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Table A1 
 
 

Date 0                        Date 1 Date 2               Date 3 
 
             
                   ├──────────────────┼─────────────────┼────────────────┤ 
 
 
Firm and employee sign 
employment contract 
 
Firm determines optimal 
bonus policy (wa, wx, wy,) 
 
Firm commits to a 
development policy δ 
 
 

With probability λ employee 
has an idea 
 
With probability γ core state is 
good 
 
Employee  privately chooses 
either A (core task)  
or B (idea exploration) 

If B was chosen, idea feasible 
with probability p 
 
If employee has IP rights, 
firm can offer internal 
development (δy); otherwise 
employee leaves to do a start-
up (δx) 
 
If firm has IP rights, it can 
choose between shelving (δ0), 
internal development (δy), or 
a spin-off (δx)  
 

If employee chose A, then expected 
return is a if core state was strong, and 
φa if core state was weak 
 
If employee chose B, and the innovation 
was developed internally (δy), then the 
expected return is y; if innovation was 
developed externally (start-up or spin-
off), then the expected return is x 
 
 

    
 

 



Table A2: Key notation

A Employee�s choice to focus on core task
a Returns to core task
B Employee�s choice to explore new idea
�x, �y Fraction of utility that constitutes a private bene�t
�x Policy of developing innovations externally
�y Policy of developing innovations internally
�0 Policy of not developing innovations (shelving)
EIP Regime where intellectual property rights belong to employee
FIP Regime where intellectual property rights belong to �rm
� Probability that returns a occur when core prospects are weak
 Probability that core prospects are strong at date 1b1, b2 Critical values of , satisfying 1 > b1 > b2 ? 0
� Probability that employee obtains an idea at date 1b� Critical value of �
p Probability that an idea turns into feasible innovation
�� Equilibrium where employee never explores
�� Equilibrium where employee explores only if core prospects are weak
�+ Equilibrium where employee explores excessively (even if core prospects are strong)
wA, wy, wx Compensation for generating outcomes a, y or x
x Utility to an external venture (start-up or spin-o¤)bx1, bx2, bx3 Critical Critical values of x, satisfying 0 < bx1 < bx2 < y < bx3
y Utility to an internal venture
z Utility of employee in an internal venture (given by Max[�yy; x])

Remember that a bar over a probability means its complement, e.g., � = 1� �



Proof of Proposition 2

It is useful to restate the �rm�s utilities from equations (2) through (7) in
the main text.

U(��; �y) = ( + �)(a� pz��1)
U(��; �y) = �(py � pz) + ( + ��)(a� pz)
U(�+; �y) = �(py � pz) + �( + �)a
U(��; �x) = ( + �)(a� px��1)
U(��; �x) = ( + ��)(a� px)
U(�+; �x) = �( + �)a

We immediately note that U(�+; �y) > U(�+; �x), i.e., (�+; �x) is domi-
nated. Using � < b�, we only need to compare three policies: (��; �x), (��; �x)
and (�+; �y). Consider �rst the case of �yy � x � y, then pz = px. To see
that (��; �x) is dominated by (�+; �y), note that U(��; �y) = U(��; �x) and
that the proof of Proposition 1 already establishes that U(�+; �y) > U(��; �y).
Moreover, (��; �x) is also dominated by (�+; �y), since for pz = px we have
U(��; �y) > U(��; �x), and the proof of Proposition 1 establishes that U(�+; �y) >
U(��; �y). It follows that (�+; �y) is optimal for �yy � x � y. For the remainder
of the proof we focus on x < �yy.
Consider the e¤ect of x on the �rm�s utility from the three candidate policies.

We note that
dU(��; �x)

dx
= �( + �) p

�
<
dU(��; �x)

dx
= �p( + ��) <

dU(�+; �y)

dx
= 0 (using x < �yy). This implies that there exists a critical valuebx��, such that U(��; �x) > U(��; �x) , x > bx��. Similarly, there exists bx+� such

that U(�+; �y) > U(��; �x) , x > bx+� and bx+� such that U(�+; �y) > U(��; �x)
, x > bx+� . Straightforward calculations reveal that the critical values are given
by bx1 � bx�� = �

p

�a

���1 + �
, bx+� = �

p

( + �)a� (py � pz)
��1 � 

and bx2 � bx+� =
�

p

a� (py � pz)
 + �

. It is easy to verify that
dbx1
da

> 0,
dbx1
dp

< 0,
dbx1
d�

> 0,
dbx2
da

> 0,

dbx2
dp

< 0,
dbx2
d�

= 0.

