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We introduce a methodology to estimate the historical time-series of returns to investment in private

equity funds. The approach requires only an unbalanced panel of cash contributions and distributions

accruing to limited partners, and is robust to sparse data. We decompose private equity returns from

1994 to 2015 into a component due to traded factors and a time-varying private equity premium

not spanned by publicly traded factors. We find cyclicality in private equity returns that differs

according to fund type and is consistent with the conjecture that capital market segmentation

contributes to private equity returns.
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1. Introduction

Private equity is a major institutional asset class and represents a significant fraction of investments

by colleges, foundations, pension funds and sovereign wealth funds, among others. A major

drawback of private equity for purposes of analysis is the lack of transactions-based performance

measures. This greatly hampers portfolio allocation choice, which typically requires information

about the risk, return, and covariance of asset classes. In liquid markets these estimates may be

derived from statistical analysis of time-series returns. In contrast, most private equity time-series

are based on non-market valuations or on multi-year internal rates of return broken down by fund

vintage years.

The primary contribution of this paper is the introduction of a methodology based on Bayesian

Markov Chain Monte Carlo (MCMC) to estimate a time-series of private equity returns using cash

flows accruing to limited partners and factor returns from public capital markets. The procedure

uses a similar identification strategy to that of Cochrane (2005), Korteweg and Sorensen (2010),

Driessen, Lin, and Phalippou (2012), Franzoni, Nowak, and Phalippou (2012), and Korteweg and

Nagel (2013). Our contribution with respect to prior research is that, in addition to estimating factor

loadings and alphas we are able to construct a quarterly time-series of returns which is a useful

metric for understanding the inter-temporal behavior of the asset class.

Our estimation approach decomposes returns into a component due to exposure to traded factors

and a time-varying private equity premium not spanned by traded factors. The factor exposures

capture the systematic risks of various classes of private equity and the time-varying private equity

premium can be interpreted as an alpha orthogonal to the traded factors.1

The estimation is based on a model of private equity returns that identifies necessary assumptions

and conditions for estimation. Because some of the assumptions required by the model may be

violated in practice, we test its sensitivity with extensive simulations using both randomly generated

data and pseudo-funds drawing on historical U.S. stock return data. We find that the estimation is

robust to many violations of the assumptions but degrades when underlying asset returns are not

significantly correlated to the traded factors and when idiosyncratic volatility is extremely high.

We apply the estimation procedure to quarterly cash flow data from institutional limited partnership

1 We use the term “alpha” loosely here to denote a premium not captured by exposures to included factors. It may

reflect a combination of actions under the control of the fund managers, as well as other factors.
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investments obtained from PREQIN covering the period 1996 to 2015. We construct return indices

for private equity as a whole and sub-classes (venture capital, buyout). We find that the estimated

time-series of private equity returns is more volatile than those measured using standard industry

indices. We also find that it exhibits negligible serial dependence, in contrast to industry indices.

This result is consistent with smoothing induced by a conservative appraisal process or by a delayed

and partial adjustment to market prices, which often arises in illiquid asset markets (cf. Geltner

(1991) and Ross and Zisler (1991)). We also find that the time-series variation in returns differs

widely across sub-classes and is highly cyclical. The cycles correspond well with the time series

variation in funding cycles and anecdotal evidence about peaks and troughs in performance of each

of the sub-classes. This result suggests that considerable diversification can be obtained within just

the private equity domain.

The second contribution of the paper is to test whether private equity returns are spanned by

portfolios constructed from publicly traded securities. This has an important bearing on whether

low-cost private-equity replication strategies are feasible. We find that the private-equity specific

factor is significant, which shows that the private equity premium is not perfectly replicable by

simple passive public-equity strategies. Our analysis of this factor suggests that part, but not all, of

it is related to a proxy for illiquidity.

The third contribution of this paper is to test an economic theory about the source of private equity

returns. We use the estimated total return series for buy-out funds to test a market segmentation

theory, i.e. that buy-out funds add value when spreads between equity and fixed income yields are

large (cf. Kaplan and Strömberg, 2009). We find support for this hypothesis: buy-out fund returns

are higher when the cross-market spread is greater.

Finally, while private equity is unique in its cash flow structure and fee structure, our methodology

has the potential for use in other market settings in which asset market values are infrequently

observed and yield significant stream of cash flows in between these market valuations.

The paper is organized as follows. Section 2 derives the model from first principles and uses

simulations to understand robustness, with a particular focus on when the methodology works well

or poorly. Section 3 details the data. Section 4 presents estimation results on the risk, return and

time series characteristics of private equity, and tests the market segmentation hypothesis. Section 5

concludes.
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2. Methodology: Derivations and tests

The intuition behind the methodology is that the present value of capital distributions is equal to the

present value of capital investments when the discount rate is the time-series of the average realized

returns across the set of underlying illiquid investments, i.e. the index of returns. As the minimal

aggregation level we can work on empirically is a fund, which contains between 10 and 30

underlying investments, we have one moment condition per fund. As the number of funds is higher

than the number of time periods, the system is over identified and we can use a maximum

likelihood estimation to estimate which path the latent index of returns is more likely to have

followed given the observed cash flow amounts and timing.2

In this section we derive an approach to estimating a private equity return index based on historical

fund cash flows. As with all models developed for empirical application, it relies on necessary

assumptions that may be satisfied or violated depending on the underlying data-generating process.

We point these out and discuss how such violations may affect estimation outcomes. This offers a

guideline for testing the robustness of the method in later sections. In addition, an important benefit

of the derivations below is that we derive, from first principles, the Public Market Equivalent

[PME] introduced by Kaplan and Schoar (2005).

2.1. Derivation

Consider a private equity fund which makes ܰ investments at times ,௜ݐ ݅∈ {1, … ,ܰ} of amount ௜ܫ

each of which pays a single terminal dividend ೕ்ܦ at times ௝ܶ,݆∈ {1, … ,ܰ}.3 We then have the

following equality for each investment i:

(1) ೕ்ܦ ௜݃ܫ�= ௧೔ାଵ
௜ …்݃ೕ

௜ ,

2 One basic requirement is that at least one capital distribution occurs in each quarter, but we find that the number of

capital distributions is high enough, enough during the financial crisis.
3 This is without loss of generality because an investment with multiple payoffs can be rewritten as separate investments

made at the same time with one payoff each. Note also that the dividend paid at time ௜ܶdoes not necessarily correspond

to investmentܫ�௜. Because private equity funds hold multiple underlying portfolio companies, cash flows received by an

investor cannot be assigned to underlying investments. For example, a series of cash flows [-100, 200, -100, 400]

cannot be decomposed into two transactions [-100, 200, 0, 0] and [0, 0, -100, 400] because part of the final $400 cash

flow might be due to investments made with the first $100 paid into the fund. If it were observable, the separation into

underlying investments would enable us to use standard techniques. Such a separation is generally not possible with

private equity cash flow data. An exception is the dataset used by Ljungqvist and Richardson (2003).
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Where ௧݃
௜ is one plus the rate of return of the investment during quarter t. Importantly, ௧݃

௜ is a

realized return process that cannot be directly observed; it represents neither an ex-ante expected

rate of return to a given investment nor a forward-looking discount rate.

Assumption 1:

(2) ln ௧݃
௜= ln ௧݃+ ௧߳

௜, with ௧߳
௜ is i.i.d, normally distributed and independent of ௧݃.

This assumption is standard (see Cochrane (2005) among others).4 ln ௧݃
௜ is decomposed into two

components, one that is common across all investments (including a constant) and one that is

idiosyncratic with a non-zero expectation. We denote�ܽݒ ൫߳ݎ ௧
௜൯= ,ଶݏ ൫߳ܧ ௧

௜൯= ߤ and set =ߤ ;ଶݏ5.−

E(.) is the expectation operator across all investments during period t.

This assumption is violated when ௧߳
௜ is not i.i.d. in the time-series. For example, the fee structure

could induce autocorrelation: all investments of funds that passed their hurdle rate at time t will

have persistently lower realizations of ௧߳
௜. We investigate this issue below using extensive

simulations to understand robustness and to identify the conditions of the error terms that are most

problematic.5

From assumption (1) it follows that:

(3) ൫expܧ ௧߳
௜൯= expቀܧ൫߳ ௧

௜൯+ ݒ5ܽ. ൫߳ݎ ௧
௜൯ቁ= exp(ߤ+. (ଶݏ5 = 1

Using equations (2) and (3), we have:

(4) ൫݃ܧ ௧
௜൯= )ܧ ௧݃exp ௧߳

௜) = )ܧ ௧݃)ܧ(exp ௧߳
௜) = ௧݃ܧ(exp ௧߳

௜) = ௧݃

Hence, ௧݃ is the expectation of gross returns across all investments by all funds during period .ݐ

Econometricians cannot estimate equation (1) because the invested amount ௜ܫ needs to be

compounded from time +௜ݐ 1 to ௝ܶ and econometricians do not know whether the first investment

4 Although standard, this assumption is restrictive and potentially violated. For example, if there are two types of

investments (such as some with high average returns and some with low average returns due to some risk differences),

then ௧߳
௜will not be i.i.d in the cross section. This is because there is a commonality among a subset of investments that

is not modelled by the econometrician. In a sense this is unavoidable (and probably why it is a standard assumption) but

it is important to keep it mind, especially in a private equity context where some investments could be junior debt,

leveraged equity, real estate, or early stage venture capital. These investment types are all quite different from one

another but all contain a common un-modelled component within each type. Empirically, we partially capture such

commonalities by running analyses on sub-samples of funds based on their type.
5 Another source of autocorrelation is if different investments have different return persistence levels.
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is paid out at time ௝ܶ. However, we can bring each investment of a given fund to the same base

date.6 Combining equations (1) and (2) we can write:

