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Abstract

Short term load forecasts will play a key role in the implementation of smart

electricity grids. They are required to optimise a wide range of potential net-

work solutions on the low voltage (LV) grid, including integrating low carbon

technologies (such as photovoltaics) and utilising battery storage devices. De-

spite the need for accurate LV level load forecasts much of the literature has

focused on the individual household or building level using data from smart me-

ters or on aggregates of such data. In this study we provide detailed analysis of

several state-of-the-art methods for both point and probabilistic LV load fore-

casts. We evaluate the out-of-sample forecast accuracy of these methodologies

on 100 real LV feeders, for horizons from one to four days ahead. In addition,

we also test the effect of temperature (both actual and forecast) on the accuracy

of load forecasts. We present some important results on the drivers of forecasts

accuracy as well as the empirical comparison of point and probabilistic forecast

measures.
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1. Introduction

Increased monitoring of the electricity distribution network through ad-

vanced metering infrastructures (such as smart meters and substation moni-

toring) is providing enhanced visibility and new opportunities for managing

and planning the demand on the low voltage (LV) networks. This is particu-5

larly desirable for distribution network operators (DNOs) who must prepare for

the increased network stressors and distributed generation as we move to a low

carbon economy. Accurate load forecasts can facilitate the management of LV

networks in a number of ways including: demand side response [1], storage con-

trol [2, 3], energy management systems [4, 5] and integrating distributed energy10

resources [6].

Low voltage networks are typically the final steps in the distribution elec-

tricity network that deliver electrical energy directly to the final customer. In

the UK, and many distribution networks around the world, the final 230-240V

substations contain between 1 to 6 feeders and supply electricity to between15

1 and 150 customers [7]. It is worth noting that feeders are particularly het-

erogeneous, connected to a diverse mix of domestic customers, non-domestic

customers, street furniture, overnight storage heaters and landlord lighting sys-

tems amongst many other more minor loads. The diversity of the different types

of feeders is only expected to widen with the increasing uptake of low carbon20

technologies (LCTs), such as solar panels, electric vehicles, battery storage de-

vices and heat pumps. The effects of particular technologies on the network can

be non-trivial as we will demonstrate in this study.

In the current research, LV level forecasting has largely been focused on ag-

gregates of smart meter data. Although smart meter aggregates can be used25

to describe important features of the LV network, it is important to appreciate

that such aggregates are limited in their complete representativeness of LV de-

mand, an aspect that we highlight in this study [8, 9]. The major limitation is

that the aggregates are not constructed with the intention to replicate real low

voltage feeders. In particular this means the resultant aggregated demand do30
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not consider network losses, landlord lighting, and other, typically unmonitored,

network loads [7, 10]. Further, such aggregates do not explore aggregates formed

of mixes of residential and commercial customers, which is a major disadvan-

tage since many LV networks are of this form and commercial customers can

have large impacts on the overall network demand. Since commercial demand35

is bespoke to the type of business (school, church, warehouse etc.) the random

sampling procedure employed for aggregate profiles does not easily generalise

to such mixed networks. A second drawback of the aggregate approach is that

the relationship and natural correlations between customers cannot be taken

into account through the random sampling process [8]. This has a number of40

important implications for the expected accuracy of LV feeder load forecasts.

For example, in the UK, local residential areas can be built with similar spec-

ifications, meaning features such as overnight storage heaters (OSH) can be

clustered on a single feeder. As we will show in this paper, this has a signifi-

cant effect on the expected accuracy of OSH-heavy feeders’ forecasts. Similar45

effects could be envisioned due to other significant, socially driven technologies,

for example electric vehicles and photovoltaics which can be clustered due to

the “keeping up with the Joneses” effect [11]. Further, customers on the same

feeder are likely to respond in similar ways to local effects such as temperature,

which is not possible for the randomly sampled customers in the aggregated50

data. Finally, even if connectivity information is taken into account, it has been

shown that modelling of LV networks is less accurate via Monte Carlo methods

compared to methods that take into account the substation demand data [7].

The aim of this paper to contribute to the field of low voltage level load

forecasting, whereby previous studies have mostly ignored LV level load fore-55

casting, despite their essential utility within the future smart grid applications.

Moreover, we provide an exhaustive analysis on the impact of temperature esti-

mates on load forecasting accuracy at LV level using a range of parametric and

nonparametric models. The methods are applied to a large number of real LV

substation feeders based in Bracknell, a town in the South of England.60

The novel contributions of this study are two-fold. First, to the best of our
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knowledge, it is the first large-scale study on real LV feeder data, which exhibit

richer structure than aggregates of smart-meters. In contrast to aggregated

data, LV networks consist of different proportions of a variety of customers

(domestic, small-to-medium enterprises (SMEs) and commercial, schools, hos-65

pitals, etc.) as well as other, unmonitored street furniture such as street lighting

and traffic lights [10]. Hence, there is a limit to the representativeness of the

aggregated results. Second, temperature effects on LV load forecasting are ex-

plored, in particular, whether the relationship between load and temperature

is causal or simply a correlation effect for real LV feeders. To this end, both70

actual and forecast temperature data from the region of interest are being used,

which allows us to compare the difference between using historical and forecast

temperature in our load forecasts1.

Besides verifying existing results in the literature, through our analysis, we

contribute with two main innovative results. First, we show that the power law75

relationship between size of the feeder and forecasts accuracy, [12], does not hold

for particular types of feeders, e.g. those with overnight storage heaters, and/or

large landlord lighting supplies. Simulated LV networks via aggregates of smart

meters as presented in the literature are unable to unveil such behaviour, because

they do not consider real LV network connectivity. This learning output could80

be used by network operators to plan, manage and operate the future networks

consisting of a variety of smart technologies. Second, we find that at the LV level

the temperature does not have a causal effect on the load forecast accuracy, and

it is actually the strong seasonal correlation that might have a stronger effect

on forecast accuracy.85

The rest of the paper is organised as follows. In the next Section 2, we present

a literature review on electricty demand forecasting (at all voltage levels). In

Section 3, we analyse the data that we use in this study. In Section 4, we

1In much of the load forecasting literature, temperature forecast data is not always available

and historical weather is used instead. This limits the feasibility and conclusions since such

forecasts are not possible in practice.
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describe the methods as well as the scoring functions we use to measure the

accuracies of our forecasts. In Section 5, we describe the main results and in90

the final section there is a discussion including potential future work.

2. Literature Review

Load forecasting has traditionally been implemented for the high voltage

(HV) or system level which typically consists of the aggregated demand of hun-

dreds of thousands or millions of consumers. By the law of large numbers such95

demand is much less volatile than LV demand and hence, relatively easier to

predict. Load forecasting at this level is a very mature research area and hence,

there is vast literature describing and testing a variety of techniques including,

artificial neural networks (ANNs), support vector machines, ARIMA, exponen-

tial smoothing, fuzzy systems, and linear regression. For a literature review100

of the recent methods see [13, 14] as well as the review paper for the Global

Energy Forecasting Competition (GEFCom) 2012 [15]. Many of these papers

have shown strong correlations between weather effects and demand[16, 17], for

example, this is exhibited in [18] for a large number of European countries with

the relationship dependent on the climate. In [19] the authors show the link105

between temperature and district heating for a region in Denmark. Due to the

strong relationships between weather and load forecasting at the system/HV

level, in [20] the authors included historical weather data in their short term

load forecasts, and the authors in [10] considered historical values of wind chill,

humidity and wind speed. In [21] the authors used weather forecasts to produce110

load forecasts for a large urban area in Australia. Due to the high regularity

at such large aggregations the mean absolute percentage errors (MAPEs) are

typically small at around 1.5− 6%.

