
 1 

Probabilistic Forecasting of Wind Power Ramp Events 

using Autoregressive Logit Models 

 

James W. Taylor 

Saïd Business School, University of Oxford, Park End Street, Oxford, OX1 1HP, UK. 

james.taylor@sbs.ox.ac.uk 

 

 

 

 

 

Abstract 

A challenge for the efficient operation of power systems and wind farms is the occurrence of 

wind power ramps, which are sudden large changes in the power output from a wind farm. 

This paper considers the probabilistic forecasting of a ramp event, defined as exceedance 

beyond a specified threshold. We directly model the exceedance probability using 

autoregressive logit models fitted to the change in wind power. These models can be 

estimated by maximising a Bernoulli likelihood. We introduce a model that simultaneously 

estimates the ramp event probabilities for different thresholds using a multinomial logit 

structure and categorical distribution. To model jointly the probability of ramp events at more 

than one wind farm, we develop a multinomial logit formulation, with parameters estimated 

using a bivariate Bernoulli distribution. We use a similar approach in a model for jointly 

predicting one and two steps-ahead. We evaluate post-sample probability forecast accuracy 

using hourly wind power data from four wind farms. 
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1. Introduction 

Wind power is the world’s fastest growing source of renewable energy. For electricity 

systems with high wind power penetration, forecasts of wind power are needed to support the 

efficient dispatch of generation units and to maintain the reliability of the system. Due to the 

uncertainty in the weather, wind power is inherently stochastic, and so, in order to convey a 

realistic representation of future power generation, probabilistic forecasts are required. 

Probabilistic wind power forecasting enables system operators to optimise levels of reserve, 

and allows a wind farm to improve operational efficiency and refine the risk-return trade-off 

in bidding strategies (Pinson and Kariniotakis, 2010).  

In forecasting wind power, a significant challenge is the occurrence of wind power 

ramps, which are sudden large changes in the power generated from a wind farm, resulting 

from variations in wind conditions. An upward ramp needs to be swiftly balanced by a 

reduction in other sources of generation, and a downward ramp requires the use of reserve 

load, or a request for power, at short notice, from other sources (see, for example, Wang et 

al., 2015). This increases costs, and reduces the benefit in terms of carbon emissions. In terms 

of immediate financial impact, a downward ramp is sometimes considered more serious than 

an upward ramp of equal size (see, for example, Sherry and Rival, 2015). However, there is 

no consensus on this, as it will depend on their respective costs in the power system of 

interest. Research in the area of ramp forecasting is still in its infancy (Gallego et al., 2013). 

In this paper, we develop models for predicting the probability of a ramp event. Such 

probabilistic forecasts have been used by system operators to improve situational awareness 

through the use of graphical displays (see, for example, Zack et al., 2010). As operators gain 

confidence in the quality of the forecasts, they could feed directly into an automated system, 

which would incorporate tolerances regarding ramp size, timing and likelihood (Cui et al., 

2015). This system could initiate the use of reserve, prompt the lowering of output from other 

sources, and terminate power output from a wind farm. Potter et al. (2009) show how reserve 

requirements can be optimized by incorporating forecasts of the probability of a ramp event 

in an analysis of system operating costs. 

Wind power probability forecasts can be based on probabilistic forecasts of wind 

speed and other meteorological variables, generated from a statistical time series model (see, 

for example, Hering and Genton, 2010) or a physical model, such as a Numerical Weather 

Prediction (NWP) system (see, for example, Pinson and Madsen, 2009). Probabilistic 

prediction from an NWP model relies on ensemble predictions, which are generated by 

running the model with multiple different initial conditions. This limits the geographical 
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coverage and frequency of updating of the resultant forecasts. For short lead times, such as 

one or two hours, statistical models can be very competitive, because recent meteorological 

observations can better describe the state of the atmosphere than a physical model (Yoder et 

al., 2014). However, basing wind power prediction on meteorological variables is 

complicated by the relationship being stochastic (Jeon and Taylor, 2012). In view of this, and 

our interest in short lead times, we use statistical models of wind power based on only 

historical wind power observations. 

Of the methods designed specifically for predicting ramp events, the great majority do 

not deliver probabilistic forecasts (see, for example, Cutler et al., 2007; Zheng and Kusiak, 

2009; Gallego et al., 2011). Exceptions to this are the methods of Bossavy et al. (2010, 2013) 

and Cui et al. (2015). Bossavy et al. (2010) use quantile regression based on point forecasts 

of wind power, speed and direction, as well as information on the magnitude and timing of 

the most recent ramp. Bossavy et al. (2010, 2013) present methods based on weather 

ensemble predictions, and consider forecasting up to several days. Cui et al. (2015) derive a 

probabilistic forecast of a ramp event from a wind power density forecast. They use a neural 

network with lagged wind power values as inputs for predicting ramp event probabilities for 

each hour of the next day. By contrast, our interest is in lead times of just one or two hours. 

There is no consensus regarding the precise definition of a ramp (Gallego et al., 2013; 

Bossavy et al., 2015). They are usually considered to be large changes in power occurring 

over several minutes or hours, and their magnitude is typically measured as a percentage of 

the capacity of the wind farm. Interest can be in the change in power between two periods, 

the cumulative change over several periods, or the difference between the maximum and 

minimum power during a number of periods (see Ferreira et al., 2010). In this paper, we use 

hourly data, and define a ramp simply as a change in successive wind power observations that 

exceeds a specified constant threshold Q. Our aim is to forecast the probability of 

exceedance, as illustrated in Fig. 1 for data from the Aeolos wind farm in Crete. We express 

wind power as the capacity factor wt, which is calculated as generated power divided by the 

wind farm’s capacity. Fig. 1 shows wind power changes wt, a threshold of 0.2, and a rotated 

probability density function showing the ramp event probability. 

