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Abstract

Cancer is not a single disease, but a family of genomic diseases characterized by a set

of initiating genomic variants accumulated in a single cell that allows that cell to begin

dividing uncontrollably. Tumors grow by cell division, and each cell division generates

a new set of variants that are passed along to its offspring. As a result, at the time

of diagnosis a typical tumor of approximately 100,000,000 cells contains hundreds of

millions of genomic variants, whose frequency in the population is a function of the

time that they arose. Mutation accumulation through both inheritance and de novo

variant production results in a final tumor in which the vast majority of variants are

present at low frequency. Current methods used to identify variants have difficulty

identifying low frequency variants. Here I will describe two algorithms aimed at

improving low frequency variant calling in two settings.

Patient-Derived Xenografts (PDXs) serve as avatars for individual patient disease

as well as invaluable models for studying basic cancer biology. Molecular character-

ization of PDXs is common, but the extensive homology between human and mouse

genes present special challenges in sequencing tumors grown in mice. In Chapter 2 I

describe an algorithm and R implementation called MAPEX that allows labs study-

ing PDXs to use commercial sequencing technologies and locally filter false positive

variants caused by sequence homology.

Detecting somatic mutations within tumors is key to understanding treatment re-

sistance, patient prognosis, and tumor evolution. In Chapter 3 I present BATCAVE

(Bayesian Analysis Tools for Context-Aware Variant Evaluation), which extends cur-

rent state-of-the-art statistical models for tumor variant calling. I also present an

R implementation of the algorithm, and show using simulations that the BATCAVE

algorithm improves variant detection.
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Chapter 1

Introduction

1.1 Background

1.1.1 Cancer genomics

Cancer is not a single disease, but a family of genomic diseases characterized by

a set of initiating genomic variants accumulated in a single cell that allows that

cell to begin dividing uncontrollably (Nowell PC., 1976; Fearon & Vogelstein, 1989).

Following initiation, tumors grow through the process of cell division, and during this

expansion each cell division generates a new set of variants that are passed along to

its offspring (Bozic et al., 2016; Williams et al., 2018a). As a result, at the time of

diagnosis a typical tumor of approximately 108 cells contains in the millions of genomic

variants, whose frequency in the population is a function of the time that they arose.

Early mutations are present in a large proportion of cells, and late mutations are

present in only a small proportion (Bozic et al., 2016; Williams et al., 2018a). This

process of mutation accumulation by processes of both inheritance and de novo variant

production results in a final tumor in which the vast majority of variants are present

at low frequency (Williams et al., 2016). Cancer genomics is the study of the variants

present in cancer, and variants are identified by examining the DNA of tumors and

determining what variants are present. The nature of the methods used in cancer

genomics is such that high frequency variants are relatively easy to identify while low

frequency variants are difficult (Cibulskis et al., 2013).

Large numbers of tumors are sequenced to generate catalogues of mutations that

occur frequently in cancers, either arising from a specific tissue, or generally across

tumors (Pleasance et al., 2010). This allows research towards identifying common

cancer drivers which may be broadly useful as drug targets (Bailey et al., 2018), as
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well as the discovery of genomic biomarkers that identify potential treatments (Way

et al., 2018) or likely outcomes (Liu et al., 2018) for particular genomic profiles. The

International Cancer Genome Consortium has a propagated a target for mutation

catalogues, suggesting they use computational pipelines that identify 80% of muta-

tions present in every sample added to the catalogue (recall), and that 95% of all

variants added are truly present (precision). Sequencing depths as high as 10000X

would be required to meet the recall goal (Williams et al., 2018a), but false positive

rates increase as sequencing depth increases (Cibulskis et al., 2013), and there is no

current variant calling algorithm that can meet the precision portion of the goal at

that depth (Griffith et al., 2015). In addition, sequencing individual tumors can be

used in clinical applications to identify tumors with validated genomic biomarkers

for treatment or prognosis (Liu et al., 2018). Since most variants present in a tumor

are at low frequency, clinical sequencing will benefit greatly from identifying low fre-

quency mutations (Jacobs et al., 2018). In both uses of tumor sequencing reliable

identification of low frequency variants will be crucial going forward.