Consider �1 � U(��; �x) � U(�+; �y) evaluated at bx��. If �1 > 0, then

U(��; �x) = U(��; �x) > U(�+; �y) at bx��. Since dU(��; �x)dx
<
dU(�+; �y)

dx

this implies bx+� > bx��. Since dU(��; �x)dx
<
dU(�+; �y)

dx
it also implies bx+� >

bx��. Moreover, dU(��; �x)dx
<
dU(��; �x)

dx
implies bx+� < bx+� . Clearly bx�� > 0.

Moreover, we have already shown that U(�+; �y) > U(��; �x) at x = �yy, so
that bx+� < �yy. Thus �1 > 0 implies 0 < bx�� < bx+� < bx+� < �yy < y.



We now examine the condition�1 > 0. We have�1 = �a��py+�pz�(+
�)pbx��. Using bx�� = �

p

�a

���1 + �
, we obtain after transformations �1 > 0,

T () > 0 where T () = 2���1a+�a��a���a�(���1��)(py�pz).
For  ! 0 we have T () = ���a � �(py � pz) < 0, and for  ! 1 we have

T () =
�

�
(a� py + pz) > 0. We de�ne b1 so that T (b1) = 0. To show that b1

is unique, it su¢ ces to show that
dT ()

d
> 0 at T (b1) = 0. It is tedious but

straightforward to verify this condition.

Proof of Proposition 3

Let us �rst focus on the analysis where the �rm can commit. In the main
text, we already showed that for (��; �0), the �rm sets wa = 0, so that

U(��; �0) = ( + �)a.

We also need to re-derive the utility that the �rm gets from all other policies.
For external developments �x, the main di¤erence is that the employee�s outside
option is no longer px, but p�xx+wx. Since the �rm never wants to encourage
idea exploration, it is easy to see that wx = 0. Thus, for (��; �

x), the �rm sets
wa = p�xx�

�1, so that

U(��; �x) = ( + �)(a� p�xx��1).

For (��; �x), the �rm sets wa = p�xx, so that

U(��; �x) = ( + ��)(a� p�xx).

For (�+; �x), the �rm sets wa = 0, so that

U(�+; �x) = �( + �)a.

We immediately recognize that (��; �0) dominates any of the policies with �x.
What remains to be seen is how (��; �0) compares to any strategy with �y. From
Proposition 1, we only need to consider (�+; �y), where the �rm sets wa = 0 so
that

U(�+; �y) = �(py � p�yy) + �( + �)a.

Consider �2 = U(��; �0) � U(�+; �y). After transformations, we have �2 =
�a + ��a � �(py � p�yy). From

d�2
d

= �� > 0, we note that �2 is an

increasing function of . For  ! 1 we have �2 = �(a � py + p�yy) > 0. We

�nd b2 from �2 = 0 , b2 = py � �a� p�yy
�a

. Note that b2 may actually be



negative for p�yy > py � �a, in which case the condition  > b2 is trivially
satis�ed. To see that b2 < b1, we note that �1 can be written as �1() =
�a��(py�pz)�(+�)pbx��. Using z = p�yy and �2() = �(�a�py+p�yy)
we obtain �1() = �2()���a� (+�)pbx��. At b2 we thus have �1(b2) =
���a� ( + �)pbx�� < 0, and thus b2 < b1.
For completeness, we brie�y mention two additional policies with shelving,

namely (��; �0) and (�+; �0). These are rather strange policies, since the �rm
needs to reward the employee for generating innovations that it then shelves. It
is easy to see that this is never optimal.
For the case where the �rm cannot commit to a development policy, the

only policies available for x < y involve �y. Hence the analysis is the same as
in Proposition 1, except that z is replaced by �yy (since the employee does not
have x as an outside option).

