
 Electronic copy available at: https://ssrn.com/abstract=3056730 

Saïd Business School
Research Papers

Saïd Business School RP 2017-21

The Saïd Business School’s working paper series aims to provide early access to high-quality and rigorous academic research. Oxford Saïd’s
working papers reflect a commitment to excellence, and an interdisciplinary scope that is appropriate to a business school embedded in one of the
world’s major research universities.

This paper is authorised or co-authored by Oxford Saïd faculty. It is circulated for comment and discussion only. Contents should be considered
preliminary, and are not to be quoted or reproduced without the author’s permission.

Diffusing Workers in a Multiplex World

Catherine Tong
Department of Computer Science, University of Oxford

Omar Guerrero
Saïd Business School, University of Oxford

Eduardo López
Saïd Business School, University of Oxford

Felix Reed-Tsochas
Saïd Business School, University of Oxford

October 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Oxford University, Saïd Business School: Eureka

https://core.ac.uk/display/288289234?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 Electronic copy available at: https://ssrn.com/abstract=3056730 

1

Diffusing Workers in a Multiplex World
Catherine Tong, Omar Guerrero, Eduardo López and Felix Reed-Tsochas

Abstract—The study of labor mobility across firms is cru-
cial to understand economic performance, unemployment, skills
reallocation and other aspects that shape the economic life
of nations. Modeling labor flows between firms has been a
challenge due to the complexity arising from the distributed and
heterogeneous nature of labor flows. In this paper, we introduce a
discrete-time model of labor flowing on a multi-layered network
(i.e. a multiplex graph). By introducing multiple layers, the
model accounts for different mobility patters (e.g. industries,
geographies, occupations, etc.), which is important to understand
the reallocation of human capital, skills and knowledge. We apply
the model to UK empirical micro-data and find that our measure
of regional preferences for low versus high skilled workers vary
significantly from a single to a multi-layer representation of the
world.

Index Terms—labor flows, networks, firms, multiplex, Markov
chains, random walks

I. INTRODUCTION

Every day, people change jobs, moving from one firm to
another. This process is crucial for economic performance
because it allows human capital, skills and knowledge to be
reallocated among the firms that need them. The movement
of millions of heterogeneous individuals across hundreds of
thousands of firms (or even millions) is a distributed process.
Naturally, decentralization and heterogeneity lead to consid-
erable complexity. By using aggregate matching functions,
traditional models neglect such complexities [1]. Aggregation
destroys information about the origins and destinations of
labor flows.

Recent modeling frameworks have tackled the challenge of
modeling labor mobility as a distributed process through the
idea of labor flows on networks [2]. Here, nodes represent
firms and edges mean that workers can flow between compa-
nies. In the absence of an edge, one would not expect labor
flows between disconnected firms due to high mobility barriers
in the labor market (e.g. unrelated industries, geographically
distance, competing firms, etc.). In consequence, the network
topology has direct incidence in the concentration of employ-
ment, skills and knowledge among specific groups of firms.

In this paper, we generalize of the ‘labor flow network’
(LFN) framework. This generalization allows for heteroge-
neous patterns of labor flows.In other words, it takes into ac-
count the fact that different groups of people exhibit different
mobility patterns. For example, people in different occupations
(e.g. lawyers and chefs) perform specific tasks that shape their
career paths. These trajectories reflect the specificities of their
professions, which translate into different network topologies
between occupations. One would expect chefs to be more
mobile than lawyers and that the LFN of lawyers should be
more clustered than that of chefs.

Clearly, a single LFN is not representative of this fact
because everyone is equally subjected to the same topology.

Alternatively, one could think of having different networks
(one for each group), but that would ignore the interaction
between them. We solve this problem by modeling labor flows
on multiplex networks, i.e. in networks with multiple layers.
Our generalization consists of using Markov chains to model
random walks on multiplex graphs. This can be thought as
a mixture of intra-layer and inter-layer processes of labor
reallocation. We obtain the steady-state solutions that predict
the concentration of employment in each firm, decomposed
into each layer. Our solutions are explicit and compact, facil-
itating empirical applications. Using survey micro-data from
the UK, we fit our model to study the differences between
high-skilled and low-skilled labor flows. Finally, we show that
our understanding, and hence policy implications, of labor
mobility between these two groups differs substantially when
we account for their respective mobility patterns (layers).

