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We consider a model for a serial supply chain in which production, inventory, and transportation decisions
are integrated in the presence of production capacities and concave cost functions. The model we study

generalizes the uncapacitated serial single-item multilevel economic lot-sizing model by adding stationary pro-
duction capacities at the manufacturer level. We present algorithms with a running time that is polynomial in
the planning horizon when all cost functions are concave. In addition, we consider different transportation and
inventory holding cost structures that yield improved running times: inventory holding cost functions that are
linear and transportation cost functions that are either linear, or are concave with a fixed-charge structure. In
the latter case, we make the additional common and reasonable assumption that the variable transportation and
inventory costs are such that holding inventories at higher levels in the supply chain is more attractive from a
variable cost perspective. While the running times of the algorithms are exponential in the number of levels in
the supply chain in the general concave cost case, the running times are remarkably insensitive to the number
of levels for the other two cost structures.

Key words : lot sizing; integration of production planning and transportation; dynamic programming;
polynomial time algorithms

History : Accepted by Thomas M. Liebling, mathematical programming and networks; received June 17, 2002.
This paper was with the authors 11 months for 2 revisions.

1. Introduction
In this paper, we consider a problem in which pro-
duction, inventory, and transportation decisions in a
basic supply chain are integrated. Traditional models
usually consider only one or two of these aspects in
isolation from the other(s). Substantial evidence exists
(see, for instance, Arntzen et al. 1995, Chandra and
Fisher 1994, Geoffrion and Powers 1995, and Thomas
and Griffin 1996, as well as the references therein)
that shows that integrating these decisions can lead
to substantial increases in efficiency and effectiveness.
Integrating different decisions in the supply chain is
particularly important when resources are limited and
when costs are nonlinear, e.g., exhibit economies of
scale.
We will consider a serial supply chain for the pro-

duction and distribution of a product. Such a sup-
ply chain will occur, for instance, when value is

added to a product in a sequence of production facil-
ities, and intermediate goods need to be transported
between these facilities. Kaminsky and Simchi-Levi
(2003) describe an example of such a chain as it arises
in the pharmaceutical industry.
Another example is the third-party logistics indus-

try. In this case, a downstream distribution center
that satisfies demands in a certain geographical area
may employ the services of a third-party warehouse
before products are transported to the actual distri-
bution center for distribution to its retailers. A serial
supply chain model can then be used to represent
part of a supply chain that is relevant to the distri-
bution center (see Lee et al. 2003). A final example
is a situation in which production takes place at a
manufacturer. The items that are produced are then
stored at the manufacturer level or transported to the
first warehouse level. At each of the warehouse levels,
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products are again either stored or transported to the
warehouse at the next level. From the final ware-
house level, products are then (possibly after having
been stored for some periods) transported to a retailer
(possibly allowing for early deliveries, i.e., invento-
ries at the retailer level). Such a structure may arise
if a retailer actually represents an entire market, and
the supply chain from manufacturer to this market
is very long. This could make it advantageous to, in
several stages, employ economies of scale by trans-
porting larger quantities over long distances to inter-
mediate storage facilities before being distributed in
the actual market.
All of the situations described above can be repre-

sented by a generic model consisting of a manufac-
turer, several intermediate production or distribution
levels, and a level where demand for the end product
takes place, which we will refer to in this paper as the
retailer level (although this does not necessarily rep-
resent the level at which actual demand consumption
takes place). In fact, in such a model the intermedi-
ate production and transportation stages are indistin-
guishable from one another, so that in the remainder
of this paper we will simply refer to all intermediate
stages as transportation stages between warehouses.
The serial supply chain model sketched above can

be viewed as a generalization of a fundamental prob-
lem, which in fact is one of the most widely studied
problems in production and inventory planning, the
economic lot-sizing problem (ELSP). The basic variant of
this problem considers a production facility that pro-
duces and stores a single product to satisfy known
demands over a finite planning horizon. The problem
is then to determine production quantities for each
period such that all demands are satisfied on time at
minimal total production and inventory holding costs.
The cost functions are nondecreasing in the amount
produced or stored, and are usually assumed to be
linear, fixed-charge, or general concave functions. The
production facility may or may not face a capacity
constraint on the amount produced in each period.
To model the serial supply chain, the classical ELSP

can be extended to include transportation decisions,
as well as the possibility of holding inventory at dif-
ferent levels in the chain. In addition to production
and inventory holding costs, we then clearly also need
to incorporate transportation costs, which adds the
problem of the timing of transportation to the prob-
lem of timing of production. The objective will be
to minimize the systemwide cost while satisfying all
demand. Even if the manufacturer and retailer are
in fact distinct participants in the supply chain, each
of which faces a part of the supply chain costs, this
problem will be relevant. In this case, the participants
clearly still need to decide how to distribute the min-
imal total costs, which is a coordination problem that

is outside the scope of this paper. Alternatively, how-
ever, we may interpret the holding costs at the retailer
level as a penalty or a discount on the purchasing
price of an item, which is given by the manufacturer
to the retailer if items are delivered early. In this case,
the costs minimized by our optimization model are
all incurred by the manufacturer. As in standard lot-
sizing problems, all cost functions are assumed to
be nondecreasing in the amount produced, stored, or
shipped. In addition, we will assume that all cost
functions are concave.
In general, all levels in a serial supply chain, regard-

less of whether they correspond to production or
transportation decisions, may face capacities. In this
paper, we will concentrate on serial supply chains
with capacities at the production (i.e., first) level only,
as a first step towards the study of more general
capacitated supply chains. Adding capacities at other
(i.e., transportation) levels appears to significantly
change the structure of the problem, and thereby the
problem analysis. Therefore, such problems are out-
side the scope of this paper, but remain a topic of
ongoing research. Note that under certain cost struc-
tures it may be possible to eliminate capacitated levels
from the supply chain. One such example is provided
by Kaminsky and Simchi-Levi (2003), who transform
a three-level serial supply chain model in which the
first and third levels are capacitated to a two-level
serial supply chain model with capacities at the first
level only.
We will call the problem of determining optimal

production, transportation, and inventory lot sizes in
a serial supply chain as described above and under
production capacities at the production level the
multilevel lot-sizing problem with production capacities
(MLSP-PC). In general, this problem is NP-hard, as it
is a direct generalization of the NP-hard ELSP with
general production capacities (see Florian et al. 1980).
The ELSP with stationary production capacities, how-
ever, is solvable in polynomial time (see Florian and
Klein 1971). Because our goal is to identify polynomi-
ally solvable cases of the MLSP-PC, we will assume
in most of this paper that the production capacities
are stationary.
We study problems with general concave pro-

