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Abstract 

We address two fundamental critiques of established asset pricing models: that they (1) require a 

controversial degree of preference for early resolution of uncertainty; and (2) do not match the 

term structures of risk premia observed in the data. Inspired by experimental evidence, we 

construct preferences in which risk aversion decreases with the temporal horizon. The resulting 

model implies term structures of risk premia consistent with the evidence, including time-

variations and reversals in the slope, without imposing a particular preference for early or late 

resolutions of uncertainty or compromising on the ability to match standard moments in the 

returns distributions. 
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1 Introduction

The Þnance literature has been successful in explaining many features of observed equi-
librium asset prices as well as their dynamics (see Cochrane, 2016). However, recent work
has posed new challenges regarding the relation between the timing and the pricing of
uncertainty. First, the widely used long-run risk model of Bansal and Yaron (2004) has
come under attack on conceptual grounds: Epstein, Farhi, and Strzalecki (2014) show that
calibrating the model to match asset pricing moments requires a surprisingly strong pref-
erence for early resolutions of uncertainty, di�cult to reconcile with the micro evidence
and introspection. Second, the empirical evidence shows unexpected patterns in the term
structures of risky assetsÕ expected returns, whereby risk premia are sometimes higher
for short-term payo�s than for long-term payo�s (e.g. van Binsbergen, Brandt, and Koi-
jen, 2012; Giglio, Maggiori, and Stroebel , 2014; Bansal, Miller, and Yaron , 2017).1 These
Þndings represent a fundamental critique because they are inconsistent with established
asset pricing models: the term structure of risk premia is always upward-sloping in the
long-run risk model of Bansal and Yaron (2004) as well as in the habit-formation model
of Campbell and Cochrane (1999), whereas it is ßat in the rare disaster models of Gabaix
(2012) and Wachter (2013).

To address these challenges, we propose a model that relaxes the assumption, stan-
dard in the economics literature, that risk aversion is constant across temporal horizons.
Inspired by experimental evidence, we let agents be more averse to immediate than to de-
layed risks. Our Þrst contribution is methodological: we apply this generalization to the
standard recursive utility model of Epstein and Zin (1989), which allows us to build on
its success at explaining asset pricing moments when it is combined with long-run risk.
We show that commonly used recursive techniques can be adapted to a setting of pseudo-
recursive preferences with horizon-dependent risk aversion, letting us derive closed-form
solutions. Our baseline model can accommodate numerous extensions, be it on the val-
uation of risk (habit formation, disappointment aversion, loss aversion, etc.), or on the
quantity of risk (rare disasters, production-based models, etc.). Further, under our prefer-
encesinter-temporaldecisions for deterministic payo�s are unchanged from the standard,
time consistent, model; only intra-temporalallocations across risky assets are dynamically
time inconsistent. We can therefore study the pricing impact of horizon dependent risk
aversion in isolation from quasi-hyperbolic discounting, and in general from models of
time inconsistent inter-temporal decisions.

We show that our model resolves all concerns regarding preferences for early or late

1For a review of the literature, see van Binsbergen and Koijen (2016).
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resolutions of uncertainty, our second contribution. As we mention above, in a standard
long-run risk framework with Epstein and Zin (1989) preferences, calibrating the pref-
erence parameters as well as the risk in the endowment process so as to match observed
asset pricing moments implies that agents have a preference for early resolutions of uncer-
tainty so strong as to be unrealistic Ñ raising doubts as to the validity of its representative
agent set-up (Epstein et al., 2014). Our model not only mitigates this result but can even
reverse it. SpeciÞcally, we formally derive how two consumption streams with identical
risk but di�erent timing for the resolution of uncertainty are valued Ñ one where shocks
are revealed gradually as they are realized over time, the other where all future shocks are
revealed at the same early date. As in the model of Epstein and Zin (1989), our agents value
these consumption streams di�erently, even though the ex-ante distributions of risk are
rigorously identical. Whether and how the two valuations di�er depends on the wedge
in risk aversions for short-horizon payo�s versus for long-horizon payo�s; as well as on
their values relative to the elasticity of intertemporal substitution. A consumption stream
with early resolution of uncertainty shifts the risk in all future shocks into a short-horizon
risk, moving from a risk assessment using the low risk aversion of long-horizon payo�s
to a risk assessment using the higher risk aversion of short-horizon payo�s. This lowers
the attractiveness of early resolutions of uncertainty, compared to the standard framework
with Epstein and Zin (1989) preferences. We Þnd that our model can be calibrated to match
the usual asset pricing moments andreasonable levels of preferences for either early or late
resolution of uncertainty.

As our third contribution, we apply our utility model and methodology to equilib-
rium asset pricing, and formally derive risk premia consistent with the recent empirical
evidence, rationalizing both upward sloping term-structures during normal times as well
as steeply downward sloping term-structures during the Þnancial crisis of 2007—2009, as
described in van Binsbergen et al. (2013) and Bansal et al.(2017).

We Þrst consider a representative agent who trades and clears the market every pe-
riod, and, as such, cannot pre-commit to any speciÞc strategy: unable to commit to future
behavior but aware of her dynamic inconsistency, in the spirit of Strotz (1955), the agent
optimizes in the current period, fully anticipating re-optimization in future periods. Solv-
ing our model this way yields a one-period pricing problem in which the Euler equation is
satisÞed. The stochastic discount factor of our pseudo-recursive model nests the standard
Epstein and Zin (1989) case, but with a new multiplicative term that loads on the wedge
arising from the preferencesÕ dynamic inconsistency between the continuation value used
for optimization at a given time t and the actual valuation at t + 1.

In a Lucas-tree endowment economy with long-run risk, we derive equilibrium prices,
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and analyze how this new term in the stochastic discount factor a�ects them. We Þnd
that the pricing of shocks that impact consumption levelsare unchanged from the stan-
dard model Ñ reßecting that the dynamic inconsistency in our model does not concern
inter-temporal decisions. One implication is that, if the quantity of risk is constant in the
economy, equilibrium asset prices are una�ected by our horizon-dependent risk aver-
sion model. Shocks to consumption risk(volatility) on the other hand directly a�ect intra-
temporal decisions, and their pricing changes under horizon-dependent risk aversion: the
lower risk aversion for long-horizon payo�s reduces the pricing of volatility shocks, an
e�ect that accumulates over time. In a standard log-normal consumption growth setting
with stochastic volatility, our calibrated model can simultaneously match the average level
of risk prices and generate a term structure of risk premia with a shape Ñ upward sloping
over the short to medium horizon, then ßat Ñ that matches the recent empirical work by
Bansal et al.(2017) for non-crisis periods, i.e. outside of the the Þnancial crisis of 2007—2009.

We formally show that the one-period classical framework cannotmatch, on the other
hand, the sharply downward sloping term-structures documented in Bansal et al.(2017)
for the recent Þnancial crisis, and consistent with van Binsbergen et al.(2012) and van Bins-
bergen and Koijen (2016): under dynamic trading, there is no tautological link between a
decreasing term structure of risk aversion and a decreasing term structure of risk premia.
However, we hypothesize that the one-period representative agent framework no longer
provides a realistic, and useful, approximate structure in which to derive equilibrium as-
set prices during severe liquidity crises, such as the one experienced in 2007—2009. Ac-
cordingly, in the second part of our analysis, we deviate from the representative agent
assumption and assume that illiquidity pushes investors to adopt buy-and-hold strate-
gies, such that one-period pricing no longer applies. When su�ciently many investors opt
for committed buy-and-hold strategies, in particular for assets with long horizons Ñ a re-
alistic assumption when liquidity breaks down Ñ a downward sloping shape emerges in
our calibrated horizon-dependent risk aversion model, consistent in magnitude with the
evidence in Bansal et al.(2017) for the December 2007—June 2009 period.

In sum, we develop a new model that can both address the early versus late resolution
of uncertainty challenge of Epstein et al. (2014) and generate risk premia consistent with
the downward sloping term structure puzzle Þrst emphasized by van Binsbergen et al.
(2012), and with the slope reversal dynamics described in van Binsbergen et al. (2013) and
Bansal et al.(2017). We show that these hotly debated problems on the timing and pricing
of uncertainty can be solved without compromising on the modelÕs ability to match the
usual asset pricing moments as in Bansal et al. (2014), and without departing from the
methodology of the widely-used preference structure of Epstein and Zin (1989).
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After a short overview of the literature, we present our model of preferences in Sec-
tion 3. We analyze the preference for early or late resolution of uncertainty in Section 4. In
Section5, we derive the asset pricing implications of our model. Section 6presents and dis-
cusses the modelsÕ quantitative predictions. Section 7 concludes. All mathematical proofs
are in the Appendix.

2 Related literature

This paper is the Þrst to solve for equilibrium asset prices in an economy populated by
agents with dynamically inconsistent risk aversions. It complements Luttmer and Mariotti
(2003), who show that dynamically inconsistent preferences for inter-temporal trade-o�s
of the kind examined by Harris and Laibson (2001) have only muted implications for asset
pricing, and little power to explain cross-sectional variation in asset returns. Given that
cross-sectional asset pricing involves intra-period risk-return tradeo�s, it is indeed quite
intuitive that inter-temporal dynamic inconsistency is not suitable to address puzzles re-
lated to risk premia.

Our model generalizes Epstein and Zin (1989) preferences by relaxing the dynamic
consistency axiom of Kreps and Porteus (1978) to analyze the subtle relationship between
the timing and pricing of uncertainty. By contrast, Routledge and Zin (2010), Bonomo et al.
(2011) and Schreindorfer (2014) follow Gul (1991) and relax the independence axiom to an-
alyze the asset pricing impact of generalized disappointment aversion within a recursive
framework. They Þnd that their models generates endogenous predictability ( Routledge
and Zin , 2010); matches various asset pricing moments (Bonomo et al., 2011); and prices
the cross-section of options better than the standard model (Schreindorfer, 2014). Their
models, however, do not address the Òexcessive preference for early resolutions of un-
certainty puzzleÓ, pointed out by Epstein et al. (2014) or quantitatively match the term
structure of risk prices Ñ the two questions of interest in our analysis. 2

The importance of a volatility risk channel, central to our qualitative and quantitative
asset pricing results, is supported by Campbell et al. (2016), who show that it is crucial
for asset returns in a CAPM framework, and relates to numerous other works on the re-
lation between volatility risk and returns ( Ang et al. , 2006; Adrian and Rosenberg, 2008;
Bollerslev and Todorov , 2011; Menkho� et al. , 2012; Boguth and Kuehn , 2013).

The puzzle of a downward sloping term-structure of excess returns has emerged in the
recent empirical literature. Van Binsbergen et al. (2012) show that the expected excess re-

2Just like the standard Epstein and Zin (1989) model, our model can accommodate generalized disap-
pointment aversion for the valuation of risk. Such a framework might be of interest for future research.
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turns for short-term dividends are higher than for long-term dividends (see also Boguth
et al., 2012; van Binsbergen and Koijen, 2011; van Binsbergen et al., 2013). Van Binsber-
gen and Koijen (2016) document downward sloping Sharpe ratios of risky assetsÕ excess
returns, across a variety of assets.Giglio et al. (2014) show a similar pattern exists for
discount rates over much longer horizons using real estate data; and Lustig et al. (2016)
for currency carry trade risk premia. Weber (2016) sorts stocks by the duration of their
cash ßows and Þnds signiÞcantly higher returns for short-duration stocks. Dew-Becker
et al. (2016) use data on variance swaps to show the volatility risk is priced (crucial to our
model), but mostly at very short horizons. Using di�erent methodologies and standard
index option data, Andries et al. (2016) also Þnd a negative price of variance risk for ma-
turities up to 4 months, and a strongly nonlinear downward sloping term structure (in
absolute value).

These striking empirical Þndings have triggered a signiÞcant literature that aims to ex-
plain these patterns. Various models generate the desired implications Ñ downward slop-
ing term-structures of risk premia Ñ by making structural assumptions about the priced
shocks a�ecting the economy. For example,Ai et al. (2015) derive term-structure results in
a production-based real business cycle model in which capital vintages face heterogeneous
shocks to aggregate productivity. Other production-based models with implications for
the term structure of equity risk are, e.g. Kogan and Papanikolaou (2010, 2014), and G�r-
leanu et al. (2012). Favilukis and Lin (2015), Belo et al. (2015), and Marfe (2015) o�er wage
rigidities as an explanation why risk levels and thus risk premia could be higher at short
horizons. Croce et al. (2015) use informational frictions to generate a downward-sloping
equity term structure. Backus et al. (2016) propose the inclusion of jumps to account for
the discrepancy between short-horizon and long-horizon returns; while Nzesseu (2018)
shows it is su�cient to add negative covariation between the consumption shocks and the
volatility shocks to the long-run risk model of Bansal and Yaron (2004). Other models fo-
cus, as we do, on the risk prices rather than on the quantity, of risk, such as Andries (2015)
and Curatola (2015) who propose preferences with Þrst order-risk aversion to explain the
observed term structure patterns; or Khapko (2015) and Guo (2015), who both study other
dynamic extensions to Eisenbach and Schmalz(2016).3

These papers explicitly focus on matching downwardsloping term structures of risk
prices. However, the recent work by Bansal et al.(2017) documents that the term-structure

3They do so in a time-separable model, which confounds dynamically inconsistent risk preferences with
dynamically inconsistent time preferences (hyperbolic discounting). That approach makes the two ingre-
dientsÕ relative contributions opaque. Further, the approach does not accommodate formal solutions, and
thus formal interpretations.
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Figure 1: Preferences with horizon-dependent risk aversion.

of expected excess returns may beupwardsloping on average, though it was sharply down-
ward sloping during the recent Þnancial crisis of 2007 — 2009, su�ciently so to explain the
aforementioned empirical term-structure results (most of them derived over short time
periods that include the crisis years). None of the theoretical papers cited above matches
the slope dynamics described in van Binsbergen et al. (2013) and Bansal et al. (2017); or
proposes solutions to the challenge from Epstein et al. (2014) on the excessive preference
for early resolutions of uncertainty implied by the standard model. Our paper addresses
both sets of puzzles.

3 Preferences with horizon-dependent risk aversion

Field and laboratory experiments document that risk-taking behavior is a�ected by how
far in the future a risk occurs: subjects tend to be more risk averse for risks in the near
future than for distant ones. Early work by Jones and Johnson(1973) provides evidence for
such horizon-dependent risk aversions from a simulated medical trial. More recent studies
use the standard protocol of Holt and Laury (2002) to elicit risk aversion Ñ Noussair and
Wu (2006) in a within-subjects design and Coble and Lusk (2010) in an across-subjects
design Ñ both Þnding risk aversion decreases as risk becomes more distant in time. The
same pattern is documented by Sagristano, Trope, and Liberman (2002) and Baucells and
Heukamp (2010) using binary choice among lotteries, as well as by Onculer (2000) and
Abdellaoui, Diecidue, and Onculer (2011) using certainty equivalents.

