The IBM was originally introduced
by Peskin [185, 186] for the simulation of blood flows in a beating heart. Later on, a variety of
different IB approaches were developed in recent years differing in various technical aspects
as reviewed in [162, 222]. IB methods share one property in common. While the fluid field is
treated by an Eulerian description on a temporally constant grid, the immersed structures
are described using a Lagrangian point of view. In the general case, the grids of the movable
structures do not conform with the fixed grid of the fluid. At this point, the IBM offers a
method to impose the coupling conditions (2.20), (2.18) on the fluid-structure interface Γ via
an appropriate local (coupling) force fΓ introduced into the momentum balance of the fluid
and the structural equations of motion. From a numerical point of view, there are different
approaches for the computation of this force, in which the various IBMs differ. Numerical
stability and accuracy are decisive factors in this context.
Concerning the spatial imposition of the coupling conditions at the interface, IBMs are usu-
ally grouped into so-called discrete forcing schemes and continuous forcing schemes [162].
With the discrete forcing approach, the boundary conditions at the interface are imposed
through the use of grid cells in the solid part. For each of these cells an interpolation scheme
is derived that invokes the desired boundary condition at the interface [122, 162]. The treat-
ment of zero-thickness structures with a discrete forcing requires special techniques [151]. In
the continuous forcing approach, delta functions of compact support are used at the interface
for the transfer of quantities between the fluid and the immersed structures. As described
in the modeling Section 2.4, this approach is used in this work. A distinctive feature of a
continuous forcing is, that the fluid-structure interface is represented by evenly distributed
surface markers after spatial discretization of the physical problem [251, 119]. This avoids
the identification of special grid points for the imposition of the coupling conditions, with
the drawback that the interface is “smeared” over several cells of the fluid grid, typically
three to four cells around each of the marker points. In this region the local coupling force
is introduced in the momentum balance of the fluid to impose the no-slip condition at the
fluid-structure interface. Due do its simplicity, stability and high efficiency, IBMs with con-
tinuous forcing are used preferably in large-scale simulations, e.g. disperse multiphase flows
with rigid particles [258, 121] or bubbles [209].
Besides the different approaches used for the spatial coupling, the various IBMs differ in
the manner in which the coupling force is computed in time, when a partitioned coupling
approach is applied. Familiar techniques are feedback forcing, discrete mass and momentum
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forcing as well as the so-called direct forcing [191]. The direct forcing approach is one of the
most popular methods because of its increased stability.
In the literature several IB methods can be found, describing the fluid-structure interac-
tion with movable rigid bodies, e.g. [86, 85, 119, 222, 126]. The description of classical
fluid-structure interactions with elastic solid structures is less common, but has become in-
creasingly important over the last decade. Most of these IBMs, however, were implemented
and tested only with two-dimensional cases, e.g. in [10, 272, 269, 253, 201, 67, 255] without
claim to completeness. Only few publications so far address truly three-dimensional scenarios.
These can be divided into fluid-structure interactions with one-dimensional fiber-like struc-
tures [89, 31, 264], two-dimensional elastic membranes [134, 273, 263, 53] and volumetric elas-
tic structures [271, 239, 125]. In some of these implementations, non-classical structure mod-
els are used, such as neutrally buoyant fibers and membranes in Le et al. [134], Griffith and
Lim [89], Bhalla et al. [31] and Wiens and Stockie [263, 264], or a mass-spring network model
in the work of de Tullio and Pascazio [53]. A classical continuum mechanical description of the
structures was applied by Zhang et al. [271], Tian et al. [239], Zhu et al. [273] and recently by
Kim et al. [125]. The methods mentioned, including IBMs for two-dimensional problems, are
based on different coupling algorithms. Besides a few monolithic schemes [10, 253, 201, 255],
most of the implementations are realized by means of a partitioned coupling approach. The
latter range from non-iterative coupling schemes [272, 271, 269, 89, 67, 273, 263] and iterative
strong coupling approaches [31, 239, 53], to improved non-iterative schemes with extended nu-
merical stability [134, 125]. Sotiropoulos and Yang [222] provided a comprehensive overview
of various IB approaches for the simulation of general FSI problems distinguishing between
weak and strong coupling strategies. To the knowledge of the author, so far, no monolithic
IBM has been developed for three-dimensional FSI problems with elastic solid structures.

Proposed coupling approach. The IBM developed in this work can be assigned to the
group of IBMs with continuous direct forcing. A special component of this coupling scheme is
a novel non-iterative semi-implicit direct forcing which combines the stability of monolithic
methods with the advantages of partitioned weak approaches, mentioned above. Moreover, it
concerns a general coupling strategy which enables the coupling of the Navier-Stokes equa-
tions with an arbitrary immersed structure, demonstrated for Cosserat rods here.
In contrast to other non-iterative coupling strategies, the main idea is not based on a sta-
bilization technique, e.g. a relaxation technique [239, 53, 125], but on a semi-implicit time
scheme for the structure motion. As a matter of fact, the coupling terms used to impose the
coupling conditions, require some kind of implicit integration in time to ensure numerical
stability [68]. It is shown here, that this is not only feasible by means of a global iteration be-
tween the fluid and structure part, but can also be achieved by an implicit integration of the
coupling terms in the structure equations once per time step. These coupling terms are pro-
vided in a temporally continuous form enabling to solve the coupled structure equations by
an arbitrary implicit time integration scheme. As a result, the coupling becomes independent
of the discretization techniques employed for both subsolvers, which underlines the general-
ity of the coupling strategy. It is referred to as semi-implicit coupling here, since only those
coupling quantities are treated implicitly which have an effect on the stability of the time
integration. Excluded from this are the structure positions constituting the fluid-structure
interface Γ, which is treated fully explicitly in time. This minimizes an exchange of coupling
quantities in one time step and reduces the overall computational time. The scheme devel-
oped is completely non-iterative and requires only a single bidirectional exchange of coupling
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quantities between the fluid solver and the structure solver. A disadvantage resulting from
this is a first-order accuracy of the coupling terms in time. However, for time step sizes at
CFL ≈ 0.5 usually employed in this work, the resulting errors remain reasonably small.

4.2 Temporal coupling using direct forcing

4.2.1 The direct forcing approach

Different variants of the immersed boundary method can be distinguished by the way in
which the coupling force fΓ in Eq. (2.1a) is computed. As already mentioned, a spatially
continuous force fΓ, acting in an infinitesimally thin layer Λ (Fig. 2.4), is employed in the
present work to impose the kinematic and dynamic coupling condition. In the IBM framework
this approach is usually denoted as continuous forcing [162]. From a numerical point of
view two aspects are decisive. First, the local force has to be evaluated in a time discrete
manner to realize a coupling of fluid and structures, called temporal coupling here. Second,
an appropriate approach is required for a spatial transfer of information between the fluid
and the structure, each discretized in a different manner. While the temporal coupling is
described in this section, the next section focuses on the spatial coupling. Finally, both
approaches for temporal and spatial coupling are combined in Section 4.4, thus providing
the complete coupling algorithm.
In the present work, the temporal coupling is realized by the direct forcing approach [163,
64, 251]. The basic idea of this approach is to incorporate the no-slip condition on Γ at a
time discrete level to determine the coupling force within a certain time interval t ∈ [tn, tn+1].
According to the momentum balance (2.1a) the coupling force at x ∈ Γ is

fΓ =
∂u

∂t
− rhs , (4.1)

where the right hand-side rhs includes the convective, pressure and viscous terms. The
coupling force can then be obtained by integrating Eq. (4.1) with an arbitrary time-stepping
scheme over the time interval t ∈ [tn, tn+1], i.e.∫ tn+1

tn
fΓ dt =

∫ tn+1

tn

(
∂u

∂t
− rhs

)
dt = un+1− un −

∫ tn+1

tn
rhs dt , (4.2)

with un and un+1 being the fluid velocities at time level tn and tn+1, respectively. By incor-
porating the no-slip condition (2.20), un+1 is replaced by the local desired velocity un+1

Γ of
the interface Γ, yielding∫ tn+1

tn
fΓ dt = un+1

Γ − un −
∫ tn+1

tn
rhs dt ∀ x ∈ Λ , (4.3)

while fΓ vanishes at locations x /∈ Λ. In the literature, this equation is usually converted into

fΓ =
1

Δt

∫ tn+1

tn
fΓ dt =

un+1
Γ − ũ

Δt
, (4.4)
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where fΓ is the average coupling force applied over the time interval t ∈ [tn, tn+1] and ũ is a
shorthand for

ũ = un +

∫ tn+1

tn
rhs dt , (4.5)

which is the preliminary velocity of the fluid obtained without accounting for the effect of
the immersed boundary.

4.2.2 Modified equation of motion

As described in Section 2.4.1, the fluid-structure coupling is accomplished by two conditions,
the kinematic coupling condition (2.20) and the dynamic coupling condition (2.18). Using
the direct forcing method, the former is incorporated directly into the coupling force fΓ
imposing the no-slip condition in the fluid field, i.e. u = uΓ at x ∈ Γ. In accordance with
the dynamic coupling condition and the principle of actio et reactio, the coupling force fΓ
also appears in the equation of motion of the immersed boundary Γ. As a result, the motion
of Γ and the coupling force (4.4) exhibit an implicit dependency, since fΓ is a function of
un+1
Γ at the new time level tn+1. This becomes clearer when considering a general motion of

Γ described by the differential equation

u̇Γ = rhsΓ(uΓ, t) + fΓ ∀x ∈ Γ, (4.6)

with the right-hand side rhsΓ describing the unconstrained motion of Γ. After time integra-
tion and under consideration of Eq. (4.4) the discrete motion is given by

un+1
Γ = un

Γ +

∫ tn+1

tn
rhsΓ(uΓ, t) dt + Δt fΓ(u

n+1
Γ , ũ) . (4.7)

Since the right-hand side depends on un+1
Γ , this equation has to be solved implicitly in

time with an appropriate time integrator. When using particular libraries, ODE integrators
usually only provide an interface to the continuous version of the differential equation, e.g.
u̇Γ = rhsΓ(uΓ, t), and not an already discrete version as given by Eq. (4.7). The user simply
has to provide a continuous function of rhsΓ(uΓ, t) to the solver while using it as a black-
box without specific technical knowledge of the discretization scheme employed. To realize
the direct forcing approach with a standard black-box ODE solver, a continuous version of
Eq. (4.7) is required. While rhsΓ(uΓ, t) is already known, the coupling force needs to be
reformulated as fΓ(uΓ, t) that continuously depends on time and on the interface velocity.
Doing so, Eq. (4.7) can be expressed as a modified equation of motion of Γ

u̇Γ = rhsΓ(uΓ, t) + fΓ(uΓ, t) = rhsΓ,mod(uΓ, t) , (4.8)

which can simply be passed to an arbitrary implicit ODE solver without need of knowledge
about the time discretization technique. In the present work, the continuous variant of the
coupling force is obtained by considering a linear behavior of the interface velocity within
the given time interval, i.e.

uΓ,lin(t) =
(
un+1
Γ − un

Γ

) t− tn

Δt
+ un

Γ , (4.9)
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which can be rearranged into

un+1
Γ = (uΓ,lin − un

Γ)
Δt

t− tn
+ un

Γ , (4.10)

such that the interface velocity at the new time level tn+1 is provided as a continuous func-
tion un+1

Γ = un+1
Γ (uΓ, t). Using this formulation in combination with the direct forcing ap-

proach (4.4), the coupling force can be approximated by

fΓ,lin(uΓ, t) =
uΓ − un

Γ

t− tn
+

un
Γ − ũ

Δt
. (4.11)

As a crosscheck, the time integration of fΓ,lin for a linear slope of uΓ(t) = uΓ,lin(t) yields

1

Δt

∫ tn+1

tn
fΓ,lin(uΓ,lin, t) dt = fΓ =

un+1
Γ − ũ

Δt
(4.12)

and, thus, reproduces the common direct forcing according to Eq. (4.4). Since the preliminary
velocity ũ in fΓ,lin(uΓ, t) is computed for a particular time step Δt, the coupling force as well
as the corresponding modified right-hand side of Eq. (4.8) is valid only for a specific time
interval t ∈ [tn, tn+1].
In general, the modified equations of motion (4.8) can be formulated for any kind of immersed
boundaries, ranging from rigid bodies to deformable structures, by adding the continuous
version of the coupling force fΓ,lin(uΓ, t) to the ODE describing the decoupled motion of Γ.

Application to Cosserat rod equations. In the present context, the motion of the im-
mersed boundary Γ is described by the Cosserat rod equations (2.13) that contain external

fluid forces
�
fΓ and external fluid moments

�
mΓ, both related to the coupling force fΓ via

Eqs. (2.32a) and (2.32b), respectively. To apply the “black-box” technique via fΓ,lin just men-
tioned, the dependency of uΓ in Eq. (4.11) must be expressed in terms of velocity quantities
provided by the Cosserat rod, i.e. the linear velocity of the center line ċ and the angular ve-
locities represented by the quaternionic velocity q̇. According to the no-slip condition (2.21)
the velocity at the interface Γ is given by

uΓ = ċ+ ω × ξ (4.13a)

= ċ+ (2 q̇∗q)× (q∗ξ0
∗q) , (4.13b)

where in the second variant (4.13b) the angular velocity is expressed by means of quaternions
via ω = 2 q̇ ∗ q. Furthermore, the vector ξ can be rotated backwards into the local frame, so
that ξ = q ∗ ξ0

∗ q. Since ξ0 in the local reference frame is time-independent, the continuous
coupling force (4.11) can be expressed as fΓ,lin(ċ, q̇,q, t). Using this force, the related external

fluid forces
�
fΓ (2.32a) and moments

�
mΓ (2.32b) can be approximated by∫

ζ

�
fΓ dZ ≈ −

∫
Λ

ρf fΓ,lin(ċ, q̇,q, t) dV (4.14a)∫
ζ

�
mΓ dZ ≈ −

∫
Λ

ξ × [ρf fΓ,lin(ċ, q̇,q, t)] dV (4.14b)

in the time interval t ∈ [tn, tn+1].
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4.2.3 Resulting coupling scheme

The modified direct forcing approach proposed in the previous Section can be summarized
by the following steps:

1. Computation of the preliminary velocity ũ via Eq. (4.5) without accounting for any
coupling to the immersed interface Γ.

2. Communication of the preliminary velocity ũ(x) at x ∈ Γ to the structure solver.

3. Computation of the interface velocity un+1
Γ at the new time level tn+1 by solving the

equation of motion (4.8) implicitly, modified by the coupling force fΓ,lin (4.11).

4. Determination of the coupling force fΓ(x) at x ∈ Γ via Eq. (4.4) and communication
of fΓ to the fluid solver.

5. Solving the Navier-Stokes equations (2.1) coupled to the immersed boundary Γ by fΓ.

un
Γ un+1

Γ

un un+1

2. ũ ∀x ∈ Γ4. fΓ ∀x ∈ Γ

1. Solve for ũ without fΓ
5. Solve for un+1 with fΓ

3. Solve for un+1
Γ with fΓ,lintn tn+1

Structure solver

Fluid solver

Figure 4.1: Flowchart of the five steps to be performed for the temporal coupling of the fluid solver
and the structure solver within one time step t ∈ [tn, tn+1] by means of the direct forcing approach
proposed here. The circular arrow illustrates the implicit nature of the solution procedure employed
to solve for the structure motion.

The implicit treatment of the modified equation of motion of the structure in step 3 corre-
sponds to a strong coupling of fluid and structure and achieves numerical stability for arbi-
trary immersed objects. It can be solved by an iterative procedure, e.g. a Newton method
or an implicit Runge-Kutta scheme, such as RADAU5 employed in the present work. As
an alternative to an implicit treatment, the modified equations could be treated by an ex-
plicit integration scheme as well. When integrating the continuous coupling force fΓ(uΓ, t)
according to Eq. (4.11) with an explicit Euler scheme, e.g., it simplifies to

1

Δt

∫ tn+1

tn
fΓ,lin(uΓ,lin, t) dt ≈ fΓ,lin(u

n
Γ,lin, t

n) =
un
Γ − ũ

Δt
. (4.15)

Obviously, in contrast to the exact direct forcing (4.4), it is based on employing the interface
velocity at the old time tn−1. In this case the forcing scheme is equal to the well-known vari-
ants of an explicit IBM, proposed e.g. in [251, 119, 35]. It is known that these variants become
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unstable, especially for lightweight immersed objects [119]. In addition, as demonstrated in
previous works [246, 247], replacing un+1

Γ with un
Γ may result in a numerically inconsistent

coupling, where the numerical solution does not converge to the monolithic solution by a
spatial and temporal refinement. The solution only coincides with the monolithic solution
if the mass ratio between the structure mass and the mass of the surrounding fluid layer
Λ tends to infinity. However, for sufficiently large mass ratios the numerical error remains
very small. For practical applications, the explicit direct forcing, based on un

Γ, does not con-
stitute any advantage over the present scheme in terms of implementation effort, numerical
efficiency and accuracy. In other words, the present scheme combines the stability properties
of strong coupling schemes with the efficiency and ease of implementation of weak coupling
schemes.
The direct forcing scheme proposed here is derived for a spatially continuous configuration,
sketched in Fig. 2.3. As a result, it is not restricted to immersed boundary methods and, in
principle, can be applied to any other method, e.g. adapted mesh methods, where a no-slip
constraint has to be imposed on the velocity field. The spatial discretization is an additional
aspect of the coupling scheme which is discussed in the following section.

4.3 Spatial coupling via marker points

4.3.1 Lagrangian markers and volumes

In the framework of common IBMs the discrete elements of the structures do not coincide
with the points of the Eulerian grid of the fluid. Hence, their coupling requires some technique
to transfer information between both discrete representations. For this purpose, each zero-
thickness rod is represented here by a set of discrete markers, so-called Lagrangian points,
implementing this communication. The Lagrangian points xl are evenly distributed over the
fluid-structure interface Γ, as shown exemplarily for one structural rod element in Fig. 4.3.
Furthermore, a two-dimensional sketch of the discretization of a rod embedded in the Eule-
rian background grid is shown in Fig. 4.2. As described in Section 2.4.3, the fluid-structure

Ω
Γ

xl dΛ = h

ΔVl

dΦ = 3h

Figure 4.2: Sketch of the spatial discretization employed by the immersed boundary method. The
rod is represented by Lagrangian points xl. Each point is attributed a Lagrangian volume ΔVl cen-
tered around xl. The union of all volumes constitutes a layer Λ of width dΛ = h. The connection
between the Lagrangian points xl and the Eulerian grid xijk is realized by regularized delta func-
tions, described below. The gray shaded area displays the cumulative spatial influence of all delta
functions, one applied at each marker point. The dashed line represents the area of impact in the
velocity field when the three-point delta function of Roma et al. [203] is employed. Note, that only
the staggered grid for the velocity component u is shown to simplify the graphical exposition.
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coupling is realized by a distributive coupling force fΓ acting in a small layer Λ around the
interface Γ. While in the continuous formulation of the coupling force (2.30) the support
of the corresponding delta function δV is infinitesimally small, i.e. dΛ → 0, in the discrete
realization the thickness of the layer Λ has to be equal to the step size of the Eulerian grid,
i.e. dΛ = h. Hence, at least one marker point controls a volume equal to the volume of a fluid
cell [251]. This means that each Lagrangian volume ΔVl, associated to a marker point, has
to be chosen smaller or equal to the size of the Eulerian fluid cells, i.e.

ΔVl = ΔSl h ≤ h3 , (4.16)

where ΔSl is the corresponding surface area attributed to a particular marker point. The
volume of the entire layer, as the sum of all volumes ΔVl, fulfills the condition∑

l

ΔVl = SΓ h , (4.17)

with the surface area of the rod SΓ =
∫
Γ
dS =

∑
l ΔSl. Concerning Eq. (4.16) the corre-

sponding number of Lagrangian marker points has to be Nl ≥ SΓ/h
2.

4.3.2 Regularized delta functions

In the general case, especially when rods are deformed, the Lagrangian points xl on a rod
and the Eulerian grid points xijk, where the fluid motion is computed, do not coincide. Then
a transfer of information is performed via a weighted sum of regularized delta functions δh.
As common for the present type of IBM the three-dimensional function δh is generated by a
tensor product of three one-dimensional functions δ1Dh , so that

δh(r) = δ1Dh (rx) δ1Dh (ry) δ1Dh (rz) (4.18)

with the distance vector r = (rx, ry, rz)
� = xl − xijk between a Lagrangian marker and

an Eulerian grid point. Furthermore, δ1Dh (rx) = Φ(r)/h and r = rx/h, etc. The continuous
function Φ is constructed so as to fulfill certain properties, e.g. moment conditions [186]. In
Section 4.5, two frequently used delta functions are compared and tested for their suitability
for the present IBM dealing with infinitely thin structures. The properties of various delta
functions of different width and smoothness were studied by Yang et al. [268]. Here, the
three-point version of Roma et al. [203]

Φ3(r) =

⎧⎪⎪⎨⎪⎪⎩
1
6

(
5− 3|r| −√−3(1− |r|)2 + 1

)
, 0.5 ≤ |r| ≤ 1.5

1
3

(
1 +

√−3|r|2 + 1
)

, |r| < 0.5

0 , otherwise

(4.19)

is employed, so that Φ3 has a width of dΦ = 3h as sketched in Fig. 4.2. This ensures a good
balance between numerical efficiency and smoothing properties [119].
With the help of this delta function a transfer of an arbitrary vector quantity ϕ from the
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Eulerian points xijk to the Lagrangian points xl is accomplished by an interpolation via

ϕ(xl) =
Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

ϕ(xijk) δh(xijk − xl) h
3 , (4.20)

e.g. to provide fluid velocities at the location of the interface Γ. The complementary operation
is a transfer from Lagrangian to Eulerian points, often called spreading or regularization. It
is defined by

ϕ(xijk) =
∑
xl ∈Γe

ϕ(xl) δh(xijk − xl) ΔVl (4.21)

and is commonly used to distribute the coupling force fΓ to the Eulerian grid of the fluid,
as described in Section 4.4 below.
Recognize, that the width of the regularized delta function dΦ introduced in this section, and
the thickness of the Lagrangian layer dΛ of the previous section are two different aspects of
the discretization scheme. The width dΛ is required for the definition of appropriate forcing
volumes ΔVl associated to each forcing point. From a numerical point of view, this is the
discrete realization of the support of the delta function δV in the continuous formulation of
coupling force (2.30), and is uniquely defined by the discretization of the Eulerian grid. The
second width dΦ is an independent parameter and can be chosen “arbitrarily” by selecting
a certain regularized delta function. It can be interpreted as the width of regularization
regarding the spreading operation that serves to transfer momentum from the Lagrangian
points to the Eulerian points. Due to the distributive nature of the momentum source fΓ
some regularization reduces or avoids jumps of fΓ on the Eulerian grid and, thus, prevents
numerical oscillations. Usually, interpolation and spreading are performed with the same
delta function of width dΦ, as it is the case in the present work.

4.4 Proposed coupling algorithm

Both approaches for temporal and spatial coupling of the Navier-Stokes equations (2.1) and
the Cosserat rod equations (2.13) are now combined to a partitioned solution approach. It
is realized in a fully explicit manner, which is exempt from any global iteration between the
fluid part and the structure part. Analogous to Section 4.2.3, the coupling scheme consists of
the following five steps executed once in each Runge-Kutta sub-step r. A compact overview
of the proposed FSI scheme is provided in Appendix D.

1. Computation and interpolation of preliminary velocities. First, the preliminary
velocity field ũ(xijk) is computed on the Eulerian grid points xijk, according to Eqs. (4.5) and
(3.1a) using the Runge-Kutta scheme applied here. Thereafter, the values ũ(xr−1

l ) located
at the Lagrangian marker points of the previous time level xr−1

l (Fig. 4.3) are interpolated
from the Eulerian grid points xijk according to Eq. (4.20), so that

ũ(xr−1
l ) =

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

ũ(xijk) δh(xijk − xr−1
l ) h3 . (4.22)
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2. Communication of preliminary quantities to the structure solver. According to
the direct forcing approach described in Section 4.2, the values ũ on Γ are used to determine

the coupling force fΓ and thus are required to compute the fluid loads
�
fΓ,

�
mΓ acting on the

rod during motion. Therefore, the velocities ũ(xr
l ) for Nl marker points need to be transferred

to the corresponding structure solver. In order to realize a coupling to Cosserat rods these
can be replaced by integral quantities p̃e, l̃e (see Eqs. (4.24b) and (4.25b) below) for each rod
element e. This drastically reduces the communication effort between the fluid and structure
solver to 6 values per element, i.e. 6Ne per rod in total.

3. Solving Cosserat rod equations modified by coupling terms. To realize the
coupling to the surrounding fluid, the Cosserat rod equations (3.5a) are modified via the
coupling terms (4.14a) and (4.14b). The corresponding discrete versions are given by

�
fΓ,e ΔZ = −

∑
xl ∈Γe

Δml fΓ,lin(ċ, q̇,q, t) (4.23a)

�
mΓ,e ΔZ = −

∑
xl ∈Γe

Δml ξl × fΓ,lin(ċ, q̇,q, t) (4.23b)

for an individual rod element Γe ⊂ Γ represented by Lagrangian marker points xl. Each
marker covers a Lagrangian fluid layer mass Δml = ρf hΔSl. Assuming a rigid body motion
of an element, as discussed in Section 3.2.2, the fluid force (4.23a) acting on Γe can be
reformulated with fΓ,lin (4.11) as

�
fΓ,e ΔZ = −

[
pΓ − pr−1

Γ

t− tr−1
+

pr−1
Γ − p̃

2αr Δt

]
e

with pΓ,e = [q∗(m ċ0 + ω0 × s0)∗q ]e (4.24a)

me =
∑
xl ∈Γe

Δml , s0,e =
∑
xl ∈Γe

Δml ξ0,l , p̃e =
∑
xl ∈Γe

Δml ũ(x
r−1
l ) , (4.24b)

where the vector p designates the linear momentum of the fluid layer around an element e.
Related quantities are the fluid layer mass me, the static moment of the layer s0,e and the
preliminary linear momentum p̃e as an integral measure of ũ(xr

l ), computed in the previous
step. These quantities can be precomputed before solving the rod equations. Due to the

staggered spatial discretization of the rod, the external forces
�
fΓ are considered at nodes with

half-index, i.e. e+ 1
2
= 1

2
, ... Ne+ 1

2
(Fig. 4.3). Here,

�
fΓ,e+ 1

2
is approximated by the mean value of

the fluid forces of both adjoining elements, i.e.
�
fΓ,e+ 1

2
= (

�
fΓ,e+

�
fΓ,e+1)/2. In a similar manner,

the velocities ċe, actually located at half-index, are estimated by ċe = (ċe+ 1
2
+ ċe− 1

2
)/2.

Analogous to the external fluid forces, the external moments acting on Γe are obtained via

�
mΓ,e ΔZ = −

[
lΓ − lr−1

Γ

t− tr−1
+

lr−1
Γ − l̃

2αr Δt

]
e

with lΓ,e = [q∗(s0 × ċ0 +J 0 ·ω0)∗q ]e (4.25a)

J 0,e = 0⊕
∑
xl ∈Γe

Δml [ξ0,l]
�
× · [ξ0,l]× , l̃e =

∑
xl ∈Γe

Δml ξ
n
l × ũ(xr−1

l ) , (4.25b)
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where l designates the angular momentum of the fluid layer. As for the linear momentum, the
static moment of the layer s0,e, the quaternionic tensor of inertia J 0,e and the preliminary
angular momentum l̃e can be precomputed.
In step 3 of the direct forcing coupling scheme (Fig. 4.1), the Cosserat rod equations (3.5)

modified by
�
fΓ,e and

�
mΓ,e are solved implicitly for the new linear velocities of rod center line

ċr
e− 1

2

and the angular velocities ωr
e = 2 q̇r

e
∗qr

e by means of the quaternions qr
e, q̇

r
e.

ξl

Γe e

e−1

e+1

marker point xl

ΔSl

qe
�
me (ce

�
f e)

ce− 1
2�

f e− 1
2

ce+ 1
2

�
f e+ 1

2

Figure 4.3: Discrete structural rod element Γe⊂Γ represented by uniformly distributed Lagrangian
marker points xl, each covering a surface area ΔSl. The vector ξl = xl−ce denotes the relative po-
sition of xl with respect to the element center position ce. Due to the staggered spatial discretization

the quaternions qe and the external moments
�
me are given at the element center, while the center

line positions ce±1/2 and the external forces
�
f e±1/2 are defined between two adjoining elements.

4. Communication of coupling forces to the fluid solver. In the next step, the
velocities ċre = (ċr

e+ 1
2

+ ċr
e− 1

2

)/2 and ωr
e at the new Runge-Kutta time level are communicated

to the fluid solver. Based on these velocities the corresponding interface velocity of a rod
element e is computed via

ur
Γe
(xr−1

l ) = ċre + ωr
e × ξr−1

l . (4.26)

With the preliminary velocities ũ(xr−1
l ) computed in step 1, the coupling force located at an

individual Lagrangian point then is given by

fΓ(x
r−1
l ) =

ur
Γ(x

r−1
l )− ũ(xr−1

l )

2αr Δt
, (4.27)

according to Eq. (4.4). Here, fΓ is formulated with the preliminary velocity ũ(xr−1
l ) using the

marker location xr−1
l at the old time level r− 1, which amounts to a semi-implicit treatment

of the coupling force.

5. Spreading of coupling forces and reintegration of NSE. In a final step, the
remaining equations of the fractional step scheme (3.1b)-(3.1c) are solved to obtain the new
fluid velocity field ur and the pressure field pr. Herein, the Helmholtz equation (3.1b) includes
fΓ(xijk), so that the fluid motion now is constrained by the immersed boundary Γ. Since the
coupling forces fΓ(x

r−1
l ) computed in step 4 are only provided at the Lagrangian points xr−1

l ,
they are distributed to the Eulerian grid points xijk via the spreading operation (4.21), i.e.

fΓ(xijk) =
∑
xl ∈Γe

fΓ(x
r−1
l ) δh(xijk − xr−1

l ) ΔVl . (4.28)
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4.5 Numerical study of convergence

4.5.1 Test configuration

physical parameters:

H = 1m channel height

ρf = 100 kg/m3 fluid density

νf = 0.005m2/s kinematic viscosity

U = 1m/s shear velocity

dimensionless quantities:

ReH
2
= 100 Reynolds number

ReH
2
< Recrit = 600 [51]

numerical parameters:

Lx=Ly=Lz = H domain size (cubic)

Nx=Ny=Nz = 8 · 2i number of grid cells, i ≥ 0

Δx = 1/Nx step size of Eulerian grid

Δxl = 2−i/17 step size of Lagrangian grid

φ = arctan(8/15) rotation of Lagrangian grid
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Figure 4.4: Planar shear flow driven by a constant shear velocity U at the top of the fluid domain.
The no-slip condition is imposed by a layer of uniformly distributed forcing points located at y =
H/2. Below this plane the fluid remains at rest. The present setup is used to analyze the convergence
behavior of the direct forcing approach employed at the layer of forcing points.