The paper is organized in the following way. Section II
introduces the model, develops the methodology of Markov
chains on multiplex networks, and presents the steady-state
solution. Section III demonstrates an empirical application and
the main results. Finally, we discuss our results in section IV.

II. PROPOSED METHOD

In this section, we first propose a dynamic model for labour
mobility on a multiplex network and present its solution. We
subsequently estimate the model parameters based on any
given dataset. Although the multi-layer nature of the model
allows considering any kind of groups of workers, we will
concentrate on skills due to their high relevance to policy
applications. Table I shows the basic notations used in the
rest of this paper.

TABLE I
BASIC NOTATIONS

G(V,E, L) A multiplex network with L layers, V as node set, E as
edge set

Γi,α A set of neighbouring nodes of node i within layer α

ki,α Number of neighbours connected to node i within layer
α

ri,α Probability of worker becoming employed in node i in
layer α

si,α Probability of worker becoming unemployed in node i in
layer α

λi,α Probability of worker becoming separated from node i in
layer α

hi,α Probability of worker becoming hired into node i in
layer α

Dαβi Probability of switching from layer α to layer β while at
node i

we assume edges capture the affinity between firms such
that frictions are low in both directions. We assume that
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an unweighted graph because such affinity has a qualitative
character.

A. Problem Definition

Let N denote the number of firms (nodes) in an undirected
unweighted multiplex graph1 G with L layers. Each node is
present in all layers, and there are no inter-layer edges in G.
Each layer represents a skill-specific mobility pattern, so Gα

is the sub-network corresponding to the layer of skill level
α. Assume that each firm (node) i has workers belonging to
L different skill levels (layers). We write (i, α) for a given
level of a given firm. Every worker is associated to a firm.
While associated, the worker is in one of two states: employed
or unemployed. Association to a firm during unemployment
means that the firm was the worker’s last employer. We denote
the probability of being employed at firm i in layer α as ri,α.
Similarly, si,α is the probability of being unemployed.

The labor mobility problem for a multiplex graph is to
define a set of rules which govern the movement of workers
between employment and unemployment, between firms at the
same level, as well as between firms at different levels. To
do this, we propose a discrete-time stochastic process. Let
M = [(Mαβ

xy )ij ], α, β ∈ {1, ...L}, i ∈ {1, ..., N}, x ∈ {r, s},
be a NL × NL supra-transition matrix describing a multi-
layer Markov Chain on the graph G. The elements of the
matrix give the transition probabilities from one specified state
to another. This allows us to define the evolution equation of
the probability of employment of the ith node in layer α as

(1)
ri,α(t+ 1) = (Mαα

rr )iiri,α(t) +

L∑
β=1,β 6=α

(Mαβ
rr )iiri,β(t)

+ (Mαα
sr )ijsj,α(t),

where
(i) (Mαα

rr )ii is the term that defines the contribution of the
employment state of node i in layer α to ri,α(t+1), i.e.
ri,α(t)→ ri,α(t+1). With reference to a single worker,
this is the probability of he or she remaining employed
in node i in layer α;

(ii) (Mαβ
rr )ii defines the contribution ri,β(t) → ri,α(t + 1).

With reference to a single worker, this is the probability
that he or she switches its state of employment from i
in layer β to node i in layer α 6= β;

(iii) (Mαα
sr )ij defines the contribution si,α(t)→ ri,α(t+ 1).

With reference to a single worker, this is the probability
that he or she changes from a state of unemployment at
node i in layer α to employment at node j in layer α.

In a similar way, we construct the evolution equation for
the probability of unemployment as

si,α(t+ 1) = (Mαα
rs )iiri,α(t) + (Mαα

ss )iisi,α(t), (2)

where

1We assume edges capture the affinity between firms such that frictions are
low in both directions. We assume that an unweighted graph because such
affinity has a qualitative character.

(iv) (Mαα
rs )ii defines the contribution ri,α(t) → si,α(t + 1).

With reference to a single worker, this is the probability
that he or she changes from a state of employment to
unemployment at node i in layer α;

(v) (Mαα
ss )ii defines the contribution si,α(t) → si,α(t + 1).

With reference to a single worker, this is the probability
of he or she remaining unemployed in node i in layer α.

In defining the term (ii), we restrict that workers only move
between layers if and only if they are employed at the same
node. This is motivated by the fact that workers usually hone
their skills as they receive training during employment, e.g.
salesmen might be promoted to management in the course of
their employment at a firm. Naturally, this assumption can be
relaxed, in which case we obtain solutions in matrix-forms
that can be solved numerically. Since we present an empirical
application, we prefer to hold this assumption in order to
obtain explicit solutions.