(5)
ூ೔

௚೟భ௚೟మ…௚೟೔
exp( ௧߳೔ାଵ

௜ +⋯+ ்߳
ೕ

௜ ) =
஽೅ೕ

௚೟భ…௚೅ೕ

Let us denote

(6) ܷ௧೔,்ೕ
௜ =exp( ௧߳೔ାଵ

௜ +⋯+ ்߳
ೕ

௜ )

Since ௧߳
௜are i.i.d and normally distributed, ln ቀܷ ௧೔,்ೕ

௜ ቁfollows a Normal distribution.7

When we sum up equation (5) across the N investments made by a fund, and using the notation in

equation (6), we can write:

(7) ∑
ூ೔

௚೟భ…௚೟೔

ே
௜ୀଵ ܷ௧೔,்ೕ

௜ = ∑
஽೅ೕ

௚೟భ…௚೅ೕ

ே
௝ୀଵ

Let us define ܦ_ܸܲ ,�ݒ݅ ܫ݊_ܸܲ ݒ and ௜asݓ follows:

(8) ܦ_ܸܲ =ݒ݅ ∑
஽೅ೕ

௚೟భ…௚೅ೕ

ே
௝ୀଵ ;�ܲ ܫ݊_ܸ =ݒ ∑

ூ೔

௚೟భ…௚೟೔

ே
௜ୀଵ ܷ௧೔,்ೕ

௜ ; =௜ݓ

಺೔
೒೟భ…೒೟೔

௉௏_ூ௡௩

Dividing each side of equation (7) by ܫ݊_ܸܲ ,ݒ and using above notations we obtain8:

(9) ∑ ௜ݓ
ே
௜ୀଵ �ቀܷ ௧೔,்ೕ

௜ ቁ=
௉௏_஽௜௩

௉௏_ூ௡௩

The left side of equation (9) is a weighted sum of log normal distributions, which has no closed

form expression. By the central limit theorem, this sum will converge to a Normal distribution but

Baker and Trietsch (2013) show that the log-normal distribution is a better approximation.9

6 Our data are observed by fund. Simply summing up equation (1) across all the investments in the same fund would

still require econometricians to know the correspondence between cash flows. A solution is to discount each investment

to the same base date as we do here.
7 ܷ௧೔,்ೕ

௜ is Lognormally distributed, with the following two moments:

௧೔,்ೕܷ)ܧ
௜ ) = exp൬Eቀln ቀܷ ௧೔,்ೕ

௜ ቁቁ+ .5Varቀln ቀܷ ௧೔,்ೕ
௜ ቁቁ൰

→ ܧ ቀܷ ௧೔,்ೕ
௜ ቁ= 1

and
ܸ ௧೔,்ೕܷ)ݎܽ

௜ ) = [exp ቀܸ ቀlnݎܽ ቀܷ ௧೔,்ೕ
௜ ቁቁ�ቁ− 1]exp൬2ܧቀln ቀܷ ௧೔,்ೕ

௜ ቁቁ+ ܸ ቀlnݎܽ ቀܷ ௧೔,்ೕ
௜ ቁቁ൰

→ ܸ ቀܷݎܽ ௧೔,்ೕ
௜ ቁ= exp൫( ௝ܶ− ݏ௜൯ݐ

ଶ) − 1

8 We work with the ratio rather than the difference because the ratio has the advantage that it is robust to different

periods used to compute the present values. That is, if the valuation date is taken to be the first date of the sample, then

present values of cash flows for funds formed at the end of the sample are smaller than present values of cash flows for

funds started at the beginning of the sample. Taking a ratio removes these timing effects.
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Assumption 2: As ܰ goes to infinity, no single component should dominate. In our case, this is

equivalent to

(a) →௜ݓ ℎ݁݊ݓ,0 �ܰ → ∞ (no dominantly large investment)

(b)
(்ೕି ௧೔)

∑ (்ೕି ௧ೕ)ಿ
ೕ

→ 0 (no dominantly long investment)

Under these two regularity conditions, we can apply the lognormal central limit theorem of Baker

and Trietsch (2013):10

(10)
௉௏_஽௜௩

௉௏_ூ௡௩
= ∑ ௜ݓ

ே
௜ ൫ܷ ௧೔,்೔

௜ ൯ ≅ ݑ ,

where

(11) ln(ݑ) ~ .݅ .݅ ,(ଶߪ,ଶߪ0.5−)ܰ݀. and ଶߪ = ln[∑ ௜ݓ
ଶexp(( ௜ܶ− ݏ(௜ݐ

ଶ)ே
௜ ]

Let us denote variables associated with fund ℎ with a subscript ℎ. We have the following equality

for each fund, which we refer to as the Present Value Ratio [PVR]: 11

(12) PVRh = ln
௉௏_஽௜௩೓

௉௏_ூ௡௩೓
≅ lnݑ௛, where lnݑ௛ ~�ܰ ௛ߪ0.5−)

ଶ,ߪ௛
ଶ).

Note that, if the time-series gt equals the rate of return of the S&P 500 index, PVR is exactly the

PME of Kaplan and Schoar (2005).12

9 The sum of independent random variables that have non-zero means (such as log-normal distributions) converge very

slowly to a Normal distribution. In particular, an extensive literature shows that the sum of log-normal distributions

remains close to a log-normal distribution (e.g. Fenton (1960), Barakat (1976)). This is why the log-normal distribution

is sometimes said to be ‘quasi-permanent’. Most recently, Baker and Trietsch (2013) formally introduced the ‘log-

normal central limit theorem.’ They show that the log-normal distribution is a better approximation than the Normal for

the sum of a few strictly positive random variables, even if the summands are not i.i.d., provided that the summands

satisfy two regularity conditions.
10 We invoke an asymptotic result here. Given that each fund has at most about twenty investments, asymptotic results

are unlikely to be accurate in our context. Using Monte Carlo simulations, we are able to compare the empirical

distributions of lnݑ௛ with the best-fitting Normal distribution. Formal tests of Normal distribution reject the null that

the empirical distribution is Normal but the violation is economically small (shown in internet appendix). Thus, this

error will play a role in the precision of our estimation procedure and will be quantified in the next section (when we

compare our estimated private equity time-series to the true one in various settings).
11 We work with the log transformation to lower the effect of outliers in the estimation.
12 Our derivation can be seen as a formal proof of the proposition in Kaplan and Schoar (2005) that if a fund has a PME

that is unity when using realized S&P 500 returns as ௧݃, then investors are indifferent between investing in a private

equity fund or in the S&P 500 index.
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As ௛ߪ
ଶ is not a priori identifiable, we need to make a Homoscedasticity assumption:

Assumption 3: The volatility of ln
௉௏_஽௜௩೓

௉௏_ூ௡௩೓
is the same for all funds: ௛ߪ

ଶ = ଶ.13ߪ

Our strategy is to filter the private equity returns { ௧݃}, such that the conditions in equation (12) are

satisfied across funds and across time. Equation (12) represents an observation equation and the

returns are latent parameters.

As is standard in the literature, we assume that the state equation for the latent returns (a.k.a. the

equation of motion) is a function of a set of common factors, plus an uncorrelated observation error

in the observation equation.

Assumption 4: The state equation dynamics of the filtering problem are as follows:

(13) ݃௧= +ߙ +ݐܨ′ߚ +ݐ݂ ݐݎ
݂

Where, ௧ܨ = ,ଵ,௧ܨ] … [௃,௧ܨ, is a set of J common tradable factors, which are observable in public

markets.14ߚ��contains the loadings on the common factors, .௧ܨ ߙ reflects the average level of private

equity returns in excess of its systematic (and liquid) component of the private equity return. ௧݂ is

an asset class-specific latent factor with mean zero orthogonal to the traded factors,ܨ�௧. This

potentially makes private equity non-redundant in the space of tradable assets.15

We estimate the model using a Bayesian MCMC procedure described in the Appendix. We treat the

unobserved returns as parameters to be estimated (referred to as “data augmentation”), along with

the other parameters of the data generating process.

13 Assumption 3 is valid when funds have similarly concentrated portfolios, and when their investments have similar

holding periods and idiosyncratic volatility. This can be violated by a variety of conditions (e.g. significant leverage

differences across investments). Note also that if assumption 1 is violated then assumption 3 is violated as well.
14 We consider factors like the Fama and French (1993) factors.
15 Assumption 4 states that the cash flows associated with any investment are generated by a time-varying portfolio of

assets that have unobserved but continuous latent values. We assume returns are a linear function of an underlying

systematic factor structure. Thus, if the latent asset values were observable, some portion of their return variance could

be explained by common factors using standard regression methods. The latent factor process, ௧݂, can be viewed as the

idiosyncratic component of private equity returns. We can specify it as an AR(1) process to reflect the fact that the ௧݂

process is not exposed to the forces of arbitrage because, by design, it is not tradable and is orthogonal to factors in the

public markets. ௧݂ may be persistent because of persistent aggregate manager skill, the inter-temporal variation in good

investment opportunities or the trends in performance due to non-constant returns to scale. However, in simulations, we

find that with time-series that are shorter than 100 time periods (as is the case in our empirical section) we cannot

estimate this autoregressive parameter with a reasonable degree of precision. As a result, we specify ௧݂ as an i.i.d.

standard normal distributed process in the analysis and simulations below.
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2.2 Further discussion on the methodology

We specify error terms as log ratios of summed discounted cash flows and minimize one large error

term per fund in the estimation process. Problems may arise from this aggregation due to inter-

temporal compounding and cross-correlations. Specifying the price path of errors for individual

funds (other than as i.i.d.) is intractable, rendering our above simplification necessary for

estimation. The degree to which this specification influences estimation outcomes is ultimately an

empirical question and motivates the extensive simulations detailed in section 2.3 below.