In contrast, published research on forecasting at the lower voltage levels has

focused on short term load forecasts at the household level, applied to smart115

meter data. However, large quantities of smart meter data are not currently

available and so much of the research has been restricted to those which are in
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the public domain such as the Irish smart meter data set [22]. Due to the high

volatility at the household level, it is particularly difficult to produce accurate

forecasts. In fact, the authors in [23] showed that due to the “double peak”120

error for spiky data sets, it is difficult to objectively measure the accuracy of

household level point forecasts using traditional pointwise errors. As with the

HV level, similar methods have been applied to the household level, including

ANNs [24], ARIMAs [25], wavelets [5], Kalman filters [26], and Holt-Winters

exponential smoothing [27]. The errors in these methods are much larger than125

the HV level, with MAPEs ranging from 7% up to 85% in some cases [24, 25]. A

link between weather and household demand has been observed and historical

weather data has been used within the methods [27, 1]. Some of the strongest

correlations observed have been in temperature and illumination [28].

The literature on LV level forecasting is sparse compared to both HV and130

household levels. LV distribution feeders are relatively volatile compared to HV

level demand since they consist of low aggregations of customers (typically less

than 150 in the UK) [7]. The main forecasting research has been presented

in [6, 29] where the authors apply both ARIMAX and ANN methods to a

single LV transformer (consisting of 128 customers) to forecast total energy and135

peak demand. They achieve MAPEs of between 6 − 12%. They also included

historical weather data in the methods. At slightly higher voltage substations,

the authors in [30] and [31] apply ANN and ARIMA methods to MV/LV level

data to achieve MAPEs of 11% and 13−16% respectively. The majority of load

forecasts at the LV substation level are in fact applied to aggregates of smart140

meter data [32, 12, 33]. In [32, 12] the authors consider a variety of methods and

show a strong scaling law relationship between the MAPEs and the aggregation

size. In [12] the authors consider the aggregation level of data from 1 to 100k

smart meters. The relationship between relative accuracy and aggregation is

verified in [33] where the authors consider aggregations of 1, 10, 100, 1000,145

10000 smart meters using ANNs applied to data from 40,000 customers in Basel,

Switzerland. MAPEs vary considerably from as low as 2% [34] up to 30% [35].

The relationship between temperature and load has had mixed results at the LV
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level based on aggregated data. In [35] the authors successfully apply weather

data with ANN and ARMA methods to 4 different levels of aggregations (1, 10,150

100, 1000 smart meters) from both the Irish and a Danish smart meter set. In

[36], the authors consider aggregates of 5, 10 and 100 smart meters from the

Irish data set. They do not utilise weather data as they argue that the weather

data is not scalable. In [37] the authors consider two main data sets consisting of

40 time series and apply ARIMA, Holt-Winters, ANN, and generalised additive155

models. Although they show there is a correlation between weather and load in

the data sets, they suggest that there is not much effect of temperature on load.

Due to the volatility of LV level demand, probabilistic load forecasts are

a natural choice to provide a detailed description of their uncertainty. Most

recently there has been an increased interest in probabilistic load forecasting,160

accelerated by the recent Global Energy Forecasting Competition 2014 [38]. See

[39] for an up to date review of the current state of the art and major challenges

in probabilistic load forecasting. There have been a few publications where the

authors have considered load forecasting of individual smart meter data or on

aggregations of smart meter data. In [40] the authors applied kernel density165

estimation methods to the Irish smart meter data and compared the errors be-

tween the forecasts of domestic and non-domestic customers over a horizon of

up to a week ahead. In [41], probabilistic forecasts of smart meter data from

226 Portuguese households ware considered using quantile regression with a

generalised additive model (GAM). In [42] the authors also use a GAM consid-170

ering both individual and aggregations of the Irish smart meter data up to 1000

smart meters. They found at large aggregations that a normal distribution was

a sufficient model for the demand, consistent with what we would expect from

the law of large numbers. This is in contrast to LV level demand which is not

typically normally distributed. The same authors also considered various aggre-175

gation levels of UK smart meter data in [8] using copulas to develop the joint

distributions at different levels of aggregation and ensure coherent probabilistic

forecasts. Finally, in [43] day ahead quantile forecasts are created using Laplace

distributions and non-parametric methods.
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In the research presented here we consider both point and probabilistic fore-180

casts and compare both point scoring functions (such as MAPE) to probabilistic

scoring functions (continuous ranked probability score). We will show that it

may be sufficient to evaluate accurate point forecasts to produce correspond-

ing accurate probabilistic forecasts. This supports the research considered in

[44] which compared the use of MAPE and the pinball score for selecting the185

parameters for a probabilistic model.

3. Data Analysis

In this section we review and analyse the data that will be used to create

and evaluate our methods.

3.1. Load Data190

The load data for 100 feeders begins on 20th March 2014 up to the 22nd

November 2015, a total of 612 days. The feeders consist of a range of magnitudes

with the average daily demand of approximately 602kWh and a maximum and

minimum daily demand of around 1871kWh and 107kWh respectively. Out

of the 100 feeders, 83 are connected purely to residential consumers with an195

average of 45 households, a maximum of 109 customers and a minimum of 8. A

further 7 have no connectivity information. For the trial presented in this paper

we define a test set, consisting of the dates 1st October 2015 to 22nd November

2015 inclusive. The remainder of the data is used for training.

The data contains strong intraday and intraweek seasonality. Figure 1 shows200

the relationship between the autocorrelation at lag 168 (i.e. a week) and the

mean daily feeder demand. The plot highlights that all feeders have some de-

gree of weekly regularity with the larger feeders tending to have much stronger

autocorrelation than smaller feeders, which indicates that the larger feeders will

tend to have lower forecast errors.205

There is also a strong seasonal effect in the data, however note, that due

to the lack of air conditioning in the UK there is no increase in demand for
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Figure 1: Autocorrelation at lag 168 (intraweek seasonal cycle length) for all 100 feeders

against the mean daily demand.

warmer periods in contrast to other data sets which are commonly shown in the

literature [38].

3.2. Weather Forecasts210

Weather variables, especially temperature, and those related to temperature

such as wind chill, are often included within load forecasting models [45, 18].

Typically those are for high voltage load forecasts and hence represent the de-

mand of a large number of customers. However, it is not obvious that weather

variables play an important role in load forecasts at the LV level. In this study215

we consider temperature data (in degrees), collected from the Farnborough

weather station, the closest weather station to Bracknell at just under 10 miles

(approx 16 Km). In our forecasts we will utilise both the historical hourly and

forecast temperature data2.

Although weather has a strong correlation with demand at the high voltage,220

2The weather forecasts have been provided by Meteogroup.
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for practical load forecasts, only temperature forecasts can be used. We first

consider the accuracy of such forecasts before considering the correlation of

temperature on the LV load forecasts. The forecasts begin at 7am on each

day and forecast each hour for the next four days. In other words, the one hour

ahead forecasts are all for the period 8am, the two hour ahead forecasts are all at225

9am, etc. Thus, the temperature forecast accuracy is not simply determined by

the forecast horizon (where usually greater forecast horizons correspond to more

inaccurate forecasts), but also the volatility of the time period being estimated.

Indeed the accuracy (as measured by the mean absolute percentage error) does

reduce as a function of horizon, as shown in Table 1, for the full data set.230

Forecasting temperature four days ahead (i.e. between 73 and 96 hours ahead)

has dropped in accuracy by around 100% compared to up to one day ahead

(between 1 and 24 hours ahead). For the test set the temperature forecast

accuracy is improved compared to the training set (see Table 5 in Section 5.4).