Figure 1 provides an example of preferences with horizon-dependent risk aversion.
Under this illustrative example, all subjects are asked to rank a lottery with payo� x = 1
for certain versus a lottery with payo� x = 3 with a 50% chance, and x = 0 otherwise.
All subjects choose their rankings at time t = 0, however for some the lottery happens at
time t = 2 (the Òdistant riskÓ case), and for some the lottery happens at time t = 1 (the
Òimminent riskÓ case).
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The experimental evidence shows that subjects may prefer the certain lottery over the

risky one when the risk is immediate and prefer the same risky lottery over the certain

one when the risk is more distant in the future. For a real-life intuitive example, think

of someone paying a considerable amount of money for a parachute jumping experience,

and then refusing to actually jump once in the plane. This is the notion of horizon-dependent

risk aversionas introduced by Eisenbach and Schmalz(2016) in a static, time separable,

framework.

In the illustrative example above, one subgroup ranks lotteries with horizon t = 1

and the other subgroup ranks lotteries with horizon t = 2: within each subgroup the

ranking is for lotteries that will happen at the same time. That the rankings change with

the horizon reveals a dynamic inconsistency in intra-temporalchoices, not in inter-temporal

choices. In particular, the well documented hyperbolic discounting (e.g. Phelps and Pollak,

1968; Laibson, 1997) or other time inconsistencies concerning inter-temporal decisions do

not inßuence, or cause, the evidence discussed above.4

3.1 Dynamic preference model

The experimental evidence that subjects are more risk averse for short-horizon than for

long-horizon payo#s seems particularly relevant when considering the relation between

the timing and the pricing of risk Ñ at the center of the recent challenges to the long-run

risk framework. To explore its formal implications in a dynamic framework, we introduce

the notion of horizon-dependent risk aversion in the recursive utility preferences of Ep-

stein and Zin (1989), the standard model for long-run risk pricing. The preferences of Ep-

stein and Zin (1989) are dynamically consistent (by deÞnition). We generalize their model

by relaxing the dynamic consistency axiom of Kreps and Porteus (1978).

To simplify the exposition, we present the model with only two levels of risk aversion

! and !! : we assume that the agent treats immediate uncertainty with risk aversion ! , and

all delayed uncertainty with risk aversion !! , where ! > !! " 1 in line with the experimen-

tal evidence. Our approach with only two levels of risk aversion is analogous to the " -#

framework ( Phelps and Pollak, 1968; Laibson, 1997) as a special case of the general non-

exponential discounting model of Strotz (1955). Appendix A has the model for general

sequences{ ! h} h" 1 of risk aversion at horizon h. As long as risk aversions reach a constant

level beyond a given horizon, closed-formed solutions similar to those derived in Section 4

and in Section 5 obtain.
4Eisenbach and Schmalz(2016) also show horizon-dependent risk aversion is conceptually orthogonal

to time-varying risk aversion ( Constantinides, 1990; Campbell and Cochrane, 1999) .
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At any time t, we denote by Et [ á] = E [ á | It ] the expectation conditional on I t , the

information set at time t.

DeÞnition 1 (Dynamic horizon-dependent risk aversion) . The agentÕs utility in period t is

given by

Vt =
"

(1 # " ) C1# $
t + " Et

#
!V1# !

t+ 1

$1# $
1# !

% 1
1# $

, (1)

where the continuation value !Vt+ 1 satisÞes the recursion

!Vt+ 1 =
"

(1 # " ) C1# $
t+ 1 + " Et+ 1

#
!V1# !!

t+ 2

$1# $
1# !!

% 1
1# $

. (2)

As in Epstein and Zin (1989), the utility Vt depends on the deterministic current con-

sumption Ct and on the certainty equivalent Et
#

!V1# !
t+ 1

$ 1
1# ! of the continuation value !Vt+ 1,

where the aggregation of the two periods occurs with constant elasticity of intertemporal

substitution given by 1/ $. However, in contrast to Epstein and Zin (1989), the certainty

equivalent of consumption starting at t + 1 is calculated with relative risk aversion ! ,

wherein the certainty equivalents of consumption starting at t + 2 and beyond are cal-

culated with relative risk aversion !! .

This is the concept of horizon-dependent risk aversion applied to the recursive valu-

ation of certainty equivalents, as in Epstein and Zin (1989), but with risk aversion ! for

imminent uncertainty and risk aversion !! for delayed uncertainty. Our model nests the

model of Epstein and Zin (1989) when ! = !! , and, in turn, nests the standard CRRA time-

separable model when ! = !! = $. Any di#erence in the results we derive below under

the preferences of DeÞnition 1 to those obtained under the standard model of Epstein and

Zin (1989) thus hinges on !! $= ! .

The horizon-dependent valuation of risk implies a dynamic inconsistency, as the un-

certain consumption stream starting at t + 1 is evaluated as !Vt+ 1 by the agentÕs self att and

asVt+ 1 by the agentÕs self att + 1:

!Vt+ 1 =
"

(1 # " ) C1# $
t+ 1 + " Et+ 1

#
!V1# !!

t+ 2

$1# $
1# !!

% 1
1# $

$= Vt+ 1 =
"

(1 # " ) C1# $
t+ 1 + " Et+ 1

#
!V1# !

t+ 2

$1# $
1# !

% 1
1# $

Crucially, this disagreement between the agentÕs continuation value !Vt+ 1 at t and the

agentÕs utilityVt+ 1 at t + 1 arises only for uncertain consumption streams. For any deter-
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ministic consumption stream the horizon-dependence in Equation ( 1) becomes irrelevant

and we have

!Vt+ 1 = Vt+ 1 =
&

(1 # " ) ! h" 0" hC1# $
t+ 1+ h

' 1
1# $

.

Our model implies dynamically inconsistent risk preferences while maintaining dynami-

cally consistent timepreferences, focusing strictly on the experimental evidence described

above. The results we obtain in the analysis that follows can therefore be attributed to hori-

zon dependent risk aversion, orthogonal to extant models of time inconsistency, such as

hyperbolic discounting.

3.2 Timing of risk and dynamic inconsistency

An agent with the time-inconsistent preferences of DeÞnition 1 can be either naive or so-

phisticated about the disagreement between her temporal selves; she can either commit

to multi-period strategies or be compelled to re-optimize every period. The valuation of

early versus late resolutions of uncertainty, which we analyze Þrst, is by nature a static

problem: its solutions are the same for naive and sophisticated investors, with or without

commitment. But these modeling choices matter for dynamic outcomes, in particular the

equilibrium asset prices we then derive.

To do so, we follow the tradition of Strotz (1955), and assume the agent is fully ra-

tional and sophisticated when making choices in period t to maximize Vt. Self t realizes

that its valuation of future consumption, given by !Vt+ 1, di#ers from the objective func-

tion Vt+ 1 which self t + 1 will maximize. The solution then corresponds to the subgame-

perfect equilibrium in the sequential game played among the agentÕs di#erent selves (see

Appendix A.1). We assume no commitment in our general case, as appropriate for a rep-

resentative agent who trades and clears the market at all times, and as such cannot pre-

commit to a given strategy Ñ similar to the framework of Luttmer and Mariotti (2003)

for non-geometric discounting. However, we let the sophisticated agents commit to cer-

tain strategies when we explore the implications of liquidity crises in which one-period

pricing breaks down.

Extending our results to an agent naive about her own dynamic inconsistencies is

straightforward, and does not present any conceptual challenge. We brießy discuss and

derive formal results for this alternative approach in Appendix A.3.
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4 Preference for early or late resolution of uncertainty

To analyze whether agents have a preference for early or late resolutions of uncertainty,

two types of consumption streams are evaluated at a given time t. In the Þrst case, con-

sumption shocks are revealed gradually, whenever they are realized: the shock a#ecting

consumption at t + h is revealed at time t + h, for all horizons h " 1. In the second case, all

future consumption shocks are revealed in the next period, at time t + 1, even when they

a#ect consumption at a later period: the shock a#ecting consumption at t + h is revealed

at time t + 1, for all h " 1.

Crucially, even when she receives the information about her future risk shocks earlier,

at time t + 1, the agent cannot act on it to change her future consumption stream. From

the point of view of time t, when the agent evaluates the two consumption streams with

or without an early resolution of uncertainty, the distributions of future risks are there-

fore exactly the same in both cases. In the expected utility framework, she would assign

them the exact same value. However, because risk aversion is disentangled from the elas-

ticity of intertemporal substitution in the preferences of Epstein and Zin (1989), as well

as in our pseudo-recursive horizon-dependent risk aversion model of DeÞnition 1, two

consumption streams with ex-ante identical risks, but di#erent timing for the resolution

of uncertainty, can have di#erent values.

An agent with Epstein and Zin (1989) utility prefers early resolutions of uncertainty if

and only if ! > $.5 How much so depends on the wedge ! # $ and on the magnitude of

the uncertainty in the consumption shocks. As Epstein et al. (2014) point out, the param-

eters used in the long-run risk literature imply a strong preference for early resolutions of

uncertainty. For example, in the calibration of Bansal and Yaron (2004), the representative

agent would be willing to forgo up to 35%of her consumption stream in exchange for all

uncertainty to be resolved the next month instead of gradually over time. 6

Choosing a consumption stream with an early resolution, i.e. where all shocks are re-

vealed at time t + 1, rather than the same consumption stream with late resolutions, i.e.

where shocks are revealed as they come over time, corresponds to shifting all future risk,

short-term and long-term, to a next-period risk. Whether long-term risks are evaluated

with the same risk aversion as immediate risks or not will thus matter for the relative val-
5To see why, note that in the case where all future shocks are revealed att + 1, the shocks to consumption

from t + 2 onward are evaluated with the inverse elasticity of intertemporal substitution $ since they are
no longer uncertain; whereas, when shocks are revealed over time, variations in consumption from t + 2
onward are still risky at t + 1 and thus evaluated with risk aversion ! .

6In the calibration of Bansal et al. (2009), the timing premium is even greater, at more than 80%Ñ see
Figure 2 and Table 2 in Section 6.
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ues of the two theoretical consumption streams, and therefore for the preference for early

or late resolutions of uncertainty.

To formalize this argument, and derive how an agent with the horizon-dependent risk

aversion preferences of DeÞnition 1 assesses the early resolution of uncertainty, we repli-

cate the formal analysis of Epstein et al. (2014). We assume, as they do, a unit elasticity of

intertemporal substitution, $ = 1, and log-normal consumption growth with time varying

drift, corresponding to long-run risk. Using lower-case letters to denote logs throughout,

e.g.ct = log Ct, we let consumption follow the process

ct+ 1 # ct = µc + %cxt + &c' Wc,t+ 1, (3)

xt+ 1 = ( xxt + &x' Wx,t+ 1.

For simplicity xt , which represents time variations in the average consumption growth, is

one-dimensional and the shocks Wc,t and Wx,t are i.i.d. N (0, 1) and orthogonal. The drift

is stationary, i.e. ( x is contracting.

Denoting by V!
t the agentÕs utility att if all uncertainty Ñ i.e. the entire sequence of

shocks { Wc,t+ h,Wx,t+ h} h" 1 in the consumption process (3) Ñ is resolved at t + 1, and Vt

the agentÕs utility when shocks are revealed over time, the timing premium is deÞned as

TPt =
V!

t # Vt

V !
t

.

It represents the fraction of utility the agent is willing to forego for an early rather than

late resolution of uncertainty.

Proposition 1. An agent with the horizon-dependent risk aversion preferences of DeÞnition1with

$ = 1, facing the consumption process(3), has a constant timing premium

TP = 1 # exp
"

1
2

&
1 #

(
! # (1 + " ) ( ! # !! )

) ' " 2

1 # " 2&2
v' 2

%
, (4)

where&2
v = &2

c +
&

"%c
1# "( x

' 2
&2

x.

To highlight the role played by horizon-dependent risk aversion, note that an agent

with the standard preferences of Epstein et al. (2014) with risk aversion ! has a timing

premium given by TP = 1# exp
&

1
2 (1 # ! ) " 2

1# " 2 &2
v' 2

'
, obtained by setting ! = !! in Equa-

tion (4). When ! > !! , the timing premium is lower since

! # (1 + " ) ( ! # !! ) < ! .
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Corollary 1. For an agent with horizon dependent risk aversion,! > !! unambiguously lowers

the timing premium.

To understand the result of Corollary 1, observe that a consumption stream with an

early resolution of uncertainty concentrates all the risk on the Þrst period, over which the

agent is the most risk averse, with immediate risk aversion ! . In contrast, a consumption

stream with late resolutions of uncertainty has risk spread over multiple horizons, over

some of which the agent is moderately risk averse, with risk aversion !! < ! .7

Consider next cases when the timing premium turns negative, indicating a preference

for lateresolution. For an Epstein-Zin agent, this happens when ! < $. In our model, with

$ = 1 and the consumption process (3), the timing premium is negative if and only if

! < 1 + (1 + " ) ( ! # !! ) . (5)

When ! > !! , we immediately obtain 1 + (1 + " ) ( ! # !! ) > $ = 1, and the agent with

horizon-dependent risk aversion can have a preference for late resolution, even when both

risk aversions ! and !! are greater, even considerably so, than the inverse elasticity of in-

tertemporal substitution Ñ as long as the decline in risk aversion across horizons is su"-

ciently large. For example, suppose we set immediate risk aversion ! = 10 and " close to

1. Then the agent will prefer uncertainty to be resolved late rather than early according to

the condition of Equation ( 5) as long as !! < 5.5which is substantially larger than $ = 1.8

Corollary 2. An agent with horizon-dependent risk aversion can prefer a late resolution of uncer-

tainty even when all risk aversions exceed the inverse elasticity of intertemporal substitution, i.e.

when! > !! > $.

The result of Corollary 2 is of particular interest because extant calibrations of the long-

run risk model with Epstein and Zin (1989) preferences require ! greater than $ by an or-

der of magnitude to match equilibrium asset pricing moments Ñ thus resulting in a high

7The same intuitive argument applies for other dynamic inconsistencies on inter-temporal rather than
intra-temporal choices, our focus. In Appendix B.1, we derive the timing premium under hyperbolic dis-
counting, whereby ! = !! but, at time t, the value Vt is derived with time discount parameter " , and the
continuation value !Vt+ 1 is derived with time discount parameter !" > " . The preference for an early res-
olution of uncertainty still holds if and only if ! > $, but the magnitude of the timing premium is lower
than if the time discount is !" everywhere (and greater than if it is " everywhere). Introducing hyperbolic
discounting has, however, a small quantitative e#ect: e.g. under the calibration of Bansal and Yaron (2004)
with constant volatility, ! = 10, $ = 1, and " = 0.8,!" = 0.998, the timing premium only goes from 27%
(under " = !" = 0.998) to 22.5%.

8In the calibrated model of Section 6, we add time varying volatility to the consumption process ( 3),
which a#ects this result: we obtain a preference for late resolution whenever !! < 4.42.
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timing premium. Under the horizon-dependent risk aversion preference model of DeÞ-
nition 1, the same calibration for ! and $ no longer automatically implies such a strong
preference for early resolutions of uncertainty. This is true even when the long-run risk
aversion !! also remains above the inverse elasticity of intertemporal substitution, in line
with the micro evidence. We quantify this result in Section 6, when we consider the joint
implications of our calibrated model for asset pricing moments, term structures, and pref-
erences for early or late resolution of uncertainty. We Þnd an equity premium consistent
with the data can obtain both under preferences for early resolutions andunder prefer-
ences for late resolutions (see Table2).

