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Abstract

This paper considers competitive selection dominance: what conditions on the unconditional distribution of

of a random prospect will ensure that the prospect stochastically dominates a rival random prospect conditioned

on competitive selection, i.e., conditioned on the prospect’s realized value exceeding its rivals? Because stan-

dard distributional orders, such as stochastic dominance and the monotone likelihood ratio property (MLRP),

do not provide either necessary or sufficient restrictions on the unconditional distributions to ensure selection

dominance, new distribution orders are required. We provide the requisite orders, which we term supermulti-

plicativity on average and geometric dominance. These orderings generate conditions, satisfied by many, but not

all, scale shifts of standard textbook distributions, under which the selection-conditioned distribution is stochasti-

cally dominant if and only if the unconditional distribution is stochastically dominant. When these conditions are

satisfied, robust qualitative inferences concerning the unconditional population distribution can be drawn from

the selection-conditioned subsample distribution and vice versa.



1 Introduction

This paper considers the question of when the dominance relations between distributions are preserved under

endogenous competitive selection. This question is relevant in many economic contexts. In some cases, agents

have information about an unconditional distribution and need to make inferences about a selection-conditioned

distribution. For example, consider a firm which is going to be sold off either through an initial public offering

(IPO) or a private equity buyout. Its current price reflects the unconditional value of the firm. The owners will

choose the option that maximizes firm value. Since the current price reflects unconditional value, if one of the

choices increases value, the other must lower it. An arbitrage trader has private information indicating that the

owners will sell to a private equity firm. The trader, unlike the firm’s owners, is not able to observe the value of

the specific deal offered the owners. However, based on her knowledge about typical private equity and IPO deals,

she can estimate the expected value of private equity buyouts and IPOs. Should the trader go long or short in the

stock? Even if the arbitrage trader knows that private equity transactions on average generate more value, she

must keep in mind that the owners will only select a particular IPO deal when they know it produces more value

than the specific private equity deal they were offered. Can the trader be confident of earning gains on average

from buying the stock?

In other cases a selection-conditioned distribution is known, and the agent aims to use this distribution to

make inferences about an unconditional distribution. Consider an empirical researcher trying to infer the quality

of Oxford and Cambridge graduates based on salary data for Oxbridge graduates hired by Goldman Sachs. If

the researcher observes that Oxford graduates earn more, he cannot reach a conclusion that Oxford graduates are

better without considering the fact that Goldman only hires the best graduates. Suppose that Goldman uses fixed-

criteria selection, hiring only those candidates who pass a fixed threshold independent of rival candidate quality.

Under this assumption, the selection inference problem would reduce to the following question: when does a

distribution’s being unconditionally better than another imply that it is better conditioned on sampling over any

subset of realizations? When the chosen subset is the same for both distributions and independent of the realized

sample, the answer to this question is provided by the monotone likelihood ratio property (MLRP) ordering.

MLRP ordering implies that the MLRP dominant (and thus the stochastically dominant) distribution will remain

stochastically dominant conditioned on sampling from any fixed subset of value levels.1 Thus, if our researcher

knows that the student-quality distribution is drawn from a family of MLRP ordered distributions, e.g., a family

of normal distributions having the same variance, he can infer from significantly higher salaries for Goldman’s

Oxford hires that Oxford graduates are, in fact, better.

We address a different question from the one answered by the MLRP ordering. What if Goldman does not

use fixed-criteria selection but instead uses competitive selection? For example, suppose that, for each opening,

1Technically, we must require the subset to be measurable. See Theorem 1.C.2 in Shaked and Shanthikumar (1994) for a derivation of this
assertion. See Milgrom (1981) for a comprehensive discussion of the MLRP ordering in the context of economics and finance.
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one Oxford and one Cambridge graduate are interviewed and Goldman picks the best candidate in the two-person

pool. In this case, the threshold for hiring is not determined by a fixed cutoff independent of the quality of the other

candidates but rather endogenously by the quality of the pool. Thus, the MLRP ordering criteria is not applicable.

The aim of this paper is to develop ordering conditions, analogous to stochastic dominance and MLRP, that will

permit ranking of distributions in such cases. We will develop necessary and sufficient conditions under which the

unconditional stochastic dominance of a distribution implies that, conditioned on competitive selection, the dis-

tribution remains stochastically dominant. Perhaps more surprising, we will also develop conditions under which

the unconditional stochastic dominance of a distribution implies that, conditioned on selection, the distribution is

stochastically dominated.

Selection dominance implies that the expected value of draws selected from a given distribution by a value-

maximizing decision maker is higher than the expected value produced when draws are selected from the rival

distribution. We derive a necessary and sufficient condition for selection dominance, which we term supermulti-

plicativity on average. We find, using this criterion, that selection dominance does not generate a nice ordering

over distributions. The problem with selection dominance is that it is not transitive. In other words, it is possible

that X̃ selection dominates Ỹ and Ỹ selection dominates Z̃ but X̃ does not selection dominate Z̃. However, there ex-

ists a sufficient condition for selection dominance which does generate an order relation over random variables and

their associated distribution functions—ordering by geometric convexity or simply geometric dominance. More-

over, many families of distributions generated by scale shifts of common textbook statistical distributions, e.g.,

exponential, Weibull, lognormal, are ordered in the same fashion by both stochastic dominance and geometric

dominance. This implies that, for many important decision problems, unconditional rankings of population dis-

tributions can be used to infer selection-conditioned rankings and selection-conditioned rankings can be used to

infer unconditional rankings.

The geometric convexity ordering can be informally described as the monotone likelihood ratio ordering

(MLRP) on log-log graph paper. Recall that a distribution F dominates distribution G in the MLRP ordering

if and only if the ratio of the distributions’ derivatives, i.e., their probability densities, F ′/G′ = f/g, is increasing.

When we specialize our order relations to the case where the distributions being compared have densities, we

find that distribution F dominates distribution G under the geometric convexity ordering if and only if the ratio of

the distributions’ log derivatives log(F)′/ log(G)′ is increasing. We show that when F dominates G in both the

geometric convexity and stochastic dominance ordering, F also dominates G in the MLRP ordering. The converse

implication does not hold, i.e., there exist cases in which one distribution dominates another in the MLRP ordering

(and thus a fortiori with respect to stochastic dominance) but not in the geometric convexity ordering.

In fact, distribution F may dominate distribution G in the geometric convexity ordering and, at the same time,

G dominates F under the MLRP ordering. In this case, selection is certain to reverse dominance, i.e., the stochas-

tically dominant distribution surely yields a lower expected value conditioned on selection than the dominated
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distribution. Roughly speaking this “perverse” result occurs when the geometrically dominant distribution has a

much fatter left tail than the geometrically dominated distribution. The fat left tail ensures both that the geometri-

cally dominant distribution is rarely selected and that, when it is selected, its realized value is fairly high. These

effects permit the geometrically dominant distribution to dominate the stochastically dominant distribution under

competitive selection.

The attentive reader at this point might have noted that we have discussed a sufficient condition for selection

dominance—geometric convexity—a great deal, without discussing selection dominance itself beyond noting that

it is not an order relation. The reader might have also noted that, in our discussion of geometric convexity, distribu-

tions were always either stochastically dominated or stochastically dominant. This leads to the question of the role

of selection dominance absent geometric convexity and the role of geometric dominance when random variables

are not ordered by stochastic dominance. We have some characterizations that link these two questions. First,

we show that a geometrically dominant distribution need not be either stochastically dominant or stochastically

dominated. When the geometrically dominant distribution is neither stochastically dominant or dominated, the

geometrically dominant distribution always crosses the geometrically dominated distribution once from above,

implying that the geometrically dominant distribution has higher dispersion. Next, we show that a dispersion-

increasing transformation, a transformation which leaves the probability of selection fixed while increasing tail

weight, always leads to the transformed variable to be selection dominant even when the transformation does not

produce geometric dominance.

The paper is organized as follows. Section 2 formalizes our research question. Section 3 develops necessary

and sufficient conditions for selection and geometric dominance. Section 4 considers the order relations induced

by selection dominance and geometric dominance. Section 5 characterizes the restrictions the geometric con-

vexity order places on distributional properties. Section 6 analyzes geometric dominance in the case where it is

consistent with stochastic dominance. Section 7 considers the case where the geometric dominance order reverses

the stochastic dominance order. Section 8 considers geometric dominance in the absence of stochastic dominance.

Section 9 considers selection dominance in the absence of geometric dominance.

2 Question

Suppose that X̃ and Ỹ are two independent random variables with distribution functions F and G respectively.

One of these random variables will be selected by a decision maker. The selection will determine the value the

decision maker receives. Let v be the decision maker’s valuation function. Assume that v is strictly increasing

the realization of the selected random variable. A value-maximizing decision maker will select X̃ whenever the

the value it produces, v(X̃), exceeds the value produced by the alternative choice, Ỹ . Because v is an increasing

function, v(X̃) > v(Ỹ ) if and only if X̃ > Ỹ . The expected value of X̃ conditioned on X̃ being selected is thus
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E[v(X̃)|X̃ > Ỹ ]. A natural question to pose in this context is when will value conditioned on X̃ being selected

exceed value conditioned on Ỹ being selected? This motivates the following definition:

Definition. We say that X̃ (or its distribution function F) selection dominates Ỹ (or its distribution function G) if,

for all increasing functions v,

E[v(X̃)|X̃ > Ỹ ]≥ E[v(Ỹ )|Ỹ > X̃ ]. (1)

If the weak inequality between the conditional expectations in equation (1) is replaced by a strong inequality,

we will say that F strictly selection dominates G. This paper considers the question of the restrictions that must

be imposed on the unconditional distribution functions of X̃ and Ỹ , F and G, in order to ensure that X̃ selection

dominates Ỹ . We also aim to determine when the selection dominant distribution is, in fact, the better distribution

unconditionally, i.e. in the absence of selection. The criterion for dominance in the absence of selection is well

known—stochastic dominance:

Definition. We say that X̃ stochastically dominates Ỹ if for all increasing functions v

E[v(X̃)]≥ E[v(Ỹ )]. (2)

A well-known result in economics and statistics is that X̃ stochastically dominates Ỹ if and only if F(x)≤G(x).

Thus, stochastic dominance defines a partial order over distribution functions which determines when a decision

maker with an increasing value function will prefer one distribution to another. What about selection dominance?

3 Basic results

We now turn to formalizing our problem. To avoid the problem of ties and indeterminacies, we impose the

following restrictions on the distribution functions we consider:

Definition. Distribution functions F and G are an admissible pair of distributions if

1. F and G have common support [x, x̄], 0≤ x < x̄≤ ∞.

2. F and G are continuous and mutually absolutely continuous.

3.
∫

∞

0 xdF(x)< ∞ and
∫

∞

0 xdG(x)< ∞.

A collection of distribution functions, {Fα}α∈A is admissible if, for all pairs α1 ∈ A, α2 ∈ A in the collection, the

pair Fα1 and Fα2 is admissible.

The condition that F and G have interval support is not necessary to derive our results. However, absent this

assumption, stating some of our results would become more cumbersome. If we allowed for gaps in the support,

we would need to identify points x′ 6= x′′ in [x, x̄], at which F(x′) = G(x′) = G(x′′) = F(x′′), and then state our
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results in terms of the resulting equivalence classes. The assumption that F and G are continuous and are mutually

absolutely continuous eliminates the problem of ties and ensures that their inverse functions are continuous and

increasing. Note that we do not assume that F are G are absolutely continuous with respect to Lebesgue measure

and thus have associated probability density functions. The restriction of the support of the distributions to the

non-negative real line is made simply for convenience. The assumption that F and G have finite expectations is

made to ensure the expected value of the simple valuation function v(x) = x is finite. Note that we allow for x̄ = ∞,

and thus we do not assume a compact support for the distributions being compared.

