

## **Design of carbon dioxide storage**



Martin J Blunt Department of Earth Science and Engineering, Imperial College London



### **Inconvenient truths**

Rising population – 6.7 billion now to 10 billion in 2100

Energy shortage and security: are we at peak oil? Almost certainly beyond peak oil per person.

Desire for improved, or at least maintained, standard of living

Climate change





### Are we running out of oil?



### **Imperial College** London And what does this mean for CO<sub>2</sub> concentration?



### UK carbon emissions by sector



100 years of living science

### **Carbon capture and storage**

Carbon Capture and Storage (CCS)



Source: Freund, IEA - Comparative potentials at storage costs of up to \$20/t CO2

Source: Parson & Keith, Science 282, 1053-1054, 1998

736 Gt in North Sea alone (DTI)  $\approx$  CO<sub>2</sub> produced by all UK population for 100 years!!!



## **Carbon dioxide properties**

Critical point of CO<sub>2</sub> is 31°C and 72 atm (7.2 MPa).

 $CO_2$  will be injected deep underground at supercritical conditions (depths greater than around 800 m).

CO<sub>2</sub> is relatively compressible and its density, although always less than water, is similar to oil.

Low viscosity – typically around 10% that of water.





### Some numbers

Current emissions are around 25 Gt CO<sub>2</sub> per year (6 Gt carbon).

Say inject at 10 MPa and 40°C – density is 700 kgm<sup>-3</sup>.

This is around 10<sup>8</sup> m<sup>3</sup>/day or around 650 million barrels per day. Current oil production is around 80 million barrels per day.

Huge volumes – so not likely to be the whole story, but could contribute 1-2 Gt carbon per year....

Costs: 1-2p/KWh for electricity for capture and storage;  $\pounds$ 25-60 per tonne CO<sub>2</sub> removed – Shackley and Gough, 2006.

Could fill the UK emissions gap in 2020.



## **Problems with CCS**

'Untried' Each component is known, but not yet demonstrated for a full-scale power-station, smoke stack to storage. Not an excuse for doing nothing – else we would still be in the Stone Age!

Hundreds of sites where CO<sub>2</sub> is injected: how can we ensure that it stays underground?

Decades (Imperial pilot plant in 1972) of experience with capture, but current technology is inefficient. How can we separate  $CO_2$  effectively and cheaply at large scales?



#### 100 years of living science



### **Aquifer storage**



100 years of living science

#### Imperial College London

### 100

### **Storage in oil and gas reservoirs**



http://www.netl.doe.gov/technologies/carbon\_seq/refshelf/atlas/index.html

100 years of living science

## 100

### **Current projects – planned or underway**



Source: Peter Cook. CO2CRC

### 100 years of living science

## **Sleipner Project**

- ✤ 1 million tonnes CO<sub>2</sub> injected per year
- CO<sub>2</sub> separated from produced gas
- Avoids Norwegian CO<sub>2</sub> tax
- Gravity segregation and flow under shale layers controls CO<sub>2</sub> movement



### www.statoil.com, 2002 Snahvit Liconce Time lapse (4D) seismic tracking of injected CO<sub>2</sub> North se Utsira 2001 1999 Formation Sleipner A 200 Co<sub>2</sub>injection well Sleipner Licence 2001 1999 1996 CO, injection well Block diagram to illustrate the principle of CD, deposition. Unwanted CO, produced CO, injection well with the gas from the Sleipner field gas reservoir is injected into the Litsira formation. for storage. The 1999 and 2001 time-lapse seismic sections flower right) show that the injected CO, is in place and that the volume has increased substantially - a fact which is further comoborated by the corresponding seismic amplitude maps (upper right). 60, injection well

CSC





## **Trapping background**

### How can you be sure that the CO<sub>2</sub> stays underground?

### Dissolution

CO<sub>2</sub> dissolves in water - 1,000-year timescales

Denser CO<sub>2</sub>-rich brine sinks

### Chemical reaction

acid formed  $\xrightarrow{\text{host rock}}$  carbonate precipitation –  $10^3 - 10^9$  years

### Hydrodynamic Trapping

Trapping by impermeable cap rocks

### Capillary Trapping

rapid (decades): CO<sub>2</sub> as pore-scale bubbles surrounded by water.