In principle, a ramp event probability forecast could be obtained from the predictive 

distribution of a statistical model fitted to wind power, wt, or wind power changes, wt. 

However, this requires a distributional assumption, which is not obvious, and so we directly 

model the probability using discrete choice models (see, for example, de Jong and 

Woutersen, 2011). More specifically, we adapt the conditional autoregressive logit (CARL) 
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models of Taylor and Yu (2016), who developed the models for financial returns series. Such 

data has similarities to our series of wt in that it is high-frequency, and possesses apparent 

autocorrelation in the variance. 

 

Fig. 1.  Wind power wt (upper panel) and power changes wt (lower panel) for hourly Aeolos 

data. Rotated density indicates ramp event probability for threshold, Q=0.2. 
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In addition to adapting the CARL models for ramp event forecasting, we develop 

three new models, which we term conditional autoregressive multinomial logit (CARML). 

The first simultaneously estimates the probabilities of exceeding different thresholds, using a 

categorical distribution. The second relates to the literature on the spatial modelling of wind 

power (see, for example, Gneiting et al., 2006; Hering and Genton, 2010; Elberg and 

Hagspiel, 2015), as it involves jointly modelling the probability of a ramp event at two wind 

farms, using a bivariate Bernoulli distribution. The third CARML model uses a similar 

approach for jointly predicting one and two steps-ahead.  

Section 2 describes the data used in this paper. Section 3 introduces the CARL and 

CARML models. Section 4 presents an empirical study comparing forecast accuracy. Section 

5 concludes the paper. 
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2. The Wind Data 

In this paper, we use hourly wind power data, recorded for 2010 at the following four 

wind farms on the Greek island of Crete: Aeolos, Iweco, Plastika and Rokas. Each hourly 

observation is the average of the six wind power readings recorded in the previous hour at 10 

minute intervals. For all four wind power series, observations were missing for the same 367 

of the 8760 hourly periods. These 367 periods were excluded from our analysis. As shown in 

Fig. 2, all four wind farms are in the east of the island, which is about 160 miles in length. In 

2010, the capacities of Aeolos, Iweco, Plastika and Rokas were 8.3 MW, 4.5 MW, 11.8 MW 

and 11.5 MW, respectively. As stated in Section 1, we work with the capacity factor wt, 

which is measured on a scale of 0 to 1. Crete is an interesting focus for our study, because, as 

noted by Sørensen et al. (2007), ramps can have particularly serious implications for the 

operation and security of a small island’s power system, especially when there is no 

interconnector to the mainland, which is the case for Crete. 

 

Fig. 2.  Locations of the four wind farms. 
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Table 1 provides summary statistics for each series of wind power changes wt, 

calculated using the full year of data. For a Gaussian distribution, skewness is 0 and kurtosis 

is 3, and so it is interesting to see the high kurtosis values in Table 1, indicating that the series 

are far from Gaussian. It is also interesting to note that the autocorrelation is significant for 

wt and wt
2
. Autocorrelation in wt

2
 suggests that autoregressive modelling of the variance 

in wt may be useful within a model for the probability of a ramp event. This is supported by 

the clustering of periods of relatively high volatility and relative tranquillity in Fig. 1. 

Table 2 presents the correlations between the four wind power series, and Table 3 

provides the correlations between the four series of wind power changes. The full year of data 

was used to calculate these values. The correlations between Aeolos, Plastika and Rokas are 

higher than between any of these three and Iweco. The reason for this is not clear, although 

we note that Iweco is somewhat further from the north coast than the other three wind farms. 



 6 

Table 1. Summary statistics for the four time series of changes in wind power wt. 
 

 Aeolos Iweco Plastika Rokas 

Mean 0.000 0.000 0.000 0.000 

Standard deviation 0.126 0.125 0.110 0.097 

Skewness 0.144 0.072 0.260 0.060 

Kurtosis 7.215 8.015 8.504 9.260 

Autocorrelation at lag 1 in wt
 0.049** 0.071** 0.114** 0.133** 

Autocorrelation at lag 1 in wt
2
 0.187** 0.170** 0.190** 0.132** 

* and ** indicate significant autocorrelation at 5% and 1% levels, respectively. 

 

 

Table 2. Correlation between the four time series of wind power wt.   
 

 Aeolos Iweco Plastika 

Iweco 0.55
**
   

Plastika 0.71
**
 0.45

**
  

Rokas 0.76
**
 0.51

**
 0.73

**
 

* and ** indicate significance at 5% and 1% levels, respectively. 

 

 

Table 3. Correlation between the four time series of changes in wind power wt.  
 

 Aeolos Iweco Plastika 

Iweco 0.07
**
   

Plastika 0.13
**
 0.06

**
  

Rokas 0.26
**
 0.03

**
 0.17

**
 

* and ** indicate significance at 5% and 1% levels, respectively. 

 

 

Table 4. Percentage of periods with wind power change wt exceeding each threshold.  
 