The earliest examples of cancer genomics studies were simply microscopic exami-

nations of leukemia samples with specially stained chromosomes to identify large scale

chromosomal aberrations such as fusions and translocations Mardis (2018). This led

to the discovery of the several activating gene fusions that led to transformation

and uncontrolled growth in blood cells in leukemia patients, and the development of

targeted drugs that shut off the activity of these fused genes Mardis (2018). The com-

pletion of the human reference genome in 2004 generated a DNA template allowing

the identification of the location of specific genes in the genome, and led to the use

of targeted polymerase chain reaction (PCR) amplification of specific genes, and the

enumeration of their actual sequences by Sanger sequencing. These studies facilitated

annotation of the majority of the human exome, and when carried out in cancer sam-

ples led to the discovery of driver mutations in many cancers that were subsequently

shown to be treatable with targeted drugs Mardis (2018). While these technologies
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led to early successes, they were limited to identifying genomic aberrations present

in the very large majority of cells, and could not provide a complete picture of the

genomic aberrations in any individual tumor. Massively parallel sequencing , often

called next generation sequencing (NGS), was developed in the mid-2000’s and revo-

lutionized cancer genomics. An excellent review of the history of cancer genomics is

provided by (Mardis, 2018).

1.2 Cancer variant types

Genomic alterations in cancer fall into three general categories. Single nucleotide

variants (SNVs) are single base alterations in which one nucleotide is exchanged for

another. Small insertions and deletions (INDELs) are insertions or deletions in the

genome of the tumor, typically including changes spanning up to 50 base pairs (Car-

valho & Lupski, 2016). Structural variants are large scale genomic rearrangements,

including copy number variants, gene fusions, deletions, amplifications, inversions,

and translocations (Carvalho & Lupski, 2016). Variant callers typically focus on ei-

ther small variants (SNVs and INDELs), or structural variants, but typically not

both. Structural variants are the primary driving mutations in a large number of

cancers (Zhang et al., 2018), and there are many structural variant callers that focus

on different types of structural variants (Cameron et al., 2019). In this work I focus

exclusively on SNVs, and the types of sequencing experiments and variant callers

used to identify them are described in detail below.

1.2.1 Next generation sequencing (NGS)

Next generation sequencing allows for the comparison of tumor genomes with their

corresponding patient genomes and thus the identification of the differences between

the tumor genome and the normal genome of the patient. The NGS workflow consists

of an automated series of sequential processes. The cells of a tumor sample are lysed
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Figure 1.1. Illustration of NGS. From https://gsc.ku.edu/about
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and DNA is separated out then sonically fragmented. Enzymatic reactions convert

the fragments to a uniform length and synthetic adapters of known sequence are

ligated to each end (Fig. 1.1). This process generates a library of 10s to 100s of

millions of fragments that are then washed onto a micro-fluidic flow cell where the

adapter on each individual fragment hybridizes to the surface. These individual reads

are then amplified generating clusters of identical copies of each library fragment

across the flow cell. Fluorescently tagged bases are then washed across the flow

cell in cycles, and bases are incorporated where they are complementary. Following

each cycle the flow cell is illuminated and the incorporated base at each cluster by

recording the fluorescence color emanating from each cluster. Cycles continue until

reads reach the desired length (Fig. 1.1). Full length read sequences are then compiled

computationally to generate 10s to 100s of millions of individual sequencing reads.

Crucially, since all of the DNA present in the sample is used to generate the library,

and each cluster is amplified from a single DNA fragment, the fraction of reads that

carry a genomic variant relates exactly to the fraction of cells in the sample that carry

that variant depending on the ploidy of the cells. The sequencing machine generates

a quality score for each sequenced base which is derived from an experimentally

generated error model. The quality, or (q), scores typically range from 0 to 50 and

the probability that a base has been called in error is equal to 10−q/10. In downstream

processing a minimum base quality score filter is generally applied such that the error

rate is no more than a specified number, often 0.1− 1.0%.

1.2.2 NGS read alignment

Following sequencing read generation, reads must be aligned to a reference genome.

Fig. 1.2 is an illustration of aligned genomic reads for both a tumor and normal

sample from the same patient. Both tumor and normal are aligned to the same

reference genome. Every alignment algorithm assigns a quality score for each read
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Figure 1.2. Illustration of aligned reads. Integrated Genome Viewer output for
aligned reads from a tumor and normal sample from the same patient from (Barnell
et al., 2019).

aligned that represents the same quantity as the q score from the sequencer except

that this is the probability that the read has been aligned in error. The number of

reads that align to a given base in the genome is called the coverage at that genome.

Sequencing experiments typically aim for an average coverage across the genome. For

tumors this is typically a minimum of 30X for whole genomes and often greater than

100X for whole exomes.