While there is no direct evidence on the values of timing premia Ñ by construction a
purely theoretical question Ñ Epstein et al. (2014) argue that the magnitudes implied by
calibrations of the long-run risk model with standard Epstein and Zin (1989) preferences
are excessive. Since the agent cannot act on early information to modify the consumption
stream she will receive, it appears unreasonable that she would be willing to forgo a large
fraction of her wealth for earlier resolutions. Besides, in numerous cases in both the em-
pirical and the theoretical literatures, agents prefer not to observe early information, even
when they canact on it, suggesting a preference for late rather than early resolution of un-
certainty (seeGolman et al., 2016; Andries and Haddad , 2015). This makes the magnitude
of the timing premium under the standard long-run risk model all the more problematic.

A representative agent whose individual optimal decisions appear contrary to com-
monsense considerations Ñ here on early versus late resolutions of uncertainty Ñ raises
doubts as to the legitimacy of the long-run risk model to derive equilibrium asset prices. In
this section, we formally showed that introducing the notion of horizon-dependent risk
aversion with the preferences of DeÞnition 1 can lower the timing premium to any rea-
sonable range. Our model provides a reasonable answer, grounded in the experimental
evidence, to the challenge posed byEpstein et al. (2014), as long as it can also still match
asset pricing moments. This is the question we turn to next.

5 Asset prices

The decision to opt for an early, rather than late, resolution of uncertainty is by nature a
multi-horizon problem, as the agent chooses how valuable it is to discover all her future
risk at the next immediate period, rather than slowly over time. In this multi-horizon prob-
lem, introducing a wedge between the immediate risk aversion and the long-horizon risk
aversion has a Þrst-order impact on the agentÕs valuations Ñ as we show in Proposition 1.
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In contrast, asset prices are set by agents who can, in general, reduce their risk allocation
decisions to a repeated one-period problem. When nothing prevents agents from trading
every period, prices at equilibrium must be such that the immediate consumption utility
loss from investing a marginal amount of wealth today is strictly o�set by the expected
next-periodutility gain when evaluating the investmentÕs payo�. When the conditions for
the one-period set-up are satisÞed, as in our general case, they naturally limit the impact
horizon dependent risk aversion can have on equilibrium asset prices: if all decisions are
made one period to the next, how much should investors care about their long-horizon
risk aversion at all? This is the question we formally explore next, where we show how
and when our model a�ects risk prices and the term-structure of expected returns.

5.1 One-period pricing

We derive the marginal pricing of risk in our model using a standard consumption-based
asset pricing framework. We assume a fully sophisticated representative agent who re-
optimizes every period and thus cannot commit. All decisions are made in sequential one-
period problems (see Appendix A.1 for details).

For asset pricing purposes, the object of interest is the stochastic discount factor (SDF)
under the preferences of DeÞnition 1. The SDFÕs derivation is based on the intertemporal
marginal rate of substitution

" t,t + 1 =
dVt / dWt + 1

dVt / dCt
,

which satisÞes the Euler equation, whereby the equilibrium price at time t of a future
payo� Xt + 1 is given by Pt = Et [ " t,t + 1Xt + 1 ] .

We decompose the marginal utility of next-period wealth as

dVt

dWt + 1
=

dVt

d !Vt + 1
%

d !Vt + 1
dWt + 1

, (6)

and appeal to the envelope condition at t + 1:

dVt + 1
dWt + 1

=
dVt + 1
dCt + 1

(7)

Note that in our model, the decomposition in Equation ( 6) involves !Vt + 1, the value self t
attaches to future consumption, while the envelope condition in Equation ( 7) concerns
Vt + 1, the objective function of self t + 1. Nonetheless, due to the homotheticity of our pref-
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erences, we can rely on the fact that both !Vt + 1 and Vt + 1 are homogeneous of degree one
in wealth and therefore

d !Vt + 1/ dWt + 1
dVt + 1/ dWt + 1

=
!Vt + 1
Vt + 1

.

This allows us to formally derive the SDF as:

" t,t + 1 =
dVt + 1/ dCt + 1

dVt / dCt
%

dVt

d !Vt + 1
%

!Vt + 1
Vt + 1

.

Proposition 2. An agent with the horizon-dependent risk aversion preferences of Definition1 has
a one-period stochastic discount factor

" t,t + 1 = "
"

Ct + 1
Ct

%# $

* +, -
( I )

%

.

/
!Vt + 1

Et
#!V1# !

t + 1
$ 1

1# !

0

1
$# !

* +, -
( II )

%

2
!Vt + 1
Vt + 1

3 1# $

* +, -
( III )

. (8)

The SDF consists of three multiplicative parts. The Þrst term (I) is standard, capturing
the intertemporal substitution between t and t + 1, and is governed by the time discount
factor " and the elasticity of intertemporal substitution 1/ $.

The second term (II) captures the unexpected shocks realized in t + 1 to consumption
in the long-run, i.e. beyond t + 1. It compares the ex-post realized t + 1 utility !Vt + 1 to

its ex-ante certainty equivalent Et
#!V1# !

t + 1
$ 1

1# ! ; both the comparison as well as the certainty
equivalent are evaluated with immediate risk aversion ! . The same term obtains under
standard Epstein-Zin preferences with the di�erence that, in our model, the t + 1 utility
of self t ( !Vt + 1) di�ers from that of self t + 1 (Vt + 1).

Finally, the third term (III) captures the dynamic inconsistency in our model by loading
on the disagreement between selvest and t + 1 when evaluating their t + 1 utilities, given
by the ratio !Vt + 1/ Vt + 1.

To derive closed-form solutions for the pricing of risk under horizon-dependent risk
aversion, we again focus on the case$ = 1, a unit elasticity of intertemporal substitution. 9

We maintain the standard Lucas-tree endowment economy but generalize the consump-
tion process (3) by adding stochastic volatility, in line with the long-run risk literature (e.g.

9In Appendix C, we consider $ $= 1 and the approximation of a rate of time discount close to zero, " & 1.
We show our main results remain valid as long as the elasticity of intertemporal substitution is greater or
equal to one (1/ $ " 1).
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Bansal and Yaron, 2004; Bansal et al., 2009):

ct + 1 # ct = µc + %cxt + &c' tWc,t + 1

xt + 1 = ( xxt + &x ' tWx,t + 1 (9)

' 2
t + 1 = ' 2 + ( '

&
' 2

t # ' 2
'

+ &' W' ,t + 1

For simplicity, we assume that xt is one-dimensional and the three shocks Wc,t , Wx,t and
W' ,t are i.i.d. N ( 0, 1) and orthogonal. 10 Both ( x and ( ' are contracting.

With $ = 1, and taking logs, the SDF in Equation (8) becomes

) t,t + 1 = log " # ( ct + 1 # ct ) + ( 1 # ! )
"

!vt + 1 # Et !vt + 1 #
1
2

( 1 # ! ) var t !vt + 1

%

* +, -
shock to !vt + 1 evaluated with risk aversion !

.

The shocks to the continuation value !vt + 1 are priced with immediate risk aversion ! , as in
the standard model of Epstein and Zin (1989). The sole di�erence is that the SDF involves
shocks to !vt + 1 (which evaluates future uncertainty with risk aversion !! ) rather than vt + 1

(which evaluates future uncertainty with risk aversion ! ). To understand the pricing im-
plications of horizon-dependent risk aversion, we consider how the t + 1 utilities !vt + 1 and
vt + 1 di�er.

Lemma 1. Under the Lucas-tree endowment process(9) and$ = 1,

!vt + 1 # vt + 1 =
1
2

" ( ! # !! )
&

&2
c + %2

v&2
x + * v ( !! ) 2 &2

'

'
' 2

t + 1, (10)

where%v is independent of both! and !! , and * v ( !! ) < 0 is independent of! :

%v =
"%c

1 # "( x
,

* v ( !! ) =
1
2

" ( 1 # !! )
1 # "( '

&
&2

c + %2
v&2

x

'
. (11)

Equation (10) reßects that the t + 1 value of self t (!vt + 1) and that of self t + 1 (vt + 1) only
di�er in their t + 1 valuation of uncertain consumption starting in t + 2 onwards, which is
governed by volatility ' 2

t + 1. Self t evaluates this uncertainty with low risk aversion !! while
self t + 1 evaluates it with high risk aversion ! ; implying that !vt + 1 # vt + 1 is positive, and
increasing in ! # !! and in the amount of uncertainty driven by volatility ' 2

t + 1.
10These assumptions can be generalized. We employ them here to make our results comparable to those

of Bansal and Yaron (2004) and Bansal et al.(2009).
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We obtain the following central result:

Proposition 3. If volatility is constant, i.e.' t = ' ' t in the consumption process(9) , horizon
dependent risk aversion does not a�ect equilibrium risk prices.

Under constant volatility, the agent can fully anticipate how her future self will re-
optimize, and her time inconsistency does not cause any additional uncertainty in her
one-period decision making. Only unanticipated changes in her intra-temporal decisions,
when the quantity of risk varies through time, get priced in the risky assetsÕ excess re-
turns. This result crucially hinges on the fact that, in our preference framework, only intra-
temporal decisions are time inconsistent: inter-temporal decisions are unchanged from the
standard model.

If volatility is constant at all times, !Vt + 1 and Vt + 1 only di�er by a constant wedge Ñ see
Equation (10) Ñ and any shock impacts !Vt + 1 and Vt + 1 one-for-one. The di�erence between
the two turns inconsequential for the stochastic discount factor of Equation ( 8), which
variations become una�ected by the dynamic time inconsistency of horizon-dependent
risk aversion:

" t,t + 1 # "
"

Ct + 1
Ct

%# $
.

/
!Vt + 1

Et
#!V1# !

t + 1
$ 1

1# !

0

1
$# !

= "
"

Ct + 1
Ct

%# $
.

/ Vt + 1

Et
#
V1# !

t + 1
$ 1

1# !

0

1
$# !

if ' t = ' ' t

This equality obtains because self t and self t + 1 disagree only about the risk aversion
applied to future uncertainty but not about the deterministic part of the consumption
stream starting at t + 1. The result of Proposition 3 can be extended to any endowment
process where uncertainty is constant through time, e.g. jumps or regime switches, such
that unexpected shocks a�ectV and !V identically. Proposition 3 is also not speciÞc to the
knife-edge case of a unit elasticity of intertemporal substitution, $ = 1, as we show in
Appendix C.

When volatility is time varying, on the other hand, Lemma 1 suggests that equilibrium
prices willdepend on both the immediate risk aversion ! and the longer-term one !! . To
illustrate the role the parameters %v and * v ( !! ) Ñ from Lemma 1 Ñ play in our model, we
decompose the shocks to!vt + 1 into the components due to the three sources of uncertainty
in consumption process (9).

Lemma 2. Under the Lucas-tree endowment process(9) and$ = 1,

!vt + 1 # Et [ !vt + 1 ] =
(
ct + 1 # Et [ ct + 1 ]

)
+ %v

(
xt + 1 # Et [ xt + 1 ]

)
+ * v ( !! )

&
' 2

t + 1 # Et [ ' 2
t + 1 ]

'
.
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Positive shocks to the immediate consumption, ct + 1 # Et [ ct + 1 ] , or to the expected con-
sumption growth, xt + 1 # Et [ xt + 1 ] , naturally increase !vt + 1, the value of the consumption
stream starting at t + 1. On the other hand, increases in aggregate uncertainty, ' 2

t + 1 #
Et [ ' 2

t + 1 ] , reduce the value !vt + 1 Ñ consistent with * v ( !! ) < 0 in Lemma 1.
Because%v does not depend on the risk aversions ! and !! , the pricing of assets that

covary only with the immediate consumption shocks or with shocks to the drift is unaf-
fected by horizon-dependent risk aversion, i.e. is unchanged from the standard long-run
risk model. Once again, this at-Þrst-glance puzzling result can be understood as follows:
these shocks concern inter-temporal consumption smoothing decisions only and, as such,
their valuations are governed by the elasticity of intertemporal substitution and not by
risk aversion, nor by the dynamic risk inconsistency of our model. Long-run risk aversion
!! only matters for the pricing of shocks to the time-varying volatility, as also indicated by
Proposition 3.

From Lemma 2 we obtain:

Proposition 4. Under the Lucas-tree endowment process(9) and$ = 1, the stochastic discount
factor satisfies

) t,t + 1 # Et [ ) t,t + 1 ] = # !& c' tWc,t + 1 + ( 1 # ! ) %v&x ' tWx,t + 1

+ ( 1 # ! ) * v ( !! ) &' W' ,t + 1. (12)

The risk free rate is independent of!! :

r f ,t = # log " + µc + %cxt +
"

1
2

# !
%

&2
c' 2

t (13)

The pricing of the immediate consumption shocks, given by the term !& c' tWc,t + 1 in
Equation (12); the pricing of drift shocks, the term ( 1 # ! ) %v&x ' tWx,t + 1 in Equation ( 12);
as well as the risk-free rate in Equation (13); all depend onlyon the immediate risk aversion
! .11 In line with the results of Lemma 2, these shocks hinge on one-period inter-temporal
decisions only, and are therefore una�ected by the intra-temporal dynamic inconsistency
of horizon-dependent risk aversion. Their pricing is unchanged from the standard long-
run risk model.

Our model yields a negative price for volatility shocks, from ( 1 # ! ) * v ( !! ) &' W' ,t + 1 in
Equation (12). Assets with payo�s that covary with aggregate volatility provide valuable
insurance, consistent with the existing long-run risk literature and the observed evidence

11When $ $= 1, the risk-free rate can depend on ÷! , though not risk prices for immediate consumption
shocks and drift shocks — see AppendixC.
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(seeDew-Becker et al., 2016, and Andries et al. , 2016for recent examples). The volatility
shock prices in Equation (12) depend on both the immediate risk aversion ! , and on the
longer-horizon one through * v ( !! ) : shocks to volatility make future intra-temporal deci-
sions uncertain and, for this reason, how risky they are depends on horizon-dependent
risk aversion. Due to the lower risk aversion !! < ! , their implied long-run uncertainty
does not ÒfeelÓ as costly, which reduces the value of hedges against volatility shocks, i.e.
assets whose payo�s covary positively with shocks to volatility. Consistent with this intu-
ition, we obtain from Equation ( 11) in Lemma 1, the formal result

* v ( !! )
* v ( ! )

=
1 # !!
1 # !

< 1. (14)

In Section 6, we calibrate our model and show that, despite the reduction in the pricing
of volatility shocks highlighted in Equation ( 14), we can match the usual asset pricing
moments Ñ see Tables 1aand 1b.

We now turn to the analysis of term-structure premia, to see if our model can match
the observed pricing evidence, when risk varies through time, as successfully as it does
the valuations of early versus late resolutions of risk in Section 4.