   Threshold   

 -0.3 -0.2 -0.1 0.1 0.2 0.3 

Aeolos 2.2 5.6 13.8 14.0 5.8 2.3 

Iweco 2.1 5.4 13.0 13.1 5.6 2.3 

Plastika 1.2 3.5 12.3 12.0 4.2 1.4 

Rokas 1.0 2.9 9.9 10.8 3.0 0.9 

 

In our empirical work, we consider six thresholds: -0.3, -0.2, -0.1, 0.1, 0.2 and 0.3. 

These span the range of commonly considered thresholds for wind power ramps (see Ferreira 

et al., 2010; Gallego et al., 2013). Table 4 shows the percentages of wind power changes 

exceeding each threshold in 2010. Each percentage is an estimate of the unconditional 

expectation of the probability of the wind power change exceeding the threshold. Our aim is 

to model the conditional expectation of this probability. As we explained in Section 1, to 
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model this probability, we use statistical models based on only historical wind power 

observations. As we are modelling the probability of a ramp, it seems natural to use, as a 

covariate, a variable that indicates whether or not a ramp occurred in the previous period. In 

addition, in view of the autocorrelations shown in Table 1, we also consider, as covariates, 

lagged wind power changes and measures of the volatility of wind power changes.  

For each month, Figs. 3 and 4 show the percentage of periods for which the wind 

power change wt exceeded the thresholds 0.2 and -0.2, respectively. For both thresholds, the 

total number of ramps for the four locations was the highest for February and the lowest for 

August. This was also the case for the other four thresholds, except 0.1 and -0.3, for which 

January had slightly more ramps than February. However, as we are using just one year of 

data, we cannot make confident inference regarding seasonality. In our empirical work, we 

re-estimate model parameters for each month using just the previous four months of data, 

which enables the parameter values to change across the year. If we had a time series 

extending over several years, our modelling could also consider covariates aimed at capturing 

the annual seasonality. 

 

Fig. 3. For each month, percentage of periods with wind power change wt exceeding the 

threshold Q=0.2. 
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Fig. 4. For each month, percentage of periods with wind power change wt exceeding the 

threshold Q=-0.2. 
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3. CARL and CARML Models 

3.1. CARL Models for a Single Threshold and a Single Wind Power Series 

 In this section, we adapt the conditional autoregressive logit (CARL) models of 

Taylor and Yu (2016) for the wind power ramp context, where we model the probability of 

wt falling beyond a threshold Q. For simplicity, throughout Section 3.1, we present models 

for only Q>0. We use the logistic function of expression (1), with five alternative 

formulations for the logit xt. The parameters in each are estimated separately for different 

values of Q. This amounts to a rather flexible modelling of the conditional distribution of wt 

with dynamics that potentially differ across the distribution.  

 
 t

t
x

Qw



exp1

1
Pr       (1) 

Our first formulation for the logit is the CARL-Indicator model of expressions (2) and 

(3). The term  QwI t  1  allows the probability to change according to whether or not there 

was a ramp in the previous period, and the inclusion of this term, along with the term 

 QwI t  1 , helps the model adjust to the volatility in the data.  



 

 

otherwiseL

Qwifh
x tt

t

11       (2) 

    1112110   tttt hQwIQwIh     (3) 

where i and 1 are constant parameters. Throughout this paper, L is chosen as a large 

negative number. Recall that wt-1[0,1], and that we are considering Q>0. If wt-1>1-Q, then 

wt cannot take a value above Q. This is captured in expression (2), because if wt-1>1-Q, the 

logit is set to L, which forces the probability to be close to 0. This feature was not needed in 

the CARL models of Taylor and Yu (2016), which were developed for financial returns. The 

CARL-Indicator model for a negative threshold is presented in Appendix A. 

In view of the autocorrelation in the volatility of wt, which we noted in Section 2, 

the following CARL-Absolute model is specified to adapt to changes in the magnitude of wt:  



 




otherwiseL

Qwifh
x

tt

t

1
1

  

11110   ttt hwh   

where i and 1 are constant parameters.  

The CARL-GARCH model of expressions (4) and (5) uses a GARCH formulation to 

capture the autocorrelation in the volatility of wt.  
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

  



otherwiseL

Qwifhx tt
t

1110
2

1

      (4) 

11

2

110 


ttt
hwh         (5) 

where i, 1 and i are constant parameters. This model can be motivated by considering the 

assumption of a constant distribution F1 for standardised values of wt. This would imply 

  ))((Pr 2

1

1 tt hQFQw  , where ht is the variance, and  is the mean, which we assume 

to be zero. This can be rewritten as   ))((Pr 2

1

2 tt hQFQw   , where F2 is a constant 

distribution function. This suggests that the probability can be modelled using a logistic 

function with the logit term a linear function of 2

1


t
h , and this is the form of expression (4). 

We impose the constraints 1,≥0, and, given that the variance of wt is stationary, we set 

0=(1-1-)h, where h is the variance of the in-sample values of wt. This approach to 

reducing the number of parameters in a variance model is known as variance targeting. 

To capture the autocorrelation in wt, which was evident in Table 1, we include wt-1 

in the logit expression, as shown in expression (6). We term this CARL-GARCH with wt-1.  



  



otherwiseL

Qwifwhx ttt
t

111110
2
1

     (6) 

where i, 1, i and 1 are constant parameters, and ht is modelled as in expression (5). We 

also considered wt-1 in the logit expression, but this did not improve the empirical results. We 

present the model for a negative threshold in Appendix B. 