duction, inventory holding, and transportation costs,
as well as problems with linear inventory holding
costs and two different transportation cost structures:
(i) linear transportation costs; and (ii) fixed-charge
transportation costs without speculative motives,
which means that with respect to variable costs, hold-
ing inventory is less costly at higher levels than at
lower levels in the supply chain. Our solution meth-
ods are based on a dynamic programming framework
that uses a decomposition principle that generalizes
the classical zero-inventory ordering (ZIO) property
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of solutions to uncapacitated lot-sizing problems as
described in Zangwill (1969) for the multilevel case,
and, for instance, in Wagner and Whitin (1958) for
the single-level case. In particular, in our two-level
model we work with the new concept of a subplan,
and show that extreme solutions decompose into a
number of consecutive subplans. Our algorithms for
this model all run in polynomial time in the planning
horizon of the problem. The direct generalization of
this approach to the multilevel case leads to a very
large running time. We achieve substantial savings
by introducing the concept of a relaxed subplan. In
contrast to existing approaches in the literature, our
dynamic program does not necessarily represent all
(or even only) extreme point solutions to the MLSP-
PC. In addition, while the paths in the dynamic pro-
gram do all correspond to feasible solutions of the
problem, the costs of a path may overestimate the
costs of the corresponding solution to the problem.
We are nevertheless able to prove (based on the con-
cavity of the cost functions) that our dynamic pro-
gram solves the MLSP-PC to optimality. The resulting
algorithm for the case of general concave cost func-
tions is exponential in the number of levels in the sup-
ply chain. However, it is remarkably insensitive to the
number of levels for the two specific cost structures
mentioned above.
This paper is organized as follows. In §2, we

introduce the MLSP with production costs and gen-
eral nondecreasing concave production, transporta-
tion, and inventory holding cost functions. We char-
acterize the extreme points of the feasible region
of the problem, and prove a decomposition result
that will form the basis of our algorithms. In §3,
we study the two-level problem and provide a gen-
eral dynamic programming framework based on the
decomposition result derived earlier, which yields a
polynomial time algorithm in the planning horizon
for general concave costs. In §4, this algorithm is
then generalized to the multilevel lot-sizing prob-
lem and is shown to still be polynomial in the plan-
ning horizon, and better running times are given for
two variants of the model. The paper ends in §5
with some concluding remarks and issues for further
research.

2. Model Formulation and Analysis
2.1. The Model
As described in the introduction, we will study a
multilevel lot-sizing problem with a serial structure. In
each period, production may take place at the manu-
facturer. The items that are produced may be stored at
the manufacturer level or transported to the first ware-
house level. At each of the warehouse levels, products
are again either stored or transported to the warehouse

at the next level. From the final warehouse level prod-
ucts are then (possibly after having been stored for
some period) transported to the retailer.
We consider a planning horizon of T periods. In

each period t, the retailer faces a nonnegative demand
given by dt , while the production capacity of the man-
ufacturer in period t is equal to bt . We will consider
a total of L levels, which includes the manufacturer,
the retailer, and L − 2 intermediate warehouses. We
say that the manufacturer is at the first level of the
chain, and the retailer is at the Lth level. Each of
the intermediate levels corresponds to a warehouse.
Let �+ denote the set of nonnegative real numbers.
For each period t = 1� � � � � T , the production costs are
given by the function pt	 �+ → �+, the transporta-
tion costs from level 
 to level 
+ 1 are given by the
function c
t 	 �

+ →�+ (
= 1� � � � �L−1), and the inven-
tory holding costs at level 
 are given by the function
h

t 	 �

+ →�+ (
= 1� � � � �L). Throughout the paper, we
will assume that all cost functions are concave, non-
decreasing, and equal to zero when their argument is
zero.
The MLSP-PC can be formulated as follows:

minimize
T∑

t=1

(
ptyt�+

L−1∑

=1

c
t x


t �+

L∑

=1

h

t I



t �

)
P�

subject to

x1t +I 1t =yt+I 1t−1� t=1�����T � (1)

x

t +I 
t =x
−1

t +I 
t−1� t=1�����T �
=2�����L−1� (2)

dt+ILt =xL−1
t +ILt−1� t=1�����T � (3)

yt≤bt� t=1�����T � (4)

I 
0 =0� 
=1�����L� (5)

yt≥0� t=1�����T �

x

t ≥0� t=1�����T � 
=1�����L−1�

I
t ≥0� t=1�����T � 
=1�����L�
where yt denotes the quantity produced in period t,
x

t is the quantity shipped from level 
 to level 
+1 in
period t, and I 
t denotes the inventory quantity at level

 at the end of period t. Constraints (1)–(3) model the
balance between inflow, storage, and outflow at the
manufacturer, warehouse, and retailer levels, respec-
tively, in each period. The production quantity in each
period is restricted by constraints (4). Finally, con-
straints (5) state that all initial inventory levels are
equal to zero. Unlike in the traditional single-level
lot-sizing model, this is not an assumption that we
can make without loss of generality, due to the non-
linearity of the transportation and inventory holding
cost functions. Therefore, we will later discuss how
to deal with problem instances where this constraint
is absent, and instead (nonnegative) initial inventory
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quantities at all levels are considered as part of the
problem data. Then, the developed algorithms can be
applied in a rolling horizon scheme, in which new lot-
sizing instances are solved—and their optimal solu-
tions partially implemented—as time proceeds and
new demand forecasts become available.
For convenience, we will define dts to be the cumu-

lative demand in periods t�����s, i.e.,

dts≡




s∑
�=t

d� for t=1�����s� s=1�����T �

0 otherwise�

(6)

To ensure feasibility of (P), we will assume that
the cumulative demand in the first t periods cannot
exceed the total production capacity in these periods,
i.e.,

d1t≤
t∑

�=1
b� for each t=1�����T � (7)

It is easy to see that this condition is both necessary
and sufficient for (P) to have a nonempty feasible
region.
We can also model the MLSP-PC as a capacitated

minimum-cost network flow problem in a network
with one source (see also Zangwill 1969 for a gen-
eral discussion on such minimum-cost network flow
problems, as well as a discussion of uncapacitated
multilevel ELSPs). To this end, we define a network
with a single source 0, T transshipment nodes 1�t�
at the production level (level 1, t=1�����T ), T trans-
shipment nodes 
�t� at each of the warehouse lev-
els (t=1�����T � 
=2�����L−1), and T demand nodes
L�t� with demand dt at the retailer level (level L,
t=1�����T ). Finally, feasibility dictates that the source
node 0 has a supply of d1T units. Figure 1 illustrates
the network representation of the MLSP-PC for L=3

Figure 1 Network Representation of the MLSP-PC for L=3 and T =4
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and T =4. This representation will facilitate the anal-
ysis of the structure of extreme points of the feasi-
ble region of (P) in §2.4. Before proceeding with this
analysis, in §2.2 we will discuss related models and
algorithms from the literature, as well as some special
cases that reduce to single-level models in §2.3.

2.2. Literature Review
The single-level variant of the MLSP-PC has received
a lot of attention in the literature. The uncapacitated
problem, the ELSP, is solvable in polynomial time in
the length of the time horizon; see Wagner (1960) for
this basic result. More efficient algorithms for special
cases have been developed by Aggarwal and Park
(1993), Federgruen and Tzur (1991), and Wagelmans
et al. (1992). When production capacities are present,
we obtain the so-called capacitated lot-sizing problem
(CLSP). In contrast to the uncapacitated ELSP, this
problem is known to be NP-hard, even in many spe-
cial cases; see Florian et al. (1980) and Bitran and
Yanasse (1982). An interesting and important special
case that does allow for a polynomial time algorithm
arises when the production capacities are stationary;
see, e.g., Florian and Klein (1971), Florian et al. (1980),
and van Hoesel and Wagelmans (1996). See also refer-
ences in Baker et al. (1978) for other work on the CLSP
with stationary production capacities, and Chung and
Lin (1988) and van den Heuvel and Wagelmans (2003)
for another special case of the CLSP that is solvable
in polynomial time.
Zangwill (1969) studied the uncapacitated version