The convergence behavior of the proposed direct forcing IBM is assessed by a simple steady
planar shear flow. The computational domain extends over a height H, with a no-slip con-
dition u = 0 at the bottom and a moving wall with u = (U, 0, 0)� at the top. Positioning an
interface Γ at y = H/2 mimics a solid structure of vanishing thickness and is addressed as
immersed wall here. This results in the exact solution for the x-component of the velocity

u(y) =

{
0 , y ≤ H

2

U (2y −H) , H
2
< y ≤ H ,

(4.29)

while the pressure is uniform, i.e. p = const. The boundary conditions at y = 0 and y = H are
imposed on the Eulerian grid as usual Dirichlet conditions. The no-slip condition at y = H/2,
instead, is imposed by a layer of forcing points arranged as a two-dimensional Cartesian grid
of spacing Δxl. The layer is rotated by an angle of φ = arctan(8/15) around the y-axis, to
achieve a high degree of variation between the arrangement of the forcing points and the
discretization of the fluid domain, as it is the case for freely movable structures.
Due to the kink in the velocity profile at y = H/2 the hydrodynamic stresses σ are different
on both sides of the interface Γ. According to Eq. (2.27), the jump in σ is associated to a
fluid load acting on Γ. For the present configuration this load simplifies to∫

Γ

σ+ · n dS −
∫
Γ

σ− · n dS = τwH
2 ex (4.30)
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and, thus, is solely determined by the shear stress τw = 2 ρfνf U/H in the streamwise direction
acting on the upper side of the immersed wall. In terms of the present direct forcing IBM,
each forcing point xl acts against this shear to impose the no-slip condition at y = H/2.
Using Eq. (4.23a), with uΓ = 0 at the immersed wall, the shear force acting on Γ can be
approximated numerically by

τwH
2ex ≈ fw =

3∑
r=1

∑
xl ∈Γ

Δml ũ(xl)/Δt , (4.31)

with Δml = ρf Δx (Δxl/H)2 for the present spatial arrangement of the forcing points. Since
the components of the fluid loads in y- and z-direction vanish, the relation between the wall
shear and the direct forcing is given by τw≈ fw · ex/H2. The following convergence analysis
bases on the relative error between the theoretical value of the wall shear and the numerical
approximation

ε =
fw · ex
τwH2

− 1 . (4.32)

4.5.2 Numerical parameters

To determine numerically the spatial and the temporal convergence rate, the error was com-
puted over a wide range of grid step sizes Δx ∈ {1/8, 1/16, 1/32, 1/64} and Courant numbers
CFL ∈ {1, 0.5, 0.25, ..., 1/26, 0.01}. The spatial distribution of the forcing points, controlled
by Δl = const., is adapted to the step size of the Eulerian grid, so that Δl/Δx = 8/17 ≈ 0.5
for any Δx. Besides the temporal and spatial resolution the error is also influenced by the
delta function employed for interpolation of the preliminary velocity ũ to the Lagrangian
positions xl, as well as for spreading the IBM force fΓ to the Eulerian grid points xijk.
Two different delta functions are tested in the present study, which are frequently employed
in continuous direct forcing schemes [186, 251, 268, 119, 246]. One is the three-point delta
function Φ3 of Roma et al. [203] and the other the four-point delta function Φ4 proposed by
Peskin [186]. Both functions are compared in Fig. 4.5.
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3-point delta function of Roma et al. [203]:

Φ3(r) =

⎧⎪⎪⎨⎪⎪⎩
1
6

(
5− 3|r| −√−3(1− |r|)2 + 1

)
, 0.5 ≤ |r| ≤ 1.5

1
3

(
1 +

√−3|r|2 + 1
)

, |r| < 0.5

0 , otherwise

(4.33)

4-point delta function of Peskin [186]:

Φ4(r) =

⎧⎪⎪⎨⎪⎪⎩
1
8

(
5− 2|r| −√−7 + 12|r| − 4|r|2

)
, 1 ≤ |r| ≤ 2

1
8

(
3− 2|r|+√1 + 4|r| − 4|r|2

)
, |r| < 1

0 , otherwise

(4.34)

Figure 4.5: The two variants of delta functions studied in this work, the three-point delta func-
tion Φ3(r) of Roma et al. [203], defined in Eq. (4.33), as well as the four-point delta function Φ4(r)
of Peskin [186], defined in Eq. (4.34).
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4.5.3 Results and discussion

The convergence behavior obtained for Φ3 and Φ4 in the given range of spatial and temporal
resolutions is shown in Fig. 4.6 using ε from Eq. (4.32). Selected values of the corresponding
errors ε3 and ε4, respectively, are provided in Table 4.1.
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Figure 4.6: Temporal and spatial convergence of the present direct forcing–IBM in a range of
Δx× CFL = {1/8, 1/16, 1/32, 1/64} × {1, 0.5, 0.25, ..., 1/26, 0.01}. Shown are the relative errors ε3
and ε4 according to Eq. (4.32) obtained from simulations with the three-point delta function Φ3 and
the four-point delta function Φ4, respectively.

1/Δx 1/CFL 1/Δt |ε3| |ε4|
8 64 512 5.248 · 10−5 7.275 · 10−2

16 64 1024 5.237 · 10−5 3.509 · 10−2

32 64 2048 5.196 · 10−5 1.731 · 10−2

64 64 4096 5.040 · 10−5 8.510 · 10−3

64 32 2048 1.022 · 10−4 8.433 · 10−3

64 16 1024 2.086 · 10−4 8.295 · 10−3

64 8 512 4.194 · 10−4 8.026 · 10−3

Table 4.1: Relative errors ε of the wall shear stress τw for selected grid step sizes Δx and time step
sizes Δt (CFL = UΔt/Δx). Listed are the errors ε3 and ε4 obtained with the 3-point delta function
Φ3 and the 4-point delta function Φ4, respectively.

Obviously, the convergence behavior is quite different for the two delta functions selected.
While the three-point version exhibits a first order convergence in time for any spatial dis-
cretization, the four-point version shows the opposite behavior, i.e. a first order convergence
in space for any CFL number. This is explained as follows: The total numerical error of the
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present direct forcing IBM can be traced back to two sources. On one hand, the temporal
part of the error results from the direct forcing approach which is used to estimate the ampli-
tude of the coupling force at each forcing point. Due to its time splitting the method exhibits
first order accuracy in time O(Δt). A theoretical proof is provided in Appendix C. On the
other hand, the spatial part of the total error stems from the delta functions used for the
interpolation and spreading step. While an evaluation of numerical errors for the spreading
operation at least seems to be ambitious, the accuracy of an interpolation by means of delta
functions is well understood. By increasing the width of support additional constraints can
be incorporated, so that higher moments of Φ and its smoothness are conserved [186, 268]. As
stated in [145], the moment order controls the accuracy in the low frequency range, while the
smoothing order suppresses a possible Gibbs phenomenon that may corrupt convergence. A
simple two-point linear hat-function, for example, exhibits a discontinuity in its first deriva-
tive that often leads to spatial oscillations in the solution [112].
In fact, the convergence rate of the approximation depends on both, the smoothness of the
approximating function as well as the smoothness of the function to be approximated. In the
present IBM framework σ exhibits a jump at the interface Γ, so that u(x) is not differen-
tiable at x ∈ Γ. As a consequence, the rate of spatial convergence reduces to O(Δx) for any
delta function, regardless of the support of Φ [30, 186]. Moreover it turns out, that a wider
support increases the spatial error compared to a more narrow delta function. As shown in
Fig. 4.6, the errors obtained for Φ4 with four-point support are increased by at least one
order of magnitude compared to Φ3 with three-point support. The total error ε4 is domi-
nated by spatial interpolation and spreading errors of order O(Δx), while temporal errors,
resulting from the direct forcing approach, are much smaller and just not recognizable. On
the contrary, for Φ3 spatial errors are negligibly small compared to the temporal splitting
error, so that ε3 mainly converges with O(Δt).
In the present work, the three-point function of Roma et al. [203] is preferred as it con-
stitutes a good balance between accuracy, numerical efficiency and smoothing properties.
Indeed, for commonly used grid step sizes Δx spatial errors are considerably smaller than
obtained for different four-point delta functions, e.g. the function of Peskin [186] presented
here. Furthermore, the numerical effort is reduced significantly with a three-point support
since it exponentially increases with the width of support. For instance, while the four-point
support requires 43 = 64 Eulerian fluid nodes for an interpolation in the three-dimensional
case, the three-point support requires only 33 = 27 fluid nodes. Especially for a large number
of immersed objects and their representation by a sufficient number of forcing points xl, the
interpolation and spreading operation may occupy a substantial part of the overall compu-
tation time and, thus, should be reduced if possible.
At this stage it should be noted that Beyer and Leveque [30] developed a four-point delta
function which enables a second order accurate approximation for functions of class C0 by
means of an extrapolation technique. This strategy seems very promising, even if the trans-
ferability to the present direct forcing IBM needs to be verified. The so-called immersed
interface method [138, 143] overcomes this issue by introducing jump conditions directly
into the discretized Navier-Stokes equations which, however, comes along with other techni-
cal challenges.
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4.6 Parallelization technique

4.6.1 General approach

In terms of the simulation of large-scale FSI problems focused here parallelization is essential.
On the one hand, a large number of structures needs to be handled in an appropriate way
and, on the other hand, the fluid part requires an enormous amount of computational effort
and physical memory when performing direct numerical simulations and large eddy simu-
lations. In such cases the overall computational load is distributed to an available number
of processing units, e.g. central processing units (CPUs), graphics processing units (GPUs)
or heterogeneous systems combining different kinds of processing technologies. The present
parallelization approach is designed for multi-CPU machines in the order of several thou-
sands processors. In the context of multi-CPU concepts, two different approaches have been
established in the recent years, the Open Multi-Processing standard (OpenMP) [50, 181] and
the Message Passing Interface standard (MPI) [74, 166]. While the former strategy needs a
physically shared memory of the CPU cluster, the MPI standard bases on an explicit mes-
sage passing and, thus, is well suited for clusters with distributed physical memory. Above
a certain number of processors on a cluster the shared memory concept is not technical fea-
sible, so that OpenMP only is suitable for a moderate number of processors. Especially for
numerical applications dealing with several thousand CPUs the distributed memory concept
with communication by an explicit message passing is the most efficient way and offers the
best scalability. In the present approach the message passing concept is employed in different
ways for the fluid part, the structure part as well as their interaction, to achieve an optimal
and efficient use of available computational resources.

4.6.2 Fluid solver and structure solver

As described in Section 3.1, the basic fluid solver is adopted from Kempe et al. [119, 118]
including the concept of parallelization which reveals an excellent performance in case of
massively parallel computers. A detailed study of performance is reported in [118]. The
approach is based on a domain decomposition strategy, where the entire fluid domain Ω is
decomposed into a number of subdomains, equal to the number of processors allocated on the
machine. As a consequence, the numerical solution of the spatially discretized Navier-Stokes
equations require an exchange of information across the borders of connected subdomains,
e.g. to compute local velocity gradients or pressure gradients etc. In the present approach
this exchange is realized by means of a ghost-cell technique, where the quantities of interest
are communicated between two bordering subdomains via additional ghost-cells located at
their common boundary. All ghost cells of one subdomain coincide with the corresponding
physical cells of the other subdomain. For the second order finite volume approach used
here, the width of the ghost-cell reduces to a layer of only one cell, which also minimizes
the required time of communication. Whenever a local subdomain requires values of their
neighborhood, e.g. to compute gradients, a communication is performed by means of MPI. In
order to save implementation time for this task, the solver makes use of modern libraries such
as the Portable Extensible Toolkit for Scientific computations (PETSc) [13, 12, 14] and the
library of High Performance Preconditioners (Hypre) [132, 65], both based on MPI. Hypre
provides far advanced solvers used here for the parallel computation of the Helmholtz equa-
tion (3.1b) and the Poisson equation (3.1c), both parts of the fractional step scheme (3.1)
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employed here. Solving these linear systems consumes the major part of the overall compu-
tational time, so that optimized solvers become of crucial importance. Besides the domain
decomposition, PETSc is also used for parallel data input and data output, strictly required
for large-scale applications since the fluid data easily reaches several gigabytes of storage per
instant in time.
The structure part is parallelized by a simpler approach, well suited for FSI problems with
a large number of individual structures. Usually, the solution procedure for a single rod is
less time consuming, while the bottleneck arises due to the huge amount of structures. Con-
sequently, the rods are distributed among the available processors, so that the dynamics of
each Cosserat rod is computed by a single processor. This is reasonable as it avoids decom-
position of the individual structural problem (3.8) solved efficiently by the non-commercial
ODE-solver RADAU5 [91], as described in Section 3.2.2.

4.6.3 Coupling scheme

In addition to the parallel computation of the separated fluid and structure part, their
coupling needs an appropriate strategy of parallelization. As described in Section 4.4, the
coupling requires several subsequent steps. First, the preliminary velocity ũΓ(xijk) located at
the Eulerian grid points is interpolated to the Lagrangian markers xl on the rod. Secondly,
based on ũΓ(xl) the coupling force fΓ(xl) is evaluated and, in a final step, spread back to
the Eulerian grid to obtain fΓ(xijk). In the present work, the interpolation, evaluation and
spreading operation are performed by the associated structural rod element, were the marker
points xl are located. This spatial decomposition by means of rod elements enables an efficient
parallel treatment of these three steps, which is realized here by a so-called master and slave
strategy [250, 118]. Each single processor, dedicated to a decomposed subdomain, only treats
those elements located geometrically in the corresponding subdomain. Such elements are
called master elements. In some situations, an element may belong to two or more adjoining
subdomains at the same time. While one processor/subdomain contains this element as a
master the other subdomains assign it as a slave element. Fig. 4.7 illustrates the scenario for
two discretized rods, whose elements are distributed over four subdomains.

subdomain 1 / CPU 1 subdomain 2 / CPU 2

subdomain 3 / CPU 3

slave element

subdomain 4 / CPU 4

master element

rod 1

rod 2

••

•

Figure 4.7: Parallelization by means of a domain decomposition, illustrated with four subdomains.
The master elements of the rods are dyed with the color of the associated subdomain. Rod 1 and rod
2 are solved by different CPUs, e.g. CPU 1 and CPU 2 to spread the computational effort. At the
positions identified by black dots, several rod elements are in contact. Such collisions are treated by
a collision model.
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Using the master-slave concept on CPU clusters with distributed memory, the following
communication steps need to be carried out by means of MPI:

1. Interpolation of velocities: Concerning Eq. (4.22), ũ(xijk) is interpolated at the Lagrangian
marker xr−1

l on a specific element e at time t = tr−1. As described above, the motion of a
Cosserat rod is computed by the same processor during the entire simulation. As a result,
the rod is not necessarily located in the associated subdomain of the CPU. Thus, the
latest geometrical properties of each element, i.e. center line position cr−1

e and rotation
qr−1
e , need to be communicated to the processors where the corresponding master element

is located. If a master element is part of two subdomains, these information are further
communicated from the master process to the adjoining slave process. With cr−1

e and qr−1
e

the Lagrangian coordinates xr−1
l can be reconstructed for each master and slave element

which, afterwards, are used to determine ũ(xr−1
l ). Using Eq. (4.22), the velocity at xr−1

l

is obtained by the sum over the Eulerian points xijk belonging to the stencil of the delta
function δh. To obtain correct values in cases where the stencil is treated by different
subdomains, the data obtained for the slaves are sent back to the corresponding master
and gathered there. Hence, each master provides the complete set of ũ(xr−1

l ).

2. Evaluation of coupling force: Lagrangian velocities are related to the external fluid loads
�
fΓ,

�
mΓ required by each structure solver to compute for the next time level t = tr.

According to Eqs. (4.24)-(4.25), these fluid loads contain p̃e and l̃e obtained from sums
over ũ(xr−1

l ) on an element e. Therefore, the sums are computed for each master element
and communicated to the responsible structure solver, where these quantities are employed
to solve for the motion at t = tr. Then, the updated rod data (cre, ċ

r
e, q

r
e and q̇r

e) are
sent back to the master processes. Note, that cre and qr

e are reused for the subsequent
interpolation step and do not need to be communicated twice. Based on the current
motion, the interface velocities uΓ(x

r−1
l ) are computed via Eq. (4.26) for each master

element. Finally, these are used to evaluate the coupling forces fΓ(x
r−1
l ) according to

Eq. (4.27).

3. Spreading of coupling force: After evaluating the coupling forces, these are sent to adjoin-
ing slave processes by the master process. In a last step, the Lagrangian coupling forces
fΓ(xl) are distributed on the Eulerian grid by the spreading operation (4.28) yielding
fΓ(xijk). This source term then is employed in the Helmholtz equation (3.1b) to obtain
the constrained velocity field of the fluid.

4.6.4 Collision handling

Especially in fluid-structure interaction problems dealing with a large number of densely ar-
ranged rods, these may collide with each other as shown in Fig. 4.7. For this purpose, an own
collision model designed for Cosserat rods was developed, presented in Chapter 5 below. It is
parallelized with the already described master-slave concept, so that the processor handling
the fluid-structure coupling also performs the contact detection and the computation of the
collision response between the master elements. Possible collisions of elements belonging to
different subdomains are treated as collisions between master and slave elements. The infor-
mation required for such kind of collisions is exchanged between the subdomains involved.
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4.7 Validation and results

4.7.1 Turek & Hron’s benchmark problem

FSI-1 FSI-2

fluid properties:

Lx m 2.5 2.5 channel length

Ly m 0.41 0.41 channel height

ρf kg/m3 103 103 fluid density

νf m2/s 10−3 10−3 kin. viscosity

U m/s 0.2 1 mean velocity

structure properties:

D m 0.1 0.1 diameter

L m 0.35 0.35 rod length

T m 0.02 0.02 rod thickness

ρs kg/m3 103 104 structure density

νs – 0.4 0.4 Poisson’s ratio

Es MPa 1.4 1.4 Young’s modulus

dimensionless quantities:

ReD – 20 100 Reynolds number

ρs/ρf – 1 10 density ratio

y

x

2
.1
D

2
D

2.5D 22.5D

D L
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u(y)
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no-slip

no-slip
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Figure 4.8: Setup of the FSI benchmark problem proposed by Turek and Hron [248] (not to scale).
Depending on the set of parameters, the rod responds with a steady deflection (FSI-1) or with a
periodic oscillation, excited by vortices shed from the cylinder (FSI-2).

The two-dimensional benchmark of Turek and Hron [248] shown in Fig. 4.8 is the most
commonly used test case for validating and comparing FSI approaches. The physical setup
is defined in the laminar regime of an incompressible Newtonian fluid, while the elastic rod
structure responds with large deflections under the influence of the fluid loads. The latter is
attached to the downstream side of a rigid circular cylinder, with its center at (0.2m, 0.2m)T.
The horizontal expansion of the domain Lx is large enough to avoid any influence of the
outflow condition on the behavior of the rod [248]. Furthermore, the immersed object is
intentionally positioned slightly above the midspan of the domain to predefine the structure
deflection in the initial transient phase of the motion. At the inlet boundary a time-dependent
velocity is imposed, which is defined by

u(y, t)

U
=

{
u∗ sin(π/4 t∗) , t∗ < 20

u∗ , otherwise
(4.35)

with the parabolic profile u∗ = 6y∗(1 − y∗), the mean velocity U = 2/3 u(y∗=1/2, t∗), the
dimensionless vertical coordinate y∗ = y/Ly and the dimensionless time t∗ = t U/D. At the
outlet boundary a convective outflow condition is applied, while the remaining boundaries
are defined as no-slip walls, including the fluid-solid interface of the cylinder and the rod.
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The present FSI model differs in some respects from the common model assumptions, re-
quired for this benchmark. First, a zero-thickness approximation of the fluid-structure in-
terface is used here, so that the coupling conditions are imposed at the midline of the rod.
Second, the elastic structure is modeled by a one-dimensional Cosserat rod model, in con-
trast to the two-dimensional models commonly used in the literature.
Nonetheless, simulations were conducted for the benchmark cases FSI-1 and FSI-2, with the
associated material properties provided in Fig. 4.8. While the first case results in a small
stationary deflection of the rod (Fig. 4.9a,b), the solution of case FSI-2 exhibits an unsteady
behavior in which the vortices shed from the cylinder excite a periodic oscillation of the rod
(Fig. 4.9c,d). In order to study the convergence behavior of the present FSI-solver and to
achieve grid independence of the simulation results, five simulations with different grid res-
olutions were performed for each test case. Table 4.2 provides an overview of all resolutions
used. The rate of convergence q is estimated via Richardson extrapolation [70] yielding

q2h = log2

(
ε8h − ε4h
ε4h − ε2h

)
, (4.36)

where e.g. ε2h is the relative error of resolution 2h with respect to the finest resolution h, i.e.
ε2h = ϕ2h/ϕh − 1 for an arbitrary quantity ϕ. The results of the convergence test are listed
in Tab. 4.2. As expected, the rate of convergence q is around 1 which is a consequence of
the direct forcing approach and the use of regularized delta functions for the interpolation
and spreading operation, as demonstrated in Section 4.5. At coarser resolution levels the
asymptotic range is apparently not reached, so that orders larger than 1 can be observed. The
converged simulation results obtained with the finest resolution are used for a quantitative
comparison with the reference data of Turek and Hron [248], shown in Fig. 4.10 and Tab. 4.3.

level Δt/10−4s Δx/10−4m L/Δx N Ne

16h 4 1 35 10250 5

8h 2 0.5 70 41000 10

4h 1 0.25 140 164000 20

2h 0.5 0.125 280 656000 40

h 0.25 0.0625 560 2624000 80
14 14.5 15

−0.1

0

0.1

 

 

time t

d
is
p
l.
d
y FSI-2

h
2h
4h

FSI-1 ε16h ε8h ε4h ε2h q4h q2h qh

displacem.dx 1.66 · 10−1 7.43 · 10−2 3.06 · 10−2 9.90 · 10−3 1.06 1.08 1.07

displacem.dy 1.38 · 10−1 4.87 · 10−2 1.79 · 10−2 5.69 · 10−3 1.53 1.34 1.10

FSI-2 ε16h ε8h ε4h ε2h q4h q2h qh

mean 3.63 · 10−1 2.07 · 10−2 8.88 · 10−3 2.91 · 10−3 4.85 0.99 1.04

dy ampl. 2.45 · 10−1 1.06 · 10−1 4.37 · 10−2 1.42 · 10−2 1.16 1.08 1.05

freq. −7.19 · 10−2 −2.35 · 10−2 −6.59 · 10−3 −1.79 · 10−3 1.51 1.82 1.42

Table 4.2: Upper left table: Resolution levels with corresponding time step size Δt and grid step
size Δx. Additionally, the number of grid cells N = Nx×Ny and number of structural rod elements
Ne are listed. Lower tables: Convergence study concerning the cases FSI-1 and FSI-2, with the
relative errors εh and the rate of convergence q defined by Eq. (4.36). Upper right figure: Vertical
tip displacement dy in the periodic regime, FSI-2, for the 3 finest resolutions 4h, 2h and h.
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Figure 4.9: Contour plots of the instantaneous normalized velocity ‖u‖/U (a,c) and normalized
pressure p/ρfU

2 (b,d) for the steady-state case FSI-1 (a,b) and the periodic case FSI-2 (c,d). The
latter case FSI-2 shows the instant of maximum vertical deflection of the rod.
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Figure 4.10: Present simulation results (solid lines) of case FSI-2 compared with the reference
data of Turek and Hron [248] (dashed lines). The upper graph a) shows the initial transient of the
vertical tip position ytip (not provided in [248]). The temporal evolution of b) the horizontal tip
displacement dx, c) the vertical tip displacement dy, d) the lift force Fl and e) the drag force Fd are
shown for a selected time interval of 1 second in the periodic phase.
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FSI-1 dx (mm) dy (mm) Fd (N) Fl (N)

Present IBM,
zero-thickness approx.

0.0204 0.9370 13.596 0.6604

Reference (ALE)
Turek and Hron [248]

0.0227 0.8209 14.295 0.7638

rel. error (%) -10.1 14.1 -4.9 -13.5

FSI-2 dx (mm) dy (mm) Fd (N) Fl (N)

Present IBM, -18.95 ± 15.91 1.27 ± 92.16 226.42 ± 84.47 1.53 ± 261.13

zero-thickness approx. [3.66] [1.84] [3.66] [1.84]

IBM of Bhardwaj

and Mittal [32]
–

– ± 92

[1.9]

178 ± –

[ – ]
–

IBM of

Tian et al. [239]
–

– ± 78

[1.9]

205.5 ± –

[ – ]
–

Reference (ALE) -14.58 ± 12.44 1.23 ± 80.6 208.83 ± 73.75 0.88 ± 234.20

Turek and Hron [248] [3.8] [2.0] [3.8] [2.0]

rel. error (%)
29.9 ± 27.9

[-3.7]

3.3 ± 14.3

[-8.0]

8.4 ± 14.5

[-3.7]

73.9 ± 11.5

[-8.0]

Table 4.3: Horizontal and vertical tip displacements dx and dy as well as drag force Fd and lift
force Fl of the entire immersed object, i.e. cylinder and rod. In case FSI-2 the time-dependent
periodic quantities are provided in the form m ± a [f ], with the mean value m, the amplitude
a and the frequency f . The present simulation results are compared with the reference data of
Turek and Hron [248] and with IBM simulations of Bhardwaj and Mittal [32] and Tian et al. [239].

The present IBM approach qualitatively captures the behavior of the coupled system in both
scenarios, the steady state solution in case FSI-1 and the periodic solution in case FSI-2.
From a quantitative point of view, however, larger deviations can be observed in comparison
to the reference data of Turek and Hron [248]. For example, the relative errors obtained
for FSI-2 are up to approximately 15% for the amplitudes of the drag and lift forces and
up to 28% for the amplitudes of the tip displacement. The sources of these differences are
manifold. As already shown in [249], different discretization schemes and coupling proce-
dures may produce slightly different solutions. This reference provides a cross-comparison
between strongly coupled partitioned approaches and monolithic approaches, based mainly
on an arbitrary Lagrangian-Eulerian (ALE) method for the fluid part and an FEM for the
structure part [249, 159]. As an example, Turek and Hron [248] used a fully implicit, mono-
lithic ALE-FEM approach, while Bletzinger [249] combined a Lattice-Boltzmann method
on a fixed Eulerian fluid grid with an FEM for the structure part. Differences up to 50%
for the drag and lift forces, and in the range of 10% for the displacements were obtained
[249]. The present FSI-solver contains additional model assumptions which also affect the
numerical solution. First, the rod structure is represented by a one-dimensional Cosserat rod
model. In [249] only Bletzinger used a similar rod model (Reissner-Mindlin shell model),
leading to errors in the order of 10%, which is comparable to the present results. Second, the
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zero-thickness representation of the rod in the fluid field used here seems to be a quite rough
approximation. One obvious consequence is that larger tip deflections are predicted in the
simulations, which in turn causes slightly increased drag forces on the rod at maximum tip
deflection. Finally, it is known that the present type of IBM usually overestimates the drag
of immersed boundaries [35]. This is caused by the regularized delta functions employed
to “spread” the coupling forces from the Lagrange markers to the Eulerian grid (see Sec-
tion 4.3.2). The spreading leads to a sort of diffuse interface with the fluid which marginally
increases the effective diameter of the cylinder. As a result, its drag is slightly overestimated.

4.7.2 Wall & Ramm’s FSI problem

fluid properties:

Lx = 19.5 cm channel length

Ly = 13 cm channel height

ρf = 1.18 · 10−3 g/cm3 fluid density

ηf = 1.82 · 10−4 g/(cm s) dyn. viscosity

U = 51.3 cm/s bulk velocity

structure properties:

W = 1 cm square width

L = 4 cm rod length

T = 0.06 cm rod thickness

ρs = 0.1 g/cm3 structure density

νs = 0.35 Poisson’s ratio

Es = 2.5 · 106 g/(cm s2) Young’s modulus

ks = 5/6 shear correction

dimensionless quantities:

ReW ≈ 333 Reynolds number

ρs/ρf ≈ 85 density ratio
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Figure 4.11: Setup according to Wall and Ramm’s FSI benchmark problem [261, 260] (not to
scale). A slender elastic rod is mounted on an immobile square shaped obstacle submerged into a
uniform flow. At the present Reynolds number of ReW =UW/νf ≈ 333 vortices are shed from the
square, which excite a periodic oscillation of the rod.

The FSI benchmark of Turek and Hron [248] presented in the previous section is an im-
proved version of the FSI problem proposed by Ramm and Wall [261, 260] several years
earlier. Both configurations base on the same physical phenomenon, a vortex-induced oscil-
lation of a flexible rod in the wake of an immobile obstacle in laminar flow. Besides different
material parameters for the fluid and the structure, an alternative shape of the obstacle is
used. In the original setup of Ramm and Wall, the slender flexible structure is attached to
the downstream end of a square shaped body, while in [248] a circular shape is used. More-
over, the thickness of the rod is significantly smaller, which is better suited to validate the
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present IBM using a zero-thickness representation of the rod structure. The definition of the
FSI benchmark is provided in Fig. 4.11. Initially, the structure is at rest while a uniform
and temporally constant bulk velocity of U = 51.3 cm/s is applied instantaneously at the
inlet at time t = 0. The corresponding Reynolds number is ReW = ρfUW/ηf ≈ 333 based on
the square width W and the bulk velocity U . At the outlet a convective outflow condition is
imposed, and the lateral boundaries are modeled as free-slip walls.
In the original setup of Ramm and Wall [261] the obstacle with the rod is positioned sym-
metrically at the midspan of the domain, so that numerical instabilities of the fluid flow
cause a transition to a periodic motion of the rod. The time of the first occurrence of such
instabilities can vary significantly between different numerical methods, which complicates a
cross-comparison of the associated simulation results. Similar to the benchmark of Turek and
Hron [248] the domain is slightly enlarged in vertical direction here, so that the symmetry of
the domain is broken. This small geometrical change triggers a well-defined initial instability
which initiates the transition phase. The amplitude and frequency of the subsequent steady
oscillation are barely affected by this modification.
In the work of Ramm and Wall [261] the present configuration was used only as a phe-
nomenological study of such kind of FSI problems without any convergence study. The
results should not be considered as an exact solution, even if the principle physical behav-
ior is reproduced [260]. In general, this benchmark is less popular and commonly used as a
qualitative validation of numerical strategies for FSI, e.g. in [226] where only a short time
interval was simulated without reaching the steady oscillation state. Other groups slightly
changed the material properties and performed simulations at a lower Reynolds number of
ReW = 204 instead of ReW = 333 [266, 103]. This complicates a cross-comparison between
the different numerical approaches. To date, only few studies provide data for quantitative
comparison, as the one of Dettmer and Perić [56], for example. They carried out simulations
with various structure models, even with a zero-thickness approximation of the rod in the
fluid which indeed is atypical. Most authors, however, model the rod via the regular structure
equations (2.4), denoted as continuum models here.
The fluid domain shown in Fig. 4.11 is discretized by a Cartesian, equidistant grid with
the same grid step size in x- and y-directions. To assess the convergence behavior, three
simulations with different grid resolutions were performed (Fig. 4.12). Here, the step size of
the fine grid corresponds to L/Δx = 640 equidistant grid cells over the length of the rod L.
The resolution of the coarsest mesh is given by L/Δx = 160 cells. In terms of the temporal

level Δt/10−4s Δx/10−1cm L/Δx N Ne

4h 1 0.25 160 405600 20

2h 0.5 0.125 320 1622400 40

h 0.25 0.0625 640 6489600 80 7.6 7.8
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Figure 4.12: Selected time step sizes Δt and grid step sizes Δx used to assess the temporal and
spatial convergence. In addition, the resulting number of grid cells N = Nx × Ny and number of
structural rod elements Ne are listed in the table. The right figure shows the vertical tip displace-
ment dy obtained for different resolutions.
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discretization a constant time step was used, determined such that CFL ≈ 0.5. Figure 4.13
shows the temporal evolution of the vertical tip displacement dy(t) for different grid resolu-
tions, compared with the result of Dettmer and Perić [56]. Especially with the coarse grid
resolution of L/Δx = 160, the initial transient of the oscillation agrees well with the reference
data, while the fine resolution of L/Δx = 640 differs slightly more. These results indicate
that the grid resolution used by Dettmer and Perić [56] is not fine enough to guarantee grid
independence. In fact, they used only two adapted meshes of different spatial resolutions, the
finest having about L/Δx ≈ 100 cells over the rod length. Although temporal convergence
has been demonstrated in [56], no spatial convergence study was presented.
The long term response of the rod is shown in Fig. 4.14. Obviously, the transition phase to
the steady-state oscillation is finished after a time period of approximately 2 s. Then, the
rod oscillates with an amplitude of 1.1 cm and a frequency of 3.29Hz, where the motion is
dominated by the first natural bending mode. Fig. 4.15 shows a snapshot of the oscillation at
the instant of maximum vertical deflection of the rod. Different numerical structure models
were studied by Dettmer and Perić [56], ranging from a large strain continuum model to a
small strain rod model. Depending on the model applied, the dominant first mode oscillation
is superposed by a second mode of higher frequency. The displacement plot in Fig. 4.13
shows that such second mode oscillations also occur with the present Cosserat rod model
(t > 2.5 s), but with smaller amplitudes compared to the small strain continuum model of
Dettmer and Perić [56]. Tab. 4.4 provides a cross-comparison between the present IBM and
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Figure 4.13: Vertical tip displacement dy during the initial transition phase. The results obtained
for the coarse resolution (L/Δx = 160) and the fine resolution (L/Δx = 640) are compared to the
data of Dettmer and Perić [56] (picked case: fine grid, small strain continuum structure model).
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Figure 4.14: Long-term response of the rod shown for the vertical tip position ytip. After an initial
transition phase of approximately 2 seconds the rod oscillates with temporally constant amplitudes
of 1.1 cm and a frequency of 3.29Hz.
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selected numerical approaches from the literature. Each numerical approach reproduces the
expected periodic behavior of the coupled system. However, deviations in the order of 10%
can be observed for the oscillation amplitude and frequency. Hübner et al. [103] showed how
different stable periodic solutions can arise when different initial conditions are imposed.
In the present study it was observed that the spatial resolution has a noticeable impact on
the dynamic behavior. A very fine spatial discretization must be used to reach convergence,
especially with regard to the initial transient phase.

a) b)‖u‖ /U p / ρfU
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Figure 4.15: Instantaneous solution of the FSI problem according to Wall and Ramm [261] at the
time of maximum vertical deflection of the rod. a) Contour plot of normalized velocity magnitude
‖u‖/U , and b) normalized pressure field p/ρfU

2. Clearly visible are the suction side (negative pres-
sure, light gray) and the pressure side (positive pressure, dark gray), generating a positive lift force
on the structure. The light pressure region at the tip indicates the growth of an individual vortex.

numerical IBM IBM ALE ALE ALE

method present Kamensky Baudille & Dettmer &

et al. [113] Biancolini [22] Perić [56]

structure
model

Cosserat rod
(zero-thickness)

shell shell continuum beam continuum
(small strain)

average

ampl. (cm) 1.10 1.3 ≈ 1 ≈ 1 1.24 1.29 1.15

freq. (Hz) 3.29 3.2 3.2 3.18 3.08 2.96 3.15

Table 4.4: Oscillation amplitudes and frequencies of vertical tip-displacement dy obtained by dif-
ferent authors using either an IBM with a fixed background grid or an ALE method with a moving
adapted mesh. Moreover, different structure models were applied in these works, ranging from non-
reduced three-dimensional continuum models to one-dimensional rod models. Each structure model
is formulated geometrically exact and thus is able to represent large rod deflections.
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4.7.3 Flexible rod in cross flow

g = 981 cm/s2 grav. acceleration

fluid properties (water):

Lx = 20 cm channel length

Ly = 16 cm channel height

Lz = 16 cm channel width

ρf = 1g/cm3 fluid density

νf = 0.01 cm2/s kin. viscosity

U = 3.6 . . . 32 cm/s bulk velocity

structure properties (foam material):

L = 5 cm rod length

W = 1 cm rod width

T = 0.2 cm rod thickness

ρs = 0.67 g/cm3 structure density

νs = 0.4 Poisson’s ratio

Es = 50N/cm2 Young’s modulus

dimensionless quantities:

ReL = 360 . . . 3200 Reynolds number

ρs/ρf = 0.67 density ratio
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Figure 4.16: Benchmark configuration of a flexible rod made out of foam material subjected to a
uniform cross flow (not to scale) according to the experimental work of Luhar and Nepf [150].