Following the standard approach for binary choice models, we estimated the CARL 

models using the Bernoulli likelihood of expression (7), where T is the sample size.  

        






T

t

QwI

t

QwI

t
tt QwQw

1

1
Pr1Pr                (7) 

The CARL models can be adapted for other definitions of a ramp, such as a ramp 

being defined as a large change between periods that are not successive (see Ferreira et al., 

2010). For example, if interest is in the change over three periods, this could be modelled by 

replacing wt with (wtwt-3) in the likelihood of expression (7). 

Table 5 presents the parameters for CARL-GARCH with wt-1, estimated using four-

month windows of the Aeolos data for the threshold Q=0.2. As is common with GARCH 

models of daily financial returns, the sum of 1 and 1 is just below 1 for each model. The 

negative values for 1 are intuitive because they imply that, as the volatility of wt rises, there 

is an increase in the probability of wt rising by at least 0.2. The positive values for 1 imply 
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that, if wt increased in the previous period, the probability of it then rising by at least 0.2 is 

more than if wt had decreased in the previous period. This seems reasonable, given the 

autocorrelation in wt-1 that we noted in Table 1. Although there are some sizeable 

differences in the values of parameters when estimated using the different four-month 

windows, it is not possible to make confident inference regarding seasonality, as we are using 

just one year of data in this paper. 

 

Table 5. Parameters of CARL-GARCH with wt-1, estimated using four-month windows of 

Aeolos data for threshold Q=0.2.  
 

In-Sample      

Jan-Apr -1.628
**
 -0.032

*
 0.307 0.000227 0.970

**
 0.020 

Feb-May 1.604
**
 -0.040 0.404 0.000140 0.782

**
 0.211

*
 

Mar-Jun -0.946
**
 -0.144

**
 0.851

*
 0.000105 0.582

**
 0.351

**
 

Apr-Jul -0.787
*
 -0.161

**
 0.977

*
 0.001101 0.560

**
 0.365

**
 

May-Aug -1.069
**
 -0.118

**
 1.380

**
 0.000616 0.748

**
 0.198

*
 

Jun-Sep -0.950
**
 -0.133

**
 1.115

*
 0.000721 0.693

**
 0.250

**
 

Jul-Oct -0.949
**
 -0.138

**
 0.948 0.000676 0.545

**
 0.405

**
 

Aug-Nov -1.483
**
 -0.090

**
 1.282

*
 0.000270 0.531

**
 0.447

**
 

  * and ** indicate significance at 5% and 1% levels, respectively. 

 

For Aeolos, the upper and middle panels of Fig. 5 show the October observations for 

wt and wt, respectively, and the threshold Q=0.2. The lower panel shows the one hour-ahead 

post-sample probability forecasts  2.0Pr  tw , produced from the CARL-Indicator model 

and CARL-GARCH with wt-1, estimated using the four-month window of data from June to 

September, inclusive. When wt is very high, it cannot rise by 0.2, and so, as expected, the 

probability forecasts are close to 0 in Fig. 5.  

For the same periods of the Aeolos data, Fig. 6 shows the wt observations, the 

threshold Q=-0.2, and the corresponding forecasts for the ramp probability  2.0Pr  tw . 

There is some indication in the probability forecasts of Figs. 5 and 6 that, when there is high 

volatility in wt (and hence in wt), a ramp event is more likely. Comparing the probability 

forecasts from the two models, we see that the CARL-GARCH forecasts are more responsive 

to changes in wt. This is understandable, because the CARL-GARCH forecasts react to the 

magnitude of wt, while the CARL-Indicator forecasts adjust by fixed amounts depending on 

whether or not wt exceeds Q or -Q.  
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Fig. 5. Wind power wt (upper panel), change in wind power wt (middle panel), and post-

sample forecasts (lower panel) of Pr(wt>0.2) from two CARL models, estimated using 

Aeolos data for June to September, inclusive. 
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Fig. 6. Change in wind power wt (upper panel) and post-sample forecasts (lower panel) of 

Pr(wt≤-0.2) from two CARL models, estimated using Aeolos data for June to September, 

inclusive. 

0.0

0.1

0.2

0.3

01/10/2010 08/10/2010 15/10/2010 22/10/2010 29/10/2010

CARL-GARCH forecasts of

CARL-Indicator forecasts of

Pr(wt≤-0.2)

Pr(wt≤-0.2)

-0.8

-0.4

0.0

0.4

0.8 Change in wind power

Threshold Q=-0.2

wt

 



 12 

3.2. A Multi-Threshold CARML Model for a Single Wind Power Series 

If there is interest in predicting the probabilities of ramp events for ramps of different 

sizes in a single wind power time series, it would seem efficient to model the probabilities 

together. Furthermore, such simultaneous estimation enables us to avoid a ramp event 

probability estimate being higher for the more extreme of two thresholds of the same sign. 

We term this problem probability crossing; it is analogous to quantile crossing in quantile 

estimation (see Section 2.5, Koenker, 2005).  