5.2 Term-structure

As we discussed in the literature review, several recent papers (van Binsbergen et al., 2012;
van Binsbergen and Koijen, 2016; Giglio et al. , 2014; Dew-Becker et al., 2016; Andries et al. ,
2016) provide empirical evidence in favor of a downward sloping term-structure of ex-
pected excess returns, for various types of risk (equity index, housing, volatility risk).
Bansal et al. (2017) on the other hand, Þnd that the term-structure for equity risk pre-
mia is upward sloping on average, but sharply downward sloping during the 2007— 2009
Þnancial crisis (see also van Binsbergen et al.(2013)); su�ciently so to drive the downward
sloping averages derived over short periods in van Binsbergen et al. (2012) and van Bins-
bergen and Koijen (2016).

At Þrst glance, introducing the concept of a risk aversion that decreases with the hori-
zon of payo� uncertainty Ñ our horizon-dependent risk aversion framework Ñ appears
perfectly tailored to obtain a downward sloping term-structure of expected returns. How-
ever, as Propositions3 and 4 make clear, the impact of horizon-dependent risk aversion on
equilibrium risk prices is far from tautological: it is either null, when volatility is constant
in the economy, or it is limited to volatility risk premia, when volatility is time varying.
Can our model of preferences, grounded in the experimental evidence that agents are
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dynamically inconsistent for intra-temporal decisions, nonetheless help explain observed
features of the term-structure of expected returns?

To formally derive the implications of our model, we analyze the expected excess re-
turns on dividend strip futures. 12 This allows us to compare our calibrated term structure
results to the empirical evidence in van Binsbergen and Koijen (2016) and Bansal et al.
(2017).

In line with the long-run risk literature ( Bansal and Yaron, 2004; Bansal et al., 2009), and
consistent with the consumption growth process ( 9), we assume that dividends follow a
log-normal growth process given by:

dt + 1 # dt = µd + %dxt + +&c' tWc,t + 1 + &d' tWd,t + 1, (15)

where the shocks Wd,t are i.i.d. N ( 0, 1) and orthogonal to the consumption shocks Wc,t ,
Wx,t and W' ,t ;13 %d captures the link between the mean consumption growth and the mean
dividend growth; + the correlation between immediate consumption and dividend shocks
in the business cycle.

We denote the value at time t for a dividend strip with horizon h, i.e. the claim to the
aggregate dividend at horizon t + h, asDt,h; and that of a risk-free zero-coupon bond with
horizon t + h as Bt,h.

The one-period holding returns on dividend strip futures — equivalent to one-period
excess returns on dividend strips — are given by:

RF
t + 1,h =

Dt + 1,h# 1/ Dt,h
Bt + 1,h# 1/ Bt,h

.

Lemma 3. The price of a dividend strip with maturityh at timet is

Dt,h
Dt

= exp
&

!µd,h + %d,hxt + * d,h' 2
t

'
,

where

¥ !µd,h depends on both! and !! ; * d,h depends on! but not on!! ; and %d,h = ( # %c + %d ) 1# ( h
x

1# ( x

depends on neither! nor !! .
12Under a dividend strip futures contract with horizon h at time t, the dividends paid on an index over

the year t + h will be exchanged at time t + h against a Þxed payment that is set at time t. The dividend
strip futures were Þrst introduced on the Eurostoxx 50 in 2008. A similar analysis on the term-structure of
risk-free zero-coupon bond yields can be found in Appendix B.3.

13Once again, these assumptions can be generalized, but they are those ofBansal and Yaron (2004) and
Bansal et al.(2009).

20



¥ %d,h > 0 is increasing with the horizonh when%d > %c. !µd,h and* d,h are not monotone in
the horizonh.14

The values of claims to the future dividends of the market index are a�ected by the
wedge ! # !! in risk aversions for short-horizon payo�s versus long-horizon payo�s through
the constant terms { !µd,h} h. How the term-structure of risk aversions a�ects the term-
structure of dividend strip prices is not one-for-one, and depends on the parameters of
the model: { !µd,h} h is not monotone in h. And their co-variations with the aggregate shocks
through the state variables { xt , ' t } depend only on the immediate risk-aversion ! . This is
consistent with the results of Section 5.1: horizon-dependent risk aversion has a muted
impact on equilibrium prices under the one-period asset pricing framework.

Even though the dividend stripsÕ price loadings { %d,h, * d,h} h on the consumption shocks
do not depend on !! , the one-period expected returns on these assets may be impacted by
horizon-dependent risk aversion, since the pricing of volatility shocks depends on both !

and !! Ñ see Proposition 4.

Proposition 5. When volatility is time varying, the slopes of the term-structures of dividend strips’
expected returns and expected excess returns

¥ are flatter when ! > !! , but of the same sign, than under the standard model! = !! ;

¥ vary over time with volatility, without changing sign: they are steeper when' t is high.

The pricing results of Lemma 3 and Proposition 5 show that horizon-dependent risk
aversion a�ects the pricing of equity assets, in levels and term structures, when volatility
is time varying; but a lower risk aversion for long-horizon payo�s than for short-horizon
payo�s does notresult in lower expected returns for long-horizon assets than for short-
horizon assets.

Under the standard calibrations of the long-run risk model with Epstein and Zin (1989)
preferences (Bansal and Yaron, 2004; Bansal et al., 2009), the term-structure of expected re-
turns of dividend strip futures is upward sloping. Proposition 5 states that relaxing the
model, as we do, to let the long-run risk aversion !! be lower than the immediate risk
aversion ! cannot help reverse the slope to downward sloping, at any point in time Ñ
Proposition 5 holds for both conditional and unconditional term-structures. This is in di-
rect contradiction with van Binsbergen et al. (2012) and van Binsbergen and Koijen (2016),
who Þnd the term-structure of dividend strip futuresÕ expected returns is downward slop-
ing across assets and regions.

14The closed-form solutions for !µd,h and * d,h are provided in Appendix B.3.
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Interestingly, van Binsbergen and Koijen (2016) Þnd their result to be more robust for
the term-structure of Sharpe ratios, and our model cangenerate a downward sloping term-
structure of Sharpe ratios for mid to long-term horizons under the standard calibration
of long-run risk, as we show in Section 6.15 Though the slope of the expected returns of
dividend futures is more upward sloping in more volatile times Ñ from Proposition 5
under the standard calibration of the model Ñ that of the Sharpe ratios can become more
downward sloping for mid to long-term horizons. Note however our calibrated one-period
model does not quantitatively match the Sharpe ratios from van Binsbergen and Koijen
(2016): the term-structure is only slightly downward sloping, and quantitatively too ßat
compared to their data (see Figure 4 in Section 6).

Can our model still help explain equilibrium asset prices, in levels and in the term-
structure, over time? The recent evidence in Bansal et al. (2017) suggests an interesting
framework to study this question. Bansal et al. (2017) Þnd, using data on dividend strip
futures as in van Binsbergen and Koijen (2016), that the term-structure of expected ex-
cess returns was increasing most of the time over 2004—2017; but was sharply downward
sloping during the Þnancial crisis (December 2007—June 2009) — see alsovan Binsbergen
et al. (2013). The evidence in Gormsen (2016) further indicates that, on average, low price-
dividend ratios Ñ e.g. periods of high volatility under the model of Section 5.1 Ñ corre-
spond to steeper upwardsloping term-structures of expected excess returns Ñ consistent
with the time series result of Proposition 5.

Taken together, these empirical results suggest that our model performs quite well:
Proposition 4 shows that it qualitatively matches the usual asset pricing moments, and
Proposition 5 shows that it matches the term-structure of expected returns on equity, and
its variations over time, outside of periods of crisis (how well it performs quantitatively
is explored in Section 6); and it can do so without implying an un-reasonable preference
for early resolutions of uncertainty, in contrast to the standard long-run risk framework Ñ
the results of Proposition 1 and Corollary 2.

But can it also propose a rationalization of the slope reversal that happened during the
Þnancial crisis of 2007—2009?16 This is the question we explore next.

15This result can obtain because !! < ! results in a ßat term-structure of dividend strip expected excess
returns beyond a given horizon, while the quantity of risk keeps rising with the horizon under long-run risk
processes.

16Bansal et al. (2017) argue the standard long-run risk model can generate a reversal in the slope of ex-
pected holding-to-maturity returns if the negative shocks to the aggregate consumption during the crisis,
both in drift and volatility, are expected to be followed by a reversal to the mean. However, the calibrated
model (e.g. Bansal and Yaron, 2004; Bansal et al., 2009) cannot quantitatively match the slopes of the term-
structures in and out of crisis. To explain the slope reversal would, for instance, require introducing a regime
shift consumption process with extremely sharp mean-reversions following the crisis shocks.
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5.3 Constrained asset pricing Ñ liquidity crunch

Our analysis so far rests on the assumption of a one-period framework: the stochastic dis-
count factor derived in Proposition 2 assumes retrading in every period, appropriate for
a representative agent who determines the equilibrium asset pricing moments we con-
sider in Section 6. In dynamically consistent models, one-period pricing is an innocuous
assumption: the h-period stochastic discount factor that prices, at time t, an asset with pay-
o� at t + h is the same as the product of all one-period stochastic discount factors between
t and t + h. For dynamically inconsistent preferences such as the horizon-dependent risk
aversion model of DeÞnition 1, the long-horizon stochastic discount factors may di�er
from the products of the one-period factors and therefore departing from the one-period
framework to allow for lower trading frequency cana�ect equilibrium prices. We investi-
gate how much so in this section, focusing on the term-structure of expected returns.

We interpret lower trading frequencies as a form of illiquidity which can be both exoge-
nously imposed, e.g. through infrequent trading opportunities, or endogenously optimal,
e.g. when buy-and-hold strategies help avoid rising trading costs. The literature on asset
prices with liquidity risk points out the additional risk premium directly attributable to
illiquidity (e.g. Acharya and Pedersen, 2005; Lee, 2011).17 Our approach here is comple-
mentary since our focus is on the slope of the term structure of risk premia, not on its
level.

We consider the limit case of an investor who prices assets with horizon h under a pure
buy-and-hold strategy: she assumes no re-trading at intermediate dates.

Proposition 6. Under the horizon-dependent risk aversion preferences of Definition1 and$ = 1,
the stochastic discount factor for a buy-and-hold strategy with horizonh is given by18

" buy-and-hold
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"
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whereas under one-period trading the horizonh stochastic discount factor is given by
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17See alsoDu�e (2010) and Tirole (2011) for surveys of the literature on liquidity.
18The more general case with $ $= 1 is provided in Appendix A.2.
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Compared to the one-period investor, with implicit risk aversion ! for future shocks
at all horizons, the buy-and-hold agent evaluates the shocks between t + 2 and t + h with
lower risk aversion !! Ñ suggesting a higher willingness to pay for risky assets and there-
fore lower expected returns than under frequent intermediate trading. 19

To fully explore the role liquidity crunches can play, letÕs assume equilibrium prices
are set by buy-and-hold investors. This implicitly makes several assumptions: that it is
internally optimal for investors to choose such buy-and-hold strategies when liquidity falls
(e.g. higher transaction costs); and that there are investors to clear the market every period.
Sketching a complete equilibrium model to rationalize such assumptions is beyond the
scope of this paper and left for future research.

To be able to speak to the empirical evidence, we again consider expected one-period
excess returns on dividend strip. At time t, the dividend strip with horizon h is priced by
buy-and-hold investors with horizon h, under the stochastic discount factor " buy-and-hold

t,t + h .
At time t + 1, the same dividend strip (now with horizon h # 1) is priced by buy-and-
hold investors with horizon h # 1, under the stochastic discount factor " buy-and-hold

t + 1,t + 1+ h# 1 =
" buy-and-hold

t + 1,t + h . This implies a one-period return on dividend strip futures between t and
t + 1 given by

RF
t + 1,h =

Et + 1
#
" buy-and-hold

t + 1,t + h Dt + h
$4

Et
#
" buy-and-hold

t,t + h Dt + h
$
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#
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t + 1,t + h
$4

Et
#
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Proposition 7. Under consumption process(9) and dividend risk(15), buy-and-hold investors
with the horizon-dependent risk aversion preferences of Definition1 have a downward impact on
the slope of the term structure of dividend strips’ expected excess returns.

The result holds even when volatility is constant, as in consumption process(3). If volatility is
time varying, the downward pressure on the term-structure is greater when the economy is more
volatile.

Proposition 7 can explain the evidence of Bansal et al. (2017) that the term-structure
of expected excess returns was sharply downward sloping during the Þnancial crisis of
2007— 2009, if we assume that prices over that period were driven, at least partly, by buy-
and-hold investors. This seems reasonably realistic, whether driven by actual constraints
on trading frequencies in the form of liquidity disruptions, or driven by optimal choices,

19We show in Appendix A.3 that naive agents in the one-period standard framework behave as the buy-
and-hold investors in Proposition 6: " naive

t,t + 1 % á á á %" naive
t + h# 1,t + h = " buy-and-hold

t,t + h , when $ = 1.
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so as to avoid higher trading costs (see Brunnermeier , 2009, for a detailed description of
the liquidity disruptions during the Þnancial crisis).

The result of Proposition 7also sheds light on di�erences in term structures across mar-
kets, suggesting a more downward sloping term structure in markets with less liquidity
and/or with longer trading horizons. This matches quite naturally the empirical evidence
in Giglio et al. (2014) for the housing market Ñ long-horizon assets with high transaction
costs.

Horizon-dependent risk aversion preferences (DeÞnition 1) thus formally imply term-
structures of expected returns in line with the evidence, not only with the average up-
ward/ßat shape (Section 5.2) but also with its time variations in good time Ñ higher slope
under higher volatility (Section 5.2) Ñ andwith the slope reversal in liquidity crises (Sec-
tion 5.3). This separates our model from the existing recent literature on term-structures of
returns which focuses on deriving and rationalizing downward sloping term structures of
expected returns at all times (see our review of the literature) Ñ contrary to the evidence
in Bansal et al.(2017) and van Binsbergen et al. (2013).

In the next section, we explore whether our model performs not just qualitatively but
also quantitatively.

6 Quantitative results

The consumption and dividend growth processes ( 9) and (15) are calibrated strictly as in
Bansal et al. (2014). This choice, instead of a GMM approach incorporating term struc-
ture moments which could improve the Þt of Figures 3, 4 and 5, allows us to highlight
how the preference model of DeÞnition 1 Ñ rather than changes in the calibration for the
endowment process Ñ a�ects prices.

The calibration of Bansal et al.(2014) Þts moments in the macro data, within the con-
straints of the consumption growth model (Tables 1a and 1b, data source from ShillerÕs
website, annual data 1926—2009). Note that Þtting both the strongly positive autocorre-
lation for consumption growth at the one-year frequency and the strongly negative one
at the four-year frequency is di�cult when the time varying drift follows an AR(1) pro-
cess (seeBryzgalova and Julliard , 2015, for a recent analysis of consumption growth in
the data). In line with Bansal et al.(2014), we use " = 0.9989for the monthly rate of time
discount. The elasticity of intertemporal substitution is 1 throughout (see Appendix C for
$ $= 1 results).
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Table 1: Calibration.