For admissible pairs of distributions, we can express conditioning on selection as follows:

E[v(X̃)|X̃ > Ỹ ] =
E[v(X̃) IX̃>Ỹ ]

E[IX̃>Ỹ ]
and E[v(Ỹ )|Ỹ > X̃ ] =

E[v(Ỹ ) IỸ>X̃ ]

E[IỸ>X̃ ]
, (3)

where, in the above expressions, IS represents the indicator function for set S. By the independence of X̃ and Ỹ

and Tonelli’s Theorem, we have that

E[v(X̃) IX̃>Ỹ ] =
∫ x̄

x

∫ x̄

x
v(x) Iy<x dF(x)dG(y) =

∫ x̄

x
v(x)

(∫ x̄

x
Iy<x dG(y)

)
dF(x) =

∫ x̄

x
v(x)G(x)dF(x), (4)

Using the same reformulation, we can express the other components of the conditional expectations as follows:

E[v(Ỹ ) IỸ>X̃ ] =
∫ x̄

x
v(x)F(x)dG(x); E[IX̃>Ỹ ] =

∫ x̄

x
G(x)dF(x); E[IỸ>Ỹ ] =

∫ x̄

x
F(x)dG(x). (5)

Using the expressions in (4) and (5) we can express the conditional expectations as follows:

E[v(X̃)|X̃ > Ỹ ] =

∫ x̄
x v(x)G(x)dF(x)∫ x̄

x G(x)dF(x)
and E[v(Ỹ )|Ỹ > X̃ ] =

∫ x̄
x v(x)F(x)dG(x)∫ x̄

x G(x)dF(x)
. (6)

Define the probability distribution functions H and J by

H(x) =

∫ x
x G(s)dF(s)∫ x̄
x G(s)dF(s)

and J(x) =

∫ x
x F(s)dG(s)∫ x̄
x G(s)dF(s)

. (7)

Using H and J, we can express the conditioning relation as a simple expectation with respect to the distribution

functions as follows:

E[v(X̃)|X̃ > Ỹ ] =
∫ x̄

x
v(x)dH(x) and E[v(Ỹ )|Ỹ > X̃ ] =

∫ x̄

x
v(x)dJ(x). (8)

Thus, for inequality (1) to hold, it is necessary and sufficient that H stochastically dominates J, i.e., H(x) ≤

J(x). From equation (7), we see that stochastic dominance is equivalent to the condition that for all x > x,∫ x
x G(s)dF(s)∫ x
x F(s)dG(s)

≤
∫ x̄

x G(s)dF(s)∫ x̄
x G(s)dF(s)

. (9)
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Integration by parts shows that ∫ x

x
G(s)dF(s) = F(x)G(x)−

∫ x

x
F(s)dG(s),∫ x̄

x
G(s)dF(s) = 1−

∫ x̄

x
F(s)dG(s).

(10)

Substitution of equation (10) into equation (9) yields the following equivalent condition for (9)

1
F(x)G(x)

∫ x

x
F(s)dG(s)≥

∫ x̄

x
F(s)dG(s). (11)

3.1 The quantile transformation function u

The key to deriving distributional restrictions inequality (11) is noting that only the behavior of the distributions

relative to each other matters. Transforming both distributions by the same continuous increasing function will

not affect the validity of (11). This permits us to reduce the dimensionality of the problem by using the quantile

transform function. For any distribution function, G, define the inverse or quantile function of G, G−1 by

G−1(t) = inf{x ∈ [0,∞] : G(x)≥ t}, t ∈ [0,1].

Note that, because regular pairs of distributions increase over their support, G and F have well-defined increasing

inverse functions. We represent the inverse function of F with F−1 and the inverse function of G with G−1. Thus,

the function u = F ◦G−1 is well defined and F = u ◦G, where ◦ represents functional composition. Note that

u = F ◦G−1 maps quantiles of G into quantiles of F , e.g., u(0.50) = 0.25 implies that the median of distribution G

equals the first quartile of distribution F . Thus, if for some xo ∈ [x, x̄], F(xo)≥ (≤)G(xo), then letting to = G(xo),

we see that u(to)≥ (≤)to. Similarly, a point at which the distribution functions meet maps into a unique point in

the unit interval at which u(t) = t and vice versa. We will refer to u simply as the transform function. The fact

that G and F are continuous and increasing on their common support implies that u(0) = 0, u(1) = 1 and that u is

increasing and continuous. We term the set of functions that have these properties admissible.

Definition. If a function u : [0,1]→ [0,1] is increasing and continuous, with u(0) = 0 and u(1) = 1, we will call u

an admissible function.

3.2 Conditions for selection dominance

Using the u transform, we can express equation (11) as

1
u◦G(x)G(x)

∫ x

x
u◦G(s)dG(s)≥

∫ x̄

x
u◦G(s)dG(s). (12)
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Using the change of variables formula on on equation (12) shows that X̃ selection dominates Ỹ if and only if the

following condition holds:

For all t ∈ [0,1],
1
t

∫ t

0

u(s)
u(t)

ds≥
∫ 1

0
u(s)ds. (13)

For any admissible u, define

Π[u](t) =
1
t

∫ t

0

u(s)
u(t)

ds, t ∈ (0,1]. (14)

The continuity of u implies that Π[u] is a continuous function defined on (0,1]. Using the Π representation, a

necessary and sufficient condition for condition (14) to hold is that

∀t ∈ (0,1), Π[u](t)≥
∫ 1

0
u(s)ds≡Π[u](1). (15)

Note that we can express expression (15) in the following alternative forms by a change of variables in the integral:

For all t ∈ (0,1)
∫ 1

0

u(t s)
u(t)

ds≥
∫ 1

0
u(s)ds. (16)

Or, equivalently

For all t ∈ (0,1),
∫ 1

0

(
u(t s)−u(s)u(t)

)
ds≥ 0. (17)

Thus, the question of selection dominance reduces to the question of what restrictions that must be imposed on

the transformation u = F ◦G−1 in order to ensure that (17) holds. The following result, which is essentially

specialized and simplified statement of Theorem 1 in Finol and Wójtowicz (2000), will prove to be of great

assistance in answering this question.

Lemma 1. If u is admissible, then the following statements are equivalent:

(i) For all s ∈ (0,1] and t ∈ (0,1], the function t→ u(t s)/u(t) is nonincreasing

(ii) u is geometrically convex, i.e., for all (s, t) ∈ (0,1]× (0,1] and α ∈ (0,1), u(sα t1−α)≤ u(s)α u(t)1−α .

(iii) The conjugate function û : (−∞,0)→ (−∞,0) defined by û(y) = log◦u ◦ exp(y) is continuous, convex and

increasing with lim
y→0

û(y) = 0 and lim
y→−∞

û(y) =−∞

The three equivalent conditions, (i), (i), and (iii) imply that u is supermultiplicative, i.e.,

∀(s, t) ∈ (0,1]× (0,1], u(st)≥ u(s)u(t). (18)

Proof. Theorem 1 in Finol and Wójtowicz (2000) establishes all of the results except the assertions that û is

increasing with lim
y→0

û(y) = 0 and lim
t→−∞

u(t) =−∞. Because û = log◦u◦exp, û being increasing follows because u

is regular and thus increasing and log and exp are increasing functions. lim
y→0

û(y) = 0 follows because u, exp, and

log are continuous and increasing and u(0) = 0; thus,

lim
y→0

û(y) = log(1) = 0. (19)
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In the sequel, we extend the definition of û to 0 by setting its value at 0 to its limiting value when approaching 0,

which is 0. That is, we define û(0) = 0. Next note that lim
y→−∞

û(y) = −∞ because, u, exp, and log are continuous

and increasing and u(0) = 0; thus,

lim
y→−∞

û(y) = log
y→−∞

(u(exp[y])) = lim
t→0

log(t) =−∞. (20)

Thus, a sufficient condition for the two equivalent conditions for selection dominance, (16) and (17), to hold

is that u is geometrically convex. The characterization of geometric convexity provided by condition (iii) of

Lemma 1 provides some intuition for the properties of geometrically convex functions. The geometric convexity

of u is equivalent to logu(t) = û(log t), with û convex. In other words, logu(t) is a convex function of log(t).

Thus, geometric convexity is equivalent to u being convex when plotted on a graph in which both the ordinate and

abscissa have been log scaled. Geometric convexity is a weaker condition than logarithmic convexity. Logarithmic

convexity requires that the logarithm of the function is convex. Logarithmic convexity holds whenever for all

α ∈ (0,1], u(α s+(1−α)t)≤ u(s)α u(t)1−α .

Thus, by the geometric mean–arithmetic mean inequality, logarithmic convexity implies geometric convexity

(and in fact, by a different argument, it implies convexity as well) but the converse implication does not hold.

Logarithmic convexity is equivalent to the function being convex when plotted on a graph in which only the

ordinate has been log scaled. As we we will see in many subsequent examples, in general, geometric convexity

neither implies nor is implied by convexity.

These observations allow us to define conditions on u which ensure selection dominance. If expression (17)

holds we will say that u is supermultiplicative on average. If expression (17) holds with the weak inequality

replaced by a strong inequality we will say that u is strictly supermultiplicative on average. The motivation for

describing the satisfaction of expression (17) as supermultiplicativity on average is apparent from the definition of

supermultiplicativity given by expression (18). Based on Lemma (1), we will say that u is geometrically convex if

condition (iii) of Lemma 1 is satisfied. If this condition is satisfied by a conjugate function which is strictly convex

we will say that u is strictly geometrically convex.

Theorem 1. Suppose that F and G are an admissible pair of distribution functions; Let u = F ◦G−1, then

(i) F (strictly) selection dominates G, if and only if u satisfies the (strict) supermultiplicative on average condi-

tion, expression (17).

(ii) If u is (strictly) geometrically convex, F (strictly) selection dominates G.

Proof. Part (i) follows from the derivation above. Part (ii) follows from (17) and part (i) of Lemma 1.
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4 Geometric and selection dominance as ordering

In the case of unconditional comparisons of distributions, the stochastic dominance partial order, <
sd

, defined by

F <
sd

G if F(x)≤ G(x),x ∈ (x, x̄), (21)

is a necessary and sufficient condition for F to dominate G. If the inequality in expression (21) is strict we will say

that F strictly stochastically dominates G. Our aim is to find a analogous partial order in the presence of selection.

Thus, we will define relations between distribution functions based on the selection dominance and geometric

convexity and examine the extent to which we can order random variables in the presence of selection.

Definition. Suppose that F and G are an admissible pair of distributions and that u = F ◦G−1, then

(i) If (17) holds we will say that F selection dominates G under the average supermultiplicative relation; If (17)

holds with the weak inequality replaced by a strong inequality, we will say that F strictly selection dominates

G.

(ii) If u is geometrically convex, we will say that F dominates G under the geometric convexity relation. If u is

strictly geometrically convex, we will say that F strictly dominates G under the geometric convexity relation.