The system (1), (2) can be rewritten in matrix form as

X(t+ 1) =MX(t) =M t+1X(0) (3)

where X = [xα] is a vector composed of the
states (employed or unemployed) of all nodes in the
different layers of the multiplex network with xα =
(r1,α, . . . , rN,α, s1,α, . . . , sN,α)

T.

B. Parameters

We next define the matrix M as a function of some parame-
ters with real-world connotations and explore the steady state
dependence of employment and unemployment probabilities
on these parameters.

We introduce node-specific parameters hi,α, λi,α and Dαβ
i

representing the probabilities for hiring, separation and layer-
switching respectively. We propose a set of rules for workers
to move in the multiplex, shown in Algorithm 1.

for period t do
for each worker do

if employed then
become unemployed from firm (i, α) with

probability λi,α;
if still employed then

move to layer β with probability Dαβ
i ;

end
else

select neighbouring firm (j, α) where j 6= i at
random;

become hired with probability hj,α;
end

end
end

Algorithm 1: Labour mobility model.

Based on the above, the elements of the supra-transition
matrix M are defined as:
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(Mαα
rr )ij = Dαα

i (1− λi,α)δij (4)

(Mαα
sr )ij = hi,α

∑
j∈Γi,α

1

kj,α
(5)

(Mαα
rs )ij = λi,αδij (6)

(Mαα
ss )ij = [1−

∑
j∈Γi,α

〈h〉Γi,α ]δij (7)

(Mαβ
rr )ij = Dαβ

i (1− λi,α)δij (8)

where δ is the Kronecker delta.

C. Steady state

In the steady state, ri,α(t + 1) = ri,α(t) and si,α(t +
1) = si,α(t). The steady state equations no longer have time
dependence, i.e. ri,α(t) → r∞(i, α) and si,α(t) → s∞(i, α).
The system of equations is solved to produce analytical
solutions for a multiplex of any number of layers, L, such
that α = {1, .., L}, i = {1, ..., N}. The steady state solutions
are

r∞(i, α) =
χhi,α〈h〉Γi,αki,α

λi,α
, (9)

s∞(i, α) = χhi,αki,α, (10)

χ =
1∑L

α=1

∑N
i=1 〈h〉Γi,αhi,αki,α

(
1

λi,α
+ 1
〈h〉Γi,α )

) , (11)

where χ is the normalization such that the condition∑
α

∑
i[ri,α + si,α] = 1 is fulfilled.

From Equation 9, we see that steady-state employment at
a node is not only dependent on its own hiring rate, but also
the hiring rates of its neighbouring firms on the same layer;
this highlights the importance of the network topology in each
layer of the labour flow multiplex. In addition, the layer-
switching parameter Dαβ

i drops out entirely in the steady state
solutions; this eliminates the need for estimating the empirical
value of Dαβ

i .

III. APPLICATION

In this section, we present an application of the method
proposed onto a novel dataset. We first describe the data
and document the procedure taken to construct a two-layer
network, with high-skilled and low-skilled workers in different
layers. Finally, we present a comparison of the hiring patterns
of employers towards different workers using the estimated
model parameters.

Through this empirical application, our main findings are
as follows:
• High-skilled workers and low-skilled workers demon-

strate very different mobility patterns and thus network
topologies (with Jaccard index of edge sets at 0.17)

• Different regional hiring patterns revealed for UK em-
ployers towards high-skilled and low-skilled workers

A. Data

We use anonymized data from the Quarterly Labour Force
Survey (QLFS) [6], conducted by the UK Office for National
Statistics (ONS). The QLFS is based on the resident popu-
lation in the United Kingdom, with each quarterly sample
containing approximately 100,000 individuals. Members of
randomly selected households are asked to complete a ques-
tionnaire relating to the worker’s employer, its employment
situation and other personal characteristics.

We perform the analysis using a five-quarter longitudinal
QLFS dataset [7]. The workers included in this dataset have
completed 5 successive quarters of surveys, meaning that they
responded to each question five times. Analysis of changes
in a worker’s five-quarter responses forms the baseline for
tracking its employment over time. The data covers the period
from January 2009 to June 2016. In total, the data contain
138,400 individuals.