The configuration shown above was experimentally studied by Luhar and Nepf [150] and is
well suited as a benchmark problem for steady-state fluid-structure interactions. In contrast
to the previous two benchmarks the interaction is pressure dominated as the blade is ori-
ented perpendicular to the mean flow. To provide a uniform flow over the entire length of
the rod, it is positioned above the boundary layer of the channel bottom. In the experiment
this is realized with the aid of a thin steel rod. The latter is connected to a load sensor which
simultaneously measures the integral hydrodynamic force acting on the rod. The structure
responds by a large almost steady deflection to the applied fluid load and the wake generated
past the rod is three-dimensional and turbulent (Fig. 4.17).
The laboratory flume used in the experiment is approximated here by a bounded rectangular
fluid domain of size [0;Lx]× [0;Ly]× [0;Lz] with Lx = 20 cm, Ly = 16 cm and Lz = 16 cm.
Within the domain, the lower end of the rod is positioned at c(Z=0) = (5 cm, 5 cm, 8 cm)T.
Test simulations with different domain sizes have shown that this domain is sufficiently large
and does not affect the flow around the rod by boundary effects. At the four lateral bound-
aries of the domain a free-slip rigid lid condition is applied. The inlet velocity is set to a
constant bulk velocity U , while a convective outflow condition is used at the outlet. The fluid
domain is discretized by Nx ×Ny ×Nz = 200× 160× 160 cells in total, which corresponds
to W/Δx = 10 grid cells over the width of the structure W . In addition, a finer resolution
of W/Δx = 20 is used to verify grid independence. The rod is discretized by Ne = 20 struc-
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Figure 4.17: Instantaneous flow around the rod in the center plane, z = 8 cm, for two bulk veloci-
ties U . a) Streamwise velocity component u for U = 16 cm/s. b) Pressure field for U = 16 cm/s. d)
Streamwise velocity component u for U = 32 cm/s. d) Pressure field for U = 32 cm/s.

tural elements, while Ne = 40 is employed for the fine resolution. Regarding the temporal
discretization a constant time step size was chosen, yielding CFL ≈ 0.5. This, for example,
results in a time step size of Δt = 1 · 10−3 s at a bulk velocity of U = 16 cm/s and a grid
resolution of W/Δx = 10.
In order to validate the FSI-solver over a wide range of Reynolds numbers ReL = UL/νf ,
simulations were carried out for 8 bulk velocities ranging from U = 3.6 cm/s (ReL = 360) up
to U = 32 cm/s (ReL = 3200). Figure 4.18 shows a comparison between the present simula-
tion results and the experimental data of Luhar and Nepf [150] over the entire range of bulk
velocities U . In addition, the results are compared with a similar IBM simulation carried out
by Tian et al. [239] for U = 16 cm/s. With regard to the average drag force Fd, the present
results show an excellent agreement with the experimental data over the entire range of bulk
velocities U . Small differences can be observed for the deflection shape of the rod, shown in
Fig. 4.18b for a selected velocity of U = 16 cm/s. Compared to the experimental observation,
the rod is slightly more deflected in the simulation. One possible reason can be assigned to the
values of the material parameters provided in [150]. Measurement uncertainties of more than
10% may be expected for the Young’s modulus Es and the density ρs of the foam material.
An additional source of the deviations obtained can be related to the isotropic linear-elastic
constitutive relations applied here to simulate a rod made out of non-isotropic foam material.
At this point, a hyperelastic material model, e.g. a neo-Hookean material, would be better
suited. Despite these minor uncertainties in the properties of the experimental setup, the
present results show reasonably good agreement with the reference, thus providing another
validation of the approach.
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U (cm/s) 3.6 7.1 11 14 16 22 27 32

Fd (mN) 0.5 1.9 4.3 6.4 7.5 (7.6) 10.9 13.7 16.0 (16.1)
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Figure 4.18: Upper Table: Average drag force Fd at different bulk velocities U ranging from
U = 3.6 cm/s up to U = 32 cm/s. For the simulations performed over the entire range of U a
grid resolution of W/Δx = 10 was used. To verify convergence of Fd, a finer grid resolution of
W/Δx = 20 was employed at U = 16 cm/s and U = 32 cm/s as well (values in brackets). a) Drag
force Fd plotted against the bulk velocity U . The present results are compared with the experimental
data of Luhar and Nepf [150] and to the simulation results of Tian et al. [239]. b) Comparison of
the average rod shape between the experiment (dark blurred line) and the present simulation (white
line) at a velocity of U = 16 cm/s.



5 Collision model for Cosserat rods

5.1 Fundamentals and state of the art

In cases, where rod structures are close to each other, the collision response strongly influences
the physical behavior of the entire system, so that it must be accounted for. For this purpose,
an own collision model was developed, which is able to treat a simultaneous collision of a large
number of individual Cosserat rods. From a physical point of view, each individual collision
causes a local deformation of the structures involved at and closely around the contact region
where the structures touch, as well as a dissipation of energy due to internal friction inside the
structures and external friction between them. The simulation of these processes requires very
high temporal and spatial resolution and can be accomplished only in rare cases, when just a
very small number of structures is involved. If, as in the present work, the focus lies on a larger
scale, e.g. the macroscopic collective motion of interacting structures, the collision response
and the structures need to be modeled to a higher degree by incorporating assumptions or
empirical laws. By taking advantage of geometrical or material properties, three-dimensional
high-resolution models can be simplified to “reduced-order” models, as already realized in
terms of the structure part to obtain the Cosserat rod equations (Section 2.3.2). Selected
levels of abstraction used to simulate collision processes of rods are shown in Fig. 5.1, where
case c) constitutes the subject in this chapter.

a) b) c)

Figure 5.1: Different levels of abstraction in the description of collision processes: a) Resolution of
local deformation and friction mechanisms during a collision of two rods. b) Resolution of deforma-
tion and modeling friction in tangential space. c) Representation of structures by one-dimensional
model. Deformation due to collision and frictional effects are modeled.

Clarification of terminology. Primarily, each collision model counteracts against an
interpenetration of two interacting structures by means of a contact force oriented in the di-
rection normal to the contact surface. Therefore, the contact force acts in the normal space
of the contact surface, which is often denoted as contact space [63, 223]. Correspondingly,
friction forces act in the tangent space of the contact surface. Friction models are further



62 5.1 Fundamentals and state of the art

classified into models for static and kinetic friction, where in the latter case the structures
slide along each other in tangent space. Depending on the kind of relative motion, kinetic
friction models are classified into models for sliding, spinning and rolling friction [90]. In
case of vanishing relative motion, the interacting structures stick to each other due to static
friction. The situation where structures are completely at rest while interacting is usually
called contact or more precisely static contact. In contrast, the term collision actually de-
scribes a dynamic interaction. In the literature, the term collision model and contact model,
is often used as an umbrella term, including dynamic collisions as well as static contact with
or without consideration of frictional effects and also covers the numerical treatment. Some
numerical approaches treat collision and contact in a uniform way [161, 120], other methods
separate them to avoid common related problems, e.g. spurious vibration [90].
In the present work the term collision model is used for a model representing the entire phys-
ical response of at least two dynamically or statically interacting structures. In cases where
a distinction becomes important, a dynamic interaction is termed dynamic collision, while a
static response is denoted as static contact. However, the term contact is also often used to
point out a relation to the contact surface, e.g. contact space, contact point or contact force.
Furthermore, the proposed collision model distinguishes between a collision response in the
normal space and the tangent space of the contact surface, while the latter is modeled by an
appropriate friction model.

Collision models for rods. In contrast to developments of rod theories and rod models,
there exist only few works on the representation of collisions of rod-like structures. These
almost belong exclusively to the field of computer graphics. Early simulations of contacting
or colliding rod-like structures were published by Lenoir et al. [136] and Phillips et al. [188],
where material torsion were not resolved. Besides the works related to rod models, sim-
ilar collision models were proposed for comparable reduced-order structures, e.g. models
for cloth [36, 238, 228]. Indeed, rods and membranes share the common property that in-
consistent penetrations must be avoided, in particular where dealing with visualizations.
In these papers two different approaches are used to formulate contact forces, which can
be taken as a classification of presently existing methods. One comprises penalty methods,
the other termed non-penetration methods or constraint-based methods in subsequent pa-
pers [188, 42, 223, 27, 256]. As stated in [223] this terminology can be misleading, since also
penalty methods are employed to handle constraints.
In general, penalty methods and constraint-based methods are employed to model the col-
lision response between arbitrary structures. The following remarks focus on rod structures
considered in the present work. However, the described properties of both approaches are
generally valid for any other kind of colliding structures.
Penalty methods relate the contact forces to a measure of interpenetration, e.g. the pene-
tration depth of two colliding structures. Such methods are simple by construction, but an
appropriate stiffness of a penalty-spring and often also a penalty-damper have to be pre-
scribed. Such penalty collision models were applied to the simulation of rod-like structures
by Lenoir et al. [136], Bertails et al. [28, 27] and Vetter et al. [256]. In case of constraint-based
methods, position constraints or velocity constraints are incorporated into the motion of the
colliding structures, which avoids mutual interpenetration, as employed by Phillips et al. [188]
and Choe et al. [42]. Spillmann et al. [225, 224] proposed a collision model for Cosserat rods
that combines the accuracy and physical correctness of a constraint-based method with the
efficiency of a penalty method. Based on the penetration depth of two rods, a spring force
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is computed that exactly compensates this penetration. This can be interpreted as a special
constraint regarding positions.
Rod models usually assume rigidity of cross sections, so that any collision model has to
handle the rigid part in an appropriate way. In general, for rigid bodies no deformation of
the structure is considered and, as a result, the level of abstraction of ongoing collisions is
high which saves computational time. By neglecting any deformation process, the contact
force instantaneously changes the momentum of the colliding structures. As stated in [223],
that is why collision handling of rigid bodies is a famous and difficult problem. Furthermore,
due to the rigid body assumption the momentum is transferred instantaneously through
the colliding structures. As a consequence, simultaneous collisions of numerous structures
become a global problem. Such multiple collision regions further complicate a simulation
and require special numerical techniques. In case of penalty methods an artificial elasticity
is introduced, so that the problem remains a local problem for a simultaneous collision, but
disproportionately small time steps are required to ensure numerical stability and physical
correctness [25, 223].
To date, there exists a huge amount of literature on collision modeling for rigid bodies. In
the field of multibody dynamics, effects of any surrounding fluid are mostly neglected as the
focus usually lies on the interaction of rigid and elastic bodies. In the recent past, many
studies on collision handling for rigid bodies were published in the field of computer graphics
resulting in major progress in terms of the handling of numerous simultaneously colliding
structures under consideration of friction. The renowned work by Guendelman et al. from
2003 [90] proposed an impulse-based collision model, where the non-penetration constraints
are satisfied by imposing corrective impulsive forces, that discontinuously modify the ve-
locities of the colliding structures. These impulses are computed globally by means of an
iterative procedure, which enables a simulation of a multiple collision of rigid bodies at the
same time. Comparable strategies belonging to the group of constraint-based collision models
were proposed by Bender and Schmidt 2006 [24] and Tonge et al. 2012 [243]. Pure penalty
methods were also used in rigid body dynamics and other applications [98, 61, 234], but with
limited success due to several disadvantages, such as reduced physical justification and the
difficulty of specifying an appropriate stiffness constant [224].
Unlike collisions of rigid bodies, a collision model for soft deformable structures only requires
to handle the non-penetration constraint and no further instantaneous transfer of momen-
tum. Multiple simultaneous collisions still yield local problems, since the compression and
decompression during the collision process is resolved and thus also the transfer of momen-
tum between the structures. As usual, the constraint at the contact surface can be achieved
by constraint-based methods and penalty methods [224, 223].

5.1.1 Penalty versus constraint-based methods

Regarding the collision modeling the Cosserat rod combines features of deformable structures
and rigid bodies. While single rod elements behave like rigid bodies the interaction between
the elements captures the deformability of the rod. Such a hybrid form requires an appropri-
ate collision model able to describe both effects. In principle, for any structure - deformable
or rigid - an interpenetration must be avoided during the collision process. As already men-
tioned, this is accomplished either by penalty methods or by constraint-based methods. In the
following, advantages and disadvantages of both methods are weighted against each other,
and the more suitable approach is chosen in terms of the present situation.
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Penalty methods. Penalty methods are based on a spring-like force which is propor-
tional to a measure of interpenetration and provide a temporal continuous contact force.
In contrast to that, constraint-based methods instantaneously correct a violation of non-
penetration. This generates discontinuous contact forces which are more difficult to handle
from a numerical point of view. A further advantage of penalty methods is the simple im-
plementation, since a penetration between two colliding structures is often easily accessible.
On the other hand, the estimation of the spring constant is very complicated and sometimes
described as “black art” [160]. For few scenarios, mostly involving single collisions of similar
shaped structures such as spheres of equal size, the stiffness can be calibrated and assumed
constant. In some enhanced approaches the spring constant is recomputed for each single
collision using additional ordinary differential equations to capture the collision constraint in
normal direction [120, 198]. The situation is complicated in the general case of simultaneous
multiple collisions of arbitrary shaped structures. The stiffness of the penalty spring may
have to vary considerably to avoid excessive penetration, as illustrated in Fig. 5.2. Maintain-

δ

g

Figure 5.2: Static contact of a single dark sphere with a wall modeled by a penalty method. When
using a global predefined spring constant the penalty depth δ can vary considerably depending on the
particular situation.

ing a uniform global behavior, i.e. a comparable penetration depths, with a global choice of
the stiffness constant is impossible in general cases. Instead, dynamic quantities of the collid-
ing structures, such as inertia, external loads etc., need to be used to derive an appropriate
spring for each individual collision. As a result, such a penalty method looses the advantage
of an easy implementation and, furthermore, is almost indistinguishable from a constraint-
based method. Indeed, as stated by Baraff [17], the penalty method converts the constrained
problem to an unconstrained problem where simply the deviations from the constraint are
penalized. As a result, satisfaction of the constraint is encouraged but not strictly enforced.
For three-dimensional convex structures this approximation is permitted, since minor pene-
trations are barely of influence. In contrast, for thin shells or cloth excessive interpenetration
results in sizable intersections of structures and influence the physical behavior, which must
be avoided. To overcome this problem, often the spring constant is significantly increased to
keep an interpenetration reasonably small. However, large stiffness causes stiff behavior of
the underlying differential equations of motion, which often become numerically unstable or
at least require very small time steps to the detriment of efficiency of large-scale simulations.

Constraint-based methods. As an alternative to the penalty approach, constraint-based
methods incorporate the non-penetration constraints directly in the equations of motion of
the colliding structures. The main difference is that constraint-based methods avoid an inter-
penetration and hence might better just be termed non-penetration methods. Furthermore,
non-penetration methods do not require additional parameters, e.g. a spring constant, and



5 Collision model for Cosserat rods 65

are able to handle the general case of multiple simultaneous collisions of different structures.
A disadvantage is the increased effort required for their implementation.
The methodology of a constraint-based collision response can be applied to both, deformable
and rigid structures, which is important for Cosserat rods sharing both properties. For de-
formable structures the collision response is usually resolved in space and time. The collision
constraints solely have to realize the non-penetration of both structures at the contact sur-
face so that any normal relative velocity vanishes after contact, i.e. v′n = 0. Here, vn is the
normal relative velocity at the moment of first contact and v′n the normal relative velocity
after collision. Especially for rigid bodies the compression and decompression during the col-
lision process, intentionally, is not resolved but is accounted for by collision constraints. In
this case, the constraint for the relative velocity is given by v′n = −e vn, where e is the coeffi-
cient of restitution modeling the influence of viscoelastic processes of deformation during the
collision (see Poisson’s hypothesis below). Obviously, the velocity constraints for deformable
structures are a subset of the constraints for rigid bodies with e = 0. Static contact between
resting structures with v′n = vn = 0 is included as well. The constraint-based approach can,
therefore, be applied to a general class of problems, including dynamic collisions and static
contact for arbitrary structures. Moreover, frictional forces acting in the tangent space also
can be modeled by constraints which further extends the field of application of the approach.
Due to the generality of constraint-based methods this strategy is followed here.

Numerical aspects. From a mathematical point of view the motion of colliding struc-
tures constitutes a system of constrained differential equations, more precisely inequality-
constrained differential equations since only the interpenetration has to be avoided but
not a separation [17]. In case of frictionless collision the non-penetration constraints can
be formulated as a so-called linear complementary problem (LCP) [18], whose solution is
NP-hard [223]. Similar systems of inequality-constrained differential equations result for cases
where friction is considered but are considerably more complex, and the efficient numerical
treatment of such kinds of problems is still subject of ongoing research [223, 16].
From a different point of view, an overall system of constrained differential equations usually
can be divided into coupled subsystems. Especially in the field of collision handling each
subsystem is represented by the equations of motion of a single structure. The coupling
of these subsystems is described by collision constraints. In general, coupled systems can
be treated numerically by the monolithic and the partitioned coupling approach, analogous
to the coupling of fluid and structure equations. In the former case, the constraints are di-
rectly incorporated into the system of equations and the entire coupled system is numerically
treated as a whole. With partitioned coupling the subsystems remain separated, while the
constraints are realized by an exchange of coupling quantities. In case of collision modeling,
these can be interpreted as contact forces. From a mathematical point of view, the contact
forces play the role of Lagrange multipliers [34, 25].
The clear advantage of partitioned coupling is that it allows simple implementation by a
combination of existing and optimized solvers for the coupled subsystems, i.e. solvers for
the unconstrained equations of motion. The collision constraints are incorporated as contact
forces, which are treated as common external forces. Hence, the collision response can be
switched on as a modular feature, simply by adding the contact forces to the equations of
motion. On the other hand, monolithic approaches generally yield high numerical accuracy
and good stability, even for large time step sizes. In the present work the partitioned ap-
proach is used since the collision model for Cosserat rods proposed here can be applied to
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other structures as well without further development effort. The somewhat reduced numeri-
cal accuracy is compensated by using a slightly smaller time step size.
Ensuring numerical stability of partitioned coupling approaches is not an easy task. If the
coupling force is solely formulated in terms of quantities at the old time level, the coupled
problem may become numerically unstable, so that these coupling strategies are often termed
weak coupling approaches [156, 154]. To ensure stability the coupling must contain an im-
plicit part, i.e. the contact force has to be formulated with consideration of quantities at the
new time level. This usually requires an iterative procedure between the coupled subsystems
or at least multiple executions of each subsolver within one time step.
For this purpose predictor-corrector methods are often employed and are widely used in the
field of constraint simulations [223]. In a predictor step, the equations of motion are solved
without constraints, so that the intermediate solution violates the constraints. Afterwards,
a corrective force, an acceleration or a momentum transfer can be computed by means of
the predicted solution and the desired constraints. In the correction step, the equations of
motion are integrated in time again, now incorporating of the corrective forces which act
against the violation of the constraints, so that these are met at the new time level. Using
an appropriate temporal discretization with a time step size Δt the constraint is not exactly
met at the end of the time step in the general case of nonlinear equations of motion, such
as for Cosserat rods, but exhibits a splitting error. As stated in [223], the numerical error
is linear dependent on Δt (see section 5.5, below). For linear equations of motion of rigid
bodies, in contrast, the constraints are met exactly.
In principle, the predictor-corrector strategy can be applied multiple times within a time
step to reduce the numerical error and the violation of the constraint, using the solution of
the first correction step as a predictor for the second iteration step, and so on. On the other
hand, a major objective is to minimize the required number of iterations, since the multiple
solution of the subsystems drastically increases the computational effort. Regarding collision
handling of rigid bodies or more complex structures like shells or membranes, the one-step
predictor-corrector strategy seems to be sufficient and has been employed frequently, not
only in the community focusing on collisions. Indeed, in the present framework of the im-
mersed boundary method, the predictor-corrector strategy is called “direct forcing” and used
to impose constraints on the velocity field of a fluid (Section 4.2).

5.1.2 Proposed collision model

The collision model proposed is suitable for rigid and deformable structures making it well
suited for Cosserat rods including both properties. It follows the well-established constraint-
based strategy, where the constraints are imposed by iteratively computed impulsive forces
[161, 90, 24]. The collision model is able to represent frictional effects as well as lubrica-
tion effects and does not separate static contact and dynamic collisions. This is achieved
by defining the contact force in the geometrical center of the contact region, which avoids
spurious vibrations. Moreover, the model is able to handle multiple simultaneous collisions
and, hence, is well-suited for simulations of large numbers of interacting elastic rods. Besides
the computation of contact forces, each collision model must involve a strategy for collision
detection which becomes computationally expensive for complex shaped structures. To re-
spond to this need, an efficient algorithm for estimating the distance between two rods is
proposed as well.
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The entire procedure required to compute the collision response between the structures
involved consists of the following four steps:

1. Detection of possible contacts between the simulated rod structures. More precisely,
contact detection between the structural elements given by the spatial discretization
detailed in Section 5.2.

2. Calculation of the collision response between colliding pairs of two elements, called
single collision. This is detailed in Section 5.3.2.

3. Determining the collision response for multiple simultaneous collisions when more than
two elements are in contact at the same time. The underlying linear complementary
problem is solved by an iterative procedure based on the treatment of single collisions
as described in Section 5.3.3.

4. Solving the equations of motion for each Cosserat rod with additional collision loads
obtained by step 1-3.

With this approach, the collision is treated fully explicitly in time in a simple staggered
manner, visualized in Fig. 5.3.

Structure solver

Collision model

step 1: Contact detection

step 2: Single collision

step 3: Multiple collision

tn tn+1
zn, wn zn+1, wn+1

wn
c

Figure 5.3: Flowchart of the coupling strategy between the collision model and the structure solver.
Shown is the exchange of data within one time step t∈ [tn, tn+1]. At time level tn the state of the
rod element zn, including the velocities, and the external loads wn acting on the rod element are
transferred to the collision module. With the given quantities the collision loads wc are calculated
successively by executing step 1 up to step 3. Afterwards, wn

c is communicated to the structure
solver, where zn+1 and wn+1 at the next time level tn+1 are calculated.

5.2 Contact detection

5.2.1 General approach

Often, the contact detection is identified as the bottleneck in terms of the computational
time, so that substantial work has been done in this field, comprehensively reviewed by Van
den Bergen [252]. As described in Section 4.6, a spatial subdivision is used, where the entire
computational domain as well as the rods are divided into smaller parts, i.e. subdomains
and structural elements, where each subdomain fully or partially contains a number of rod
elements. Due to the relatively small number of elements in a subdomain, the spatial distance
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between them can be computed in an efficient way. If the distance decreases below a critical
value the collision response between the colliding structures is computed afterwards. The
contact detection between the Cosserat rods is divided into two steps: 1. The determination
of collision pairs each consisting of two structural elements. 2. The calculation of the contact
point for each collision pair.

5.2.2 Collision pairs

According to the spatial discretization explained in Section 3.2.2, each Cosserat rod consists
of Ne structural elements. Let E be the set of all elements within the computational domain
and S the set of all rod structures. At the beginning of every time step each element e ∈ E is
checked for an ongoing impact with another element, i.e. that the distance between two ele-
ments decreases below a critical value. As a restriction, at most one colliding element ec ∈ E
per structure s ∈ S is detected for the element e, i.e.

ec : E × S → E , (e, s) 
→ ec , (5.1)

where ec satisfies the condition of the smallest distance

∀ ẽ ∈ s\o : dsp(e, ec) ≤ dsp(e, ẽ) . (5.2)

Here, dsp(e, ẽ) is the distance between two conceived spheres enveloping element e and ẽ. The
set o = {e, ...} consists of excluded elements, e.g. e itself or elements that are too far away to
be in contact with e, i.e. dsp > dcrit ≥ 0. In the rare case of an ambiguity of ec one of these
is chosen at random. After all pairs of elements are detected by using the approximated
distance dsp, a more precise distance d between the elements is evaluated by a different
algorithm defined below. Pairs which do not fulfill the condition d ≤ dcrit are deleted from
the list of detected pairs. For all remaining pairs the collision response is computed.

5.2.3 Distance and contact point

Each pair consists of two structural elements. Since the rods are restricted to a strip shape
in the present case, their thickness is much smaller than their width and their length. Hence,
the structural elements are geometrically well approximated by the center plane bounded
by the width and length of the element. This greatly simplifies the contact detection and
evaluation of the smallest distance between two elements. Nevertheless, the determination of
the exact distance and contact point is challenging due to numerous possible arrangements
of both elements. Here, an iterative procedure is used to evaluate the two nearest points xe

and xẽ on the center planes of element e and ẽ, presented in Alg. 5.1. Since the colliding
elements have a finite thickness T > 0 the corresponding vector d = xe − xẽ overestimates
the distance between e and ẽ, as shown in Fig. 5.4b. Taking into account the individual
thickness of both elements the true distance is given by

d = ‖d‖ − (Te + Tẽ)/2 , (5.3)

while the common contact point is approximated by

xc = xe +
Te

Te + Tẽ

(xẽ − xe) . (5.4)
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Note, that xc only coincides with the exact contact point if the distance is d = 0, i.e. both
elements touch each other.
The main idea of the distance search algorithm is to iterate xk

e and xk
ẽ until the solution

is converged. Initially, x0
e and x0

ẽ are set to the center point position of the correspond-
ing element. Then, xk

e is orthogonally projected by an operation P to the plane of the
other element. This gives the smallest distance between xk

e and the element ẽ and thus
xk+1
ẽ = P [xk

e , ẽ] is a good estimation for the distance so far. If the projected point lies out-
side the bounded plane of ẽ, it is projected back to the element borders, so that xẽ ← B[xẽ, ẽ],
with the bounding operation B. Within the same iteration step this cut orthogonal projec-
tion (COP) is done for the second element in the same way.
The proposed procedure only detects one smallest distance. In some cases a line segment or a
surface area define the region of smallest distance, e.g. if both element planes are parallel to
each other. Assuming that the collision force acting equally distributed in the contact region
an equivalent single force can be found which acts at an appropriately chosen contact point
xc. This point is well-defined by the geometric center of the contact region. The latter can be
obtained by a projection of the element borders onto a virtual plane which is perpendicular
to the vector d, see Fig. 5.4b. Then, the contact region is given by the intersection area
of both projections. By using the Sutherland-Hodgman algorithm [233] the borders of the
intersection area can be easily extracted. Last but not least the geometric center has to be
calculated.
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ẽ

e
xe

xẽ
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Figure 5.4: Determination of contact point xc and distance vector d = xe − xẽ between two
colliding elements e and ẽ. Basically, the algorithm consists of two parts. a) An iterative procedure
to determine one smallest distance part of the contact region, using a projection operation P followed
by a bounding operation B in each iteration cycle. b) In cases of a contact region of smallest distance,
computation of the geometrical and correction of xc and d.

For reasons of efficiency, an arbitrary contact point within the contact region is chosen in
several different methods, e.g. an edge point of the elements [90]. However, if the contact point
is not corrected to the geometrical center position, a moment acts on the colliding structure
which is followed by a rotational motion. In the next time step the contact point is moved
and usually an opposite moment results due to the collision response, and so on. By using
the geometrical center as the contact point a much more stable behavior can be expected.
As a consequence the jitter effect, i.e. spurious vibrations, can be reduced. Furthermore, the
contact pressure acting at the contact region is treated more physically by using an equivalent
single force acting at the geometrical center position.
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foreach colliding pair e,ẽ do

initialize x0
e, x

0
ẽ

while iteration do

project xk
e to plane of ẽ:

xk+1
ẽ = P[xk

e , ẽ]

if xk+1
ẽ outside ẽ then

bound xk+1
ẽ to plane of ẽ:

xk+1
ẽ = B[xk+1

ẽ , ẽ]

end

xk+1
e analog

end

end

Algorithm 5.1: Determination of contact points xe and xẽ as well as the distance vector d between
two colliding elements e, ẽ.

5.3 Constraint-based collision model

5.3.1 Role of rod elements for collision handling

From a numerical point of view, each structural element of the discretized Cosserat rod
(Fig. 3.1) may be regarded as a rigid body influenced by external and internal loads [131].
Forces and moments due to an ongoing collision between elements can simply be added to the
external loads. The advantage is that existing and well established collision models for rigid
bodies can be used. Conversely, models for rigid bodies can easily be extended to deformable
structures, which are discretized by structural elements.
In the following, the collision model is derived in terms of such discrete structural elements.
The corresponding equations of motion for a single element, shown in Fig. 5.5, are given by

M·∂tz = w (5.5)

∂ty = z , (5.6)

with the twist z = [v,ω]� representing the velocity of the element by its linear velocity
v = ∂tc and its angular velocity ω. According to the staggered discretization of the struc-
tures, the element center point is defined as c = (ci−1 + ci)/2, the geometrical mean of the
vertex positions ci−1 and ci. The angular velocity is ω = 2 ∂tqi∗qi, with the quaternion qi at
the center point position c. The motion of the body is affected by forces f and moments m,
which are combined to the wrench w = [f ,m]�. Since each element is part of a Cosserat rod,

w captures internal stresses due to a deformation of the rod and external fluid loads
�
f ,

�
m

caused by the fluid-structure interaction. Gravitational forces are included in the wrench as
well, if present in the problem considered. Here, the wrench acts at the center c, so that no
other moment is generated by f . The inertia of the element is combined to the inertia matrix
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M = m I⊕I, with the identity matrix I, the mass of the elementm and its tensor of inertia I.

ci−1

ci

qi

f

m

z = [v,ω]�

w = [f ,m]�

Figure 5.5: Structural element of a discretized Cosserat rod. It is connected to further elements at
the vertex positions ci−1 and ci, as shown in Fig. 3.1. The rotation of an element is represented by
a quaternion qi at the geometrical center. Each element may be regarded as a rigid body, where its
linear velocity v and angular velocity ω are determined by the force f and moment m acting on the
center of mass. Velocities and loads are combined to the twist z and the wrench w, respectively.