As the next lemma, Lemma 2, reports, the selection dominance relation is not transitive and thus not even a

preorder over the set of distribution functions. Thus, in the presence of selection, there is no order relation over

distribution functions which is necessary and sufficient to ensure that one distribution dominates another. How-

ever, geometric convexity is a preorder over distribution functions and as we showed in Proposition 1, geometric

convexity is a sufficient condition for selection dominance. Thus, the Lemma shows that it is impossible to derive

a distributional order that completely determines whether a random variable is selection dominant but an ordering

does exist that will capture a subset of selection-dominance relations. Whether this result has any value, of course,

depends on whether the subset of selection dominance relations captured by the ordering is large and interesting.

This is the topic we will begin to address in the next section of the paper.

Lemma 2. (i) The geometric convexity relation is a preorder over the set of distributions. (ii) The selection

dominance relation is not a preorder over the set of distributions because selection dominance is not transitive.

Proof. To prove (i) note that we need to show that the geometric convexity relation is is reflexive and transitive.

If F , G, and K are three admissible distribution functions, then the relation is transitive (i) if F dominates F ,

and transitive (ii) if F dominates G and G dominates K implies that F dominates K. To show this, note that, by

definition, F dominates itself if the the function u = F ◦F−1 is geometrically convex. Because u = F ◦F−1 is

the identity, its geometric convexity is immediate. Now consider transitivity. Transitivity will hold whenever the

functions, u1 = F ◦G−1 and u2 = G ◦K−1 being geometrically convex implies that the function u3 = G ◦K−1 is

Selection bias 11th October, 2013 10/41



geometrically convex. Geometric convexity holds if and only if û3 = û(y) = log◦u3 ◦ exp is convex. Because

u3 = u1 ◦u2,

û3 = û(y) = log◦u1 ◦u2 ◦ exp = (log◦u1 ◦ exp)◦ (log◦u2 ◦ exp) = û1 ◦ û2.

Because u1 and u2 are geometrically convex, û1 and û2 are convex. Because, u1 and u2 are nondecreasing, û1 and

û2 are nondecreasing. The composition of nondecreasing convex functions is convex. Thus, û1 ◦ û2 is convex.

Thus, the geometric convexity relation is a preorder. However, it is not a partial order because the geometric

dominance relation fails to satisfy antisymmetry, i.e., F dominating G and G dominating F in the order does not

imply that F = G. This can be seen by taking F(x) = x2 and G(x) = x, x ∈ [0,1], then û(y) = 2y y < 0. Because û

is linear F dominates G and G dominates F in the geometric convexity ordering but F 6= G. Thus, the geometric

dominance relation is not antisymmetric. Now consider(i). The selection dominance order is clearly reflexive;

however, it is not transitive. This can be verified by a counterexample available in Appendix C. Thus, selection

dominance is not a preorder.

We represent the order relation defined by geometric convexity in the standard fashion. When F dominates G

in the geometric convexity ordering, we will write F <
g

G. Also, to avoid unnecessary verbiage, when F dominates

G in the geometric convex ordering we will simply say that F geometrically dominates G.

As pointed out in the proof of Lemma 2, geometric dominance is not a partial order relation because it is

possible for distinct distributions, F and G, F <
g

G and G <
g

F When this occurs, we will say that F and G are geo-

metrically equivalent. If, for an admissible pair of distributions, F and G, F selection dominates G and G selection

dominates F , we will say that the pair is selection equivalent. The pair of distributions is selection equivalent if

and only if, conditioned on selection, the expected value of any increasing value function is the same under both

distributions. In this case the differences in the distributions are reflected entirely in their probability of being

selected. In general, geometric dominance is a sufficient but not necessary condition for selection dominance.

However, for selection equivalence, it is both a necessary and sufficient condition. As the next lemma shows,

selection equivalence imposes a very strong condition on distribution functions: they must be related by a power

transform.

Lemma 3. For an admissible pair of distributions functions, F and G, the following statements are equivalent:

(i) F and G are geometrically equivalent

(ii) F and G are selection equivalent

(iii) F(x) = G(x)p for some p > 0.

Proof. See Appendix A.

Examples of equivalences among textbook distributions are not hard to find. For example, clearly, all distri-

butions of the form F(x) = xp, x ∈ [0,1] are geometrically equivalent to each other. A less obvious example is
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provided by Fréchet distributions. All Fréchet distributions that have the same shape parameter α are geometri-

cally equivalent. To see this, note that if two Fréchet distributions, F1 and F2, differ only by the scale parameter,

σ , then

F1(x) = exp

[
−
(

x
σ1

)−α
]

and F2(x) = exp

[
−
(

x
σ2

)−α
]
, x > 0, (22)

then, letting p = (σ2/σ1)
−α , we see that F2(x) = (F1(x))p.

5 Characterizing geometrically dominant distributions

We now turn to characterizing the restrictions that geometric dominance imposes on the relation between the dom-

inant and dominated distribution. As the next theorem shows, geometric dominance imposes strong restrictions.

In essence, the geometrically dominant distribution either lies below the the dominated distribution, it which case

it is stochastically dominant, lies above the dominated distribution, in which case it is stochastically dominated, or

crosses the dominated distribution once from below. Thus geometric dominance rules out crossings from above

or multiple crossings of the distribution functions. This is a stronger restriction on distribution functions than that

imposed by, for example, second-order stochastic dominance, which is consistent with multiple crossings.

Theorem 2. Suppose that F and G are an admissible pair of distributions and let u = F ◦G−1. Suppose that F

geometrically dominates G, i.e, that u is geometrically convex.

(i) If, on some neighborhood of x, F(x)< G(x), then for all x ∈ (x, x̄), F(x)< G(x), and thus F strictly stochas-

tically dominates G

(ii) If, on some neighborhood of x, F(x)> G(x), then either

(a) F(x)> G(x) for all x ∈ (x, x̄) and thus G strictly stochastically dominates F, or

(b) There exists a point xo ∈ (x, x̄) such that for all x ∈ (x,xo), F(x) ≥ G(x) and for all x ∈ (xo, x̄), F(x) ≤

G(x). If F strictly geometrically dominates G, then for all x ∈ (x,xo), F(x)> G(x) and for all x ∈ (xo, x̄),

F(x)< G(x). In this case, if the mean payoff under F is the same as the mean payoff under G, then F is

a mean-preserving risk-increasing shift of G as defined by Diamond and Stiglitz (1974).

Proof (Sketch). The formal proof of this result is presented in Appendix A. The intuition behind the proof of this

result is that geometric convexity implies convexity of the transform function when this function is plotted using

logarithmic scaling. This convexity imposes strong restrictions on the behavior of the underlying distributions.

At quantiles where the two distribution functions, F and G, cross, i.e., points where F(x) = G(x), the transform

function, u meets the identity function at a corresponding point, i.e., u(t) = t. The conjugate function, û, which

is just the log scaled u function, also meets the its identity function at a corresponding point in the log-scaled

space. The convexity of the conjugate function then places strong restrictions on how and how often it can meet

the identity function. If it starts below the identity function, it can only meet it once. However, since the conjugate
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must meet the identity at its endpoint, which corresponds to the point where both distribution functions equal 1, it

cannot meet the identity at any other point. If the conjugate function starts out above the identity, convexity implies

that it can cross the identity at most twice. Again, because one of these crossings must occur at the endpoint, it

crosses the identity at most once before reaching the endpoint. Translating these properties back from the log

scaled space restricts the u transform function’s crossings of its identity function, and translating the u functions

behavior back to the underlying distributions yields the results.

Theorem 2 shows that the geometric convexity imposes strong conditions on how distributions ordered by

geometric dominance cross. These conditions, in turn, permit us to characterize to some extent the shape of the

transform function, u. These characterizations are provided by the next theorem, Theorem 3.

Theorem 3. Suppose that F and G are an admissible pair of distributions and let u = F ◦G−1; Assume that F

geometrically dominates G, i.e., u is geometrically convex and that, on some neighborhood of x̄, either F(x)>G(x)

or F(x) < G(x). Then, one of the following three mutually exclusive characterizations of the distributions and

transform function must hold.

(i) F(x)< G(x)x ∈ (x, x̄), and u is convex. If u is strictly geometrically convex, u is strictly convex.

(ii) F(x)> G(x)x ∈ (x, x̄) and t→ u(t)/t is nonincreasing. In this case, if u is strictly geometrically convex, then

t→ u(t)/t is decreasing and lim
t→0

u(t)/t = ∞.

(iii) On some neighborhood of x, F(x)> G(x) and on some neighborhood of x̄, F(x)≤ G(x). In this case, there

exists to ∈ (0,1) with u(to)≤ to such that t→ u(t)/t is nonincreasing for t ≤ to and u is convex for t ≥ to. If

u is strictly geometrically convex and, on some neighborhood of x̄, F(x)< G(x), then there exists to ∈ (0,1)

with u(to)≤ to, such that t → u(t)/t is decreasing for t ≤ to and lim
t→0

u(t)/t = ∞ and, for t > to, u is strictly

convex.

Proof (Sketch of proof). For a formal proof, see Appendix A. The basic idea behind the proof is that the fact

that F lies below G implies that û(y)− y ≤ 0, where û(y) is the conjugate function to the transform function, u.

Because û(y) is convex, û(y)− y is convex. Thus, if û(y)− y were decreasing at some point, by convexity, its

slope would have to be at least as small at all points less than that point. Because the domain of û(y) is the entire

non-positive real line, this would imply that eventually û(y)− y > 0, which is impossible. This argument shows

that û(y)−y is nondecreasing. Translating the result back to the transform function, u, is then shown to imply that

u is convex. This argument is used to prove part (i). The other parts of the theorem are proved in a similar fashion

by showing that F lying above G and the convexity of the conjugate function imply that û(y)−y is decreasing and

then translating this result back to the transform function, u.

First note that the condition that, on some neighborhood of x̄, either F(x)> G(x) or F(x)< G(x), is harmless.

If it were not satisfied, then because the distribution functions are continuous, there would be an interval around

the lower endpoint where the distributions were equal. In that case, we could extend our proof by conditioning on

Selection bias 11th October, 2013 13/41



both distributions exceeding this endpoint and then applying the Theorem. To avoid trying the reader’s patience

even more than we already have, we will not formalize this argument. Thus, in essence, Theorems 2 and 3 divide

geometric dominance relations into three possible configurations, and within each configuration, place strong re-

strictions on the way the underlying distributions cross and on the shape of the transform function u. When the

geometrically dominant distribution is also stochastically dominant, u is convex. Intuitively this implies that the

transform takes quantiles of the geometrically dominated distribution and reduces them at an ever increasing rate.

The higher the quantile, the bigger the shift. In Section 6 we will show that when the distributions have densities,

the convexity of the shift implies MLRP ordering between the distributions. When the geometrically dominant

distribution is stochastically dominated, we obtained a weaker but still significant restriction on the shape of the

transform function–that t → u(t)/t is decreasing. When geometric dominance is strict, the limit of u(t)/t as t

approaches 0 is infinite. This implies that the transform shifts quantiles upward at a rate approaching infinity

around the lowest quantiles of the stochastically dominant but geometrically dominated distribution. Thus, the

geometrically dominant distribution has a much higher probability of producing realizations near the bottom of

the common support of the two distributions. This is the basis for the selection dominance of the geometrically

dominant distribution. The very low realizations near the bottom of the support are almost never selected when

they are realized. Thus, conditioned on selection, the value of the geometrically dominant distribution can be

higher despite its being stochastically dominated. When the geometrically dominant distribution is neither dom-

inant nor dominated stochastically, the shape restrictions are a mixture of those obtained in the two other cases.

