

Niall Mac Dowell, Claire S. Adjiman, Amparo Galindo, George Jackson

Department of Chemical Engineering Centre for Process Systems Engineering Imperial College London London SW7 2AZ, United Kingdom

Outline

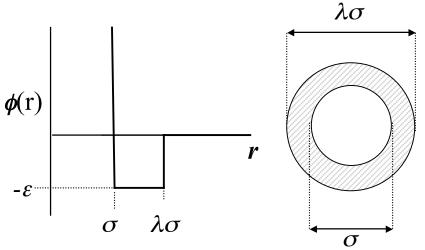
- Industrial relevance of complex fluids
- SAFT-VR : The molecular model
- Case study MEA
- CO₂ capture process

Conclusions

Industrial relevance of complex fluids

- Post-combustion capture (PCC) with amine scrubbing is seen as a useful route to reducing carbon emissions
- PCC is energy intensive solvent regeneration accounts for the vast majority of costs associated with CCS, thus there is great interest in solvent design and solvent blends
- Detailed understanding of solvent fluid phase behaviour is vital in this endeavour
- Amines are **complex fluids** need to be able to **predict non-ideal behaviour**
 - □ Azeotropy
 - □ Multiple vapour or liquid phases liquid-liquid equilibrium (LLE)
- Sophisticated thermodynamic treatment required cubic EoS not applicable, quuasichemical-based theories not ideal
- The Statistical Associating Fluid Theory for potentials of Variable Range is a suitable theory; explicitly treats non-sphericity and association contributions to the free energy, successful at predicting azeotropy and LLE
- SAFT-VR is a free-energy EOS: fluid is characterised once all the parameters are known

Imperial College


London

SAFT-VR: The molecular model

HO-CH₂-CH₂-NH₂

• Molecule as chain of m tangentially bonded homologous spherical segments of diameter σ

• Segments interact via a square well potential of depth $\boldsymbol{\varepsilon}$ and range $\boldsymbol{\lambda}$

Other Wertheim-like treatments:Button and Gubbins (SAFT) 1999

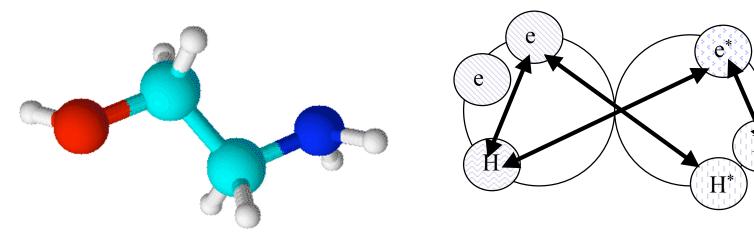
• Avlund et al. (CPA) 2008

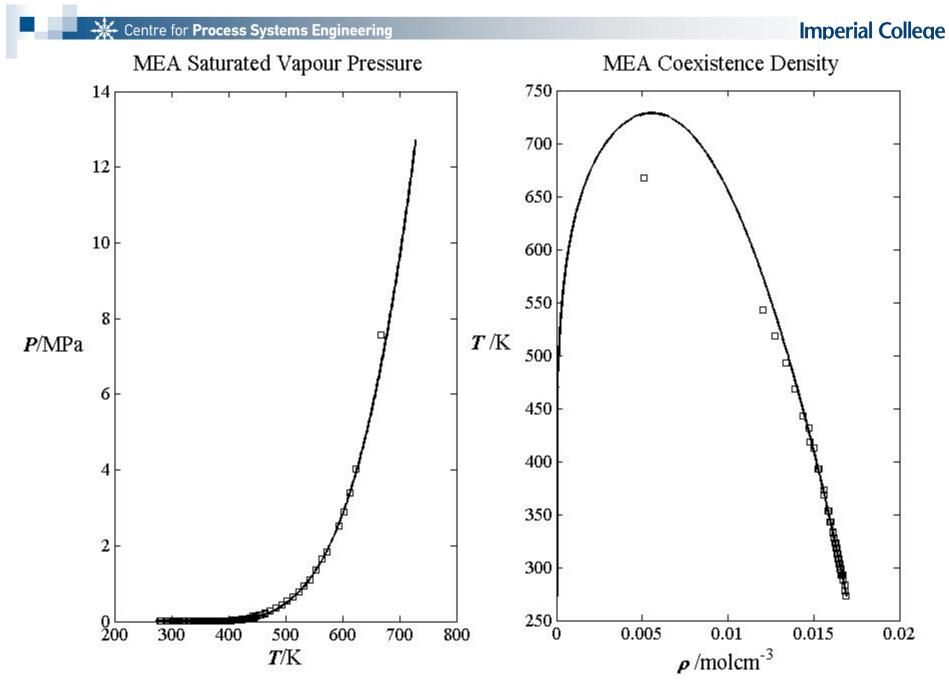
Association;