(a) Parameters.

Process Parameters

ct µc = 0.15%
%c = 1
&c = 1

xt ( x = 0.975
&x = 0.038

' t ( ' = 0.999
' = 0.72%
&' = 0.00028%

dt µd = 0.15%
%d = 2.5
&d = 5.96
+ = 2.6

(b) Results.

Moment Data Calibr.

E [ dcons] 0.02 0.02
' [ dcons] 0.03 0.03
AC1 [ dcons] 0.29 0.21
AC2 [ dcons] 0.03 0.15
AC3 [ dcons] # 0.17 0.12
AC4 [ dcons] # 0.22 0.10
AC5 [ dcons] 0.03 0.07

E [ ddiv ] 0.01 0.02
' [ ddiv ] 0.11 0.19
AC1 [ ddiv ] 0.18 0.05

$ ( ddiv, dcons) 0.52 0.45

Data is from ShillerÕs
website, annual 1926—2009

6.1 Timing premium

We Þrst study the quantitative implications of horizon dependent risk aversion, under the
preferences of DeÞnition 1, on the agentÕs willingness to pay for an early resolution of all
consumption uncertainty.

Figure 2 plots the timing premium for both horizon-dependent risk aversion and for
standard Epstein-Zin preferences when ! = 10, using the calibration of Bansal et al.(2014)
in Table 1a.20

As pointed out by Epstein et al. (2014), calibrating a standard Epstein-Zin represen-
tative agent to match asset pricing moments implies an extreme high willingness to pay
for early resolution Ñ more than 80% of the value of her expected consumption under
Bansal et al. (2014).21 Under the same calibration, an agent with horizon-dependent risk
aversion can have a signiÞcantly lower willingness to pay for an early resolution. In fact,
for delayed risk aversion !! ( 4.42, the agent with the utility model of DeÞnition 1 prefers
a lateresolution of risk (negative timing premium).

This result is of particular interest for two reasons. First, as brießy discussed in Sec-
20In Section 4, we analyze the timing premium under the constant volatility process ( 3), as in Epstein et al.

(2014), to make the results more readily interpretable. We formally derive the timing premium under the
stochastic volatility process (9) in Appendix B.

21In the calibration of Bansal and Yaron (2004) with stochastic volatility, but a lesser persistence in the
volatility shocks, the timing premium is ÒjustÓ 30%.
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Figure 2: E�ect of horizon-dependent risk aversion (HDRA) on willingness to pay for early
resolution of uncertainty (timing premium), compared to Epstein-Zin preferences (EZ) with
! = 10.

tion 4, apart from the fact that a 80%premium seems unrealistically large, there is no clear
consensus concerning the ÒrightÓ value for the timing premium: how large it should be,
or whether it should even be positive. With horizon-dependent risk aversion, and the cal-
ibration of Table 1a, the possible values for the timing premia range from # 38%to + 83%:
depending on the parametrization of the long-horizon risk aversion !! , our framework can
accommodate any reasonable valuation of early versus late resolutions of uncertainty. Sec-
ond, and crucially, the average risk free rate and equity premium are mostly determined
by the calibration of the immediate risk aversion ! , with !! playing a limited role. This
is made clear by the results presented in Table 2. Taken together, these two observations
show that, under the horizon-dependent risk aversion model of DeÞnition 1, calibrating
the usual asset pricing moments no longer precludes a reasonable timing premium.

6.2 Asset prices

We now turn to the pricing of risk in the term structure. We present results for !! & 1,
under which horizon-dependent risk aversion is the most impactful. Figures under higher
calibrations of !! are provided in Appendix D.

Figure 3 depicts the unconditional expected dividend strips one-month returns (an-
nualized) and Figure 4 their unconditional Sharpe ratios, under horizon-dependent risk
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Table 2: Equity premium versus timing premium.

Equity
premium

Timing
premium

Data 6.64% —

Calibration !! & 1 7.01% —38%
!! = 2 7.07% —29%
!! = 3 7.14% —18%
!! = 4.42 7.23% 0
!! = 5 7.26% 9%
!! = 7 7.39% 41%
!! = ! = 10 7.58% 83%

Annualized returns under ! = 10, $ = 1; calibration of Bansal
et al. (2009) Ñ Table 1a; data is from ShillerÕs website, annual
1926—2009.

aversion with ! = 10 and !! & 1, as well as under standard Epstein-Zin preferences with
! = 10. The elasticity of intertemporal substitution is set to 1 in both cases. Both term-
structures are increasing all the way through under the standard Epstein-Zin model and
the calibration of Bansal et al.(2009) Ñ Table 1a; a well established result in the literature.
Under horizon-dependent risk aversion, the term-structure of expected returns is also
upward sloping but considerably ßatter, as formally established in Proposition 5. Under
! = 10and !! & 1, and the calibration of Bansal et al.(2009) (Table 1a), the term-structure
is almost ßat beyond the ten-year horizon. This results in a slightly downward-sloping
term-structure of Sharpe ratios for longer-horizon assets, in Figure 4.

As we discuss above, in Section5.1, the term-structures in Figures 3and 4under horizon-
dependent risk aversion do not match the evidence in van Binsbergen et al. (2012) and
van Binsbergen and Koijen (2016). They Þnd increasing expected returns and Sharpe ra-
tios over the Þrst 7-year horizons, as we do; but with 7-year horizon levels much above the
whole index, implying the term-structures must decrease sharply beyond a given hori-
zon Ñ something we cannot replicate. On the other-hand, the term-structures we obtain
are consistent with the most recent evidence in Bansal et al. (2017): outside of the crisis
years 2007—2009, these authors Þnd increasing term-structures over the Þrst 7-year hori-
zons for dividend stripsÕ expected returns and Sharpe ratios, with just slightly lower levels
on the whole index, suggesting a ßattening or very slight decrease beyond a given hori-
zon.22 Such term-structure shapes do not obtain under the standard Epstein-Zin model,

22Their term-structure moments are obtained over the short 2005—2017 period, so we do not try to match
their levels, just their overall shapes.
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Figure 3: Term structure of dividend strips expected excess returns under horizon-dependent
risk aversion (HDRA) and Epstein-Zin (EZ), with the calibration of Bansal et al.(2014) Ñ Ta-
ble 1a.
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Figure 4: Term structure of Sharpe ratios of dividend strips returns under horizon-dependent
risk aversion (HDRA) and Epstein-Zin (EZ), with the calibration of Bansal et al.(2014) Ñ Ta-
ble 1a.
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as Figures3 and 4 make clear. But modifying the long-run risk framework to introduce the
notion of horizon-dependent risk aversion, as we do with the preferences of DeÞnition 1,
makes the model compatible with the term-structures of risk prices observed in non-crisis,
ÒnormalÓ times.

This can be achieved under horizon-dependent risk aversion without compromising
on the modelÕs ability to match the usual asset pricing moments: Table 2 shows the equity
premium is barely a�ected Ñ from 7.58%under the standard Epstein-Zin preferences
with ! = 10, to 7.01%under ! = 10 and !! & 1, with the calibration of Bansal et al.
(2009); while Proposition 4 formally shows the risk-free rate is left unchanged by the { ! , !! }
speciÞcation.

We now turn to the quantitative implications of horizon-dependent risk aversion for
periods that depart from business-as-usual, when one-period pricing no longer prevails
for equilibrium prices, e.g. the liquidity crunch of 2007 — 2009. Under the buy-and-hold
model sketched out in Section 5.3, assets with payo�s at horizon h " 2are priced with both
immediate risk aversion ! and long-term risk aversion !! , whereas assets with one-period
horizon payo�s are priced with high risk aversion ! only. This results in a downward
pressure on the term-structure of expected excess returns (Proposition 7). We derive, and
illustrate in Figure 5, the conditional expected returns of dividend futures for buy-and-
hold investors at short-to-medium horizons when volatility reaches unusually high levels
in the consumption and dividend growth processes ( 9) and (15), under the calibration of
Bansal et al.(2009).

Our model implies a sharply downward sloping term-structure of expected excess re-
turns under liquidity crunches. To quantify the slope impact of our model, during liquid-
ity crises, we calculate the conditional expected excess returns for the seven-year horizon
dividend risk relative to the next-period horizon dividend risk Ñ corresponding to the
empirical analysis in Bansal et al. (2017). As Table 3 makes clear, the standard model of
Epstein and Zin (1989) under the calibration of Bansal et al.(2014) fails unambiguously in
generating the observed term-structure during the Þnancial crisis of 2007—2009: its seven-
year horizon expected one-month excess return is more than three times that of the imme-
diate horizon, whereas it is roughly ten times smaller in the data. In contrast, our model
with horizon-dependent risk aversion can generate the correct ratio for the short-horizon
relative to the longer-horizon excess returns (for !! & 1).

Note the levels for the expected excess returns in Figure 5 are much lower than those
reported in Bansal et al.(2017) (they Þnd more than 10%annualized excess returns at the
front end of the curve), suggesting the consumption and dividend growth processes ( 9)
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Figure 5: Term structure of dividend strips expected excess returns for buy-and-hold strategies
under horizon-dependent risk aversion (HDRA) and Epstein-Zin (EZ), with the calibration of
Bansal et al.(2014) Ñ Table 1a; case with ' t four standard deviations above average.

Table 3: Ratio of immediate versus 7-year dividend strip expected excess returns.

Data (Bansal et al., 2017): 0.09

Calibration: !! & 1 0.11
!! = 2 0.39
!! = 3 0.67
!! = 5 1.27
!! = ! = 10 3.46

Annualized returns under ! = 10, $ = 1;
calibration of Bansal et al.(2009) (Table 1a);
case' 2

t = ' 2 + 4&' .
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and (15) may require regime shift modiÞcations to rationalize risk premia during the Þ-
nancial crisis; though they may simply be attributable to a liquidity risk level e�ect. 23 How-
ever, the slope impact of horizon-dependent risk aversion buy-and-hold investors matches
the evidence under the business-as-usual calibration of Bansal et al.(2009), and does not
require reversed-engineered process adjustments for the Þnancial crisis period. 24

7 Conclusion

Established equilibrium asset pricing models have been criticized because they make coun-
terfactual predictions about the term structure of risk prices (e.g., van Binsbergen et al.,
2012, 2013; van Binsbergen and Koijen, 2016; Bansal et al., 2017). Calibrations of the long-
run risk model of Bansal and Yaron (2004) are also di�cult to reconcile with the microe-
conomic foundations of the preferences they employ ( Epstein et al., 2014). We show that
these criticisms do not imply that the whole model needs to be discarded. Instead, re-
laxing the restriction of Epstein and Zin (1989) that risk preferences be constant across
horizons makes it possible to retain the desirable pricing properties of the long-run risk
model, obtain reasonable implications for the timing of the resolution of uncertainty, and
simultaneously match the slopes of the term structure of risk prices in andout of liquidity
crises.

Our analysis is accomplished with considerable technical di�culty and is not due to
a tautological relationship between risk aversion and risk pricing at di�erent maturities.
In particular, we show how to solve for general equilibrium asset prices in an economy
populated by agents with dynamically inconsistent risk preferences. In a one-period clas-
sical model, the price of risk depends on the horizon, but only if volatility is stochastic.
This insight leads to several testable predictions. One prediction we analyze, that the term
structure of risk premia be subject to slope reversals in and out of crises, rationalizes the
recent empirical literature Ñ as far as we know the only model to do so. Other implications
of our framework, in particular how liquidity inßuences term-structuresÕ slopes, constitute
opportunities for future research. We conclude that relaxing the common assumption that
risk preferences are constant across maturities Ñ and speciÞcally, replacing it with the as-
sumption that short-horizon risk aversion is higher than long-horizon risk aversion Ñ is
a useful new tool for asset pricing and macro-Þnance.

23SeeMuir (2016) for a discussion on the behavior and dramatic increases in risk premia during Þnancial
crises.

24Our results are illustrated under the high volatility case ' 2
t = ' 2 + 4&' , but similar ratios obtain for

' t = ' .
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Appendix (For online publication)

A Derivations under general sequence of risk aversions

Let { ! h} h" 1 be a decreasing sequence representing risk aversion at horizonh. In period t,
the agent evaluates a consumption stream starting in period t + h by

Vt,t + h =

2

( 1 # " ) C1# $
t + h + " Et + h

5
V1# ! h+ 1

t,t + h+ 1

6 1# $
1# ! h+ 1

3 1
1# $

for all h " 0. (16)

The agentÕs utility in period t is given by setting h = 0 in (16) which we denote by Vt ) Vt,t

for all t:

Vt =

2

( 1 # " ) C1# $
t + " Et

5
V1# ! 1

t,t + 1

6 1# $
1# ! 1

3 1
1# $

As in the Epstein-Zin model, utility Vt depends on deterministic current consumption Ct

and a certainty equivalent Et

5
V1# ! 1

t,t + 1

6 1
1# ! 1 of uncertain continuation values Vt,t + 1, where

the aggregation of the two periods occurs with constant elasticity of intertemporal substi-
tution given by 1/ $, regardless of the horizon h. However, in contrast to the Epstein-Zin
model, the certainty equivalent of consumption starting at t + 1 is calculated with relative
risk aversion ! 1, wherein the certainty equivalent of consumption starting at t + 2 is cal-
culated with relative risk aversion ! 2, and so on. This is the concept of horizon-dependent
risk aversion applied to the nested valuation of certainty equivalents, as in the Epstein-Zin
model, but with relative risk aversion ! h for the certainty equivalent formed at horizon h.
Our model therefore nests the Epstein-Zin model if we set ! h = ! for all h, which, in turn,
nests the standard time-separable model for ! = $.

An interesting question is the possibility to axiomatize the horizon-dependent risk
aversion preferences we propose. Our dynamic model builds on the functional form of
Epstein and Zin (1989) which captures non-time-separable preferences of the form ax-
iomatized by Kreps and Porteus (1978). However, our generalization of Epstein and Zin
(1989) explicitly violates Axiom 3.1 (temporal consistency) of Kreps and Porteus (1978)
which is necessary for the recursive structure. In contrast to Epstein-Zin, the preference
of our model captured by Vt ) Vt,t is notrecursive since Vt + 1 ) Vt + 1,t + 1 does not recur in
the deÞnition of Vt .

In order to derive the closed-form solution for Vt ) Vt,t , we assume that risk aversion is
decreasing until some horizon H and constant thereafter, ! h > ! h+ 1 for h < H and ! h = !!
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for h " H . Starting with Vt,t + H , our model then corresponds to the standard Epstein-Zin
recursion with risk aversion !! for which we can use the standard solution. Determining
Vt then is just a matter of solving backwards.

A.1 Stochastic discount factor

We present the derivation of the stochastic discount factor with a general sequence of risk
aversions { ! h} h" 1. The equations simplify to the ones in the main text by setting ! 1 = !

and ! h = !! for h " 2.