There are several additional caveats to our approach. First, a natural interpretation of the index is

that it is the net return to investing in each of the private equity funds in the database. This

interpretation implicitly assumes that the returned capital ௧�inܦ any given period is immediately re-

investable in all existing funds as opposed to only new funds. This is typically not the case. This

assumption, however, only affects the interpretation of the premium factor — the latent factor

component, ௧݂, of the total return index. The passive component due to ௧ܨ′ߚ comprises only

marketable factors, in which investors can re-invest or rebalance.

A second caveat is that, by presuming that the passive component is accessible to an investor, we

are also implicitly assuming that leverage may be used to achieve a factor exposure greater than

one. Note that this caveat also applies in any studies using linear factor exposures. As we show

below, some of the variation in the PE return series is explained by large exposures to public equity

factors. Private equity may provide a means to relax borrowing constraints and this convenience

may be priced (cf. Frazzini and Pedersen (2014)). We also use long-short factors, and implicitly

assume that short-selling is feasible and costless in replicating the performance of such factors.

Third, our procedure solves for the best fit of the private equity returns given fund cash flows. We

are not solving for expected returns, but for estimates of realized private equity returns. We take the

cash flows as given to solve for the realized returns. To obtain estimates of forward-looking

discount rates, we need to embed an expectation process into a valuation model and tie the discount

rates to estimates of our realized returns. This is an interesting research topic but our current goals

are more modest.16

16 Recent work by Jagannathan and Sorensen (2015) and Korteweg and Nagel (2015) explore the relation between

PMEs and discount rates. The problem of correlated forward-looking discount rates and cash flows is also considered

by Brennan (1997) and Ang and Liu (2004).
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2.3 Simulations

Before applying our methodology to real data, we investigate how it performs under known

conditions. We generate cash flows whose true, underlying returns are generated by standard

processes, which we use to form hypothetical funds and then filter ௧݃ using our methodology.

These simulations provide useful guidance on accuracy under various scenarios. Through the

appropriate use of priors and some parameterization of the return process, the procedure can handle

sparse data and unbalanced panels of contributions and distributions. Yet the precision of our

approach depends on the properties of the true data generating process, especially in small samples.

2.3.1 Simulations when the error structure is as specified in our model

Using simulated panels of private equity cash flow data, we determine whether we can recover

unbiased estimates of the realized returns on a population of private equity funds. We simulate our

model with the error structure described in equation (12) and the following parameters:

1. The gross return at date t is given by ௧݃ = 1 + +ߙ ߚ ⋅ ܴ௧
ெ + ௧݂; where ߙ = 4% p.a. and

ߚ = 1.5 (the risk free rate is zero).

2. Factor returns ܴ௧
ெ are iid and drawn from a Normal distribution with an annual mean of 8%,

and an annual volatility of 20%.

3. The time-series of ௧݂ is drawn from a normal distribution with mean 0, and volatility of

either 1% or 10%. In the latter case, the resulting (true) net return ( ௧݃− 1) has a mean of

16% and a volatility of 32% p.a.

We consider a population of 500 funds with five investments each and 80 quarters of data. Each

quarter, several $1 investments are started in each fund and the value of the investment grows at a

rate of ௧݃ in quarter t. Each investment is sold following a simple rule: each quarter, one in x

investments is sold. In all but the first set of simulations (case 1) x is set to 28; this means that

investments cannot last more than seven years and thus funds cannot last more than 12 years (since

the last investment occurs in year 5). All investments not liquidated at the end of the sample (year

20) are terminated at that time.
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Panel A of Table 1 shows the results from the simulations and documents the effects on summary

statistics, correlations to the true index, and the mean squared error. We first consider a simple case:

investments are held for two quarters on average and the standard deviation of the PVR across

funds is ௛ߪ
ଶ = 1% (referred to as idiosyncratic volatility). For each of the following cases, we

incrementally add additional ‘handicaps’ to our simple estimation. Case 2 increases the average

holding period to 3.5 years. Case 3 increases idiosyncratic volatility to 10% (which matches the

empirical distribution of PVRs in our dataset). Case 4 increases the number of investments per fund

from 5 to 20. Case 5 shows results when the error term is uniformly distributed instead of log

normally distributed. Finally, Case 6 has the wrong priors (prior on alpha is zero and prior on beta

is one), in addition to all of the previously considered ‘handicaps’.

Table 1 shows that in the first ‘simple’ case, we retrieve the correct values of the parameters’ mean,

and standard deviation, and that the average correlation between the true time-series and the

estimated time-series is high: 98.7%. Panel B of the Table shows the 25th, 50th and 75th percentiles

of the simulated distributions for two parameters of interest: alpha and beta. Note that even in this

simple case, while the median value is unbiased, there is significant variation in both the annual

alpha and the market beta, which shows that it is difficult to retrieve a precise estimate of factor

loadings.

< Table 1 >

As we add one handicap each time, the precision – as measured by the correlation to the true index

clearly declines. It changes from 98.7% in the simple case to 94.5% in the case that includes all

handicaps. We also note that the median alpha is no longer equal to the true value (but the

difference is small). In the sixth case, with diffuse priors, the estimated ߚ is lower than the true ,ߚ

which reduces the volatility of the systematic factor component, but the estimated mean

performance is not far from the true one.17 The correlation between the true time-series of returns

and the estimated time-series of returns remains high.

In sum, Table 1 shows that if the data generating process has the assumed final structure (equation

(12)) then the methodology retrieves a reasonable correlate of the time-series of true returns.

However, the estimation of alpha and factor loadings is less precise and influenced by the prior.

17 The volatility of ௧݂ mechanically increases to match the specified moment condition, but it does not increase enough.

As a result, ߙ is too high (since ߚ is too low).
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2.3.2 Simulations when investments are listed stocks

To evaluate the robustness of our approach to the nature of the true (but unknown) equity return

generating process, we simulate panels of cash flows where private equity funds randomly buy and

sell actual, listed stocks. We begin with a simple setup. We take listed stocks from 2001 to 2010.

During that time period the value weighted stock market index (our factor) had overall returns close

to zero. In contrast the equally weighted stock index had high and more cyclical returns. If we

simulate private equity funds investing in listed equity, our ௧݃ time-series should look like the

CRSP equally weighted index.

Specifically, we take all U.S. common stocks with ten years of valid monthly data in CRSP (2001

to 2010). This simplification has the advantage of avoiding holes in the return series. There are

3,120 stocks from which we form 624 funds, with five investments each. Each fund starts at the

same time and is liquidated in ten years later. We apply our algorithm and use a single factor model

with the CRSP Value Weighted (CRSP-VW) as the factor. We compute a “true” index [C-EW], i.e.

the equal-weighted stock index constructed from the 3,120 stocks. The CRSP Equally Weighted

index (CRSP-EW) has a slightly higher average return and volatility than C-EW because our data

restriction dropped small and infrequently traded stocks. Nevertheless, the two indices are quite

close.

The cash flows are generated as in the other simulation setups: each fund makes one investment per

year for five years. Each quarter, 1 in 24 investments across all of the funds are liquidated in order

to have all funds fully liquidated by the end of year 10. We have an unbalanced panel of cash flows

similar to that observed in practice and we know the true underlying index return series.

Figure 1 summarizes the results. The left figure compares the average time-series of estimated

returns (blue dashed line) and true returns (black solid line). Untabulated results from this

simulation show that we retrieve the correct mean but we underestimate volatility by 3% p.a.. Our

estimated time-series has a 92% correlation with the observed equally weighted stock-market index

on average. By construction, there are fewer observations, and thus the average series has a greater

deviation at the beginning. The average correlation goes up to 95% if we remove the first year of

our estimated time-series.
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The right panel on Figure 1 shows the cumulative log return of the true and mean estimated return

series as well as that of the CRSP Value Weighted index (dashed red), and CRSP Equally Weighted

index (astered green) when the first year is removed. The factor (CRSP-VW) is flat throughout that

decade, which reflects the well-known ‘lost decade’ for value-weighted stock indices. In contrast,

we see strong cycles in the equally weighted stock indices (CRSP-EW and C-EW). The estimated

return series’ recovers these cycles well.

< Figure 1 >

2.3.3 Simulations to identify problem zones

Using actual stocks to simulate data has important benefits: it is reasonable to assume that

underlying private equity investment returns – particularly for buyout funds -- resemble those of

individual stocks, such that their underlying return dynamic is different from the one we assumed.

However, the downside of this approach is that we cannot vary certain key parameters. In this sub-

section we change different parameters to determine zones in which our method performs less well.

We now simulate data from equation (2) rather than equation (12). Accordingly, instead of having

errors distributed around PVRs, we have errors added to each return each quarter for each

investment. This way we can change the idiosyncratic volatility of these errors (ఌߪ) to assess

whether the econometrician working with equation (12) out of necessity is still doing a good job

when the assumptions we made in section 2.2 are violated.