5.3.2 Single collision

Two structural elements are in contact if the smallest distance d is less than a critical dis-
tance, i.e. d ≤ dcrit. In that case, the collision response between the colliding elements is
computed by the present collision model. The situation of a pair of elements is shown in
Fig. 5.6. As described by Mirtich and Canny [161] three assumptions are commonly made
to estimate the collision response, which are described in the following.

n

contact point

r1

M1, z1, w1

r2

M2, z2, w21

2

Figure 5.6: Single collision between two elements, labeled with 1 and 2. Both elements touch each
other in a contact region, here a contact point, as one special case. The orientation of the collision
force is given by the normal vector n pointing from element 1 to element 2. The vector r pointing
from the element center to the contact point, the geometrical center of the contact region. The
motion of each rigid element is defined by an inertia matrix M, the twist z and a wrench w, which
determine the collision response.

Assumption 1: Infinitesimal collision time. The time scale of collision processes be-
tween the structures is much smaller than the long-term behavior, often focused in dynamic
simulations. The more restrictive assumption of an infinitesimally small collision time results
in two simplifications. First, the position and orientation of the colliding structures can be
treated as constant over the period of collision and the collision model only acts on the
velocities of the structures. Second, for an infinitesimally collision time the collision force
has an impulsive nature (high amplitude over a very short time) which causes an instanta-
neous change of the velocities of dynamically colliding structures. Due to the discontinuous
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change of the velocities, the collision response can be described more easily by a change
of momentum of the structures between the state before, and the state after the collision.
The impulsive collision force then is replaced by a transfer of momentum. In the literature
this transfer of momentum is usually called collision impulse, with its unit being mass times
velocity [36, 84, 90, 24, 234, 243]. This term is also used in the present work. Employing
both simplifications the equations of motion (5.5), (5.6) of the two elements simplify to

z′1 = z1 +M−1
1 ·(w1 Δtc + i1) (5.7a)

z′2 = z2 +M−1
2 ·(w2 Δtc + i2) , (5.7b)

with the twist z before, and z′ after the period of collision Δtc → 0 due to the effect of
the resulting collision impulse wrench i = [p, l]�, including the linear momentum p and the
angular momentum l. Since only a linear momentum acts at the contact point, the angular
momentum can be expressed by p using the vector r, which connects the element center
with the contact point (Fig. 5.6). Therefore, the impulse wrenches are given by

i1 = −C�
1 ·p (5.8a)

i2 = C�
2 ·p , (5.8b)

with the matrixC = (I, [r]×) defining the relation between the linear and angular momentum.
Recall, that the term [r]× is the skew matrix of the radius vector r, such that [r]×·p = r×p.
To estimate the required impulse p, two further assumptions are necessary.

Assumption 2: Poisson’s hypothesis. As mentioned above, the complex collision pro-
cess is commonly not resolved in time. According to [161] Poisson’s hypothesis is an approx-
imation of that process, capturing the basic behavior with a compression and a restitution
phase. By means of the normal relative contact velocity vn at the contact point the Poisson’s
hypothesis states

v′n = −e vn . (5.9)

The elastic behavior involving, e.g., internal friction is simply captured by the restitution
coefficient e ∈ [0, 1] which describes the ratio of the normal relative velocity after the impact,
v′n, and before the impact, vn. While for e = 1 the collision is modeled as perfectly elastic,
for 0 ≤ e < 1 some kinetic energy is dissipated during the collision process and the collision
is inelastic. In case of e = 0 the collision is perfectly plastic. In this case the kinetic energy is
fully dissipated and the structures do not move apart after the impact, so that the relative
velocity vr = vc,2 − vc,1 is vr = 0. For each element the normal relative contact velocity is
given by vn = vr · n, where n is the vector in normal direction pointing from element 1 to
element 2 (Fig. 5.6). The corresponding velocity at the contact point is related to the twist
z, i.e. vc = v + ω × r = C·z.

Assumption 3: Coulomb friction model. In addition to the relations in normal direc-
tion the model needs to be supplemented with focus in tangential direction. Two regimes can
be distinguished: Static friction for non-moving structures which are in contact, and kinetic
friction, where the structures slide on each other with a relative tangential velocity vt �= 0.
Coulomb’s law of friction states that the kinetic friction is independent of the sliding veloc-
ity vt. Furthermore, the friction force in tangential direction is proportional to the normal
part of the contact force. The Coulomb friction model, written in terms of the normal linear
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impulse pn = pn n and tangential linear impulse pt = pt t reads

vt = 0 ⇔ pt ≤ μs pn (sticking) (5.10)

vt �= 0 ⇔ pt = μk pn (sliding) , (5.11)

where μs, is the coefficient of static friction and μk, the coefficient of kinetic friction, with
μs ≥ μk. The tangential velocity is given by vt = vr · t, where the unit vector t identify-
ing the sliding direction in the tangent space of the contact region. It is approximated by
t = −vt/‖vt‖, with the tangential part of the initial relative velocity vt = vr − (vr · n)n.

Using the above assumptions the impulse p can be derived by following the strategy of
Guendelman et al. [90]. First, it is assumed that the colliding elements stick at the contact
point in tangential direction, i.e. v′t = 0. Along with Poisson’s hypothesis v′n = −e vn, the
impulse p has to cause a change in the relative velocity

Δv = vr − v′
r (5.12a)

= vr + e (vr · n)n , (5.12b)

where vr = C2 ·z2 − C1 ·z1. With the equations of motion (5.7a), (5.7b) for the twists z1
and z2 together with the definition of the impulse wrenches (5.8a), (5.8b) the impulse for
the sticking mode then is

p = pw −K−1·Δv , (5.13)

where K = C2·M−1
2 ·C�

2 +C1·M−1
1 ·C�

1 is the symmetric positive definite system matrix and
pv = −K−1·Δv imposes the required velocity constraint in terms of Δv, commonly used in
collision models without consideration of external loads. The effects of external loads w, such
as the gravitational acceleration, are captured by pw= −ΔtcK

−1·(C2·M−1
2 ·w2−C1·M−1

1 ·w1).
As required, p achieves the sticking of both elements in tangential direction. If it is inside the
friction cone, i.e. pt ≤ μs pn according to (5.10), p is a sufficient collision impulse. Otherwise,
the structures will slide on each other and the collision impulse needs to be adjusted. For
the sliding mode (5.11) the impulse takes the form

p = pn n+ pt t (5.14a)

= pn (n+ μk t) . (5.14b)

Using Eq. (5.13) the normal part of p can be obtained by

pn =
K·pw ·n − Δv·n
K·(n+ μk t) · n (5.15a)

= pw,n + pv,n (5.15b)

ensuring that the normal velocity constraint Δv ·n is conserved after changing the tangential
part of p in case of sliding, similar to [90] but taking into account the external loads w.
In the derivations (5.13), (5.15b) it is assumed that both external loads w as well as the
initial relative velocity vr cause an interpenetration of the colliding structures, e.g. if a single
structure vertically collides with a wall under additional influence of gravity. The collision
impulse has to overcome both, the velocity difference and the gravitational load. Accordingly,
both derived impulses pw and pv act against this interpenetration, so that pw · n > 0 and
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pv·n > 0. From a mathematical point of view, Eq. (5.13) also allows negative values pw·n < 0
and pv · n < 0. However, such impulses are non-physical since separating structures can not
transfer momentum or forces. Hence, any collision impulse must not be attractive, i.e. p·n>0
for arbitrary computed impulses p, which is usually termed Signorini condition [223, 243].
To fulfill this condition the parts pw,n and pv,n in Eq. (5.15b) are modified to

pw,n =

{
K·pw·n

K·(n+μk t)·n , if pw ·n > 0

0, otherwise
and pv,n =

{
K·pv·n

K·(n+μk t)·n , if pv ·n > 0

0, otherwise .
(5.16)

A pseudo code of the model for a single collision with tangential friction is given in Alg. 5.2.

foreach single collision do

relative velocity:

vr = C2 ·z2 −C1 ·z1
velocity difference:

Δv = vr + e (vr · n)n
impulses for sticking:

pw= −K−1 ·Δtc (C2 ·M−1
2 ·w2 −C1 ·M−1

1 ·w1)

pv = −K−1 ·Δv

p = pw + pv

check friction cone:

pn = p · n
pt = ‖p− pn n‖

if pt > μs pn then

tangential vector:

vt = vr − (vr · n)n
t = −vt/‖vt‖

impulses for sliding:

pw = K·pw·n
K·(n+μk t)·n (n+ μk t)

pv = K·pv·n
K·(n+μk t)·n (n+ μk t)

end

prevent attraction:

if pw ·n ≤ 0 then pw = 0

if pv ·n ≤ 0 then pv = 0

corrected collision impulse:

p = pw + pv

end

Algorithm 5.2: Computation of the collision impulse p for a single collision between a pair
of structural elements including tangential friction. Non-physical attractive impulses are avoided,
i.e. p = 0 if p·n ≤ 0 for any p (Signorini condition).
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5.3.3 Multiple collision

In some cases, e.g. numerous densely arranged structures, more than two structural elements
are in contact at the same impact time. The corresponding collision response of each ele-
ment, hence, depends on the reaction of the others. This scenario is called multiple collision.
As for a single collision, the multiple collision must satisfy the Signorini condition, which
means that any collision force only acts if the contact is not separating and thus the collision
impulse (5.13) must not be attractive, i.e. p · n > 0. The mechanical equations to be solved
for a collision in combination with the Signorini condition result in an optimization problem,
known as linear complimentary problem (LCP). Further information in this regard can be
found in [243]. Here, the LCP is numerically treated by an iterative projected Gauß-Seidel
method (PGSM) [243] in which an additional projection step is used to satisfy the Signorini
condition. A pseudo code of the PGSM is shown in Alg. 5.3. This approach is advantageous

while iteration do

foreach colliding pair do

relative velocity:

vr = C2 ·zk−1
2 −C1 ·zk−1

1

velocity difference:

Δv = vr + e (vr · n)n
current total impulse:

Δpw= −K−1 ·Δtc (C2 ·M−1
2 ·wk−1

2 −C1 ·M−1
1 ·wk−1

1 )

Δpv = −K−1 ·Δv

p = pk−1
w +Δpw +Δpv

corrective impulses:

S [p,Δpw,Δpv]

corrective impulse wrenches:

Δiw1 = −C�
1 ·Δpw Δiw2 = C�

2 ·Δpw

Δiv1 = −C�
1 ·Δpv Δiv2 = C�

2 ·Δpv

update collision quantities:

pk
w = pk−1

w +Δpw

wk
1,2 = wk−1

1,2 +Δiw1,2/Δtc

zk1,2 = zk−1
1,2 +M−1

1,2 ·Δiv1,2

ik1,2 = ik−1
1,2 +Δiw1,2 +Δiv1,2

end

end

Algorithm 5.3: Projected Gauß-Seidel method (PGSM) to solve linear complimentary problem
(LCP) in case of a multiple collision. The operator S represents a common single collision between
the pair of elements, given in Alg. 5 2. The initial conditions of the iteration are p0

w = 0, i01,2 = 0,
w0

1,2 = wn
1,2 and z01,2 = zn1,2, where zn and wn are the twists and external loads of each element

before the collision at time t = tn. After reaching convergence at kth subcollision the total collision
wrench wn

c = ik/Δtc of a collided element is passed to the structure solver, as sketched in Fig. 5.3.
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because only a sufficient model for single collisions between two structures is required, as
the one presented in Section 5.3.2. The solution then is obtained by iterating over all pairs
of elements which are in contact. It is assumed that all pairs are colliding one after another,
called subcollision. Since there is no difference between a subcollision and a single collision,
Alg. 5.2 can be applied to each subcollision. Provided the collision time of a single collision
is infinitesimal both the monolithic solution of the LCP and a sequential solution by the
PGSM are equivalent.
It is well known, that Gauß-Seidel methods are not easy to handle in parallel and require
special techniques for their parallelization [243]. Here, a simpler approach is used. The LCP
is performed only on one processor per time step. After the solution is found iteratively,
the required data of collision impulses are communicated back to the processors where the
corresponding rod structure is treated. Although this is not the most efficient way, regarding
the FSI problems simulated in the present work, the PGSM needs much less computational
effort compared to the overall computing time.
During the iteration the impulse wrench i acting on a colliding element is incrementally up-
dated by a corrective impulse Δi in each subcollision, i.e. ik = ik−1+Δi with i0 = 0. As for a
single collision, the impulse wrench is split into two parts i = iw+ iv. While iw represents the
collision response on external loads w, the part iv is the response to dynamically colliding
structures. This distinction is essential, because external loads and velocity differences yield
a different collision response and, correspondingly, need to be treated by different constraints
as illustrated by the two limiting cases. In the special case of pure external loads and zero
velocity the collision impulse is i = iw, e.g. for a simultaneous multiple static contact un-
der the influence of gravity. Neglecting tangential effects, the zero velocity of the structures
then has to be conserved to avoid an interpenetration. Therefore, the conceived momentum
due to external loads î = wΔtc has to be compensated by i, so that i · n = −î · n. In the
opposite case of a pure dynamic collision with a relative approaching velocity vr ·n > 0 and
without external loads, the collision impulse is i = iv. For a fully elastic collision, captured
by a restitution coefficient e = 1, the collision impulse has to overcome at most twice the
impulse at the impact î ∼ vr to invert the approaching velocity, i.e. i · n = −(1 + e) î · n.
Consequently, for e > 0 the constraints are different for static and dynamic collisions, which
requires a different treatment of iw and iv.
Furthermore, due to the assumption of infinitesimally small collision time, Δtc → 0, (Sec-
tion 5.3.2) it is assumed that external loads do not change the linear and angular velocity
of the structures when solving the LCP, i.e. zk = z0 for any iw. However, external loads sig-
nificantly affect the contact pressure between colliding structures and, hence, the tangential
motion due to frictional effects. In addition, external loads are transferred to other contacted
structures. For example, in case of a vertical stack of contacted structures under gravity the
lowest structure is influenced by the weight of each structure above. To solve this “static”
part of the collision response, the external load is updated during the PGSM by an impulse
wrench ikw = ik−1

w +Δiw, i.e.

wk = w0 + ikw/Δtc (5.17a)

= wk−1 +Δiw/Δtc , (5.17b)

with the initial external wrench w0 = wn before the collision at time t = tn. Analogously, the
impulse at the contact point of two colliding structures is pk

w = pk−1
w +Δpw. As a counterpart,

the dynamics of the colliding structures is influenced by impulses iv ∼ vr causing a change
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of the relative velocity vr after each single collision. During the PGSM, the twist z for the
kth subcollision of an element, updated by ikv = ik−1

v +Δiv, is given by

zk = z0 +M−1 ·ikv (5.18a)

= zk−1 +M−1 ·Δiv , (5.18b)

where z0 = zn is the twist before the collision. After the impulses iw and iv of each element
are converged the corresponding collision wrenches wc = (iw + iv)/Δtc are passed to the
structure solver. The theory above and the resulting collision model are developed for a col-
lision time Δtc → 0. Since the structure solver is discretized in time with a finite time step
Δt the collision time is selected to be equal to this time step, i.e. Δtc = Δt. This yields a
first-order accurate approximation of the equations of motion (5.5), (5.6) in time.

5.3.4 Numerical stability

Due to the simple, fully explicit formulation of the collision loads with communication be-
tween the structures once per time step the collision model is a first-order accurate ap-
proximation in time, as described in Section 5.3.2. Outside the stability region the model is
unstable and the simulation terminated. In that case the time step size is decreased or, in
other words, the exchange of information between the colliding structures. Also the spatial
discretization can influence the stability. Increasing the number of elements per structure
often has a positive effect. It was experienced that the most efficient and simplest way to
avoid stability problems is to increase the internal viscous damping of the structures which
is a material parameter. In most of the simulations without viscous damping, the resulting
dynamics of the colliding rods is not realistic, even if the simulation is stable. This is not
really a problem, since every real structure loses energy due to dissipation processes, espe-
cially during collision event, where high deformation rates result in an increased damping.

5.3.5 Coefficient of restitution for Cosserat rods

The Cosserat rod model combines features of deformable structures and rigid bodies. While
the cross sections of the rod behave perfectly rigid the interaction between them captures
the deformability of the rod. As a result, a longitudinal collision (Fig. 5.7a) strongly differs
from a lateral collision (Fig. 5.7b) because of the anisotropic nature of the Cosserat rod.
Nonetheless, the constraint-based collision model can be applied for both cases using the
general constraint (5.9), where the coefficient of restitution e is of crucial importance.
For a collision in longitudinal direction, the collision response is resolved in time and space
by the structure solver. The collision constraints solely have to realize the non-penetration
of both structures at the contact surface so that any normal relative velocity during contact
vanishes. Starting from the beginning of contact the rod is deformed and internal energy is
stored. The stored energy is released and the rod structure moves away from the wall with
the same or a lower velocity, depending on the internally dissipated amount of energy. During
a finite contact time, the corresponding contact force is continuous in time (see Fig. A.14)
which seems to contradict the infinitesimal contact time Δtc → 0 and the impulsive nature of
the collision force, assumed in Section 5.3.2. Nevertheless, such impulsive forces can also be
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used to impose the required non-penetration constraint for a resolved finite collision process.
This is done by applying a series of impulses during contact, where each impulse enforces
the required constraint v′n = 0 and avoids a mutual penetration. From a numerical point
of view, the collision model applies one impulse per time step Δt until the rod moves away
from the wall. In [161] this technique is called micro-collision impulses.
On the contrary, a lateral collision only needs infinitesimally small time due to the assumption
of rigid cross sections. The deformation of the cross sections during a collision is not resolved
but is captured by the restitution coefficient e ∈ [0, 1] depending on internal dissipation.
The impulsive collision force causes a discontinuous change in the normal relative velocity
according to the constraint v′n = −e vn.
Obviously, the velocity constraint v′n = 0 for a resolved longitudinal collision is a subset of
the general constraint v′n = −e vn for a lateral collision. This also means, that the general
constraint can be used for both cases with only the coefficient of restitution e being adjusted.
While for a longitudinal collision e = 0 is mandatory to enforce zero relative velocity, the
coefficient of restitution has to be adapted in case of a lateral collision. Here, this is done
by introducing a corrected coefficient of restitution ecorr which depends on the angle of
incidence φ, illustrated in Fig. 5.7c.

n

ncs

n

ncs

n

ncs

φ

ga)

b)

c)

Figure 5.7: Collision of a Cosserat rod with a wall in a) longitudinal direction b) lateral direction
and c) oblique direction. The angle of incidence φ is defined between n, the unit normal vector
pointing in direction of the contact force, and ncs, the normal vector of the cross section.

The ratio between ecorr and e ∈ [0, 1] is given by

ecorr
e

= Hε[cos(φcrit)− | cos(φ)|] , (5.19)

where Hε is an appropriate smoothed unit step function, e.g. Hε(x) =
1
2
+ 1

π
arctan

(
x
ε

)
, with

a smoothing parameter 0 < ε � 1 set to ε = 10−3 here. For a longitudinal collision with
φ = 0 (or φ = π), the ratio is ecorr/e = 0, whereas for a lateral collision with φ = π/2, the
ratio gives ecorr/e = 1. The critical angle φcrit specifies for which angles the collision process
is resolved by the Cosserat rod model. In the present work it was chosen to be φcrit = π/8,
i.e. the collision process is resolved if the angle of inclination is at most 22.5 ◦.
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5.4 Lubrication model

The collision model presented so far provides a simple model for dry collisions between rods
under influence of external loads such as gravitational loads. For fluid-structure interaction
problems considered here the collision response is further influenced by external fluid loads.
Especially the dynamics of the fluid film between two approaching structures plays an impor-
tant role in modeling wet collisions. This so-called lubrication process influences the normal
as well as the tangential collision response. In the former case the fluid film between the two
approaching structures drains out which yields an additional damping during collision. In
case of a pure tangential relative motion of the structures the generated shear flow results
in an additional viscous friction, which also has a dampening effect on the collision. In par-
ticular in large-scale simulations, the lubrication of thin fluid films can not be resolved by
the present numerical approach using a temporally constant fluid grid, since each fluid film
needs a sufficiently fine spatial resolution, which would drastically increase the overall com-
putational effort. In order to avoid this, the lubrication is only resolved by the fluid solver
until the chosen grid size Δx is not fine enough to capture the ongoing drainage process
or the shear flow between the colliding rods. Spatially unresolved lubrication processes and
corresponding fluid loads are then modeled by an appropriate lubrication model which has to
be adjusted to the geometrical properties of the colliding structures, e.g. lubrication models
for spheres [120] or ellipsoids [8]. To the knowledge of the author, no lubrication models for
rod-like geometries were published in the literature so far. The lubrication model proposed
here is based on a velocity-proportional damping, which is the simplest approach to capture
the influence of lubrication. The associated lubrication force f lub is given by

f lub = Dn vn −Dt vt , (5.20)

where vn = (vr · n)n is the part of the relative velocity of both approaching elements
in normal direction, and vt = vr − vn the part in tangential direction. Determining the
damping constants Dn as well as Dt is a formidable task, since the lubrication process can
vary considerably with the relative orientation between the structural elements. In principle,
the damping constants Dn and Dt must depend on the contact region, where a larger contact
area Ac results in a higher damping rate. Assuming a small thickness h of the fluid film and
a parallel orientation of the elements, both damping constants can be derived analytically.
According to [15], the damping parameter Dn in case of an approach in normal direction is
given by

Dn = ρf νf

(
Ac

h

)2
β(1)

h
, (5.21)

with β(κ = 1) = 0.42 and κ = W/L the relation between the lateral and longitudinal
expansion of the contact surface. As a first approximation, it is assumed that W = L =

√
Ac,

i.e. the contact surface almost has a square shape. For a pure tangential relative motion, the
corresponding damping constant is [190]

Dt = ρf νf
Ac

h
. (5.22)

Both damping constants should be considered only as a rough estimation. The situation is
more complex in the general case, where the colliding elements are approaching in normal
and tangent space simultaneously. In the present model, this situation is taken into account
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by a simple superposition of both parts. Nevertheless, the estimation allows an access to
the correct order of magnitude of the lubrication forces and, furthermore, the model works
very well for pure normal and tangential lubrication as demonstrated in Section A.9. As
mentioned above, the model is derived for elements oriented in parallel during a collision
which does not hold in the general case. In order to apply the model to cases with inclined
elements, the spatially varying film thickness h is approximated by a constant film thickness
h, defined as the average of h over the contact region (see Fig. 5.8b). If h is larger than a
critical film thickness hcrit, the ongoing lubrication is resolved by the fluid solver. Otherwise,
in a range of 0 < h ≤ hcrit the lubrication process is modeled according to Eq. (5.20). As
proposed in [120], the critical distance is set to hcrit = 4Δx.
With the damping constants defined by Eqs. (5.21) and (5.22) the velocity-proportional
lubrication force (5.20) reads

f lub = ρf νf
Ac

h

[
β(1)

Ac

h2
vn − vt

]
, (5.23)

while the corresponding lubrication wrenches are

wlub,1 = −C�
lub,1 ·f lub (5.24a)

wlub,2 = C�
lub,2 ·f lub . (5.24b)

By analogy with the modeling of dry collisions, the matrix Club = (I, [rlub]×) defines the
relation between the force f lub and the resulting angular momentum generated by [rlub]×·f lub.
The vector rlub is pointing from the element center to the point of attack of the lubrication
force. As shown in Fig. 5.8b, a lubrication process and a dry collision response do not have
to exclude themselves. In this case, the lubrication wrenches wlub must be added to the
wrenches wc, computed for a dry collision (see Section 5.3.3), to provide the total collision
response on the rods.

hcrit
h1

2

a) combination of dry contact and lubrication

hvr

Ac

1

2

b) pure lubrication process

Figure 5.8: Ongoing lubrication of a fluid film (yellow shaded area) between two structural elements
a) without any dry contact and b) with contact between the rod elements. The distance h denotes
an average thickness of the fluid film within the red colored contact region of area Ac. If h is larger
than the critical distance, i.e. h > hcrit, the lubrication process is assumed to be resolved by the fluid
solver, while for h ≤ hcrit the process is modeled by the proposed lubrication model.
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5.5 Validation and results

5.5.1 Newton’s cradle

coefficient of restitution:

e = 0, 1

initial conditions:

x1|t=0 = 0m

v1|t=0 = 1m/s

x2−5|t=0 = 0.45 . . . 0.6m

v2−5|t=0 = 0m/s v1

v′5 = v1

v2−5 = 0m/s

v′1−4 = 0m/s
y x

z

1

5
5

1 2 3 4 (for e = 1)

Figure 5.9: Newton’s cradle consisting of five laterally colliding rods. With an initial velocity v1,
rod 1 strikes a bundle of four rods, which are in contact and at rest. For e = 1 the force is transmitted
through the rods, by which rod 5 moves away with velocity v1, while rod 1 to 4 remain at rest.

Newton’s cradle is a common benchmark of multiple simultaneous collisions between rigid
bodies, but can also be applied to Cosserat rods as shown in Fig. 5.9. Five rods are consid-
ered, all having equal properties. The first, rod 1, approaches the others, tightly packed and
immobile, with velocity v1. At the impact time t = 0.4 s, rod 1 hits the bundle of resting rods.
This, indeed, is a multiple collision, since the corresponding collision response of each struc-
ture depends on the reaction of the other rods. As described in Section 5.3.3, the solution
can be obtained by solving the underlying linear complimentary problem. Here, the LCP is
solved by iterating over all single pairs which are in contact using the PGSM (Alg. 5.3). Due
to conservation of momentum and kinetic energy rod 1 relays its velocity to rod 2, provided
no energy is dissipated, i.e. e = 1. Because of the sequence of structures in contact, the
process continues to each successive pair until rod 5 moves away with a velocity of v′5 = v1.
Here, two simulations were conducted, one with a coefficient of restitution e = 1, the other
with e = 0. The simulations with the present collision model reproduce the theoretical results
perfectly well, as shown in Fig. 5.10. Supplementary validation can be found in Appendix A.
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Figure 5.10: Temporal evolution of rod positions during the collision process, for a coefficient of
restitution e = 1 (left) and e = 0 (right). The rods are labeled from 1 up to 5.
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5.5.2 Ring-shaped rods

g = 10m/s2 gravitational acceleration

Ns = 27 number of structures

structure properties:

L = 0.5m length

W = 0.04m width

T = 0.01m thickness

ρs = 1000 kg/m3 mass density

Es = 1 · 106N/m2 Young’s modulus

Gs = 1 · 106N/m2 shear modulus

effective viscosities:

ce = 1 · 10−2Ns extension

cs = 1 · 10−2Ns shearing

cb = 2 · 10−5Nsm2 bending

ct = 2 · 10−5Nsm2 torsion

collision parameters:

e = 0 coef. of restitution

μs = 0.3 coef. of static friction

μk = 0.3 coef. of kinetic friction

y

x
z

g

Figure 5.11: Multiple collision of 27 ring-shaped rods. Initially, an array of 3 × 3 × 3 rods are
positioned at the top of the domain, where each rod is randomly oriented in space (transparent rods).
Due to gravity the rods fall down on an inclined plane and collide with each other. Afterwards, the
accumulation of contacted rods slides down the wall and comes to rest at the lower corner of the
domain (colored rods).

The configuration of numerous ring-shaped rods shown in Fig. 5.11 is used to test the collision
model for multiple simultaneous collisions with a large variety of local collision scenarios. At
the top of the domain an array of 27 structures is initialized. Each ring-shaped structure has
a randomly generated orientation in space. The positions were chosen such that the center
of the rings form an equidistant 3 × 3 × 3 cubic lattice. Under the influence of gravity the
rings fall down on an inclined planar wall. The chosen elasticity is quite small which results
in large deformations of several rings due to collisions with walls or other rings. Moreover,
self-collisions also occur in that case. An internal damping is added to the structure motion,
so that all rings come to rest in the lower corner of the domain which allows to test the
representation of static contact of structures. Shortly after the rings have reached the inclined
wall the ring layers of different initial height collide with each other. Here, very complex
dynamic collisions occur between two or more elastic rings. They slide down the plane and
come to rest due to the influence of friction and internal dissipation with many structures
being in static contact, as shown in Fig. 5.12a. This is a special case where the collision
modeling generates difficulties. Because many rings are in contact at the same time the
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a) b)

Figure 5.12: Snapshot of colliding rods. a) Shortly after all rods impinged on the inclined wall,
b) long after the rods came to rest at the lower corner of the domain. Large time steps Δt or non-
converged solutions of the LCP may result in intersection of rods (red circles). The shown results
were obtained with Δt = 1 · 10−4 s and a limitation of the PGSM to 10 iterations. Coloring of the
rods according to their arc length.

corresponding LCP has to be solved iteratively by the PGSM. When stopping the iterations
before reaching convergence, e.g. in case where the iteration limit is exceeded, the resulting
energy in the system can vary considerably between two time steps. This can cause some
structures near rest to wiggle around their equilibrium. This unphysical effect is called jitter
and is a common problem in the field of collision modeling for rigid bodies [243]. A further
effect of an insufficient number of iterations is that the rods may intersect. The amount of
intersection also is affected by the time discretization. By continuously applying impulses
to impose the contact-constraints the numerical splitting error may accumulate and cause,
e.g., significant intersections of rods after several time steps (Fig. 5.12, b). All identified
problems mainly occur in case of resting contacts where the collision model operates in each
time step and the error accumulation becomes important. In contrast to that, a dynamic
collision between two rod is treated only by one collision impulse, so that numerical errors
are negligible.
By appropriately decreasing the time step size and iterating the LCP until convergence the
majority of jittering and intersections can be avoided. Especially in real time applications
where a reduction of time step size and number of iterations is limited, more sufficient
strategies are inevitable. Several techniques are proposed in the literature, e.g. the so-called
sleeping-method which avoids jittering, where the structures near rest are simply temporarily
removed from the simulation [243]. A similar strategy to avoid intersections is proposed
in [90] where a contact graph is used in combination with a shock propagation algorithm that
separates dynamic collisions and static contact.
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5.5.3 Array of rods

g = 10m/s2 gravitational acceleration

U = 1m/s velocity of tube

Ns = 181 number of structures

structure properties:

L = 0.4m length

W = 0.04m width

T = 0.01m thickness

ρs = 1000 kg/m3 mass density

Es = 3 · 105N/m2 Young’s modulus

Gs = 1 · 105N/m2 shear modulus

effective viscosities:

ce = 1Ns extension

cs = 1Ns shearing

cb = 1 · 10−5Nsm2 bending

ct = 1 · 10−5Nsm2 torsion

collision parameters:

e = 0 coef. of restitution

μs = 0.2 coef. of static friction

μk = 0.2 coef. of kinetic friction

y

x
z

g

U

Figure 5.13: Setup of densely arranged simplified aquatic plants, called canopy. The artificial
canopy consists of 181 straight rods pinned to a wall in a staggered manner. The cross-section of
each rod is randomly rotated around the y-axis. A glass tube is moved through the array of artificial
plants which yields multiple simultaneous collisions between them. Coloring of the rods according to
their arc length.

A final setup is considered to illustrate the potential of the present collision model for complex
fluid-structure interactions. The configuration addressed here is a simplified model of a dense
submerged canopy in a river flow, focused in chapter 6. Due to the dense arrangement of the
plants numerous collisions occur between them. In some real configurations a characteristic
vortex pattern traveling in streamwise direction and causes a wavy collective bending of the
rods, called monami [169]. The present study focuses on the collision process and does not
represent any fluid. To generate a similar motion of the structures a glass tube is moved
through the array of rods in x-direction. The rods are buoyant, as real plants, and internal
dissipation by structural viscosity is added to make the dynamic behavior realistic. The array
consists of 181 single plants which are arranged in a staggered manner with 10 rows of 10
and 9 rows of 9 structures. Furthermore, each rod is rotated by a randomly generated small
angle around the y-axis.
At the beginning the structures are at rest. The glass tube moves with a constant velocity
U through the artificial canopy which yields numerous collisions between the rods and the
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tube, as well as between two or more rods. After the tube has left the canopy each structure
shows a pendulum like motion due to the chosen values for buoyancy and rigidity. Because
the structures do not oscillate synchronously in x-direction, a kind of a collision front is
generated that moves through the canopy, similar to the monami phenomena (Fig. 5.14).
During the entire simulation, all collisions are treated correctly by the proposed collision
model. To get a converged solution of the LCP, the average number of iterations is about 15
after the glass tube has left the canopy. In the presence of the tube more rods are in contact
at the same time such that the PGSM needs more iterations of about 50.

y

x

z

x
collision front

Figure 5.14: Instantaneous situation of the artificial canopy after the glass tube has left the domain.
Due to the phase shift between the induced pendulum-like motion of each rod, a collision front is
generated and travels through the canopy, with numerous multiple simultaneous collisions. Coloring
of the rods according to their arc length.