of the MLSP-PC, and developed a dynamic program-
ming algorithm that is polynomial in both the plan-
ning horizon and the number of levels L. We analyze
this algorithm in the online appendix (available
at http://mansci.pubs.informs.org/ecompanion.html)
and conclude that it runs in OLT 4� time, where L is
the number of levels, or even in OT 3� for the spe-
cial case of L=2. Lee et al. (2003) consider a two-level
model where the transportation costs are nonconcave
functions.
A study that is related to ours in the sense that it

also considers capacities in a multilevel setting is the
one by Kaminsky and Simchi-Levi (2003). They pro-
pose a three-level model in which the first and third
levels are production stages, and the second level
is a transportation stage. Both production stages are
capacitated, while the transportation stage is uncapac-
itated. They consider linear inventory holding costs
that increase with the level of the supply chain, and
linear production costs at both levels 1 and 3 that
satisfy a traditional nonspeculative motives condition
(see also §2.3). The transportation costs at the second
level are of the fixed-charge or general concave form
and are assumed to satisfy a restrictive and nontradi-
tional nonspeculative motives condition. By eliminat-
ing the third-level production decisions, they reduce
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the problem to a two-level model that inherits its
cost function structures from the three-level model.
For their class of fixed-charge transportation costs,
they provide an OT 4� algorithm to solve the model,
even in the case of nonstationary production capac-
ities. For their class of concave transportation costs
they provide an OT 8� algorithm to solve the model in
the presence of stationary production capacities. They
pose the complexity of their model for more general
cost structures as an open question. In this paper, we
address this question by deriving an OT 7� algorithm
for solving the two-level problem in the presence of
stationary capacities.

2.3. Special Cases
It is common in lot-sizing problems to model the
inventory holding costs as linear functions, i.e.,
h

t I



t �=h


t I


t for t=1�����T ; 
=1�����L, with h


t ≥0 for
all t and 
. We will therefore consider this class of
problems in §§4.3 and 4.4. In §4.3, we will in addi-
tion assume that the transportation costs have a fixed-
charge structure without speculative motives. More
formally, c
t x�=f 


t 1�x>0�+g

t x, where 1�x>0� is an indi-

cator function taking the value 1 if x>0, and 0 oth-
erwise. The assumption that there are no speculative
motives, which is commonly assumed for the produc-
tion and inventory holding costs in traditional eco-
nomic lot-sizing models, means in this context that,
with respect to variable inventory and transportation
costs only, it is attractive to transport as late as possi-
ble. More formally, g


t +h
+1
t ≥h


t +g

t+1 for t=1�����T −

1; 
=1�����L−1.
Note that if the transportation cost functions are

both linear and exhibit no speculative motives, it is
always optimal to store production at the manufac-
turer and transport only when demand needs to be
satisfied. Hence, without loss of optimality, we can
assume that I 
t =0 for all t=1�����T and 
=2�����L.
Similarly, if the transportation costs are linear and
g

t +h
+1

t ≤h

t +g


t+1 for t=1�����T −1; 
=1�����L−1, it
is cheaper to transport as soon as we produce and
store the production at the retailer level. Then, with-
out loss of optimality, we can assume that I 
t =0
for all t=1�����T and 
=1�����L−1. These two spe-
cial cases of the MLSP-PC therefore yield a standard
CLSP.
Finally, a variant of the uncapacitated two-level

MLSP-PC can easily be reduced to an uncapacitated
ELSP. When production costs as well as the inven-
tory holding costs at both levels are linear, given that
we decide to transport in a certain period, we can
easily determine the best production period, i.e., the
period that yields the minimum total unit production
and manufacturer-level inventory costs for transport
in period t. Redefining the transportation cost func-
tion accordingly, which can be done in OLT � time,

allows us to eliminate the production variables as
well as the inventory variables at the manufacturer,
yielding a standard uncapacitated ELSP. The resulting
problem can be solved in OT 2� time for general con-
cave transportation costs (see Wagner 1960), and in
OT logT � time for fixed-charge transportation costs
(see Aggarwal and Park 1993, Federgruen and Tzur
1991, and Wagelmans et al. 1992).

2.4. Characterization of Extreme Points
Problem (P) has a concave objective function, and its
feasible region is defined by linear constraints. This
implies that there exists an extreme point optimal
solution to (P). Consider the flow in the network cor-
responding to any extreme point feasible solution. As
is common in network flow problems, we will call the
arcs that carry an amount of flow that is both strictly
positive and strictly less than its capacity free arcs. It
is well known (see, e.g., Ahuja et al. 1993) that the
subnetwork containing only the free arcs contains no
cycle.

2.4.1. Subplans. Note that only arcs that have a
finite upper bound (which in our case are only the
production arcs) may carry flow while they are not
free. Removing all production arcs, the network con-
taining all remaining free arcs decomposes into a
number of connected components. Limiting ourselves
for now to connected components that do indeed
carry flow, we identify the first and last nodes in
the component at each level. For a given component,
these nodes can be denoted by 
��
1+1� and 
��
2�
for 
=1�����L, where

�
1≤�
+1�1<�
2≤�
+1�2 for 
=1�����L−1� (8)

(Note that the strict inequality holds due to the defini-
tion of the subplan: The first period included at level 

is �
1+1.) With this approach, some nodes may be
isolated and not included in any component carrying
flow. We assign each of those to the component that
is adjacent to the left of them. The assignment of the
isolated nodes is illustrated in Figure 2. After elim-
inating the production arcs, we obtain two compo-
nents. The first one is defined by the nodes 1�1� and
1�4� in Level 1, 2�1� and 2�4� in Level 2, and 3�1�
and 3�6� in Level 3, and the second one by nodes
1�5� and 1�8� in Level 1, 2�6� and 2�8� in Level 2,
and 3�7� and 3�8� in Level 3. We may observe that
node 2�3� is part of the first component, even though
no flow passes through this node. As mentioned
above, the isolated node 2�5� is assigned to the left
component.
Summarizing, we can decompose an extreme point

solution to (P) into components, each of which con-
tains a set of nodes �
��
1+1������
��
2�� 
=1�����L)
satisfying (8). We will call the components thus



Hoesel et al.: Integrated Lot Sizing in Serial Supply Chains with Production Capacities
Management Science 51(11), pp. 1706–1719, © 2005 INFORMS 1711

Figure 2 The Structure of an Extreme Point Solution to the MLSP-PC,
L=3 and T =8
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obtained subplans. We will represent a subplan by the
2L periods that identify it: �
1��
2�L
=1�. It will often
be convenient to refer to the production and demand
periods in a subplan separately, and we will then
often use the notation t1�t2��1��2�≡ �11��12��L1��L2�.
By construction, no inventory is carried between sub-
plans, so the only flow entering a subplan comes from
production arcs associated with the manufacturer
nodes in the subplan. The total quantity produced in
all production periods in the subplan, i.e., the total
production in periods t1+1�����t2, is used to supply
the demand of all retailer nodes in the subplan, i.e.,
the total demand in periods �1+1������2. We will call
two subplans �
1��
2�

L

=1� and �′
1��

′

2�

L

=1� consecu-

tive if �′
1=�
2 for 
=1�����L. We can summarize the
structure of extreme point solutions as follows.

Proposition 2.1. Any extreme point feasible solution
can be decomposed into a sequence of consecutive subplans.

The extreme solution given in Figure 2 decomposes
into two subplans, namely, 0�4��0�5��0�6�� and
4�8��5�8��6�8��.
Note that the first subplan obtained by decompos-

ing an extreme point solution as described above has
�
1=0 for 
=1�����L. However, in the remainder of
this paper it will be convenient to also include sub-
plans �
1��
2�

L

=1� satisfying (8), for which some but

not all values of �
1 are zero.

