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Brief Summary 

Understanding of informational processes in the brain promises significant 

advances for communications and computing, as well as fundamental insights 

relevant for complex biological, ecological and social systems. Recent 

advances in neuroscience indicate that the collective organization of simple 

neurons is of primary significance for informational processes such as 

cognition, abstraction and thinking. However, detailed information about such 

organization currently may not be practically obtained. We describe a 

mathematical framework that will allow obtaining such information with 

existing light microscopy probes and genetic tools by compiling and 

representing large collections of neural connectivity probes as a system of 

mathematical constraints on the neural circuit architecture. In particular, we 

show that in one model organism, C. Elegans, routine, fast and complete such 

reconstructions for entire nervous system may be attainable already now. Such 

reconstructions may help understand empirically how changes in collective 

organization of neural circuits result in specific behaviors. 
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Abstract 

Dissecting the structure of neural circuits in the brain is one of the central 

problems of neuroscience. Until present day, the only way to obtain complete 

and detailed reconstructions of neural circuits was thought to be the serial 

section Electron Microscopy, which could take decades to complete a small 

circuit. In this paper, we develop a mathematical framework that allows 

performing such reconstructions much faster and cheaper with existing light 

microscopy and genetic tools. In this framework, a collection of genetically 

targeted light probes of connectivity is prepared from different animals and 

then used to systematically deduce the circuit’s connectivity. Each 

measurement is represented as mathematical constraint on the circuit 

architecture. Such constraints are then computationally combined to identify 

the detailed connectivity matrix for the probed circuit. Connectivity here is 

understood broadly, such as that between different identifiable neurons or 

identifiable classes of neurons, etc. This paradigm may be applied with 

connectivity probes such as ChR2-assisted circuit mapping, GRASP or 

transsynaptic viruses, and genetic targeting techniques such as Brainbow, 

MARCM/MADM or UAS/Gal4, in model organisms such as C. Elegans, 

Drosophila, zerbafish, mouse, etc.  In particular, we demonstrate how, by using 

this paradigm, the wiring diagram between all neurons in C. Elegans may be 

reconstructed with GRASP and Brainbow and off-the-shelf light microscopy 

tools in the time span of one week or less. Described approach allows 

recovering exact connectivity matrix even if neurons may not be targeted 

individually in ~ NN p log  time (Np is the number of nonzero entries and N is 
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the size of the connectivity matrix). For comparison, the minimal time that 

would be necessary to determine connectivity matrix directly by probing 

connections between individual neurons when one knows a-priory which pairs 

should be tested, e.g. with whole-cell patches, is ~ pN .  
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Main Text 

The problem of acquiring detailed and complete structure of neural circuits in the brain is 

one of the fundamental challenges of neuroscience. Detailed understanding of the structure 

of such circuits undoubtedly will be one of the necessary conditions for understanding how 

organization of simple information processing units, i.e. neurons, in the brain may lead to 

higher cognitive functions that we observe in animals. This point becomes ever more 

apparent as growing amount of evidence indicates the importance of collective behavior of 

neurons in neural circuits for computation in the brain1-3. Such collective dynamics is 

intimately coupled with the structure of the underlying circuits. Furthermore, detailed 

knowledge of neural connectivity is essential for planning, executing and properly 

interpreting the results of many loss-of-function and electrophysiology studies of 

organization of neural circuits4, 5, as well as for analytic studies of neural circuits’ structure 

and function6, 7.  

Ability to routinely produce detailed and complete reconstructions of neural circuits would 

be of great service to systems neuroscience. Even in the simplest model organisms, such as 

C. Elegans, ability to extract neural circuits routinely, under different conditions and in 

small amount of time would be invaluable. For example, C. Elegans is one of the 

workhorses of modern systems neuroscience with variety of interesting behavior patterns 

and excellent genetic and imaging tools developed for studying neural origins of behavior. 

By reconstructing a number of circuit instances in C. Elegans, one may be able to directly 

observe conserved and variable structures in its nervous system and understand their 

significance for behavior. Likewise, by reconstructing the circuit in different C. Elegans 
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mutants, one may be able to search for signatures of behavior anomalies in the circuit 

structure, etc.  