1.2.3 Variant calling

The data at each site in the genome is often referred to as a pile of base calls and

their associated quality and alignment scores. Variant callers walk along the refer-

ence and generate a pileup at each site consisting of the reference genome location,

the identify of the reference base, and the identity and associated base and align-

ment quality scores of every base aligned to that site. All variant callers apply a

set of heuristic filters at this stage to remove base calls with a high error probability.

Alignment-specific heuristic filters include those that remove reads with low alignment
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quality, reads with many variants close together suggesting problems with aligning

highly homologous regions of the genome, and reads with excessive cropping that

may be due to insertions of deletions Cibulskis et al. (2013); Kim et al. (2018). There

are also heuristic filters that filter variants found only on one DNA strand, or only

one component of a paired-end read (Cibulskis et al., 2013). In combination these

heuristic filters remove variants that result from known failure modes in sequencing

and alignment, and are an essential component in accurate variant calling (Cibulskis

et al., 2013). After heuristic filtering, the filtered read pileup is the raw material

used to call variants. Statistical variant callers fall into five main categories; heuristic

thresholds, joint allele frequency callers, joint genotype callers, machine learning and

ensemble callers, and deep neural network classifiers (Xu, 2018).

Heuristic thresholds Varscan was the first somatic mutation calling algorithm in wide

use (Koboldt et al., 2012). Varscan generates a pileup of the reads at every sequenced

location in the genome for both the tumor and normal sample and uses a heuristic

test to determine the genotype of both the tumor and normal sample at each site. For

sites where the genotypes don’t match Varscan performs Fisher’s exact test on a two-

by-two table where the entries are the number of reference-supporting and variant-

supporting in the tumor and normal samples. If the p-value of the test exceeds a

specified threshold – default 0.10 – the site is classified as a somatic variant, and

otherwise the site is classified as germ-line. Characteristics of the output from this

method are discussed in detail in Chapter 2.

Joint allele frequency callers Joint allele frequency callers model the probability that

a mutation to one of the three non-reference bases has occurred at a given site at an

allele frequency equal to the fraction of all base calls representing the non-reference

base, given the pileup in both the tumor and normal sample (Cibulskis et al., 2013;

Saunders et al., 2012; Wilm et al., 2012; Shiraishi et al., 2013; Gerstung et al., 2012;

Carrot-Zhang & Majewski, 2017; Kim et al., 2018). These callers test the hypothesis
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H0 : Alt allele = m; ν = 0 (1.1)

H1 : Alt allele = m; ν = f̂ , (1.2)

where m is the identify of one of the three non-reference bases and f̂ is the maximum

likelihood variant allele frequency calculated as the proportion of reads supporting the

alternate allele. Each allele-frequency based variant caller uses a different functional

form for both the prior probability of a particular hypothesis and the likelihood of

the hypothesis given the pileup. One of the most widely used somatic variant callers,

MuTect (Cibulskis et al., 2013), is of this type. A detailed description of the statistical

model used by MuTect is given in Chapter 3.

Joint genotype callers Joint genotype callers model the joint probability that the

tumor and normal sample together have any of 10 possible diploid genotypes (i.e.

AA, AC, AG, AT, CC, CG, CT, GG, TT) (Larson et al., 2012; Roth et al., 2012;

Christoforides et al., 2013; Jones et al., 2016; Dorri et al., 2019). As with allele

frequency based callers, the functional form of both the prior probability of a genotype

and the likelihood of the read data given the genotype differs widely. While joint

genotype callers remain under active development, they are used much less broadly

than the most popular allele-frequency based callers. Since they are not widely used

this type of caller plays no further role in this work, although the statistical models

used here are amenable to the treatment described in Chapter 3.

Machine learning and ensemble callers Recent developments in somatic variant calling

have been to apply machine learning algorithms to the problem. These include both

typical machine learning algorithms such as logistic regression (Ainscough et al., 2018)

and random forest/regression trees (Ainscough et al., 2018; Wood et al., 2018) as

well as deep convolutional neural networks (Ainscough et al., 2018). Ainscough et al.