Forecast Horizon 1 Day 2 Day 3 Day 4 Day

MAPE 11.85 15.60 20.21 23.80

Table 1: MAPE for the temperature forecasts for different horizon periods (over the period

31st March 2014 to 28th Nov 2015).

In our analysis we will focus on the relationship between the load forecasts235

using forecast temperature inputs (ex-ante forecasts) rather than the historical

temperature inputs (ex-post forecasts) [46]. Although the forecast and actual

temperature values are very strongly correlated (with a pairwise linear correla-

tion coefficient greater than 0.95) we will include results for both ex-ante and

ex-post versions. We do this for two reasons. Firstly, much of the literature240

presents so-called “ex-post” forecasts (i.e. those which use the historical tem-

perature inputs) and hence comparisons are possible with other research [46].

Secondly, it provides further evidence concerning the causal link between tem-

perature and load at the LV level.
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As with high voltage load, there are correlations, usually negative, between245

temperature and the LV loads from our feeders. It was found that individual

hours of the day typically had, on average, stronger correlations with the tem-

perature than the correlations between the complete temperature and load time

series. In the Appendix A, we present an example of a feeder from the trial

with a relatively strong correlation between load and temperature, showing the250

linear relationship which varies depending on the hour of the day. This suggests

that it may be worthwhile considering splitting the time series into 24 separate,

hourly time series for some of our forecasts.

This section has presented some basic analysis of the load data and corre-

sponding temperature data. We have highlighted some important features which255

should be utilised in the load forecasts. Daily, weekly and annual periodicities

have strong relationships to load demand and there are different behaviours in

demands for different periods of the day. Further, we have seen there is a wide

variety of feeders (in terms of numbers of connected customers and magnitudes

of demands) with different correlations with the temperature. We will use this260

information to construct our forecasts as well as appropriate benchmarks.

4. Methods

In this section we present a wide variety of methods which will be used to

generate the forecasts. A number of benchmarks are also included for compari-

son as well as to highlight the importance of various inputs/predictors.265

The chosen methods are motivated by the data analysis presented in Sec-

tion 3 and are appropriate for volatile data for a number of reasons. First, the

kernel density (Section 4.1) and quantile regression (Section4.2) methods have

been proven successful in the Global Energy Forecasting Competition (GEF-

Com) 2014 [38]. Second, these methods have been successfully applied to more270

volatile datasets, e.g. the kernel density and the Holt-Winters-Taylor method

(Section 4.4) have accurately forecast smart-meter data [40], which are more

volatile than LV demand, whereas the autoregressive methods (Section 4.3)
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have been applied to volatile financial time-series [47]. Third, the simple sea-

sonal regression (Section 4.2) and the autoregressive models have been used to275

accurately forecast LV demand data for LV feeder storage applications [48]. For

these reasons, we believe, that these models are appropriate for volatile data

and span a wide range of methods. Further techniques, such as machine learn-

ing (e.g. neural networks, support vector machines, etc.) lie beyond the scope

of this empirical study and will be the focus of future studies.280

For this section, without loss of generality, we define Lt, t = 1, ..., N = D ·H

to be the hourly time series for the load for a particular feeder, where H = 24

and D = 612 is the number of days in the training and test data set combined.

The initial time step t = 1 defines the start of the data set 20th March 2014 for

the hourly period 12AM to 1AM. Also, without loss of generality, we also define285

th to denote the end of the historical data (with th + 1 therefore the start of

the testing period) which determines the maximum available training data for

the methods. Specifics of each methods will be described in their corresponding

sections.

4.1. Kernel Density Estimation290

The first method we consider are those based on kernel density estimation

(KDE) techniques. These have been successful at generating probabilistic fore-

casts for individual smart meter data as well as in the GEFCom 2014 com-

petition on higher voltage demand [40, 49]. The method aims to generate a

conditional distribution at time t, f(Lt|X), conditional on historical demand295

and other factors, X, such as the period of the week or weather variables. The

main challenge of such methods is the computational expense of evaluating the

correct parameters, in particular the bandwidths. In this section we presume the

parameters are trained on the historical data [t1, t2], with 1 ≤ t1 < t2 ≤ th, t1

mod H = 1 and t2 mod H = 0, in other words the period of time encapsulates300

full days from the historical data.

We consider four variations of the KDE methods. The first type, denoted as

KDE-W, is the unconditional KDE trained on all observations from the same
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hour of the week (1 to 168). The second type, referred to as KDE-Wλ, includes

a weighting parameter that favours observations around the same period of the305

year as the forecasting time, see Appendix B and [49] for further details.

Additionally, we consider kernel density estimate forecasts conditioned on

independent variables y, z (CKD), such as the week-period, the temperature,

or both. We produce three CKD forecasts, one conditioned on the week period

(CKD-W), a second conditioned on the week period and the actual tempera-310

ture readings (CKD-WTa), and a third forecast conditioned on the both the

week period and the forecast temperature (CKD-WTf). For CKD-W, yi = i

mod 7H is the week period of time interval i. CKD-W weighs observations to-

wards similar times of the week as the forecast time-period. For further details

on mathematical formulas, training and parameter optimisation, see Appendix315

B.

An advantage of the kernel-density methods is that the entire distribution is

found simultaneously whereas quantile regression methods only find individual

quantiles. The disadvantage is the computational costs, especially as more con-

ditional variables are introduced. Various methods, such as clustering the time320

series, must be employed to reduce the costs [40]. We consider the methods as

both probabilistic forecasts and also as point forecasts by using the median of

the distributions as our point estimate.

4.2. Simple Seasonal Linear Regression

The method is based on an update of the simple seasonal model presented in325

[49]. For this method rather than construct a full probability density function

for the load distribution we instead develop models for a number of predefined

quaniltes τ ∈ (0, 1). Here, we assume a linear regression model for each quantile,

treating each period of the week as a separate time series of the form

L̂τt =

H∑
k=1

Dk(t)

(
aτk + bτkη(t) +

P∑
p=1

(cτk,p) sin

(
2πpη(t)

365

)
+ (dτk,p) cos

(
2πpη(t)

365

))

+

7H∑
l=1

fτl Wl(t). (1)
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Here, η(k) =
⌊
t
H

⌋
+ 1 is the day of the trial (with day 1 as 20th March 2014).330

There are two dummy variables identifying the period of the day, Dk(t), and

the period of the week, Wl(t). Further details of the model can be found in the

Appendix C.

For the point forecast as with the KDE methods we considered the median

quantile and also a least squares estimate. In all cases the median outperforms335

the least squares estimate and hence our point forecast estimates will be derived

from the median quantile. The methods are trained on the entire available

historical information using the latest data for the rolling forecasts at the start

of each new day. Further variants of the model were also considered (different

numbers of seasonal terms P = 2, 3, with and without trend (i.e. bk ≡ 0,∀k),340

and also using only weekend dummy variables instead of dummy variables for

all days of the week), but we found that the best methods used a linear trend,

three seasonal terms (P = 3), and used the day-of-the-week dummy variable as

in equation (1). We also found that the model without trend also performed

reasonably well, so in our analysis we will consider both methods. We will345

denote the seasonal method with trend as ST and without trend as SnT.