2.4.2. Production Quantities in a Subplan. The
fact that the extreme flows are acyclic implies that,
although there may be multiple production arcs asso-
ciated with a subplan that carry flow, there is at most
one such arc with production below capacity. In other
words, there is at most one free production arc enter-
ing the subplan. This yields the following general-
ization of the characterization of extreme points of
single-level CLSPs by Florian and Klein (1971).

Proposition 2.2. A subplan can contain at most one
free production arc.

If the problem is uncapacitated, this proposition
implies that only one production arc carrying flow
enters each of the subplans, which in turn means that
the extreme flows are arborescent. The dynamic pro-
gramming algorithm proposed for this problem by
Zangwill (1969) is based on this property; see the
online appendix.
As an example, in Figure 2 we know that in the sub-

plan 0�4��0�5��0�6�� the production arcs y1 and y2
cannot both be free; the same holds for production
arcs y5 and y6 in subplan 4�8��5�8��6�8��.

2.4.3. Transportation Quantities in a Subplan.
The absence of cycles consisting of free arcs only in
an extreme point solution can also be used to iden-
tify structural properties of the transportation quanti-
ties. Consider a period, say t, in which transportation
takes place between levels 
 and 
+1, i.e., the flow
on the arc between nodes 
�t� and 
+1�t� is x


t >0.
Two situations can then occur with respect to the total
flow into nodes 
+1��
+1�1+1������
+1�t�, i.e., the
cumulative shipments between levels 
 and 
+1 up to
and including period t within the subplan:
• It is equal to the cumulative production in peri-

ods t1+1�����s for some s∈�t1+1�����t�;
• It satisfies the demand of periods �1+1�����s for

some s∈��1+1������2�.
If not, consider the last production period in which

some of the transported quantity x

t was produced,

say s′. There will then be a period whose demand is
satisfied partially from the quantity x


t and partially
from production in period s′ that remains in inventory
at level 
 at the end of period t, creating a cycle con-
taining only free arcs. This result can be summarized
as follows.

Proposition 2.3. In a subplan, the transported quan-
tity between levels 
 and 
+1 in some period either makes
the cumulative transported quantities thus far in the sub-
plan equal to the cumulative production quantities of an
initial sequence of consecutive production periods in the
subplan, or to the cumulative demand of an initial sequence
of demand periods in the subplan.

The two possibilities for cumulative transport
can be illustrated using Figure 2. In subplan
0�4��0�5��0�6��,
• x11 is equal to the (cumulative) production in

Period 1, while x11+x12+x13+x14 is both equal to the
cumulative production in Periods 1�����4 and satisfies
the demand of Periods 1�����6;
• x21 satisfies the demand of Period 1; x21+x22 is

equal to the (cumulative) production in Period 1; and
x21+x22+x23+x24 is both equal to the cumulative pro-
duction in Periods 1�����4 and satisfies the demand of
Periods 1�����6.
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3. The Two-Level Capacitated
Lot-Sizing Problem with
Concave Costs

For clarity of exposition, we will first consider the
two-level version of the MLSP-PC, which we will call
the 2LSP-PC. In the next section, we will show how
the methodology can be extended to chains with more
than two levels.

3.1. A Dynamic Programming Approach
In this section, we will outline a general dynamic pro-
gramming approach to the 2LSP-PC. This approach
is based on the decomposition of extreme point solu-
tions to (P) into consecutive subplans (see Propo-
sition 2.1). In particular, define F t��� to be the
minimum cost associated with satisfying the retailer
demands in periods �+1�����T using production in
periods t+1�����T . We are then clearly interested in
computing F 0�0�. This can be achieved using a two-
phase approach:

Phase 1. For each subplan t1�t2��1��2�, compute
the minimum costs that are incurred for satisfying
the demand of that subplan under the condition that
at most one free production arc enters the subplan.
Denote these costs by �t1�t2��1��2�.

Phase 2. Compute the values F t1��1� for all 0≤ t1≤
�1≤T by realizing that an extreme point solution to
the corresponding subproblem is given by a subplan
t1�t2��1��2� and the remaining subproblem F t2��2�
for some t2 and �2. This gives rise to the following
backward recursion:

F t1��1� = min
t2��2�	�2≥t2>�1

��t1�t2��1��2�+F t2��2��

for 0≤ t1≤�1<T �

F t1�T � = 0 for 0≤ t1≤T �

Note that in Phase 1 we need to compute OT 4�
values. Phase 2 is, in fact, a shortest path problem
in a network with nodes representing all period-pairs
t��� such that 0≤ t≤�≤T , and arcs representing the
subplans with corresponding costs. The minimum-
cost path from node 0�0� to any of the nodes t1�T �
in this acyclic network can be found in linear time
in the number of arcs, i.e., in OT 4� time (see Ahuja
et al. 1993). Florian and Klein (1971) used this gen-
eral dynamic programming framework to develop an
OT 4� dynamic programming algorithm to solve the
CLSP with stationary capacities and general concave
production and inventory holding cost functions.
When the value of �·� is given for each subplan,

the 2LSP-PC is polynomially solvable. To achieve
a polynomial time algorithm for the 2LSP-PC, the
challenge is therefore to provide a polynomial time
algorithm for computing the costs corresponding to
all subplans. Because we know that the 2LSP-PC is

NP-hard for general production capacities, we will
restrict our attention to the case of stationary pro-
duction capacities, i.e., bt=b for t=1�����T . In the
remainder of this section, we will derive a polyno-
mial time algorithm for computing the optimal costs
of all subplans, and thereby for the 2LSP-PC. Before
studying the subproblems of computing the optimal
subplan costs, we will first study the implications of
the assumption that the production capacities are sta-
tionary in the next section.

3.2. Implications of Stationary Production
Capacities

In Phase 1 of the dynamic programming approach,
we need to compute the optimal costs of all sub-
plans, under the additional constraint that all but
one of the production arcs entering the subplan carry
a flow equal to 0 or b. Consider a particular sub-
plan, say t1�t2��1��2�, in which the total demand of
periods �1+1������2 needs to be satisfied using pro-
duction in periods t1+1�����t2. Following Florian and
Klein (1971), note that the constraint on the values
of the production arcs entering the subplan implies
that the number of production arcs that carry flow
equal to the production capacity is exactly equal to
K=�d�1+1��2/b, and the remaining production quan-
tity is equal to !=d�1+1��2−Kb. Clearly, we have that
0≤!<b. If !>0, there will be exactly one production
arc entering the subplan carrying this flow.