(2018) trained a logistic regression, random forest, and a convolutional neural network
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on the same set of features acquired from a large number of samples in The Cancer

Genome Atlas (TCGA). The models were trained on two-thirds of the TCGA corpus

and tested on the held-out one-third. Both random forest and the neural network

out-performed logistic regression by a significant margin, and their performance was

very similar to each other. While the two more sophisticated algorithms performed

similarly they relied on substantially different features to make predictions. The most

heavily weighted feature in the random forest was the count of variant reads in the

tumor, suggesting that it was using the read data as strong evidence for the presence

of a variant. The neural network placed the most weight on the type of cancer the

sample came from, along with a variety of quality metrics assigned by the alignment

algorithm to describe the confidence in the alignment. Tumor variant read count was

among the least important of the 30 features for the deep learning method. Allele

frequency was a heavily weighted feature in both methods. An important weakness

of machine learning models that require training data is that they typically train on

data from catalogues of somatic mutations such at TCGA. By construction, these

catalogues contain variants that were by callable by another simpler variant calling

algorithm, and typically only include the most reliably called mutations, which are

typically also the highest frequency. As a result, while they achieve incremental

improvement over existing methods on the set of easily callable mutations, it is as yet

unclear whether they will continue to perform well at higher sequencing depths and

lower frequencies.

Deep neural networks The newest frontier in somatic variant calling is deep learning,

applying algorithms originally designed for image classification to NGS data. The

leading effort in this direction so far has been from Illumina which recently published

their method NeuSomatic, a deep convolutional neural network that takes as input

a variety of feature matrices derived from read data (Sahraeian et al., 2019). They

find that NeuSomatic performs dramatically better on various synthetic datasets than
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other variant callers including Varscan2 and MuTect2, when trained and tested on

data split from the same data set. Their final neural network has nearly 800,000

parameters, and the values of these parameters are uninterpretable. On the single

real data set they tested, a cell line with validated mutations, they used a network

trained on a synthetic dataset from the ICGC-TCGA dream challenge. Performance

of the stand-alone neural network was significantly worse than the performance of

both MuTect2 and Strelka2 on the same dataset. As with the deep learning methods,

at this point there is no indication of whether or not this method will provide improved

performance at lower allele frequencies.

1.3 Patient-derived Xenografts

Testing the large number of potentially beneficial new compounds that are in constant

development in patients is impossible for safety reasons. Patient-Derived Xenografts

(PDX) are real human tumors grown in mice in order to facilitate the testing and

development of therapeutic compounds (Witkiewicz et al., 2016). When testing new

compounds, it is often advantageous to sequence responding and non-responding tu-

mors to understand the molecular characteristics that lead to drug vulnerability or

resistance (Knudsen et al., 2017). A significant difficulty arises when sequencing tu-

mors grown in mice because the stroma and blood supply of these tumors are derived

from mouse cells (Mannakee et al., 2018). Even with careful dissection of the tumor

sample, a substantial fraction of the DNA isolated from these tumors will be mouse

germ-line DNA (Witkiewicz et al., 2015). Because the mouse genome has many genes

with very high homology to human genes, alignment algorithms will produce align-

ments with high quality scores in which mouse reads are aligned to their homologous

human genes (Woo et al., 2019). As a result, a standard variant calling pipeline will

confidently call as somatic variants places in the genome where the mouse reference

differs from the human reference (Woo et al., 2019). In the past, this has necessi-
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tated manual review of all called variants along with heuristic filtering based on lists

of known potential false positive sites due to mouse contamination (Knudsen et al.,

2017). In Chapter 2 I describe the MAPEX algorithm, and an associated R package,

which uses the NCBI BLASTN program to filter mouse reads from the alignment,

allowing confident calling of human mutations without extensive manual review or

heuristic filtering.

1.4 Tumor mutational signatures

Somatic mutations arise as a result of intrinsic errors in the replication process, expo-

sure to mutagens, base modifications that effect replication fidelity, and damage to the

DNA repair machinery. Each of these mutational process generates mutations that

preferentially occur in particular tri-nucleotide contexts (Alexandrov et al., 2013a;

Helleday et al., 2014a). The tri-nucleotide context of a genomic site consists of the

identity of the reference base and the 3’ and 5’ flanking bases. Folding the central base

to the pyrimidines, there are two possible bases at the focal site, and there are four

possible bases 3’ and 5’ of the focal site, yielding 2 · 4 · 4 = 32 possible tri-nucleotide

contexts. For each of these 32 tri-nucleotide contexts a mutation can be to any one

of the three alternate bases, for a total of 96 substitution types. Figure 1.3 shows a

number of mutational signatures and the biochemical processes that generate them.