Unfortunately, until now no satisfactory solution for this challenge exists. The only method 

with proven potential to produce the structure of the neural circuits down to the level of 

individual synapses simultaneously for all neurons is the serial section Electron Microscopy 

(ssEM). The only reconstruction of a complete circuit in existence was produced in this 

way – i.e. the circuit of about 300 neurons and 6000 synapses in C. Elegans8-11. 

Unfortunately, this technique is extremely labor intensive, slow and vulnerable to errors: 

the abovementioned circuit in C. Elegans took over a decade to complete, and yet its recent 

revision led to changes of nearly 10% of synapses affecting as many as 40% of neurons8, 9. 

Even amid significant and rapid developments in automation of ssEM analysis12-15, the 

prospects for applications of ssEM in large circuits remain uncertain. 

In the past few years, however, dramatic advances have occurred in the fields of fluorescent 

light microscopy and genetic manipulations that are now posed to change the landscape of 

the possibilities for neural circuit reconstructions16-24. Specifically, few recently described 

light microscopy techniques, such as mapping of circuits with light-gated ion channel 

ChR220, mapping synapses with recombinant green fluorescent protein GRASP16, mapping 

circuits with modified transsynaptic rabies virus22, etc., make it possible for fast and 

accurate estimation of the anatomical connectivity between different cells. The major 

limitation of these techniques is the small size of the libraries of distinct fluorescent 

markers, which limits them in the amount of information they ultimately provide. However, 

if coupled with genetic tools such as stochastic combinatorial gene expression used in 
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Brainbow18, mitotic recombination used in mosaic analysis MARCM17 or MADM24, or 

UAS/Gal4 targeting using libraries of Gal4 lines21, the power of these techniques may be 

greatly increased by allowing them to probe the same neural circuit repeatedly in different 

animals and accumulating information thus collected. We will show below how such 

information may be combined. Specifically, we will show that, by mathematically 

representing different such probes as constraints on the circuit’s connectivity matrix, such 

weak measurements may be efficiently combined allowing to systematically deduce the set 

of possible circuit configurations and even identify its structure exactly.  

In this framework we assume that the circuit’s structure may be described in terms of 

certain units and connectivity among them in a way that would remain sufficiently 

invariant, or stereotypical, from animal to animal. The circuit units may be individual 

neurons, but also they could correspond to genetically or functionally defined neuronal 

populations, etc. Essential to our framework will be the assumption that such different units 

in the probed circuit are the same and identifiable from animal to animal.  In simpler 

organisms, such as C. Elegans, different neurons are known to be identifiable. In larger 

animals, however, such identification of neurons or their populations will require novel 

genetic, imaging and computational techniques. The notion of connectivity here will be also 

understood broadly. This may be simple enumeration of the counts of distinct synapses 

between different units, quantification of the strengths of electric coupling via EPSP 

amplitude, or correlations between units’ activities, etc. In all these cases, the formalism 

described below will be applicable. The aim of our deduction, therefore, will be the matrix 
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of such connection strengths between all units in the neural circuit, understood in the above 

“stereotypical” way. 

We introduce the above paradigm by showing how combining GRASP and Brainbow 

genetic constructs in C. Elegans may allow reconstruction of its complete nervous system 

in one week or less with existing light-microscopy tools. GRASP16 is a recently described 

genetic construct which uses fragments of Green Fluorescent Protein (so called split-GFP) 

to fluorescently mark synapses between selected cells. Specifically, two fragments of split-

GFP code are made express independently in different cells. By itself, such incomplete 

GFP fragments do not fluoresce. However, at the location of synapses such split-GFP, if 

targeted to endogeneously pre- and post-synaptic proteins, may recombine across synaptic 

cleft and produce fluorescent puncta, thus, rendering selected synapses visible with light 

microscope. GRASP here plays the role of connectivity reporter: it allows estimating 

connectivity between given populations of cells. Brainbow18, on the other hand, is a genetic 

construct which uses Cre/loxP recombination system to target stochastically a set of distinct 

fluorescent proteins (FP) to different cells. In one form of Brainbow, sequences of different 