Process can be designed: SPE 115663 Qi *et al.* 





## **CO<sub>2</sub> trapping**

As CO<sub>2</sub> migrates through the rock, it can be displaced by water, trapped in pore-scale bubbles and cannot move further



### 



Model flow through pores directly µm-mm Laboratory scale: Model flow using continuum approximation cm-m Field scale: Model flow using continuum approximation m-km 4.30





100

### **CO<sub>2</sub> trapping experiments**



Sand-packed column injected with nonwetting fluid (oil dyed red).



Flow path of oil

Pentland et al., SPE 115697





## **Design of CO<sub>2</sub> storage**

A case study on a highly heterogeneous field representative of an aquifer below the North Sea:

 Use chase water to trap CO<sub>2</sub> during injection

1D results are used to design a stable displacement

 Simulations are used to optimize trapping



SPE 10 reservoir model, 1,200,000 grid cells (60X220X85), 7.8 Mt CO<sub>2</sub> injected.

Qi et al., SPE 109905



**ID results for aquifer storage** 

The  $CO_2$ -phase fractional flow  $f_g$  as a function of  $CO_2$  (gas) saturation,  $S_q$ .

**Imperial College** 

London

Qi et al., SPE 109905

solution





### **3D results for aquifer storage**

20 years of water and  $CO_2$  injection followed by 2 years of water injection in realistic geology



95% of CO<sub>2</sub> trapped after 4 years of water injection Qi et al., SPE 109905



Qi et al., to appear JGGC



## **General injection strategy**

To maximize  $CO_2$  storage in an aquifer:

- ✤ Inject CO<sub>2</sub>+brine where mobility ratio = 1.0 for a stable displacement
- Inject chase brine that is 25% of the CO<sub>2</sub> mass
  90-95% of the CO<sub>2</sub> is trapped for most realistic case
  As little as 65% may be trapped for worst case
  It all rests on how much is trapped as a function of initial saturation...





### How could the CO<sub>2</sub> escape?





### **Storage in oil and gas reservoirs**

- Practical experience injecting CO<sub>2</sub> into oil reservoirs
- Knowledge of geology so less chance of CO<sub>2</sub> escaping
- Far from emission sources
- As CO<sub>2</sub> migrates it is trapped at the pore scale
  CO<sub>2</sub> will mix with oil and improve oil recovery



### Imperial College London CO<sub>2</sub> storage and enhanced oil recovery (EOR)



♦ Water alternating with gas (WAG) injection improves sweep o<sup>2</sup> 0.5

Competing goals: CO<sub>2</sub> storage vs. EOR in WAG injection





First-contact miscible CO<sub>2</sub> injection

✤CO<sub>2</sub> injection at f<sub>CO2</sub>=0.7 followed by chase water injection

### **ID results for reservoir storage**

# 100 years of living science

## Storing CO<sub>2</sub> in the oil field



 Increased oil recovery offsets cost of capture, making CO<sub>2</sub> storage more economic
 Currently there are 66 CO<sub>2</sub> injection projects worldwide



Qi et al., SPE 115663

# 100 years of living science

## **Conclusions**

Carbon capture and storage is a key technology in our efforts to avoid dangerous climate change.

If it is to make a difference, carbon capture and storage will deal with volumes of fluid similar to those currently handled by the oil industry.

\* We have addressed a major public concern: how to ensure that the injected  $CO_2$  stays underground.

♦ Capillary rapping is an important mechanism to store  $CO_2$  as an immobile phase. Our study showed that brine +  $CO_2$  injection can trap more than 90% of the  $CO_2$  injected

## 100 years of living science

## **Current and future work**

### Making the process work

- Collaborate with colleagues on novel capture technology and systems design – consider the whole process from plant to storage.
- Continue gathering experimental data at typical storage conditions.
- Understand behaviour in field-scale injection projects.





All of you for listening!

**Research Sponsors:** 

- Grantham Institute for Climate Change
- Shell Grand Challenge on Clean Fossil Fuels
- Qatar Carbonates and Carbon Storage Research Centre
- UK Engineering and Physical Sciences Research Council



### Many colleagues and co-workers

Tara LaForce and Branko Bijeljic – Imperial Jon Gibbins – Imperial Lynn Orr – Stanford Stefan Iglauer, Ran Qi, Saleh Al-Mansoori, Christopher Pentland, Hu Dong and Erica Thompson – Imperial