3.3. The Subplan Costs
We will formulate the problem of determining the
optimal costs of a subplan as a dynamic program-
ming problem. Put differently, for each subplan
t1�t2��1��2�, we will define a network with the prop-
erty that �t1�t2��1��2� is equal to the length of the
shortest path between a pair of source and sink nodes
in this network.
We choose the nodes in this network to be of the

form t�Y �X�, where t indicates a period, Y is equal
to the cumulative production quantity up to and
including period t, and X is equal to the cumulative
transportation quantity up to and including period t.
Node t1�0�0� is the source, while node t2�Kb+!�
Kb+!�≡ t2�d�1+1��2�d�1+1��2� is the sink. By Proposi-
tion 2.2 and the discussion in §3.2, we know that the
production quantity in any period can only assume
one of the values �0�!�b�, with the value ! only in
one period. This immediately implies that Y can only
assume the values

Y ∈
K⋃

k=0
�kb�kb+!��

where, in addition, Y =0 if t= t1, d�1+1�t≤Y ≤ t−t1�K
for t= t1+1�����t2−1, and Y =Kb+! if t≥ t2 to ensure
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that all demand is produced within the set of produc-
tion periods allowed in the subplan. Because clearly
K≤T , the number of allowable values for Y is OT �.
Furthermore, by Proposition 2.3 we know that the
cumulative transported quantity up to and including
some period is either equal to the total production
quantity of an initial sequence of production peri-
ods or satisfies the demand of an initial sequence of
demand periods in the subplan. More formally, this
means that

X∈
( K⋃

k=0
�kb�kb+!�

)
∪
( �2⋃

s=�1+1
�d�1+1�s�

)
�

where, in addition, d�1+1�t≤X≤Y to ensure that
demands are satisfied on time and products are not
transported before they are produced, and X=0 if t≤
�1 and X=Kb+! if t≥ t2 to ensure that transportation
takes place within the subplan. The number of allow-
able values for X is thus OT � as well, so that the total
number of nodes in the network is OT 3�.
Arcs in the network represent production, trans-

portation, and inventory decisions. Arcs are present
between pairs of nodes in the network of the
form t�Y �X� and t+1��Y ��X�, with �Y −Y ∈�0�!�b�
(where the value ! is only allowed if Y =kb for
some k=0�1�����K), and �X≥X (where �X∈�X��Y �∪

⋃�2

s=�1+1�d�1+1�s��). It is easy to see that there are OT �
arcs emanating from each node in the network, so that
the entire network has OT 4� arcs.
From the information contained in the nodes defin-

ing an arc, we can easily compute the production
quantity in period t+1 (�Y −Y ), the transportation
quantity in period t+1 (�X−X), the inventory held
at the manufacturer level at the end of period t+1
(�Y −�X), and the inventory held at the retailer level at
the end of period t+1 (�X−d�1+1�t+1). The costs of an
arc are thus given by

pt+1�Y −Y �+c1t+1�X−X�

+h1t+1�Y −�X�+h2t+1�X−d�1+1�t+1��

If all cost functions can be evaluated in constant time,
the costs of a given arc can be computed in con-
stant time provided that we determine all cumulative
demands dtt′ (in OT 2� time) in a preprocessing step.
Any path in the network from the source t1�0�0� to

the sink t2�d�1+1��2�d�1+1��2� represents a feasible flow
in the subplan t1�t2��1��2� with just one free produc-
tion arc. Moreover, it is easy to see that the reverse
is also true. Therefore, the subplan costs are given by
the minimal cost path in this network from the source
node to the sink node. The time required for finding
this minimal cost path is proportional to the number
of arcs in the network, so that the cost of a single
subplan can be determined in OT 4� time.
Because there are OT 4� subplans, a straightforward

application of the dynamic programming algorithm

defined above to each individual subplan would yield
an algorithm with running time OT 8� for comput-
ing the costs of all subplans. However, the running
time can be reduced by observing that the costs of
many subplans are related. In particular, observe that
the dynamic programming network corresponding to
any subplan of the form t1�t2��1��2� is actually a
subnetwork of the dynamic programming network
for the subplan 0�t2��1��2�. Therefore, using back-
ward recursion to solve for the shortest path between
nodes 0�0�0� and t2�d�1+1��2�d�1+1��2� in the latter
network yields, as a byproduct, the shortest paths
between nodes t�0�0� and t2�d�1+1�t2�d�1+1�t2� for each
t=1������1. It thus follows that we only need to con-
sider the OT 3� subplans of the form 0�t2��1��2�, the
costs of which can be determined in OT 7� time.

3.4. Dealing with Initial Inventories
If the initial inventories at the manufacturer and/or
retailer levels, I 10 and I 20 , are strictly positive, there
is a slight change in the construction of subplans.
Recall that we construct subplans corresponding to a
given extreme point solution by considering all arcs
(except production arcs) that carry positive flow. The
subplans are then formed by the resulting connected
components together with some isolated nodes. When
there are initial inventories, however, there may be
one or more components that carry flow but do
not contain a production period. In these compo-
nents, demand is satisfied using initial inventories
at warehouse and retailer levels only, and they can
be assigned to the component containing produc-
tion Period 1 (i.e., the component containing node
1�1�). The results in §§2.4.2 and 2.4.3 are clearly still
valid for subplans in which t1>0. However, for sub-
plans with t1=�1=0, the results continue to hold pro-
vided we view the total initial inventories I 10+I 20 as a
cumulative production quantity up to and including
Period 0, and the initial inventory I 20 at Level 2 as the
cumulative transportation quantity up to and includ-
ing Period 0. Unless �2=T , these subplans can only
have a feasible solution if the total initial inventories
do not exceed the total demand that needs to be satis-
fied in the subplan. For subplans with d1�2 ≥ I 10+I 20 , we
obtain K=�d1�2−I 10−I 20 �/b and !=d1�2−I 10−I 20−Kb.
As already mentioned, d1�2 <I 10+I 20 can only occur if
�2=T . If indeed d1T <I 10+I 20 , an extreme point solu-
tion will contain only a single subplan: 0�T �0�T �,
and no production will take place in any period in
that subplan, i.e., K=!=0. The only remaining diffi-
culty in this case is that we do not want to specify in
advance in which level the excess inventory will end
up as ending inventory. This can easily be dealt with
by extending the planning horizon by one period,
say T +1. Then, define the production cost function
for that period as pT+10�=0 and pT+1yT+1�=� for
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all 0<yT+1≤b and the transportation cost function as
c1T+1xT+1�=0 for all xT+1≥0. Finally, set dT+1= I 10+I 20−
d1T . The costs of the single subplan 0�T �0�T � in the
original problem can then be found by finding the
costs of the subplan 0�T +1�0�T +1� in the modified
problem.
Now consider the dynamic programming network

used to compute the costs of a subplan. For subplans
that contain initial inventories, we let the source node
be 0�I 10+I 20 �I

2
0 � and the sink node be t2�I

1
0+I 20+Kb+

!�I 10+I 20+Kb+!�. For a state t�Y �X�, this also means
that

Y ∈
K⋃

k=0

{
I 10+I 20+kb�I 10+I 20+kb+!

}
and

X∈
( K⋃

k=0
�I 10+I 20+kb�I 10+I 20+kb+!�

)
∪
( �2⋃

s=�1+1
�d1s�

)
�

Finally, note that for subplans with t1>0, we should
have no positive inventory inflow. Therefore, in case
there are nonzero initial inventory levels, we actually
need to compute the costs of all subplans 0�t2�0��2�
while taking into account the initial inventory levels,
as well as the costs of all subplans 0�t2��1��2� for �1>0
without taking into account the initial inventory level
at the manufacturer. This clearly does not influence the
overall running time of the algorithm.