FP in genome are flanked with inversely oriented loxP-sites so that activity of Cre-

recombinase flips some of loxP-flanked sequences, thus, leading to their transcription in 

selected cells. Livet et al.18 observe that such procedure typically leads to each FP 

producing in 50% of all cells. Here, we use Brainbow construct to stochastically express 

GRASP connectivity reporter, i.e. Brainbow acts as expression driver for GRASP: it allows 

producing variety of GRASP expression patterns within single genetic line. The latter point 

is important for high-throughput acquisition of large volumes of data. We also need a way 
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to identify cells expressing GRASP in each animal. This may be achieved by additionally 

introducing in genome a nuclei-targeted FP sequence in tandem with GRASP. The aim of 

this is to always express spit-GFP and nuclei-FP together so that GRASP expression 

patterns may be identified by observing which cells have nuclei-targeted fluorescence25. 

This proposed genetic construct is illustrated in Figure 1A. 

For our purposes it is important that by combining Brainbow and GRASP, Cre/loxP system 

will lead neurons to express pre- and post-synaptic split-GFP parts of GRASP 

stochastically in different neurons. Whenever two such neurons form a synapse, a GRASP 

puncta will also be formed and may be detected with light microscope. This will allow 

evaluating the total count of GRASP puncta per given GRASP expression pattern. 

Assuming that identities of the neurons expressing GRASP in each animal may be also 

determined, we claim that these two pieces of information – counts of GRASP puncta and 

corresponding expression patterns – will allow recovery of full “stereotypical” connectivity 

in C. Elegans neural circuit. We should note also that another measure of connectivity may 

be used with GRASP, namely the total fluorescence strength of all GRASP puncta. Such 

total fluorescence would correspond to the size of all synapses targeted in each animal with 

GRASP. The formalism described below will be equally applicable in either case, although 

in the latter case the connectivity deduced will be in terms of the sizes of synaptic junctions 

between different cells, as opposed to the counts of distinct synapses in the former case. For 

clarity, we will talk below exclusively about GRASP puncta counts while keeping in mind 

applicability of developed formalism for such other kind of measurements. 
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To understand how complete connectivity may be extracted from such measurements, we 

first observe that in the described settings the count of GRASP puncta Q on average is 

2][E fNQ s= . Here Ns is the total count of all synapses in the entire circuit, and f=0.5 is the 

probability for one neuron to express GRASP in one trial. Now, let us assume that the 

connection between some neurons A and B is much stronger than on average for the circuit. 

Then, whenever neurons A and B express GRASP simultaneously, the count of GRASP 

puncta in such trials will be on average higher than 2fN s . Likewise, whenever either 

neuron A or B do not express GRASP, the count of puncta will be on average lower than 

2fN s .  In this way, the information about full connectivity in the circuit gets encoded in 

the fluctuations of Q in relation to the changes in GRASP expression patterns. In fact, the 

count of distinct synapses between any two neurons A and B may be found in the described 

settings simply from the triggered-averages of Q as follows 

[ ] [ ] [ ] [ ]QQQQC BABABAAB EEEE AB −−+= .                                 (1) 

Here [ ] [ ] [ ] [ ]QQQQ BABABA E,E,E,E AB  are triggered-averages of Q given that A and B 

simultaneously express GRASP, neither A nor B express GRASP, A but not B expresses 

GRASP, and B but not A expresses GRASP, respectively. Although Eq.(1) is 

straightforward and computationally simple to implement, it is not practical requiring a 

huge number of trials before convergence (Figure 2A and C). Here we only discuss it to 

illustrate the principle behind encoding of information in Brainbow + GRASP. 