Responses to the surveys are recorded in the dataset in form
of a highly specific code system specified by the ONS [8].
Workers do not identify their firms but give the firms’ details,
e.g. industry, location. Since tracking of individual firm in this
dataset is not allowed, we group firms by industry and location
in our investigation. This means that in the following model
application, nodes in the network would refer to a group of
firms belonging to a certain industry and region in the UK.2 We
identify job transitions between nodes by comparing workers’
five-quarter responses regarding their firms systematically (as
documented in Appendix B).

Workers also report their personal details in the survey.
We base our following investigation on workers’ reported
occupational groups (a total of nine groups), which give
indications of their skill level.

B. Network Construction

Traditionally, labor studies and policy design focus on two
types of skills: low and high. For this reason, we concentrate
our application on a two-layer model that captures the mobility
patterns of high and low-skilled workers. In order to identify
both types, we propose a data-driven method to group workers
based on their mobility patterns.

The method considers job transitions recorded in the dataset,
specifically the occupational groups of workers before and
after each transition, oI and oF . We expect that an optimal
division will produce the two skill groups of workers, which
will have the smallest number of workers moving from one
skill group to another. Therefore, we define a cost function R
associated with inter-skill-group edges. This method seeks to
iteratively minimize the cost function to produce a division of
occupational groups{1,..,9} into two skill groups S and S.

R(S, S) =
tinter(S, S)

min(tintra(S), tintra(S))
(12)

where tinter(S, S) is the number of inter-skill-group transi-
tions, i.e. transitions where oI ∈ S and oF ∈ S; and tintra(S)
is the number of intra-skill-group transitions, i.e. transitions

2The ONS code system lists 21 regions and 615 industries.
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where oI , oF ∈ S. This ratio R is defined in the same spirit
of a graph conductance measure introduced in [9].

The result of this iteration is an optimal classification of
S∗ = {1, 2, 3, 4}, S∗ = {5, 6, 7, 8, 9}, with R(S∗, S∗) = 0.25.
This topology-driven partition is remarkably intuitive with
accepted notions of high- and low-skilled workers (e.g., man-
agers versus trades people). As a cross-check, the k-means
clustering algorithm from a Machine Learning context [10]
produces the same classification.

A resulting two-layer network G consists of transitions of
workers in skill group S∗ (high-skilled layer) and S∗ (low-
skilled layer). In total, G has 2,380 nodes on both layers,
5,246 edges on the high-skilled layer and 4,754 edges on the
low-skilled layer. For comparison purposes, we also construct
a single-layer network (multiplex with L = 1) using the same
procedure.

The sets of edges of the two layers of this multiplex have
Jaccard index 0.17, which is a low value meaning that the
topology of the two layers are distinctive. Thus, workers on
the two layers flow in different ways. It is interesting to note
that although the degree distributions for both layers look quite
similar (ref. Figure 1), the layers share such dissimilar set of
edges.

102

Degree

10 2

10 1

100

1-
P(

k)

Fig. 1. Complementary Cumulative Probability 1−P (k) plotted as a function
of degree k (solid lines) of the labour flow network on log-log scales, with
fitted power law (dashed lines). The blue line shows the degree distribution of
a single-layer network, where power-law fitting [11] finds b = 3.30. The red
and yellow lines show the degree distributions of high-skilled and low-skilled
layer of the two-layer multiplex network, power-law fitting finds b = 3.74
and b = 3.94 respectively.

C. Parameter Estimation

Direct retrieval of the parameters (hiring and separation
probabilities) from data is often not possible as they are
neither observable nor recorded. Therefore, we use a method
previously developed to estimate parameters in Markov chains
[12].

The estimation method works in a similar fashion to the
gradient descent algorithm [13], seeking to minimize an error
function, which is defined as the difference between flows
observed from data and predicted from our model. Labor flows
are computed by counting the job transitions captured in the
data. From our model, the number of flows is a function of
the hiring rate hi,α, separation rate λi,α. The method explores
the parameter space (λi,α, hi,α) until it reaches a fixed point

that minimizes the error function. Details of the method is
documented in [12].

D. Results

One of the most interesting features of the model is its
ability to obtain the hiring probability hi,α, which is not
observable (in empirical data one can observe hires, but not the
number of applicants who failed to be hired). This parameter
serves as a proxy for the preference of employers to hire job
applicants. In our context, different hi,α for the same firm
across different layers reveal the relative preference towards
high vs low-skilled workers.