6 Application to canopy flows

6.1 Introduction

The long-term goal beyond this work is to gain a deeper understanding of the physics behind
the interaction of numerous slender rods with turbulent fluid flow. The present numerical
method is designed especially for such configurations and enables to generate physical data
from simulations beyond reach of other numerical and experimental studies. In the present
work, the FSI approach is applied to simulate a unidirectional flow over flexible aquatic
plants, a so-called canopy flow.
Aquatic plants are essential for the ecological quality of aquatic ecosystems and constitute
a key topic due to their abundance and their various roles on different scales, ranging from
the quality of drinking water taken from the local river to the large-scale impact on climate
change. At river scale, canopies cause a reduction of velocity, sediment erosion, concentra-
tion of pollutants, etc. [168, 192, 33]. Recently, a new inter-disciplinary research area called
“Hydrodynamics of aquatic ecosystems” is emerging due to the relevance and challenges of
the topic [174].

Classification and terminology. Nepf [169] provides a comprehensive overview on canopy
flows, which are usually classified into atmospheric and aquatic canopies. The rigidity of
atmospheric plants, e.g. cereal plants, is usually higher compared to aquatic plants since
aquatic canopies are supported by buoyancy to act against gravity in the competition for sun-
light. Consequently, the deflection of single plants is smaller in case of atmospheric canopies
[197, 62]. Due to the lower rigidity aquatic plants accommodate drag by changing their geom-
etry while subjected to hydrodynamic loads, commonly termed as reconfiguration [257, 52].
This reconfiguration again modifies the impact on the fluid motion which constitutes a
strongly coupled two-way fluid-structure interaction.
An additional classification is conducted by the submergence depth of canopies. Atmospheric
canopies reveal no sharp upper boundary so that the submergence is very high. In aquatic
canopies, however, the situation is more complex where the water depth is finite and usually
restricted to moderate depths. Indeed, in case of higher depths the sunlight required for plant
growth does not reach the ground. Based on the ratio between the water depth H and the
height of plants after reconfiguration L∗, it is distinguished between deep submergence with
H/L∗ > 10, and shallow submergence with H/L∗ < 5 which is common in aquatic systems
[169]. While deeply submerged canopies show similarities to atmospheric canopies for suf-
ficiently large ratios H/L∗, shallow submergence is characterized by substantially different
turbulent structures [171].
Another important parameter is the density of the canopy, depending on the spacing between
individual plants and the frontal area of a plant subject to the flow. Obviously, the behavior
of sufficiently sparse canopies coincide with common boundary layer flows. However, dense
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canopies generate a pronounced mixing layer at their top making the flow prone to Kelvin-
Helmholtz instabilities [169]. Analysis of corresponding turbulent structures in dense shallow
canopies of rigid elements showed that the flow is dominated by strong sweep and ejection
events in the mixing layer [176]. Depending on the degree of reconfiguration of vegetation el-
ements, the interaction between these coherent structures and the canopy results in different
flow patterns [41, 175]. In this regard, the Cauchy number Ca is an important dimensionless
number to distinguish between different types of vegetation. It is defined as

Ca =
(ρf/2)U

2 Cd WL

EsI/L2
, (6.1)

with the bulk velocity U , the drag coefficient Cd, the width W , the length L and the flexural
rigidity EsI of an individual vegetation element. The Cauchy number represents the ratio
between drag forces and elastic restoring forces, so that a high degree of reconfiguration
relates to large values of Ca. Different mechanisms of fluid-structure interaction can be
observed with increasing Ca, as illustrated in Fig. 6.1. Coherent structures generated by

a) b)

c) d)

L

H

L∗

rigid/erect gently swaying

monami strong reconfiguration

KH

〈u〉 〈u〉

〈u〉 〈u〉

free surface

Figure 6.1: Influence of Cauchy number Ca on the FSI of dense shallowly submerged canopies
according to [176, 178]. a) For Ca = 0 vegetation elements (green) remain erect while a mixing
layer is generated at top of the canopy. Kelvin-Helmholtz (KH) vortices (red) are convected in
streamwise direction. b) At a certain value of Ca the elements start to sway independently with
small amplitudes, called gently swaying. c) For larger Ca the elements are more reconfigured and
exhibit highly coherent waving motion, called monami phenomenon (Japanese: mo= aquatic plant,
nami=wave [3, 179]). d) Very large Ca result in a substantial reconfiguration with elements mainly
aligned in streamwise direction. A mixing layer and corresponding KH-vortices are suppressed since
the canopy top is fully covered by reconfigured elements. This prevents any momentum exchange in
vertical direction.

the shear layer are only one part of a particular hierarchy of scales observed in submerged
canopies (Fig. 6.13, below). These range from the sub-plant scale over the wake on plant-scale,
up to the shear layer generated on canopy scale and the scales of the boundary layer above
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the canopy. Additionally, in natural rivers aquatic plants are often separated in patches, so
that the patch scale is also important for some processes [174]. To date, the coexistence and
interaction of different scales is not fully understood and constitutes a major challenge for
experimental studies and numerical investigations.

Experimental studies on canopy flows. Due to the wide range of scales in aquatic
canopies experimental studies range from field studies in real rivers to laboratory experi-
ments with abstracted model canopies. The former generally address the patch scale or larger
scales [230, 174] while smaller scales are generally not addressed since this is more convenient
in a laboratory flume. Here, model canopies can be made of natural plants [106, 193], but
due to the difficulties of conducting long term experiments with living plants and in order
to focus on the fundamental effects, most of the studies in flumes have been conducted with
model plants [167, 81, 265, 176, 220]. As demonstrated in [150, 205] model plants are indeed
able to capture the behavior of living plants, e.g. drag forces and reconfiguration, and are
usually shaped as cylinders or thin blades. Furthermore, the flexural rigidity of model plants
can simply be adopted to a desired Cauchy number Ca and the corresponding regime of
interest (Fig. 6.1). Shallow canopies made of rigid cylinders or blades were experimentally
studied by [173, 176, 149, 178], while flexible model plants are employed in [83, 176, 153, 33].
As an example, Ghisalberti and Nepf [83] model each plant by a rigid stem which supports
highly flexible plastic blades, mimicking the typical morphology of eelgrass.
Unfortunately, obtaining spatially detailed measurements inside the canopy is particularly
difficult due to limited optical access. This also holds for data acquisition of the plant motion.
Thus, most of the experimental studies mentioned above focused on drag forces, exerted by
the canopy on the flow in relation to the reconfigured canopy height. Only very few experi-
mental studies of flexible canopies were undertaken dealing with simultaneous measurements
of blade motion and fluid flow, e.g. the study of Okamoto and Nezu [175, 178]. This is, how-
ever, a prerequisite for a deeper understanding of hydrodynamic processes in canopy flows.
Consequently, data acquisition must be complemented by numerical studies which are dis-
cussed in the following.

Numerical simulations of canopy flows. Depending on the scales of interest differ-
ent numerical models were employed for the simulation of canopy flows. In most cases it is
sufficient to use a homogenized model representation of individual plants, especially when
interested in average quantities, such as mean velocity profiles, Reynolds stresses etc. For
atmospheric canopies, solving the Reynolds-averaged Navier-Stokes (RANS) equations using
a homogenized drag is state of the art [19]. In submerged aquatic canopies, however, the
reconfiguration is larger so that the RANS approach must be supplemented with deformable
canopies [254, 58]. When interested in the nature of coherent structures, eddy-resolving ap-
proaches, e.g. LES, are employed to resolve large-scale coherent vortex structures. For the
sake of simplicity, canopies can be still modeled as a time-independent homogeneous contin-
uum. Shaw and Schumann [212] were the first in this direction who proposed a drag force
proportional to the canopy density. A time-dependent flexible homogenized canopy in an
LES was realized by Dupont et al. [62] for an atmospheric grain field.
Besides homogenized representation of vegetation, LES have also been used to study channel
flows with resolved but only rigid structures. Several studies of rough walls made of a matrix
of differently shaped obstacles have already attracted attention [155, 114, 227]. Further work
in this direction, but with a clear focus on aquatic canopy flow, was undertaken in the group
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of Nezu [177] simulating an experiment with rigid blades conducted in the same group [173].
Due to the fine spatial and temporal resolution required for these investigations, resolving
simulations of the fluid-structure interaction in canopy flows are extremely costly, especially
when reliable statistical data is accumulated over a longer time interval.
The fluid-structure coupling can be established by very different approaches ranging from
methods using body-fitted grids to immersed boundary techniques [39]. Especially for the lat-
ter group it is comparatively easy to impose boundary conditions for complex time-dependent
geometries, as it is the case for flexible structures of low rigidity which may even bend around
each other during motion. In the literature only a few works can be found simulating the flow
over arrays of flexible structures mimicking a canopy-like geometry. For instance, Yang et
al. [267] employed an IBM to performed two-dimensional simulations of the flow around
16 rigid cylinders mounted elastically to the bottom wall. Yusuf et al. [270] computed the
flow around 10 triangular and round structures undergoing only small deformations in a
uniform cross-flow by means of an adapted mesh technique. Recently, IBM were combined
with structure solvers able to represent large deformations [222, 239, 125], e.g. the IBM of
Kim et al. who applied the method to a single flexible blade in cross-flow [125] (see validation
Section 4.7.3). To date, only two numerical studies could be found in the literature where a
larger number of highly flexible structures was simulated. To the knowledge of the author, the
work of Marjoribanks [152, 153] provides the most advanced simulation of an entire canopy
with up to 300 individual flexible elements in cross-flow. The geometrical description of the
structures is relatively crude and the fluid load was computed using a simple local drag law.
Furthermore, the level of resolution is below the state of the art for simulations of canopies
made of rigid structures [177] or simulations of a single flexible structure undergoing large
deformation [239]. Another work is [78], but the agreement with the experiment is not con-
vincing. The lack of numerical studies demonstrates that simulating an entire canopy with
individual structures being resolved is methodologically highly complex. With the present
FSI approach this gap is closed and highly resolved simulations of canopies with hundreds
of structures are possible. The LES of a selected model canopy is presented in the following
sections. Already a first analysis of the data obtained delivers new insights into the nature
of coherent structures in canopy flows, presented in Section 6.3.4.
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6.2 Model canopy and numerical setup

6.2.1 Choice of model canopy

g = 9.81m/s2 grav. acceleration

fluid properties (open water channel):

H = 21 cm channel height

ρf = 1000 kg/m3 fluid density

νf = 1 · 10−6m2/s kin. viscosity

U = 0.2m/s bulk velocity

structure properties (OHP slides):

L = 70mm rod length

W = 8mm rod width

T = 0.1mm rod thickness

ΔS = 32mm rod spacing

ρs = 1400 kg/m3 structure density

Es = 4.8 · 109N/m2 Young’s modulus

dimensionless quantities:

ReH = 42000 Reynolds number

ρs/ρf = 1.4 density ratio

Ca ≈ 17 Cauchy number
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Figure 6.2: Shallowly submerged canopy modeled as an array of flexible rectangular rods made out
of polyester overhead projector (OHP) slides with fixation on the bottom plate (same spacing ΔS
in x- and z-direction), corresponding to the experimental setup of [176] with an overview over the
physical parameters.

As mentioned above, artificial model canopies consisting of abstracted plants are able to
capture the behavior of living plants as well as fundamental effects appearing in real canopy
flows. The present numerical approach is optimized for zero-thickness rod structures with
spatially constant properties. For this reason the model canopy chosen here is represented
by an array of strip-shaped rods of vanishing thickness fixed to the bottom wall in a well-
defined square arrangement, as sketched in Fig. 6.2. As a further simplification, all rods are
of equal size and equal material properties to minimize the degrees of freedom of the model
configuration. Even in case of this high level of abstraction the present setup is defined by 11
physical parameters, resulting in 8 independent dimensionless numbers. To find appropriate
sets of parameters covering the physics of real canopies at different regimes is a formidable
task. However, identical or similar types of artificial canopies were already focused in several
laboratory experiments and thus provide appropriate parameter combinations for different
flow regimes, e.g. those shown in Fig. 6.1. Here, the values of physical parameters were cho-
sen according to the experimental work of Okamoto and Nezu [176] who studied a variety
of shallowly submerged model canopies. All experiments were conducted in a tilting flume
having a length of 10m and a width of 0.4m. The vegetation elements were made out of
polyester overhead projector (OHP) transparencies and arranged over a length of 9m in
streamwise direction and the full channel width. In the following, the OHP slides are briefly
referred to as blades.
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Mean velocity profiles and Reynolds stress distributions are provided in [176] for different
submergence depths and Cauchy numbers, making the experiment ideally suited for a di-
rect comparison with the simulation. Here, one case at a moderate Ca was selected as it
exhibits the monami phenomenon (Fig. 6.1c), i.e. a strong relation of coherent structures
and an organized wavelike plant deflection. Related three-dimensional turbulent structures
are very difficult to measure, so that the present simulation data can be used to ascertain
physical mechanisms behind this phenomenon. The Reynolds number, based on the bulk
velocity U and the channel height H, is Re = UH/νf = 42000 and the Cauchy number
Ca = 6 ρfU

2L3/EsT
3 ≈ 17 which is obtained from Eq. 6.1 with a rectangular cross section

of the blades and a drag coefficient of Cd = 1. The density ratio is ρs/ρf = 1.4 which is dif-
ferent from many aquatic species which have gas-filled sacs or material densities below that
of water, so that buoyancy may also act as a restoring force [170]. All relevant geometrical
and material properties of the fluid and the blades are given in Fig. 6.2.
Regrettably, several important parameters were not provided in the paper of Okamoto and
Nezu [176], but could be partially reconstructed by the present author from previous pub-
lications of the same group [173]. For instance, the number of blades fixed to the channel
bottom as well as their spacings in streamwise and spanwise direction are missing. Two
years earlier, Nezu and Sanjou used an equal spacing of ΔS = 32mm in a very similar
experimental setup with an array of rigid blades and a frontal area per canopy volume of
a = W/ΔS2 ≈ 7.8m−1. Since this value is nearly equivalent to the value provided for the
present setup with flexible blades, it is assumed that an equal spacing of 32mm was also
used in [176]. Another issue concerns the material properties of the OHP transparencies,
especially the mass density ρs and the flexural rigidity EsI. While ρs is missing in [176], the
rigidity is provided with a value of EsI = 7.3 · 10−5 Nm2. For rectangular cross sections with
I = WT 3/12 the Young’s modulus then should be Es = 109.5 · 109 N/m2. This is typical for
metallic materials but far too high for OHP transparencies usually made of thermoplastic
polymer materials, e.g. polyvinyl chloride (PVC) or polyethylene terephthalate (PET). As
a consequence, the value of the Young’s modulus Es was adjusted here in a preliminary
simulation using an iterative procedure taking the average reconfigured height of the de-
flected blades 〈L∗〉 as the target. With a value of 〈L∗〉/L = 0.8 given in [176] the Young’s
modulus then resulted to be Es = 4.8 · 109 N/m2. Especially for PVC, PET or similar poly-
mers a wide range for Es can be found in the literature ranging from Es = 2.4 · 109 N/m2

up to Es = 11 · 109 N/m2 [242, 38, 26, 96, 237], depending on the specific material com-
position and the thermo-mechanical treatment during manufacturing. Thus, the value of
Es = 4.8 · 109 N/m2 obtained iteratively for the blades seems realistic. The mass density of
PVC and PET ranges from ρs = 1300 kg/m3 up to 1450 kg/m3 [242, 79]. On this basis, a
value of ρs = 1400 kg/m3 is used here.

6.2.2 Numerical setup

With a water depth of 0.21m the measurement zone was positioned 7m downstream of
the leading edge of the artificial canopy in [173, 176] to ensure a fully developed and uni-
form canopy flow. Side wall effects could be excluded since a two-dimensional mean flow
was observed in preliminary experiments [173]. From a numerical point of view, resolved
simulations of the entire transition zone are technically not feasible. In order to keep the
computational effort within reasonable limits the size of the computational domain is set
to Lx×Ly×Lz = 1.28m×0.21m×0.64m (≈ 6H × H × 3H) in x-, y-, z-direction which is
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around one seventh of the experimental canopy in x-direction. Since time-dependent inlet
conditions of the developed canopy flow are not known a periodic boundary condition is used
in the streamwise direction instead. As described in Section 3.3.1, the flow then is driven
by a spatially constant volume force, dynamically adjusted in time to realize a temporally
constant bulk velocity U = 0.2m/s and thus a fully developed flow after an initial transient.
In contrast to the experimental setup a periodic condition is also employed in the spanwise
direction, to circumvent side wall effects on the flow. A no-slip condition is imposed at the
bottom wall of the channel, while the water surface is approximated by a free-slip rigid lid
condition. The computational domain is discretized by cubic cells of size Δx = 0.625mm, i.e.
W/Δx = 12.8 grid cells over the blade width yielding about 700 million grid cells in total. To
model the subgrid scale a Smagorinsky constant of Cs = 0.15 is chosen, as already employed
by [177] for an LES of canopy flows over rigid blades. The flexible blades considered here are
fixed to the bottom wall in a square arrangement defined by a distance ΔS = 32mm in the
x- and z-direction, corresponding to an array of 40× 20 structures. Each of the 800 rods are
discretized by 30 elements of equal size in longitudinal direction. Regarding the temporal
discretization, the time step size is Δt = 4 · 10−4 s yielding a CFL number of approximately
0.5. All relevant numerical parameters are summarized in Tab. 6.1.

domain size Lx×Ly×Lz = 1.28m×0.21m×0.64m

number of grid cells Nx×Ny×Nz = 2048×336×1024

grid step size Δx = 6.25 · 10−4m

number of rods Ns = 800

elements per rod Ne = 30

time step size Δt = 4 · 10−4 s (CFL ≈ 0.5)

Smagorinsky constant Cs = 0.15

Table 6.1: Overview over numerical parameters used for the present LES.

6.2.3 Sensitivity of numerical parameters

All results presented in this chapter are converged and thus are independent from the numer-
ical parameters listed in Tab. 6.1. This is demonstrated by means of a sensitivity analysis,
performed for the mean velocity profile 〈u〉 and the Reynolds stress 〈u′v′〉.
To validate the suitability of the grid employed, a grid refinement study was performed. The
results are presented in Fig. 6.3a. It is obvious that the data from the second finest and
finest grid are very close and the same holds for the Reynolds stresses. This demonstrates
that the finest grid, employed for the main study below, provides reliable results. It is in line
with the results obtained in Section 4.7.3 above, where already a slightly coarser mesh with
W/Δx = 10 provides sufficiently accurate results for the drag of a single blade. Note, that
the finest resolution with W/Δx = 12.8 grid cells over the blade width is at the very edge of
what is technically feasible because the instantaneous flow has to be simulated over a certain
duration to be developed and to accumulate statistics. Indeed, just a further halving of the
grid spacing would yield 5.6 billion grid cells which would currently be too costly.
The influence of the domain size was studied in a second test where both the streamwise ex-
tent Lx and the spanwise extent Lz were varied simultaneously by doubling and halving the
values listed in Tab. 6.1. As shown in Fig. 6.3b these variation in domain size results only in
minor differences. This supports the assumption that the domain size of 6H×H×3H chosen
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Figure 6.3: Sensitivity of numerical parameters on the average velocity profile 〈u〉/U (left column)
and Reynolds stress profile 〈u′v′〉/U2 (right column). Shown are the influence of a) the grid res-
olution W/Δx, b) the extent of the computational domain Lx × H × Lz and c) the value for the
Smagorinsky constant Cs. The tests were performed with the numerical setup defined in Tab. 6.1
where, however, a coarser grid with W/Δx = 6.4 was used for b) and c). The horizontal line
corresponds to the average reconfigured canopy height 〈L∗〉/L = 0.8.

for data production is able to resolve most of the coherent structures on canopy scale and
log-layer scale. Indeed, in a usual channel flow without vegetation elements the extensions of
the domain should be at least 6H ×H × 3H, which is the proper size to resolve large scale,
coherent turbulent structures [124]. In the present case, in addition, the canopy obstructs
the lower part of the channel by about 27% which increases the rate of the effective extend
of the open channel flow.
Another test was conducted with different values of the Smagorinsky constant Cs, using
Cs = 0.15 together with half of this value and twice this value. As demonstrated in Fig. 6.3c
the results obtained practically coincide, so that Cs = 0.15 was retained. For this value the
subfilter-activity [80] exhibits maximum values of νsgs/(νsgs+νf) ≈ 0.9 located in the mixing
layer. The spatially averaged value on the fine grid is 〈νsgs/(νsgs + νf〉) ≈ 0.19.
Note, that the number of elements Ne = 30 per rod structure and CFL = 0.5 were kept con-
stant in all test simulations. Their independence was verified by two additional simulations
using Ne = 60 and CFL = 0.2, respectively (not shown here).
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6.3 Data analysis and physical interpretation

6.3.1 Mean velocity profile and Reynolds stresses

The simulation results of the turbulent velocity field u(x, t) are first analyzed in terms of
the mean velocity profile 〈u〉 and Reynolds stresses 〈u′ ⊗ u′〉. These quantities result from
a Reynolds decomposition of the velocity field u = 〈u〉 + u′, i.e. the decomposition into a
mean component

〈u〉(y) = 1

LxLzT

∫ Lx

0

∫ Lz

0

∫ T

0

u(x, t) dx dz dt (6.2)

averaged over a time period T and in both homogeneous directions x and z, and a fluctuating
component u′(x, t) = (u′, v′, w′)T = u(x, t) − 〈u〉(y). Using these definitions, the Reynolds
stresses can be expressed as

〈u′ ⊗ u′〉 = 〈u⊗ u〉 − 〈u〉 ⊗ 〈u〉 , (6.3)

which is used here for their computation by a simple averaging of 〈u〉 and 〈u ⊗ u〉 during
runtime of the simulation.
The results for the mean velocity profile and relevant Reynolds stresses obtained from simu-
lation are given in Fig. 6.4. Moreover, the profile 〈u〉 and the turbulent shear stress 〈u′v′〉 are
compared to the experimental data of Okamoto and Nezu [176]. The comparison shows that
the mean streamwise velocity component 〈u〉 is slightly underestimated inside the canopy
region while, due to continuity, it is slightly overestimated above the canopy in the free-flow
region. The height of the inflection point of the velocity profile and the velocity magnitude at
this location are very well captured by the simulation. Basically, this can be expected since
the position of the inflection point coincides with the average reconfigured canopy height
〈L∗〉 [171] which was adjusted in the simulation to the experimental observation to estimate
the correct rigidity EsI of the blades (see previous Section 6.2). In terms of the Reynolds
stress 〈u′v′〉 the simulation results are in good agreement with the experiment. Especially,
the minimum of 〈u′v′〉 and its y-position are very close to the experimental observation.
Near the channel bed the measurements behave differently up to a height of about 0.5L. In
the free-flow region above the canopy 〈u′v′〉 behaves linearly, as required by the momentum
balance. The experimental data, however, match this behavior only with some deviation.
Hence, it must be assumed that the experimental statistics are not fully converged. A fur-
ther source of deviations obtained for 〈u〉 and 〈u′v′〉 can be assigned to the way how the
flow is driven through the channel. In the experiment a tilting flume is used where the bulk
velocity is adjusted by the inclination of the flume. The drag generated by the canopy varies
slightly in time due to a time-dependent reconfiguration of individual blades, as shown in
Fig. 6.6 below. As a result, the bulk velocity may also vary in time within the measurement
zone, so that U = 0.20m/s provided in [176] must be interpreted as a time-averaged value.
However, this value is kept entirely constant during the present simulation by means of a PI-
controller as described in Section 3.3. In the present scenario the spatially averaged canopy
height 〈L∗〉

E
, i.e. the ensemble average over all 800 rods, varies with amplitudes of at most 4%

of 〈L∗〉. Thus, the differences between experiment and simulation should be comparatively
small which is reflected by the comparison shown in Fig. 6.4.
As described in [207] and references therein [189, 83], the canopy flow over the entire channel
height can be divided into three zones (see Fig. 6.13 below) exhibiting different unique phys-
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Figure 6.4: Normalized mean velocity profile 〈u〉/U and non-vanishing Reynolds stresses 〈u′u′〉,
〈u′v′〉, 〈v′v′〉 and 〈w′w′〉 normalized by U2 (observe the different ranges). The present results are
compared to the experimental data of [176] identified by black circles. The temporally and spatially
averaged height of the canopy with the blades being deflected by the flow is 〈L∗〉/L = 0.8, represented
by the horizontal black line. The mean velocity profile is well fitted by a logarithmic profile concerning
Eq. (6.4) in the free-flow region above the canopy.

ical properties. These zones are usually classified by means of the mean velocity profile 〈u〉
and the Reynolds stress component 〈u′v′〉. The bottom region is termed emergent zone and
it extends from the channel bottom to the upper limit of the wake zone defined as the eleva-
tion of 10% of 〈u′v′〉min [171]. Here, the flow is dominated by wakes of individual vegetation
elements, so that a vertical momentum transfer is comparably small. The velocity profile
is characterized by a regular boundary layer at the bottom followed by a layer of almost
constant velocity, which is well-captured by the present simulation.
The subsequent zone is termed mixing layer zone including the upper canopy region and
the lower part of the free-flow region for y � 2〈L∗〉 [169]. The velocity profile exhibits an
inflection point at the canopy edge as a result of the shear layer generated in this zone. As
a result, the flow prone to Kelvin-Helmholtz instabilities and turbulent fluctuations evolve
to form large-scale coherent structures, which is an essential precondition to trigger the
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monami phenomenon [197, 176, 219]. In particular, the maximum absolute Reynolds stress
−〈u′v′〉min, located slightly above the average canopy height 〈L∗〉, signifies how strong u′- and
v′-fluctuations are correlated in this region. Since the extremal value of 〈u′v′〉 is negative,
positive fluctuations u′ are strongly correlated to negative fluctuations v′ and vice versa.
Such events are called sweeps (u′ > 0, v′ < 0) and ejections (u′ < 0, v′ > 0), respectively,
and were identified as the main mechanism for momentum transfer between the canopy and
the free-flow region [184]. In contrast to unobstructed channel flows the vertical momentum
transfer associated with sweeps and ejections is much more pronounced, possibly causing a
vertical displacement of the water surface. In the present numerical setup the water surface
is modeled by a free-slip rigid lid boundary condition. Consequently, vertical velocity compo-
nents 〈v〉 are fully suppressed and redirected in the tangential space of the upper boundary.
As shown in Fig. 6.4 this causes seemingly non-physical strong peaks in terms of 〈u′u′〉 and
〈w′w′〉 at the surface at y/L = 3. Even if the present numerical model is not able to capture
a vertical displacement of the water surface, it is suspected that the influence on the flow
below and especially the mixing layer of interest here is negligibly small. This is supported
by the fact, that the present velocity profile for y � 2〈L∗〉 obeys the classical log-law of rough
boundary layers, as observed by several authors, e.g. [111, 169, 207]. This third layer, located
above the mixing layer, is commonly designated as log layer (log-law) zone, by reason of the
fact that the velocity profile can be well approximated by

〈u〉log(y) =
Uτ

κ
ln
(y − ym

y0

)
, (6.4)

with the von Kármán constant κ = 0.4, the displacement height ym, the roughness height y0
and the friction velocity Uτ . The latter velocity can be expressed in terms of the Reynolds
stress 〈u′v′〉 at the canopy edge, i.e. U2

τ = −〈u′v′〉|〈L∗〉 ≈ −〈u′v′〉|min, which gives U/Uτ ≈ 5.2
in the present case. According to [172], the displacement height is ym = 〈L∗〉 − δ/2, with

δ ≈ 〈u〉/d〈u〉
dy

|〈L∗〉 and seems to increase proportionally to the average canopy height with

ym/〈L∗〉 ≈ 0.78 [176]. The present simulation yields a value of ym/〈L∗〉 ≈ 0.69. The roughness
height in terms of the frontal canopy area per volume a = W/ΔS2 = 7.8125m−1 was
estimated to be about y0 = 0.049 a−1, which lies in the range of y0 = (0.04 ± 0.02)a−1 for
submerged canopies [169]. Furthermore, y0/〈L∗〉 = 0.112 which is consistent with the value
of 0.11 obtained in [171].

6.3.2 Average blade deflection and fluctuations

As for the fluid velocity field a decomposition is performed for the array of blades represented
as a spatially discrete field x(s;Z, t) = (x, y, z)T , defined by x = cs−cs,0. Here, cs = cs(Z, t) is
the time-dependent center line of an individual rod, with s ∈ N, 1≤s≤Ns, and cs,0 = cs(0, 0)
its position of fixation on the bottom plate. The mean component is given by

〈x〉(Z) = 1

T

∫ T

0

〈x(s;Z, t)〉
E
dt , (6.5)

with the ensemble average over the set of all Ns = 800 rods

〈x〉
E
(Z, t) =

1

Ns

Ns∑
s=1

x(s;Z, t) . (6.6)
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Non-vanishing components 〈x〉 and 〈y〉 of the mean blade profile are given in Fig. 6.5. More-
over, relevant fluctuations 〈x′x′〉, 〈x′y′〉, and 〈y′y′〉 are shown in Fig. 6.5 in order to assess the
specific type of oscillation, e.g. mode 1 bending or mixed-mode bending. Statistical data of
the OHP-strip motion were not acquired in the experiment [176], so that a comparison with
the simulation results can not be provided here.
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Figure 6.5: Normalized components 〈x〉/L and 〈y〉/L of the average center line of the blades and
corresponding fluctuating components 〈x′x′〉/L2, 〈x′y′〉/L2, and 〈y′y′〉/L2.

While the center line of the blades shows a well-pronounced reconfiguration in the streamwise
direction, no lateral reconfiguration is obtained in the homogeneous spanwise direction. As
indicated by the fluctuations plotted in Fig. 6.5, the motion of the blades appears to be
characterized by a mode 1 bending. If the rods were to oscillate, for instance, with a second
bending mode of significant magnitude, the functions 〈x′x′〉, 〈x′y′〉 and 〈y′y′〉 would have
inflection points at some arc length 0 < Z ≤ L. All fluctuations are of the same order of
magnitude. This indicates that the motion in the x- and y-direction is strongly coupled,
which is naturally the case as a forward bending of the blade in the x-direction will induce a
y-deflection. The component 〈z′z′〉 completely vanishes, which implies that the rods do not
undergo any lateral motion.

Fourier analysis of blade motion In themonami regime studied here the blades oscillate
between an almost upright shape and a maximum deflection of approximately 50% of their
length. The periodic features of this motion can be identified with the aid of an ensemble
averaged Fourier spectrum of the rod height L∗(s; t) = y(s;Z=L, t), i.e.