At the low end of the support, the shift greatly increases the probability of low realizations. At the high end, the

shift lowers the quantiles at an increasing rate. Thus, loosely, because we do not mean to impose an equality

of means between the two distributions, we can say in this case, that the geometrically dominant distribution is

dispersive, increasing weight on both high and low realizations. Finally, note that the point to, defined for this case

in Theorem 3 part (iii), is not a cutoff between the regions where t→ u(t)/t is decreasing and u is convex. It might

well be the case that u(t)/t continues to decrease after u becomes convex. u(t)/t is a measure of the average slope

of u starting from 0. Even when the slope starts to increase at to, its level may still be below the average of the

slope between 0 and to and thus u(t)/t may well continue to decrease. In fact, t → u(t)/t being decreasing over

its entire domain is not inconsistent with u becoming convex after t reaches to.

It is not possible to strengthen the results in part (ii) of Theorem 3 from its assertion that t→ u(t)/t is decreas-

ing to the assertion that u is concave. A simple counterexample to concavity is provided by

u(t) = exp
[
max

[
−
√
− log(t),2−1/2 log(t)

]]
, t ∈ (0,1], u(0) = 0.

u is admissible at it is continuous and increasing, u(0) = 0, and u(1) = 1. The conjugate function to u is given by

û(y) = max
[
−
√
−y,2−1/2 y

]
, y ≤ 0. û(y) is convex as it is the maximum of two convex functions. u(t) > t, t ∈

(0,1). Thus, u satisfies the conditions of Theorem part (ii) of Theorem 3. However, the derivative from the right
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of u evaluated at t = e−2 exceeds the derivative from the the left evaluated at the same point, which is inconsistent

with concavity.

5.1 Geometric convexity in terms of probability densities

Theorems 2 and 3 establish a natural structure for relating geometric convexity to standard order relations and

for investigating the distributional conditions implied by geometric convexity. We have three cases: one where

the geometrically dominant distribution is stochastically dominant, in which case the transform function, u, must

be convex, the second where the geometrically dominant distribution is stochastically dominated, and the third,

where the geometrically dominant distribution is dispersion increasing. We investigate each of these cases in

the subsequent sections. First, we require a few preliminary results that will provide a simple test for geometric

dominance when the distribution functions have densities and characterize these density functions based on the

behavior of the transform function u. The first of these results, Lemma 4, is a simple test for geometric convexity

when u is differentiable.

Lemma 4. Suppose u is differentiable, then u is (strictly) geometrically convex if and only if the function R defined

by

R(t) =
u′(t) t
u(t)

, (23)

is (increasing) nondecreasing over (0,1]

Proof. The result then follows from observations offered after Theorem 1 in Finol and Wójtowicz (2000).

We aim to characterize the relation between positive geometric dominance and the standard orderings of

distributions used in economics and finance. These orderings are typically formulated under the assumption

that the random variables under consideration have absolutely continuous distribution functions with respect to

Lebesgue measure and thus are characterized by their probability density functions. We have not imposed this

assumption thus far. In order to relate geometric dominance to these ordering relations, we will have to impose

sufficient regularity conditions. To avoid tedious discussions and lengthy statements of proofs, we impose a single

regularity condition that will be sufficient for all of the subsequent derivations.

Definition. An admissible pair of distribution functions F and G are regularly related if

(i) F and G are twice differentiable.

(ii) On (x, x̄), their probability density functions, f and g are positive.

Regularity implies that u is differentiable and thus Lemma 4 can be used to verify that u is geometrically

convex. It also implies that F and G have probability density functions. Under regularity, Lemma 4 permits

us to produce a simple mapping between the properties of u, such as convexity and geometric convexity, and the
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properties of the underlying distribution and density functions of the random variables generating u. This mapping

is provided by by the next result, Lemma 5.

Lemma 5. Suppose that F and G are regularly related and u = F ◦G−1.

(i) u is (strictly) convex if and only if x→ f (x)/g(x) is (increasing) nondecreasing over (x, x̄), i.e. F dominates

G in the MLRP order.

(ii) u is (strictly) geometrically convex if and only if x→ f (x)
g(x)

G(x)
F(x) is (increasing) nondecreasing over (x, x̄).

(iii) u is (strictly) logarithmically convex if and only if x→ f (x)
g(x)

1
F(x) is (increasing) nondecreasing over (x, x̄).

Proof. See Appendix A.

Regularity allows us to compare our ordering with the standard orderings used in finance and economics.

First note that Lemma 5 implies that MLRP ordering is equivalent to u being convex. MLRP implies that F/G

is increasing and thus G/F is decreasing. Geometric dominance requires ((f/g) (G/F)) to be increasing, because

(G/F) is decreasing when f/g is increasing; whether the distributions are geometrically ordered as well will

depend on the rate of increase of f/g relative to G/F . When F is dominated in the MLRP ordering f/g is

decreasing. This implies that G/F is increasing. Thus, it appears, as will be verified below, that, if the rate

of increase of G/F is sufficiently large relative to f/g, an MLRP dominated distribution can be geometrically

dominant. It is also worth noting that the density condition for geometric dominance, part (ii) of Lemma 5, can be

expressed as (log(F))′/(log(G))′ being increasing. This formulation of geometric dominance yields the following

simple corollary to Lemma 5.

Corollary 1. If F (strictly) geometrically dominates G, then the ratio log(F(x))/ log(G(x)), is (increasing) non-

decreasing in x.

Proof. Because log(G) < 0, over (x, x̄), it never changes sign over over (x, x̄). Next note that lim
x→x̄

log◦G(x) = 0

Part (ii) of Lemma 5 shows that (strict) geometric dominance implies that that (log◦F)′/(log◦F)′ is (increas-

ing) nondecreasing. The assertion follows from these observations and the Monotone LHôpital Theorem (see

Propositon 1.1 in (Pinelis, 2002)).

Part (ii) of Lemma 5 and its corollary establish a rather tight analogy between MLRP and geometric domi-

nance. The MLRP property can be expressed as F ′/G′ being increasing and MLRP implies that the ratio F/G is

increasing. Geometric dominance can be expressed as the ratio (log◦F)′/(log◦F)′ being increasing and geomet-

ric dominance implies that the ratio log◦F/ log◦F is increasing. Thus, geometric dominance can be thought of

a a log transformed version of MLRP. We also see from part (iii) of Lemma 5 that the logarithmic convexity of

the transform function, u, implies both geometric dominance and MLRP dominance. However, the logarithmic

convexity of the transform function is not a very useful notion of dominance because it is hardly ever satisfied

when the two distributions are generated by textbook distributions. To see this, note that, by part iii of Lemma 5,
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u being logarithmic convex is equivalent to ( f/F)(1/g) being increasing. If F is logarithmically concave and g is

not always nondecreasing on it support, this condition cannot be satisfied. As most standard textbook distribution

functions are logarithmically concave and most do not have monotonically increasing densities, the logarithmic

convexity of u is not a very useful basis for ordering “typical” distribution functions.2 In contrast, geometric

convexity orders many textbook distributions.

6 Positive geometric convexity: Selection robust inference

We aim to analyze case (i) of Theorem 2. Since geometric dominance is a sufficient condition for selection

dominance, if F dominates G under both geometric dominance and stochastic dominance, F’s dominance over G

is robust to selection effects. In this case, selection preserves the ordering of distributions. When one distribution

is unconditionally better than another, it is also better conditioned on selection. This leads us to consider the effect

of imposing both geometric and stochastic dominance and examining the implications of the dual ordering for the

properties of the distribution functions which it orders.

Definition. If F geometrically dominates G (F <
g

G) and F stochastically dominates G (F <
sd

G), then we will say

that F positively geometrically dominates G and write F <
g+

G. If in addition F strictly geometrically dominates

G, we will say that strictly positively geometrically dominates G and write F �
g+

G.

Proposition 1. Let X̃ and Ỹ be two random variables whose distribution functions F and G are an admissible

pair. Suppose that F positively geometrically dominates G, then

(i) X̃ selection dominates Ỹ , i.e., for any increasing valuation function, v, E[v(X̃)|X̃ > Ỹ ]≥ E[v(Ỹ )|Ỹ > X̃ ].

(ii) X̃ dominates Ỹ in the MLRP ordering.

(iii) The probability that X̃ will be selected is higher, i.e.,P[X̃ > Ỹ ]≥ 1/2.

Proof. (i) follows from Theorem1. (ii) follows from Corollary 3, Lemma 5, and the definition of the MLRP

ordering. (iii) follows by the following argument: The probability of F being selected is given by

∫ 1

0
(1−u(s))ds (24)

Because positive geometric dominance implies stochastic dominance and stochastic dominance implies that u(t)≤

t we see that ∫ 1

0
(1−u(s)ds≤

∫ 1

0
(1− s)ds =

1
2
. (25)

Proposition 1 shows that positive geometric convexity is a rather tame ordering of distributions. It simply
2See Bagnoli and Bergstrom (2005) for an exhaustive discussion of the logarithmic concavity of distribution functions and verification of

the prevalence of logarithmic concavity
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represents a strengthening of the MLRP ordering condition. Moreover, geometric dominance has an added impli-

cation not shared by geometric convexity; it implies not only that, regardless of selection, the expected value under

the dominant distribution is higher under any increasing value function but also that the dominant distribution is

more likely to be selected. Moreover, because the positive geometric dominance ordering inherits antisymmetry

from stochastic dominance, it is also not only a preorder but also a partial order over admissible distribution pairs.

This result is recorded in Lemma 6.

Lemma 6. The positive geometric convexity order <
g+

is a partial order.

Proof. Note that because both the stochastic dominance and the geometric convexity orderings are reflexive and

transitive, positive geometric dominance is reflexive and transitive. To see that it is antisymmetric, note that the

stochastic dominance ordering is antisymmetric. Thus, F <
g+

G and G <
g+

F implies that F <
sd

G and G <
sd

F , which

implies that F = G.

6.1 Selection robust families of distributions

Thus far, we have not verified that any specific distributions satisfy the geometric dominance condition. In this

section, we will show that positive geometric dominance orders many standard families of distributions defined

by scale shifts. These families include the Weibull distribution (of which the Exponential distribution is a special

case), the log-logistic distribution, and the Kumaraswamy distribution when the shape parameter exceeds 1. In the

next section, Section 6.2, we will derive a simple condition for families of distributions generated by multiplica-

tive scale shifts to be ordered by geometric dominance. We will then verify that the half-normal and lognormal

distributions satisfy this condition. Because changing the scale parameter for the half normal and lognormal dis-

tributions produces a multiplicative scale shift, this result verifies that scale families of lognormal and half normal

distributions are ordered by positive geometric dominance. Within such families, one can infer that the expected

value of any increasing function is higher conditioned on selection if and only if it is higher unconditionally. This

observation motivates the following definition.

Definition. Consider a family of admissible distribution functions indexed by α , {Kα}α we will say that the

family of distribution functions is selection robust if for any two members of the family Kα ′ , Kα ′′ , α ′ 6= α ′′,Kα ′

stochastically dominates Kα ′′ implies that Kα ′ selection dominates Kα ′′ . The family is strictly selection robust if

Kα ′ strictly stochastically dominates Kα ′′ implies that Kα ′ strictly selection dominates Kα ′′ .

