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Biology is a science about relationships 

In the past few years, many high-throughput techniques have been developed and 

applied to biological studies. These techniques such as “next generation” genome 

sequencing, chip-on-chip, microarray and so on can be used to measure gene expression 

and gene regulatory elements in a genome-wide scale. Moreover, as these technologies 

become more affordable and accessible, they have become a driving force in modern 

biology. As a result, huge amount biological data have been produced, with the 

expectation of increasing number of such datasets to be generated in the future. High-

throughput data are more comprehensive and unbiased, but ‘real signals’ or biological 

insights, molecular mechanisms and biological principles are buried in the flood of data. 

In current biological studies, the bottleneck is no longer a lack of data, but the lack of 

ingenuity and computational means to extract biological insights and principles by 

integrating knowledge and high-throughput data.    

 

To develop effectively computational tools, we must first understand what 

biology is. Biology deals with many kinds of relationships among genes, proteins, RNAs, 

cells, tissues, organs and environmental factors. For example, biological relationships 

include those encompassing gene regulatory, protein interaction, activation, genetic 

interaction, inhibitory and so on. In one word, biology is a science about relationships. 

Traditionally, biologists describe these relationships between a limited number of genes 

or proteins using a descriptive language. With the huge amount of data produced by high-

throughput techniques, biologists have to deal thousands of biological relations in a 

single experiment. In this situation, the traditionally descriptive ways for biological 

relations are not sufficient to deal with the huge number of relations under study. The 

only way to deal with a large amount of relations is through mathematical representations 

and computations. Taking into account that the readers of this chapter are biologists, I 

would like to first introduce basic computational concepts and then illustrate the 

procedures and computational techniques for high-throughput data analysis, using 

examples from cancer research.              
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Network biology: concepts and biological meanings 

Graph theory, a branch of mathematics, is designed to describe all kinds of 

relationships and complexity in mathematical language. Networks represent the 

principles of graph theory. Thus, it is reasonable to use networks to represent biological 

relationships. By doing so, we are able to transform the biological/descriptive language 

into a mathematical language, which is computable and capable of handling a large 

number of relationships. In summary, network biology involves the use of networks to 

represent complexity, computes biological relationships and seeks to uncover biological 

principles and insights. We can ask inspiring and fundamental questions and develop 

elegant computational methods using the principles of networks and statistics, which lead 

to new biological insights from high-throughput data. In turn, insightful results from 

these analyses can be used to ask new questions and design wet lab experiments. 

 

Types and categories of cellular networks  

Several types of cellular networks have been found in cells: protein interaction 

networks, metabolic networks, gene regulatory networks and signaling networks, genetic 

interaction network and gene co-expression network (Wang et al. 2007), which can be 

further classified into two categories based on whether the networks capture biological 

relations in genome-wide or a specific cellular condition. Protein interaction networks 

encode the information of proteins and their physical interactions. Protein interaction 

information in the network ranges from basic cellular machinery such as protein 

complexes for DNA synthesis, metabolic enzyme complexes, transcription factor 

complexes, to protein complexes involved in cellular signaling. A genome-wide protein 

interaction network encodes all the protein interaction information across all biological 

processes in a cell. A gene regulatory network describes regulatory relationships between 

transcription factors and genes. Similar to protein interaction networks, a gene regulatory 

network encodes the gene regulatory information for all biological processes and 

activities in a cell. Genetic interaction networks describe genetic interactions between 

genes that lead to certain phenotypes. A genetic interaction network encodes the genetic 

interaction information for all kinds of cellular phenotypes. Therefore, I have classified 

protein interaction networks, genetic interaction networks and gene regulatory networks 
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into the first category: general cellular network. The second category of networks 

identified is: cellular specific network, which encompasses metabolic networks, gene co-

expression networks and signaling networks, describing relations in specific cellular 

conditions or specific cellular activities such as signaling and metabolism. A metabolic 

network collects all the metabolic reactions and metabolic flows, while a signaling 

network encodes signal information flows and biochemical reactions for signal 

transductions. Traditionally, both types of information are presented using pathways, e.g., 

metabolic pathways and signaling pathways. In a metabolic network, metabolic pathways 

are intertwined so that metabolic flows are transferable across different pathways. Certain 

metabolites can be shared and used by many different pathways, while certain end-

product metabolites are able to be produced via bypassing one or several pathways. 

Signaling networks illustrate inter- and intracellular communications and information 

processing between signaling proteins. In fact, pathway concept gets fuzzy and many 

pathways lose their identities in networks (Patil et al. 2005;Spirin et al. 2006). Gene co-

expression networks capture the co-expressed genes during certain cellular conditions. 