〈|L̂∗|〉
E
=

1

Ns

Ns∑
s=1

|L̂∗|s , (6.7)

where the spectrum |L̂∗|s of each rod s is evaluated by means of a windowed fast Fourier trans-
form (FFT) applying the Hann window function [231]. Here, L∗ is chosen as an appropriate
measure of the oscillation since the rod motion is dominated by a mode 1 bending. Any other
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material point on the rod describes an equivalent motion with only a less pronounced ampli-
tude. It should be noted, that in Eq. (6.7) the ensemble average is performed intentionally

for the magnitudes of individual FFTs, i.e. 〈|L̂∗|〉
E
. In contrast, the magnitude of the aver-

aged complex FFTs, i.e. |〈L̂∗
s〉E |, nearly vanishes since the phase information strongly varies

between each individual rod motion. Figure 6.6b shows the averaged spectrum 〈|L̂∗|〉
E
(f/fft),

where the frequency f is normalized by the flow through frequency fft = 1/Tft as the inverse
of the flow through time of the channel Tft = U/Lx. The averaged spectrum shows mainly a
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Figure 6.6: a) Temporal evolution of tip height L∗ of two individual rods (black solid line and dashed
line) and ensemble averaged height 〈L∗〉E (black dotdashed line). b) Averaged Fourier spectrum

〈|L̂∗|〉E(f) in semi-logarithmic scale (left) and double-logarithmic scale (right), where |L̂∗| is the
windowed-FFT of L∗. The frequency axis is normalized by the flow through frequency fft = U/Lx.

continuous shape with a slope of approximately 〈|L̂∗|〉/L ∝ (f/fft)
−9/10 for frequencies f/fft

storing about 70% of the total energy. A well-pronounced dominant frequency peak can be
observed at f1 ≈ 0.86 fft accompanied by two harmonics of lower energy at f2 ≈ 2f1 and
f3 ≈ 3f1 indicating a periodic rod motion. Indeed, as shown in Fig. 6.6a for two individual
blades, the rods exhibit an oscillatory behavior with reconfigurations mainly in the range of
0.6 < L∗/L < 1. At more or less regular time intervals the rods abruptly incline and show a
strong reconfiguration with heights down to L∗/L = 0.4 which is half of the average canopy
height. Statistically, such events happen with a frequency of f1 ≈ 0.86 fft.
As described above the blades mainly oscillate with a mode 1 bending. The corresponding
natural frequency can be estimated by [95]

fn =
1.8752

2π

√
EsI

mL3
, (6.8)

with the flexural rigidity EsI and the mass of the oscillating system m = ms+madd including
the mass of the blade ms and the added mass of the surrounding fluid madd. The latter can
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be estimated by means of potential theory which gives madd = π
4
ρfW

2L for the present
blade geometry [59]. The ratio between the frequency f1 and the natural frequency of the
first bending mode fn is an important indicator of the physical cause of the periodic motion
of the blades. If the large oscillation amplitude observed in the monami regime is due to a
resonant system created by the fluid and the structures, the natural frequency of the blades
should be almost equal to the frequency of the entire excited system, i.e. f1/fn ≈ 1. If, on
the other hand, the blades behave like passive objects, simply following an external periodic
excitation by the fluid, their natural frequency can be expected to be much smaller than
the lowest dominant frequency observed in the system, i.e. f1/fn � 1. Using Eq. (6.8) the
frequency ratio is f1/fn ≈ 0.15, indicating that the dominant frequency does not result from
a mechanical resonance between the fluid and the blades. It is rather that the blades react
to the external excitation by the fluid, e.g. by coherent structures acting on the blades at
regular time intervals. Okamoto and Nezu [173, 176] did indeed observe that the flow in
sufficiently dense shallow canopies is dominated by sweep and ejection events at the canopy
edge. The unique feature of canopies in the monami regime is, that their flexible blades react
nearly instantaneously with large displacements to an increased momentum transfer caused
by such events. Concurrently, the blades are sufficiently stiff to enable a momentum transfer
in the mixing layer required to generate sweeps and ejections. This transfer is inhibited if
the flexibility is too high, as illustrated in Fig. 6.1d.
From a different point of view, for small frequency ratios f1/fn vegetation elements are
capable of following the surrounding fluid motion and, thus, can be employed to detect or
visualize coherent structures. In cases where the ratio f1/fn does not completely vanish a
small time delay between the excitation by fluid and the response of the blade may be
expected. To quantify this delay for the present scenario, an additional simulation with a
single blade in a cross flow swaying periodically with f1 was performed. As shown in Fig. 6.7,
the blade responds with only a slight time delay of Δt/Tft ≈ 0.04. This further supports
the fact that the reconfiguration of the blades is a simple reaction to an increased vertical
momentum transfer, generated by sweep and ejection events. Several researchers suggest
that sweeps and ejections appear periodically in time [11]. For the present configuration this
presumption can be confirmed since the averaged spectrum of the blades clearly contains
periodic features.
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Figure 6.7: Large eddy simulation of a single OHP-strip subjected to a swaying bulk velocity
u(t)/U = 1/2 {1 + 1/2 sin(2πf1t)} with f1 = 0.86fft. All parameters are equivalent to the present
simulation with 800 OHP-strip, but a smaller computational domain of size 3L × H × 2L was
used. This figure shows the simulation results of the normalized tip displacement in y-direction
ΔL∗/L = 1 − L∗/L over time t/Tft (solid line). The response of the rod with respect to the bulk
velocity U1 (dashed line, amplitude adapted) is slightly delayed in time with Δt/Tft ≈ 0.04.
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6.3.3 Two-point correlations

In order to characterize coherent structures on the canopy scale, responsible for an organized
motion of the blades, a two-point correlation analysis was performed for both the fluid
velocity as well as the reconfiguration of the blades. The autocorrelation of the streamwise
velocity fluctuation u′ is defined as

ρuu(rx, y, rz) =
〈u′(x, t) u′(x+r, t) 〉√〈 u′(x, t) u′(x, t) 〉 〈 u′(x+r, t) u′(x+r, t) 〉 (6.9)

based on the fields u′(x, t) and u′(x + r, t), the latter shifted by the distance vector
r = (rx, 0, rz)

� in the horizontal plane utilizing the periodicity of the computational do-
main in the rx- and rz-direction. Due to averaging in time and homogeneous directions (see
Eq. (6.2)), the correlation coefficient ρuu is a function of the streamwise distance rx/Lx ∈
[−0.5, 0.5] (Lx ≈ 6H), the vertical coordinate y and the spanwise distance rz/Lz ∈ [−0.5, 0.5]
(Lz ≈ 3H). Analogous to ρuu for the fluid velocity fluctuations, a correlation coefficient ρ

L∗L∗
is defined for the fluctuation of the canopy height, i.e. y′(s, L, t) = L∗′(s, t) = L∗(s, t)−〈L∗〉.
It is given by

ρ
L∗L∗ (rx, rz) =

〈L∗′(s, t)L∗′(s+sr, t) 〉√
〈L∗′(s, t)L∗′(s, t) 〉 〈L∗′(s+sr, t)L∗′(s+sr, t) 〉

, (6.10)

where sr = rx Lz/ΔS2 + rz/ΔS + 1 with sr ∈ N realizes a shifting between the blades
in streamwise direction via rx/Lx ∈ {−1

2
,−1

2
+ ΔS

Lx
, ... , 1

2
} and in spanwise direction via

rz/Lz ∈ {−1
2
,−1

2
+ΔS

Lz
, ... , 1

2
}. The averaging is performed according to Eq. (6.5).

Figure 6.8a shows different contour plots of ρuu in two vertical planes rx = 0 and rz = 0,
respectively, as well as in the horizontal plane located at y/H = 0.5. Elongated regions
with a high degree of correlation (|ρuu| > 0.2) can be observed, indicating the presence of
streamwise velocity streaks above the canopy edge at a height of approximately 0.5H. In-
deed, high-speed (HS) velocity streaks, i.e. regions with u′ > 0, and low-speed (LS) velocity
streaks with u′ < 0 are also clearly identifiable in the instantaneous velocity field, as shown
in Fig. 6.11 for one selected instant in time. Statistically, a single streak extends over a length
of approximately 2H in the streamwise direction and 0.75H in the spanwise direction, identi-
fied from the local minimum of ρuu(rx, H/2, 0) and ρuu(0, H/2, rz), respectively (Fig. 6.9). An
influence of the domain size could be excluded by a supplementary simulation using a larger
computational domain of size 12H ×H × 6H discretized with a coarser spatial resolution of
W/Δx = 6.4. The change from positive to negative values of ρuu(0, H/2, rz) indicates that
HS–streaks are accompanied laterally by LS–streaks and vice versa. Moreover, a periodic
pattern of alternating positive and negative correlation appears for ρuu(rx, H/2, rz) extend-
ing over the entire horizontal plane, having certain similarities to a checkerboard pattern.
However, from a statistical point of view, the periodicity is less pronounced since ρuu nearly
vanishes already at rx/H = 3 and rz/H = 1.5. This implies, that a pairing of HS–streaks and
LS–streaks is more of a local event, while a global regular periodic pattern is less probable.
As described in the previous section, the flexible blades react nearly instantaneously with
large displacements to an increased momentum transfer caused, e.g. by sweeps and ejec-
tions. It can be expected that in regions with u′ > 0 the blades tend to be more reconfigured
due to an increased drag, while being more erect in regions with u′ < 0. As shown in
Fig. 6.8, this is also reflected by the two-point correlation of the local blade reconfigura-
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tions ρ
L∗L∗ (rx, rz) which is obviously very similar to the results obtained for ρuu(rx, H/2, rz).

The cross-correlation coefficient of both autocorrelations gives a value of approximately 0.89,
which further emphasizes a strong coupling between velocity streaks and the reconfiguration
of blades. Since velocity streaks act in a certain range in space, the blades react by a recon-
figuration in groups which is also indicated by the elongated regions of positive or negative
ρ

L∗L∗ . Analogous to the streaks, these separated regions extend over a length of 2H ≈ 13ΔS
in the streamwise direction and 0.75H ≈ 5ΔS in the spanwise direction, which corresponds
to an array of about 13 × 5 blades in which, statistically, a group of blades undergoes a
large reconfiguration, being accompanied by a group of erect blades and vice versa. While
the instantaneous deflection of blades of course departs from their statistical behavior, it
is predominantly organized in groups, as visualized in Figure 6.11 where the instantaneous
blade deflection is colored according to the respective normalized tip elevation L∗/L for a
selected instant in time.
The relation between velocity streaks and the reconfiguration of blades found here, agrees
with experimental observations of Ghisalberti and Nepf [81, 82]. They noticed that a waving
of blades is clearly confined to longitudinal “monami channels” (velocity streaks here), where
the blade motion in one channel is out of phase with the motion in the adjacent channels.
Moreover, it was found in that reference as well that these flow structures persist even when
the flexible blades are replaced by rigid vegetation elements.
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6.3.4 Coherent structures

The monami phenomenon, observed for the present set of parameters, is characterized by an
organized large-amplitude oscillation of groups of blades at different locations in the chan-
nel. The present simulation shows these well-separated regions of different blade deflection
as they travel through the canopy (Fig. 6.11, left). This indicates the presence of coherent
structures on canopy scale since a large reconfiguration of blades is a reaction to an increased
local transfer of momentum, as demonstrated in the previous Section 6.3.3. The relation be-
tween momentum transfer and the monami phenomenon was already studied by Ghisalberti
and Nepf in 2002 [81]. They found that the vertical transport of momentum is dominated by
coherent vortices advected downstream which cause the wavy motion of the canopy [81, 176].
However, the exact nature of coherent structures and vortices in canopy flows is still not fully
understood and remains to be investigated. The most common model of coherent structures
is based on the existence of a straight horizontal KH–vortex generated at the canopy edge
by a mechanism similar to the KH–instability in the mixing layer [173, 176, 169]. On the
other hand, as recently shown in [219], the hydrodynamic instability in the monami regime
seems to differ from the traditional KH–instability due to the presence of vegetation ele-
ments. The KH–model usually provides only a two-dimensional explanation of dominant
coherent structures, but does not consider the three-dimensional features to be expected in
turbulent channel and canopy flows. Indeed, as suggested in [173] for aquatic canopies and
in [71, 72] for terrestrial canopies, the turbulence in canopy flows is rather dominated by
a complicated three-dimensional large-scale motion of the fluid with sweeps, ejections and
roller vortices as the dominant contributions at the canopy edge. For terrestrial canopies,
Finnigan et al. [72] elucidated the three-dimensional formation of vortices and accompany-
ing sweep and ejection events. In that work, they deduced the eddy structures by means of
conditional averaging of the flow field, using canopy pressure maxima as a trigger to identify
the structure location. Based on the averaged results, they found a dual-hairpin eddy struc-
ture which appears as a combination of a “head-up” (HU) and a “head-down” (HD) hairpin
vortex (Fig. 6.10b). In between the counter-rotating legs of the corresponding hairpin, an
ejection or a sweep is generated. Despite the different physical properties, a comparable sys-
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Figure 6.10: Different models of vortices responsible for the monami phenomenon. a) Common
model of a two-dimensional Kelvin-Helmholtz vortex generated in the mixing layer at the canopy
edge. b) Dual-hairpin eddy model according to observations by [72, 69] for terrestrial canopies.
The vortex structure consists of “head-up” (HU) and “head-down” (HD) hairpin vortices aligned in
streamwise direction. Due to the counter-rotating legs of the hairpins the HU–vortex generates an
ejection (broad blue arrow), while the HD–hairpin generates a sweep (broad red arrow). The smaller
arrows indicate the motion due to self-induction.
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tem of eddy structures appears to manifest itself in aquatic canopies. Similar to the strategy
of [72] conditional averaging of the present fluid fields was performed in the present study,
defined as

〈u〉c(x) = 1

|C|
∑

(xc,tc)∈C
u(x+xc, tc) , (6.11)

where the tupel (xc, tc) is an element of the set

C = {(xc, tc) | ∀x with ‖x−xc‖<R : A(xc, tc)≤A(x, tc)<Ath } (6.12)

defining all locations in the fluid domain xc = (xc, 0, zc)
� ∈ Ω at times tc ∈ [0, T ] which

fulfill a certain averaging condition A(xc, tc) < Ath with a predefined threshold Ath ∈ R.
The condition has to be adapted to the kind of events to be detected, e.g. pressure minima
used in the work of Finnigan et al. [72]. All detected locations xc exhibit the minimum
value with respect to the condition function A, i.e. A(xc, tc)≤A(x, tc) in a circular region
‖xc−x‖ < R around xc for all x = (x, 0, z)� ∈ Ω. The radius R defines the approximate
spatial extension of an event to be detected. In the present context, the value R = 0.75H
was chosen, according to the extent of dominant structures obtained from the two-point
correlations ρuu and ρ

L∗L∗ investigated in Section 6.3.3. The total number of events detected
in the domain Ω over the time interval [0, T ] is given by the cardinality of C, denoted as
|C| ∈ N. Since the present LES provides resolved data for the fluid motion and the blade
motion, conditional averaging is performed simultaneously for both data sets by means of the
same condition. As a consequence, only those locations xc ∈ Ω are permitted that coincide
with a fixation point cs,0 = cs(Z=0, t=0) of a structure s, i.e. xc = csc,0. Using this relation
the associated conditional averaging for the array of blades x(s;Z, t) is given by

〈x〉c(s, Z) = 1

|C|
∑

(xc,tc)∈C
x(s+sc, tc) . (6.13)

In this work, the local deflection of the blades was used to define the averaging condition
requesting L∗(xc, tc)/L < 0.55. The result is shown in Fig. 6.12, along with a visualization of
the vortical structure obtained via the λ2 criterion [108]. In contrast to the observations of
Finnigan et al. [72] no dual-hairpin was observed, but only the HD–hairpin with a strong and
pronounced sweep at the low-end between both counter-rotating legs. This demonstrates the
strong correlation between sweeps and an increased reconfiguration of the blades, already
mentioned in the previous sections. As a result, nearly equivalent averaged fields 〈u〉c and
〈x〉c were obtained when using sweep events (u′ > 0, v′ < 0) as alternative averaging condi-
tions with values of u′v′/U2 < −0.16 in the horizontal plane y/L = 0.65.
Besides the HD–hairpin observed for the averaged fluid field, Fig. 6.12 shows eddy structures
for an arbitrary instant in time, visualized by iso-surfaces of negative pressure fluctuation
p′/(ρfU2) = const. Obviously, well pronounced HD–hairpins can not be found in the instan-
taneous flow fields which appears to be more irregular. Instead, KH-like eddies of different
intensity seem to be formed in the mixing layer, especially in regions of large blade deflection,
as suggested by the KH–model. One example of a strongly pronounced KH–vortex is shown
in Fig. 6.13a. As demonstrated by the two-point correlations presented in Section 6.3.3, these
regions generally appear in conjunction with longer HS–streaks with u′ > 0 and are bounded
laterally by LS–streaks with u′ < 0 (Fig. 6.11, right). A deeper analysis of the data reveals
that hairpin–like vortices are generated on top of a LS–streak (Fig. 6.13b).
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Figure 6.11: Both visualizations show the instantaneous, streamwise velocity component u/U in
the vertical planes z = 0 and x = 6H, at the same arbitrary instant in time t= t̃. In addition, the
left figure shows the array of deflected blades colored with the respective normalized tip elevation
L∗/L. While some groups of blades are deflected by up to 50% of the blade length, other groups
stand up quite vertically. In the right figure regions of positive and negative velocity fluctuation
u′ = ± 0.7U are highlighted by iso-surfaces in red and blue, respectively.
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Figure 6.12: a) Conditionally averaged fluid field 〈u〉c/U , where the events of high deflection are
used as a trigger for an ensemble average. The flow fields have been transferred horizontally such
that the reference blade of highest deflection is located in the middle of the channel. The region
centered around the trigger blade reveals a HD–hairpin which is about 3ΔS wide, visualized by an
iso-surface of λ2 = −2.5 s−2. Between the counter-rotating legs of the hairpin a sweep is generated,
which yields a global minimum of the conditionally averaged Reynolds stress 〈u′v′〉c/U2 above the
blade of highest deflection. In contrast to the work of [72] no HU–hairpin occurs in combination
with the HD–hairpin, as depicted in Fig. 6.10b. b) Coherent vortex structures visualized by pressure
iso-surfaces at a value p′/(ρfU2) = −0.2 at the same instant in time t= t̃ as in Fig. 6.11. A number
of well separated eddies is observed ranging from the interior of the canopy far into the free-flow
region. The iso-surfaces are colored by the vertical position y/H. In the bottom region of the vortices
the blades are generally highly deflected.



106 6.3 Data analysis and physical interpretation

Especially this relation between LS–streaks and hairpins is a common feature of the tur-
bulence in smooth channel flows. In fact, as discussed in Section 6.3.1 the free-flow region
in shallow canopies behaves similarly to the boundary layer in smooth channels. A certain
resemblance of coherent structures should be expected as well. This is supported by observa-
tions in [173], who stated that the turbulence and coherent structures in the free-flow region
are quite similar to boundary layers rather than mixing layers.

6.3.5 Proposed model of coherent structures

The analysis of the fluid data revealed that different coherent structures can be observed
at different heights in the channel. These range from turbulent wakes of the vegetation
elements, over KH–like structures in the mixing layer zone, up to turbulent structures known
from regular boundary layers in the free-flow region. It can, therefore, be suspected that the
nature of coherent structures in canopies appears as a superposition of the different zones
with corresponding turbulent mechanisms and structures. Recall that from an average point
of view the canopy flow is well described by a simple three-zone model dividing the flow into
an emergent zone, a mixing layer zone and a log-layer zone proposed in [207] (Fig. 6.13).
This division is also reflected in terms of turbulence mechanisms, so that the basic idea of
the three-zone model is reconsidered here and enhanced by the three-dimensional nature of
coherent structures. As it turned out, the interaction between these zones may generate some
unique turbulent features which do not occur in regular mixing layers and boundary layer
flows. The three zones can be characterized as follows:

KH
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free surface

emergent zone

mixing layer zone

log-layer zone

HS–streak

LS–streak

HP–vortices

flow

KH–vortex

a)

b)

Figure 6.13: Three-zone model of an aquatic submerged canopy flow according to [207]. The lower
emergent zone is characterized by the turbulent wake of individual plants, similar to the wake shown
in Fig. 4.17 for a single blade in cross-flow. In the mixing layer zone the flow prone to instabilities
and turbulent fluctuations evolve to form coherent structures, e.g. KH–vortices and velocity streaks
shown in Fig. a) and b), respectively. In the subsequent log-layer zone the free flow behaves very
similarly to a boundary layer flow without vegetation. Here, common coherent structures are HS–
streaks, LS–streaks and hairpin (HP) vortices on top of the LS–streaks. Observe the similarity of
Fig. b) and Fig. 26 in [54].
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Emergent zone. The flow in the emergent zone is dominated by wakes of individual
vegetation elements (Fig. 4.17). These are characterized by small-scale vortices on plant-scale
which have a destabilizing impact on the mixing layer above. Furthermore, as observed in
rough channel flows [2], the vortex shedding from single roughness elements can also support
the generation of hairpin vortices. Nonetheless, the outer interaction with the mixing layer
is limited due to the comparably small vertical transfer of momentum [81].

Mixing layer zone. For sufficiently dense canopies a pronounced shear layer in the upper
region of the canopy is generated by the drag of vegetation elements [169]. Here, the flow
is prone to instabilities of KH type and turbulent fluctuations evolve to form large-scale
KH–vortices, as shown in Fig. 6.13a. At the leading edge of the eddy high momentum fluid
is transferred from the free-flow zone towards the canopy, whereas at the trailing edge low
momentum fluid is transferred upwards [214]. The KH–vortex is advected in streamwise
direction while the blades beneath respond with a large reconfiguration. The analysis of
two-point correlations revealed that regions of large blade deflection are accompanied by
an increased streamwise velocity u′ > 0 at the canopy edge (Fig. 6.14a). Laterally adjacent
regions of lower velocity u′ < 0 contain statistically less reconfigured blades compared to the
mean blade deflection.

Log-layer zone. In the log-layer zone above the mixing layer the fluid behaves similarly to
a classical boundary layer without vegetation [173]. In boundary layers of smooth channels
the flow is characterized by alternating streaky regions of high velocity (HS–streaks) and low
velocity (LS–streaks) where sweeps and ejections are dominant contributions. As a common
basic structure, hairpin vortices of different sizes, ages and aspect ratios coexist and occur
as clusters aligned in the streamwise direction [4, 55]. The clusters serve to pump fluid away
from the channel bottom (ejection), consequently accumulating low speed fluid between them
(LS–streak, Fig. 6.14a), often referred to as multiple ejection bursts [235, 55]. The present
simulation clearly shows such bursts on top of the canopy indicating the similarity with
coherent structures in boundary layers (Fig. 6.13b).

HP–vortices

KH–vortex

LS–streak

HS–streak

a) b)
KH/HP–vortex

U U

Figure 6.14: Model system of coherent structures on canopy scale. a) A group of blades (depicted
as a single column here) is strongly reconfigured in a HS–streak region, where the flow is prone to
instabilities and turbulent fluctuations, both evolve to form KH–vortices. A HS–streak is accompa-
nied laterally by LS–streak regions. These are populated by HP–vortices which pump fluid away from
the canopy edge. b) Merging of KH–vortex and HP-vortex to a Kelvin–Helmholtz hairpin (KH/HP)
vortex. An instantaneous snapshot of a selected KH/HP–vortex is shown in Fig. 6.15a.
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Unique turbulent features. The common coherent structures just mentioned can not be
assigned completely to a specific zone. Rather, it appears that dominant turbulent features
of the zones overlap and thus interact in the transition region. Especially HS–streaks and
LS–streaks reach from the mixing layer deep into the free-flow zone and thus are dominant
contributions in both zones. While the flow in the mixing layer tends to form KH–vortices in
HS–streak regions, clusters of hairpins can be observed on top of LS–streaks in the log-layer
zone. In the transition zone these vortical structures regularly interact with each other. Since
KH–vortices and hairpins exhibit the same sense of rotation, they are able to merge to form
KH/HP–vortices, as illustrated in Fig. 6.14b. This type of vortex appears to be a unique
turbulent structure in sufficiently dense shallow canopy flows. One selected instantaneous
KH/HP–vortex is shown in Fig. 6.15b. It is presumed that the merging of these two vortices
increases the intensity of the associated HS-streak resulting in the formation of particularly
strong sweeps. This in turn leads to a particularly pronounced reconfiguration of the canopy
with deflections of single blades down to L∗/L = 0.4 (Fig. 6.6a).
The shape of the KH/HP–vortex discovered allows an interesting conclusion on the con-
ditional average, which was performed to extract coherent flow structures responsible for
a monami. Similar to the observations of Finnigan et al. [72], a symmetric HD–hairpin vortex
was obtained (Fig. 6.10b). However, in the present instantaneous flow fields HD–hairpins were
not observed. Instead, it appears that instantaneous eddies are shaped more like KH-vortices,
hairpins and KH/HP–vortices of which the latter cause particularly strong reconfigurations
of the blades. This suggests that the symmetric“two-legged”HD–hairpin appears as a“statis-
tical” artifact since the conditional average does not distinguish between differently directed
“one-legged” KH/HP–eddies. Indeed, since each HS–streak borders on adjacent LS–streaks
the eddy-formation is equiprobable on both sides, but not strictly arranged in pairs opposite
to each other.
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Figure 6.15: a) Instantaneous KH/HP–vortex visualized by green pressure iso-surfaces at a value
of p′/ρfU = 0.2. Regions of positive and negative velocity fluctuations u′ = ± 0.7U are represented
by iso-surfaces in red and blue, respectively. b) Schematic illustration of KH/HP–vortex dyed in gray
on top of the canopy edge inclined in streamwise direction. The small red and blue arrows indicate
the direction of rotation. The lower “head” of the vortex (KH part framed in red) accelerates the
fluid and causes a vertical momentum transfer (broad red arrow) into the canopy region. At the
same time the fluid is decelerated by the upper “head” (HP part framed in blue), which in addition
pumps fluid away from the canopy edge (broad blue arrow).
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With regard to both research aims defined at the beginning, the corresponding two parts of
this thesis can be summarized as follows:

Numerical method for slender rods in flow. The main contribution of the present
work is the development of a numerical method suited for fluid-structure interactions of
large numbers of slender flexible rods in turbulent flow. The underlying physical model was
tailored to this kind of FSI using appropriate model assumptions and simplifications. While
the fluid flow is modeled as usual by the three-dimensional Navier-Stokes equations, the mo-
tion of the slender structures is described by an enhanced one-dimensional rod model, the
so-called geometrically exact Cosserat rod model. Based on these continuous models for fluid
and structure, both partitioned problems were discretized in space and time using existing
optimized approaches. The basic fluid solver was adopted from the in-house code PRIME,
originally implemented by Kempe [118, 119]. Concerning the structure solver, the associated
Cosserat rod equations were discretized according to recommendations of Lang et al. [131],
who proposed a performance-optimized variant. In order to describe the interaction of fluid
and structure, the associated solvers were coupled by an own semi-implicit coupling scheme
based on an IBM with continuous forcing. It combines the stability of monolithic methods
with advantages of partitioned approaches, such as computational efficiency. As a special
feature, the coupling is exempt from any global iteration between the fluid part and the
structure part, usually performed to ensure numerical stability of partitioned FSI-solvers.
In contrast to other non-iterative coupling strategies, the main idea is not based on a sta-
bilization technique, e.g. a relaxation technique, but on a semi-implicit integration of the
coupling terms in the structural equations of motion. It is referred to as semi-implicit cou-
pling here, since only those coupling quantities are treated implicitly which have an effect on
the stability of the time integration. Excluded from this are structure positions, constituting
the fluid-structure interface. As a result, the proposed coupling scheme requires only a sin-
gle bidirectional exchange of information between the fluid solver and the structure solver,
so that the computing time per individual Cosserat rod could be reduced to a minimum.
This makes the developed numerical method highly efficient and particularly suitable for
large-scale configurations with a very large number of deformable rods. The method was
successfully validated for various test cases with single elastic rods in flow, including the
well-known two-dimensional benchmark of Turek and Hron [248], its predecessor case of
Ramm and Wall [261, 260], and a three-dimensional setup of a flexible blade in cross flow
according to an experiment of Luhar and Nepf [150].
Besides the development and implementation of the basic FSI-solver, a key part of this work
was the extension of the method to the regimes of densely arranged rods prone to collisions.
For this purpose, an own constraint-based collision model was developed, tailored to the
properties of Cosserat rods. It is able to represent frictional effects, lubrication, as well as
multiple simultaneous collisions. The latter feature is particularly difficult, since Cosserat
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rods share properties of rigid and deformable objects. As known from the collision modeling
of pure rigid bodies, multiple simultaneous collisions become a global problem. While this is
often solved monolithically by a global system of constraint equations of motion, the present
approach uses a simpler partitioned formulation where the collision handling and the numer-
ical treatment of the structure motion are clearly separated. This allows an easy modular
implementation of the collision model into existing FSI-solvers, so that both parts can be
executed in a simple staggered manner.
The numerical method presented has a wide range of applications. In the framework of this
thesis it was utilized to gain fundamental insights into the physics of aquatic canopy flows,
summarized in the subsequent section. Perspectively, the FSI-solver could also be applied
to more technical flows, e.g. fiber suspensions important for paper manufacture, polymer
melts and composite materials [244, 264], or piezo-electric blades in oscillating flow used for
energy harvesting [182]. Especially for such configurations the present numerical method is
designed: the fluid-structure interaction of slender rods in turbulent flow.

Application to canopy flows. In a second part of this work, the proposed FSI-solver was
employed to simulate the flow through an artificial aquatic canopy according to an experi-
mental setup of Okamoto and Nezu [176]. The corresponding abstracted canopy consisted of
800 regularly arranged strip-shaped blades, coupled to the fluid in the framework of an LES.
Very good agreement with the experimental data was found for the mean velocity profile
and Reynolds stresses. Moreover, the organized wave-like motion of the model plants in the
monami regime was captured as well. Supplementing the experimental study of Okamoto
and Nezu [176], the high-resolution data obtained from the simulations were analyzed to gain
fundamental information on the three-dimensional nature of coherent structures in dense
aquatic canopies. These new insights contributed to an enhanced understanding of the flow-
biota interaction in canopy flows, such as the mechanism behind the monami phenomenon.
It was observed that in the present type of canopy flow, the nature of coherent structures
appears as a superposition of common turbulent features and mechanisms. These range from
turbulent wakes of the vegetation elements in the emergent zone, over Kelvin-Helmholtz vor-
tices generated in the mixing layer zone, up to velocity streaks and hairpins in the free-flow
zone above the canopy. As it turned out, the interaction between these zones may generate
unique turbulent structures which do not occur in regular mixing layers and boundary layers.
Of particular importance here is the merge of Kelvin–Helmholtz vortices at the canopy edge
and hairpins located on top of the low-speed streaks in the free-flow region. Since both vor-
tices exhibit the same sense of rotation, their pairing promotes the formation of particularly
strong sweeps, which in turn lead to large reconfigurations of the model plants. This ap-
pears to be a key mechanism driving the wavy motion of the canopy in the monami regime.
To extract statistically significant information in this context, conditional averaging of the
flow field was performed, using locally increased blade deflections as a trigger to identify
pronounced coherent structures. Based on the averaged results, a symmetric “head-down”
hairpin vortex was observed on top of the most deflected blade. It is accompanied by a
strong sweep between its counter-rotating legs which supports the strong correlation be-
tween sweeps and local reconfigurations of the canopy. These “head-down” hairpins were not
observed in the instantaneous flow fields. Instead, instantaneous eddies are rather shaped like
Kelvin-Helmholtz vortices, hairpins and their combinations. This suggests that the symmet-
ric hairpin obtained from the conditional average emerges as a “statistical” artifact, since the
predefined condition does not distinguish between differently directed instantaneous eddies.
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Future work on this topic should employ a more sophisticated averaging condition, which is
able to classify different types of vortices. Additionally, time instances before and after the
detected event could be recorded and averaged using the same condition as a trigger. This
would improve the understanding of involved dynamic processes responsible for a particular
event, e.g. a pronounced reconfiguration of the canopy. The variation of physical parameters,
e.g. the rigidity of the model plants and its arrangement, will further elucidate the physical
behavior. First studies in this direction revealed that Kelvin–Helmholtz vortices, velocity
streaks and hairpins can also be observed in case of immobile rigid blades and more flexible
blades. Moreover, configurations with spatially randomly distributed blades show a remark-
ably similar behavior, suggesting that the turbulent mechanisms discovered in this thesis are
“universal” properties of aquatic flows trough sufficiently dense canopies.
Further research questions concerning aquatic canopy flows are addressed in the DFG-ANR
project ESCaFlex (Experiments and simulations for the study of submerged aquatic canopies
consisting of long flexible blades), currently conducted in an international collaboration of
TU Dresden with scientists from the Université Claude Bernard Lyon 1. The vision here
is to generate a detailed understanding of hydrodynamic processes in high-Cauchy number
canopies, and to derive information relevant for aquatic ecosystems. This will be achieved
through complementary experimental and numerical efforts, employing the FSI-solver devel-
oped in this thesis to realize the simulation part of the project.
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A Supplementary validation studies

This section provides supplementary validation studies for the present Cosserat rod model
and the corresponding collision model. These are ordered with increasing complexity ranging
from a simple static deformation up to an unsteady three-dimensional motion and deforma-
tion of the rod. In terms of the collision model, the focus lies on wall collisions of a single
rod and its behavior under the influence of frictional effects.