We summarize our results by computing the average hiring
rate for all nodes inside a geographical region. This allows
us to study how different regions exhibit different ‘hiring
preferences’ for certain skills, and how this differs from
the single-layer view. For each layer, we rank the regions
according to their average hi,α, as shown in Figure 2.

We see considerable difference in the rankings produced
in the different networks, which confirms our motivation that
a multi-layer view. The difference in rankings implies the
differentiating employer’s attitude towards high-skilled and
low-skilled workers, allowing us to identify regions which
have higher demand for high-skilled or low-skilled workers.
We highlight some interesting results.

The rankings align with the common perception that big
cities (e.g. London) have a higher demand for workers (both
high-skilled and low-skilled). This analysis also presents a
more complete picture as we look at cases where hiring
behaviour differ significantly for the high-skilled and low-
skilled layers. One example is Wales, from a single-layer point
of view we would have missed that high-skilled workers have
a much better chance of getting hired in Wales than low-skilled
workers.

The analysis presented here is a preliminary approach to
utilize the model developed in this paper, but nevertheless an
important one. For instance policymakers may use this ranking
to judge the investment or training opportunities with high-
skilled or low-skilled labour in each regions.

IV. CONCLUSION

In this paper, we introduced a method to study hetero-
geneous patterns of labour flows using Markov Chains in
multiplex network. This framework allows the study of the
behaviour of different groups of workers in an economy as
well as the behaviour of firms towards different workers.
Explicit analytic solutions are obtained for at the steady state
of labour dynamics model.

Our method is applied to the Labour Force Survey data
of United Kingdom. The dissimilar topologies of networks
describing workers of different skills provide empirical support
for the study of heterogeneous patterns of labor flows. We
examine the hiring behaviour of employers in different regions
of UK towards high-skilled and low-skilled workers; revealing
that some regions have significant difference between the prob-
abilities of hiring of high-skilled versus low-skilled workers.
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Inner	London
Inner	LondonCentral	London
Central	London

Rest	of	North	West

Rest	of	North	West

West	Yorkshire
West	Yorkshire

Merseyside
MerseysideRest	of	Scotland

Rest	of	Scotland

Outer	London Outer	London
East	Midlands

East	MidlandsWales

Wales

South	West

South	West

Rest	of	South	East

Rest	of	South	East

Rest	of	Northern	Region

Rest	of	Northern	Region

Strathclyde
Strathclyde

Rest	of	York	&	Humberside
Rest	of	York	&	Humberside

West	Midlands	Metropolitan
West	Midlands	MetropolitanEast	Anglia

East	Anglia

Rest	of	West	Midlands
Rest	of	West	MidlandsSouth	Yorkshire

South	Yorkshire

Greater	Manchester
Greater	ManchesterTyne	&	Wear

Tyne	&	Wear

High-skill	 Low-skill	 Single	layer

Fig. 2. The three lists ranking a region’s average hiring rates; from left to right are the ranking for the high-skilled layer, low-skilled layer, and single layer.
The top of each list has the highest ranking and therefore has the highest average hiring rate. (a) High-skilled layer: ranges from 54% in Inner London to
45% in Tyne & Wear. (b) Low-skilled layer: ranges from 49% in Central London to 39% in Wales. (c) Single layer: ranges from 74% in Central London to
65%.

Overall, we are confident that this paper can serve as a
foundation for valuable future work involving labour studies
of heterogeneous mobility patters.
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APPENDIX A
PROOF OF STEADY STATE SOLUTIONS

We substitute matrix elements [4-8] into Eq. 1 and 2 to
obtain the following at steady state,

(13)

r∞(i, α) = Dαα
i (1− λi,α)r∞(i, α)

+

L∑
β=1,β 6=α

Dβα
i (1− λi,β)r∞(i, β)

+ hi,α
∑
j∈Γi,α

s∞(j, α)

kj,α

s∞(i, α) = λi,αr∞(i, α) + s∞(i, α)

[
1− 〈h〉Γi,α

]
(14)

We re-arrange Eq. 14 for s∞(i, α) to get,

s∞(i, α) =
λi,αr∞(i, α)

〈h〉Γi,α
(15)

Substituting Eq. 15 into Eq. 13 and noting that Dαα
i =

1− (
∑
β 6=αD

αβ
i ),

(16)

r∞(i, α) =

(
1− (

∑
β 6=α

Dαβ
i )

)
(1− λi,α)r∞(i, α)