Every tumor acquires random mutations generated by their exposure to muta-

tional processes. It is possible to generate a tri-nucleotide context mutation profile

for an individual tumor, constructed the same way as those in Fig. 1.3, by taking the

variants called in the tumor and computing the proportion of all mutations in each of

the 96 substitution types. Somatic mutations in every tumor are a random sample of

substitution types drawn from a data generating process represented by the mutation

profile. Two tumors with exactly the same exposure to the same mutation processes

will generate different sets of mutations, but they will have the same mutation profile.
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Figure 1.3. Mutation Signatures. Illustration of the characteristic tri-nucleotide
context signatures of different mutational processes (Helleday et al., 2014a)
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The probability that a new somatic mutation will be of a particular type is the

proportion assigned to that type in that tumor’s mutation profile. Thus, the mutation

profile of a tumor provides a powerful tool to sharpen the statistical model used to

call tumor variants. For all of the variant calling algorithms described above, the

model for the posterior probability that a variant is present is the product of the

prior probability of a mutation at that site, and the likelihood of the mutation given

the read data. Every current variant caller assumes that this value is the same

at every site in the genome, which ignores the biology of the mutational processes

driving mutations. In Chapter 3 I describe a modification of an allele-frequency

based statistical model which uses the mutation profile of the tumor to generate a

tumor-and-site-specific prior probability of mutation at every site in the genome.
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Chapter 2

Sensitive and specific post-call filtering of

genetic variants in xenograft and primary

tumors

Originally published as: Brian K Mannakee, Uthra Balaji, Agnieszka K Witkiewicz,

Ryan N Gutenkunst, Erik S Knudsen, Sensitive and specific post-call filtering of

genetic variants in xenograft and primary tumors, Bioinformatics, Volume 34, Issue

10, 15 May 2018, Pages 1713 – 1718, https://doi.org/10.1093/bioinformatics/bty010

2.1 Abstract

Motivation: Tumor genome sequencing offers great promise for guiding research and

therapy, but spurious variant calls can arise from multiple sources. Mouse contami-

nation can generate many spurious calls when sequencing patient-derived xenografts

(PDXs). Paralogous genome sequences can also generate spurious calls when sequenc-

ing any tumor. We developed a BLAST-based algorithm, MAPEX, to identify and

filter out spurious calls from both these sources.

Results: When calling variants from xenografts, MAPEX has similar sensitivity and

specificity to more complex algorithms. When applied to any tumor, MAPEX also

automatically flags calls that potentially arise from paralogous sequences. Our im-

plementation, mapexr, runs quickly and easily on a desktop computer. MAPEX is

thus a useful addition to almost any pipeline for calling genetic variants in tumors.

Availability: The mapexr package for R is available under the MIT license at

https://github.com/bmannakee/mapexr.

Contact: rgutenk@email.arizona.edu

Supplementary information: Supplementary data are available at Bioinformatics
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online.

2.2 Introduction

Molecular characterization of tumors is an important tool in cancer research, and

the large-scale sequencing of cancer genomes has led to a deeper understanding of

many aspects of the biology of cancer (Stratton MR, 2011). It is now common to

sequence tumors from large cohorts of patients, as well as patient-derived xenograft

(PDX) models from individual patients. Such sequencing enables identification of mu-

tational signatures (Alexandrov et al., 2013a), functionally important variants (Ding

et al., 2012) and evolutionary history of the tumor (Nik-Zainal et al., 2012b; Carter

et al., 2012). These genetic features are relevant in evaluating etiological mecha-

nisms (Yachida et al., 2010), prognostic subtypes (Shah et al., 2009; Park et al.,

2010), and acquired therapeutic resistance (Witkiewicz et al., 2015). All these ap-

plications of tumor sequencing depend on sensitive and specific characterization of

low-frequency mutations, and as a result may be biased by spurious variant calls.

Here we focus on two specific sources of spurious calls, mouse cell contamination in

PDX tumors and mis-alignment of paralogous sequences.

PDX models serve as avatars for individual patient tumors when studying intra-

tumor heterogeneity and metastasis and when screening anti-cancer compounds (Daw-

son et al., 2012; Day et al., 2015; Bruna et al., 2016; Allaway et al., 2016; Knudsen

et al., 2017). The primary difficulty in sequencing these models is that mouse stroma

is present in all PDX tumors. The high genetic similarity between mouse and human

then causes bias when variants are called using bioinformatic pipelines originally de-

veloped for primary tumors (Rossello et al., 2013; Tso et al., 2014). Several methods

have been developed to facilitate the accurate calling of variants in PDX models.

Experimentally, human-specific fluorescence tags can be used to label and isolate hu-

man cells prior to DNA extraction (Schneeberger et al., 2016). Bioinformatically,
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sequence reads can be aligned to both human and mouse reference genomes, either

separately (Conway et al., 2012; Khandelwal et al., 2017) or simultaneously (Bruna

et al., 2016), to filter out mouse reads prior to variant calling. Although these ap-

proaches greatly improve the reliability of variant calls from PDX models, they entail

substantial experimental or bioinformatic burdens. Here we describe a lightweight

filtering algorithm that achieves equivalent reliability and can be easily added to stan-

dard bioinformatic pipelines, because it uses the same reference genome for alignment

as primary tumors.