> Off-centre association sites of strength ε^{HB} and range K_{AB}

Imperial College

Centre for Process Systems Engineering

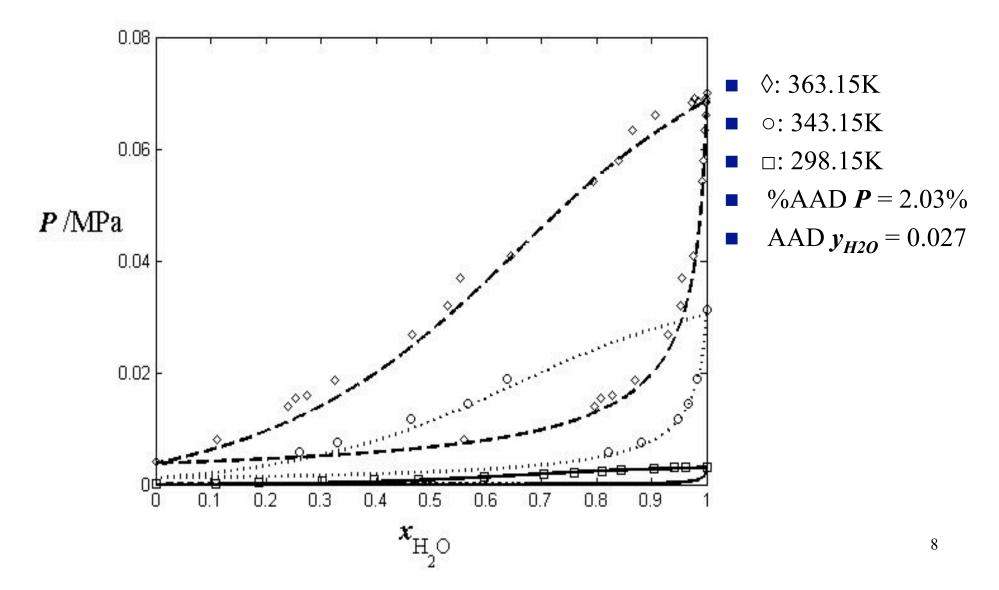



Alkanolamines HO-(CH₂)_i-NH₂

- Detailed molecular model developed taking into account all interactions
- Asymmetric interactions taken into account

$$\varepsilon_{eH}^{HB} \neq \varepsilon_{e^{*}H^{*}}^{HB} \neq \varepsilon_{eH^{*}}^{HB} \neq \varepsilon_{e^{*}H}^{HB}$$

- Hypothesis: MEA behaves like C_2H_5OH interacting with $C_2H_5NH_2$
- Transfer self-association parameters from C_2H_5OH and $C_2H_5NH_2$ models
- Problem dimensionality reduced by over 50% by parameter transfer
- Parameter space descritised in terms of $\varepsilon^{\text{Disp}}$, $\varepsilon^{\text{HB}}_{eH}$ and $\varepsilon^{\text{HB}}_{e^*H^*}$
- Excellent models for MEA have been developed
 - \square % Average Absolute Deviation = 2.4%


MEA + H_2O binary mixture

- Complex cross-associating mixture
- Asymmetric MEA model leads to many unlike-interaction parameters
 - \Box -NH₂ H₂O interaction: $\boldsymbol{\varepsilon}_{1}^{HB}_{ij}$
 - \Box -OH H₂O interaction: $\boldsymbol{\varepsilon}_2^{\text{HB}}_{ij}$
 - \square MEA H₂O dispersion interaction: $\boldsymbol{\varepsilon}_{ij}$
- Many adjustable parameters: reduce dimensionality of problem by building on physical knowledge of system
- Distinct types of association interaction
 - \Box -NH₂ H₂O
 - \Box -OH H₂O
- Hypothesis: MEA behaves like EtOH interacting with EtNH₂
 - Transfer unlike-association parameters from
 - EtOH + H2O
 - $EtNH_2 + H2O$
- **Reduces number of adjustable parameters** to <u>one</u>: ε_{ii}
 - □ Unlike dispersion energy