4. The Multilevel Case
4.1. Introduction
We may extend the dynamic programming approach
developed in §3.1 for the two-level case to the multi-
level case, where again a Phase 2 dynamic program-
ming network represents all extreme point solutions
to the MLSP-PC. To this end, we should define
�F �
1�L
=1� to be the minimum cost associated with sat-
isfying the retailer demands in periods ��L1+1�����T �
using production in periods ��11+1�����T �, and ware-
house 
 in periods ��
+1�1+1�����T � for each 
=
1�����L−2. We would then be interested in computing
�F 0�L
=1�. It is easy to see that the running time of the
corresponding generalization of the Phase 2 dynamic
program would be OT 2L�. In this section, we will
derive a modification of the Phase 2 dynamic program
that runs in OT 4� time. This modification does not
make Phase 1 computationally more expensive, and
may even make it less expensive.
In particular, we will develop a more efficient

approach in which the Phase 2 dynamic program does
not necessarily represent all (or even only) extreme
point solutions to the MLSP-PC, and in addition over-
estimates the costs of many of the nonextreme point
solutions that it represents. However, as we will show,
it does contain an optimal extreme point solution and
is guaranteed to find this solution. This approach is

based on the idea that the most important informa-
tion present in the definition of a subplan is the set of
production periods t1+1�����t2 and the set of demand
periods �1+1������2. The basis of our improved algo-
rithm is then to allow transportation in the periods
t1+1������2 (while of course retaining the given pro-
duction and demand periods). We can then use the
same dynamic programming approach as in the two-
level case, where we replace the two-level subplan
costs �t1�t2��1��2� by the minimum costs of satisfy-
ing demand in periods �1+1������2 using production
in periods t1+1�����t2, where at most one of the pro-
duction quantities may be different from both 0 and b,
and where transportation at all levels is allowed in
periods t1+1������2. We will denote the latter costs
by %t1�t2��1��2�, and refer to vectors t1�t2��1��2� as
relaxed subplans.
To illustrate the concept of relaxed subplans, con-

sider the following problem instance of the 2LSP-PC.
All demands are equal to 1; the production and trans-
portation costs are given by

pty� =
{
100 ·1�y>0�+y if t �=2�
1·1�y>0�+y otherwise�

and

c1t x� =
{
50·1�x>0�+x if t �=2�
1·1�x>0�+x otherwise�

Finally, let all inventory holding cost functions be
equal to zero. The optimal flows in �1�4�2�4� and
%1�4�2�4� are given in Figure 3. When calculating
the costs �1�4�2�4�, transportation is only allowed
in periods in which both production may take place
and demand is satisfied (i.e., in Periods 3 and 4 in
the example), while in the relaxed version of the same
subplan transportation is permitted in any period
where either production may take place or demand
is satisfied (i.e., in Periods 2, 3, and 4 in the exam-
ple). Therefore, the costs %1�4�2�4� are lower than

Figure 3 The Optimal Flows in ��1�4�2�4� and ��1�4�2�4�
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�1�4�2�4� because in the relaxed subplan we can
transport in the second period.
These changes have two major consequences. Con-

sider a path from the source to a sink in the Phase 2
network. First, while it is easy to see that the corre-
sponding solution of the MLSP-PC is indeed feasible,
it is not necessarily an extreme point solution because
production and demand nodes in two relaxed sub-
plans contained in the solution may be connected by
arcs containing positive flow. Second, it is possible
that certain arcs are used in more than one relaxed
subplan. This means that the length of the path in the
network may not be the same as the costs of the corre-
sponding solution to the MLSP-PC. Dealing with this
latter issue first, the following theorem shows that the
path length is never smaller than the actual costs of
the solution, and is equal to the costs of the solution
if all transportation and inventory cost functions are
linear.

Theorem 4.1. Each path from the source to a sink in
the Phase 2 dynamic programming network corresponds to
a feasible solution to the MLSP-PC. The length of this path
cannot be smaller than the cost of the corresponding solu-
tion, and is equal to the solution cost if all transportation
and inventory cost functions are linear.

Proof. The fact that a path from the source to
a sink in the Phase 2 dynamic programming net-
work corresponds to a feasible solution to the lot-
sizing problem follows immediately from the fact
that all production capacity constraints, as well as all
demands, are satisfied. However, certain transporta-
tion and inventory arcs may carry positive flow in the
partial solutions corresponding to more than one arc
in the path, and each of the partial flows is charged
separately according to the corresponding cost func-
tion. Due to the concavity of all cost functions, it fol-
lows that the cost of the total flow will not exceed the
sum of the costs of the individual flows on any partic-
ular arc, and therefore the length of a path will never
be less than the costs of the corresponding solution. In
addition, when all transportation and inventory cost
functions are linear, the path length and solution costs
are clearly equal. �

The next lemma gives a relationship between the
costs associated with a subplan and the correspond-
ing relaxed subplan.

Lemma 4.2. For any subplan �
1��
2�
L

=1�, we have

that ��
1��
2�
L

=1�≥%�11��12��L1��L2�.

Proof. This result follows immediately by noting
that both ��
1��
2�

L

=1� and %�11��12, �L1��L2� are the

optimal value of an optimization problem with iden-
tical cost functions, but where the feasible region of
the former is a subset of the feasible region of the
latter. �

The next theorem shows that there exists an optimal
solution to the lot-sizing problem that is represented
by a path in the Phase 2 dynamic programming net-
work whose length is equal to the optimal costs.

Theorem 4.3. The Phase 2 dynamic programming net-
work contains a path that corresponds to an optimal solu-
tion to our lot-sizing problem, and the length of the path
is equal to the cost of this solution.

Proof. Consider an extreme point optimal solution
to the lot-sizing problem, say with cost &∗. As dis-
cussed in §2.4, this optimal solution decomposes into
a sequence of consecutive subplans. It is easy to see
that the Phase 2 dynamic programming network con-
tains a path for which the production and demand
periods of each of the arcs correspond to this sequence
of subplans. Lemma 4.2 now says that the length of
the path in the dynamic programming network, say
' , will not exceed &∗. However, by Theorem 4.1 we
know that ' is an overestimation of the costs of a cor-
responding feasible solution. Optimality of &∗ now
implies that in fact ' =&∗, which proves the desired
result. �

Theorems 4.1 and 4.3 clearly imply that our two-
phase algorithm solves the MLSP-PC. We can now
conclude that Phase 2 of the algorithm runs in OT 4�
time, given all values %t1�t2��1��2�. The remaining
challenge is thus to provide efficient algorithms for
computing these values.

4.2. Concave Costs

4.2.1. The Costs of the Relaxed Subplans. In this
section, we will formulate the problem of determin-
ing the costs %t1�t2��1��2� as a dynamic program-
ming problem. Put differently, we define, for each
t1�t2��1��2�, a network with the property that %t1�t2�
�1��2� is equal to the shortest path between a pair
of source and sink nodes in this network. The nodes
in this network are of the form t�Y � X1�����XL−1�,
where t indicates a period, Y is equal to the cumula-
tive production quantity up to and including period
t, and X
 is equal to the cumulative transportation
quantity from level 
 to level 
+1 up to and including
period t. Note that feasibility dictates that we should
restrict ourselves to values d�1+1�t≤XL−1≤···≤X1≤Y .
The source is the node t1�0�����0�, while the sink is
the node t2�Kb+!�����Kb+!�. As in §3.3, we have
that

Y ∈
K⋃

k=0
�kb�kb+!��

and the number of allowable values for Y is OT �.
Moreover, in a similar fashion to that of the two-level
case, we have that