Proof of Proposition 2. This appendix derives the stochastic discount factor of our dy-
namic model using an approach similar to the one used by Luttmer and Mariotti (2003)
for dynamic inconsistency due to non-geometric discounting. In every period t the agent
chooses consumptionCt for the current period and state-contingent levels of wealth { Wt + 1,s}
for the next period to maximize current utility Vt subject to a budget constraint andantic-
ipating optimal choice C!

t + h in all following periods ( h " 1):

max
Ct ,{ Wt + 1}

2

( 1 # " ) C1# $
t + " Et

5(
V !

t,t + 1
) 1# ! 1

6 1# $
1# ! 1

3 1
1# $

s.t. " tCt + Et [ " t + 1Wt + 1 ] ( " tWt

V !
t,t + h =

2

( 1 # " )
(
C!

t + h
) 1# $ + " Et + h

5(
V !

t,t + h+ 1
) 1# ! h+ 1

6 1# $
1# ! h+ 1

3 1
1# $

for all h " 1.

Denoting by , t the Lagrange multiplier on the budget constraint for the period- t problem,
the Þrst order conditions are: 25

¥ For Ct : 2

( 1 # " ) C1# $
t + " Et

5
V1# ! 1

t,t + 1

6 1# $
1# ! 1

3 1
1# $# 1

( 1 # " ) C# $
t = , t .

25For notational ease we drop the star from all Cs and Vs in the following optimality conditions but it
should be kept in mind that all consumption values are the ones optimally chosen by the corresponding
self.
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¥ For eachWt + 1,s:

1
1 # $

2

( 1 # " ) C1# $
t + " Et

5
V1# ! 1

t,t + 1

6 1# $
1# ! 1

3 1
1# $# 1

"
d

dWt + 1,s
" Et

5
V1# ! 1

t,t + 1

6 1# $
1# ! 1

= Pr [ t + 1,s]
" t + 1,s

" t
, t .

Combining the two, we get an initial equation for the SDF:

" t + 1,s
" t

= "
1

1# $
1

Pr [ t + 1,s]
d

dWt + 1,s
Et

5
V1# ! 1

t,t + 1

6 1# $
1# ! 1

1
1

( 1 # " ) C# $
t

. (17)

The agent in states at t + 1 maximizes

2

( 1 # " ) C1# $
t + 1,s + " Et + 1,s

5(
V !

t + 1,s,t + 2
) 1# ! 1

6 1# $
1# ! 1

3 1
1# $

and has the analogous Þrst order condition for Ct + 1,s:

2

( 1 # " ) C1# $
t + 1,s + " Et + 1,s

5
V1# ! 1

t + 1,s,t + 2

6 1# $
1# ! 1

3 1
1# $# 1

( 1 # " ) C# $
t + 1,s = , t + 1,s.

The Lagrange multiplier , t + 1,s is equal to the marginal utility of an extra unit of wealth in
state t + 1,s:

, t + 1,s =
1

1 # $

2

( 1 # " ) C1# $
t + 1,s + " Et + 1,s

5
V1# ! 1

t + 1,s,t + 2

6 1# $
1# ! 1

3 1
1# $# 1

%
d

dWt + 1,s

2

( 1 # " ) C1# $
t + 1,s + " Et + 1,s

5
V1# ! 1

t + 1,s,t + 2

6 1# $
1# ! 1

3

.

Eliminating the Lagrange multiplier , t + 1,s and combining with the initial Equation ( 17)
for the SDF, we get:

" t + 1,s
" t

= "
1

Pr[ t + 1,s]
d

dWt + 1,s
Et

5
V1# ! 1

t,t + 1

6 1# $
1# ! 1

d
dWt + 1,s

2

( 1 # " ) C1# $
t + 1,s + " Et + 1,s

5
V1# ! 1

t + 1,s,t + 2

6 1# $
1# ! 1

3
"

Ct + 1,s
Ct

%# $

.
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Expanding the V expressions, we can proceed with the di�erentiation in the numerator:

" t + 1,s
" t

= Et

7

8
"

( 1 # " ) C1# $
t + 1 + " Et + 1 [ . . . ]

1# $
1# ! 2

%1# ! 1
1# $

9

:

1# $
1# ! 1

# 1

%
"

( 1 # " ) C1# $
t + 1,s + " Et + 1,s[ . . . ]

1# $
1# ! 2

%1# ! 1
1# $ # 1

%"

d
dWt + 1,s

"
( 1 # " ) C1# $

t + 1,s + " Et + 1,s[ . . . ]
1# $

1# ! 2

%

d
dWt + 1,s

"
( 1 # " ) C1# $

t + 1,s + " Et + 1,s[ . . . ]
1# $

1# ! 1

%
"

Ct + 1,s
Ct

%# $

. (18)

For Markov consumption C = %W, we can divide by Ct + 1,s and solve both di�erentiations:

¥ For the numerator:

d
dWt + 1,s

.

;;/ ( 1 # " ) C1# $
t + 1,s + " Et + 1,s

7

8
"

( 1 # " ) C1# $
t + 2 + " Et + 2 [ . . . ]

1# $
1# ! 3

%1# ! 2
1# $

9

:

1# $
1# ! 2

0

<<1

=

.

;;;/
( 1 # " ) 1 + " Et + 1,s

7

=8

2

( 1 # " )
"

Ct + 2
Ct + 1,s

%1# $

+ " Et + 2 [ . . . ]
1# $

1# ! 3

3 1# ! 2
1# $

9

>:

1# $
1# ! 2

0

<<<1

%%1# $
t + 1,sW

# $
t + 1,s.

¥ For the denominator:

d
dWt + 1,s

.

;;/ ( 1 # " ) C1# $
t + 1,s + " Et + 1,s

7

8
"

( 1 # " ) C1# $
t + 2 + " Et + 2 [ . . . ]

1# $
1# ! 2

%1# ! 1
1# $

9

:

1# $
1# ! 1

0

<<1

=

.

;;;/
( 1 # " ) 1 + " Et + 1,s

7

=8

2

( 1 # " )
"

Ct + 2
Ct + 1,s

%1# $

+ " Et + 2 [ . . . ]
1# $

1# ! 2

3 1# ! 1
1# $

9

>:

1# $
1# ! 1

0

<<<1

%%1# $
t + 1,sW

# $
t + 1,s.
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Substituting these into Equation ( 18) and canceling we get:

" t + 1,s
" t

=

( 1 # " ) C1# $
t + 1,s + " Et + 1,s

7

8
"

( 1 # " ) C1# $
t + 2 + " Et + 2 [ . . . ]

1# $
1# ! 3

%1# ! 2
1# $

9

:

1# $
1# ! 2

( 1 # " ) C1# $
t + 1,s + " Et + 1,s

7

8
"

( 1 # " ) C1# $
t + 2 + " Et + 2 [ . . . ]

1# $
1# ! 2

%1# ! 1
1# $

9

:

1# $
1# ! 1

%"
"

Ct + 1,s
Ct

%# $

.

;;;;;;/

( 1 # " ) C1# $
t + 1,s + " Et + 1,s[ . . . ]

1# $
1# ! 2

Et

7

8
"

( 1 # " ) C1# $
t + 1,s + " Et + 1 [ . . . ]

1# $
1# ! 2

%1# ! 1
1# $

9

:

0

<<<<<<1

$# ! 1

.

Simplifying and cleaning up notation, we arrive at

" t,t + 1 = "
"

Ct + 1
Ct

%# $

.

;;/
Vt,t + 1

Et

5
V1# ! 1

t,t + 1

6 1
1# ! 1

0

<<1

$# ! 1
"

Vt,t + 1
Vt + 1

%1# $

,

as stated in the text. !

A.2 Stochastic discount factor Ñ illiquid markets

To derive the h-period ahead stochastic discount factor, we use the intertemporal marginal
rate of substitution

" t,t + h =
dVt / dWt + h

dVt / dCt

where

dVt

dWt + h
=

dVt

dVt,t + h
%

dVt,t + h
dWt + h

=
dVt

dVt,t + 1
%

h# 1

$
- = 1

dVt,t + -

dVt,t + - + 1
%

dVt,t + h
dWt + h

.
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Due to the homotheticity of our preferences, we can rely on the fact that both Vt,t + h and
Vt + h are homogeneous of degree one which implies that

dVt,t + h/ dWt + h
dVt + h/ dWt + h

=
Vt,t + h
Vt + h

.

This allows us to derive the h-period SDF " t,t + h as

" t,t + h = " h
"

Ct + h
Ct

%# $ "
Vt,t + h
Vt + h

%1# $ h

$
- = 1

.

;;/
Vt,t + -

Et + - # 1

5
V1# ! -

t,t + -

6 1
1# ! -

0

<<1

$# ! -

.

A.3 Naive investors

In our analysis so far, we assumed agents are self-aware about their own dynamic incon-
sistencies. If our agent is naive about it instead, she wrongly assumes she will optimize on
Vt,t + h instead of Vt + h for all h " 1. In particular, the envelope conditions at t + 1 applies
to Vt,t + 1 in her one-period SDF, which becomes:

" naive
t,t + 1 = "

"
Ct + 1
Ct

%# $
.

/ Vt,t + 1

Et
#
V1# ! 1

t,t + 1
$ 1

1# ! 1

0

1
$# ! 1

The following one-period SDFs for h " 1 are then given by:

" naive
t + h,t + h+ 1 = "

"
Ct + h+ 1
Ct + h

%# $
.

/ Vt,t + h+ 1

Et + h
#
V1# ! h+ 1

t,t + h+ 1
$ 1

1# ! h+ 1

0

1
$# ! h+ 1

When $ = 1, naive agents behave as the buy-and-hold investors in Proposition 6 :

" naive
t,t + 1 % á á á %" naive

t + h# 1,t + h |$= 1 = " buy-and-hold
t,t + h |$= 1 .

B Exact solutions for $ = 1

This appendix presents the exact solutions derived for unit elasticity of intertemporal sub-
stitution, 1/ $ = 1, and log-normal uncertainty. Denoting logs by lowercase letters, our
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general model (16) becomes

vt = ( 1 # " ) ct + "
"

Et [ vt,t + 1 ] +
1
2

( 1 # ! 1 ) var t ( vt,t + 1 )
%

, (19)

with the continuation value vt,t + 1 satisfying the recursion

vt,t + h = ( 1 # " ) ct + h + "
"

Et + 1 [ vt,t + h+ 1 ] +
1
2

( 1 # ! h+ 1 ) var t + 1 ( vt,t + h+ 1 )
%

.

B.1 Valuation of risk and temporal resolution

Proof of Proposition 1. Starting at horizon t + 1, Equation (19) corresponds to the stan-
dard recursion

!vt + 1 = ( 1 # " ) ct + 1 +
"

1 # !!
log ( Et + 1 [ exp ( ( 1 # !! ) !vt + 2 ) ] ) .

If consumption follows process ( 3), guess and verify that the solution to the recursion
satisÞes

!vt # ct = !µv + !%vxt .

Substituting in and matching coe�cients yields

!vt # ct =
"

1 # "
µc +

"%c

1 # "( x
xt +

1
2

" ( 1 # !! )
1 # "

2

&2
c +

"
"%c

1 # "( x

%2
&2

x

3

' 2.

From the perspective of period t,

vt = ( 1 # " ) ct +
"

1 # !
log ( Et [ exp ( ( 1 # ! ) !vt + 1 ) ] )

and

vt # ct =
"

1 # "
µc +

"%c

1 # "( x
xt +

1
2

"
1 # "

2

&2
c +

"
"%c

1 # "( x

%2
&2

x

3

' 2 ( ( 1 # ! ) + " ( ! # !! ) ) ,

as stated in the text. !

44



If all risk is resolved at t + 1, log continuation utility v!
t,t + 1 is given by

v!
t + 1 = ( 1 # " ) ct + 1 + "

&
( 1 # " ) ct + 2 + "

(
( 1 # " ) ct + 3 + á á á

) '

= ct + 1 +
%

!
h= 1

" h ( ct + h+ 1 # ct + h ) .

From the perspective of period t, this continuation utility is normally distributed with
mean and variance given by

E[ v!
t + 1 ] = ct +

1
1 # "

µ +
%c

1 # "( x
xt ,

var ( v!
t + 1 ) =

1
1 # " 2 ' 2

2

&2
c +

"
"%c

1 # "( x

%2
&2

x

3

.

Using these expressions, we can derive the early resolution utility at t as

v!
t # ct =

"
1 # "

µc +
"%c

1 # "( x
xt +

1
2

" ( 1 # ! )
1 # " 2

2

&2
c +

"
"%c

1 # "( x

%2
&2

x

3

' 2.

Subtracting this from the utility vt under gradual resolution, we arrive at a timing pre-
mium given by

TP = 1 # exp

2
1
2

" 2 ( 1 # ! )
1 # "

2

&2
c +

"
"%c

1 # "( x

%2
&2

x

3

' 2
"

! # !!
1 # !

+
1

1 + "

%3

,

as stated in the text. !

Case with stochastic volatility: If consumption follows process ( 9) with stochastic volatil-
ity, guess and verify that the solution to the recursion for !vt satisÞes

!vt # ct = !µv + %vxt + !* v ' 2
t
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where

!µv =
"

1 # "

"
µc + !* v ' 2 ( 1 # ( ' ) +

1
2

( 1 # !! ) !* 2
v&2

'

%

%v =
"%c

1 # "( x

!* v =
1
2

" ( 1 # !! )
1 # "( '

&
&2

c + %2
v&2

x

'
.

We then obtain:
vt # !vt = #

1
2

" ( ! # !! )
5&

&2
c + %2

v&2
x

'
' 2

t + !* 2
v&2

'

6

vt # ct =
"

1 # "

"
µc + !* v ' 2 ( 1 # ( ' ) +

1
2

!* 2
v ( ( 1 # ! ) + " ( ! # !! ) ) &2

'

%

+ %vxt +
!* v

1 # !!
( ( 1 # ! ) + "( ' ( ! # !! ) ) ' 2

t

If all risk is resolved at t + 1, log continuation utility v!
t,t + 1 is given by

v!
t + 1 = ( 1 # " ) ct + 1 + "

&
( 1 # " ) ct + 2 + "

(
( 1 # " ) ct + 3 + á á á

) '

= ct + 1 +
%

!
h= 1

" h ( ct + h+ 1 # ct + h ) .

From the perspective of period t, this continuation utility is normally distributed with
mean and variance given by

Et [ v!
t + 1 ] = ct +

1
1 # "

µ +
%c

1 # "( x
xt ,

var t ( v!
t + 1 ) =

1
1 # " 2( '

"
' 2

t +
" 2

1 # " 2 ' 2 ( 1 # ( ' )
%2

&2
c +

"
"%c

1 # "( x

%2
&2

x

3

.

Using these expressions, we can derive the early resolution utility at t as

v!
t # ct =

"
1 # "

µc +
"%c

1 # "( x
xt +

1
2

" ( 1 # ! )
1 # " 2( '

2

&2
c +

"
"%c

1 # "( x

%2
&2

x

3 "
' 2

t +
" 2

1 # " 2 ' 2 ( 1 # ( ' )
%
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and

vt # v!
t =

"
1 # "

!* v ' 2 ( 1 # ( ' )
"

1 #
1 # !
1 # !!