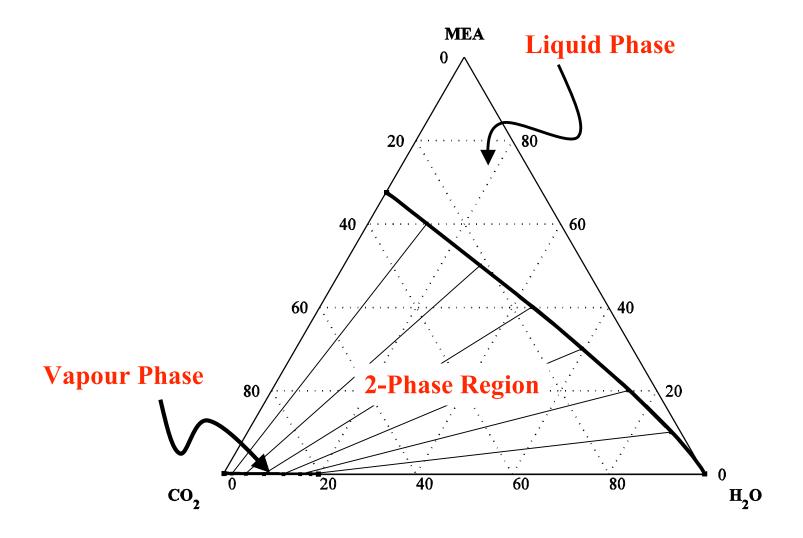
Imperial College

London

$MEA + H_2O$ Isothermal calculations

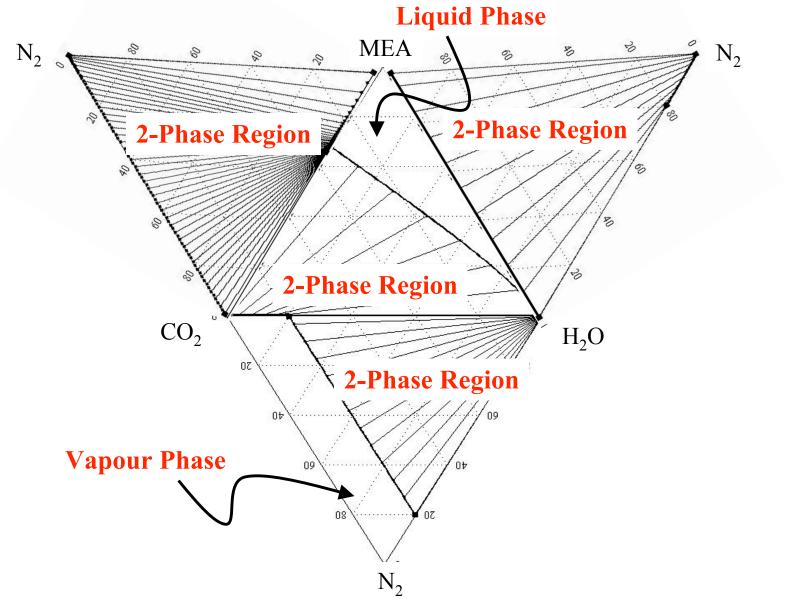
H₂O+CO₂ binary mixture

- SAFT-VR parameters transferred from the work of Clark *et al.* (2006) and Galindo *et al.* (2002) for H₂O and CO₂ respectively
- H₂O
 - □ Associating fluid, spherical, 6 parameters required
- CO₂
 - □ Non-associating fluid, non-spherical, 4 parameters required
- H_2O+CO_2
 - □ Extensive liquid-liquid immiscibility
 - Type III phase behaviour (Scott and van Konynenburg)

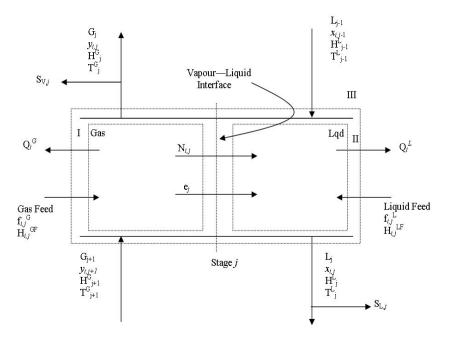

MEA+CO₂ binary mixture

Reactive system-chemical interactions as opposed to polar interaction

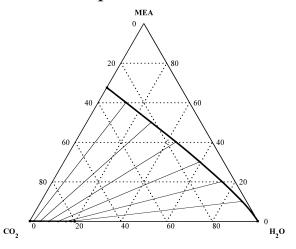
 $CO_2 + 2R_2HN \rightleftharpoons R_2HNH^+ + R_2NCOO^-$


- Model CO₂ with 2 effective sites to mediate this reaction (effectively assuming tight ion-pair species)
- No data available for this system
 - \Box Transfer parameters from previous work on NH₃+CO₂
- Novel application of the SAFT-VR formalism

MEA+ $H_2O + CO_2 T = 333.15K, P = 0.1 MPa$



11


MEA + $H_2O + CO_2 + N_2 T = 333.15K, P = 0.1 MPa$

Process simulation

- Development of generic simulation tools for process and solvent optimisation
 - □ Rate-based non-equilibrium models
 - □ Sophisticated thermodynamics
 - □ gPROMS
 - Study transient behaviour scenarios
 - Understand the contribution of advanced thermodynamics to process simulation

Conclusions

- An advanced molecular equation-of-state approach is necessary for dealing with complex fluid systems
- Molecular models with transferable parameters have been developed
- Mediate chemical reactions via effective sites
- Allows accurate description of VLE and LLE
- Phase behaviour calculated for both 3 and 4 component systems realistic flue gas model
- The predictive abilities of SAFT-VR provide an excellent tool for investigating the phase behaviour of complex systems with confidence
- **VLE** is a fundamental assumption in **all** mass transfer models
- Accurate calculation of phase behaviour is vital in masstransfer controlled processes

> Chemisorption with rapid chemical reaction (Ha \ge 3)

Thank you