+
∑
β 6=α

(
Dβα
i (1− λi,β)r∞(i, β)

)
+ hi,α

∑
j∈Γi,α

λi,αr∞(j, α)

〈h〉Γj,αkj,α

Rearranging, this gives

(17)

∑
β 6=α

Dαβ
i

(
r∞(i, α)(1− λi,α)

)
−
∑
β 6=α

(
Dβα
i (1

− λi,β)r∞(i, β)

)
=
∑
j∈Γi,α

[(
hi,α

〈h〉Γj,αkj,α

− δij
)
λj,αr∞(j, α)

]
Eq. 17 concerns layer α in particular, summing over all

layers, we obtain

(18)

∑
α

∑
β 6=α

Dαβ
i

(
r∞(i, α)(1−λi,α)

)
−
∑
α

∑
β 6=α

(
Dβα
i (1

− λi,β)r∞(i, β)

)
=
∑
α

∑
j∈Γi,α

[(
hi,α

〈h〉Γj,αkj,α

− δij
)
λj,αr∞(j, α)

]
As the first and second terms on the left hand side of Eq. 18

cancel, we obtain

∑
α

[ ∑
j∈Γi,α

(
hi,α

〈h〉Γj,αkj,α
λj,αr∞(j, α)

)
−λi,αr∞(i, α)

]
= 0

(19)
Using the ansatz,

r∞(i, α) =
hi,α〈h〉Γi,αki,α

λi,α
(20)

the left hand side of Eq. 19 simplifies to∑
α

[
hi,α

∑
j∈Γi,α

hj,α − hi,α〈h〉Γi,αki,α
]

(21)

Using the definition of average hiring rate,

〈h〉Γi,α =

∑
j∈Γi,α

hj,α

ki,α
(22)

Terms in Eq. 21 cancel, and this ansatz solves the steady state
equations. Substituting the ansatz Eq. 19 into the steady state
unemployment probability given in Eq. 15, we have

s∞(i, α) = hi,α〈h〉Γi,αki,α (23)

A normalization factor χ should be included such that∑
α

∑
i

r∞(i, α) + s∞(i, α) = 1 (24)

This gives

χ =
1∑L

α=1

∑N
i=1 〈h〉Γi,αhi,αki,α

(
1

λi,α
+ 1
〈h〉Γi,α

) (25)

Steady state solutions are

r∞(i, α) =
χhi,α〈h〉Γi,αki,α

λi,α
(26)

s∞(i, α) = χhi,αki,α (27)

APPENDIX B
NETWORK CONSTRUCTION FROM DATASET

An edge (i, j) is generated if any one worker performs a
job transition from i to j. Job transitions are identified by
considering workers’ five-quarter responses in two ways. First,
if a worker is employed at a node i in a quarter but employed at
another node j in a succeeding quarter, this is a job transition
from i to j so an edge (i, j) is generated. Second, if a worker is
employed at the same node i in successive quarters but reports
that he or she has changed job recently, this is a job transition
within i so an edge (i, i), i.e. a self-loop, is constructed.
Examples of edge construction are found in Table II.
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TABLE II
EXAMPLE FIVE-QUARTER RESPONSE OF A WORKER IN THE DATASET.

NULL RESPONSES ARE DENOTED BY ‘-’ IN THIS TABLE. HIGHLIGHTED IN
RED ARE RESPONSES INDICATING TWO JOB TRANSITIONS WHICH RESULT
IN THE CONSTRUCTION OF EDGES (‘1000 1’ ,‘2000 1’) AND (‘2000 1’,
‘1000 2’), NOTE THE LATTER IS COUNTED DESPITE AN INTERMEDIATE
PERIOD OF UNEMPLOYMENT IN QUARTER 3. RESPONSES IN QUARTER 5
ARE HIGHLIGHTED IN BLUE TO INDICATE A JOB TRANSITION WITHIN A

NODE, LEADING TO THE CONSTRUCTION OF A SELF-LOOP
(‘1000 2’,‘1000 2’). THE PAIRS OF OCCUPATION ASSOCIATED TO EACH

EDGE ARE (9,9), (9,9), (9,3) RESPECTIVELY.

Quarter 1 2 3 4 5
Industry 1000 2000 - 1000 1000
Region 1 1 - 2 2
Employed? Yes Yes No Yes Yes
Left job? No Yes Yes No Yes
Occupation 9 9 - 9 3
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