In expressions (8)-(12), we present a multi-threshold conditional autoregressive 

multinomial (CARML) model for K1 negative and K2 positive thresholds. We use the notation 

1Q  to 
1KQ  for the negative thresholds, and 11KQ  to 

21 KKQ   for the positive thresholds. 

 
 

 









21

1

1

exp1

exp
Pr

KK

j
jt

it

iti

x

x
QwQ   i = 1 to K1                 (8) 

 
 

 









21

1

1

exp1

exp
Pr

KK

j

jt

it
iti

x

x
QwQ   i = (K1+1) to (K1+K2)               (9) 

 
 










2111

1

1

exp1

1
Pr

KK

j

jt

KtK

x

QwQ                  (10) 





 

 



otherwiseL

QwandQwifwh
x itittitii

it

1111110
2

1


    i = 1 to (K1+K2)      (11) 

11

2

110 


ttt
hwh                     (12) 

where i, 1, ji and 1i are constant parameters. We order the thresholds so that Qi<Qi+1, and 

we define extreme thresholds as Q0=-1.01 and 121 KKQ =1. Expressions (8)-(10) show a 

multinomial logit structure. For each of the K1 negative thresholds (i=1 to K1), expression (8) 

shows a logit xit corresponding to the probability of wt falling in the interval (Qi-1,Qi]. For 

each of the K2 positive thresholds (i=(K1+1) to (K1+K2)), expression (9) shows a logit xit 

corresponding to the probability of wt falling in the interval (Qi,Qi+1]. Each logit xit, 

therefore, relates to the probability of exceeding Qi, but not exceeding the adjacent threshold 

that has larger magnitude than Qi. Defining the logits like this allows us to impose, in 

expression (11), that the exceedance probability is close to 0 if wt<-Qi for a negative 

threshold, and if wt>1-Qi for a positive threshold.  
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We estimate the model by maximising the likelihood of expression (13). This is based 

on a categorical distribution, which is a generalisation of the Bernoulli distribution for a 

random variable with more than two possible outcomes.  
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Table 6 presents the parameters of the model with all six thresholds, estimated using 

the Aeolos wind farm data from June to September, inclusive. For this model, we have K1=3 

negative thresholds (Q1=-0.3, Q2=-0.2 and Q3=-0.1) and K2=3 positive thresholds (Q4==0.1, 

Q5=0.2 and Q6=0.3). The negative values for 1i are intuitive because they imply that, as the 

volatility in wt increases, all six logits increase, and hence there is an increase in the 

probability of exceeding each threshold. 11 and 16 are not significant, suggesting that the 

sign of the change in wind power does not affect the probability of exceeding -0.3 or 0.3 in 

the next period. For the other thresholds, the signs of i indicate that a wind power change 

increases the probability of a change of the same sign in the next period.  

 

Table 6. Parameters of multi-threshold CARML with thresholds -0.3, -0.2, -0.1, 0.1, 0.2 and 

0.3, estimated using four months of Aeolos data.  
 

i 0i i i   

    0.031 0.686
**
 0.284

**
 

1 -1.906
**
 -0.104

**
 0.274    

2 -1.673
**
 -0.071

**
 -2.351

**
    

3 -0.969
**
 -0.050

**
 -1.749

**
    

4 -0.647
**
 -0.085

**
 1.324

**
    

5 -0.841
**
 -0.143

**
 1.499

*
    

6 -1.345
**
 -0.126

**
 1.078    

  * and ** indicate significance at 5% and 1% levels, respectively. 

 

 

3.3. A Multi-Location CARML Model for a Single Threshold and Two Wind Power 

Series 

If an estimate is required for the probability of a ramp event at two wind farms, that 

are located relatively close to each other, joint modelling of the two ramp event probabilities 

may lead to improved estimation. For example, using the wind power observations from the 

two locations may improve the modelling of their volatilities. Also, the wind conditions at 

one location may provide a leading indicator of conditions at a downwind location. We 

inspected wind direction data from our four wind farm locations, but there was no clear visual 
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evidence that any one of our locations was generally downwind from another of the locations. 

Nevertheless, in light of the significant correlations, shown in Table 3, between the four 

series of wind power changes, we feel it is interesting to investigate further the empirical 

benefits of joint modelling for two locations. 

We present here a CARML model for two wind farm locations and one positive 

threshold Q. In expressions (14)-(17), we use a multinomial logit structure for the 

probabilities of the four possible joint events regarding whether the changes in wind power at 

the two locations, w1t and w2t, are above or below the threshold. Expression (18) allows 

each logit to depend on wind power changes at the two wind farms, and on the corresponding 

volatilities, which we model in expression (19). 
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where ij, 1j, ji and ji are constant parameters.  

As we are modelling the joint events regarding two dichotomous variables, to 

estimate model parameters, we maximise the likelihood of the bivariate Bernoulli distribution 

presented by Teugels (1990). This likelihood is shown in expression (20). A similar 

multinomial logit model structure to ours is considered by Dai et al. (2013), who also use a 

bivariate Bernoulli likelihood, although they do not consider an application to wind energy. 

In principle, our model could be extended for more than two wind farm locations, using a 

multivariate Bernoulli distribution for estimation (see Teugels, 1990). However, parameter 
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optimisation is likely to be challenging, because, of all the models in this paper, the multi-

location model of (14)-(19) was the most difficult to optimise. We found that the optimisation 

was sensitive to the initial values of the parameters. We discuss our approach to optimisation 

in Section 4.1. The optimisation problem is fundamentally different to that for the other 

models in this paper, because the model is fitted to two series.   
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Table 7 presents the parameters of the model for a threshold of 0.2, and estimation 

based on the Aeolos and Plastika wind power time series from June to September, inclusive. 