Including temperature effects in the model is straightforward and only re-

quires adding a polynomial to the full equation (in our case up to only cubic

order). Depending on the horizon (one, two, three, or four days ahead) four

different models are calibrated.350

4.3. Autoregressive Methods

The models in this section are all based on a regression of a residual time

series rt = Lt−µt, for some mean profile µt which we define later. This residual

regression can be written,

rk =

pmax∑
k=1

φk(rt−k) + εt (2)

for some Gaussian error εt. The main tunable parameter in the model is

the optimal autoregressive order p = pmax which is chosen by minimising the

Akaike information criterion (AIC) over p ∈ {0, . . . , pmax}, then the coefficients
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φ1, . . . , φmax can then be easily determined by the Burg method. The methods355

are trained over a year’s worth of historical data prior to the start of the test

period on the 1st October 2015.

For the mean profile µt we consider two models, the details of which can

be found in the Appendix D. The first uses an average weekly profile which we

denote as ARWD. The second updates the simple weekly average profile to360

include an annual seasonality. We denote this model by ARWDY .

As with the ST methods it is trivial to include weather effects by adding

linear terms to the mean equations. We note that separate models are used

depending on whether the forecasts are one, two, three or four days ahead.

The methods can be updated to generate probabilistic forecast methods by365

also modelling a variance term using the same features as the mean equation.

See Appendix D for further details.

4.4. HWT Exponential Smoothing Method

We implement the Holt-Winters-Taylor (denoted HWT) exponential smooth-

ing method [50] to model the intraday and intraweek seasonality in feeder load.370

This method is represented as:

Lt = lt−1 + dt−s1 + wt−s2 + φet−1 + εt

et = Lt − (lt−1 + dt−s1 + wt−s2)

lt = lt−1 + λet

dt = dt−s1 + δet

wt = wt−s2 + ωet, (3)

where Lt denotes the load observed at time t, lt denotes the level, εt ∼ IID(0,σ2),

s1 = 24, s2 = 168, and dt and wt correspond to the intraday and intraweek sea-

sonal indexes, respectively. This model requires the estimation of three smooth-

ing parameters λ, δ and ω for the level and two seasonal indexes, along with a375

parameter φ to adjust for first order auto-correlation in the error (denoted by

et). The model parameters were estimated separately for each feeder.
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4.5. Benchmark Methods

As a comparison to the methods presented above, we implemented the fol-

lowing four simple benchmarks to model load for each feeder:380

Benchmark 1, Last Day (LD): L̂t+k = Lt+k−s1

Benchmark 2, Last Week (LW): L̂t+k = Lt+k−s2

Benchmark 3, Last Year (LY): L̂t+k = Lt+k−s3

Benchmark 4, Simple Average (SMA): L̂t+k = 1
p

∑p
i=1 Lt+k−i×s2

where L̂t+k is the k-step ahead prediction, t is the forecast origin, while s1 =

24, s2 = 168, s3 = 52 × s2 denote the intraday, intraweek and intrayear cycle

lengths, respectively. For benchmark 4, we considered a variety of different p

values and the best in-sample results were obtained for p = 4, 5 weeks, which385

have very similar scores. We will only present results for p = 5. For further

details regarding these benchmarks methods, please see [51].

4.6. Empirical Estimate

The aforementioned benchmark methods only provide point estimates and

hence cannot provide quality comparisons to probabilistic forecasts. For each390

period of the week we define an empirical distribution function using all the load

data from the same time period over the final year of the historical data. We

then use this empirical distribution to define the desired quantiles. The median

quantile is used as a point estimate. The estimate is fixed over the entire test

period. We refer to this method as the Empirical forecast. Note that we395

could have included more historical data in the construction of the empirical

distribution but by restricting it to the last year we do not introduce seasonal

biases.

4.7. Error Measures

To evaluate our methods we consider a variety of forecast measures which400

are common to the forecasting and in particular, load forecasting literature. For
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the point forecasts we use two common measures, the mean absolute percentage

error (MAPE) and the mean absolute error (MAE).

For the probabilistic forecasts we use the continuous ranked probability score

(CRPS), which quantifies both the calibration and sharpness of the forecasts

[52]. Suppose we have actual loads a = (a1, a2, . . . , an)T for time periods

t̂1, t̂2, . . . , t̂n and a probabilistic forecast, given by a cumulative distribution

Fk(·) at time t̂k, then the CRPS is defined by

CRPS(a, F ) =
1

n

n∑
k=1

∫ ∞
−∞

(Fk(zk)− 1(zk − ak))2dzk, (4)

where 1 is the Heaviside step function. The MAE and CRPS are scale dependent

and therefore we cannot compare feeders of different fundamental sizes. We405

therefore normalise the score by dividing the MAE and CRPS by the average

hourly load of the feeder over the last year of training data. We also multiply the

errors by 100 so that they may be referred to as percentages. We refer to these

as the relative MAE (RMAE) and relative CRPS (RCRPS) respectively. The

CRPS reduces to the MAE in the case of a point forecast and hence we expect410

them to be strongly related [52]. The MAPE scales each error according to the

size of the actual and hence needs no adjustment. The potential disadvantage

of this method is that a few small loads (ak << 1) which are poorly estimated

could skew the average errors.

5. Results415

In this section we compare the methods we have developed in Section 4. The

test period is the 53 days consisting of 1st October 2015 to 22nd November 2015

inclusive. Since the temperature forecast data is available from hourly horizons

up to 4 days (96 horizons) we will consider up to four day ahead forecasts even

when not considering the temperature variables. As described in the Methods420

section we will construct both point and probabilistic forecasts which will be

evaluated using MAPE/RMAE and RCRPS respectively. The test period does

not have any holiday dates but does contain a daylight savings change-over on
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the 25th October 2015. However, this date will not be treated specially in this

trial. Special days (public holidays) effects will be considered in future work.425

5.1. Average Errors

To begin, we consider forecasting techniques without temperature inputs,

this will be considered in much more detail in Section 5.4. The average error

scores for the methods are shown in Table 2, these consist of the errors for

all four day ahead forecasts over the test period. We do not show the LD430

or LY benchmarks as they are much worse than the Empirical, LW and SMA

benchmarks. From comparing the benchmarks we find that the simple average

SMA is the best methods for point forecasts and is, in fact, quite competitive

with some of the presented methods. In fact it only has an average MAPE of

7% worse than the best methods score, ARWDY. The LY method performs the435

worst and there is a slight improvement by using the yesterday-as-today estimate

LD. The same period of the week forecast, LY, is the best of the random walk

methods and shows the strong weekly periodicity of the data.

The most accurate methods for point forecasts are ARWD, ARWDY and

HWT which all include daily, weekly and annual periodicities as well as strong440

autoregressive components. The ARWD and AWRDY methods generate the

best forecasts with the ARWD being slightly better in terms of the RMAE. The

HWT is the next best method and has a MAPE of only 1.3% larger than the

ARWD/ARWDY methods. The ST and SnT methods is similar to the AWRDY

method but without the autoregressive components and although improves on445

the benchmarks, only outperforms the SMA by 2%. On average the KDE meth-

ods perform the worst only outperforming the random walk methods, LD, LW

and LY. Conditioning the KDE forecasts on the week period CKD-W improves

the forecasts, especially with respect to the RMAE.

For the probabilistic forecasts the empirical benchmark is also shown to be450

effective and gives a RCRPS only 20% worse than the ARWD method. The

ARWD is once again the best forecast, closely followed by ARWDY. This time

the ST forecast performs slightly better than the HWT forecast. Of the 100
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feeders, the ARWD and ARWDY forecasts were the best performing, with the

smallest average errors, for 16 and 26 of the feeders respectively. Hence, there455

does not appear to be a one-size-fits-all forecast which performs best for all feed-

ers and identifying indicators of which forecast to choose will be an important

step for practitioners.