Co-expressed genes often represent a collection of genes that are involved in similar 

biological functions and activities. In addition, other types of networks can be constructed 

based on different biological contexts, i.e., disease-gene networks, drug-target networks, 

amino acid networks, gene-environment-factor network and so on. Nevertheless, these 

networks are represented at either a genome scale or under certain cellular conditions or 

specific cellular activities such as signaling.        

 

Biological functions and mechanisms are encoded in network properties 

A particular phenotype is the result of collaborations of a group of genes. This 

notion provides a structured network knowledge-based approach to analyze genome-wide 

data in the context of known functional interrelationships among genes, proteins and 

phenotypes. The biological relations and complexity are encoded in cellular networks 

(Wang et al. 2007). Therefore, a network view, or a systems-level view of cellular events 

emerges as an important concept. Cellular networks can be presented as either directed or 

undirected graphs. Usually in these networks, nodes represent proteins or genes and the 

links represent the physical interactions between proteins, gene regulatory relationships, 
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 5 

genetic interactions, gene co-expressions, or activation/inactivation signaling reaction 

relationships. Notably, signaling networks contain the most complicated relationships 

between proteins, e.g., nodes might represent different functional proteins such as 

kinases, growth factors, ligands, receptors, adaptors, scaffolds, transcription factors and 

so on, which all have different biochemical functions and are involved in many different 

types of biochemical reactions that characterize a specific signal transduction machinery 

(Wang et al. 2007).  

 

The topology or architecture of cellular networks is ‘scale-free’, meaning that the 

network contains a small fraction of nodes acts as highly connected hubs, whereas most 

nodes have only a few links. As an example, an air transportation map is an analogy for 

the scale-free network. In the United States air transportation map, only a few big airports 

(hubs) in big cities such as Boston, New York, Chicago and Los Angles have many air 

routes (links) to other airports, while many small airports just have a few air routes to the 

nearby big airports. This common structural feature encodes a special property of these 

networks: they are robust but also very vulnerable to failure and attack (Barabasi et al. 

1999;Barabasi et al. 2004). Randomly removal of a substantial fraction of the low-linked 

nodes will result in little damage to the network’s connectivity and function, however, 

targeted removal of the hub nodes will easily disconnect and destroy the network 

completely. As illustrated by the air transportation map, disabling big airports (hubs) will 

wreak havoc in many ways, while damaging a few small airports will have little or no 

effect on overall air transportation.  

 

Hub genes in gene regulatory networks are generally global transcription factors 

which govern a large number of genes in response to internal and external signals. 

Furthermore, mRNAs of the hub transcription factors have significantly faster decay rates 

than non-hubs in Escherichia coli and yeast gene regulatory networks (Batada et al. 

2006;Wang et al. 2005), suggesting that hub transcription factors facilitate a rapid 

response of the network to external stimuli (Wang et al. 2005). In protein interaction 

networks, hub proteins take part in many biological processes and play a more important 

role in an organism’s survival. Removal of hub proteins from an organism would have a 
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 6 

much broader effect on the organism than non-hubs (Babu et al. 2004;Jeong et al. 

2001;Wuchty et al. 2003;Wuchty et al. 2006). Hub proteins are more evolutionarily 

conserved than non-hubs (Saeed et al. 2006). One explanation of these phenomena is that 

hub proteins are subject to selection pressure and constraints, due to their involvements in 

many biological processes and their multiple interacting protein partners. In signaling 

networks, hub proteins are the proteins most commonly used by multiple signaling 

pathways. They become information exchanging and processing centers of the network 

(Wang et al. 2007). Hubs are one of the global properties of networks. Other global 

network properties include: network diameter, shortest path, network density, average 

links, clustering coefficient, network centrality (degree centrality, closeness centrality, 

radiality, betweenness and pageRank), minimum spanning trees, network flows, and 

network bottle necks. These measures have been described in details in recent reports 

(Mason et al. 2007;Yu et al. 2007).            

 

A complex network can be broken down into distinct regulatory patterns or basic 

units. Thus, local network properties can be defined. Network motif is such an example. 

Network motifs are the smallest functional modules in networks. These motifs are the 

statistically significant recurring structural patterns or small subgraphs or sub-networks 

that are found more often in a real network than would be expected by chance (Shen-Orr 

et al. 2002). These types of motifs have also been known as gene regulatory loops in 

biology. In gene regulatory networks, three major motifs are found in gene regulatory 

networks (Figure 1): Single Input Module (SIM), bi-fan and Feedforward Loop (FFL).  