Geometric dominance can establish selection robustness for a large class of distributions.

Weibull distribution The Weibull distribution is a probability distribution defined by,

K(x) = KW
α (x;λ ) = 1− e−(

x
α )

λ

, x≥ 0, α > 0, λ > 0 (26)
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λ is called the shape parameter and α is called the scale parameter. The distribution is used in labor economics to

model worker quality (Dunn and Holtz-Eakin, 2000).

Result. Any family of Weibull distributions with a common shape parameter λ is selection robust.

Proof. Consider two distributions in the family KαF = KW
αF
(·;λ ) and KαF = KW

αG
(·;λ ), αF > αG. Let u represent

KαF ◦K−1
αG

. u is given by

u(t) = 1− (1− t)r, t ∈ [0,1], r =
(

αG

αF

)λ

(27)

It is easy to see that KαF �sd
KαG . Thus, in order for KαF <

g+
KαG , we need only show that KαF �g KαG By Lemma 1,

a necessary and sufficient condition for strict geometric dominance is that the conjugate function to u, û to be

strictly convex. The conjugate function is given by

û(y,r) = log(1− (1− ey)r) , y≤ 0, r =
(

αG

αF

)λ

. (28)

û is strictly convex if and only if r > 1, i.e., if and only αF > αG. By Theorem 1 geometric dominance implies

selection dominance.

Thus, a scale family of Weibull distributed random variables with a common shape parameter is strictly se-

lection robust. Because convexity of u implies MLRP ordering, it is also easy to see directly that the family is

ordered by MLRP, as we expected given Theorem 3.

Log-logistic distribution A distribution function is log-logistic if it is given by the function

KLL
α (x;β ) =

xβ

αβ + xβ
, x > 0, α > 0, β > 1. (29)

β is called the shape parameter of the distribution and α is called the scale parameter. In economics, the log-

logistic distribution is used to model the the distribution of income ((Fisk, 1961)). The requirement that β > 1 is

imposed to ensure that the distribution has a finite expectation, as required by admissibility.

Result. Any family of log-logistic distributions with a common shape parameter λ is strictly selection robust.

Proof. Consider any two members of the family, αF and αG, with αF > αG. Let KαF = KLL
αF

(·;λ ) and KαF =

KLL
αG

(·;λ ). First note that, for any log-logistic distribution,

K−1
α (x) = α

(
t

1− t

)1/β

. (30)

Thus,

u(t) = KαF ◦K−1
αG

(t) =
t

r(1− t)+ t
, r =

(
αF

αG

)β

. (31)
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In this case, rather than using the conjugate function to test for geometric convexity, we use Lemma 4. Note that

the function R as defined in that lemma is given by

R(t) =
r

(r−1)(1− t)+1
, (32)

which is increasing if and only if r > 1, i.e., if and only if αF > αG. Also, when αF > αG, F strictly stochastically

dominates G. By Theorem 1 geometric dominance implies selection dominance. Thus, log-logistic scale families

are strictly selection robust.

Kumaraswamy distribution with b > 1 The Kumaraswamy distribution has been applied to model recovery

rates in models of CDO defaults (Höcht and Zagst, 2010). This distribution is supported by the unit interval and

is defined by

KKs
α (x;b) = 1− (1− xα)b . x ∈ [0,1], α > 0, b > 0. (33)

Result. For any fixed b > 1, the family of Kumaraswamy distributions indexed by the sale parameter α > 0,{
KKs

α (·;b)
}

, is strictly selection robust.

Proof. Is is apparent from inspection that if αF > αB then K−1
αF

strictly stochastically dominates K−1
αG

. The proof

that K−1
αF

strictly geometrically dominates K−1
αG

is both tedious and elementary and thus is deferred to Appendix B.

Because geometric dominance implies selection dominance by Theorem 1, the result follows. In an example,

which will be discussed extensively in Section 7, we will show that, when b < 1, families of Kumaraswamy

distributions are not selection robust.

6.2 Conditions for multiplicative scale shifts to preserve dominance under selection

In many cases, the tests for geometric convexity developed thus far are difficult to apply in practice because closed-

form expressions for the quantile functions of the distributions do not exist. In this section, we develop a simple

test for selection robustness when the pair of distributions results from a multiplicative scaling of the underlying

random variable.This test is useful because for many common distributions defined over the non-negative real line,

the scale parameter shifts can be represented by multiplicative scaling. For example, if X̃ is a lognormal random

variable with parameters (µ,σ), then X̃ is identically distributed to eµ Ỹ , where Ỹ is a lognormally distributed

random variable with parameters (0,σ). Thus, if scale shifts preserve dominance under selection, families of

lognormal distributions with common log variance are selection robust. In this section, using this test, we will

verify selection dominance for some common distributions. In the next section, we will show by means of a

counterexample, that distributions exist which fail to satisfy the conditions of the test.

To initiate the analysis, suppose Ỹ is a random variable whose whose distribution function, G, is absolutely

continuous and whose support equals [0,∞). Suppose that the distribution of X̃ , F , is given by a scale shift
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of Ỹ , that is X̃ ∼ SỸ , S > 1. In this case, the distribution of Ỹ , G, is given by G(x) = F(Sx) and its density

is given by g(x) = S f (Sx). Note that F strictly stochastically dominates G. In order to keep our expressions

compact, we define the following operator. For any differentiable function, φ : R+→ R, define the operator, DL

by DL (φ)(x) = (log◦φ(x)’. By induction, for Dn−1
L (φ) define

Dn
L (φ)(x) = DL

(
Dn−1

L (φ)
)
(x). (34)

DL simply represents log differentiation. Applying these definitions we obtain

f (x)
F(x)

= DL (F)(x) and
g(x)
G(x)

=
S f (Sx)
F(Sx)

= SDL (F)(Sx). (35)

From Lemma 5, F geometrically dominates G and thus F is selection dominant by Theorem 1, if

DL (F)(x)
DL (G)(x)

=
DL (F)(x)

SDL (F)(Sx)
(36)

is increasing. This function will be increasing precisely when the difference in the log derivatives of DL (F)(x)

and DL (G)(x) is is decreasing, i.e., when

D2
L (F)(x)≥ SD2

L (F)(Sx). (37)

We can multiply both sides of this equation by x without changing the direction of the inequality. This yields, the

condition

xD2
L (F)(x)≥ (Sx)D2

L (F)(Sx). (38)

This condition will be satisfied for all scale shifts S > 1 if and only if the function:

x→ xD2
L (F)(x) = x

(
f ′(x)
f (x)

− f (x)
F(x)

)
is decreasing. (39)

These observations yield the following result:

Proposition 2. If the distribution of X̃ , F, results from a simple scaling up of Ỹ , with a scale factor S > 1, then X

will strictly geometrically dominate Y and thus always produce a higher value conditioned on selection, whenever

the the second log derivative of F, D2
L (F), satisfies condition (39).

6.2.1 Examples

As we demonstrate below, condition (39) is satisfied by many common textbook distributions over the positive

real line.
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Half Normal Consider scale shifts of the the standard half normal distribution, F(x) = erf
(

x√
2

)
, x≥ 0. In this

case we can verify condition (39) by a simple differentiation:

(xD2
L (F)(x))′ =

(
f ′(x)
f (x)

− f (x)
F(x)

)′
=−x−

(
x+

f (x)
F(x)

) (
1− x f (x)

F(x)

)
, x > 0. (40)

Because f is decreasing for x≥ 0, (x f (x))/F(x)< 1 for x > 0. Thus, (xD2
L (F)(x))′ < 0 and hence condition (39)

is satisfied. This implies that upward scale shifts of a half normally distributed random variable are strictly selec-

tion dominant.

Log-normal Finally, consider the scaling of a standard log-normal distribution. Let, Φ equal

Φ(x) = xD2
L (F)(x), (41)

where F is the standard log-normal distribution. Define the function η : R→ R by η(y) = Φ(exp(y)). Because

exp(·) is increasing and thus order preserving, if we can show that η is decreasing, then it must be the case that Φ

is decreasing, and thus condition (39) is satisfied. Note first that

η(y) =−(y+1)− 1
m(−y)

, (42)

where m is the Mills Ratio, m = (1−F)/ f . Because the Mills ratio is positive, η is negative. To see that it is

decreasing note that, by a result in Sampford (1953), the derivative of 1/m(x) is strictly less than 1 for all real

x. Thus, η and hence Φ are strictly decreasing. This implies that upward scale shifts of log-normally distributed

random variable are strictly selection dominant.

6.2.2 Counterexample

Not all upward scale shifts lead to geometric dominance. However, counterexamples are not easy to construct.

One essentially needs a distribution that has a density with a very flat left tail, a very compact middle region, and a

very thin but long right tail. In this case, one can think of the selection of a given distribution as signaling both the

value of the random variable selected and the region the of density from which it was drawn. Upward scaling has

almost no effect on the left tail because it has almost no probability mass. Thus, scaling only has a significant effect

when the random variable is in the middle or upper region. The flat left tail serves to make the middle region fairly

small. Thus, dispersion over the middle region is small. Therefore, scaling has a major effect on the probability of

selection in this region. Conditioned on being in the upper tail, the superior, i.e., stochastically dominant, random

variable is of course more valuable in expectation. However, because of the much higher dispersion of value over

the upper tail, this does not translate into as large of a difference in the probability of being selected as it does in

the middle region. For this reason, selection of the superior random variable is correlated with the middle region

being realized. Hence, selection of the inferior random variable signals that the selected random variable is in the
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long right tail. Because the value difference between the right tail and the middle region dwarfs value differences

within either region, and because selection of the inferior distribution signals that the right tail has been realized,

the inferior distribution is selection dominant. To produce and example that verifies that such reversals are indeed

possible, we take a distribution with a very long right tail, the Fréchet distribution, modify it a bit to produce a flat

left tail, and then verify that selection reversal occurs. Note that, as pointed out in Section 4, scale shifts of the

Fréchet distribution could not produce selection reversals because scaled Fréchet distributions are geometrically

equivalent to each other. The distribution we select for the counterexample is

F(x) = exp
[
− 1
(x+ log(1+ x))2

]
. (43)

The expression enclosed in square brackets converges to −∞ as x→ 0 and to 0 as x→ ∞, and is increasing, so F

defines a distribution function over [0,∞). This distribution has a finite expectation, as can be verified by noting

that

1−F(x)< 1−FFréchet(x), (44)

where FFréchet is a Fréchet Distribution with shape parameter 2 and scale parameter 1. Because this Fréchet

distribution has finite expectation, so so does F . Calculations show that

xD2
L (F)(x) =−

(
x+2
x+1

) (
x

(x+2)2 +
3x

x+ log(x+1)

)
, (45)

F−1(t) =W

(
exp

[
1√
− log(t)

+1

])
−1, (46)

u(t) = F ◦G−1 = F
(

1
S

F−1(t)
)
, (47)

where W (·) is Lambert’s W-Function. In Figure 1 we plot scalings effects for the case of s = 1.2. We see that

xD2
L (F)(x) is not decreasing and in fact it is increasing until x ≈ 5.38 and then it decreases. However, the

probability of a realization in excess of 5.38, is less than 2%. Thus, condition (39) is violated over almost all the

probability mass of F . This fact can also be verified by inspecting Panel C, which plots the geometric dominance

test function defined in Proposition 6.2. The increase in xD2
L (F)(x) in the extreme right tail is reflected in the

sharp upturn in R(t) around t = 0.98. In Table 1 we verify that in fact the scaled up distribution, F , has a lower

expected value conditioned on being selected.
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Figure 1: Counterexample to up scaling leading to geometric dominance. In the figure, F is given by (43).