X
∈
( K⋃

k=0
�kb�kb+!�

)
∪
( �2⋃

s=�1+1
�d�1+1�s�

)
� 
=1�����L−1�
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so that the number of allowable values for X
 is OT �
as well. This means that the total number of nodes in
the network is OT L+1�.
Arcs in the network represent production, trans-

portation, and inventory decisions, and are present
between pairs of nodes in the network of the form
t�Y �X1�����XL−1� and t+1��Y ��X1����, �XL−1�, where
�Y −Y ∈�0�!�b� and �X
≥X
 (
=1�����L−1). It is easy
to see that there are OT L−1� arcs emanating from each
node, for a total of OT 2L� arcs in the network.
Similar to §3.3, we can easily compute the produc-

tion quantity in period t+1 (�Y −Y ), the transporta-
tion quantity between levels 
 and 
+1 in period t+1
(�X
−X
), the inventory held at the manufacturer level
at the end of period t+1 (�Y −�X1), and the inventory
held at the retailer level at the end of period t+1
(�XL−1−d�1+1�t+1). The costs of an arc are thus given by

pt+1�Y −Y �+
L−1∑

=1

c
t+1�X
−X
�+h1t+1�Y −�X�

+
L−1∑

=2

h

t+1�X
−1−�X
�+hL

t+1�XL−1−d�1+1�t+1��

If all cost functions can be evaluated in constant time,
the costs of a given arc can be computed in OL� time
in the same way as in the 2LSP-PC after a prepro-
cessing step taking OT 2� time. We conclude that the
cost of a single relaxed subplan can be determined in
OLT 2L� time.
Finally, noting that there are OT 4� relaxed sub-

plans and applying the same technique for reduc-
ing the running time as used at the end of §3.3,
we obtain an algorithm for the MLSP-PC with arbi-
trary concave production, transportation, and inven-
tory holding costs and stationary capacities that runs
in OLT 2L+3� time. Although this time is exponential
in the number of levels, the order of the running time
will be limited by the fact that the number of levels
will typically be relatively small.
This approach can easily be extended to deal

with initial inventories. Recall from §3.4 that only
relaxed subplans with t1=0 need to be considered.
For such a relaxed subplan, we should view the total
initial inventories

∑L

=1 I



0 as a cumulative production

quantity up to and including Period 0, and the initial
inventory

∑L

=s+1 I



0 as the cumulative transportation

quantity up to and including Period 0 from level s to
level s+1, for all s∈�1�����L−1�. As in §3.4, without
increasing the running time, these initial inventories
can be incorporated into the dynamic programming
approach to calculating %t1�t2��1��2� by appropriate
redefinitions of the possible values of Y and X.
In the next sections, we will show how the run-

ning time can be dramatically reduced for problem
instances that have stationary production capacities,

general concave production costs, and linear inven-
tory holding costs at all levels, as well as one of the
following two transportation cost structures: (i) fixed
charge without speculative motives; or (ii) linear.

4.3. Fixed-Charge Transportation Costs Without
Speculative Motives

4.3.1. Introduction. In this section, we consider
the case of fixed-charge transportation costs with-
out speculative motives and linear inventory hold-
ing costs. As before, we will determine the costs of
each relaxed subplan using dynamic programming.
After a preprocessing step that runs in OLT 4�, this
dynamic program runs in OT 4� time for each indi-
vidual relaxed subplan. By using the reduction tech-
nique at the end of §3.3, the cost of all OT 4� relaxed
subplans can be computed simultaneously in OT 7�
time. Therefore, the running time of the dynamic pro-
gramming approach for this special case of the MLSP-
PC is OT 7+LT 4�. When L=2, we can reduce this
running time to OT 6�.

4.3.2. Zero-Inventory-Ordering Property at the
Retailer. We will show that, under fixed-charge trans-
portation costs without speculative motives, solutions
satisfying the zero-inventory-ordering (ZIO) property
at all levels in �2�����L�, i.e., I 
t x


−1
t+1 =0 for t=1�����T −

1; 
=2�����L, are dominant. That is, given any feasi-
ble solution to the relaxed subplan t1�t2��1��2�, there
always exists another solution that is at least as good
and satisfies the ZIO property at all levels in �2�����L�.

Theorem 4.4. Given a relaxed subplan t1�t2��1��2�,
the set of solutions with the ZIO property at all levels in
�2�����L� is dominant.

Proof. Let ȳ�x̄�Ī � be a feasible solution to the
relaxed subplan t1�t2��1��2� that does not satisfy
the ZIO property at some level. Let 
̄ be the last
level, such that the ZIO property holds for all 
∈�
̄+
1�����L�, but is not true for level 
̄. We can construct a
new solution at least as good as ȳ�x̄�Ī �, such that the
ZIO property holds for all 
∈�
̄�����L�. If 
̄=2, then
we have obtained the desired result. Otherwise, we
repeat the procedure with the new solution. Observe
that this procedure converges because the new 
̄ has
decreased by at least one unit.
Let t̄∈�t1+1������2−1� be a period so that

Ī 
̄
t̄
x̄
̄−1
t̄+1 >0. The positive inventory Ī 
̄

t̄
has been trans-

ported to level 
̄ in some earlier period. However, due
to the absence of speculative motives, we can resched-
ule the transportation of the Ī 
̄

t̄
units to period t̄+1

without increasing the costs. Repeating this argument
for each period t̄ violating the ZIO property at level 
̄,
we obtain a solution where the ZIO property is true
for each level 
∈�
̄�����L�. �
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We may recall that %t1�t2��1��2� is equal to the
minimal costs among the solutions of the relaxed sub-
plan t1�t2��1��2� with at most one free production
arc. The following corollary to Theorem 4.4 states
that for finding this constrained minimum we can
again restrict our search to solutions satisfying the
ZIO property at the retailer.

Corollary 4.5. The cost associated with the relaxed
subplan t1�t2��1��2� can be found among all feasible solu-
tions satisfying the ZIO property at all levels in �2�����L�.

Proof. This follows immediately from the proof of
Theorem 4.4 by observing that the modification of the
solution to obtain a solution satisfying the ZIO prop-
erty does not alter the production flows. �

This corollary implies that when searching for %t1�
t2� �1� �2�, we can assume that any amount shipped is
equal to the demand of a set of consecutive periods.
This will help to reduce the information maintained
in the dynamic programming approach described
in §4.2.1.

4.3.3. The Costs of a Relaxed Subplan. In this
section, we will formulate the problem of determin-
ing the costs %t1�t2��1��2� as a simplification of the
dynamic programming problem defined in §4.2.1. All
nodes in the dynamic programming network are of
the form t�Y �s�, where t indicates a period, Y is
equal to the cumulative production quantity up to
and including period t, and s represents the last
period whose demand is satisfied using transporta-
tion from Level 1 to Level 2 up to and including
period t, where d�1+1�s≤Y and t≤s. We may observe
that from Theorem 4.4, we have that X1=d�1+1�s in the
dynamic program of §4.2.1. The source is the node
t1�0��1�, while the sink is the node t2�Kb+!��2�. As
before, we know that Y can only assume the values

Y ∈
K⋃

k=0
�kb�kb+!��

Arcs are present between pairs of nodes in the net-
work of the form t�Y �s� and t��Y �s̄�, where �Y −Y ∈
�0�!�b� and s̄≥s. It is easy to see that there are OT �
arcs emanating from each node in the network, so that
the entire network has OT 4� arcs.
The costs of an arc between nodes t�Y �s� and t+