 

Positive feedback loops lean to emergent network properties such as 

ultrasensitivity, bistability and switch-like behavior, while negative feedback loops 

perform adaptation, desensitization, and preservation of homeostasis (Ferrell 2002). 

These motifs are enriched with the transcription factors whose mRNAs have fast decay 

rates, suggesting that motif structures encode a regulatory behavior: they are able to 

rapidly respond to internal and external stimuli and decrease cell internal noise (Wang et 

al. 2005). Network motifs also bear distinct regulatory functions and particular kinetic 

properties that determine the temporal program of gene expression (Mangan et al. 
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 7 

2003b). Thus, the frequencies and types of network motifs with which cells use indicate 

the regulatory strategies that are selected under different cellular conditions (Balazsi et al. 

2005;Wang et al. 2005). For example, FFLs are buffers that respond only to persistent 

input signals (Mangan et al. 2003a), which makes them well-suited for responding to 

endogenous conditions, while the motifs whose key regulator’s transcripts have a fast 

mRNA decay rate are preferentially used for responding to exogenous or environmental 

conditions (Wang et al. 2005). In signaling networks, network motifs such as switches 

(Bhalla et al. 2002), gates (Blitzer et al. 1998), and positive or negative feedback loops 

provide specific regulatory capacities in decoding signal strength, processing information 

and controlling noise (Dublanche et al. 2006). Network motifs often form large 

aggregated structures, called network themes that perform specific functions by forming 

collaborations between a large number of motifs (Zhang et al. 2005). A higher level of 

aggregation of network themes can be regarded as network modules.   

 

A practical guide for network analysis in cancer biology   

Cancer is an extremely complex, heterogeneous disease and represents a typical 

example of biology gone awry. More and more efforts in “omics” are being made in the 

cancer research community. As a result, tremendous amount of money has been poured 

into cancer research in the past few years. Relatively speaking, more high-throughput 

data have been generated in cancer biology than in any other field of biology. However, 

the complexity of cancer forms a major obstacle for a comprehensive understanding of 

underlying molecular mechanisms of tumorigenesis. To crack the cancer code, 

computational methods have been developed and applied to cellular networks of cancer. 

Using a few examples of cancer based studies, I will demonstrate the procedures and 

computational analysis involved in cancer cell networks.         

 

Data sources and quality for cancer cell networks   

Public databases collect and assemble literature-mined datasets describing human 

protein interactions, metabolic and signaling pathways, cancer driving mutated genes 

such as COSMIC (http://www.sanger.ac.uk/genetics/CGP/cosmic/), and tumor gene 

expression profiles such as Oncomine (http://www.oncomine.org/), human protein 
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 8 

interaction database, HPRD (http://www.hprd.org/), IntAct 

(http://www.ebi.ac.uk/intact/site/index.jsf), MINT 

(http://mint.bio.uniroma2.it/mint/Welcome.do) and DIP (http://dip.doe-mbi.ucla.edu/), 

signaling pathway database, BioCarta (http://www.biocarta.com/) and Reactome 

(http://reactome.org/, and so on. Datasets can be found in research articles that conduct 

high-throughput studies such as microarray profiling of tumors, genome-wide sequencing 

of tumor samples. Useful datasets are also found in research articles that manually curate 

data from literature for constructing cellular networks (Oda et al. 2005;Oda et al. 2006), 

i.e., we have manually curated a large human signaling network containing more than 

1,600 proteins and 5,000 signaling relations (Cui et al. 2007). When using these datasets, 

the quality of data should be carefully examined. For example, it is well-known that false 

positives are in the protein interaction data derived from high-throughput studies. 

Relevant computational methods have been developed to clean these false positives as 

much as possible (Mahdavi et al. 2007). However, it is still a challenge task. On the other 

hand, data are often incomplete. To overcome these problems, sensitivity analysis can be 

applied: we can mimic false positives and false negatives by randomly adding or 

removing extra 10 and 20% of network nodes into the networks, and then re-examine the 

analysis (Cui et al. 2006).  