In practice, connectivity in a circuit may be estimated from far smaller collection of 

measurements by employing more sophisticated data analysis. We formulate the 
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computational reconstruction problem for Brainbow + GRASP by observing that puncta 

counts Q in each trial may be viewed as linear constraints on the connectivity matrix C  

( ) ∑ ∑
∈ ∈

=
)( )(iPREA iPOSTB

ABCiQ .                                                    (2) 

Here, i indicates a single trial and the summation is over the sample PRE(i) of neurons 

expressing pre-synaptic part of GRASP and the sample POST(i) of neurons expressing 

post-synaptic part of GRASP (Figure 1B). Eq.(2) is a simple representation of the fact that 

in the animal i we can observe all synapses between selected pre- and post-synaptic cells, 

and the information thus gained. Note that we intentionally assume no prior knowledge 

about the circuit structure here, in which case the total count Q is the only information that 

may be extracted from GRASP in each animal. If additional assumptions may be made 

about the circuit, such as constancy of sizes or locations of GRASP puncta for the same 

synapses in different animals, constraint (2) may be further strengthened. 

We also observe that the connectivity matrix is sparse – e.g. in C. Elegans out of total 

80,000 possible connections only about 2,000 are actually realized8. Sparseness of the 

connectivity matrix is a powerful additional constraint. In particular, it can be shown that 

almost any sparse matrix may be found exactly from only NN p log≈  constraints (2) by 

minimizing its l1 norm26. Here, Np is the number of nonzero entries in the connectivity 

matrix, N is the total number of neurons, and l1 norm is ∑∑
= =

=
N

A

N

B
ABl

CC
1 1

1
 - in our case this 

is simply the total count of synapses in the circuit. In other words, the solution for the 

following constrained optimization problem, 
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iPOSTB
iPOSTB

iB ,0
,1

β ,                                                (3d) 

will continuously converge to the exact connectivity matrix C as the number of available 

measurements M is increased until the exact matrix C is recovered when NNM p log≈ . 

( )iAα  and ( )iBβ  here are the indicator functions for the sets PRE(i) and POST(i), and 

describe GRASP expression patterns in different animals. By construction, these are 

determined independently in each animal, e.g. from nuclei-targeted fluorescence. 

Optimization problem (3) is tractable and is a standard linear-programming problem27. 

Alternatively, if the total number of synapses Ns is known in advance (and in our case 

2][E fQN s = ), the solution to (3) may be also obtained as the intersection of two convex 

sets – sl NC =
1

 and the hyperplane of linear constraints (3b)28. Such intersection of 

convex sets may be found efficiently for problems of very large size, e.g. with the method 

of alternate projections29. Important feature of such deduction is that it may be performed 

from constraints (3b) of almost any form, i.e. it is absolutely not required here that the sets 

PRE(i) and POST(i) are produced stochastically.  
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According to the above analysis, complete circuit in C. Elegans should be possible to 

recover from 000,20000,10log −≈≈ NNM p  Brainbow + GRASP measurements. To test 

whether such reconstructions indeed may be performed as described, we develop a detailed 

computational model for such experiment and test our approach in-silico using actual 

wiring data for C. Elegans available from ssEM8.  

Using actual connectivity data from C. Elegans, we explicitly test how well circuit structure 

may be extracted with Brainbow + GRASP and how many trials may be necessary. We 

additionally consider a number of noise factors that may be present in real-life experiment. 

First, we consider the effect of possible biological variability in the circuit, i.e. variability in 

the count of synapses between the same neurons from one animal to another. We model this 

factor by modifying the connectivity matrix for each animal with a Poisson random 

component ( ) [ ]ABbbABAB CaPaCC +−→ 1 . Here, [ ]xP  stands for Poisson-distributed 

random number with mean x, and parameter ab controls the degree of biological variability: 

ab=0 corresponds to the case of no biological variability and ab=1 corresponds to the case 

where synapses are formed completely at random with CAB synapses on average between 

neurons A and B. Using connectivity matrix thus defined, we further assume that the 

samples of neurons PRE and POST are formed with Brainbow and each neuron is led to 

express pre- and post-synaptic split-GFP parts of GRASP with constant probability f=0.5.  