In the model, w1t and w2t correspond to Aeolos and Plastika, respectively. It is interesting to 

see that the values of 13 and 23 are not significant, which suggests that the volatilities of w1t 

and w2t are not useful for modelling the probability that there will be a ramp at both 

locations. The value of 13 is significant, implying that the sign of the change in wind power 

at Aeolos has an impact on this probability.  

 

Table 7. Parameters of multi-location CARML with a single threshold Q=0.2, estimated 

using four months of Aeolos and Plastika data.  
 

i 0i i i i i i i i

1 -1.557
**
 0.002 -0.149

*
 -0.535 0.821 0.0004 0.710

**
 0.257

**
 

2 -1.422
**
 -0.128

**
 0.023 0.401 3.700

**
 0.0005 0.302

**
 0.645

**
 

3 -3.615
**
 -0.023 -0.068 5.511

**
 2.617    

  * and ** indicate significance at 5% and 1% levels, respectively. 

 

 

3.4. A Multi-Step-Ahead CARML Model for a Single Threshold and a Single Power 

Series 

The models that we have proposed so far are suitable only for one step-ahead 

prediction. Gneiting et al. (2006) describe how a two-hour lead time, for wind power, is 

important for transmission, resource allocation and generation dispatch. In expressions (21)-

(26), we present a CARML model for jointly modelling the ramp event probabilities for one 

and two step-ahead prediction, for the case of one wind power series and a single positive 

threshold. The model uses a similar structure and estimation approach to the multi-location 

model of the previous section.  
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where i, 1, ji and 1i are constant parameters. 

The parameters are estimated by maximising the bivariate Bernoulli likelihood of 

expression (27). Table 8 presents the parameters of the model with Q=0.2, estimated using 

the Aeolos data from June to September, inclusive. The values of 1i indicate that the 

volatility has an impact on the probability of a ramp event at each lead time. Indeed, the 

volatility seems to be of more importance in the model than the lag of the wind power 

changes. The values of 12 and 13 are not significant, implying that the lag of the change in 

wind power does not have a significant impact on the probability of a ramp event at the first 

lead time. 
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Table 8. Parameters of multi-step-ahead CARML with a single threshold Q=0.2, estimated 

using four months of Aeolos data.  
 

i 0i i i   

1 -1.860
**
 -0.091

**
 -2.751

**
 0.001 0.651

**
 0.288

**
 

2 -0.776
**
 -0.163

**
 0.940    

3 -2.939
**
 -0.101

*
 0.361    

  * and ** indicate significance at 5% and 1% levels, respectively. 
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In Section 4, we evaluate the multi-step-ahead CARML model in terms of its ability 

to predict, from a forecast origin at period t, the probability of a ramp in period t+1 and the 

probability of a ramp in period t+2. It is worth noting that the model can also be used to 

predict the probability of a ramp occurring in either period t+1 or period t+2, and indeed a 

ramp event could be defined as a large change occurring in any one period within a given 

time interval.  

 

4. Empirical Evaluation of Probability Forecasts 

Our analysis proceeded by using the first four calendar months of 2010 to estimate 

model parameters. We then produced probability forecasts for all periods in the next month. 

We moved the window of four calendar months forward by one month, re-estimated the 

parameters, and again produced forecasts for the next month. We did this six more times to 

deliver, in total, forecasts for the final eight months of the year. These are post-sample 

forecasts, because each was generated using only data on or before the forecast origin. Our 

main focus was one hour-ahead prediction, but we also evaluated two hours ahead from the 

multi-step-ahead CARML model. 

 

4.1. Probability Forecasting Methods 

As a simple benchmark, we produced forecasts for the probability  Qwt Pr  as the 

proportion of the previous four calendar months that the observed wt were less than the 

threshold Q. This would be termed by meteorologists the climatology forecast, updated each 

month. As more sophisticated benchmarks, we implemented an exponentially weighted 

moving average (EWMA) and a GARCH(1,1) model to estimate the standard deviation t of 

wt. We optimised the EWMA smoothing parameter by minimising the sum of in-sample 

variance forecast errors, and we fitted the GARCH model using a Student-t distribution. 

From the empirical distribution of the standardised changes wt/t, we derived the probability 

of a standardised change being less than or equal to Q/t for the forecast period. We used this 

as the estimate of  Qwt Pr . We also implemented a quantile regression approach, 

motivated by the work of Bossavy et al., who produce a distributional forecast based on 

quantile models corresponding to probability levels 5% to 95%, with 5% increments. In their 

models, they use wind speed and direction forecasts, and consider lead times much longer 

than ours. In our study, we used autoregressive quantile models. More specifically, we 

modelled the quantiles of wt using the symmetric absolute value conditional autoregressive 

value at risk (CAViaR) model of Engle and Manganelli (2004), which is estimated using 
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quantile regression. We derived each forecast of  Qwt Pr  from a distributional forecast 

based on quantile models corresponding to probability levels 1% to 99%, with 1% 

increments. To produce the full distributional forecast, we used linear interpolation between 

quantile forecasts, and bounded the estimated distribution by the historical lowest and highest 

values of wt. If wt-1<-Q or wt-1>1-Q, a ramp was not possible for period t, and so in this case 

we set the ramp probability forecasts from all methods to be zero for period t. 