   

Network construction and visualization  

Networks can be constructed using the information contained in relationships and 

other information. Genes and proteins are often used as nodes, relations between them are 

edges (undirected links) or arcs (directed links). In gene regulatory network, links are 

directed and represent regulatory relationships. In protein interaction networks, links are 

undirected links and represent physical interactions between proteins. In signaling 

networks, there are undirected and directed links, furthermore, signs (i.e., activating and 

inhibiting) can be assigned to the directed links (Wang et al. 2007). In certain situation, 

links can be assigned numbers such as protein interacting affinity. The resulting network 

is called weighted network. Free software programs such as Pajek (http://vlado.fmf.uni-

lj.si/pub/networks/pajek/) and Cytoscape (http://www.cytoscape.org/) are available to 

visualize networks.     
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Data integration onto networks  

The integration of experimental techniques with the information technology 

provides a powerful approach to address and dissect the complexity of cancer and other 

biological problems at various levels in a systems-based manner. 

 

It is often necessary to integrate different sources of data onto the network to 

perform analysis. The selection of data sources are based on the questions asked. For 

example, we integrated cancer driver mutated genes determined by large scale genome 

sequencing of tumors onto a human signaling network to understand cancer signaling 

mechanisms (Cui et al. 2007). Chuang et al. integrated tumor gene microarray expression 

profiles onto a human protein interaction network to find network clusters as breast 

cancer biomarkers (Chuang et al. 2007).   

    

Network property analysis  

Global and local network properties can be analyzed. Almost all of the network 

properties are analyzed using statistical methods. Global network properties can be 

investigated and drawn biological insights. For example, by integrating cancer driver 

mutated genes and cancer associated methylated genes onto a human signaling network, 

we uncovered that cancer causal mutations most likely occur in signaling proteins that are 

acting as signaling hubs (i.e. actively sending or receiving signals) rather than in nodes 

that are simply involved in passive physical interactions with other proteins (Cui et al. 

2007). These results can be interpreted in light of the fact that since signaling hubs are 

focal nodes that are shared by, and/or are central in, many signaling pathways, alterations 

of these nodes, or signaling hubs, are predicted to affect more signaling events, resulting 

in cancer or other diseases. We further showed that activating and inhibitory network 

flows enhance and alleviate oncogenic signaling flows, respectively. Network node 

connectivity is correlated with cancer biomarkers, i.e., a protein which has more links 

with cancer mutated genes, has a higher chance to be cancer-associated genes or 

biomarker (Cui et al. 2007). We also found that the downstream cancer mutating genes of 

the network, especially the genes of the output layer of the network, have a higher 
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 10 

mutation frequency, which complements with another finding that cancer-associated 

genes are enriched in the nuclear proteins (Awan et al. 2007). In contrast, the 

distributions of the cancer associate methylated genes have no such preference, 

suggesting that genes subject to genomic silencing do not tend to directly affect the 

output layer of the network. These results strongly suggest that the genes in the output 

layer of the network, which play direct and important roles in determining phenotypic 

outputs, are frequent targets for activating mutations. The importance of this output layer 

is reinforced by another observation that the expression of the output layer genes of the 

signaling network is heavily regulated by microRNAs (Cui et al. 2006). 

A study of integration of literature-mined cancer genes onto a human protein 

interaction network showed that cancer proteins have more interaction partners than other 

proteins in the network, suggesting that cancer proteins may be involved in significantly 

more biological processes and play a central role in the protein network (Jonsson et al. 

2006). As another example, Platzer et al. systematically investigated 22 individual 

network measures for the cancer gene networks constructed by combining a human 

protein interaction network with tumor-associated differentially expressed genes (Platzer 

et al. 2007). Network measures rang from closeness centrality, network diameter, index 

of aggregation, assortative mixing coefficient, connectivity and sum of the Wiener 

number to modified vertex distance number, representing several key network properties: 

size, distribution, relevance, density, modularity, and cycles. The analysis showed that 

genes showing significant differential expressions in cancer appear to be interlinked on 

the human protein interaction network. These cancer gene networks show a low density, 

indicating that they bear high robustness.   

 

Biological insights are also encoded in local network properties. We have 

uncovered that cancer associated mutated and methylated genes are enriched in positive 

and negative regulatory loops, respectively. These results uncovered not only an overall 

picture of the network architecture where the oncogenic stimuli are embedded but also 

the signaling regulatory mechanisms involving cancer mutated and methylated genes 

(Cui et al. 2007).  Furthermore, cancer genes are enriched in the convergent target nodes 
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 11 

of most network motifs, and form network motif clusters or cancer gene hotspots on the 

network (Awan et al. 2007). We have extracted a giant subgraph, which we named 

oncogenic map, containing connected cancer mutated and methylated genes (Cui et al. 