A.1 Pure extension, shear, bending and torsion

L = 10m rod length

W = 1m rod width (square)

Es = 1200N/m2 Young’s modulus

Gs = 600N/m2 shear modulus

ks = 5/6 shear correction

Fs = 100N

φs

Mb = 20πNm
Δx

Mt = 20πNm

φt

Fe = 120N

ΔL

a)

b)

c)

d)

Figure A.1: Cantilever rod fully anchored at one end (dashed area in a), hidden areas in other
cases) and subjected to a) extensional force b) shear force c) bending moment d) torsional moment
at the opposite rod end. While the gray colored rods represent unloaded cases, the blue colored rods
show deformed configurations.

Figure A.1 shows the four principal modes of deformation, i.e. extension, shear, bending
and torsion. In each mode, the rod is subjected to an appropriate load which ensures the
decoupling of the other modes.
In terms of the longitudinal deformation (Fig. A.1a) a tensile loading is validated, since a
compressive loading may result in a bifurcation buckling problem. In this case, the other
modes of deformation would be involved due to the nonlinear character of the Cosserat rod
model. The rod elongation ΔL is related to the extensional force subjected via Fe = EsAε,
with the cross sectional area A = W 2 and the strain ε = ΔL/L as a normalized elonga-
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tion. The force of magnitude Fe = 120N applied here causes a longitudinal displacement of
ΔL = 1m for the values of the parameters listed in Fig. A.1.
In contrast to the other deformation modes, a pure shear is not feasible by a load applied at
the tip of the rod. The shear generated by a lateral force (Fig. A.1b) always is accompanied
by a lateral bending. Here, the undesirable bending is suppressed by increasing the second
moment of area ad hoc to I = 1 · 1020 m4, so that the displacement caused by the resulting
bending moment is negligible small. The lateral part of the displacement caused by the shear
load Fs = 100N then is given by L tan(φs) = 2m for the present setup and can be completely
attributed to shear deformation. The shear angle φs and the shear force Fs are connected via
Fs = GsksAk tan(φs), where ksA is the shear corrected cross sectional area.
A pure bending without shear can be realized by a momentMb subjected to the tip of the rod
(Fig. A.1c). It is given by Mb = EsI κb, now with the geometrically correct second moment
of area I = W 4/12 and the curvature of the rod due to bending κb. In the depicted case the
rod is deformed to a closed circle which results in a constant curvature of κb = 2π/L. With
Mb = 20πNm chosen here, the tip position xtip coincides with the clamping point, so that
the magnitude of the tip displacement is ‖Δxtip‖ = L.
Finally, a pure torsion (Fig. A.1d) is achieved by a torsional moment Mb = GsJ κt, with
the polar moment of area J = 2I = W 4/6 and the torsional curvature κt = φt/L. With a
moment of Mt = 20πNm applied to the rod, it is twisted by an angle of φt = 2π.
The results obtained from the simulations are presented in Tab. A.1. In case of extension

Ne εe εs εb εt

8 −0.2907 · 10−14 −0.3389 · 10−11 0.2392 2.2970

16 −0.1292 · 10−14 −0.9702 · 10−11 0.2712 · 10−1 0.2590

32 0.0000 0.0000 0.4718 · 10−2 0.4571 · 10−1

64 0.0000 0.0000 0.1048 · 10−2 0.1030 · 10−1

128 0.0000 0.0000 0.2538 · 10−3 0.2515 · 10−2

256 0.0000 0.0000 0.6292 · 10−4 0.6264 · 10−3

Table A.1: Relative errors ε for different spatial resolutions, i.e. number of elements Ne. The
errors for the different modes of deformation are computed with the following reference values: The
displacement ΔL = 1m caused by the extensional force Fe, the shear angle φs = arctan(2/10) caused
by the shear force Fs, the magnitude of the tip displacement ‖Δxtip‖ = L caused by the bending
moment Mb, and the torsional angle φt = 2π caused by the torsional moment Mt.

and shear the numerical solutions exactly reproduce the theoretical predictions. However,
a spatial discretization of the rod causes small numerical errors in case of a pure bending
and a pure torsion. This results from the numerical approximation of curvatures, i.e. κb

and κt, by means of discrete quaternions (see Appendix D, Eq. (D.2h)). The relative errors,
εb and εt, listed in Tab. A.1 reveal that the numerical estimation of curvature used in the
present model is of second order accuracy. This confirms the spatial convergence behavior
stated by Lang et al. [131].
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A.2 Physical pendulum

g = (1470 + 1
3) m/s2 gravity

L = 10m rod length

W = 1m rod width (square)

Es = 1 · 1015N/m2 Young’s modulus

Gs = 1 · 1015N/m2 shear modulus

φ0 = π/2 initial inclination

x

y

z

φ
g

Figure A.2: Oscillation of a rigid physical pendulum about a fixed rotation axis under the influence
of gravity. Initially, at time t = 0, the rod (blue) is at rest and oriented in x-direction with an angular
displacement of φ0 = φ(t = 0).

In case of large-angle oscillations of the pendulum the differential equation of motion is
nonlinear. According to [23], the temporal evolution of the angular displacement is given by

φ(t) = 2 arcsin

{
sn

[
K

(
sin2φ0

2

)
− ω t ; sin2φ0

2

]
sin

φ0

2

}
, ω =

√
gL

2I
, (A.1)

where K(m) is the complete elliptical integral of the first kind, and sn(u;m) is the Jacobi
elliptic function with u,m ∈ R. Especially for the present rod the second moment of area is
I = (W 2 + (2L)2)/12 with respect to the rotation axis. The period of oscillation is defined
by T = 4K

(
sin2(φ0/2)

)
/ω which is approximately T ≈ 0.5 s for the present parameter

values listed in Fig. A.2. To realize a rigid pendulum, both elastic moduli of the Cosserat
rod are sufficiently large to suppress deformations. Note, that with increasing moduli Es

and Gs the numerical problem becomes stiffer so that the numerical effort increases rapidly.
Figure A.3 provides a comparison between the analytical prediction of the oscillation and
the simulation results obtained with a spatial discretization of Ne = 32 rod elements. The
maximum numerical deviation from the theoretical solution φ is less than 0.5◦.
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Figure A.3: Normalized angular displacement φ/φ0 over time t. The theoretical solution (A.1) is
compared with the numerical solution obtained for Ne = 32 rod elements.
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A.3 Swinging rubber rod

g = 9.81m/s2 gravity

L = 1m rod length

R = 5mm rod radius

ρs = 1100 kg/m3 mass density

Es = 5 · 106N/m2 Young’s modulus

νs = 0.5 Poisson’s ratio

x

y

g

revolute joint

Figure A.4: Setup of a slender, circular rubber rod supported by a revolute joint at one end
(not to scale). Initially, the rod is aligned in x-direction and exposed to the field of gravity.

Figure A.4 shows the setup of a highly flexible, slender rod describing a pendulum-like mo-
tion under the influence of gravity. In contrast to the rigid physical pendulum studied in
Section A.2 deformations now become important and significantly affect the motion. This
benchmark was initially introduced by Lang et al. [131] and used for a comparison with the
commercial FEM-solver Abaqus. They demonstrated the outstanding accuracy of the rod
model even for coarse spatial resolutions, especially with Ne = 10 equal sized elements in
the present test case. Later, Schulze et al. [210] took up the setup for a validation of differ-
ent numerical Cosserat rod models, while retaining a spatial discretization of 10 elements.
Figure A.5 presents a cross-comparison of the previous results and the present simulation.
Especially in the initial phase of the oscillation the dynamic behavior reveal a very good
agreement with the reference data. At later stages in time, however, small deviations can be
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Lang et al. [131]

Schulze et al. [210]
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t = 0.1 s

t = 0.2 s

t = 0.3 s

t = 0.4 s

t = 0.5 s

t = 0.6 s

t = 0.7 s

t = 0.8 s

t = 0.9 s
t = 1.0 s

Figure A.5: Temporal evolution of the rubber rod under the influence of gravity. Shown are the
center lines of the rod at selected instances in time. The present results (black lines) are compared to
the data of Lang et al. [131] (blue lines) and the results obtained by Schulze et al. [210] (red lines).
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observed between the different simulations. This is caused by a temporal accumulation of
numerical errors resulting from differences in the numerical scheme employed to discretize
the continuous Cosserat rod. Although the numerical model proposed by Lang et al. [131]
is implemented in the present work, both solutions do not coincide against all expectations.
This can be explained by slight modifications of the model applied by Lang et al. [144],
in order to improve the accordance between the Cosserat rod model and the FEM-solution
obtained with Abaqus. In terms of the present setup the best agreement was obtained with
the following two modifications. One is the decoupling of internal shear forces and internal
extensional forces which both are coupled by default in the Cosserat rod model. The second
one is the implementation of an improved mass matrix instead of common lumped mass
matrix, where the mass of the rod is concentrated at the discretization nodes which slightly
affects inertia properties especially for coarse spatial discretizations with few elements. The
numerical rod model of Schulze et al. [210] also differs in terms of discretization techniques
applied here. Contrary to the present approach, the rod is discretized in a non-staggered
fashion, where translational and rotational degrees of freedom coincide at the same node.
Furthermore, they use a recursive order-n multibody system (MBS) formulation of the under-
lying physical rod model. In this context, the only small deviations obtained for the different
numerical approaches are entirely satisfactory.

A.4 Vibration of simply supported rod

L = 10m rod length

A = 1m2 cross sectional area

I = 0.1m4 second moment of area

ρs = 1kg/m3 mass density

Es = 1 · 104N/m2 Young’s modulus

shear moduli:

Gs = 1 · 104N/m2 shear deformable

Gs = 1 · 107N/m2 shear stiff

F = 1N

Figure A.6: Simply supported rod pinned at one end to a revolute joint, while the other end is
supported by a roller. At time t = 0 a force F is abruptly subjected to the mid-span causing a
vibration of the rod.

The forced vibration of a simply supported straight rod, shown in Fig. A.6, is a common
benchmark for a dynamic response of rods since an analytical solution exists for very small vi-
bration amplitudes, i.e. linear kinematics. In that case, the temporal evolution of the vertical
displacement dy at the mid-span of the rod can be expressed by a series expansion [195]

dy(L/2, t) =
2F

ρsAL

∞∑
n=1, n odd

1− cos(ωnt)

ωn

with ωn =
(nπ
L

)2√EsI

ρsA
, (A.2)

and the natural frequencies ωn for odd n ∈ N. The period of the dominating first mode
is T1 = 2π/ω1 ≈ 2.013 s. Figure A.6 provides all relevant geometrical and material prop-
erties which were adopted from Zupan et al. [275]. In this reference, a shear modulus of
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Gs = 1 · 104 N/m2 was used for a comparison to the theoretical solution of a completely
shear stiff rod. In contrast to [275], in the present work the rod behaves shear deformable for
Gs = 1 · 104 N/m2. This causes a slight sagging of the rod during vibration and, furthermore,
alters the oscillation frequency. As a consequence, the present simulation results do not agree
with the analytical prediction (A.2) that, of course, does not take into account any shear
effects. To allow, however, a comparison to the shear stiff oscillation the shear modulus was
increased by two orders of magnitude to Gs = 1 · 107 N/m2. Note, that a further increase
of Gs would have no impact on the oscillation, but increases the computational effort since
the underlying equations become much stiffer. Figure A.7 shows the oscillation obtained
for two different shear moduli as well as the theoretical solution of the shear stiff rod. For
Gs = 1 · 107 N/m2 the present solution almost coincide with the theoretical expectations re-
garding oscillation amplitudes and frequency. As presented in Fig. A.8 this already applies to
a coarse spatial resolution of Ne = 16 elements which barely differs from the finest resolution
with Ne = 128 elements. The time step size was automatically adjusted by RADAU5 to hold
a set relative tolerance of 1 · 10−8, so that the temporal discretization error is negligibly small.
The table depicted in Fig. A.8 shows that with increasing number of elements Ne the period
of the first bending mode converges to T1 = 2.023 s. This value slightly underestimates the
theoretical value T1,ref = 2.013 s and yields an error of ε = −0.5% which does not completely
vanish. This behavior also was observed by Lang et al. [131] who reported that remaining
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Figure A.7: Temporal evolution of the vertical displacement dy(L/2, t) for both the shear de-
formable rod at Gs = 1 · 104N/m2 and the shear stiff rod at Gs = 1 · 107N/m2. The present results
obtained with Ne = 128 are compared to the theoretical solution (A.2) of a shear stiff vibration.
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Ne = 8 Ne = 64 theoretical

time t

Ne T1 in s ε

16 2.029 −0.0079

32 2.024 −0.0056

64 2.024 −0.0053

128 2.023 −0.0050

Figure A.8: Vertical displacement u at the mid-span of the vibrating shear stiff rod for different
spatial resolutions ranging from Ne = 16 to Ne = 128 elements. The period of the first bending mode
converges to a value of T1 = 2.023 s which yields an error of ε = −0.5% to the theoretical value
T1,ref = 2.013 s concerning Eq. (A.2). The values of T1 for different resolutions were evaluated by
means of an FFT (fast Fourier transform).
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deviations seems to be influenced by the spatial discretization technique [144]. Another po-
tential cause may be attributed to the difference of the underlying differential equations.
As already mentioned in Section A.1, a lateral bending is accompanied by shear if the rod
is subjected to a lateral force, as it is the case in the present situation. Consequently, the
corresponding parts for shear and bending in the Cosserat rod equations are geometrically
coupled. In this regard it is presumed, that even for very large shear moduli the Cosserat rod
model does not completely coincide with the Euler-Bernoulli rod equation solved to obtain
Eq. (A.2). This is evidenced by two further simulations. Besides the bending oscillation, a
pure extensional vibration and a pure torsional vibration were validated by similar setups. In
these cases, the natural frequencies converged to the theoretical values, since the correspond-
ing part of the Cosserat rod equations are decoupled from the other deformation modes and
are equivalent to the underlying differential equations of the reference solutions.

A.5 Spin-up maneuver

L = 10m rod length

A = 6 · 10−3m2 cross sectional area

I = 3 · 10−6m4 2nd moment of area

ρs = 200 kg/m3 mass density

Es = 14/3 · 109N/m2 Young’s modulus

Gs = 2 · 109N/m2 shear modulus

ks = 5/6 shear correction

ω(t)

co-rotated rigid
reference rod

x

y
z

d

Figure A.9: Spin-up maneuver proposed by Simo and Vu-Quoc [218]. An initially straight rod,
pinned at one end, is rotated around the x-axis with a prescribed time-dependent angular veloc-
ity ω(t). The part of pure deformation during rotation, denoted as d = (dy, dz)

�, is obtained by
subtracting the rigid body motion from the overall motion of the rod.

The kind of setup shown in Fig. A.9 initially was proposed by Kane et al. [115, 116] to
illustrate the importance of geometrical exactness of rod models. They showed, how linearized
kinematics may lead to very non-physical results, e.g. the destabilization of physically stable
systems [115, 217]. Shortly after, Simo and Vu-Quoc [217, 218] adopt this type of motion
to study the behavior of their rod model in case of finite vibrations coupled to large overall
motions of the rod. In the present work, the material and geometrical properties are consistent
to this configuration. It is known as Spin-up maneuver, and has established as a standard
test for nonlinear kinematics of rods. As illustrated in Fig. A.9, one end of the rod is pinned
to a revolute joint that prescribes an angular velocity around the x-axis

ω(t) =
90

tref

⎧⎨⎩
t

tref
− 1

2π
sin
(
2π t

tref

)
, 0 ≤ t < tref

1, t ≥ tref

(A.3)

with the reference time tref = 15 s. The other end moves freely in space and exhibits a
large overall motion due to the rotation imposed. During the acceleration phase t < tref ,
the rod is spun up from rest and largely deforms due to inertia effects. After this initial
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deflection for t > tref , the rod rotates with a constant angular velocity ω = 90/tref . During
this phase of steady rotation, it vibrates with small amplitudes while it is straightened by
centrifugal force. In addition, this force causes a centrifugal stiffening of the rod so that it
oscillates with increased natural frequencies [218]. Figure A.10 shows the time-histories of
displacements d = (dy, dz)

� computed with respect to the co-rotated reference rod (Fig. A.9).
The present simulation results are compared to those obtained by Simo and Vu-Quoc [218],
both qualitatively coincide with each other. A cross-comparison is provided in Tab. A.2.
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Figure A.10: Temporal evolution of the displacement components dy and dz. During the phase of
steady rotation, the centrifugal force causes an rod elongation of ΔL = 0.514 · 10−3m. Simultane-
ously, the rod oscillates laterally with a period of T = 1.393 s. The present results, fully converged
for Ne = 256 elements, are compared to the reference data of Simo and Vu-Quoc [218].

dy,max in m dz,max in m ΔL in m T in s

present (Ne = 256) −0.188 · 10−1 −0.574 0.514 · 10−3 1.393

Clerici [44] −0.190 · 10−1 −0.580 0.514 · 10−3 1.417

Simo & Vu-Quoc [218] −0.188 · 10−1 −0.575 0.514 · 10−3 1.410

theoretical [44] – – 0.514 · 10−3 1.392

Table A.2: Cross-comparison of maximal displacement dmax = (dy,max, dz,max)
� during the initial

transient, as well as the longitudinal elongation ΔL and period of oscillation T during the steady-
state phase. Present converged results are compared to the data of Simo and Vu-Quoc [218] (values
taken from [44]) and to the simulation results obtained by Clerici [44]. Theoretical expectations were
provided in [217, 44].

The values of maximal deflection dy,max and dz,max during the acceleration phase are equiva-
lent to the reference data of Simo and Vu-Quoc [218]. The centrifugal elongation is also well
captured and in agreement with the theoretical value of [217]

ΔL = L

(
tan(aL)

aL
− 1

)
with a = ω

√
ρs
Es

, (A.4)

resulting in ΔL = 0.514 · 10−3 m for the present set of parameters listed in Fig. A.9. The
period of lateral oscillation in the steady phase was determined by means of an FFT analysis
to T = 1.393 s, which reveals a slight deviation from the reference data of about 1.5%.
However, it almost perfectly reproduces the theoretical value of T = 1.392 s obtained with
the Rayleigh-Ritz method by Clerici [44].
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A.6 Lateral collision

coefficient of restitution:

e = 0, 0.5, 1

initial conditions:

v|t=0 = v = −5m/s

y|t=0 = 1m

v
v′ = −e v

y

x
z

Figure A.11: Setup of a straight rod laterally collides with a wall. After the rod is collided with an
impact velocity of v, it bounces back with velocity v′, depending on the coefficient of restitution e.

The configuration shown in Fig. A.11 is chosen to validate a pure lateral collision of Cosserat
rods. In this respect, there is no difference between the collision of two rods or the collision
of a rod with a static wall. The latter can simply be represented by a Cosserat rod of huge
size with infinite inertia.
As described in Section 5.3.5, a longitudinal collision strongly differs from a lateral collision
because of the anisotropic nature of the Cosserat rod model. In the latter case, the collision
force acts parallel to the cross sections which are assumed to be rigid. The elastic behavior
such as internal friction is simply captured by the restitution coefficient e ∈ [0, 1], validated
for the three cases e = 0, 0.5, 1 with the present setup. According to Fig. A.12 the results
of the simulations reproduce the expected theoretical behavior for different coefficients of
restitution e.
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Figure A.12: Lateral collision of a straight rod with a wall for different coefficients of restitution e.
Shown are the temporal evolution of the rod position y (arbitrary point on the underside of the
rod) and the corresponding phase portrait. The present simulation perfectly matches the theoretical
behavior.
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A.7 Longitudinal collision

structure properties:

L = 1m length

A = 0.01m2 cross sectional area

ρs = 1000 kg/m3 mass density

Es = 4 · 105N/m2 Young’s modulus

coefficient of restitution:

e = 0

initial conditions:

v|t=0 = v = −5m/s

y|t=0 = 1m+ ξ

v v′ = −v

y

xz

tip

ξ

L−ΔL

Figure A.13: Configuration of a straight rod colliding longitudinally with a wall. After the rod has
come into contact with the wall at an impact velocity of v, it performs a compression up to a length
of L − ΔL followed by an expansion phase. Even if the coefficient of restitution is e = 0, the rod
separates and moves away from the wall with v′ = −v after the expansion phase.

The setup sketched in Fig. A.13 was chosen to test a pure longitudinal collision of the
Cosserat rod. The rod approaches the wall with a constant velocity v. Thereafter, at the
time of first contact the rod compresses until all kinetic energy is stored as internal elastic
energy within the rod. Since the collision is elastic here, the rod decompresses in the same
way and moves away from the wall with a uniform velocity of v′ = −v. For the period
of contact t ∈ [tc, tc + Δtc] the wave solution reveals the longitudinal compression of the
rod [208]

Δl (ξ, t) = −Lv

c

∞∑
n=1

8 sin(Πn ξ) sin(Πn ct)

π2 (2n− 1)2
, (A.5)

with Πn = (n − 1/2) π/L and c =
√
Es/ρs the speed of sound. During the time of contact

the corresponding contact force at the tip is given by

fc = −EsA
∂Δl

∂ξ

∣∣∣∣
ξ=0

=
EsAv

c
(A.6)

and thus has a constant value over the time interval Δtc = 2L/c. The maximal contraction is
ΔL = Δl (L,Δtc/2) = L/4. As discussed in Section 5.3.5, the collision process is resolved by
the Cosserat rod model for a pure longitudinal collision. In that case, a restitution coefficient
of e = 0 is mandatory to enforce a zero relative velocity between the rod and the wall and
to avoid mutual penetration. For the example studied here, the collision model enforces the
boundary condition Δl|ξ=0 = 0 for the underlying wave equation whose solution during the
period of contact is given by Eq. (A.5). After the rod contacts the wall the collision process
is resolved in time and space by the structure solver.
The results of the simulation are in good agreement with the theoretical solution, as shown in
Fig. A.14. The motion of the rod is reproduced correctly during the entire collision process
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including approach, contact and rebound. Due to numerical inaccuracies a wave of small
amplitude remains after the rod has left the wall. The corresponding oscillations can be seen
in the velocity plot of Fig. A.14. It is assumed that the abrupt jump in the contact force
leads to errors due the time integration by the structure solver. It was observed, that the
frequency of the remaining wave scales with 1/Δt, while the amplitude decreases with the
time step size which is indicative of a purely numerical effect. Since there is no internal
viscous damping in this test case, the wave remains for all time.
A convergence study is shown in Fig. A.14d. Here, a simultaneous reduction of the time step
Δt and the number of elements Ne were performed. The coarsest resolution is Δt = 20 · 10−4 s
and Ne = 25, while the finest resolution is Δt = 2.5 · 10−4 s and Ne = 200. Depending on
the time step size the rod slightly penetrates the wall. For the coarsest resolution with
Δt = 20 · 10−4 s the penetration depth is less than 0.015L and decreases linearly with Δt. In
other words, the model is of first order accuracy, as discussed in Section 5.1.1.
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Figure A.14: Longitudinal collision of a straight Cosserat rod with a wall obtained with a time step
Δt = 2.5 · 10−4 s and Ne = 200 rod elements. Shown are the temporal evolution of a) tip position
ytip, b) corresponding phase portrait and c) contact force fc according to Eq. (A.6). d) Zoom of tip
position ytip for different resolutions. The coarsest resolution is Δt = 20 · 10−4 s and Ne = 25, while
the finest resolution is Δt = 2.5 · 10−4 s and Ne = 200. The successive refinement shows an overall
first order accuracy.
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A.8 Sliding on an inclined plane

g =
√
2m/s2 gravitational acceleration

φ = 45 ◦ angle of inclination

coefficients of friction:

μk = 0.5 kinetic friction

μs ≶ 1 static friction

initial conditions:
s|t=0 = s0
ṡ|t=0 = 0

y

xz

g

s

φ

Figure A.15: Configuration of a straight rod sliding on a plane inclined by an angle φ. Depending
on the value of the coefficient of static friction μs the rod remains at rest for μs < 1, while the rod
slides down the plane for μs ≥ 1 .

The proposed collision model includes a simple model for tangential friction. The setup
shown in Fig. A.15 is used to validate both, a static contact where the structures remain
at rest, as well as the dynamic case considering tangential friction forces that influence the
rod motion. As in the other test cases, the inclined wall is represented by a Cosserat rod
of huge size with infinite inertia. In principle, the friction model is suitable for a general
dynamic collision or static contact between two or more rods. Contrary to the general case,
the dynamic behavior of the rod is theoretically accessible for the present configuration. If
the coefficient of friction is μs ≥ 1 the normal contact force is larger than the downhill force
and the rod remains at rest (sticking mode), with the value of φ chosen here. For μs < 1 the
rod starts to accelerate, counteracted by kinetic friction forces (sliding mode). In the latter
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Figure A.16: Phase portrait of a sliding rod on an inclined plane with μs < 1. Compared are the
results of the present simulation (dots) with the theoretical expectation (line).

case, the velocity of the rod is given by ṡ =
√
Δs, where Δs = s− s0 represents the covered

distance, and s0 the position of the rod at time t = 0. Fig. A.16 shows the sliding velocity
ṡ over distance Δs. The present simulation reproduces the theoretical behavior obtained for
the proposed Coulomb friction model. The rod remains immobile in case of μs ≥ 1.
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A.9 Sliding on a viscous fluid film

g =
√
2m/s2 gravitational acceleration

φ = 45 ◦ angle of inclination

structure properties:

m = 10 kg mass

Ac= 0.2m2 contact area

fluid properties:

μf = 1N s/m2 dynamic viscosity

h = 0.02m film thickness

initial conditions:
s|t=0 = s0

ṡ|t=0 = 0

y

xz

g

s

φ

h

Figure A.17: Setup of a straight rod sliding on a thin fluid film down a plane, inclined by an
angle φ. Initially, the rod is at rest and starts to accelerate under the influence of gravity, while the
fluid film acts against this motion due to viscous friction at the contact surface of area Ac.

As described in Section 5.4, the present collision model provides a simple lubrication model
to capture the influence of the fluid film between colliding rods. The configuration shown in
Fig. A.17 is used to validate the lubrication model in the case of a pure tangential relative
motion between the rod and a wall. Driven by the downhill force fdh = mg sin(φ) the rod
starts to accelerate along the inclined wall in s-direction, counteracted by viscous friction of
the fluid. Compared to the sliding velocity of the rod ṡ, the proper motion of the fluid film
can be neglected for small h. In this case, a linear shear layer is generated between the rod
and the wall, where a uniform force distribution flub/Ac = ηf ṡ/h acts on the bottom side of
the rod against the direction of motion. With the values of the parameters listed in Fig. A.17,
the equation of motion along s is given by s̈ = 1 − ṡ with the initial position s(t=0) = s0.
The theoretical solution of the covered distance Δs = s(t)− s0 = t− 1+ e−t is well captured
by the numerical results, obtained with the present lubrication model. Fig. A.18 shows the
sliding velocity ṡ over the covered distance Δs.
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Figure A.18: Phase portrait of a sliding rod on a viscous fluid film, given by ṡ+ ln(1− ṡ) = −Δs.
Compared are the results of the present simulation (dots) with the theoretical expectation (line).





B Model reduction of the Cosserat rod

The nonlinear Cosserat rod equations (2.13) describe the rod motion with six degrees of
freedom, which are coupled nonlinearly due to the geometrically exact representation of
the kinematic relations. The numerical treatment of these equations is not trivial and re-
quires special techniques, as described in Section 3.2. This is also reflected by an increased
computational effort. In this context, the question arises whether the rod equations can be
simplified further to save computational time without loss of physical plausibility. The fol-
lowing two modifications are suitable for the present rod model, accompanied by advantages
and disadvantages:

Linearization of kinematic relations: Especially for infinitesimally small displacements
and rotations the rod equations can be linearized in space. Lagrangian and Eulerian con-
figuration coincide while the individual measure of strains for axial extension, bending and
torsion geometrically decouple. As a result, the corresponding parts of the Cosserat rod
equations decouple as well and can be treated separately. The FSI problems considered here
are dominated by a bending deformation. The corresponding part of the linearized Cosserat
equations simplifies to the common Euler-Bernoulli beam equation or, if shear deformability
is essential, to the Timoshenko beam equation. Other modes have a limited impact on the
overall dynamic response and can be neglected. In a regime of small displacements the use
of the Euler-Bernoulli equation drastically reduces the computational effort and is thus the
optimal choice. However, if the model is employed in the regime of finite displacements and
rotations, the following aspects arise:

• In the general case, when nonlinear kinematics become important, the deformation modes
do not decouple and interact with each other. Consider, for instance, the scenario shown
in Fig. B.1. When subjecting a straight rod to an external bending moment

�
m at one

end, it moves in space until a static equilibrium is reached. In the linear Euler-Bernoulli
equation an internal axial tension is not considered which causes a non-physical elongation
of the rod in case of large lateral displacements, as illustrated in Fig. B.1. However, such
geometrical reconfigurations of the rod play a crucial role in some physical phenomena. By
neglecting geometrical changes in shape, interesting physical effects could be suppressed
inadvertently.
Some advanced Euler-Bernoulli equations incorporate additional constrains preventing
any artificial elongations of the rod. In principle, this contradicts a spatial linearization
since geometrically nonlinear effects are taken into account again. Furthermore, solving
constrained differential equations is more challenging, as described below.

• Linear Euler-Bernoulli beam models assume conservative loads that are laterally subjected
to the rod. Longitudinal components of the load caused by geometrical changes of the rod
are not considered. Furthermore, non-conservative or co-rotated loads (see Section 3.3.3),
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which change their orientation depending on the current rod shape, e.g. pressure loads,
are not accounted for by geometrically linearized rod models. Obviously, at very small
displacements conservative and non-conservative forces coincide, so that geometrical errors
remain small. For large displacements, however, the error due to geometrical changes may
have a strong impact on the dynamic response.

Even if the computational effort can be reduced drastically when using geometrically lin-
earized rod equations, the simulation results may exhibit non-physical effects, especially for
larger displacements. However, this regime can not be precluded for the FSI problems con-
sidered in the present work. For this reason, a linearization of the kinematic relations is not
performed here.

�
m

Δl

Figure B.1: Straight clamped rod subjected to an external moment. Compared are the results of
the static equilibrium obtained with the Euler-Bernoulli beam model (red rod) and with the Cosserat
rod model (blue rod). For large displacements the linear Euler-Bernoulli model causes an artificial
elongation of the rod since geometrical nonlinearities are not considered.

Additional kinematic constraints for axial tension and shear: The FSI problems
considered here are dominated by a large-scale bending of rods accompanied by torsion in
some cases. These so-called “soft” degrees of freedom of the deformation mainly determine
the dynamic behavior of the rod. External loads usually are not sufficiently large to yield
an elongation or a shear deformation. This means that the “stiff” degrees of freedom, i.e.
axial tension and shear, can be neglected in terms of the overall motion of the rod. In other
words, the rods behave in an almost shear-stiff and inextensible manner. Consequently, the
corresponding degrees of freedom can be canceled by appropriate kinematic constraints in
the Cosserat rod equations. As described in [131], the constraints rX · c′ = rY · c′ = 0
inhibit lateral shearing of the rod while the cross sections remain normal to the center
line ζ. The Cosserat rod equations turn into the equations of the nonlinear Euler-Bernoulli
beam. An inextensible Euler-Bernoulli beam additionally imposes the constraint ‖c′‖ = 1,
which inhibits an elongation of the rod along the arc length coordinate Z. The degrees of
freedom required for the inextensible Euler-Bernoulli beam are half in number compared to
the Cosserat equations. At first glance, this safes further computational time. However, as
demonstrated in [131], an incorporation of inextension constraints is numerically challenging
and does not necessarily reduce the computational effort, although the degrees of freedom
are reduced. For this reason, no additional constraints are imposed in the present Cosserat
rod model.