1 # "( '

1 # " 2( '

"
1 + "

%

+ !* v( ' ' 2
t

"
1 # !!

"
( 1 # ! )

1 # "
1 # " 2( '

+ ( ! # !! )
%

+
1
2

"
?

( 1 # ! ) + " ( ! # !! )
1 # "

@
!* 2

v&2
'

Time premium under hyperbolic discounting Ò " -#Ó model Assume ! = !! , but " < !" .

!vt # ct =
!"

1 # !"
µc +

!"%c

1 # !"( x
xt +

1
2

!" ( 1 # ! )
1 # !"

.

/ &2
c +

2
!"%c

1 # !"( x

3 2

&2
x

0

1 ' 2

vt # ct =
"

1 # !
Et [ exp ( 1 # ! ) ( !vt + 1 # ct + 1 + ct + 1 # ct ) ]

!vt # ct =
!"

1 # !
Et [ exp ( 1 # ! ) ( !vt + 1 # ct + 1 + ct + 1 # ct ) ]

vt # ct =
"
!"

( !vt # ct )

=
"

1 # !"
µc +

"%c

1 # !"( x
xt +

1
2

" ( 1 # ! )
1 # !"

.

/ &2
c +

2
!"%c

1 # !"( x

3 2

&2
x

0

1 ' 2

If all risk is resolved at t + 1, log continuation utility v!
t,t + 1 is given by

v!
t + 1 =

&
1 # !"

'
ct + 1 + !"

&
( 1 # " ) ct + 2 + !"

(
( 1 # " ) ct + 3 + á á á

) '

= ct + 1 +
%

!
h= 1

!" h ( ct + h+ 1 # ct + h )

= ct +
%

!
h= 0

!" h ( ct + h+ 1 # ct + h ) .

From the perspective of period t, this continuation utility is normally distributed with
mean and variance given by
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Et [ v!
t + 1 ] = ct +

1
1 # !"

µc +
%c

1 # !"( x
xt ,

var t ( v!
t + 1 ) =

1
1 # !" 2

' 2

.

/ &2
c +

2
!"%c

1 # !"( x

3 2

&2
x

0

1 .

Using these expressions, we can derive the early resolution utility at t as

v!
t # ct =

"
1 # !

Et
#
exp ( 1 # ! )

(
v!

t + 1 # ct
)$

v!
t # ct =

"

1 # !"
µc +

"%c

1 # !"( x
xt +

1
2

" ( 1 # ! )
1 # !" 2

.

/ &2
c +

2
!"%c

1 # "( x

3 2

&2
x

0

1 ' 2

and

vt # v!
t =

1
2

" !" ( 1 # ! )
1 # !" 2

.

/ &2
c +

2
!"%c

1 # !"( x

3 2

&2
x

0

1 ' 2

with " < !" ,
!" 2

1# !" 2 > " !"
1# !" 2 > " 2

1# " 2 .

When ! > $, the timing premium under { " , !" } is greater than under the " -only model
and lower than under the !" -only model.

B.2 Stochastic discount factor

We now specialize to the case of two levels of risk aversion, setting ! 1 = ! and ! h = !! for
h " 2.

Proof of Lemma 1. Under the stochastic process (9), we can guess and verify that the
solution to the recursion for !vt satisÞes

!vt # ct = !µv + %vxt + !* v ' 2
t
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where we write !* v = * v ( !! ) throughout for simpliÞcation, and

!µv =
"

1 # "

"
µc + !* v ' 2 ( 1 # ( ' ) +

1
2

( 1 # !! ) !* 2
v&2

'

%

%v =
"%c

1 # "( x

!* v =
1
2

" ( 1 # !! )
1 # "( '

&
&2

c + %2
v&2

x

'
.

Substituting these into ( 19), we arrive at the solution for vt :

vt # !vt = #
1
2

" ( ! # !! )
5&

&2
c + %2

v&2
x

'
' 2

t + !* 2
v&2

'

6

and

vt # ct =
"

1 # "

"
µc + !* v ' 2 ( 1 # ( ' ) +

1
2

!* 2
v ( ( 1 # ! ) + " ( ! # !! ) ) &2

'

%

+ %vxt +
!* v

1 # !!
( ( 1 # ! ) + "( ' ( ! # !! ) ) ' 2

t

!

Proof of Lemma 2. The result follows directly from the expression for !vt + 1 in the proof
of Lemma 1. !

Proof of Proposition 4. Using the results of Lemmas 1 and (19), the expression for the
SDF follows from Equation ( 8):

) t,t + 1 =

ł) t, -* +

log " # µc # %cxt # ( 1 # ! ) 2 1 # "( '

" ( 1 # !! )
* v ( !! ) ' 2

t

# !& c' tWc,t + 1 + ( 1 # ! ) %v&x ' tWx,t + 1

+ ( 1 # ! ) * v ( !! ) &' ' tW' ,t + 1,

The risk-free rate is deÞned as r f ,t = # log Et ( " t,t + 1 ) and simpliÞes to

r f ,t = # log " + µc + %cxt +
"

1
2

# !
%

&2
c' 2

t

as stated in the text. !
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B.3 Term structure of returns

B.3.1 General claims

To make the problem as general as possible, we analyze horizon-dependent claims that
are priced recursively as

Yt,h = Et
#
" t,t + 1Gy,t + 1Yt + 1,h# 1

$
,

that is

yt,h = Et
#
) t,t + 1 + gy,t + 1 + yt + 1,h# 1

$
+

1
2

var t
(
) t,t + 1 + gy,t + 1 + yt + 1,h# 1

)
,

where

gy,t + 1 = µy + %yxt + * y ' 2
t

+ &y,c&c' tWc,t + 1 + &y,x&x ' tWx,t + 1 + &y,' &' ' tW' ,t + 1 + &y,d&d' tWd,t + 1,

and Yt,0 = 1.
Guess that

Yt,h = exp
&

!µy,h + %y,hxt + * y,h' 2
t

'
.

Supposeh " 1, then:

log !" t,t + 1Gt,t + 1Yt + 1,h# 1 =

A
BBBBBBBBBBBBC

BBBBBBBBBBBBD

log " # µc # %cxt # 1
2 ( 1 # ! ) 2 #(

&2
c + %2

v&2
x
)

' 2
t + !* 2

v&2
'
$

+ µy + %yxt + * y ' 2
t

+ !µy,h# 1 + %y,h# 1( xxt + * y,h# 1
(
' 2 ( 1 # ( ' ) + ( ' ' 2

t
)

+
(
# ! + &y,c

)
&c' tWt + 1 +

(
( 1 # ! ) %v + &y,x + %y,n# 1

)
&x ' tWt + 1

+
(
( 1 # ! ) !* v + &y,' + * y,h# 1

)
&' Wt + 1

+ &y,d&d' tWt + 1

Matching coe�cients, we Þnd the recursions, for h " 1:

¥ Terms in xt :

%y,h = # %c + %y + %y,h# 1( x

* %y,h =
(
# %c + %y

) 1 # ( h
x

1 # ( x
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¥ Terms in ' 2
t :

* y,h = #
1
2

( 1 # ! ) 2
&

&2
c + %2

v&2
x

'
+ * y,h# 1( ' + * y

+
1
2

&(
# ! + &y,c

) 2 &2
c +

(
( 1 # ! ) %v + &y,x + %y,h# 1

) 2 &2
x + &2

y,d&2
d

'

and thus the solution, for h " 1:

* y,h =
?
#

1
2

( 1 # ! ) 2
&

&2
c + %2

v&2
x

'
+ * y +

1
2

&(
# ! + &y,c

) 2 &2
c + &2

y,d&2
d

' @
1 # ( h

'

1 # ( '

+
1
2

h# 1

!
n = 0

( n
'

(
( 1 # ! ) %v + &y,x + %y,n# 1# h

) 2 &2
x

¥ Constant:

!µy,h # !µy,h# 1 = log " # µc + µy + ' 2 ( 1 # ( ' ) * y,h# 1

+
1
2

&(
( 1 # ! ) !* v + &y,' + * y,h# 1

) 2
# ( 1 # ! ) 2 !* 2

v

'
&2

'

and thus the solution, for h " 1:

!µy,h = h
"

log " # µc + µy #
1
2

( 1 # ! ) 2 !* 2
v&2

'

%

+
h# 1

!
n = 0

?
' 2 ( 1 # ( ' ) * y,n +

1
2

(
( 1 # ! ) !* v + &y,' + * y,n

) 2
&2

'

@

Note only the constant terms
E

!µy,h
F

are a�ected by the wedge between! and !! .
!

In line with the speciÞcation of van Binsbergen and Koijen (2016), we consider one-
period holding returns for these claims of the form

1 + RY
t + 1,h =

Gy,t + 1Yt + 1,h# 1

Yt,h
=

Gy,t + 1Yt + 1,h# 1

Et
#
" t,t + 1Gy,t + 1Yt + 1,h# 1

$

= Rf ,t
Et [ " t,t + 1 ] Gy,t + 1Yt + 1,h# 1

Et
#
" t,t + 1Gy,t + 1Yt + 1,h# 1

$,

with the risk-free rate
Rf ,t =

1
Et [ " t,t + 1 ]

.
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The conditional Sharpe Ratio is

SRY
t,h =

Et

5
1 + RY

t + 1,h

6
# 1

G
var t

&
1 + RY

t + 1,h

'

=
Et

&
1 + RY

t + 1,h

'
# 1

H

Et

" &
1 + RY

t + 1,h

' 2
%

#
&

Et

&
1 + RY

t + 1,h

'' 2

&

r f ,t +

A
C

D

(
!& y,c&2

c # ( 1 # ! ) %v
(
&y,x + %y,h# 1

)
&2

x
)

' 2
t

# ( 1 # ! ) !* v
(
&y,' + * y,h# 1

)
&2

'
G

' 2
t

&
&2

y,c&2
c +

(
&y,x + %y,h# 1

) 2 &2
x + &2

y,d&2
d

'
+

(
&y,' + * y,h# 1

) 2 &2
'

.

In line with the speciÞcation of van Binsbergen and Koijen (2016), we also consider
one-period holding returns for futures on these claims of the form

RF,Y
t + 1,h + 1 =

1 + RY
t + 1,h

1 + RB
t + 1,h

=
Gy,t + 1Yt + 1,h# 1

Yt,h

Bt,h
Bt + 1,h# 1

=
Gy,t + 1Yt + 1,h# 1

Et
(
" t,t + 1Gy,t + 1Yt + 1,h# 1

) Et ( " t,t + 1Bt + 1,h# 1 )
Bt + 1,h# 1

,

where Bt,h is the price of $1at horizon h, i.e. the price of a Bond with horizon h.
Their conditional Sharpe Ratio is

SRF,Y
t,h =

Et

&
1 + RF,Y

t + 1,h

'
# 1

G
var t

&
1 + RF,Y

t + 1,h

'

=
Et

&
1 + RF,Y

t + 1,h

'
# 1

H

Et

" &
1 + RF,Y

t + 1,h

' 2
%

#
&

Et

&
1 + RF,Y

t + 1,h

'' 2

&

A
C

D
' 2

t
(
!& y,c&2

c #
(
&y,x + %y,h# 1 # %b,h# 1

)
( ( 1 # ! ) %v + %b,h# 1 ) &2

x
)

#
(
&y,' + * y,h# 1 # * b,h# 1

) (
( 1 # ! ) !* v + * b,h# 1

)
&2

'
G

' 2
t

&
&2

y,c&2
c +

(
&y,x + %y,h# 1 # %b,h# 1

) 2 &2
x + &2

y,d&2
d

'
+

(
&y,' + * y,h# 1 # * b,h# 1

) 2 &2
'

.
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For the unconditionalSharpe ratio observe that the volatility process

' 2
t + 1 # ' 2 = ( '

&
' 2

t # ' 2
'

+ &' Wt + 1

is stationary under the constraint ( ' < 1 with normal distribution with mean ' 2 and
variance &' = &2

'
1# ( 2

'
.

and therefore E
(
exp

(
a' 2

t
))

= exp
&

a' 2 + 1
2a2 &2

'
1# ( 2

'

'
.

B.3.2 Bonds

Bond prices Let the price at time t for $1 in h periods be Bt,h with Bt,0 = 1. For h " 1, we
have

Bt,h = Et [ " t,t + 1Bt + 1,h# 1 ]

This is the general problem from above with gy,t + 1 = 0 for all t and therefore

bt,h = !µb,h + %b,hxt + * b,h' 2
t ,

with

%b,h = # %c
1 # ( h

x
1 # ( x

* b,h = #
1
2

( 1 # ! ) 2
&

&2
c + %2

v&2
x

'
+ * b,h# 1( '

+
1
2

&
! 2&2

c + ( ( 1 # ! ) %v + %b,h# 1 ) 2 &2
x

'

and

* b,1 =
"

! #
1
2

%
&2

c > 0

and * b,h > 0 for all h, and * b,h increasing in h.
Further,

!µb,h # !µb,h# 1 = log " # µc + ' 2 ( 1 # ( ' ) * b,h# 1 +
"

( 1 # ! ) !* v* b,h# 1 +
1
2

* 2
b,h# 1

%
&2

'

increasing in h. But !µb,h can be decreasing if log " # µc < 0.
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Bond returns The one-period returns are given by:

RB
t + 1,h =

Bt + 1,h# 1
Bt,h

# 1

and therefore

log
&

RB
t + 1,h + 1

'
= # log " + µc #

"
( 1 # ! ) !* v* b,h# 1 +

1
2

* 2
b,h# 1

%
&2

' + %cxt + ( * b,h# 1( ' # * b,h ) ' 2
t

+ * b,h# 1&' Wt + 1 + %b,h# 1&x ' tWt + 1

the term structure of expected returns is given by:

Et

&
RB

t + 1,h + 1
'

& # log " + µc # ( 1 # ! ) !* v* b,h# 1&2
' + %cxt #

""
! #

1
2

%
&2

c + ( 1 # ! ) %v%b,h# 1&2
x

%
' 2

t

Et

&
RB

t + 1,h+ 1

'
# Et

&
RB

t + 1,h

'
& ( ! # 1) !* v ( * b,h # * b,h# 1 ) &2

' + ( ! # 1) %v%c
( h

x # ( h# 1
x

1 # ( x
&2

x ' 2
t ( 0.

The only impact of !! is through !* v, and makes the slope less decreasing (but not in-
creasing).

Risk-free rate The risk-free rate is given by

r f ,t = # log Bt,1

i.e.

r f ,t = # log " + µc + %cxt #
"

! #
1
2

%
&2

c' 2
t

B.3.3 Dividend strips

Let the price at time t for the full dividend Dt + h in h periods be Pt,h with Pt,0 = Dt . Then
for h " 1:

Pt,h
Dt

= Et

"
" t,t + 1

Dt + 1
Dt

Pt + 1,h# 1
Dt + 1

%
,
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which is the general problem from above with

gp,t + 1 = dt + 1 # dt = µd + %dxt + +&c' tWt + 1 + &d' tWt + 1,

for all t and therefore
pt,h # dt = !µp,h + %d,hxt + * d,h' 2

t ,

with

%d,h = ( # %c + %d )
1 # ( h

x
1 # ( x

* d,h = #
1
2

( 1 # ! ) 2
&

&2
c + %2

v&2
x

'
+ * d,h# 1( '

+
1
2

&
( # ! + + ) 2 &2

c + ( ( 1 # ! ) %v + %d,h# 1 ) 2 &2
x + &2

d

'

* d,1 =
1
2

&2
d + ( + + 1 # 2! ) ( + # 1)

1
2

&2
c

the sign depends on the parameters of the model.