Many human genes have highly similar paralogous sequences in the genome. Spu-

rious variant calls arising from such paralogs have been recognized as an important

source of false positives in the study of rare disease-associated germline variants (Ng

et al., 2010; Jia et al., 2012; Zhou et al., 2015; Mandelker et al., 2016). Similarly, par-

alogs have led to false positives in the study of cancer, including TUBB in non-small

cell lung cancer (Kelley et al., 2001), PIK3CA in hepatocellular carcinoma (Tanaka

et al., 2006; Müller et al., 2007), and MLL3 in myelodysplastic syndrome (Bowler

et al., 2014). To address the paralog problem, some variant callers, such as MuTect2

(currently in beta but included in the Genome Analysis Toolkit (GATK; McKenna

et al. (2010))), filter clustered variants, which often result from mis-alignment of par-

alogous sequences. Many labs also keep lists of suspect genes that tend to suffer from

paralog problems and simply ignore any variants called in these genes. These ap-

proaches introduce their own biases. Our approach automatically identifies potential

spurious calls from paralogs and enables flexible evidence-based filtering.

Here we fully describe and characterize MAPEX (the Mouse And Paralog EX-

terminator), a BLASTN-based algorithm for filtering variants that was previously

introduced by Knudsen et al. (2017). We also present mapexr, a fast and lightweight

implementation in R. The MAPEX algorithm is aimed at three use cases:

1. Labs that sequence PDX tumors using services that align to the human reference
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can easily and accurately filter mouse contamination with mapexr

2. Bioinformatically sophisticated labs could align against both the human and

mouse genomes to use other filtering approaches, but mapexr enables additional

variant-level assessment of results

3. Any tumor genomics lab can use mapexr as a lightweight approach to identify

potentially spurious variants created by paralogous sequences.

We show that, when applied to PDX samples, MAPEX generates calls that are

highly similar to other methods, without the need to perform special alignments. We

also show that, when applied to primary samples, MAPEX effectively filters paralogs

while avoiding biases of existing heuristics. MAPEX is thus a useful addition to many

tumor variant calling pipelines.

2.3 Approach

2.3.1 Workflow

The MAPEX algorithm is a post-variant-calling filter designed to fit into a standard

tumor variant calling pipeline and flag variants which may arise from mis-alignment

of mouse reads or from paralogous sequences (Fig. 2.1). The input for MAPEX is a

BAM file containing tumor reads aligned to the human reference genome and a variant

callset generated from that alignment. Variant-supporting reads are then BLASTed

against the appropriate reference genome(s). Variants are scored by the fraction of

supporting reads that align to the called site of the variant in the human genome.

2.3.2 Algorithm

Each read supporting a variant is BLASTed against the appropriate reference genome

for the application. For PDX applications, this is the combined human/mouse refer-
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of variant calls from PDX models, they entail substantial experimental or
bioinformatic burdens. Here we describe a lightweight filtering algorithm
that achieves equivalent reliability and can be easily added to standard
bioinformatic pipelines, because it uses the same reference genome for
alignment as primary tumors.

Many human genes have highly similar paralogous sequences in the
genome. Spurious variant calls arising from such paralogs have been
recognized as an important source of false positives in the study of rare
disease-associated germline variants (Ng et al., 2010; Jia et al., 2012;
Zhou et al., 2015; Mandelker et al., 2016). Similarly, paralogs have
led to false positives in the study of cancer, including TUBB in non-
small cell lung cancer (Kelley et al., 2001), PIK3CA in hepatocellular
carcinoma (Tanaka et al., 2006; Müller et al., 2007), and MLL3 in
myelodysplastic syndrome (Bowler et al., 2014). To address the paralog
problem, some variant callers, such as MuTect2 (currently in beta
but included in the Genome Analysis Toolkit (GATK; McKenna et al.
(2010))), filter clustered variants, which often result from mis-alignment
of paralogous sequences. Many labs also keep lists of suspect genes that
tend to suffer from paralog problems and simply ignore any variants called
in these genes. These approaches introduce their own biases. Our approach
automatically identifies potential spurious calls from paralogs and enables
flexible evidence-based filtering.