E[X̃ |X̃ > Ỹ ] == 1.5339 E[Ỹ |Ỹ > X̃ ] = 1.5452
P[X̃ > Ỹ ] = 0.58196 P[Ỹ > X̃ ] = 0.41804

E[X̃ ] = 1.1354 E[Ỹ ] = 0.94661

Table 1: Counterexample to up scaling producing selection dominance. In the table, X̃ ∼ F and Ỹ ∼ (1/S) X̃ , with
S = 1.2 and F given by (43).

7 Negative geometric dominance: Selection reversal

As shown in part (ii.a) of 2 a distribution can be geometrically dominant yet stochastically dominated. We now

turn to this case. When distributions have this property, better is worse conditioned on selection. We begin by

formalizing this relation.

Definition. If F geometrically dominates G (F <
g

G) and G stochastically dominates F (F 4
sd

G), then we will say

that F negatively geometrically dominates G and write F <
g−

G. If in addition, F strictly geometrically dominates

G, we will say that F strictly negatively geometrically dominates G and write F �
g−

G.

The following proposition, Proposition 3, uses Theorem 3 and Lemma 5 to characterize distribution functions

that are ordered by negative geometric dominance. In the case of negative geometric dominance, we do not

have the fine control over the ratios between densities that we had in the case of positive geometric dominance.
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However, negative geometric dominance does restrict the ratio between the distribution functions and the behavior

of the densities around the lower endpoint of their support.

Proposition 3. Let X̃ and Ỹ be two random variables with regularly related distribution functions F and G.

Suppose that F negatively geometrically dominates G, then

(i) X̃ selection dominates Ỹ , i.e., for any increasing valuation function, v, E[v(X̃)|X̃ > Ỹ ]≥ E[v(Ỹ )|Ỹ > X̃ ]

(ii) The ratio F/G is non-increasing.

(iii) If F strictly negatively geometrically dominates G, then F/G is decreasing and

lim
x→x

F(x)
G(x)

= lim
x→x

f (x)
g(x)

= ∞.

(iv) The probability that X̃ will be selected is lower, i.e.,P[X̃ > Ỹ ]≤ 1/2.

(v) The negative geometric convexity order <
g−

is a partial order.

Proof. (i) follows from Theorem1. To prove (ii), note that part (ii) implies that t → u(t)/t is decreasing. Noting

that u = F ◦G−1 and making the substitution, t = G−1(x) shows that t→ u(t)/t being nonincreasing implies that

x→ F(x)/G(x) is nonincreasing. Part (iii) follows from (ii) in like fashion after noting that the limits of F/G and

f/g are the same by L’Hôpital’s rule. (iv) follows from exactly the same argument that was used to prove part (iii)

of Proposition 1. Finally, part (v), follows from the same argument used to prove Lemma 6.

Just as the conditions in Proposition 1 were not sufficient for positive geometric dominance, the conditions in

Proposition 3 are not sufficient for negative geometric dominance. However, in both cases, geometric dominance

does impose fairly strong necessary conditions on the underlying distribution functions. In the case at hand,

negative geometric dominance, the restriction that F/G be non-increasing established in part (ii), implies that G,

the negative geometrically dominated distribution, dominates the negatively geometrically dominant distribution,

F , in the reverse hazard rate order. This order is not nearly as important as the MLRP order. However, it has

found some applications in financial economics (Kijima and Ohnishi, 1999). The key restriction imposed by

strict negative geometric dominance, is that F/G converges to infinity as x approaches the left endpoint of the

distribution functions’ support. The probability weight on the left tail of the negatively geometrically dominant

distribution grows explosively relative to the dominated distribution’s weight. We term this behavior “left-tail

explosion.” Negative geometric dominance can only occur when left-tail explosion occurs. A left-tail explosion

ensures that low realizations from the geometrically dominated distribution are almost never selected and this

censoring increases the selection-conditioned value of the distribution. Of course, the left-tail explosion reduces

the dominant distributions selection probability. This is the result recorded in part (iv) of the Proposition.

However, in contrast to positive geometric dominance, negative geometric dominance is not consistent with

any unconditional ordering of distribution functions. In fact, not only are negatively dominant distributions never

dominant under standard unconditional orderings, they can, as we show later by means of an example, be domi-
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nated in the strongest unconditional ordering, MLRP ordering. More importantly, because geometric dominance

implies selection dominance by Theorem 1, when distributions are ordered by negative geometric dominance, the

dominant distribution in the absence of selection is always dominated in the presence of selection. Thus, selec-

tion reverses qualitative inferences regarding the underlying random variables. This observation motivates the

following definition:

Definition. Consider a family of admissible distribution functions indexed by α , {Kα}α . We will say that the

family of distribution functions is selection reversing if for any two members of the family Kα ′ , Kα ′′ , α ′ 6= α ′′,Kα ′

stochastically dominates Kα ′′ implies that Kα ′′ selection dominates Kα ′ . The family is strictly selection robust if

Kα ′ strictly stochastically dominates Kα ′′ implies that Kα ′′ strictly selection dominates Kα ′ .

Are there reasonable families of distributions that are selection reversing? Yes, but not many textbook distri-

butions have this property. One that does is the Kumaraswamy distribution with shape parameter b < 1.

Example 1. For any fixed b < 1, the family of Kumaraswamy distributions indexed by the sale parameter α > 0,{
KKs

α (·;b)
}

, is selection reversing.

Proof. As was noted in the discussion of the Kumaraswamy distribution in the previous section, αF < αG if and

only if KKs
αG
�
sd

KKs
αG

. In Appendix B, we show that, when the shape parameter b < 1, αF < αG if and only if KKs
αF
�
g

KKs
αG

. Since strict geometric dominance implies strict selection dominance, the family of distributions,
{

KKs
α (·;b)

}
,

is strictly selection reversing for b < 1.

Because the proof of this result is not terribly intuitive and involves tedious calculations, we will focus on

a special case of this result, the case were b = 1/2, αF = 1, and αG = 2. In this case, the two distributions

corresponding to αF and αB, F and G, are

F(x) = 1−
√

1− x, G(x) = 1−
√

1− x2. (48)

Because of the simple form of the Kumaraswamy distribution, we can explicitly solve for the transform function,

u, and its conjugate, û These functions are presented below:

u(t) = 1−
√

1−
√
(1− t) t + t, t ∈ [0,1]; û(y) = log

(
1−
√

1−
√

ey (1− ey)+ ey

)
, y ∈ (−∞,0]. (49)

The distribution functions, densities, geometric dominance condition, and the likelihood ratio, are plotted in Fig-

ure 2. As one can see from inspecting Panel A of Figure 2, F is strictly dominated by G in the stochastic dom-

inance ordering. In fact, as Panel D of Figure 2 shows, f/g is decreasing and therefore F is even dominated by

G in the MLRP ordering. The geometric convexity condition for F to strictly geometrically dominate G (given

in Lemma 5) is that ( f/g)(G/F) is increasing. This condition is verified in Panel C of Figure 2. The fat-tail

explosion is evident if we consider the behavior of the ratio F/G at selected quantiles of the G distribution. At
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the 1% quantile of G the ratio F : G is more than 7:1. At the 0.1% quantile, the ratio is more than 20:1. This tail

explosion is evidenced in Panel B of Figure 2 by the probability densities of F and G near the lower end point of

their support.
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Figure 2: Kumaraswamy distribution with b = 1/2. In the figure,

Figure 3 plots the transform function, u, and its conjugate function, û. As can be seen from Panels A and B of

Figure 3, in this example, the transform distribution, u, is concave yet its conjugate function, û, is convex. Thus,

logarithmic scaling, although it preserves order relations, can completely alter the shape of the transform function.

The convexity of û also again verifies the geometric dominance of F .

Selection bias 11th October, 2013 27/41



0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0

u
Panel A: u

-2.0 -1.5 -1.0 -0.5
y

-2.0

-1.5

-1.0

-0.5

u
`

Panel B: u
`

Figure 3: Transform and conjugate transform functions for the Kumaraswamy distribution. In the figure, u and û
are given by (49)

The selection dominance of F is also illustrated in Table 2, which computes value under selection assuming

that the valuation function, v, is simply v(x) = x. Note first that, as expected, value is higher conditioned on the

random variable generated by F , which is X̃ , being selected than it is when the random variable generated by G,

Ỹ , is selected. Note also that the that the stochastic superiority of Ỹ is absorbed by the probability of selection.

Ỹ ’s probability of being selected is more than 60% higher than X̃’s even though Ỹ ’s expected value is only 17%

higher.

E[X̃ |X̃ > Ỹ ] = 0.88284 E[Ỹ |Ỹ > X̃ ] = 0.8731
P[X̃ > Ỹ ] = 0.39052 P[Ỹ > X̃ ] = 0.60948

E[X̃ ] = 0.66667 E[Ỹ ] = 0.7854

Table 2: Valuations under selection: Kumaraswamy Distribution. In the table, X̃ ∼ F and Ỹ ∼ G, where F and G
are given by (48).

8 Geometric convexity without stochastic dominance: Dispersion induced

dominance

Finally, we consider the the case first identified in part (ii.b) of Theorem 2—geometric dominance when dis-

tributions are not ordered by stochastic dominance. This case is perhaps the least interesting because neither

distribution is unconditionally better than the other. Thus there is no question of selection robustness or selection
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reversal to resolve. However, the results in this section have value in that they illustrate that geometric dominance

can result simply from from dispersion. We will illustrate this result with the following pair of distributions.

F(x) =


e−c

√
1
x x ∈ (0,1]

0 x = 0
, c > 0, G(x) = x, x ∈ [0,1]. (50)

A simple calculus exercise shows that F is increasing with F(0) = 0 and F(1) = 1. G is the uniform distribution

over [0,1]. Thus both F and G are distribution functions. Since both F and G have bounded common support,

[0,1], they are both clearly integrable. Thus, the pair of distributions is admissible and, in fact, regular. Explicit

computation of the transform function, u, and its conjugate, û, yields

u(t) =


e−c

√
1
x x ∈ (0,1]

0 x = 0
; û(t) =−c

√
−y, y ∈ (−∞,0]. (51)

These functions are plotted in Figure 4 assuming that the parameter c = 0.70. Either by inspection of the graphs

or explicit calculation it is apparent that û is strictly convex and thus F strictly geometrically dominates G.
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Figure 4: Geometrically dominant distribution increases dispersion. In the graph u and û are given by (51), with
the parameter c = 0.70

Figure 4 illustrates the properties of dispersive geometrically dominant distributions developed in Theorem 2

and Theorem 3. u crosses the diagonal once from above. u(t)/t explodes around 0 and, after crossing the diagonal,

u becomes convex. Thus, using the results for both negative and positive geometric dominance provided in Propo-

sitions 1 and 3, it possible to deduce that the ratio F/G increases to infinity as x converges to the lower bound of

the distributions’ support, 0. In contrast, the upper end of the distribution of F dominates the distribution of G

under the MLRP ordering. Thus, while negatively and positively geometrically dominant distributions garner their

dominance from only one device, MLRP superiority in the case of positively dominant distributions, and left-tail
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explosions in the case of negatively dominant distributions, dispersive geometrically dominant distributions can

use both devices.