!µd,h # !µd,h# 1 = log " # µc + µd + ' 2 ( 1 # ( ' ) * d,h# 1 +
"

( 1 # ! ) !* v* d,h# 1 +
1
2

* 2
d,h# 1

%
&2

'

where the sign depends again on the parameters of the model.
For the dividend strips, the spot one-period returns are given by

RP
t + 1,h + 1 =

Pt + 1,h# 1/ Dt + 1

Pt,h/ Dt

Dt + 1
Dt

,

log
&

RP
t + 1,h + 1

'
= # log " + µc #

"
( 1 # ! ) !* v* d,h# 1 +

1
2

* 2
d,h# 1

%
&2

'

+ %cxt + ( * d,h# 1( ' # * d,h ) ' 2
t

+ * d,h# 1&' Wt + 1 + %d,h# 1&x ' tWt + 1 + +&c' tWt + 1 + &d' tWt + 1
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the conditional expected one-period returns are

Et

&
RP

t + 1,h + 1
'

& # log " + µc # ( 1 # ! ) !* v* d,h# 1&2
' + %cxt

#
""

! ( 1 # + ) #
1
2

%
&2

c + ( 1 # ! ) %v%d,h# 1&2
x

%
' 2

t

Et

&
RP

t + 1,h+ 1

'
# Et

&
RP

t + 1,h

'
& ( ! # 1) !* v* +, -

( 0

( * d,h # * d,h# 1 ) &2
' + ( ! # 1) %v ( %c # %d )

( h
x # ( h# 1

x
1 # ( x

&2
x ' 2

t
* +, -

" 0

We need ( * d,h # * d,h# 1 ) " 0 to generate a downward sloping term-structure, but that
does not depend on the choice of !! . If ( * d,h # * d,h# 1 ) ( 0, then the returns are upward
sloping, but less so in our model.

Note, that the returns are MORE upward sloping when ' t is high...
!

The future one-period returns are given by:

RF,P
t + 1,h + 1 =

1 + RP
t + 1,h

1 + RB
t + 1,h

log
&

RF,P
t + 1,h + 1

'
= #

"
( 1 # ! ) !* v ( * d,h# 1 # * b,h# 1 ) +

1
2

&
* 2

d,h# 1 # * 2
b,h# 1

' %
&2

'

+ ( ( * d,h# 1 # * b,h# 1 ) ( ' # ( * d,h # * b,h ) ) ' 2
t

+ ( * d,h# 1 # * b,h# 1 ) &' Wt + 1 + ( %d,h# 1 # %b,h# 1 ) &x ' tWt + 1 + +&c' tWt + 1 + &d' tWt + 1

Et

&
RF,P

t + 1,h + 1
'

= #

.

;/
(
( 1 # ! ) !* v + * b,h# 1

)
* +, -

" 0 and increasing

( * d,h# 1 # * b,h# 1 )

0

<1 &2
'

+

.

;/ !+& 2
c + ( ( ! # 1) %v # %b,h# 1 ) ( %d,h# 1 # %b,h# 1 )

* +, -
" 0 and increasing

&2
x

0

<1 ' 2
t
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Note:

* d,h # * b,h = ( * d,h# 1 # * b,h# 1 ) ( '

+

.

;;;/
+

"
1
2

+ # !
%

* +, -
( 0

&2
c +

"
( 1 # ! ) %v +

1
2

( %d,h# 1 + %b,h# 1 )
%

* +, -
( 0 for ! high enough

( %d,h# 1 # %b,h# 1 )
* +, -

" 0

&2
x +

1
2

&2
d

*+,-
" 0

0

<<<1

the sign depends on the parameters. But if it is positive increasing, !! reduces the down-
ward impact of it on the term-structure of expected returns. Only if it is negative and de-
creasing does our model help relative to the standard model, but then the slope is upward
sloping....

Note, a higher ' t means a MORE upward sloping term-structure again
!

the Sharpe ratio term structure is given by:

SRF,P
t,n &

A
C

D
' 2

t
(
!+& 2

c # ( %d,h# 1 # %b,h# 1 ) ( ( 1 # ! ) %v + %b,h# 1 ) &2
x
)

# ( * d,h# 1 # * b,h# 1 )
&

( 1 # ! ) !* v + * 1
b,h# 1

'
&2

'
G

' 2
t

&
+2&2

c + ( %d,h# 1 # %b,h# 1 ) 2 &2
x + &2

d

'
+ ( * d,h# 1 # * b,h# 1 ) 2 &2

'

If the expected returns term-structure is upward sloping with * d,h # * b,h ( 0 and
decreasing, then !! can help make the sharpe ratio term-structure downward sloping.

The unconditional Sharpe ratio term structure is:

SRF,P
h &

A
BBBC

BBBD

' 2 (
!+& 2

c # ( %d,h# 1 # %b,h# 1 ) ( ( 1 # ! ) %v + %b,h# 1 ) &2
x
)

+ 1
2

&2
'

1# ( 2
'

(
!+& 2

c # ( %d,h# 1 # %b,h# 1 ) ( ( 1 # ! ) %v + %b,h# 1 ) &2
x
) 2

# ( * d,h# 1 # * b,h# 1 )
&

( 1 # ! ) !* v + * 1
b,h# 1

'
&2

'
IJJJJJJJJJJK

A
BBBBBBBC

BBBBBBBD

' 2
&

+2&2
c + ( %d,h# 1 # %b,h# 1 ) 2 &2

x + &2
d

'

+ 2
&

( * d,h# 1 # * b,h# 1 ) ( ' # ( * d,h # * b,h ) + ( %d,h# 1 # %b,h# 1 ) 2 &2
x + +2&2

c + &2
d

' 2
&'

#
&

( * d,h# 1 # * b,h# 1 ) ( ' # ( * d,h # * b,h ) + 1
2

&
( %d,h# 1 # %b,h# 1 ) 2 &2

x + +2&2
c + &2

d

'' 2
&'

+ ( * d,h# 1 # * b,h# 1 ) 2 &2
'

.
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B.4 Term structure of returns - Illiquid markets

We analyze horizon-dependent dividend claims when markets are illiquid and prices are
set by buy-and-hold investors. From above, the SDF for a horizon h investor is (when $ =
1):

" t,t + h = " h
"

Ct + h
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.
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Consider a dividend with horizon h priced at time t under " t,t + h,

Pt,h = Et [ " t,t + hDt + h ] ,
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The price at time t + 1 is under " t + 1,t + 1+ ( h# 1) ,

Pt + 1,h# 1
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?
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The one-period return is given by:
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t + 1,h + 1 =
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To simplify notations, write:
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Because the shocks are iid, we obtain, when volatility is constant:
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Even when volatility is constant, HDRA impacts the term-structure of expected returns
when investors choose buy-and-hold strategies. The negative impact of HDRA increases
with the horizon.

!
To obtain the returns on bonds, and the expected excess returns, replace%d, &d and +

by 0 in the formula above:
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When volatility is time varying, we can rewrite,
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replace !! with ! to get ( j
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' in the matlab document

To obtain the returns on bonds, and their expected excess returns, replace%d, &d and +
by 0 in the formula above:

log Et

&
RB

t + 1,h

'
= # log " + µc + %cxt #

1
2

&2
c' 2

t + ( 1 # ! ) ' 2
t

M

%v%c
1 # ( h# 1

x
1 # ( x

&2
x + &2

c

N

# ( !! # ! )

M

%v%c
1 # ( h# 2

x
1 # ( x

&2
x + &2

c

N

* +, -
< 0

&
' 2 ( 1 # ( ' ) + ( ' ' 2

t

'

+ &2
' ( ! # 1) !* v* +, -

< 0

h

!
j = 2

!( B,j (
j# 2
'

* +, -
< 0 under ! but >0 for su�ciently low !!

+ &2
'

7

=====8

1
2

&
( 2

B,2 # !( 2
B,2

'
+

&
( B,2 # !( B,2

' h

!
j = 3

!( B,,j (
j# 2
' + ( !! # ! ) !* v

h

!
j = 3

!( B,j (
j# 3
'

* +, -
< 0 for su�ciently low !!

9

>>>>>:

where

!( B,j =
1
2

.

/
2

%c
1 # ( h# j

x

1 # ( x
&x

3 2

+ &2
c

0

1 # ( 1 # !! )

M

%v%c
1 # ( h# j

x

1 # ( x
&2

x + &2
c

N

and

!( j # !( B,j =
1
2

.

/ %d ( %d # 2%c)

2
1 # ( h# j

x

1 # ( x
&x

3 2

+ &2
d + + ( + # 2) &2

c

0

1 + ( 1 # !! )
?
%v%c

1 # ( h# 2
x

1 # ( x
&2

x + &2
c

@

log Et

&
RP,F

t + 1,h

'
= !+& 2

c' 2
t # ( 1 # ! ) ' 2

t

M

%v%d
1 # ( h# 1

x
1 # ( x

&2
x

N

+ ( !! # ! )

M

%v%d
1 # ( h# 1

x
1 # ( x

&2
x + +&2

c

N

* +, -
< 0

&
' 2 ( 1 # ( ' ) + ( ' ' 2

t

'

+ &2
' ( ! # 1) !* v* +, -

< 0

h

!
j = 2

&
!( j # !( B,j

'
( j# 2

'

* +, -
< 0 under ! but >0 for su�ciently low !!

+ &2
'

7

8

A
C

D

1
2

&
( 2

2 # !( 2
2

'
+

&
( 2 # !( 2

'
! h

j = 3
!( j (

j# 2
'

# 1
2

&
( 2

B,2 # !( 2
B,2

'
+

&
( B,2 # !( B,2

'
! h

j = 3
!( B,j (

j# 2
'

+ ( !! # ! ) !* v

h

!
j = 3

&
!( j # !( B,j

'
( j# 3

'

9

:

62



C Approximation for " & 1

As in Appendix B, consider the simpliÞed model with only two levels of risk aversion:
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Also, as in Appendix B, take the evolutions:
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¥ Constant terms:
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we verify the solution for " is such that " < 1 and " & 1. We Þnd that, as long as
÷! ( 5, " < 1 + $ < 1; and " & 1 is easily satisÞed even for very low levels of $. e.g.
in the calibration of Section ( 6), 1 > " " 0.9988for $ = 0.2and ÷! ( 5.

For " close to1, we have:

Vt
!Vt

&
R t,!

&
!Vt + 1

'

R t,!!

&
!Vt + 1

' =

"
Et

?& !Vt + 1
Ct + 1

Ct + 1
Ct

' 1# !
@%1

1# !

"
Et

?& !Vt + 1
Ct + 1

Ct + 1
Ct

' 1# !!
@%1

1# !!
,

and therefore:

vt # !vt = #
1
2

( ! # !! )
5&

&2
c + %2

v&2
x

'
' 2

t + !* 2
v&2

'

6
,
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The risk-free rate is deÞned as r f ,t = # log Et ( " t,t + 1 ) :
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Note the risk-free rate now depends on ÷! . !

C.1 Term structure of returns

C.1.1 General claims

To make the problem as general as possible, we analyze horizon-dependent claims that
are priced recursively as
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Supposeh " 1, then:
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Matching coe�cients, we Þnd the recursions, for h " 1:
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+
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¥ Constant:

!µy,h # !µy,h# 1 = # µc # ( 1 # $)
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Note only both the constant terms
E

!µy,h
F

and the loadings on the volatility shocks
E!* y,h

F

are a�ected by the wedge between! and !! .
!

In line with the speciÞcation of van Binsbergen and Koijen (2016), we consider one-
period holding returns for these claims of the form

1 + RY
t + 1,h =

Gy,t + 1Yt + 1,h# 1

Yt,h
=

Gy,t + 1Yt + 1,h# 1

Et
#
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$

= Rf ,t
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Et
#
" t,t + 1Gy,t + 1Yt + 1,h# 1

$,

with the risk-free rate
Rf ,t =

1
Et [ " t,t + 1 ]

.

In line with the speciÞcation of van Binsbergen and Koijen (2016), we also consider one-
period holding returns for futures on these claims of the form

RF,Y
t + 1,h + 1 =

1 + RY
t + 1,h

1 + RB
t + 1,h

=
Gy,t + 1Yt + 1,h# 1

Yt,h

Bt,h
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Et
(
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) Et ( " t,t + 1Bt + 1,h# 1 )
Bt + 1,h# 1

,

where Bt,h is the price of $1at horizon h, i.e. the price of a Bond with horizon h.
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Their conditional Sharpe Ratio is

SRF,Y
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C.1.2 Bonds

Let the price at time t for $1 in h periods be Bt,h with Bt,0 = 1. For h " 1, we have

Bt,h = Et [ " t,t + 1Bt + 1,h# 1 ]

This is the general problem from above with gy,t + 1 = 0 for all t and therefore

bt,h = !µb,h + %b,hxt + ÷* b,h' 2
t ,

with

%b,h = # $%c
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x
1 # ( x
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'
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C.1.3 Dividend strips

Let the price at time t for the full dividend Dt + h in h periods be Pt,h with Pt,0 = Dt . Then
for h " 1:

Pt,h
Dt

= Et

"
" t,t + 1

Dt + 1
Dt

Pt + 1,h# 1
Dt + 1

%
,

which is the general problem from above with

gp,t + 1 = dt + 1 # dt = µd + %dxt + +&c' tWt + 1 + &d' tWt + 1,

for all t and therefore
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For the dividend strips, the spot one-period returns are given by

RP
t + 1,h + 1 =

Pt + 1,h# 1/ Dt + 1

Pt,h/ Dt

Dt + 1
Dt

,
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the conditional expected one-period returns are
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We need ( ÷* d,h # ÷* d,h# 1 ) " 0 to generate a downward sloping term-structure. If ( ÷* d,h # ÷* d,h# 1 ) (
0, then the returns are upward sloping, but less so in our model.

Note, that the returns are MORE upward sloping when ' t is high...
The future one-period returns are given by:

RF,P
t + 1,h + 1 =

1 + RP
t + 1,h

1 + RB
t + 1,h
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the sign depends on the parameters. But if it is positive increasing, !! reduces the down-
ward impact of it on the term-structure of expected returns. Only if it is negative and de-
creasing does our model help relative to the standard model, but then the slope is upward
sloping....

Note, a higher ' t means a MORE upward sloping term-structure again. !
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Figure 13: Term structure of dividend strip expected excess returns under illiquid buy-and-
hold strategies, under horizon-dependent risk aversion (HDRA) and Epstein-Zin (EZ), with
the calibration of Bansal et al.(2014) Ñ Table 1a.
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