Subsequently, we assume that the count of GRASP puncta in such animal ( )iQ  is obtained 

with light microscope. We allow a certain amount of error in each observation, which we 

model by Gaussian noise ( ) ( ) [ ]( )1,01 NaiQiQ o+→ . Here, N[0,1] is Normally-distributed 

random number with zero mean and unit variance, and parameter ao controls the amount of 
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noise in the measurements. Finally, the identities of neurons expressing GRASP in each 

trial are assumed to be determined with a computer algorithm. Possible error in cell-

identification is modeled by shuffling all-to-all the identities of a small fraction ai of 

neurons chosen at random. We note that this noise-model represents a worst-case scenario: 

in reality some cells would be better identified than the others and the confusions of 

identity would not be all-to-all. For this reason, we believe that a higher error-rate than that 

quoted in Figure 3B may be tolerated in actual experiments. A more detailed account of this 

noise factor may be in order as more information about statistics of this error becomes 

available in the future. 

From such collection of in-silico Brainbow + GRASP trials, we reconstructed connectivity 

from different number of animals M from 500 to 12,000 by solving problem (3) with the 

method of alternate projections. We then asked how well reconstructed connectivity 

matrices corresponded to the original ssEM data. We inspected obtained reconstructions for 

different values of parameters ab, ao and ai visually as a matrix (Supplementary Figure 1) 

and as scatter plots showing reconstructed vs. actual connection strengths (Supplementary 

Figure 2). Quantitatively, we characterized the reconstructions quality by the correlation 

coefficient r2 between the reconstructed connection strengths and that in the original ssEM 

data.  Figures 2B and D, and Figures 3A-D summarize the results of our experiments. We 

observe that full wiring diagram in C. Elegans may be indeed recovered under reasonable 

noise conditions from 5,000-10,000 measurements. We also observe that decreasing the 

fraction f of cells expressing GRASP in each animal may have an impact on the robustness 

of the reconstruction procedure to the observation noise (Figure 3D), although for the other 
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factors such as biological variability or cell misidentification such impact is insignificant 

(data not shown). 

Thus, we conclude that the reconstruction of entire circuit in C. Elegans using Brainbow 

and GRASP may be attainable with already existing tools and technologies. Thanks to 

small size (100 μm diameter and 1000 μm long) and fast development (2 -3 days), 10,000 

worms with given genotype may be rapidly incubated on a single Petri-dish. In fact, 

modern phenotype screens already routinely pay attention to populations of worms that 

large.  The identities of the neurons expressing GRASP in each worm may be determined 

automatically from a high resolution optical scans of nuclei-targeted fluorescence with 

algorithm such as in Long et al.25. The measurement Q may be obtained by counting the 

number of distinct GRASP puncta from a high resolution scan. Or the combined 

fluorescence strength of GRASP puncta may be measured from a low resolution image of 

the worm, which may be a more robust measurement. Optical scans of C. Elegans may be 

performed in about 1 minute or less with off-the-shelf light microscopes (Kerr, R., personal 

communication). Given all of these, such reconstruction of full neural circuit in C. Elegans 

should be possible to complete in one week or less. The only substantial prerequisite for 

such an experiment is the creation of Brainbow + GRASP transgenic animal. 

If, indeed, such reconstructions of complete neural circuit in C. Elegans may be performed 

as described, the ability to extract circuit routinely there already should prove valuable for 

systems neuroscience. For example, it would allow addressing many central questions 

about the relationship between circuit structure and behavior explicitly on the example of 

the nervous system of C. Elegans, as described in the introduction.  
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Described paradigm may be also applied in a variety of other circuits such as in Drosophila, 

zebrafish or mouse. Although here we specifically focused on Brainbow and GRASP, this 

paradigm may be adopted for use with different connectivity reporters such as direct tracing 

of neurons, ChR2 assisted circuit mapping or transsynaptic viruses, and either Brainbow, 

MARCM/MADM or UAS/Gal4 systems for driving expression patterns in Eq.(3b). 