Here we fully describe and characterize MAPEX (the Mouse And
Paralog EXterminator), a BLASTN-based algorithm for filtering variants
that was previously introduced by Knudsen et al. (2017). We also present
mapexr, a fast and lightweight implementation in R. The MAPEX
algorithm is aimed at three use cases. First, labs that sequence PDX tumors
using services that align to the human reference can easily and accurately
filter mouse contamination with mapexr. Second, bioinformatically
sophisticated labs could align against both the human and mouse genomes
to use other filtering approaches, but mapexr enables additional variant-
level assessment of results. Third, any tumor genomics lab can use
mapexr as a lightweight approach to identify potentially spurious variants
created by paralogous sequences. We show that, when applied to PDX
samples, MAPEX generates calls that are highly similar to other methods,
without the need to perform special alignments. We also show that, when
applied to primary samples, MAPEX effectively filters paralogs while
avoiding biases of existing heuristics. MAPEX is thus a useful addition to
many tumor variant calling pipelines.

2 Approach

2.1 Workflow

The MAPEX algorithm is a post-variant-calling filter designed to fit into
a standard tumor variant calling pipeline and flag variants which may
arise from mis-alignment of mouse reads or from paralogous sequences
(Fig. 1). The input for MAPEX is a BAM file containing tumor reads
aligned to the human reference genome and a variant callset generated
from that alignment. Variant-supporting reads are then BLASTed against
the appropriate reference genome(s). Variants are scored by the fraction
of supporting reads that align to the called site of the variant in the human
genome.

2.2 Algorithm

Each read supporting a variant is BLASTed against the appropriate
reference genome for the application. For PDX applications, this is the
combined human/mouse reference, and for primary tumor applications,
this is just the human reference. The best hit for each read is determined
by bit score. Reads for which the best hit overlaps the called variant location
are classified as “on target” and assigned a score of 1. Reads for which

Fig. 1. Illustration of MAPEX applied to a PDX sample. MAPEX begins with variants
called from tumor reads aligned to the human genome. For each variant, the supporting
reads are BLASTed against the combined human and mouse reference genomes. Variants
are then scored by the fraction of supporting reads that align to the called site of the variant
in the human genome.

the best hit is a different region of the human genome or a region of the
mouse genome are classified as “off target” or “mouse”, respectively, and
assigned a score of 0. Reads from genes with close paralogs in the human
genome may generate multiple best hits (ties). In this case, the read score
is averaged over all best hits, and the read is classified based on the most
common result from the best hits. Each variant is then assigned a score that
is the average score of all reads supporting that variant and is classified
based on the most common classification of the supporting reads.

2.3 Implementation

We have implemented the MAPEX algorithm as an R package (mapexr).
The package leverages the Bioconductor packages Rsamtools,
GenomicAlignments, and GenomicRanges for fast and memory-
efficient BAM file handling and read sequence extraction (Lawrence et al.,
2013; Morgan et al., 2017). The package requires a local BLASTN
installation and a BLAST database constructed from either a combined
human/mouse reference genome or a human reference genome, depending
on the application.

3 Methods

3.1 Samples

To characterize the performance of MAPEX, we used whole
exome sequence trimmed fastq reads obtained from pancreatic ductal
adenocarcinoma (PDAC) samples described previously by Knudsen et al.

Figure 2.1. Illustration of MAPEX applied to a PDX sample. MAPEX
begins with variants called from tumor reads aligned to the human genome. For each
variant, the supporting reads are BLASTed against the combined human and mouse
reference genomes. Variants are then scored by the fraction of supporting reads that
align to the called site of the variant in the human genome.
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ence, and for primary tumor applications, this is just the human reference. The best

hit for each read is determined by bit score. Reads for which the best hit overlaps the

called variant location are classified as “on target” and assigned a score of 1. Reads

for which the best hit is a different region of the human genome or a region of the

mouse genome are classified as “off target” or “mouse”, respectively, and assigned a

score of 0. Reads from genes with close paralogs in the human genome may generate

multiple best hits (ties). In this case, the read score is averaged over all best hits,

and the read is classified based on the most common result from the best hits. Each

variant is then assigned a score that is the average score of all reads supporting that

variant and is classified based on the most common classification of the supporting

reads.

2.3.3 Implementation

We have implemented the MAPEX algorithm as an R package (mapexr). The

package leverages the Bioconductor packages Rsamtools, GenomicAlignments, and

GenomicRanges for fast and memory-efficient BAM file handling and read sequence

extraction (Lawrence et al., 2013; Morgan et al., 2017). The package requires a local

BLASTN installation and a BLAST database constructed from either a combined

human/mouse reference genome or a human reference genome, depending on the

application.