Proof of Proposition 4

Consider now the case of x > y. We begin with the case where the employee
owns the IP. We immediately note that choosing �y is a dominated strategy.
This is because in order to convince the employee to do an internal venture, the
�rm has to o¤er wy = x��yy, and receives a utility of y��yy�wy = y�x < 0.
The �rm is always better o¤ with �x, which gives the employee the same utility,
but avoids the loss of y � x to the �rm. Consider now the �x strategy. Using
the same reasoning as in Proposition 2, we have

U(��; �x) = ( + �)(a� px��1)
U(��; �x) = ( + ��)(a� px)
U(�+; �x) = (� + ��)a.

We note that U(��; �x) > U(��; �x) , px���1 + �px + ��(px � �a) > 0.

Moreover, U(�+; �x) > U(��; �x) , � <
( + �)px

a+ �px
� bb�. It is easy to verify

that bb� > b�. Thus (�+; �x) is the optimal strategy. Moreover, since �x actually
requires no commitment, the optimal strategy is the same irrespective of whether
the �rm is able to commit or not.
Consider now the case where the �rm owns the IP. In this case we cannot

immediately eliminate the �y strategy, since it is possible that the �rm prefers
�y over �x, namely when y � �yy > x � �xx. To implement ��, the �rm can
use �x, �y or �0 and obtain

U(��; �x) = ( + �)(a� p�xx��1)
U(��; �y) = ( + �)(a� p�yy��1)
U(��; �0) = ( + �)a



Clearly, (��; �0) is the dominant of those three policies. For the same reason as
before, (��; �0) also dominates (�+; �0) and (��; �0). We are thus left with four
additional policies. We have

U(��; �x) = �(px� p�xx) + ( + ��)(a� p�xx)
U(��; �y) = �(py � p�yy) + ( + ��)(a� p�yy)
U(�+; �x) = �(px� p�xx) + (� + ��)a
U(�+; �y) = �(py � p�yy) + (� + ��)a

We �rst note that U(�+; �y) > U(��; �y), � <
( + �)p�yy

(a� py) + ( + �)p�yy
= b�

and U(�+; �x) > U(��; �x) , � <
( + �)p�xx

(a� px) + ( + �)p�xx
. Since

( + �)p�xx

(a� px) + ( + �)p�xx
� b�, it follows that U(�+; �x) > U(��; �x) for � < b�.

Thus, both (��; �y) and (��; �x) are dominated by (�+; �x). Next, consider the
relationship between (�+; �x) and (�+; �y). We have U(�+; �x) > U(�+; �y)

, x >
1� �y
1� �x

y � bxy. Consider �rst the case where x < bxy. To �nd the
optimal strategy, we only need to compare (��; �0) with (�+; �y). We note that

U(��; �0) > U(�+; �y) ,  >
py � �a� p�yy

�a
= b2, so that (��; �0) is the

optimal strategy for all x < bxy. For x > bxy, we compare (��; �0) with (�+; �x).
We have U(��; �0) > U(�+; �x) , x <

 + �

1� �x
a

p
� bx3, so that (��; �0) is

optimal for x < bx3 and (�+; �x) is optimal for x < bx3. We immediately note
that

dbx3
da

> 0,
dbx3
dp

< 0 and
dbx3
d�

> 0.

We brie�y have a closer look at the critical value bx3. We note that at  = b2
we have bx3 = bxy, and for all  > b2 we have bx3 > bxy. Moreover, note that
�x � �y , bxy � y, so that �x � �y is su¢ cient to ensure that bx3 > y. One
minor di¤erence of the model with �x < �y is that for  close to b2, it is possible
that bx3(b2) < y.
The fact that (�+; �x) eventually becomes optimal for su¢ ciently large x

is not surprising, since for very large x, idea exploration becomes extremely
pro�table. The more interesting result is that (�+; �x) can be optimal for values
of x where idea exploration is still ine¢ cient with a strong core. Formally, this
is the case as long as x <

a

p
. We note that bx3 < a

p
,  < 1��x�

�1
, so that for

any  2 (b2; 1��x��1) there exists a range of values of x (namely x 2 (bx3; ap )),
such that (�+; �x) is optimal, even though idea exploration is ine¢ cient with a
strong core.
As a last step, we need to consider the case where the �rm has the IP, but

is unable to commit. In this case, any policy with �0 is not a credible policy. It
immediately follows that (�+; �y) is optimal for x < bxy and (�+; �x) is optimal



for x < bxy. Note that for �x > �y we have bxy > y, and for �x < �y we havebxy > y
Discussion of model restrictions