Stochasticity of the expression patterns is not a required feature of this approach. On the 

contrary, nearly arbitrary set of expression patterns may be used to recover connectivity 

from Eqs.(3). We must also specifically point out that the ability to target individual or 

small groups of neurons, e.g. with UAS/Gal4, is not required. In particular, we showed that 

with broadly targeted connectivity probes one is able to effectively constrain the circuit in 

( )NNO p log  time. This should be compared with the minimal ( )pNO  time required to 

determine connectivity matrix from direct probes of connectivity between individual 

neurons, e.g. with whole-cell patches or other precisely targeted probes, when it is already 

a-priory known which pairs should be tested.  

Although we showed that in C. Elegans such reconstruction may be performed with 

existing tools, applications in larger animals will require meeting a number of significant 

challenges. In larger animals unfavorable size scaling should be overcome: brains get 

bigger and so imaging gets harder, while the circuit complexity gets higher and so more 

measurements are needed. The focus on the development of transgenic models allowing for 

multiple connectivity probes from the same animal, such as multi-color GRASP, thus 

becomes highly interesting. Perhaps, even greater challenge is the necessity for independent 

identification of reporter’s expression patterns in different animals. In larger animals it is 
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not known how to perform such identification or what the stereotypical units of neural 

connectivity may be, so the progress in the problems associated with charting neuronal 

populations, building brain atlases and the computational tools for identification of neurons 

and their classes gains added significance. Improvement of the reconstruction algorithm 

aimed at reduction of the minimal number of measurements or using different kinds of 

measurements may be also possible. While Candes et al.26 provide a route for exact 

reconstruction of the connectivity matrix with theoretical performance bound, faster 

algorithms may be possible if certain amount of error is tolerated or if prior knowledge 

about the circuit structure may be accommodated. Development of such algorithms is an 

interesting direction for future theoretical research. 
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Figure Captions 

Figure 1: Circuit reconstruction using Brainbow + GRASP. A) Pre and post-synaptic split-

GFP parts of GRASP (sGFP) are concatenated with two sequences coding for two nuclei-

targeted fluorescent proteins (nFP), and both are flanked with inverted loxP sites. sGFP part 

of the construct allows producing large number of different GRASP connectivity probes 

from single genetic line, and nFP part of the construct allows identifying the cells thus 
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probed in each animal. B) In one Brainbow + GRASP animal, random subsets of neurons 

expressing pre-synaptic (red) and post-synaptic parts (green) of sGFP are selected with Cre 

from the above genetic construct. Whenever a synapse is present between any one from 

targeted pre- and post-synaptic neurons, sGFP may recombine and produce fluorescent 

puncta identifiable with light microscope (yellow). The total count of such puncta Q in each 

trial should be obtained. Such count mathematically corresponds to a constraint defining 

the sum of all entries at the intersections of selected pre-synaptic rows and post-synaptic 

columns in the connectivity matrix C (yellow). Three such trials are shown in the figure. 

When large number of trials is obtained, connectivity gets encoded in the fluctuations in Q 

in relation to GRASP expression patterns.  

Figure 2: Results of circuit reconstruction from Brainbow + GRASP in C. Elegans, 

modeled in-silico from actual wiring diagram8. (A) Quality of the reconstructed 

connectivity matrix with triggered-average method, as measured by the correlation 

coefficient r2 between reconstructed and actual connection strengths. (B) Quality of the 

reconstruction using the method of alternate projections. (C) Example of reconstruction 

from triggered-average method for M=300K measurements, r2=0.4. (D) Example of 

reconstruction from the method of alternate projections for M=8K measurements, r2=0.9. 

Figure 3: Impact of different noise factors on circuit reconstruction, as measured by the 

correlation coefficient r2 between reconstructed and actual connection strengths. (A) 

Biological variability is of least concern with very good reconstructions obtained even 

when synaptic strengths in each animal are nearly fully random. (B) Cell-identification 

errors have significant impact on reconstructions, implying that the fraction of misidentified 
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neurons in each trial should be kept below 3-5%. (C) Observation noise has significant 

impact on reconstructions, implying that the measurements should be obtained with relative 

error better than 3%. (D) Impact of observation noise may be effectively controlled by 

reducing GRASP expression frequency f, with already very large amounts of noise 

tolerated when f=0.1-0.2. 
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