Equation (12) will hold less precisely empirically as ఌߪ increases because the convergence of the

summation of the error terms will be slower, which should generate a small sample problem. Other

variables that affect total volatility should also affect estimation precision. As in the simulations above,

we work with a one factor model. In such a setup, total volatility is affected by three elements: Beta, PE-specific

risk (௙ߪ) and idiosyncratic volatility. Our return time-series (g) is decomposed between a systematic component

ߚ) ⋅ ܴெ ) and a PE-specific component (f). The question is how these three volatility drivers affect each of the two

return components.

Figure 2 shows the resulting correlations between the true time series of returns and the estimated returns plotted

against different levels of idiosyncratic volatility. Panel A shows the precision of the estimation of the total return

time-series (g) as a function of both the idiosyncratic volatility ఌߪ and the private equity specific
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volatility ௙.18ߪ When ఌߪ increases from negligible to very large (150% p.a.) the correlation between the

estimated and the true time-series always decreases, but the decrease seems relatively modest.

Panel A also shows the effect of changing ௙ߪ on the relationship between correlation and

idiosyncratic volatility. Panel B shows the same effect but for changingߚ� instead of .௙ߪ Even

though both ௙ߪ and ߚ increase total volatility, they have the opposite effect on estimation precision (i.e.

correlation). Increasingߪ௙ decreases precision, while conversely increasingߚ increases precision. When both

idiosyncratic volatilityandߪ௙ increase, the correlation decreases but remains reasonable.

Figure 2 - Panel B shows the impact of large changes inߚ by setting it equal to 0.75, 0.33 and 0 respectively. The

latter case is equivalent to running the analysis without any factors. Here the effect is dramatic and the correlation

decreases quickly. When beta is below 0.33, and idiosyncratic volatility is above 20%, the correlation goes below

50%. We still recover part of the true time-series (correlation is statistically different from zero), but the economic

magnitude is much smaller.19

The reason for this is that retrieving the systematic return component is easier than retrieving the PE-specific

one. The PE-specific component is a pure random variable that we generate and the code needs to recoup it,

while we impose a prior for the systematic part which restricts the search space. Even if this prior is wrong (see

Figure 2 – Panel C) the estimated time-series is highlycorrelated with the true variation.20

If the factor loadings (i.e. the estimated (ߚ are low, then returns are largely comprised of a pure

private equity component and idiosyncratic risk. Hence it is more difficult to retrieve total returns

and correlation falls quickly even though total volatility is going down.

We can confirm this insight by computing the correlation between the true and estimated PE-specific return

component only (f).21 If we repeat the graphs in the first three Panels, the three lines overlap one another, i.e.

there is no change as a function ofߪ௙, ,ߚ and error in the prioronߚ. For this reason, we do not tabulate it.

18 Recall that ఌߪ is the volatility(annualized)of theshock added each quarter toeach investment return.
19 We also run simulations with varying priors on beta which we report in the internet appendix. We find that changing

priors has a limited impact on correlation. We also find that estimates of beta and volatility are biased when we combine

variations of different parameters: level of volatility, true beta, and wrong/right priors. When the prior on beta is too

low, the estimated beta remains below the true beta. When incorrect priors are combined with high volatility and a low

true beta we estimate a beta that is only half of the true beta. Volatility is also significantly underestimated in this case.
20 To elaborate, we generate Beta*Rm, where Rm is the same for the simulation and in the estimation. Therefore, even if our beta prior is

wrong, given that themodel is right, thecorrelation will still behigh.
21 Note that this isequivalent tosetting beta to zero and lookat the correlationbetween true and estimatedgt as done above.
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The right hand side of Figure 2 – Panel D shows the correlation between the true and estimated PE-specific

return component only (f) for varied sample size. We see clearly the dramatic impact of idiosyncratic volatility

on estimation precision. Idiosyncratic volatility mainly affects the PE-specific return estimation: the higher it is,

the more difficult it is to isolate and recoup the PE-specific component. It does not have much impact on the

estimation of the systematic component (left hand side of Figure 2 – Panel D). It is for this reason that as

idiosyncratic volatility rises, correlation between total returns decreases only modestly.22

Panel E is similar to Panel D, but instead considers the impact of varying the sparsity of the cash flow matrix (i.e.

by changing average holding period) instead of number of funds. Similarly, the effect on the total return

correlation is minor, but the effect on the PE-specific return estimates is large.

Notice that in terms of statistical significance, which is commonly used to assess econometric success, all

correlations are statistically different from zero. For example, p-values are less than 1% when correlation is 10%.

For the cases in which we chose extremes in parameters, correlations are always positive and significant at a 1%

level test. Where ௙ߪ is 30% and ߚ is 1.5, the volatility of the private equity market index is

%4.425.1 222  fm  , which is more than twice the volatility of the S&P 500 index. Idiosyncratic

volatility of 150% for a private equity investment is also very high.

Overall, our results show that we cannot recover the latent time-series for an asset class that has small exposures to

specified factors. This suggests that our methodology is less useful for estimation of an index built from unusual

alternative asset classes such as collectibles, for example, unless relevant factors can be identified.

< Figure 2 >

In the internet appendix we show results from eleven different economies, where we vary the

number of investments per fund, introduce a regular dividend and other changes of interest.

Results are found to be robust to most changes with the exception of introducing a ‘hold-on-to-

losers’ rule. As seen from the derivations above, inter-temporal independence is an important

assumption. If investments are more likely to be monetized when they have performed better, the

independence assumption is violated. However, the correlation between the true and estimated

time-series remains economically reasonable at about 90%.

22 Note that thedecayin precision isnot overlysensitive to thenumberof funds in thesample.
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2.3.4 Simulations on post fee return series

The existence of a complex, non-linear fee structure (see Metrick and Yasuda (2010)) for managed assets

such as private equity funds affects the precision of our estimation approach. More subtly, when a complex fee

structure is to be modelled, ‘true’ fund returns for a given investment by a fund can be defined in three ways:

1) Cash. The modeler may treat fees on a cash basis. In this approach, the return on an investment is

the realized difference between the purchase and sale price net of intermediate cash flows minus

paid-out carried interest upon exit, and the management fees paid to the fund (calculated pro-rata

across on-going fund investments). This approach does not capture unrealized fees for past

performance or the contractual option value of future fees.

2) Accrual. This method accrues fees based upon paper gains in the portfolio value to the current

date. This approach is common in the hedge fund industry where 20% incentive fees and high

water market provisions are common. Hedge fund databases typically report returns on a monthly

basis, while incentive fees are paid on a quarterly or annual basis, conditional upon meeting a pre-

specified hurdle. Incentive fees are accrued on an interim monthly basis until they are realized at

the end of the fee determination period. This approach captures unrealized fees but ignores the

contractual option value of future fees. For hedge fund, the 20% incentive fee clearly has value

prior to the end of the fee determination period, even when it is out of the money – i.e. no fee has

been accrued, (see Goetzmann, Ingersoll, and Ross (2003)).

3) Mark to Market. This method treats the management fees and carried interest as a call option on

each investment, accrues it in the period the investment is made and revalues it each period as

conditions change. Metrick and Yasuda (2010) pioneered this approach to private equity

valuation by taking the discounted expected future fees with respect to the risk-neutral pricing

kernel. While not commonly in use in practice, the utility of marking manager fees to market is

obvious. GP actions that increase the value of the fee at the expense of the LP may affect other

variables of interest such as covariance with the market.

Because we have ex-post realized cash flows from LPs, we are unable to estimate private equity indexes

based on either an accrual or a mark-to-market basis. It is therefore important to study the effects of this

limitation on outcomes. Throughout our derivations,ܴ௧ is the return per quarter net of fees irrespective of the

fee structure. However, if true returns are defined so that they continuously account for changes in the expected

carried interest to be paid at exit (the mark-to-market case), this affects the true beta of the LP investment and
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therefore our index. Furthermore, any fee structure will generate some autocorrelation in residuals and thus

affect the ‘true’ unobservable returns in a predictable fashion. In particular, at the beginning of our return series,

the true return will be lower due to higher management fees – often referred to as the J-curve effect.

Choi, Metrick, and Yasuda (2012) point out another potential problem in estimating the dynamics of LP

returns. Because fees are non-linear returns to the underlying asset, when the market goes up, the LP payoff

will be concave. It follows that the beta of LP returns will be lower when the market is up and higher when the

market is down because fees are not being earned.23 Finally, if a fund has strong past performance, then all

future payoffs will be subject to carried interest, which will also generate autocorrelation in the error term, as

well as a non-linear market exposure.24

To address these potentially problematic issues, we perform two types of simulation.

Case 1: We simulate a whole-fund waterfall (also called European waterfall) following Sorensen, Wang, and

Yang (2014), and Choi, Metrick, and Yasuda (2012). In this case, we also have a carried interest charged on all

exited investments once the fund passed the 8% hurdle rate and we incorporate a 100% catch up provision.

We allocate the management fees each quarter to each investment that is alive within a fund (equal allocation

across investments) and the carried interest that is retained from the distribution of each investment (as done in

practice). We then have a J-curve effect: at the beginning of the fund’s life post-fee returns are much lower than

pre-fee returns because of the management fees.