Combining left-tail explosions with MLRP dominance in the right tail leads to strong selection superiority,

which is illustrated by Table 3. In this table, the valuation function is simply v(x) = x. Selection dominance is not

produced by the unconditional superiority of F , as is apparent from noting that F’s expected value is lower than

G’s expected value.

E[X̃ |X̃ > Ỹ ] = 0.7784 E[Ỹ |Ỹ > X̃ ] = 0.5854
P[X̃ > Ỹ ] = 0.4352 P[Ỹ > X̃ ] = 0.5648

E[X̃ ] = 0.4352 E[Ỹ ] = 0.5000

Table 3: Expected payoffs under selection when geometrically dominant distribution is dispersive. In the table,
X̃ ∼ F and Ỹ ∼ G, where F and G are given by (50) and c = 0.70.

9 Selection dominance without geometric dominance

In the last four sections of the paper, we focused on the geometric dominance order, a sufficient but not necessary

condition for selection dominance. Given our objective, to define an ordering over distributions analogous to

stochastic dominance, this focus is not surprising. As shown in Lemma 2, selection dominance does not even

define a preorder over distribution functions. As shown by Theorem 1, selection dominance is equivalent to

supermultiplicativity on average which roughly speaking is geometric convexity on average. Thus, the question

of selection dominance, unlike the question of geometric dominance, cannot be resolved by tests comparing

distributions and densities at specific points; average values matter and distributions that violate the distributional

criteria for geometric convexity can be selection dominant as long as the violations “average out.” In fact, this

dependence on average values is the root cause for selection dominance being intransitive. Violations of geometric

convexity that are small enough to average out in one comparison of distributions may not be small enough to

average out in another.

Section 8 provides us with a clue for finding a case where selection dominance is easy to verify—dispersion

increasing transformations. In fact, we will show that dispersion increasing transformations that render the trans-

formed distribution MLRP dominant in its upper tail and MLRP dominated in its lower tail, while leaving the

probability of selection fixed, always render the ”riskier” transformed distribution selection dominant even if such

transforms do not produce geometric dominance. The logic behind this result is fairly apparent. Both MLRP dom-

inance in the upper tail and being MLRP dominated in the lower tail, favor selection dominance. Being dominant

in the upper tail implies that values are higher when selected; being dominated in the lower tail means that low

draws from the distribution are unlikely to be selected, thus increasing the expected value conditioned on selection.

The problem of finding conditions for selection dominance is thus much easier when distributions are variability
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ordered rather than size ordered. In essence, variability leads to selection dominance provided the variability trans-

formation is restricted using the now standard MLRP ordering. In contrast, when the unconditional distributions

are ordered by size and not variability, MLRP dominant distributions can be geometrically dominated and thus

selection dominated, as we showed in Section 7. As shown in Lemma 5 the MLRP ordering for regularly-related

distributions is equivalent to the transform function, u, being convex. This observation motivates the definition of

a selection-probability preserving, dispersion increasing transformation which is provided below.

Definition. Let u be a regular function the following properties:

(i)
∫ 1

0 u(s)ds = 1/2

(ii) There exist t∗ ∈ (0,1) such that u restricted to [0, t∗] is strictly concave and u restricted to [t∗,1] is strictly

concave,

then u is a selection-probability preserving, dispersion increasing transformation.

The next result, Proposition 4, shows that such transformations always lead to selection dominance.

Proposition 4. If F and G are regularly related distributions, u = F ◦G−1, and u is a selection-probability

preserving, dispersion increasing transformation, then Fstrictly selection dominates G.

Proof. See Appendix A.

The very straight forward intuition behind this proposition is illustrated by the following example. In this

example, the distribution functions are given by

F(x) =
1
2
(
(2x−1)3 +1

)
, x ∈ [0,1] G(x) = x, x ∈ [0,1]. (52)

Because, G(x) = x, the transform function is simply given by u(t) = F(t). Figure 5 plots the distribution functions,

densities, and the R, and Π functions associated with these distributions. Panel A shows that, in fact, F and G are

distribution functions over [0,1]. Panel B, plots the associated densities and shows the dispersive nature of the the

u transform. Panel C plots the R function defined in Lemma 4. Because R being increasing is a necessary and

sufficient condition for geometric convexity, it is clear that F does not geometrically dominate G. Panel D plots

the Π(u) function. By Theorem 1, supermultiplicativity on average of u is equivalent to the selection dominance

of F over G. The supermultiplicativity on average condition is satisfied whenever, Π(u)[t] ≥ Π(u)[1], t ∈ [0,1).

Panel D verifies this condition for selection dominance. Expected values under the two distribution functions

are numerically evaluated in Table 4 for the case where v(x) = x. As the table shows, the expected value under

selection is much higher for F , the selection probability preserving, dispersion increasing transform of G.
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Figure 5: Dispersion increasing distributions and selection dominance. In the figure, F and G are given by (52).

E[X̃ |X̃ > Ỹ ] = 0.8000 E[Ỹ |Ỹ > X̃ ] = 0.6000
P[X̃ > Ỹ ] = 0.5000 P[Ỹ > X̃ ] = 0.5000

E[X̃ ] = 0.5000 E[Ỹ ] = 0.5000

Table 4: Selection dominant dispersion increasing transformation. In the table, X̃ ∼ F and Ỹ ∼G, where F and G
are given by (52)
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Appendix A Proofs of Selected Propositions

Proof of Lemma 3. We first show that (i) implies (iii). Let u = F ◦G−1. Then F <
g

G if and only if u is geomet-

rically convex. G <
g

F if and only if u−1 is geometrically convex. By part (iii) of Lemma 1, geometric convexity

implies that the conjugate functions to u and u−1 are both convex. Thus û and û−1 are both convex. Because

û−1 = û−1, û and its inverse must both be increasing convex functions equal to 0 at y = 0. Thus, û must be a linear

function of the form û(y) = py, p > 0. Thus,

u(t) = exp(p log(t)) = t p, p > 0. (A-1)

Next, noting that the conjugate function to u(t) = t p is linear shows that (iii) implies (i). By Theorem 1, (i)

implies (ii). Thus, to complete the proof we need only show that (ii) implies (iii). To prove this note that, by

Theorem 1 selection dominance is equivalent to the supermultiplicativity on average condition given by expres-

sion (17) being satisfied. Because u is strictly increasing and continuous, u−1 satisfying this condition is equivalent

to Π[u−1](u(t))≥Π[u−1](1). Thus, both F and G will be selection dominant if and only if

Π[u−1](u(t))≥Π[u−1](1) =
∫ 1

0
u−1(s)ds, t ∈ [0,1], (A-2)

Π[u](t)≥Π[u](1) =
∫ 1

0
u(s)ds, t ∈ [0,1]. (A-3)

Expanding the definition of Π[u−1](u(t)), we see that

Π[u−1](u(t)) =
1

u(t) t

∫ t

0
u−1(s).ds. (A-4)

Young’s Theorem (see for example Theorem 156 in Hardy, Littlewood, and Polya (1952)) implies that

∫ t

0
u(s)ds+

∫ u(t)

0
u−1(s)ds = t u(t). (A-5)

Equations (A-5) and (A-4) and imply that

Π[u−1](u(t)) = 1−Π[u](t). (A-6)

Letting t = 1 in (A-5) shows that ∫ 1

0
u(s)ds+

∫ 1

0
u−1(s)ds = 1. (A-7)

Thus, if we let c equal the first integral in (A-7), we see that the supermultiplicativity on average condition being

satisfied for both u and u−1 implies that

Π[u](t)≥ c and 1−Π[u](t)≥ 1− c. (A-8)
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Thus, Π[u−1](u(t)) = c. This implies that for all t ∈ (0,1],

1
c

1
t

∫ t

0
u(s)ds = u(t). (A-9)

Because u is identically equal to the left-hand-side of equation (A-9), and because u is continuous and thus its

integral is differentiable, u must be differentiable. Differentiation of equation (A-9) shows that u must satisfy the

differential equation,

(1− c)u(t)− ct u′(t) = 0, u(1) = 1. (A-10)

This differential equation has a unique solution, u(t) = t(1−c)/c.

Proof of Theorem 2. First consider (i). F < G on some neighborhood of x, implies that u(t)< t on some neighbor-

hood of 0. The geometric convexity of u implies by Lemma 1 that conjugate function to u, û(y) = log◦u◦ exp(y),

is an increasing convex function defined over (−∞,0]. The conjugate function to the the identify function id(t) = t

is simply îd(y) = y, the identify function. Because conjugation preserves order relations, and because u(t)> id(t)

in a neighborhood of 0, condition (ii) implies that there exists y < 0, such that û(y)< îd(y) when y < y. Because

û(y) is convex and îd(y) is linear and because the functions meet at 0, they cannot meet at any other point. Thus,

û(y) < id(y) for all y < 0. The order-preserving nature of conjugation then ensures that u(t) < t, for t < 1. The

definition of u then implies that F(x)< G(x), x ∈ (x, x̄), Thus, F strictly stochastically dominates G.

Now consider (ii). F > G on an open neighborhood of x, implies that u(t)> t on some open neighborhood of

0. Thus, for the same reasons as advanced in the proof of part (i), there exists y > 0, such that û(y)> îd(y) when

y < y. Because û(y) is continous, either (case (a)) û(y) > îd(y), y < 0 or (case (b)) there exists yo < y such that

û(yo) = îd(yo). In case (a), û(y) > îd(y), y < 0 implies that u(t) > t, t ∈ (0,1). The definition of u then implies

that F(x)>G(x), x∈ (x, x̄). In case (b), because û(y) is convex, it must be the case that for all y> yo, û(y)≥ îd(y).

Let to = exp(yo), then reversing the transformation we have that u(to) = to, and for all t ∈ (to,1), u(t)< t. Letting

x = F−1(to) = G−1(to) establishes the result. If F strictly geometrically dominates G then û is strictly convex.

The fact that û and îd meet at 0, the strict convexity of û, and the fact that û(y) > îd(y) when y < y, then imply

that û and îd meet at, at most, one other point. Case (b) assumes that they meet and thus they must meet at exactly

one point; call this point yo. Convexity implies that for 0 > y > yo, û(y) < îd(y). Translating these results back

to the u function and then back to the underlying distributions, then yields the result. The assertion that F is is a

mean-preserving risk-increasing shift of G when the mean of F equals the mean of G then follows simply by from

the fact that a F crosses G once from above and their means are by assumption equal.

Proof of Theorem 3. For any real valued function of a single variable, f , let D+ f (x) represent the right derivative

derivative of f evaluated at x. Note that a convex function has a right derivative at all points on the interior of

its domain and that a necessary and sufficient condition for convexity of a function is that its right derivative is
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nondecreasing.

Proof of part (i): Let

v̂(y) = û(y)− y, y≤ 0. (A-11)

First note that, because u is strictly geometrically convex, û is convex and thus v̂ is convex. Also note that v̂(0) = 0.