The main text uses paramter restrictions on , � and the ��s. We now
discuss what happens to the model if we relax these restrictions.
Consider relaxing the assumption �x = �y. If the employee owns the IP, �x

never matters for the analysis, since the employee always gets x anyway. If the
�rm owns the IP, and is able to commit, then the proof of Proposition 4 shows
that the critical value bx3 remains the same for �x 6= �y. Thus, the only change
pertains to the case where the �rm owns the IP and is unable to commit. In
fact, the only di¤erence concerns the critical value at which the �rm switches
from the intrapreneurial equilibrium (�+; �y) to the entrepreneurial equilibrium
(�+; �y). The above proof of Proposition 4 shows that this critical value is

given by x =
1� �y
1� �x

y. Note that this simpli�es to x = y for �x = �y. To

get an intuition, consider �x > �y, so that the employee enjoys a higher private
bene�t in external ventures. In this case, the �rm develops a slight preference for
internal ventures, precisely because the employee is less able to extract private

bene�ts internally. For x 2 (y;
1� �y
1� �x

y) the �rm now prefers internal ventures,

even though spin-o¤s are more e¢ cient. The employee cannot persuade the �rm
to do otherwise, since she is wealth constrained.
Consider next relaxing the assumptions  > b1 (for Proposition 2) and

 > b2 (for Proposition 3 and 4). For lower values of , the �rm is less concerned
about focusing employees, since the main bene�t of focus occurs when the core
prospects are strong. The proofs of Proposition 2 and 3 show that for lower
values of , the intrapreneurial equilibrium (�+; Dy) becomes more prevalent.
For b2 <  < b1, it replaces the stubborn equilibrium in the EIP model.
For  < b2, it replaces the focused equilibrium, both in the EIP and FIP
model. This reinforces our previous point that as long as the �rm assigns the
employee a task that is suitable most of the times (high ), it wants to ensure
that the employee remains focused on that task. Yet, if the core task o¤ers poor
prospects most of the times (low ), the �rm becomes more open towards idea
exploration.
The analysis also uses the assumption � < b�, which says that employees don�t

get unrelated ideas too often. The condition implies that giving incentives for
the core task is expensive for the �rm, since the �rm has to give bonuses to many
employees that do not have any ideas. For larger � paying a bonus becomes
more worthwhile. For � > b�, the �rm prefers the �e¢ cient�equilibrium (��,�y).
This allows internal ventures, yet prevents excessive exploration through a core
bonus (wa = pz). This reinforces the notion that a �rm�s policy of refusing



to implement internal ventures makes sense only if there are not too many
employees that want to generate innovations in the �rst place.
Finally, it should be mentioned our analysis does rest on two important

assumptions. First, we rely on private bene�ts. For �y ! 0 we obtain b� ! 0
and the �e¢ cient� equilibrium obtains. The intuition is that without private
bene�ts it is relatively easy for the �rm to dissuade the employee from exploring
ideas.1 Second, we rely on the employee�s wealth constraint. Our model builds
on Sappington (1983), who introduces a principal-agent model with risk-neutral
wealth-constrained agents. Without the wealth constraint, the �rm has no real
cost to providing incentives for the core task, and the �e¢ cient� equilibrium
always obtains. Using wealth constraints has become a popular way of modeling
agency costs, because it allows for an intuitive yet tractable model.

1We believe that private bene�ts are a natural way of modeling the employee�s prefer-
ences. Remember that they include not only non-monetary bene�ts, but also nontransferable
�nancial returns that the employee can always extract, such as through e¢ ciency wages, in-
formation rents or hold-up power. In an earlier version of the paper we explicitly modeled
private bene�ts from hold-up, but then realized that the current speci�cation is both simpler
and more general.