C Convergence of direct forcing method

This section provides a derivation of the rate of convergence of the direct forcing method
employed to impose the velocity constraint

u(x, t) = uΓ(x, t) ∀x ∈ Γ (C.1)

for a velocity field u = u(x, t) on an embedded boundary Γ. The velocity field satisfies the
differential equation

∂u

∂t
= rhs(u, t) + fΓ, (C.2)

where rhs(u, t) is the right-hand side of the momentum balance of the fluid, and fΓ the
forcing term used to realize the constraint (C.1). According to the direct forcing approach it
is given by

fΓ =
1

Δt

∫ tn+1

tn
fΓ dt =

un+1
Γ − ũ

Δt
, (C.3)

where fΓ is a temporally constant force acting within a given time interval [tn, tn+1] with
Δt = tn+1 − tn. As described in Section 4.5 the forcing (C.3) can be derived directly from
the differential equation (C.2) via the fundamental theorem of calculus and incorporating
the velocity constraint (C.1) on each discrete instant in time, i.e. un+1 = un+1

Γ . The velocity
ũ is a shorthand for

ũ = un +

∫ tn+1

tn
rhs(u, t) dt , (C.4)

which is obtained by integrating Eq. (C.2) in time over the interval [tn, tn+1] without account-
ing for the effect of the immersed boundary and can be interpreted as a predictor velocity.
The magnitude of the force defined by Eq. (C.3) is simply determined by the deviation of the
predicted velocity ũ from the desired velocity uΓ. After integration of Eq. (C.2) accounting
for the forcing term fΓ, the constraint (C.1) is imposed with a certain numerical accuracy.
In the following the remaining numerical error ε = un+1 − un+1

Γ is derived analytically to
assess the rate of convergence. For this purpose, first the direct forcing scheme (C.1)-(C.4)
is reformulated as a more general iterative forcing procedure

uk,n+1 = uk,n +

∫ tn+1

tn
rhs(uk, t) dt+ f

k

Γ Δt (C.5a)

f
k+1

Γ = f
k

Γ +
un+1
Γ − uk,n+1

Δt
, (C.5b)

where uk represents the velocity field of the kth iteration step with k = 0, . . . , Niter and
Niter ≥ 1 the number of iteration steps employed to impose the velocity constraint (C.1).
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Note, that f
k

Γ with f
0

Γ = 0 only affects the velocity at time level tn+1, so that the velocity
at time tn does not change during the iteration, i.e. uk,n = un. Especially for Niter = 1 the
procedure consists of two subsequent steps, which is equivalent to the common non-iterative
direct forcing scheme (C.1)-(C.4) above. The predictor velocity ũ concerning Eq. (C.4) is
computed at k = 0, so that ũ = u0,n+1 in the iterative procedure.
Here, the rate of convergence p is derived more generally for the kth iteration step, where it
is obtained that p = k and, thus, the numerical error decreases with increasing number of
iterations Niter, i.e. ε ∝ ΔtNiter . The numerical error between the desired boundary velocity
un+1
Γ and the velocity uk,n+1 after k iterations is defined by

εk = uk,n+1 − un+1
Γ = −Δt

(
f
k+1

Γ − f
k

Γ

)
, (C.6)

where the right expression directly results from definition (C.5b). In order to demonstrate
that ε ∝ ΔtNiter , the velocity uk,n+1 in (C.6) is represented by its Taylor series expansion,
i.e.

uk,n+1 = uk,n +Δt
∂uk

∂t

∣∣∣∣
tn
+

Δt2

2

∂2uk

∂t2

∣∣∣∣
tn
+O (Δt3

)
(C.7a)

= uk,n +Δt
(
rhs(uk,n, tn) + f

k

Γ

)
+

Δt2

2

∂2uk

∂t2

∣∣∣∣
tn
+O (Δt3

)
, (C.7b)

where O (Δt3) is the truncation error which increases proportionally with Δt3. In (C.7b) the
first derivative ∂uk/∂t is replaced by the right-hand side of the differential equation (C.2).

Therefore, ∂uk/∂t includes the temporally constant force f
k

Γ of the kth iteration step which
has to be evaluated further. According to Eq. (C.5b) the force is given by

f
k

ΓΔt = f
k−1

Γ Δt+ un+1
Γ − uk−1,n+1 (C.8a)

= f
k−1

Γ Δt+ un+1
Γ − uk−1,n −Δt

(
rhs(uk−1,n, tn) + f

k−1

Γ

)
+ ...

...− Δt2

2

∂2uk−1

∂t2

∣∣∣∣
tn
+O (Δt3

)
(C.8b)

= un+1
Γ − uk−1,n −Δt rhs(uk−1,n, tn)− Δt2

2

∂2uk−1

∂t2

∣∣∣∣
tn
+O (Δt3

)
, (C.8c)

where uk−1,n+1 is replaced by the Taylor series expansion (C.7a) with k − 1. After inserting

f
k

Γ into Eq. (C.7b) it turns into

uk,n+1 = un+1
Γ + uk,n − uk−1,n +Δt

(
rhs(uk,n, tn)− rhs(uk−1,n, tn)

)
+ . . .

. . .+
Δt2

2

(
∂2uk

∂t2

∣∣∣∣
tn
− ∂2uk−1

∂t2

∣∣∣∣
tn

)
+O (Δt3

)
. (C.9)
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As already mentioned above, the velocities at time tn are unchanged during the iteration,
i.e. uk,n = uk−1,n = un, so that the second and third term of Eq. (C.9) vanish, i.e.

uk,n+1 = un+1
Γ +

Δt2

2

(
∂2uk

∂t2

∣∣∣∣
tn
− ∂2uk−1

∂t2

∣∣∣∣
tn

)
+O (Δt3

)
. (C.10)

The derivation of the rate of convergence is not finished so far since the velocities uk and

uk−1 are influenced by f
k

Γ and f
k−1

Γ , respectively, which are of order O (Δt−1) concerning
Eq. (C.5b). For that reason, the second term must be evaluated further. In general, the
derivative of the kth iteration can be reformulated to

∂2uk

∂t2
=

∂

∂t

(
∂uk

∂t

)
=

∂

∂t

(
rhs(uk, t) + f

k

Γ

)
=

∂ rhs(uk, t)

∂t
(C.11a)

=
∂ rhs

∂t
+

∂ rhs

∂uk
· ∂ u

k

∂t
=

∂ rhs

∂t
+

∂ rhs

∂uk
·
(
rhs(uk, t) + f

k

Γ

)
, (C.11b)

so that the difference of second derivatives in Eq. (C.10) can be expressed as

∂2uk

∂t2

∣∣∣∣
tn
− ∂2uk−1

∂t2

∣∣∣∣
tn

=
∂ rhs

∂u

∣∣∣∣
tn
·
(
f
k

Γ − f
k−1

Γ

)
, (C.12)

and Eq. (C.10) turns into

un+1
Γ − uk,n+1

Δt
= −Δt

2

∂ rhs

∂u

∣∣∣∣
tn
·
(
f
k

Γ − f
k−1

Γ

)
+O (Δt2

)
. (C.13)

Since the left-hand side coincides with definition (C.5b) of the direct forcing, Eq. (C.13) gives
a very useful recursion formula for the force increment between two iterations(

f
k+1

Γ − f
k

Γ

)
= −Δt

2

∂ rhs

∂u

∣∣∣∣
tn
·
(
f
k

Γ − f
k−1

Γ

)
+O (Δt2

)
. (C.14)

By applying Faà di Bruno’s formula [204] on the higher derivatives it can be shown that the
recursion also holds for the truncation term O (Δt2), i.e.(

f
k+1

Γ − f
k

Γ

)
=

{
O (Δt2

)− Δt

2

∂ rhs

∂u

∣∣∣∣
tn

}
·
(
f
k

Γ − f
k−1

Γ

)
. (C.15)

Using definition (C.6), this recursion can be transferred to the numerical error of the kth
iteration step, such that

εk =

{
O (Δt2

)− Δt

2

∂ rhs

∂u

∣∣∣∣
tn

}
·εk−1 . (C.16)

Performing this recursion by a successive replacement of εk−1 until ε0 is reached the error of
the kth iteration is

εk =

(
−Δt

2

∂ rhs

∂u

∣∣∣∣
tn

)(k)

· ε0 +O (Δt(k+2)
)
, (C.17)
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where (k) designates the kth power of the corresponding term on the right-hand side.

According to Eq. (C.6), the remaining error is ε0 = −Δt
(
f
1

Γ − f
0

Γ

)
, where the force f

0

Γ = 0

vanishes and f
1

Γ can be expressed via Eq. (C.8c). Finally, the numerical error of the iterative
direct forcing scheme with Niter iteration steps is given by

ε =

(
−Δt

2

∂ rhs

∂u

∣∣∣∣
tn

)Niter

· (un − un+1
Γ ) +O (ΔtNiter+1

)
, (C.18)

where for Δt → 0 the first term dominates the error with ε ∝ ΔtNiter and, correspondingly,
the rate of convergence is p = Niter. As a result, the non-iterative direct forcing with Niter = 1
is a first order approximation of the constraint (C.1).
In the present work, this non-iterative version is preferred to keep the computational effort
as small as possible. Of course, to achieve a second order direct forcing the solver must be
executed twice within one time step, which doubles the overall computational time. Never-
theless, even for a first order approximation the resulting errors remain small for time step
sizes Δt applied here (see Section 4.5).



D FSI algorithm in condensed form

This section provides an overview of the proposed semi-implicit direct forcing IBM for the
coupling of an arbitrary number of Cosserat rods to the Navier-Stokes equations. All rele-
vant equations are given for an individual Runge-Kutta sub-step r within the time interval
t ∈ [tr−1, tr]. With the three-step Runge-Kutta scheme employed here, each time step Δt
consists of three sub-steps, so that quantities at the new time level tn+1 are provided after
the third sub-step. Quantities of the previous time level tn are denoted by superscript 0, e.g.
the velocity field u0(xijk). The rth Runge-Kutta sub-step can be summarized as follows:

ũ− ur−1

Δt
= 2αr νf ∇2u r−1 − 2αr ∇

(
p r−1/ρf

)− γr ∇ · (u⊗ u)
r−1 − ζr ∇ · (u⊗ u)

r−2
+ fV (D.1a)

ξr−1
l = qr−1

e ∗ξ0,l∗q
r−1
e and xr−1

l = cr−1
e + ξr−1

l (D.1b)

ũ(xr−1
l ) =

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

ũ(xijk) δh(xijk − xr−1
l ) h3 (D.1c)

c̈e+ 1
2
=

1

ρsA

{(
q∗

�
f0∗q

)′
+

�
fΓ

}
e+ 1

2

+
(
1− ρf/ρs

)
g (D.1d)

q̈e =
1

2ρs
Me ·

{
4ρs q̇∗I0 ·

(
q̇∗q

)
+ c′∗q∗

�
f0 +

(
q∗ �

m0

)′
+ q′∗ �

m0 +
�
mΓ∗q

}
e
− ‖q̇e‖2qe (D.1e)

qr
e ← qr

e/‖qr
e‖ and q̇r

e ← q̇r
e − (qr

e ·q̇r
e)q

r
e (D.1f)

ur
Γ(x

r−1
l ) = ċre + (2 q̇r

e∗q
r
e)× ξr−1

l (D.1g)

fΓ(x
r−1
l ) =

ur
Γ(x

r−1
l )− ũ(xr−1

l )

2αr Δt
(D.1h)

fΓ(xijk) =
∑

xl ∈Γe

fΓ(x
r−1
l ) δh(xijk − xr−1

l ) ΔVl (D.1i)

∇2u∗ − u∗

αrνf Δt
= ∇2ur−1 − ũ+ 2αr Δt fΓ

αrνf Δt
(D.1j)

∇2φr = ∇ · u∗ (D.1k)

ur = u∗ −∇φr (D.1l)

p

ρf

r
=

p

ρf

r−1
+

φr

2 αr Δt
− νf

2
∇2φr (D.1m)
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Further information are required for shorthanded terms contained in the Cosserat rod equa-
tions of motion (D.1d)-(D.1e) to provide the entire algorithm. Remaining definitions can be
summarized as follows:

(
q∗

�
f0∗q

)′
e+ 1

2

=
(
qe+1∗

�
f0,e+1∗qe+1 − qe∗

�
f0,e∗qe

)
/ΔZ (D.2a)

�
fΓ,e+ 1

2
= (

�
fΓ,e +

�
fΓ,e+1)/2 (D.2b)

ċe = (ċe+ 1
2
+ ċe− 1

2
)/2 (D.2c)

Me = Q(qe)·I−1
0 ·Q�(qe) with Q(q) =

(
qr −q̂�

q̂ qr I+ [q̂]×

)
(D.2d)

c′e =
(
ce+ 1

2
− ce− 1

2

)
/ΔZ (D.2e)

(
q∗ �

m0

)′
e
+ q′

e∗
�
m0,e =

(
qe+1∗

�
m0,e+ 1

2
− qe−1∗

�
m0,e− 1

2

)
/ΔZ (D.2f)

�
f0,e = [Cγ ·(γ0− γ0|t=0) + 2Cγ̇ ·γ̇0]e with γ0,e= qe∗c

′
e∗qe (D.2g)

�
me+ 1

2
=
[
Cκ ·(κ0− κ0|t=0) + 2Cκ̇ ·κ̇0

]
e+ 1

2

with κ0,e+ 1
2
=

2
√
2

ΔZ

�(qe∗qe+1

)√
1 + �(qe∗qe+1

) (see [131]) (D.2h)

�
fΓ,e ΔZ = −

[
pΓ − pr−1

Γ

t− tr−1
+

pr−1
Γ − p̃

2αr Δt

]
e

with pΓ,e = [m ċ+ 2q̇∗q× q∗s0∗q ]e (D.2i)

p̃e =
∑

xl ∈Γe

Δml ũ(x
r−1
l )

�
mΓ,e ΔZ = −
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Γ
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+
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2αr Δt

]
e

with lΓ,e = [q∗s0∗q× ċ+ q∗J 0 ·(2q∗q̇)∗q ]e (D.2j)

l̃e =
∑

xl ∈Γe

Δml ξ
r−1
l × ũ(xr−1

l )

me =
∑

xl ∈Γe

Δml , s0,e =
∑

xl ∈Γe

Δml ξ0,l , J 0,e = 0⊕
∑

xl ∈Γe

Δml [ξ0,l]
�
×·[ξ0,l]× (D.2k)



Nomenclature

Abbreviations

ALE arbitrary Lagrangian-Eulerian method

COP cut orthogonal projection

CPU central processing unit

DNS direct numerical simulation

DOPRI5 explicit Runge-Kutta method of order 5 (ODE-solver) [93, 91]

FDM finite difference method

FEM finite element method

FFT fast Fourier transform

FSI fluid-structure interaction

GPU graphics processing unit

HD head-down hairpin vortex

HP hairpin vortex

HS high-speed velocity streak

HU head-up hairpin vortex

Hypre High Performance Preconditioners [132, 65]

IBM immersed boundary method

KH Kelvin-Helmholtz

LCP linear complementary problem

LES large eddy simulation

LS low-speed velocity streak

MPI Message Passing Interface standard [74, 166]

NSE Navier-Stokes equations

ODE ordinary differential equation

OHP overhead projector

OpenMP Open Multi-Processing standard [50, 181]

PET polyethylene terephthalate

PETSc Portable Extensible Toolkit for Scientific computations [13, 12, 14]

PGSM projected Gauß-Seidel method

PRIME phase-resolving simulation environment

PVC polyvinyl chloride

RADAU5 implicit Runge-Kutta method of order 5 (ODE-solver) [92, 91]

RANS Reynolds-averaged Navier-Stokes equations

SLERP spherical linear interpolation
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Roman symbols

A cross sectional area m2

A averaging condition −
Ac contact area m2

a frontal area of canopy volume 1/m

aij coefficient of the Runge-Kutta scheme used by RADAU5 1

B bounding operation −
bj coefficient of the Runge-Kutta scheme used by RADAU5 1

C, Club matrix connecting linear and angular momentum 1, m

C set of space-time coordinates (xc, tc) fulfilling a condition −
C0 continuity of class C0 −
Ca Cauchy number 1

Cd drag coefficient 1

CFL Courant-Friedrichs-Lewy number (Courant number) 1

Cs Smagorinsky constant 1

Cε constitutive matrix w.r.t. strain vector ε N

Cε̇ constitutive matrix w.r.t. strain rate vector ε̇ Ns

Cκ constitutive matrix w.r.t. curvature vector κ Nm2

Cκ̇ constitutive matrix w.r.t. curvature rate vector κ̇ Nm2 s

c speed of sound m/s

c position of center line ζ, c ∈ Ωs m

cb structural viscosity w.r.t. bending Nm2 s

ce structural viscosity w.r.t. axial extension/compression N s

cj coefficient of the Runge-Kutta scheme used by RADAU5 1

cs structural viscosity w.r.t. shear N s

ct structural viscosity w.r.t. torsion Nm2 s

D damping function, Van Driest damping function D(y+) 1

D diameter m

Dn, Dt damping parameter in normal and tangential direction kg/s

d, d distance, displacement d = (dx, dy, dz)
�, d = ‖d‖ m

dC infinitesimal line (contour) element m

dcrit critical distance m

det(M) determinant of a square matrix M ∈ R
n×n −

diag(a, b, c) diagonal matrix with dij=0 for i �= j and d11=a, d22=b, d33=c −
dS infinitesimal surface element m2

dsp distance between two spheres m

dV infinitesimal volume element m3

dΛ thickness of the fluid layer around Γ m

dΦ width of the regularized delta function Φ m

E set of all structural rod elements −
E Green-Lagrange strain tensor N/m2

Es Young’s modulus N/m2
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e coefficient of restitution 1

e, ẽ index/label of a structural rod element 1

ex unit vector in x-direction 1

F applied external force N

F deformation gradient tensor 1

Fd drag force N

Fl lift force N

f frequency Hz

f , f force f = (fx, fy, fz)
�, f = ‖f‖ N, (m/s2)

�
f external (length-specific) force acting to the rod N/m
�
f internal force of the rod N

f1, f2, f3 dominant frequency peak f1 and two subsequent harmonics f2, f3 Hz

fc contact force N
�
f c collision force acting on the rod N/m

fdh, fdh downhill force, fdh = ‖fdh‖ N

fft flow-through frequency Hz
�
fg gravitational force acting to the rod N/m

f lub, flub lubrication force, flub = ‖f lub‖ N

fn natural frequency of the first bending mode Hz

fS surface-specific force, stress vector N/m2

fV mass-specific, volume force m/s2

fΓ coupling force (mass-specific, volumetric) m/s2

fΓ average coupling force m/s2
�
fΓ coupling force (fluid force) acting to the rod N/m

g, g gravitational acceleration, g = ‖g‖ m/s2

Gs shear modulus N/m2

H channel height m

H multiplicative quaternion group −
Hε(x) unit step function with the smoothing parameter 0<ε�1 and x ∈ R 1

h grid step size, filter size (LES), h = 3
√
ΔxΔyΔz m

h thickness of the fluid film between two rods m

h mean thickness of the fluid film between two rods m

I 2nd moment of area m4

I tensor of inertia kgm2

I tensor of inertia of the cross sections (2nd moments of area) m4

I identity matrix, I = diag(1, 1, 1) 1

I0 quaternion matrix of inertia m4

�(q) imaginary part of a quaternion q ∈ H with �(q) = q̂ −
IX , IY , IZ 2nd moment of area of the cross section Υ around rX , rY , rZ m4

i spatial index, indexing in x-direction 1

i impulse wrench N s, Nm s

î virtual impulse wrench N s, Nm s

iv impulse wrench to impose the velocity constraint N s, Nm s
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iw impulse wrench caused by the external loads N s, Nm s

J 2nd polar moment of area (polar moment of inertia), J = IZ m4

J Jacobian matrix −
J 0 quaternionic tensor of inertia of the fluid layer kgm2

j spatial index, indexing in y-direction 1

K system matrix −
K(m) complete elliptical integral of the first kind, m ∈ R 1

k spatial index, indexing in z-direction 1

ks shear correction factor 1

kt torsion correction factor 1

L length in general m

L rod length m

Lx, Ly, Lz expansion of rectangular domain in x-, y-, z-direction m

L∗ reconfiguration height of the rod m

L̂∗ complex Fourier spectrum of the reconfiguration height m

〈L∗〉 space-time averaged reconfiguration height m

l index/label of a Lagrangian marker point 1

l angular momentum vector Nm s

l̃ preliminary angular momentum vector Nm s

M applied external moment Nm

M inertia matrix kg, kgm2

M matrix in general −
M “inverse” quaternion matrix of inertia 1/m4

�
m external (length-specific) moment acting on the rod N
�
m internal moment of the rod Nm

m mass in general kg

m mass of the fluid layer around Γ kg

m moment vector Nm

madd added mass of fluid kg
�
mc collision moment acting on the rod N

ms structural mass kg
�
mΓ coupling moment (fluid moment) acting on the rod N

N natural number, N ∈ N 1

N total number of grid cells 1

N set of natural numbers −
Ne number of structural elements per rod 1

Niter number of iterations 1

Ns total number of rod structures 1

Nx, Ny, Nz number of grid cells in x-, y-, z-direction 1

n unit normal vector 1

ncs unit normal vector of a cross-section 1

O(Δxn) Landau notation, nth order accuracy w.r.t. Δx −
o set of excluded elements −
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P 1st Piola-Kirchhoff stress tensor N/m2

P projection −
p fluid pressure field N/m2

p, p linear momentum vector, p = ‖p‖ Ns

p̃ preliminary linear momentum vector N s

pn normal part of the linear momentum N s

pt tangential part of the linear momentum N s

pv, pv linear momentum to impose the velocity constraint, pv = ‖pv‖ Ns

pw, pw linear momentum caused by external loads, pw = ‖pw‖ Ns

Q matrix representation Q(q) of a quaternion q ∈ H 1

q rate of convergence 1

q quaternion, q ∈ H 1

R radius m

R rotation matrix, R = [rX rY rZ ] ⊂ SO(3) 1

R set of real numbers −
Rel Reynolds number based on a reference length l, e.g. channel width H 1

Reτ Reynolds number based on the friction velocity uτ 1

�(q) real part of a quaternion �(q) = qr with q ∈ H −
r Runge-Kutta sub-step, r = 1, 2, 3 1

r, r distance vector r = (rx, ry, rz)
�, r = ‖r‖ m

rhs right-hand side −
rhsΓ right-hand side describing the unconstrained motion of Γ m/s

rX , rY , rZ unit direction vector in X-, Y -, Z-direction 1

S set of rod structures −
S 2nd Piola-Kirchhoff stress tensor N/m2

S strain rate tensor and its norm ‖S‖ 1/s

S
3 set of unit quaternions S3 ⊂ H −

SO(3) rotation group −
SΓ surface area of the fluid-structure interface Γ m2

s coordinate of a local coordinate frame 1

s index/label of a rod structure 1

s scalar value in general 1

s0 static moment of the fluid layer around Γ kgm

sn(u;m) Jacobi elliptic function with u,m ∈ R 1

T rod thickness m

T time period, period of oscillation s

t time s

t unit tangent vector 1

tn+1, tn new and previous discrete time level s

t∗ dimensionless time 1

U bulk velocity, mean velocity m/s

Uτ , uτ friction velocity m/s

u fluid velocity field u(x, t), velocity vector u = (u, v, w)� m/s
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u velocity component in x-direction, streamwise velocity m/s

ũ preliminary velocity field m/s

uijk spatially discrete velocity field m/s

uΓ velocity of the fluid-structure interface Γ m/s

u∗ dimensionless velocity profile 1

u∗ non-divergence free velocity field m/s

u′ velocity fluctuation field u′ = (u′, v′, w′)� m/s

〈u〉 mean velocity profile m/s

〈u〉 average velocity field m/s

〈u〉log logarithmic velocity profile m/s

v velocity component in y-direction, vertical velocity m/s

v, v linear velocity, v = ‖v‖ m/s

vc velocity vector at the contact point m/s

vn, vn normal relative velocity, vn = ‖vn‖ m/s

vr, vr relative velocity, vr = ‖vr‖ m/s

vt, vt tangential relative velocity, vt = ‖vt‖ m/s

vtip velocity of the rod tip m/s

W rod width m

w velocity component in z-direction, spanwise velocity m/s

w wrench (screw theory) N, Nm

wc collision wrench N, Nm

wlub lubrication wrench N, Nm

X material point of the reference configuration, X = (X, Y, Z)� ∈ Ωs
0 m

x x-coordinate of the global Eulerian frame m

x component of x in x-direction m

x material point in the current configuration, x = (x, y, z)� ∈ Ωs m

x position vector in the global Eulerian frame m

x spatially discrete array of the rods/blades, x(s;Z, t) = (x, y, z)� m

xijk Eulerian grid point with index i, j, k m

xl lth Lagrangian marker point m

x′ fluctuation of x m

y y-coordinate of the global Eulerian frame m

y component of x in y-direction m

y0 roughness height of the canopy m

y+1 normalized wall distance of the first grid point 1

ym displacement height of the canopy m

ytip, ytip vertical tip position of the rod, ytip = ‖ytip‖ m

y∗ dimensionless coordinate 1

Z arc length of the rod m

z z-coordinate of the global Eulerian frame m

z component of x in z-direction m

z state vector −
z twist (screw theory) m/s, Hz
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Greek symbols

αr coefficient of the Runge-Kutta scheme 1

β(r) shape function with the aspect ratio r = W/L 1

β stretching factor 1

Γ fluid-structure interface Γ = ∂Ωf ∩ ∂Ωs −
γ part of the fluid-structure interface γ ⊂ Γ cutting ω −
γr coefficient of the Runge-Kutta scheme 1

Δi corrective impulse wrench N s, Nm s

ΔL maximum contraction/elongation of the rod m

ΔL∗ vertical tip displacement m

Δl longitudinal compression of the rod m

Δml Lagrange mass associated to a marker point l kg

ΔS rod spacing m

ΔSl surface area attributed to a marker point l m2

Δt time delay s

Δt time step size Δt = tn+1− tn s

Δtc time period of a collision s

Δv change of the relative velocity due to a collision m/s

ΔVl Lagrange volume associated to a marker point l m3

Δx grid step size in x-direction m

Δxl grid step size of the Lagrangian marker points m

Δy grid step size in y-direction m

ΔZ length of a rod element, ΔZ =
∫
ζe
dZ m

Δz grid step size in z-direction m

δ channel half-width m

δ penalty depth, penetration depth m

δh three-dimensional delta function 1

δ1Dh one-dimensional delta function 1

δh regularized delta function 1

δV delta function connecting surface- and volume-specific quantities 1/m

ε, ε relative error, ε = ‖ε‖ 1

ε, ε strain vector, ε = ‖ε‖ 1

ε̇ strain rate vector 1/s

ζ center line of the rod, ζ ⊂ Ωs −
ζr coefficient of the Runge-Kutta scheme 1

κ von Kármán constant 1

κ, κ curvature vector, κ = ‖κ‖ 1/m

κ̇ curvature rate vector Hz/m

Λ infinitesimal fluid layer Λ ⊂ Ωf around Γ −
λ part of the fluid layer λ ⊂ Λ in the cut volume ω −
λ2 scalar field for Lambda2 vortex criterion 1/s2

λs Lamé constant N/m2
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μf dynamic viscosity of the fluid N s/m2

μk coefficient of kinetic friction 1

μs coefficient of static friction 1

μsgs subgrid-scale eddy viscosity N s/m2

νs Poisson’s ratio 1

νf kinematic viscosity of the fluid m2/s

ξ cross-section vector m

ρf fluid density kg/m3

ρs structural density of the reference configuration Ωs
0 kg/m3

ρuu autocorrelation of the velocity fluctuation u′ 1

σ hydrodynamic stress tensor N/m2

σLES hydrodynamic stress tensor (large eddy simulation) N/m2

σs Cauchy stress tensor N/m2

τ sgs subgrid-scale stress tensor N/m2

τw wall shear stress N/m2

Υ cross-sections of the rod Υ(Z) ⊂ Ωs −
Φ3, Φ4 three-point (four-point) regularized delta function 1

φ angle, inclination rad

φ pressure correction field m2/s

ϕ, ϕ arbitrary vector (scalar) field −
χ mapping x = χ(X, t) between x ∈ Ωs and X ∈ Ωs

0 −
Ω entire physical domain Ω = Ωf ∪ Ωs −
Ωf fluid domain Ωf ⊂ Ω −
Ωs current configuration of the structure, structure domain Ωs ⊂ Ω −
Ωs

0 reference configuration of the structure at time t = 0 −
ω, ω angular velocity, ω = ‖ω‖ Hz

ω small finite volume ω ⊂ Ω cut by γ ⊂ Γ −
ω+ “upper” subdomain of the cut volume ω −
ω− “lower” subdomain of the cut volume ω −

Subscripts

(·)0 related to reference configuration Ωs
0

(·)0 initial condition

(·)b related to bending

(·)c related to collision/contact

(·)c related to conditional average

(·)corr corrected quantity

(·)crit critical value

(·)e related to axial extension

(·)e related to structural element e

(·)e index of element e
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(·)e± 1
2

half-index of element e

(·)f fluid quantity

(·)ft flow trough

(·)h depending on grid step size h

(·)i spatial index, indexing in x-direction

(·)ijk spatially discrete quantity with index i, j, k

(·)j spatial index, indexing in y-direction

(·)k spatial index, indexing in z-direction

(·)l related to a Lagrangian marker point l

(·)lin linear, linearized quantity

(·)lub lubrication

(·)max maximum value

(·)min minimum value

(·)n in normal direction

(·)r real part of quaternion

(·)ref reference value

(·)s related to shear

(·)s structure quantity

(·)sgs related to subgrid-scale model

(·)t related to torsion

(·)t in tangential direction

(·)th predefined threshold

(·)tip at tip position of the rod

(·)v related to velocity constraint

(·)w related to external loads

(·)x related to x-direction

(·)y related to y-direction

(·)z related to z-direction

(·)Γ related to fluid-structure interface Γ

Superscripts

(·)0 initial value of an iterative procedure

(·)k kth iteration step

(·)n temporal index, quantity at discrete time tn

(·)r temporal index, quantity at Runge-Kutta sub-step r

(·)′ fluctuation of a quantity

(·)′ spatial derivative w.r.t. arc length Z

(·)′ state after collision

(·)+ normalized by friction velocity

(·)+ related to subdomain ω+

(·)− related to subdomain ω−
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Other Symbols

A ∪B union of two sets A,B

A ∩B intersection of two sets A,B

A ⊂ B A is subset of B

A⊕B direct sum of two matrices A,B

A ·B matrix-product of two matrices A,B

A · b matrix-vector multiplication of a matrix A and a vector b

a⊗ b tensor-product of two vectors a,b

a× b cross-product of two vectors (or quaternions) a,b

a · b dot-product of two vectors (or quaternions) a,b

a ∗ b multiplication of two quaternions a,b (non-commutative)

a ∝ b proportionality between two quantities a, b

∇ a gradient of a scalar field a

∇2 a Laplacian of a scalar field a

∇2 a Laplacian of a vector field a

∇ · a divergence of a vector field a

∇ ·A divergence of a tensor field A

∂A boundary of a set A

|A| cardinality of a set A

‖a‖ Euclidean norm of a vector (or quaternion) a

[ a ]× skew matrix of a vector a

〈a〉 average of a quantity a

〈a〉c conditional average of a

〈a〉
E

ensemble average of a

|a| absolute value of a scalar a

â Fourier spectrum of a scalar function a

â imaginary part of a quaternion a, i.e. �(a) = â

ã selected value of a field quantity a

a mean value of a scalar function a

a conjugate of a quaternion a

ȧ first time derivative of a

ä second time derivative of a

a′ spatial derivative of a w.r.t. arc length Z
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This thesis presents a numerical method for the simulation of 
fluid-structure interaction (FSI) problems on high-performance 
computers. The proposed method is specifically tailored to 
interactions between Newtonian fluids and a large number of 
slender viscoelastic structures, the latter being modeled as 
Cosserat rods. From a numerical point of view, such kind of 
FSI requires special techniques to reach numerical stability. 
When using a partitioned fluid-structure coupling approach 
this is usually achieved by an iterative procedure, which 
drastically increases the computational effort. In the present 
work, an alternative coupling approach is developed based 
on an immersed boundary method (IBM). It is unconditionally 
stable and exempt from any global iteration between the fluid 
part and the structure part.
The proposed FSI solver is employed to simulate the flow 
over a dense layer of vegetation elements, usually designated 
as canopy flow. The abstracted canopy model used in the 
simulation consists of 800 strip-shaped blades, which is the 
largest canopy-resolving simulation of this type done so far. 
To gain a deeper understanding of the physics of aquatic 
canopy flows the simulation data obtained are analyzed, e.g., 
concerning the existence and shape of coherent structures.

 
 

 
 

 
 

 
 

 
 

 
 

  
  

 

 