1��Y �s̄� are now given by

pt+1�Y −Y �+h1t+1�Y −d�1+1�s̄�

+c1t+1ds+1�s̄�+Ct+1�2s+1�s̄��
where Ct
s1�s2� are defined as the optimal costs of
shipping ds1s2

units from node t�
� to their desti-
nations, i.e., demand nodes L�s1������L�s2�. We can
use Zangwill’s algorithm, in a preprocessing stage,
to determine the values Ct2s1�s2� for all t=2�����T ;

s1= t�����T ; and s2=s1�����T in OLT 4� time; see the
online appendix. It is important to note that although
Zangwill’s model allows for general concave trans-
portation and inventory holding cost functions, we
cannot use the same approach as described above in
the presence of production capacities. The reason is
that in the uncapacitated case, the ZIO property holds
for arbitrary concave arc cost functions, while this is
not the case in the capacitated case. However, as we
have shown, in the case of fixed-charge transporta-
tion costs that exhibit no speculative motives, we also
obtain the ZIO property, enabling the use of Zangwill’s
algorithm to determine inputs to our algorithm.
The problem of determining %t1�t2��1��2� reduces

to finding the length of the shortest path in the net-
work from the source to the sink, which can be done
in linear time in the number of arcs. It is easy to see
that the number of nodes in the network is OT 3� and
the number of arcs OT 4�. Using the same approach to
computing multiple values of the function % at once
as we have discussed for the function % at the end of
§3.3, this yields an OT 7+LT 4� algorithm for solving
the multilevel variant of this problem.
When L=2, this running time can be reduced

to OT 6�. Recall that the number of nodes in the
dynamic programming approach above is OT 3�. We
will show that the number of arcs is also OT 3�. For
each t there are OT � nodes of the form t�·�t�, and
OT 2� nodes of the form t�·�s� with s>t. Each node
of the form t�·�t� has OT � successors, and each
node of the form t�·�s� with s>t has O1� succes-
sors, which makes for a total of OT �·OT �·OT �+
OT 2�·O1��=OT 3� arcs in the network. This yields
an OT 6� algorithm for solving the two-level variant
of this problem.
Unfortunately, in the presence of nonzero initial

inventory levels the ZIO property is not necessarily
dominant anymore. However, in these cases the more
general procedure developed for the case of arbitrary
concave cost functions of course still applies.

4.4. Linear Transportation Costs

4.4.1. Introduction. In this section, we will con-
sider the case where the transportation costs and
inventory holding costs are linear. We will develop a
dynamic programming approach that finds the opti-
mal costs of each relaxed subplan. After a prepro-
cessing step that runs in OLT 2� time, this algorithm
runs in OT 2� time for a single relaxed subplan, but
the costs of all OT 4� relaxed subplans can be com-
puted simultaneously in OT 5� time. This results in
an OT 5+LT 2� algorithm for solving this class of
instances of MLSP-PC.

4.4.2. Preprocessing. In terms of the underlying
network (as described in §2.1), one unit produced in
period t for satisfying demand in period �≥ t will,
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in the optimal solution, flow along the minimum-cost
path from 1�t� to L���. In a preprocessing stage, we
can determine the minimal unit transportation costs
associated with producing one unit in period t for
consumption in period � , which we will call Gt� . All
these values can be computed in OLT 2� time by solv-
ing T shortest path problems in acyclic graphs with
OTL� arcs using backward recursion. Using these
values, we can then again determine the total trans-
portation costs associated with producing, in period t,
the entire demand of the consecutive periods �1+
1������2, assuming that transportation is allowed in all
periods t������2, i.e., GDt�1�2

≡∑�2
r=�1+1drGtr . In OT 3�

time, these costs can be calculated for all t=1�����T
and t≤�1+1≤�2≤T . This information will enable us
to compute the total transportation costs associated
with production in period t in constant time.

4.4.3. The Costs of a Relaxed Subplan. In this
section, we will formulate the problem of determining
the costs %t1�t2��1��2� as a further simplification of
the dynamic programming problem defined in §4.2.1.
All nodes in the dynamic programming network are
of the form t�Y �, where t indicates a period, and Y
is equal to the cumulative production quantity up to
and including period t, where d�1+1�t≤Y and

Y ∈
K⋃

k=0
�kb�kb+!��

The source is the node t1�0�, while the sink is the
node t2�Kb+!�.
Arcs are present between pairs of nodes in the

network of the form t�Y � and t+1��Y � when �Y −
Y ∈�0�!�b�. Each arc of the network described above
represents a possible production decision. We let the
costs of the arcs be equal to the total costs associated
with the production amount. It remains to show that
the transportation and inventory holding costs can be
computed in constant time. In addition to the infor-
mation gathered in the preprocessing phase described
in §4.4.2, we also will find, for each node t�Y � in
the network, the first period whose demand is not
fully satisfied by the cumulative production Y (say
s) as well as the part of the demand of that period
that remains to be satisfied (say ,). Using the cumu-
lative demands d�1+1�t′ (t

′ =�1+1������2) as well as the
fact that the value of Y can only be equal to kb or
kb+! for k=0�����K, this additional information can
be obtained in OT � time. As we will see later, this
does not increase the running time of finding the costs
of a single relaxed subplan.
Now consider an arc connecting the two nodes

t�Y � (with first remaining demand period s with
remaining demand ,) and t+1��Y � (with first remain-
ing demand period s̄ with remaining demand �,).
When �Y −Y ≤,, the unit transportation costs of the

quantity produced in period t+1 are equal to Gt+1�s .
When �Y −Y >,, the transportation and inventory
holding costs for this arc consist of up to three com-
ponents: Gt+1�s ,+GDt+1�s�s̄−1+Gt+1�s̄ ds̄−�,�, and can
thus indeed be computed in constant time.
The problem of determining %t1�t2��1��2� reduces

to finding the length of the shortest path in the net-
work from the source to the sink, which can be done
in linear time in the number of arcs. It is easy to see
that the number of nodes in the network is OT 2�, and
the number of arcs OT 2�. Using the same approach to
computing multiple values of the function % at once
as in §4.3, this yields an OT 5+LT 2� algorithm for
solving this variant of the MLSP-PC.
As in the CLSP, initial inventories can be incor-

porated when all transportation and inventory hold-
ing cost functions are linear. In particular, the initial
inventories are used to satisfy the earliest demands
via the appropriate shortest paths in the network,
after which the demands are updated and the remain-
ing problem without initial inventories is solved.

5. Concluding Remarks and
Future Research

In this paper, we have considered a generalization of
the classical ELSP with stationary production capaci-
ties that allows for multiple levels of storage, as well
as corresponding transportation decisions for trans-
porting between the different levels. We have identi-
fied two important special cases of this problem that
are solvable in polynomial time. The running times of
the corresponding algorithms are remarkably insensi-
tive to the number of levels in the supply chain.
Open issues for future research in this area can be

divided into three general directions. First, the com-
plexities, although polynomial in the planning hori-
zon, are of relatively high order: OT 5� to OT 7� for
the two-level cases. It would be interesting if the order
of the running time could be reduced, for instance,
by investigating whether more time can be saved by
determining the costs of many or all subplans simul-
taneously. In addition, although the number of levels
will generally be relatively small, it would neverthe-
less be interesting to determine if the multilevel case
with general concave cost functions can be solved in
polynomial time in both the time horizon and the
number of levels. A second direction is the study
of serial supply chains in the presence of capacities
at other or additional levels in the chain. Finally, it
would be interesting to consider more complex sup-
ply chain structures, including, for example, product
assembly structures at the producer level, or multiple
retailers.
An online appendix to this paper is available at

http://mansci.pubs.informs.org/ecompanion.html.
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