This quarterly error term is not modelled by the econometrician; instead the error term in the econometric model is

on the Net Present Value of funds (equation (12)). As above, returns are generated with a one factor model with a

trueߚ of ߙ,1.5 of 4% p.a., plus a mean zero PE-specific return with 20% annual volatility plus idiosyncratic

23 We examine this non-linearity by regressing our Buyout index ௧݃on stock-market returns [not reported], and we find

that our estimated index captures at least part of the non-linearity predicted by Choi, Metrick, and Yasuda (2012). As we are

interested in constructing an after-fee index of PE performance, we are pleased that this non-linearity is captured in the

estimate. That is, the non-linear fee structures and implicit timing behavior about underlying payouts of private equity

are indeed reflected in our estimated PE return series.
24 Another consideration is that beta can differ across funds with some time-indexed commonality – for example a

dramatic increase in market values or a shift in market volatility. In particular, funds with similar age and past

performance could have a similar beta due to correlated, market or industry-specific investment opportunities. Since we

do not model this, our precision will be affected. It is roughly equivalent to running an OLS regression when errors are

heteroscedastic. But, as with heteroscedasticity in a regression setup, adjustments pay off only to the extent that we

know something about the underlying source of heteroscedasticity. Fully deriving and modeling the private equity fee

structure-induced heteroscedasticity is clearly a promising area for future research and it may require a different kind of

database to thoroughly study it. In this paper we simply assess the loss in precision due to a mark to market fee return

perspective.
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volatility. There is no autocorrelation is residuals; average holding period (duration) is 3.5 years; and the prior onߚ

is correct. The sample contains 600 funds that make 20 investments each.

We plot the results in Figure 3 – Panel A. It is the same format as the previous figure. Adding only the carried

interest does not greatly affect correlations. However, the J-curve effect reduces average correlation significantly.

But idiosyncratic volatility has little impact on average correlation once idiosyncratic volatility is above 33%

p.a..25

Case 2: In this case we compute for each investment, in each quarter, the value of the carried interest and deduct

that from the market value of the investment. That is, we are marking to market the investment every quarter net

of latent fees. As detailed in Metrick and Yasuda (2010), this option-based fee calculation is rather complex

and requires numerical solutions. Redoing their one-time calculation for each of our investments, each quarter, in

each simulation, is not feasible. However, given that our objective is to see how resilient our method is to

incorporating embedded call option values rather than obtaining a realistic number, we adopt a simpler

approach.26

For each investment and each quarter, we calculate the Black-Scholes value of a call option given investment

return volatility, the investment value at that point in time, and the remaining time until exit. 20% of the value of

this call option (with a strike price set to investment cost) is the ‘unrealized’ carried interest. We track the

quarterly changes in ‘unrealized’ carried interest, which is what we then subtract from the investment value each

quarter. When the investment is exited we compute the carried interest due and then subtract the balance of the

difference between the unrealized and the realized carried interest from the final dividend. We set management

fees to zero here because, as shown above, management fees have a distinct effect on estimation precision.

These simulations imply a lower trueߚ: it decreases from 1.50 to 1.37, 1.23, and 1.08 when carried interest is

10%, 20% and 30% respectively. This is because the trueߚ is computed from the market value of the fund each

quarter, net of changes in the value of the call option. The cash flows, however, do not reflect this smooth

process. We therefore overestimateߚ in this setup. For example, with carried interest of 20%, we overestimate

beta by 9%, but volatility remains well estimated (non-tabulated).

25 The internet appendix shows biases in estimated parameters. Management fees biasߚ downwards. When both fees are present the bias

in beta is more pronounced (11% underestimated; third line in Panel A). Biases in volatilityfollow a similar pattern.
26 The value of the option in practice is extremely complex because you need to assume a correlation between the investments done by

a given fund. In addition, the payoff has different values as a function of investment value and fund value due to the catch up provision

(it is a combination of options). Also, the exit timing of each investment in the fund is endogenous and inter-dependent. If we need to

solve this at each point in time, for each investment, in each simulation the problem becomes impossible to simulate. Future work

may incorporate these option values into our framework.
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Figure 3 – Panel B plots the correlation between the true and estimated return time-series. We show results for

different levels of carried interest and, as in the other figures, plot correlations as a function of idiosyncratic

volatility. Correlations are lower as carried interest increases, but the decrease in precision appears to be

economically small.

To summarize, if we set the true return process net of fees so that fees affect an investment return

only during the quarter in which they are charged, we underestimate beta. By contrast, if we set the

true return process net of fees, so that fees are continuously deducted from the true investment

value, we overestimate beta. In both cases, the correlation between true and estimated returns falls

moderately.

3. Data

Preqin collects the quarterly aggregated investments, distributions, and Net Asset Values (NAVs)

made by private equity funds as recorded by U.S. pension funds and obtained via routine Freedom

of Information Act requests. We use the cash flow dataset of Preqin as of October 2015 with data

stopping in June 2015 (there is a reporting time lag). As Harris, Jenkinson, and Kaplan (2015) we

focus on the sub-set of funds that are US-focused.

The Preqin cash flow dataset is increasingly used in academia. A recent example is a first study on

the secondary market for private equity fund stakes by Nadauld et al. (2015). The attraction of

Preqin data is that it is publicly available (at a cost) and cash flows should be accurately reported

and without a performance bias: pension funds would face serious sanctions if they deliberately

misreport or only selectively report returns. Data from Burgiss, used in Harris, Jenkinson, and

Kaplan (2013) and Harris, Jenkinson, and Kaplan (2015) are also increasingly used and generally

perceived as more comprehensive and perhaps more accurate.

As Preqin and Burgiss are both increasingly used in academic research, we contrast average

performances derived from each of these datasets. By the same token, we want to make sure that

our performance figures are consistent with what would be derived in a more comprehensive

dataset. Coverage in both datasets jump up in 1994 (e.g. there are less than 10 buyout funds raised

in any year before 1994 in both the Burgiss and the Preqin dataset). To assess the risk profile of

funds, we need to observe the cash flows of a sufficient number of funds at any point in time, and

thus start with vintage 1994. We stop with vintage 2008 because less funds are raised after that and

these funds have significant unrealized value as of 2015.
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The Table 5 in Harris, Jenkinson, and Kaplan (2015) shows Public Market Equivalents per vintage

year for buyout and venture capital funds. In our Table 2, we copy the Harris, Jenkinson, and

Kaplan (2015) figures and compute the corresponding statistics for the Preqin dataset. The output

statistics are extremely close.

Funds serving fiduciaries such as pension funds report their audited calculations of portfolio value

(NAV) every quarter. FASB 157 now requires fund assets to be fair market-valued, however the

private nature of these investments and varying methodologies for evaluation leaves significant

uncertainty. Ultimately, reported fund NAVs represent each fund manager’s opinion about the

assets in his or her portfolio.27 As we select funds that are seven years old or more, this issue has a

moderate impact on our results but we ought to bear this in mind when trying to assess the

underlying ‘true’ returns.

< Table 2 >

4. Empirical Results

4.1 Factor exposures and private equity premium

In Table 3, we report parameter estimates of the factor loadings, ,ߚ and the ߙ coefficients with

different asset pricing factor models. The table reports posterior means and standard deviations of

the parameters. The internet appendix offers details on the methodology, the choice of priors, and

robustness checks.

We begin with models that rely on one, three, and four systematic factors. The one factor model is

the CAPM; the three-factor model is from Fama and French (1993), which adds SMB and HML

factors; and the four-factor model is that of Pástor and Stambaugh (2003), which adds a liquidity

factor. Next, we report results for a one-factor model for which we use the CRSP equally-weighted

(EW) index instead of the CRSP value-weighted index as a measure of market returns. This is

equivalent to the assumption that private equity funds acquire companies that are drawn from a pool

resembling the CRSP sample. That is, they are as likely to acquire a firm from the bottom decile as

27 The process typically involves a valuation committee and for audited funds, the additional valuation assumptions

made by the auditing firm. Brown, Gredil, and Kaplan (2015) find that fund valuations are conservative except when

follow-on funds are raised. In times of fundraising, Barber and Yasuda (2016) estimate that NAV is exaggerated by

about 3% for buyout funds and about 5% for venture capital funds. We run some robustness tests by applying discounts

to the final NAVs reported by GPs who were fundraising in June 2015 and by excluding funds with a high ratio of final

NAV to capital committed. But these changes do not affect our empirical results (non-tabulated).
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from the top decile of capitalization. This assumption is useful because the typical company

purchased by a private equity fund is relatively small compared to the universe of listed companies.

The drawback is that the equal-weighted CRSP index is not investable.

We then create three models with only traded factors. The four factors are, respectively, Vanguard

S&P 500 index minus the risk free rate, DFA microcap mutual fund minus Vanguard S&P 500,

DFA value mutual fund minus Vanguard S&P 500, and T. Rowe High Yield minus Vanguard S&P

500. DFA microcap proxies for the small stock premium, DFA value proxies for the value

premium, and T.Rowe High Yield proxies for the liquidity premium. In order that these factors can

be treated as premiums, the S&P 500 is shorted from all but the first factor. In practice shorting the

S&P 500 is feasible and bears a negligible cost.

Finally, we show results with the new Fama and French (2015) five-factor model, which includes

“profitability” and “investment” as defined by Kenneth French’s website.

Table 3 shows that the CAPM estimate of the beta of private equity is 1.4, which is unchanged

using an EW market index. The estimates for the four-factor loadings on market, size, value, and

liquidity factors are 1.5 for the market excess return, 0.8 for SMB, -0.1 for HML, and 0.5 for the

liquidity factor. In the four-factor model, the posterior means of the market and SMB loadings is

statistically significant, but this is not the case for the value and liquidity factor loadings.