Error Scores %

Method MAPE (std) RMAE (std) RCRPS (std)

LW 18.67 (5.85) 18.93 (5.34) -

SMA 15.73 (5.05) 16.77 (5.03) -

Empirical 16.19 (5.19) 16.96 (4.95) 12.62 (4.06)

HWT 14.84 (4.60) 15.01 (4.14) 11.06 (3.03)

ARWD 14.65 (4.71) 14.67 (4.12) 10.32 (2.85)

ARWDY 14.64 (4.55) 14.80 (4.15) 10.44 (2.88)

ST 15.42 (5.20) 15.42 (4.75) 10.97 (3.31)

SnT 15.66 (5.13) 15.57 (4.70) 11.10 (3.31)

KDE-W 17.05 (5.56) 19.36 (6.80) 13.79 (4.52)

KDE-Wλ 17.08 (5.58) 19.41 (6.83) 13.80 (4.52)

CKD-W 16.54 (6.61) 17.22 (6.25) 13.23 (4.75)

Table 2: MAPEs, RMAEs and RCRPSs for all forecast methods over all 4 day-ahead forecasts

for the entire 53 day test period. The lowest errors for each error score are highlighted in bold.

Standard deviations are indicated in the brackets.

If we compare the average errors for each feeder for a particular method we
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Figure 2: Scatter plot showing the average RCRPS (filled) and average MAPE (unfilled)

versus average RMAE for each feeder. Also shown are lines of best fit. These results are for

the ARWDY method.

see that the errors are strongly correlated. Figure 2 shows this comparison for460

the ARWDY method. The plots are very similar for all methods. As expected,

the RCRPS and RMAE are strongly related and this corresponds to a very

strong linear correlation in the average errors (0.995). The MAPE and RMAE

are also strongly correlated (0.981) but with more scatter, especially for larger

errors. The strong correlation between the error measures means it is inefficient465

to present the remaining results in terms of all scores, MAPE, RMAE, and

RCRPS. For this reason, and because of the ubiquitous use in the load fore-

casting community we will frame the rest of our discussion and analysis with

respect to MAPE.

5.2. Forecast Accuracy and Horizon470

Here we investigate the drop in forecast accuracy as a function of horizon.

Initially we consider the forecast accuracy in terms of full days ahead. In other

words, we consider the accuracy of forecasts up to 1 day ahead, forecasts between

1 and 2 days, etc. The MAPEs as a function of whole days are shown in Table 3
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for selected methods. Specifically, we generate forecasts for horizons at hourly475

intervals, ranging from one hour up to four days ahead. We use as forecast origin

each 7am in the post-sample data, so as to be consistent with the temperature

forecast data obtained from the weather station. We note that the benchmarks

do not change over the 4 day horizon since they are performed a week in advance.

As expected, the most accurate forecasts horizon is one day ahead and the least480

is 4 days ahead. However, the drop in average accuracy is quite small, with no

more than a 4% drop in forecast score.

Method MAPE

Day 1 Day 2 Day3 Day4

HWT 14.56 (4.46) 14.83 (4.59) 14.95 (4.67) 15.04 (4.72)

ARWDY 14.34 (4.45) 14.59 (4.52) 14.75 (4.62) 14.87 (4.65)

ST 15.36 (5.15) 15.41 (5.19) 15.44 (5.22) 15.49 (5.24)

CKD-W 16.64 (6.67) 16.56 (6.60) 16.48 (6.57) 16.50 (6.50)

Table 3: MAPE Scores for each method over each day ahead horizon. Standard deviations

are indicated in brackets.

The MAPEs as a function of horizon at the hourly resolution for selected

methods are shown in Figure 3a. First recall that the first horizon corresponds

to the period 8 − 9AM. There are a number of interesting observations. It is485

clear that all forecast methods produce a similar shape and the more accurate

forecasts have smaller errors at all horizons. Secondly, as confirmed with Table 3

there is a general trend with a small overall increase in the error as a function of

the horizon. However, the strongest driver of the forecast accuracy is clearly the

period of the day. The most inaccurately forecast time periods corresponds to490

the hours from around 6AM to 6PM. Similarly the period most easily estimated

is the evening and night period. Surprisingly, we would expect the evening
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Figure 3: Plot of average scores for selected methods for horizons from 1 hour to 96.

period (from 6PM until 11PM) to be quite difficult to forecast. In fact, we

discover that the horizon-error shape may be an artifact of the error measure

used. In Figure 3b we show the same plot but this time for the relative CRPS495

score for selected methods. This shows the expected larger error in the evening

period. The difference between the two scoring functions is that the MAPE

(4) normalises each hourly forecast error with respect to the demand at the

same hour. Since for residential feeders (which dominate the composition of

the feeders in this trial) have largest demand in this time period the relative500

error MAPEs are smaller compared to the RCRPS or RMAE. This could have

important implications for the use of MAPE in predicting daily errors, especially

for the many applications where peak demand is of the most importance, such

as in peak demand reduction via storage devices [3]. As evident from Figures

3a and 3b, the forecast errors are high for periods of the day that witness a505

relatively large change in consumption. We note that since all forecasts start at

7AM each day we have no information on the accuracy of the forecast models

as a function of horizon (and regardless of starting point). Encouragingly, the

horizon plot shape shown in Figure 3b is consistent with that as shown by the

authors in [40] for 800 individual residential customers.510
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5.3. Accuracy and Feeder Size

As described in the data analysis section the connectivity of the feeders con-

sidered varies and consists of different mixtures (domestic and non-domestic)

and numbers of customers. Recent literature has shown there is a link between

the size of the aggregation which makes up a demand time series and the accu-515

racy of the forecast on a number of different load time series data sets [32, 12].

In contrast to the previous work, these are real networks and hence may have

different behaviour compared to aggregations of smart meter data. These net-

works include street furniture, such as street-lighting and traffic lights, LCTs,

overnight storage heaters, and correlations between neighours are also naturally520

incorporated.

Figure 4: Scatter plot of the relationship between MAPE and mean daily demand for two

different forecasting methods. Feeders with unexpectedly large errors have been labeled sep-

arately with their known connectivity characteristics (if known). Also shown is a power law

fit to the non-anomalous feeders.

Figure 4 shows the MAPEs for each individual feeder as a function of the

average daily demand as well. The majority of the feeders appear to fit a power

law relationship which fits with the results found in [32, 12]. However, it is clear
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that twelve of the feeders do not fit the relationship as tightly as the remaining525

88 feeders.

After investigation it was found that these particular LV feeders consisted

of different connected customers. Firstly, it was found that seven of these feed-

ers consisted of unusually large overnight demands most likely due to overnight

storage heaters (OSH). In the UK such customers are typically on a special tariff530

(Economy 7) which provides cheap electricity overnight. Indeed, examination of

the connectivity found that 75-85% of customers on each of these seven feeders

were on the Economy 7 tariff. These feeders are labelled “Large OSH Feeders”

in the figure. Further, two other feeders with smaller overnight demands (but

still with noticeable peaks) were discovered and found to have 62% and 75%535

of their customers on the Economy 7 tariff. These are labelled “Small OSH

Feeders” in Figure 4. No other feeders in the 100 were found to have large

overnight demands. Finally, the largest feeder of the 100 was also found to have

unexpectedly inaccurate forecasts (in relation to the power law fit). This feeder

was found to be particularly unusual in that it supplied purely the landlord540

lighting for an office block. This feeder is labelled “LL Feeder” in the figure.