2007). In the map, we further defined three network regions, which are enriched in cancer 

dependent signaling events, based on the overall frequency of cancer associated gene 

mutations. These results uncover an overall cancer signaling network architecture and 

highlight the most frequently used cancer signaling cascades. The map was further 

decomposed into 12 network community modules with different signaling functions: cell 

surface receptor-linked signaling, intracellular signaling cascades and apoptotic signaling. 

Similarly, cancer genes on protein networks also form network communities (Jonsson et 

al. 2006), representing distinct biological processes.  

 

Most of the methods for network property analysis have been implemented: 

Pajek, Cytoscape and Network Workbench (http://nwb.slis.indiana.edu/) are used to 

explore both global and local properties. Mfinder 

(http://www.weizmann.ac.il/mcb/UriAlon/groupNetworkMotifSW.html), FANMOD 

(http://www.minet.uni-jena.de/~wernicke/motifs/index.html) and MAVisto 

(http://mavisto.ipk-gatersleben.de/) are designed for finding network motifs. CFinder 

(http://www.cfinder.org/) can be used to define network communities. More network 

measures and computational tools are expected to be developed to interpret biological 

meanings in the future.    

 

Network dynamics and modeling  

Dynamics of cancer gene networks can be constructed by mapping expressed 

cancer gene in different stages of tumor progression such as tumors in the early 

developmental stages and metastasis onto all kinds of cellular networks such as protein 

interaction networks. Chuang et al. mapped tumor expressed genes onto a human protein 

interaction network to identify subnetworks as cancer biomarkers. The resulting cancer 

subnetwork markers are more reproducible than individual marker genes selected without 

network information, and that they achieve higher accuracy in the classification of 

metastatic versus non-metastatic tumors (Chuang et al. 2007). 
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 12 

 

Although cancer is considered a very heterogeneous disease, querying mutating 

genes in tumor samples using the network communities defined in a human cancer 

signaling map reveals that one common network module occurs in most of tumor 

samples. Furthermore, the common module seems to collaborate with one or more tumor 

specific modules for tumorigenesis in different tumor types (Cui et al. 2007). In 

particular, breast and lung cancers have more complex oncogenic signaling block 

collaborative patterns than other cancer types examined, highlighting their heterogeneous 

nature. 

 

Tumor gene co-expression networks can be constructed using different types or 

subtypes of tumors. Weighted gene coexpression networks have been constructed using 

gene microarray profiles of glioblastoma samples (Horvath et al. 2006). Analysis of such 

networks provides a blueprint
 
for leveraging genomic data to identify key control 

networks
 
and molecular targets for cancer.  

 

Tumor gene microarary profiles can also be used to reversely construct gene 

networks. We constructed a gene regulatory network using the time course microarray 

profiles from a mouse epithelial breast cell line (BRI-JM01) (Wang et al. 2007), which 

undergo an epithelial to mesenchymal transition (EMT) when they are treated with TGF-

β (Lenferink et al. 2004). Notably, clusterin, one of the genes that are up-regulated in the 

middle and late time-points shows many regulatory links to other genes in the network. 

During the EMT process, clusterin is secreted by the BRI-JM01 cells. Interestingly, by 

applying anti-clusterin antibodies to the TGF-β treated BRI-JM01 cells, we were able to 

block the TGF-β induced EMT (Wang et al. 2007). Reverse-engineered gene network 

approach has been applied to the expression profiles of prostate cancer to identify genetic 

mediators and mediating pathways (Ergun et al. 2007).  

 

Oncogene predictions can be made by constructing networks and modeling of 

multiple sources of data. Oncogenes of the malignant B-cell phenotypes have been 

predicted by generating a network from multiple sources: a genome-wide compendium of 
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human B-cell molecular interactions, in combination with a large set of microarray 

expression profiles (Mani et al. 2008). The resulting network contains protein–protein, 

protein–DNA and post-translational interactions. This approach allows capturing several 

different mechanisms of action associated with oncogenic lesions, specific tumor 

phenotypes and biochemical perturbations.  

 

In summary, the analysis of the cancer phenomenon using a network approach is 

still in its infancy. However, network approaches provide new ways to explore the 

complexity of biological systems and lead to discover new insights into high-throughput 

data.   
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Figure legends: 

 

Figure 1. Network motifs in gene regulatory networks.  

A, Single Input Module (SIM): a transcription factor (TF) regulates a group of genes (G1, 

G2, G3 and G4). B, Feedforward Loop (FFL): a transcription factor (TF1) regulates the 

second transcription factor (TF2), both TF1 and TF2 regulate a target gene (G1). C, Bi-

fan: both transcription factors TF1 and TF2 regulate both target genes (G1 and G2).  
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