We implemented the CARL and CARML models of Section 3. For each, we 

initialised ht using the first 100 observations. For example, in the CARL-GARCH models, h1 

was calculated as the variance of the first 100 observations for wt. We considered two 

versions of the multi-threshold model. The first included all six thresholds. The second 

involved one model estimated for the three negative thresholds, and a separate model for the 

three positive thresholds. To maximise the likelihoods, we used a similar optimisation 

approach to that used by Engle and Manganelli (2004) for their CAViaR quantile models. It 

proceeded by sampling J vectors of parameters, using a uniform random number generator to 

sample values between a lower and upper bound, which were set for each parameter based on 

initial experimentation. Of the J sampled vectors, the three that gave the highest likelihood 

values were used, in turn, as the initial vector in a quasi-Newton algorithm. The resulting 

vector, corresponding to the highest log likelihood, was chosen as the final parameter vector. 

We set J=10
5
 for the multi-location model and the multi-threshold model with six thresholds, 

while for all other models, we used J=10
4
. 

 

4.2. Post-Sample Results 

 The Brier score is commonly used to evaluate probability forecasts. It is presented in 

expression (28) for a forecast tp̂  of  Qy
t
Pr , and N post-sample periods. It is a proper 

scoring rule, meaning that the expected value of the score is lowest for the true probability 

(see, for example, Gneiting et al., 2007). We calculated the Brier score for each method, 

along with the logarithmic score, which is another popular evaluation measure (see, for 

example, Wilks, 2011). As the ranking of the methods for these two measures was very 

similar, we consider only the Brier score in the remainder of this paper.  
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For each method, we calculated the Brier skill score, which is shown in expression 

(29) (see, for example, Wilks, 2011). This measure compares the Brier score to a reference 
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method, which we chose as the simple benchmark approach. The measure was used by 

Bossavy et al. (2010, 2013) to evaluate ramp event probability forecasts. 
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Table 9 presents the results for the Aeolos wind farm. Higher values indicate superior 

accuracy, and positive values imply greater accuracy than the reference method. The final 

column summarises performance across the six thresholds. To obtain the values in this 

column, we calculated the geometric mean of the ratios of the Brier score for each method to 

the Brier score for the reference method, we then subtracted 1, and multiplied the result by 

100. The same form of calculation was used to produce Table 10, which averages the Brier 

score results across the four wind farms. In the tables, for each of the six thresholds, and for 

the summary column, bold indicates the best three results.  

 

Table 9. For one hour-ahead ramp event probability forecasts, Brier skill scores for Aeolos. 
 

 Threshold  

 -0.3 -0.2 -0.1 0.1 0.2 0.3 
Geometric

mean 

Benchmarks          

    EWMA for variance 1.3 2.5 3.8 4.5 3.0 1.0 2.7 

    GARCH for variance -0.5 1.7 3.5 6.0 3.6 0.4 2.4 

    CAViaR -0.1 1.5 2.1 7.0 3.5 1.1 2.5 

CARL (Section 3.1)       

    CARL-Indicator -0.4 0.4 3.0 4.8 1.6 0.6 1.7 

    CARL-Absolute 0.0 1.4 2.8 5.0 3.0 1.7 2.3 

    CARL-GARCH 1.0 1.8 3.4 7.7 4.6 2.3 3.4 

    CARL-GARCH withwt-1 0.7 1.9 4.9 8.5 4.7 2.3 3.8 

Multi-threshold CARML (Section 3.2)    

    6 thresholds 0.3 1.2 5.1 9.6 4.9 2.0 3.8 

    3 thresholds (Qi<0 separate from Qi>0) 0.5 1.4 5.2 9.8 4.9 1.8 3.9 

Multi-location CARML (Section 3.3)   

    Aeolos & Iweco 0.9 1.1 4.4 8.4 4.6 1.9 3.5 

    Aeolos & Plastika  2.1 1.6 5.8 10.0 5.8 0.2 4.2 

    Aeolos & Rokas 0.4 1.2 5.5 8.5 3.9 1.8 3.5 

Multi-step-ahead CARML (Section 3.4)   

    Model for 1 & 2 hours ahead 0.8 2.2 5.3 9.3 5.0 2.3 4.1 
 

Notes. Higher values are better. Bold indicates best three methods in each column. 
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Table 10. For one hour-ahead ramp event probability forecasts, Brier skill scores averaged 

across the four wind farms. 
 

 Threshold  

 -0.3 -0.2 -0.1 0.1 0.2 0.3 
Geometric

mean 

Benchmarks          

    EWMA for variance 2.2 3.3 4.4 2.6 1.5 0.3 2.4 

    GARCH for variance 1.2 3.0 5.4 4.3 1.4 -1.9 2.2 

    CAViaR 2.4 3.5 4.5 4.6 2.2 0.7 3.0 

CARL       

    CARL-Indicator 0.9 2.2 4.5 3.7 1.0 0.0 2.0 

    CARL-Absolute 1.3 3.6 4.7 3.2 1.8 0.8 2.5 

    CARL-GARCH 2.4 3.6 5.3 5.8 3.0 1.3 3.6 

    CARL-GARCH withwt-1 2.3 3.9 6.6 6.5 3.0 1.2 3.9 

Multi-threshold CARML     

    6 thresholds 1.8 3.4 7.0 7.5 3.4 1.3 4.0 

    3 thresholds (Qi<0 separate from Qi>0) 2.0 3.7 7.2 7.8 3.4 1.2 4.2 

Multi-step-ahead CARML   

    Model for 1 & 2 hours ahead 2.6 4.0 7.1 7.3 3.2 1.3 4.2 
 

Notes. Higher values are better. Bold indicates best three methods in each column.  