Nevertheless, the economic magnitude of 0.5 for the liquidity factor beta is relatively large.

Alpha is annualized and defined as the constant that makes the average value-weighted PVR equal

to one, given the estimated risk loadings. Across all models, alpha is close to zero.

For the subset of venture capital funds (Panel B), alphas are mostly negative across the different

models. We note that venture capital has a significant negative loading on the Fama-French value

factor, which is what we would expect from a strategy of buying high-growth companies. Venture

capital strategies appear to load positively on growth stocks which had low average returns. Also,

the value-weighted stock-market index used in the CAPM had low returns over our sample period,

which sets a low bar in terms of performance. When the index is the Equally Weighted Nasdaq

Index, venture capital exhibits a significant negative alpha.

For buyout funds (Panel C) alpha is 4% annually and beta is 1.25. This means that performance

metrics reported in the prior literature are validated here. Benchmarking buyout funds to a listed
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equity benchmark without adjusting for beta seems reasonable (Robinson and Sensoy (2013),

Harris, Jenkinson, and Kaplan (2013)). Our alpha with the one (value-weighted) factor model is

4%, also similar to that reported in the literature. However, alpha goes to zero when we control for

other risk factors. These results are those of Stafford (2016) and Phalippou (2013) among others.

The coefficients on the value and liquidity factors are positive and significant. The inclusion of the

Pástor-Stambaugh liquidity factor seems to have the greatest effect on alpha – reducing it from 1%

to -3%. This can be interpreted as buyout funds harvesting a liquidity risk premium in the Pástor-

Stambaugh sense that buyout funds have exposure to a liquidity factor constructed from publicly

traded equities (cf. Franzoni, Nowak, and Phalippou (2012)).

In several specifications we reject the null that private equity assets are redundant with respect to

the standard Fama-French and Pástor-Stambaugh equity factors. These systematic factors capture a

large portion of the total returns to investing in private equity. This, however, does not necessarily

imply that there is no value to private equity, because none of these equity factor returns are

available without incurring transaction costs. An open question is whether an investor can cheaply

access the premiums of the tradable factors passively, or whether private equity investments are a

more efficient way to access these factor premiums. This would involve an analysis of transaction

costs (and investor size) that is beyond the scope of this paper.

< Table 3 >

The different factor models have different level of goodness of fit. For each sub-set of private

equity funds, we select the model with the highest likelihood. We then obtain our best-fitted index

for each type of private equity funds. Figure 4 - Panel A plots the cumulated log total return index,

௧݃, for venture capital (VC), buyout (BO) and real estate (RE) respectively.

We observe that VC had a sharp increase in returns in the late 1990s, peaked mid-2000 and then

decreased sharply. VC returns remained flat then increased sharply from 2012. BO returns have

different cycles. They were relatively flat up until 2003, before increasing sharply up until early

2007. They collapsed with the 2008 crisis but bounced back quickly, coincident with Quantitative

Easing (QE).28

28 Many buyout funds refinanced their investments from mid-2010 when QE started and could pay large dividends as a

result. Also IPO activity resumed at about the same time and many LBO investments were exited that way. But again,
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RE returns increased steadily up until the crisis with a clear acceleration from 2003, then

experienced a collapse but returns recovered from 2012. Remarkably, we note that real estate

started to decline in the third quarter of 2007, much ahead of available appraisal-based commercial

property indexes. This is consistent with casual evidence that the U.S. real estate market started to

decline from the third quarter of 2007.

The fact we obtain such marked and coherent cycles while only using factor returns and the cash

flows of funds as classified Preqin suggests that the estimation recovers more than the levered

market index or a combination of factors. It is remarkable that we get such diverse cycles across

fund types while all the estimations used the same set of factors. These cycles are also consistent

with conventional beliefs as reflected in industry reports and press coverage.

In addition, the imperfect co-movement across return indexes suggests that venture capital, real

estate, and buyout fund cycles differ from one another. Hence, there are benefits to diversifying

across private equity investment classes. More generally, the evidence suggests that, even

conditional on differing exposures to systematic factors, private equity returns in different asset

classes are influenced by other trends unrelated to publicly traded securities.29

Figure 4 - Panel B plots our (log) index of buyout funds and compare it to the cumulated (log)

returns of the Vanguard S&P 500 index fund and that of DFA value mutual fund (a passive low cost

mutual fund with a long track record investing in value stocks). Consistent with the findings of

Harris, Jenkinson, and Kaplan (2013), and Robinson and Sensoy (2011), and results in Table 3

buyout funds outperform the S&P 500 index. Our above results show that part of this performance,

however, is replicable using our estimated passive factor exposures. In addition, DFA value mutual

fund returns exhibit a very similar pattern to those of the buyout index. Value stocks experienced

high returns from 2003, which is when buyout funds also posted high returns and started to raise

record amounts of capital. As buyout funds tend to invest in value companies, this finding has

implications for benchmarking and asset allocation decisions. For example, a relatively small

investors would have been apparently similarly well off with value stocks as with buyout funds.

< Figure 4 >

our estimation method does not rely on observing an exit. The identification comes from observing higher NPV for

funds that held more investments in their portfolio from mid-2010. This is what identifies the turning point.
29 We note also that our private equity indices are relatively insensitive to the assumed model for systematic risk (non-

tabulated).
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4.2 Comparison to industry indexes

One practical advantage of our cash flow-based index is that it seeks to attribute returns to the time

period in which they occur. In practice, there are some industry indices with the same objective but

they either use self-reported Net Asset Values (NAVs) or listed stocks of companies that are in the

private equity industry.

NAVs are potentially subject to inertia — for example anchoring on prior appraisal values. The

econometrics of appraisal-based indices have been well-studied for commercial real estate (cf.

Geltner (1991)). Among other things, they have volatilities which under-estimate true volatilities

and lag market values. In this section we examine the relationship of our cash-flow based index to

industry indices.

In Table 4, we show the annualized mean, standard deviation, inter-quartile range and

autocorrelation coefficient for some standard industry indices and for our cash flow-based indices

(“CF index”). For the industry-standard NAV-based indices, we use those of Cambridge Associates.

For the listed equity-based indices we use those of LPX. All the mean and volatility estimates in

Table 4 are annualized.

< Table 4 >

Table 4 shows that our cash flow-based indices are more volatile than the industry indices. The

difference is particularly dramatic for real estate and buyout. For buyouts, the volatility of our cash

flow-based return time-series is more than twice as high as that of Cambridge Associates (25%

compared to 11%). But it is smaller than the volatility of the LPX buyout index, which is the one

that has been used in recent capital requirement regulation (e.g. Solvency II).30

We estimate a volatility of 21% per annum for real estate, compared to 10% for Cambridge

Associates.31 Interestingly, 21% is exactly the volatility of the FTSE listed real estate index based

on returns of listed real estate funds (called REITS). This suggests that our estimated index may

provide a more realistic estimate of real estate portfolio risk for investment managers.

30 Europe’s key insurance regulator, the Solvency II Committee, has been criticized for using LPX indices as a basis for

value-at-risk parameters rather than less-volatile appraisal-based indices in their calculations of private equity capital

requirements. Our estimates derived from private equity funds cash flows lie between these two and is generally closer

to those of the LPX indices.
31 The NCREIF index, a commonly used index, has a volatility of only 5%. It is also appraisal-based.
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There is a smaller difference in volatilities for venture capital, at 30% for our index and 26% for the

venture capital index produced by Cambridge Associates. Note that the latter is solely driven by a

sharp spike in volatility in 1999.

These results indicate that existing private equity return time-series exhibit smoothing biases likely

due to the appraisal process and the fact that valuations of illiquid assets may only partially adjust to

market prices. In addition, we find that our private equity return time-series exhibit much less serial

dependence, if any, in contrast to industry indices.32

4.3 Test of the market segmentation hypothesis

The cyclicality of private equity represents a challenge to private equity investors who are faced

with the decision of how to time their investments, or how to maintain a continuous commitment to

the asset class and manage expectations about short-term performance. This pattern is also difficult

to explain in a standard economic framework. Kaplan and Strömberg (2009) introduce a novel

theory of boom and bust cycles in private equity. They propose that funds exploit segmentation

between the debt and equity markets.33 Kaplan and Strömberg (2009) extend the insights of the

behavioral corporate finance literature to explain this correlation. In particular, Baker, Greenwood,

and Wurgler (2003) present evidence that corporations choose financing channels based on the

relative capital market demand for equity vs. debt. Kaplan and Strömberg (2009) argue that the

ultimate source of the variation in relative demand for debt vs. equity is market sentiment, and they

report suggestive evidence of this by charting a variable defined as the EBITDA/enterprise value

minus the high yield spread. When this variable is high, private equity should be relatively

profitable because the cost of debt financing is low compared to the return on assets.

Our cash flow-based buyout index allows us to empirically test the behavioral market segmentation

hypothesis. In particular, we test whether private equity is profitable when the Kaplan-Stromberg

asset-debt yield spread is higher. Table 5 reports the results of regressions in which our private

equity cash flow index is the dependent variable and the independent variables include the asset-

debt yield spread, the expected risk premium, the volume of buyout transactions (scaled by stock

32 We also used Getmansky, Lo, and Makarov (2004) techniques to unsmooth appraisal-based return time-series. We

find that the volatility of the buyout series goes up to 16%, that of venture capital goes up to about 40% and that of real

estate goes up to 16% (non-tabulated).
33 Prior researchers have noted the connection between low interest rates and buyout fundraising (see Axelson et al.