Finally there were two other feeders with anomalous errors (labelled “Anoma-

lous Feeders”) but with poor connectivity data and hence we cannot explain the

large errors. It is known that one of the feeders has a specific connection for a

medical condition which could cause perhaps more irregular demands but this545

cannot be proven. However, these results do exhibit the important difference

between true LV demand and the simple aggregation of smart meter data. In

particular, different types of loads and tariffs can have a significant effect on the

forecast accuracy.

A power law curve was fitted to the 88 non-OSH/non-anomalous feeders and550

is included in Figure 4. If the customers producing the aggregated demand were

independent and identically distributed (IID) we would expect an exponent of

−0.5, however we found an exponent equal to −0.47 indicating the IID assump-

tion is not completely accurate. Further we found the variation of the customers

demand also followed a power law curve very similar to the mean errors (not555
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shown).

5.4. Temperature Effect Analysis

Weather, in particular those related to temperature, often plays an impor-

tant role in the accuracy of the load forecasts for high voltage level substations

[28, 38]. In this section we consider in more detail the impact of including tem-560

perature in the forecasts. In particular, we consider both ex-ante and ex-post

forecasts by utilising either forecast or actual temperature values respectively.

In reality, ex-ante are the practical way to create true forecasts since, obviously

the actual temperature data will not be available ahead of time. However, we

include the ex-post forecasts here as well for comparison since much of the lit-565

erature is based on these forms of forecast. Before presenting the analysis, it

is important to note that since the temperature forecasts are generated from

the fixed time point at 7AM we cannot fully compare the accuracy of the load

forecasts as a function of horizon. To do this would require forecasts starting

from all time periods of the day.570

Table 4 shows the MAPEs for the average 4 day ahead forecasts over the

test period for selected methods including their updates using temperature data,

both actual and forecast values as input. From the table it is clear that the inclu-

sion of temperature (either actual or forecast) has minimal effect on the forecast

accuracy. In fact for ARWD, ARWDY and CKD-W including the temperature575

is detrimental to the forecast accuracy. For the ST and SnT methods, there are

inconsistent results, using the actual temperature values has little to no effect

on the forecast accuracy. Using the temperature forecast values, the improve-

ment on the demand forecast is also very small with at most a 1.7% increase in

forecast accuracy.580

Further, Table 5 shows the accuracy of the ex-ante forecasts as a function of

day ahead horizons. Also included is the MAPEs of the temperature forecasts

themselves. The ARWD and ARWDY forecasts drop in accuracy by 5.6% and

4.3% respectively whereas the ST and SnT forecasts hardly change in accuracy

at all. The CKD-W forecast actually improves at the 3-day ahead horizon585
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Temperature Type

Method None Forecast Actual

ARWD 14.65 (4.71) 16.94 (5.26) 17.21 (5.39)

ARWDY 14.64 (4.55) 15.16 (4.43) 15.17 (4.40)

ST 15.42 (5.20) 15.16 (4.92) 15.39 (5.11)

SnT 15.66 (5.13) 15.48 (4.92) 15.66 (5.07)

CKD-W 16.54 (6.61) 17.16 (7.03) 17.02 (7.02)

Table 4: MAPEs for the methods showing the effect of including temperature data (actual

or forecast) for a selection of methods.

compared to the 1-day and 2-day ahead forecasts. These results are in contrast

to the accuracy of the temperature forecasts themselves, which drop in accuracy

by more than 80% from one day ahead to four days ahead. If the weather was a

major driver for the load we would expect a much larger drop in accuracy with

horizon. Further, we also considered including up to two lags of the temperature590

data within the forecast methods but this also had no effect on the accuracy of

the forecasts. In particular, we note that the CKD-W method naturally contains

lags within the model. Further investigation into the effects of temperature lags

is beyond the scope of this research and will considered in a future paper.

Moreover, we investigate the temperature effect in more detail for the AR-595

WDY forecast as a function of feeder size. We only consider day ahead forecasts

since this is when the temperature forecasts are most accurate (as shown in Ta-

ble 5). To test this relationship, we plotted the difference in MAPE for the

ARWDY model (with and without actual temperature) versus feeder size, see

Figure E.8 in Appendix E. The plot is similar when using the forecast tem-600

perature. We chose ARWDY as it is one of the best performing model. We
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MAPE

Method Day 1 Day 2 Day3 Day4

ARWD 16.51 (5.08) 17.26 (5.37) 17.12 (5.37) 16.89 (5.26)

ARWDY 14.75 (4.34) 15.11 (4.41) 15.31 (4.49) 15.46 (4.50)

ST 15.12 (4.91) 15.21 (4.94) 15.16 (4.94) 15.16 (4.91)

SnT 15.47 (4.92) 15.53 (4.95) 15.46 (4.93) 15.47 (4.92)

CKD-WTf 17.22 (7.11) 17.24 (7.10) 17.02 (6.96) 17.19 (6.88)

Temperature 8.98 10.57 13.46 16.47

Table 5: MAPE Scores for different day ahead horizons for a selection of methods based

on utilising forecast temperature values. Also for comparison is the average MAPE for the

temperature forecasts themselves.

found that, irrespective of the feeder size, including temperature (either actual

or forecast) as an explanatory variable did not result in an improvement in the

out-of-sample forecast accuracy. We observe, from comparing the MAPEs for

each feeder, that including the temperature forecasts only improves the errors605

for 19 of the 100 feeders. If we use the temperature actuals in the forecasts, this

only improves a total of 20 feeders forecasts (18 of which are common to the 19

improved feeders using the forecast temperature). In all cases the MAPEs do

not improve by any more than 4%.

To further test the effect of including the temperature we also consider com-610

paring the change in the distribution of the MAPEs. We do this by using the

two-sample Kolmogorov-Smirnov test (implemented using kstest2 in Matlab) at

the 5% significance level. Since we have observed that the different hours of the

day have different distributions of demand we split the errors according to both

hour (1 to 24) and feeder. This gives us 2400 distributions to compare. Com-615
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Figure 5: Reliability diagram (coverage) for the ARWDY model: (a) without temperature,

(b) with actual temperature, and (c) with forecasted temperature. The solid line along the

diagonal represents the expect coverage. The coverage values were average across all 100

feeders, and across all 96 horizons.

paring the ARWDY without and with the temperature forecasts as input we

find that the null hypothesis (of the errors coming from the same distribution)

is only rejected for a total of 79 distributions. Of these, they are split across

36 of the feeders with no more than 5 distributions failing the null hypothesis

on any single feeder. Further to this, of the 79 distributions failing the null620

hypothesis all occur between 11PM and 6AM. In other words, when utilising

temperature in the forecasts, all of the significant changes occur during the early

morning hours when demand is usually more stable. There is no obvious feeder

types for which the overnight errors are larger/smaller than average (and this

includes to relationship to the OSH feeders in particular). In addition, when the625

distributions are significantly changed by including the weather, the accuracy

is not improved for any of the forecasts error distributions when compared with

not including temperature. Similar results hold when using the actual temper-

ature but only 82 distributions are significantly changed (i.e. reject the null

hypothesis in the ks-test).630

To further access the quality of density forecasts (coverage), we generated
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a reliability diagram, Figure 5, using the ARWDY model (with and without

temperature). Overall, we found that the inclusion of temperature did not

result in a reduction in model bias (difference between expected and obtained

coverage) across all quantiles considered in this study, these results are consistent635

with our findings obtained using the MAPE and CRPS.