As shown in Theorem 2, condition (i) implies that û(y)< y for all y < 0. Thus, v̂(y)< 0 for y < 0. Next, we show

that that v̂ is increasing over (−∞,0]. To see this, note that, because v is convex, and thus has a right derivative, if

it were not nondecreasing, there would be at least one point yo < 0, such that D+v̂(yo)< 0. Convexity implies that

the line through yo with slope D+v̂(yo) lies below v̂. Thus, were v̂ not nondecreasing, it would be the case that for

all y≤ 0,

v̂(y)≥ v̂(yo)+D+v̂(yo)(y− yo), D+v̂(yo)< 0, (A-12)

which implies, for y sufficiently small, v̂(y)> 0, a contradiction that establishes that v̂ is nondecreasing. Using the

definition of the conjugate function given in Lemma 1 we can see that

v̂◦ log(t) = û◦ log(t)− log(t). (A-13)

The definition of the conjugate function implies that u(t) = exp◦û◦ log(t). Thus,

u(t) = t exp[v̂(log(t)] (A-14)

Because û is convex, it has left and right derivatives. Thus, u has left and right derivatives. We differentiate

equation (A-14) and obtain

D+u(t) = exp[v̂(log(t))]+ t exp[v̂(log(t))]D+v̂(t)
1
t
=

exp[v̂(log(t))]+ exp[v̂(log(t))]D+v̂(t), t ∈ (0,1).
(A-15)

Because v̂ is nondecreasing and and convex, D+v̂ is positive and nondecreasing. Thus, equation (A-15) implies

that D+u is nondecreasing over (0, 1), which implies that u is convex. By replacing the assumption that u is

geometrically convex with the assumption that it is strictly geometrically convex, it is straightforward to modify

the proof to establish that u is strictly convex when F strictly dominates G.

Proof of part (ii): Again define v̂(t) = û(t)− t as in the proof of part (i). Note that, for the analogous reasons to

those given in the proof of part (i), Theorem 2 implies that

v̂(y)≥ 0, y≤ 0 and v̂(0) = 0. (A-16)

Because v̂ is convex, (A-16) implies that v̂ is nonincreasing. To see this, note that v̂(y) cannot be increasing for all

y < 0, otherwise v̂(0)> 0, contradicting (A-16). Because v̂ is convex, were it to be increasing anywhere it would

have to be on an interval of the form (y′,0]. Thus, because it would be nonincreasing on (−∞,y′], v̂ would have a
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global minimizing value, say y′′ in the interior of (−∞,0]. By (A-16), v̂(y′′)≥ 0. v̂ would be increasing on (y′,0],

v̂(0)> v̂(y′′)≥ 0, again contradicting (A-16). Thus, v̂ is nonincreasing. Using equation (A-14), we can write

u(t)
t

= exp[v̂(log(t)], t ∈ (0,1]. (A-17)

Because, exp and log are increasing functions and v̂ is non-increasing, thus t → u(t)/t is non-increasing. When

u is strictly geometrically convex, û is strictly convex and thus v̂ is strictly decreasing and strictly convex. Thus,

t → u(t)/t is decreasing. Because v̂ is strictly convex and decreasing it is bounded from below by support line

with a negative slope. Thus lim
y→−∞

v̂(y) = ∞. Hence, (A-17) implies that, lim
t→0

u(t)/t = ∞.

Proof of part (iii): The proof of part (iii) simply amounts to combining the arguments from the proofs of parts (ii)

and (i) and therefore will be omitted.

Proof of Lemma 5. From Chan, Proschan, and Sethuraman (1990) we see that

u(t) =
∫ t

0
φ ◦G−1(s)ds, (A-18)

where φ is the Radon-Nikodym derivative of G with respect to F . If G and F are a regular pair of distributions, φ

is absolutely continuous with repect to Lebesgue measure and is given by φ = f/g. Thus,

u′(t) = φ ◦G−1(t). (A-19)

First consider (i). Because G is continuous, G increasing and thus G−1 is increasing over [x, x̄]. Hence u is

nondecreasing if and only if φ is nondecreasing, i.e., f/g is nondecreasing. Now consider (ii), For regularly

related distributions, geometric convexity requires that R, defined in Lemma 4, be nondecreasing. Substituting the

definitions of u and u′ from equations (A-18) and u = F ◦G−1 into R shows that

R(t) =
φ ◦G−1(t) t
F ◦G−1(t)

. (A-20)

Now make the substitution s = G(t). This yields

R◦G(s) =
φ(s)G(s)

F(s)
. (A-21)

Because G is increasing, R◦G(s) is nondecreasing if and only if s→ φ(s)G(s)/F(s) is nondecreasing. A similar

argument establishes (iii).

Proof of Proposition 4. To prove Proposition 4 we require the following lemma:

Lemma A.1. (i) If u is (strictly) convex at over [0,ε), then whenever 0 < t ≤ ε

Π[u](t)(<)≤ 1
2
. (A-22)
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(ii) If u is (strictly) concave at over [0,ε), then whenever 0 < t ≤ ε

Π[u](t)≥ (>)
1
2
. (A-23)

Proof. We prove only (i) in the case, where convexity is not strict, because the proof for (ii) and the strictly convex

case of (i) are virtually identical. First note that u(0) = 0; this fact combined with the convexity of u over [0,ε)

implies that the function t→ u(t)/t is increasing. Hence,

0 < s < t ≤ ε ⇒ u(s)
s
≤ u(t)

t
. (A-24)

Therefore,
u(s) t
u(t)s

≤ 1, (A-25)

which implies that
u(s)
u(t) t

≤ s
t2 . (A-26)

If we integrate both sides of inequality (A-26) over (0, t], we obtain

Π[u](t) =
∫ t

0

u(s)
u(t) t

ds≤
∫ t

0

s
t2 ds =

1
2
. (A-27)

We need to show that for t ∈ (0,1), Π[u](t) > Π[u](1). First note that Lemma A.1 implies that that for

t ∈ (0, t∗], Π[u](t)> 1/2. By assumption (i), Π[u](1) = 1/2. Thus, by the continuity of Π[u] if for some t ∈ [t∗,1],

it is the case that, Π[u](t) ≤ Π[u](1), then there must be two points, t ′ and t ′′ in [t∗,1] such that, t ′′ > t ′ and

Π[u](t ′) = Π[u](t ′′) = 1/2. Expanding the definition of Π shows that this implies that

2
∫ t ′′

0
u(s)ds = u(t ′′)t ′′, (A-28)

2
∫ t ′

0
u(s)ds = u(t ′)t ′. (A-29)

Let to = inf{t : u′(t)≥ u(t)/t} if {t : u′(t)≥ u(t)/t} is non empty and define to = 1 otherwise. Concavity below t∗

implies that to > t∗. The continuity of u′ implies that when to < 1, u′(to) = u(to)/to. For a strictly convex function

such as u when restricted to [t∗,1], the function t→ t u′(t)−u(t) is strictly increasing. Thus,

∀ t > to, u′(t)>
u(t)

t
. (A-30)

Next, we claim that t ′ ≥ to. To see this note that, if t ′ < to, then for all s ∈ (0, t ′], u(s)> u′(s)s. Thus,

∫ t ′

0
u(s)ds >

∫ t ′

0
u′(s)sds = u(t ′) t ′−

∫ t ′

0
u(s).ds (A-31)
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Thus,

2
∫ t ′

0
u(s)ds > u(t ′) t ′, (A-32)

which contradicts (A-29). This implies that

∀s ∈ (t ′,1), u′(t)>
u(t)

t
. (A-33)

To complete the proof subtract (A-28) from (A-29). This yields

2
∫ t ′′

t ′
u(s)ds = u(t ′′)t ′′−u(t ′)t ′ =

∫ t ′′

t ′
d(u(s)s) =

∫ t ′′

t ′
u(s)ds+

∫ t ′′

t ′
su′(s).ds (A-34)

Thus, ∫ t ′′

t ′
(u(s)− su′(s))ds =

∫ t ′′

t ′
s
(

u(s)
s
−u′(s)

)
ds = 0. (A-35)

Expression (A-35) contradicts (A-30) and this contradiction establishes the result.

Appendix B Proof of selection robustness and selection reversal for the

Kumaraswamy Distribution

(log◦F(x))′

(log◦G(x))′
=

αF

αG

γ (xαG)

γ (xαF )
, γ(x) =

(
1
x
−1
)(

1
(1− x)b −1

)
, x ∈ [0,1]. (B-1)

Lemma 5 shows that the left-hand side being increasing is a necessary and sufficient condition for geometric

dominance. If αF < αG, then xαF > xαG . This observation combined with (B-1) shows that if the function,

x→ log◦γ(x) is decreasing, the right-hand side of equation (B-1) and thus the left as well is increasing and hence

F <
g

G. Similarly, if the function, x→ log◦γ(x) is increasing, then G <
g

F . It is clear from inspection that G <
sd

F

whenever αF < αG. Thus, if log◦γ is decreasing F <
g−

G and if log◦γ is increasing G <
g+

F . The derivative of

log◦γ is given by

(log◦γ(x))′ =
(

1
x (1− (1− x)b) (1− x)

) (
xb−

(
1− (1− x)b

))
. (B-2)

The denominator on the right-hand side of equation (B-2) is positive. Thus, the sign of the expression depends on

the numerator. Examining the numerator we see that

xb−
(

1− (1− x)b
)
=
∫ x

0

(
b−b(1− y)b−1

)
dy. (B-3)

Thus, b < 1, (log◦γ(x))′ < 0 and thus log◦γ is decreasing. If b > 1, (log◦γ(x))′ > 0 and thus log◦γ is increasing.

Thus, when αF < αG, if b < 1, F <
g−

G and, if b > 1, G <
g+

F . Of course, when b = 1, F and G are selection

equivalent.
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Appendix C Example of the intransitivity of selection dominance

Define the functions: u1 : [0,1]→ [0,1], u1 : [0,1]→ [0,1] as follows. Let

uo(t) =



1
2

t
ηo

if t ∈ [0,ηo)

1
2 if t ∈ [ηo,1−ηo)

1
2 +

1
2

t−(1−η0)
ηo

if t ∈ [ηo,1]

, (C-1)

where ηo = 3/50.

u1(t) =po t +(1− po)uo(t) (C-2)

u2(t) =
(t +1) log(t +1)− co t

2 log(2)− co
, (C-3)

where co = 9/10 and po = 1/10. It is easy to verify that u1 and u2 are an admissible functions. Thus, these

functions define an admissible collection of distributions distributions, F , G, and H over the unit interval:

H(x) = x, G(x) = u2 ◦H(x), F(x) = u1 ◦G(x). (C-4)

These distributions, as well as their associated selection-dominance functions, Π, defined in equation (14), are

graphed in Figure C. Panels B and C of Figure C verify that u1 and u2 satisfy the supermultiplicativity on average

condition given by by expression (15). Theorem 1 shows that supermultiplicativity on average of the u function is

is necessary and sufficient for selection dominance. Thus, F selection dominates G and G selection dominates H.

Because F(x) = u1 ◦u2 ◦H(x), for F to selection dominate H it is necessary for u1 ◦u2 to satisfy the supermulti-

plicativity on average condition given in expression (15). This condition requires that Π[u1 ◦u2] have a minimum

value at t = 1. As Panel D shows, this is not the case. Thus, F does not selection dominate H. Hence, the selection

dominance relation is not transitive.
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Figure 6: Counterexample to transitivity of selection dominance. Panel A plots the distribution functions, F G
and H. Panel B plots the function, Π(u1), (defined in expression (14)) used to test the selection dominance of F
over G, Panel C plots the function, Π(u2), used to test the selection dominance of G over H. Panel D plots the
function, Π(u1 ◦u2), used to test the selection dominance of F over H.
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