(2013), Ivashina and Kovner (2011), Demiroglu and James (2010)).
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market capitalization), the Baker-Wurgler sentiment index, and a set of macro-economic variables

that capture credit conditions (the default spread, which is the difference in yields on AAA and

BAA AAA rated debt) and the health of the economy (growth in industrial production, inflation,

and the change in the VIX index).

< Table 5 >

Our specification jointly tests the theory that market sentiment provides the opportunity for private

equity managers to create value, and that the source of that value is the asset-debt yield spread. If

market sentiment is a significant determinant of private equity returns we expect a positive sign on

the sentiment index and a negative sign on the change in the VIX. In our specification the sign on

the default spread may go either way since, by construction, it is negatively correlated to the asset-

debt spread.

Results are shown in Table 5. We find that our index is significantly positively related to the asset-

debt spread, consistent with the Kaplan-Strömberg hypothesis. It is negatively related to the change

in VIX, and positively related to both transaction volume and the expected risk premium. These

results are consistent with the hypothesis that private equity does well when the economy does well,

and with the results in Haddad, Loualiche, and Plosser (2016).

One qualification of these findings is that we are measuring the contemporaneous effects of the

asset-debt yield spread. The proposed channel by which this adds value is via the purchase of a

higher yielding asset financed by issuing cheap debt. The fund cash flows we observe are

deployment or realization of capital and are thus conditional on such a transaction occurring.

Nevertheless, our index assumes that all firms in operation at a given date experience the same

shocks. If we could separate transacting firms from firms that were not exploiting the spread, we

may find a larger effect.
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5. Conclusion

Researchers and practitioners interested in understanding private equity investment have been

limited by the structure and nature of the data. This has made it particularly difficult to evaluate its

time-series characteristics. We present a methodology for extracting a latent performance measure

from non-periodic cash flow information, and demonstrate how it may be further decomposed into

passive and active components. We find that private equity returns are only partially spanned by

investable passive indices. Our estimate suggests that private equity is, to a first approximation, a

levered investment in small and mid-cap equities.

We estimate the private equity return for separate classes and show that their cycles are not highly

correlated. This suggests that a diversified strategy across sub-asset classes of private equity may be

beneficial. Our cash flow-based private equity indices also allow us to test current theories about

the cyclical nature of private equity returns. In particular, we find evidence in favor of the Kaplan

and Strömberg (2009)’s hypothesis that relative yields on corporate assets compared to high-yield

debt explain the returns of private equity investments.

Our methodology and results also have potential regulatory implications. Volatility measures for

private equity based on our cash flow-based return series are at least as volatile as standard

aggregate equity market indices. In contrast, estimates of private equity volatility constructed from

appraisal-based indices are much lower. The Solvency II Committee, the European Union’s

flagship project to harmonize European insurance supervision and set capital requirements (similar

to Basel II), has chosen to use a publicly traded proxy for private equity returns. Our results suggest

the volatility estimates derived from such an index are close to the volatility of true private equity

returns. Investors and regulators all benefit from more accurate estimates of returns and risk from

illiquid private equity.
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Table 1: Monte Carlo Simulations when the error structure is as specified in our model

We generate a set of cash flows for 500 funds over 80 quarters. Each case is simulated 100 times. In

Panel A, we report the mean and volatility of the estimated time series of returns and the correlation

and Mean Squared Error between the estimated and true time-series of returns. In Panel B estimated

Alpha and Beta quartiles are shown. There are six cases. The simple case is when investments are held

for two quarters on average and the standard deviation of the PVR across funds is ௛ߪ
ଶ = 1% (referred to

as idiosyncratic volatility). Each of the following cases changes one parameter at a time and keeps the

previous changes made. Case 2 increases average holding period to 3.5 years. Case 3 increases

idiosyncratic volatility to 10%. Case 4 increases the number of investments per fund from 5 to 20. Case

5 shows results when the true error term is uniformly distributed instead of log normally distributed.

Case 6 has, in addition to all of the previous ‘handicaps’, the wrong priors (prior on alpha is zero and

prior on beta is one).

Panel A: Recovering the full time-series of returns

Mean Volatility Correlation MSE (*100)

Truth 0.16 0.32 100.0% 0.00

1. Simple case 0.16 0.32 98.7% 0.06

2. Increase holding period 0.16 0.32 97.6% 0.12

3. Increase idiosyncratic volatility 0.17 0.32 96.0% 0.20

4. More investments per fund 0.17 0.32 95.3% 0.21

5. Error is not log-normally distributed 0.17 0.32 95.0% 0.24

6. Wrong priors 0.16 0.30 94.5% 0.26

Panel B: Recovering model parameters

Alpha Beta

Percentiles 25th 50th 75th 25th 50th 75th

Truth 0.04 1.50

1. Simple case 0.02 0.04 0.05 1.47 1.50 1.53

2. Increase holding period 0.02 0.04 0.05 1.47 1.50 1.53

3. Increase idiosyncratic volatility 0.03 0.05 0.06 1.45 1.50 1.55

4. More investments per fund 0.03 0.05 0.06 1.45 1.50 1.55

5. Error is not log-normally distributed 0.03 0.05 0.06 1.45 1.50 1.55

6. Wrong priors 0.04 0.06 0.07 1.23 1.27 1.31
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Table 2: Descriptive Statistics – Preqin versus Burgiss datasets

This table shows the median and average fund PMEs, which compare private equity returns to

equivalent-timed investments in the S&P 500 index. Statistics are displayed by vintage years (from

1994 to 2008). Average is weighted using the capital committed to the funds as weights. Statistics

derived from the Burgiss dataset are as reported by Harris, Jenkinson, and Kaplan (2015). Preqin is our

working dataset. Panel A focuses on venture capital funds while Panel B focuses on buyout funds. Only

funds with a US-focus are included in this table.

Panel A: Venture Capital fund PMEs
Burgiss Preqin

Funds Median Average Funds Median Average

1994 23 1.40 3.42 11 1.41 3.92
1995 28 1.49 3.14 16 1.62 2.76
1996 23 2.16 4.34 15 1.33 2.17
1997 42 1.43 2.68 21 0.96 1.66
1998 58 0.99 1.74 30 1.00 1.51
1999 88 0.67 0.89 37 0.60 0.71
2000 109 0.66 0.78 71 0.68 0.80
2001 58 0.83 0.91 43 0.79 1.04
2002 21 0.76 0.79 24 0.63 0.82
2003 30 0.81 1.09 13 0.99 0.86
2004 49 0.75 1.23 29 0.72 0.92
2005 59 0.80 0.98 27 0.94 1.24
2006 70 0.80 0.95 41 0.80 0.86
2007 84 0.93 1.08 42 1.07 1.02
2008 58 0.85 1.05 33 0.95 0.99

Average 1.02 1.67 0.97 1.42
All funds 800 453

Panel B: Buyout fund PMEs
Burgiss Preqin

Funds Median Average Funds Median Average

1994 20 1.09 1.46 18 1.09 1.21
1995 23 1.01 1.17 11 0.84 1.05
1996 18 1.13 1.05 13 1.13 1.17
1997 31 1.03 1.27 21 1.43 1.45
1998 46 1.40 1.31 31 1.17 1.15
1999 34 1.21 1.13 24 1.40 1.23
2000 60 1.38 1.48 30 1.52 1.60
2001 31 1.49 1.48 18 1.40 1.51
2002 23 1.34 1.51 17 1.29 1.51
2003 23 1.40 1.55 12 1.48 1.71
2004 50 1.29 1.45 30 1.35 1.41
2005 66 1.12 1.26 32 1.06 1.36
2006 80 1.03 1.02 44 1.09 1.03
2007 86 0.97 0.99 43 1.02 1.05
2008 64 0.96 1.03 39 0.99 1.02

Average 1.19 1.28 1.21 1.29
All funds 655 423
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Table 3: Private Equity Factor Exposures

This table shows the estimated risk loadings, and abnormal returns  using eight different asset pricing

factor models. Panel A includes all US private equity funds (except fund-of-funds) in the Preqin dataset

(N=1089); Panel B includes all US venture capital funds (includes funds classified as balanced and

growth); and Panel C includes all US buyout funds. Funds are raised between 1994 and 2008, and cash

flows start in the first quarter of 1994 and ends in the second quarter of 2015. Alpha is annualized and

defined as the constant that makes the average value-weighted PME equal to one, given the estimated

risk loadings. Underneath each coefficient, in italics, we report the posterior standard deviation of the

estimated parameters. The “Classic” factor models that we use are: the CAPM, the three factor model

of Fama and French (1993), and the four factor model is that of Pástor and Stambaugh (2003). The

“Amended Equally-weighted market portfolio” model replaces the CRSP value-weighted index as a

measure of market returns by i) the CRSP equally-weighted index (Panel A); or ii) Equally-weighted

Nasdaq index (Panel B); or iii) Equally-weighted AMEX/NYSE index (Panel C). The “Amended

Traded Factors” models use the following respective four traded factors: Vanguard S&P 500 minus the

risk free rate, DFA microcap mutual fund minus Vanguard S&P 500, DFA value mutual fund minus

Vanguard S&P 500, and T.Rowe High Yield minus Vanguard S&P 500. The “New Fama-French 5

factors” includes “profitability” and “investment” as defined on Kenneth French’s website. Priors for

the factor loadings are given in Appendix Table 1.