As shown in Section 3, for some feeders there is a strong correlation be-

tween the load and the temperature. However, when we include the effect in

our model the accuracy either changes only slightly or, in the case of ARWD,

gets worse. A major difference between the ARWD methods and ARWDY, is640

the lack of a seasonal term. In fact, we find that demand is much more strongly

correlated with seasonality than temperature. If seasonality is a stronger driver

of demand, then temperature could result in the detrimental performance in

ARWD when included in the model. The strong relationship between demand,

temperature and seasonality (represented by a simple sinusoidal curve) is illus-645

trated in Figure A.7 in Appendix A. By treating the temperature as a surrogate

for the seasonality the ARWD model may erroneously over-train on data which

is not related to the load. Further, although the temperature data comes from

within 16KM of the centre of Bracknell, this may not be localised enough for

accurate forecasts at the feeder level and these short forecast horizons [53, 54].650

The evidence thus suggests that at least in this area of the UK there is

not a strong causal link between demand and temperature. Seasonality is a

stronger driver of the demand. Interestingly at national level, results have shown

that univariate models can outperform weather based models at short forecast

horizons [54]. However, we are to be careful to extrapolate this further since655

this is a relatively small area of the UK and we only consider two months of

Winter period. These findings underscore the importance of further research to

investigate the relationship between LV feeder load and weather. Moreover, it is

worth noting that we only had access to single point weather forecasts. Future

studies may employ ensemble weather to accommodate uncertainty during the660

modelling.
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6. Discussion

Short term load forecasts at the low voltage (LV) level are becoming in-

creasingly important as electricity networks prepare for a low carbon future.

Network solutions such as storage devices and energy management systems will665

require accurate forecasts to optimise the headroom and potential cost savings.

Although there is a large amount of literature of short term load forecasting

techniques there is not much investigation or results for LV level demand. Such

demand is much more volatile and challenging than high voltage systems and

there is still much to learn about the best methods and inputs for accurate670

forecasts.

In this paper we have presented several short term forecasting methods,

both point and probabilistic, and tested them on 100 real LV feeders. We also

compared them to a number of benchmarks, some of which are quite compet-

itive. As a consequence of the studies we have found some interesting results.675

Accurate forecasts can be obtained by relatively simple methods, in particu-

lar, a simple average of the previous four weeks performs quite well. The best

performing methods were those based on autoregression methods and a Holt-

Winters-Taylor exponential smoothing method. However, it was found there

was no single method which was the most accurate for a high proportion of680

feeders.

We also illustrated some important drivers for the accuracy of the forecast.

Firstly, the size of the feeder was one of the biggest determining factor for the

accuracy, with smaller feeders being more difficult to predict than larger feeders,

confirming a known result from the literature. Secondly, the presence of (poten-685

tially high demand) technologies, and specifically overnight storage heaters, had

significant implications in the forecast accuracy, modifying the existing power-

law relationship between forecast accuracy and aggregation size. This is a novel

result and could have important implications for making planning decisions such

as making optimal investments in where to install storage. Thirdly, we found690

that the time period of the day was a major indicator of the accuracy and was
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more important than the forecast horizon. Errors only increased by 2% from

one day ahead to 4% for four day ahead forecasts.

In contrast to HV level load forecasts, temperature was not an important

factor in the accuracy of our forecasts. We presented some detailed analysis of695

the results to show that the temperature either had little or no effect on the

forecast accuracy, but in many cases was actually detrimental to the accuracy.

We provided one potential explanation which highlighted how the strong corre-

lation between load and temperature may in fact be describing a strong seasonal

correlation which has more influence on the load than temperature.700

Finally, we performed some empirical comparison of the forecasts using a

variety of error measures. It was found that there was a strong correlation

between the scores. Hence, the point-wise scores on the point-wise version of the

forecasts could be performed to provide an accurate indication of the accuracy of

the corresponding probabilistic forecast. This supports work recently in [44] and705

could have implications for reducing the cost of model selection for probabilistic

load forecasts.

The research presented here can enhance our understanding of the low volt-

age network and help network operators make better management and planning

decisions for future smart grids. Further the short term load forecasts results710

lay a foundation for methodologies and metrics to be used for generating and

assessing probabilistic LV level load forecasts. In particular, there is still fur-

ther understanding into the effects of weather and LCTs, the role of LV network

connectivity and better probabilistic forecasts.
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Figure A.6: Load and corresponding temperature for feeder 26. Linear fits and R2 values are

shown and colour coded according to different hourly periods of the day.

Appendix A. The Relationship between Temperature and Load

In this section further plots and information is given concerning the rela-

tionship between load and temperature. For many feeders there is a strong

correlation relationship between the demand and temperature. An example of

this is shown in Figure A.6 for a particular feeder in our trial. The values are725

broken down according to hourly periods of the day and include a basic linear fit

and R2 values. Some periods of the day have steeper gradients with respect to

changes in temperature corresponding to larger increases in loads to relatively

small decreases in temperature.

The temperature demand is very strongly related to annual seasonality. An730

example of a strong relationship between demand, temperature and seasonality

(represented by a simple sinusoidal curve) is illustrated in Figure A.7. The

strong correlation between seasonality and load, and between seasonality and

temperature is one potential explanation for the detrimental temperature effect

on the load forecast accuracy, as shown in Section 5.4. The models for load735
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Figure A.7: Load curve (top) for feeder 26 with yearly temperature profile (centre) and a

simple seasonal profile (bottom).

could be training on the seasonal effect of the temperature even if there is little

to no causal link between them.

Appendix B. Details on the KDE methods

In this section we present further details of the parameters and training

as used to implement the KDE methods. There are a number of available740

choices for the kernels used in the KDE methods. Here, we simply use the

Gaussian kernel, which have been successfully used in other implementations of

load forecasting [49], and secondly, evidence in the literature suggests that the

choice of kernel has minimal effect on the accuracy of the forecasts [55].

The first method uses a kernel density estimate (KDE) to estimate the prob-

ability density function for each period w = t mod 24 of the day, defined by

the function

f(L̂t) =
1

(t2 − t1 + 1)hL

∑
i∈Iw

wiK

(
Lt − Li
hL

)
, (B.1)

where Iw = {i ∈ [t1, t2]|i mod 7H = w} is the index set denoting time periods745
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from the training set from the same period of the week as the time period t, and

wi is the weighting of historical observations i. We consider two types of KDE

forecasts. The first type, denoted KDE-W, considers all observations having

equal weight, wi = 1 for all i. This forecast has one parameter, the bandwidth,

hL, for the load kernel that requires optimisation. The second type, referred to750

as KDE-Wλ, favours observations around the same period of the year as time

t, i.e. wi = λα(i)∑
i∈Iw λ

α(i) , with the decay exponent α(i) defined by

α(i) = min (|W(t)−W(i)|, 52− |W(t)−W(i)|) , (B.2)

where W(i) ∈ {1, 2, . . . , 52} is the week of the year corresponding to the load

data, Li. Note, the first Monday of the year is defined as W(i) = 1. Equation

(B.2) is simply a periodic absolute value function with annual period, whose755

minimum values occur annually on the same week as the estimated day. The

exponent is more relevant when there are several years of historical data. KDE-

Wλ has two parameters to optimise, hL, the bandwidth for the load kernel and

λ ∈ (0, 1].