 

 

Almost all of the values in Tables 9 and 10 are positive indicating outperformance of 

the simple benchmark. Comparing the four different CARL models, the final summary 

column in both tables shows that the two forms of CARL-GARCH were more accurate than 

CARL-Indicator, CARL-Absolute, and the EWMA, GARCH and CAViaR benchmarks. Of 

the four CARL models, CARL-GARCH with wt-1 delivered the greatest accuracy, and it is 

this that led us to use this form of model within the CARML models. The results are 

encouraging for the multi-threshold CARML models, with the best results produced by 

estimating the three negative thresholds in one model, and estimating the three positive 

thresholds in a separate model. The results of Table 9 for the multi-location CARML models 

are mixed, with two of the three not being particularly competitive, while the joint model for 

Aeolos and Plastika performed well. The other two wind farms were notably closer to Aeolos 

than Plastika, and this may explain why, for modelling power generation at Aeolos, those 

wind farms did not provide useful information in addition to that provided by the Aeolos 

wind power series. As we explained in Section 3.3, we inspected wind direction data at the 

four locations, but there was no clear evidence that any one was generally downwind from 

another.  



 21 

Tables 9 and 10 show that the multi-step-ahead CARML model performed very well 

for one step-ahead prediction. This model was estimated for a single threshold, and so it is 

interesting to see that it outperformed the CARL models estimated for a single threshold and 

single lead time. It seems that the information for two step-ahead estimation, captured by the 

multi-step-ahead model, enhanced the modelling for one step-ahead estimation. Table 11 

reports the Brier skill score for two step-ahead estimation for Aeolos. The multi-step-ahead 

CARML model clearly outperformed the EWMA, GARCH and simple benchmarks. Table 12 

shows that this was also the case when averaging over the results for the four wind farms. 

 

Table 11. For two hour-ahead ramp event probability forecasts, Brier skill scores for Aeolos. 
 

 Threshold  

 -0.3 -0.2 -0.1 0.1 0.2 0.3 
Geometric 

mean 

Benchmarks          

    EWMA for variance -1.9 -0.1 2.0 2.6 0.4 -2.6 0.0 

    GARCH for variance -6.8 -2.7 1.4 3.2 -0.1 -5.0 -1.7 

Multi-step-ahead CARML   

    Model for 1 & 2 hours ahead 1.4 3.0 6.3 5.4 3.2 2.3 3.6 
 

Notes. Higher values are better.  

 

 

Table 12. For two hour-ahead ramp event probability forecasts, Brier skill scores averaged 

across the four wind farms. 
 

 Threshold  

 -0.3 -0.2 -0.1 0.1 0.2 0.3 
Geometric 

mean 

Benchmarks          

    EWMA for variance -1.6 -0.8 0.8 1.6 -0.1 -1.9 -0.4 

    GARCH for variance -6.0 -2.6 2.1 2.0 -1.7 -6.2 -2.1 

Multi-step-ahead CARML   

    Model for 1 & 2 hours ahead 2.3 3.8 7.0 4.7 2.4 1.4 3.6 
 

Notes. Higher values are better.  

 

 

5. Concluding Comments 

 This paper has presented a set of autoregressive logit models for the short-term 

probabilistic forecasting of a ramp event, which we defined as the occurrence of a change in 

hourly wind power exceeding a given threshold. For a single threshold, we adapted CARL 

models previously proposed by Taylor and Yu (2016) for daily financial data. We introduced 

a new multi-threshold CARML model for simultaneously estimating ramp event probabilities 
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for more than one threshold. This model has a multinomial logit formulation, and is estimated 

using a categorical distribution. It has the appeal of avoiding probability crossing. We found 

it to be more accurate than the CARL models. We also introduced a CARML formulation for 

modelling the probability of a ramp event at two wind farm locations. The results were 

mixed, which was perhaps due to estimation being challenging for this model. The model has 

a multinomial logit structure, and is estimated using a bivariate Bernoulli distribution. We 

employed a similar formulation, and the same estimation approach, in a new CARML model 

for jointly predicting one and two steps-ahead. The one step-ahead results were very 

competitive with the other models, and the two step-ahead results were also very promising. 

In a recent review of the literature on ramp event forecasting, Gallego-Castillo et al. 

(2015) describe how this is a rapidly growing area of research. Further work with the CARL 

and CARML models could involve diurnal and annual seasonal factors, predictions of wind 

speed and direction, probit models, forecast combinations (see, for example, Lessmann et al., 

2012), or higher frequency data. For example, the forecasting of the probability of a wind 

power ramp could perhaps be improved by knowledge of the occurrence of a ramp in wind 

speed at a downwind location. The models could be adapted for other definitions of a ramp, 

such as a large change between periods that are not successive. Drawing on the work of 

Yoder et al. (2014), the models could be adapted for predicting the probability of wind power 

increasing, decreasing or remaining the same.  
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Appendix A 

 The CARL-Indicator model, of Section 3.1, for a negative threshold Q: 
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Appendix B 

 The CARL-GARCH with wt-1 model, of Section 3.1, for a negative threshold Q: 
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