Panel A: All private equity funds

Models βmarket βsize βvalue βilliquidity  Likelihood

1factor (CAPM) 1.43a 0.02a -68

0.21 0.00

3 factors (FF) 1.51a 0.81c -0.07 0.01c -63

0.26 0.45 0.28 0.01

4 factors (PS) 1.54a 0.82c -0.12 0.51 -0.01c -64

0.28 0.46 0.26 0.33 0.01

1 factor (EW) 1.40a -0.01 -72

0.20 0.01

Traded 1 factor 1.63a -0.02a -70

0.28 0.01

Traded 3 factors 1.57a 0.83b -0.12 -0.02a -65

0.26 0.40 0.26 0.01

Traded 4 factors 1.81a 0.81b -0.12 0.44 -0.05a -65

0.36 0.40 0.27 0.43 0.01

New Fama-French 5 factors model

 βmarket βsize βvalue βprofitability βinvestment  Likelihood

1.88a 1.04b -0.19 0.49 0.16 -0.02b -62

0.36 0.46 0.20 0.37 0.42 0.01
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Panel B: Venture Capital funds

Models βmarket βsize βvalue βilliquidity  Likelihood

1factor (CAPM) 1.80a 0.00 -115

0.30 0.01

3 factors (FF) 1.72a 0.81b -0.61 0.01 -102

0.31 0.39 0.41 0.01

4 factors (PS) 1.73a 0.89b -0.64 0.49 -0.03a -105

0.30 0.41 0.40 0.33 0.01

1 factor (EW) 1.46a -0.03a -123

0.17 0.01

Traded 1 factor 1.82a -0.04a -109

0.31 0.01

Traded 3 factors 1.85a 1.03b -0.82b -0.04a -102

0.33 0.43 0.37 0.01

Traded 4 factors 2.09a 0.91b -0.90b 0.60 -0.05a -101

0.41 0.41 0.37 0.42 0.01

New Fama-French 5 factors model

 βmarket βsize βvalue βprofitability βinvestment  Likelihood

1.99a 0.93b -0.80b 0.70 0.43 -0.05a -109

0.39 0.44 0.41 0.49 0.53 0.01

Panel C: Buyout funds

Models βmarket βsize βvalue βilliquidity  Likelihood

1factor (CAPM) 1.25 a 0.04a 120

0.25 0.01

3 factors (FF) 1.22a 0.47 0.60c 0.01b 119

0.27 0.47 0.33 0.01

4 factors (PS) 1.32a 0.63 0.66c 0.56b -0.03a 118

0.29 0.48 0.37 0.26 0.01

1 factor (EW) 1.18a 0.02a 116

0.24 0.01

Traded 1 factor 1.22a 0.02a 116

0.26 0.01

Traded 3 factors 1.31a 0.33 0.70c -0.02b 115

0.29 0.45 0.40 0.01

Traded 4 factors 1.77a 0.02 0.48c 1.08b -0.04a 118

0.41 0.31 0.29 0.52 0.01

New Fama-French 5 factors model

 βmarket βsize βvalue βprofitability βinvestment  Likelihood

1.60a 0.44 0.67c 1.06b 0.25 -0.06a 116

0.34 0.48 0.41 0.52 0.50 0.01
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Table 4: Comparison of Private Equity Index with Industry Indices

Columns 2 to 6 show the following descriptive statistics for each index return: the annualized mean,

volatility, 25th and 75th percentiles; and the autocorrelation coefficient (computed at quarterly

frequency). Three indices are shown for each of four types of private equity funds: buyout, venture

capital, real estate and all private equity. The three indices are our index, the Cambridge Associates

index, and an index based on publicly listed companies. Data are from Q1-1995 to Q4-2014.

Mean Volatility Percentiles Autocorrelation
25th 75th

CF buyout index 0.17 0.26 -0.21 0.52 0.09
Cambridge Associates Buyout index 0.15 0.11 0.02 0.28 0.40
LPX listed buyout index 0.14 0.29 -0.04 0.36 0.19

CF venture capital index 0.17 0.31 -0.15 0.53 0.14
Cambridge Associates venture index 0.18 0.26 0.00 0.26 0.60
LPX listed venture capital index 0.11 0.37 -0.37 0.45 0.12

CF real estate index 0.13 0.21 -0.08 0.42 0.11
Cambridge Associates Real Estate index 0.11 0.10 0.06 0.17 0.64
FTSE listed real estate index (REITS) 0.13 0.21 -0.09 0.38 0.14
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Table 5: Private Equity Returns over the Business Cycle

This Table shows how our cash flow-based buyout return index relates to macroeconomic variables.

We compute t-statistics using Newey-West (1987) standard errors with four lags, which are shown

underneath each coefficient in italics. Time period is from the first quarter of 1996 to the last quarter of

2014. The risk repmium and scaled volume is from Haddad, Loualiche, and Plosser (2016) and is only

available until Q4-2011.

Constant 0.03 0.03 -0.01 -0.01 -0.04 -0.13 -0.12 -0.14

2.28 2.01 -0.15 -0.18 -0.59 -1.40 -1.57 -1.90

Ebitda/EV - High yield spread 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03

2.62 2.54 2.20 2.19 2.03 1.68 2.86 3.01

Change in VIX index 0.07 0.07 0.07 0.07 0.07 0.08 0.08

1.53 1.65 1.67 1.60 1.85 1.71 1.82

Default spread (BAA-AAA) 3.59 3.78 6.27 12.92 12.89 12.34

0.80 0.72 0.98 1.69 2.17 2.09

Inflation 0.33 0.37 0.20 0.71 0.78

0.18 0.21 0.12 0.45 0.51

Sentiment index 0.03 0.04 0.05 0.05

0.91 1.34 1.73 1.74

Industrial production growth 3.42 1.78 1.55

1.73 0.82 0.70

Risk premium 0.01 0.01

2.19 2.10

Scaled volume 0.00

0.71

Adjusted R-squared 0.10 0.13 0.14 0.14 0.15 0.22 0.37 0.37

Number of observations 76 76 76 76 76 76 64 64
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Figure 1. Monte Carlo Simulations with Listed Stocks as the Underlying Investments

We generate a set of cash flows for 500 funds over 40 quarters. The simulation setup is described in

details in the text. Each case is simulated 100 times. Each investment is matched to one of the 3,120

stocks with ten years of valid monthly data in CRSP (Q1-2001 to Q4-2010) and earns the same return

as the matched stock during its holding period. The true return at time t is the average return across the

3,120 stocks at time t, which is close (by construction) to the CRSP Equally Weighted stock index. The

left panel compares the time-series of estimated returns (blue dashed line) and true returns (black solid

line). The right panel shows the cumulative log return of these two return series as well as that of the

CRSP Value Weighted index (dash-dotted red), and CRSP Equally Weighted index (astered green).
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Figure 2: Estimation Precision With Quarterly Return Shocks

Average correlation obtained across simulations, as a function of the volatility (annualized) of the shock added each

quarter to each investment return (referred to as idiosyncratic volatility). This quarterly error term is not modelled by the

econometrician; instead the error term in the econometrics model is on the Net Present Value of funds. By default, the

true time-series of returns are generated with a one factor model with a true beta of 1.5, alpha of 4% p.a., plus a mean

zero PE-specific return with 20% annual volatility plus idiosyncratic volatility. There is no autocorrelation is residuals

and no fee structure applied to the cash flows; average holding period (duration) is 3.5 years, and the prior on beta is

correct. The sample contains 600 funds that make 20 investments each. Panel A shows results with different annual

volatility for the PE-specific return. Panel B shows results with different assumptions for the true beta level. Panel C

shows results with different priors on beta; prior is lower than the true beta by a either 0.25, 0.50 or 0.75. Panel D shows

results with different number of funds in each economy. Panel E shows results with different holding periods.

Panel A: Using different levels of PE specific volatility
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Panel B: Using different levels of Beta

Panel C: Using different priors for Beta
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Panel D: Using different sample size

Panel E: Using different holding periods
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Figure 3: The Impact of Un-modelled Fee Structure on Estimation Precision

Average correlation obtained across simulations, as a function of the volatility (annualized) of the shock added each

quarter to each investment return (referred to as idiosyncratic volatility). This quarterly error term is not modelled by the

econometrician; instead the error term in the econometrics model is on the Net Present Value of funds. Returns are

generated with a one factor model with a true beta of 1.5, alpha of 4% p.a., plus a mean zero PE-specific return with

20% annual volatility plus idiosyncratic volatility. There is no autocorrelation is residuals; average holding period

(duration) is 3.5 years, and the prior on beta is correct. The sample contains 600 funds that make 20 investments each.

Panel A shows results with a standard fee structure, whereby carried interest is paid when investments are exited and

management fees are charged on capital committed (hence generate a so-called J-curve). Panel B shows results with

carried interest modelled as a continuous latent call option; the value of the investment each quarter is reduced by the

change in the value of this option.

Panel A: Fee structure is modelled as a European-style waterfall

Panel B: Carried interest is modelled as a continuous latent call option
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Figure 4: Cumulative Private Equity Returns

Panel A: Cumulated log returns per sub-type of US private equity funds

Panel B: Cumulated log returns of US buyout funds, the S&P 500 index and the DFA value fund
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