Additionally, we consider kernel density estimate forecasts conditioned on

independent variables y, z (CKD), such as the week-period, or weather variables

e.g. the temperature or both. This is represented as

f(L̂t|y, z) =
∑

i∈[t1,t2]

K((yi − y)/hy)K((zi − z)/hz)∑n
i=1K((yi − y)/hy)K((zi − z)/hz)

K

(
Lt − Li
hL

)
(B.3)

where hy, hz are the bandwidths of the independent variables y, z respectively.760

If there is only one independent variable y, then one ignores the kernel of z in

(B.3). CKD methods consider the whole time-series of historical observations

at all time-periods.

We produce three CKD forecasts, one conditioned on the week period (CKD-

W), a second conditioned on the week period and the actual temperature read-765

ings (CKD-WTa), and a third forecast conditioned on the both the week period

and the forecast temperature (CKD-WTf). For CKD-W, yi = i mod 7H is

the week period of time interval i. CKD-W weighs observations towards similar

times of the week as the forecast time-period.
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The CKD methods have not been implemented with a decay parameter770

due to the increased computational cost. Any extra parameter increases the

dimension of the parameter space and hence the computational cost for opti-

misation. The bandwidths and/or λ parameters of each method are found via

validation. The validation period is selected to be two weeks prior to the test-

period. For the KDE forecasts, all available observations before the two-week775

validation period are considered for training. As CKD methods are computa-

tionally more expensive, we restricted the training period to a year before the

validation period. Finding the optimal parameters is a non-linear optimisation

problem. For KDE-W, the fminbnd3 MATLAB’s built-in optimisation algo-

rithm was used. For KDE-Wλ and all the CKD forecasts, the fminsearchbnd4
780

optimisation package was used instead.

The load and temperature variables are normalised to [0, 1] for each feeder, to

accelerate the optimisation procedure. When the optimisation is complete and

a forecast is produced, the normalised forecast is rescaled. To assess the effect

of normalisation in the forecasts, we also experimented with KDE-W and KDE-785

Wλ forecasts without normalising the load. We compared the two forecasts and

their errors. The forecasts were almost identical, and the error differences were

marginal and evenly distributed around zero. However, the optimisation with

normalised variables requires, on average, 6 less iterations than the optimisation

with actual readings. For this reason, we decided to use normalised load and790

temperature variables for the parameter optimisation of all methods.

Appendix C. Details for the Simple Seasonal Model

In this section some extra details of the simple seasonal model described in

section 4.2 are described. The dummy variables for the simple seasonal model

3https://uk.mathworks.com/help/matlab/ref/fminbnd.html
4https://uk.mathworks.com/matlabcentral/fileexchange/

8277-fminsearchbnd--fminsearchcon
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representing the daily and weekly hourly periods are defined by

Dj(t) =

1, t mod H = j,

0, otherwise,

and

Wj(t) =

1, t mod 7H = j,

0, otherwise,

respectively. For this model there are essentially 168 models representing each

period of the week each with average, linear trend, and annual seasonality terms.

The ak terms represent the average demand for that hourly period (which is795

augmented based on the day of the week by fl), a linear trend term bk, and

annual seasonality terms defined by ck and dk. The parameters for each hour

and each quantile are found by a quantile regression over the historical data

using the pinball function [56].

Appendix D. Details for the ARWD and ARWDY Methods800

There are two mean models used to define the residual time series described

in section 4.3. The first, ARWD, estimates a simple weekly average and can be

written

µt =

7H∑
j=1

βjWj(t). (D.1)

where Wj(t) is the period of the week dummy variable as defined in Appendix

Appendix C. The weekly mean parameters are βj and hence the mean equation

(D.1), µk, is estimated by ordinary least squares (OLS) over the initial prior

year of historical loads.

The second model, ARWDY, updates the simple weekly average to include

an annual seasonality.

µt =

7H∑
j=1

βjWj(t) +

K∑
k=1

α1,k sin(2πtk/A) + α2,k cos(2πtk/A) (D.2)

with parameters βj and αj,k, and A = 365H as annual seasonality. So the805

annual seasonality is additionally modelled by a Fourier approximation of order
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K (we choose only K = 2). The dummy variableWj(t) is as before. As with the

ARWD model the µk is estimated by OLS linear regression fit to the training

data.

The methods can be updated to generate probabilistic forecast methods.810

The methods are not quite as straightforward as the point forecasts due to a

two-step process. We present a related but alternative autoregressive proba-

bilistic forecast technique for the ARWDY case (which generalises trivially for

the ARWD case).

The following method creates confidence by modelling the variance of the

model from the residuals. As before an autoregression is performed on the resid-

ual equation (2) but now the mean load is modelled by the following equation.

µt =

7H∑
j=1

βjWj(t)+

K∑
k=1

γkDj(t)+α1,kDj(t) sin(2πtk/A)+α2,kDj(t) cos(2πtk/A),

(D.3)

where A = 365H. The annual seasonality is modelled by a Fourier approxima-

tion of order K = 2. This time a different (but equivalent) basis function is

used with dummy variables for different horizon periods modelled as

Wj(t) =

1, t mod 7H ≤ j

0, otherwise

and Dj(t) =

1, t mod H ≤ j

0, otherwise

.

The mean equation (D.3) is solved using a lasso method tuned to ensure that the

Hannan-Quinn information criterion (HQC) is minimised. The past year is used

in the training. The conditional mean equation (D.1) is then estimated using

the discovered residuals by solving the Yule-Walker equations. As before, the

order is chosen by minimising the Akaike information criterion. To create the

confidence bounds we model the error term (the residual from equation (D.3))

as

εt = σtZt, (D.4)

where σt is the conditional standard deviation of εt and (Zt)t∈Z is an iid random

variable with E(Zt) = 0 with Var(Zt) = 1. We then assume a similar relation-

38



ship for different horizon periods in the model for the standard deviation as we

do for the mean,

σt =

7H∑
j=1

β̃jWj(t)+

K∑
k=1

γ̃kDj(t)+ α̃1,kDj(t) sin(2πtk/A)+ α̃2,kDj(t) cos(2πtk/A),

(D.5)

Although we do not know the values of the variance we can model a scaled815

version of σt by using the model in equation (D.5) to fit via the HQC to minimise

the lasso problem for |εt|. Since E(|εt|) = σtE(|Zt|)) this means we are actually

estimating Cσt for some constant C. We estimate the constant by considering

the residuals εt/Cσt which, given (D.4), should therefore behave like a scaled

version of Zt. Considering the variance of these residuals and noting that Zt820

has variance one we use this to estimate the constant and hence find σt. We

now calculate the standardised residuals εt/σt to put an empirical distribution

on Zt and estimate the quantiles (which once scaled by σt give the quantiles

on εt). Note, if Zt follows a standard normal distribution then C would be√
(2/pi) = 0.798. For our data we found this was usually smaller, between825

0.5 and 0.75. An advantage of this method is the quick computational speed.

Computing 99-percentiles for 4-days ahead takes about 2 seconds per feeder.

Appendix E. Further Temperature Results

Temperature data is a key variable for inclusion within short term load

forecasts at higher voltage and system level [18], [19]. In contrast, the effect at830

the low voltage level is not fully understood, in particular, whether there is a

weather effect for different size feeders. Figure E.8 shows the difference between

the average MAPE errors when using and not-using the actual temperature

within the ARWDY forecast methods for each of the 100 feeders in the test

set. Also included is a power law fit. There does not appear to be a strong835

relationship between the improvement by including temperature data within

the forecast and the size of the feeder in this case study. A similar result holds

when we utilise weather forecast data rather than actuals.
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Figure E.8: Difference in MAPE for the ARWDY model (with and without actual tempera-

ture) plotted against feeder size. The anomalous feeders found in section 5.3 have been labeled

separately.
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