2.4 Methods

2.4.1 Samples

To characterize the performance of MAPEX, we used whole exome sequence trimmed

fastq reads obtained from pancreatic ductal adenocarcinoma (PDAC) samples de-

scribed previously by Knudsen et al. (2017) (PDX) and Witkiewicz et al. (2015)
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(primary). For the PDX analysis, we analyzed a total of 34 PDXs derived from 9

primary tumors, sequenced to mean coverage depth of 124x. For the paralog analysis,

we analyzed 93 primary tumors sequenced to a mean coverage depth of 40x.

2.4.2 Alignments and variant callers

All alignments were done using bwa-mem with default parameter settings (Li & Durbin,

2009). For initial variant calling, we aligned all reads in the samples to the human ref-

erence genome GRCh37. We then called variants using MuTect version 1.1.1 (Cibulskis

et al., 2013), MuTect2 (as part of the GATK version 3.6, McKenna et al. (2010)), and

Varscan 2 (Koboldt et al., 2012), all with default parameters. MuTect 1 and 2 vari-

ant calls were used without any post-filtering, but for Varscan 2 we used the built-in

processSomatic and fpfilter functions with default parameters to generate a set of

high-confidence variant calls. Variants were annotated with Oncotator (Ramos et al.,

2015) and the annotation database oncotator v1 ds April052016. We considered

only non-synonymous single nucleotide variants when comparing between methods.

For paralog filtering, we used a conservative variant score cutoff of 0.8.

For comparison with Bruna et al. (2016), we aligned reads to a combined hu-

man/mouse reference genome GRCh37/mm9 and called variants using MuTect 1.1.1.

We calculated the fraction of mouse contamination using the method described in

Bruna et al. (2016). Briefly, they generated data comparing the fraction of mouse

cells in a sample with the fraction of total reads aligned to the mouse portion of a

combined reference genome. We used this data to fit a LOESS regression model for

contamination fraction vs fraction aligned, and used this to predict mouse contami-

nation based on the fraction of reads aligned to the mouse genome in our samples.

For comparison with bamcmp (Khandelwal et al., 2017), we aligned reads separately

to the human and mouse reference genomes and ran bamcmp with default parameters.

The output of bamcmp includes alignment files for reads that aligned to only the human
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reference and that aligned to both references but with a higher human alignment

score. We merged these two alignments, performed indel realignment and base score

recalibration using the GATK, and used the merged alignment to call variants with

Mutect version 1.1.1. All scripts (doi:10.5281/zenodo.1112101) and the version of

mapexr (doi:10.5281/zenodo.1112234) used to conduct the analysis have been archived

with Zenodo.

2.5 Results & Discussion

2.5.1 Methodological

MAPEX is a lightweight filtering algorithm that adds little overhead or complexity

to existing tumor variant-calling pipelines. The runtime for mapexr is linear in the

number of variants to be filtered, processing roughly 250 variants per minute on a

4-core machine (Figure S1).

MAPEX has only one tunable parameter, the minimum mapping quality score

required for a variant read. The default minimum score is 1, which includes all reads

with an unambiguous best mapping. In pipelines in which a minimum mapping

quality score is used for variant calling, that score should also be supplied to mapexr,

to prevent evaluating reads that were not used by the variant caller. The output from

mapexr is an R data frame with four columns – chromosome, start location, variant

score, and variant classification – and one row for each variant evaluated. Users may

also optionally provide a file path to mapexr which will generate a tab-delimited file

with BLAST results and scores at the read level. The user can choose the variant

score threshold used to classify variants as human- or mouse-derived. Here we use

a threshold of 0.5, so that a variant is flagged as spurious if less than half of the

supporting reads BLAST as “on target”. In practice, the distribution of variant

scores is bimodal and highly concentrated at 0 and 1, so results are insensitive to the

exact threshold (Fig. S2).
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2.5.2 Filtering mouse calls from PDX samples

One important use case for MAPEX is as a post-variant-calling filter for PDX samples

that have been aligned to a human reference genome. To test the precision of MAPEX,

we compared variant calls from aligning reads to the human reference and filtering

with MAPEX to calls from two other methods. The first alternate method is to align

reads to a combined human and mouse reference and then call variants (Bruna et al.,

2016), which we refer to as the “combined reference” method. This requires similar

CPU time to using MAPEX. The second method is to align reads separately to human

and mouse references and call variants using only those reads that align better to the

human reference, which is the method implemented in bamcmp (Khandelwal et al.,

2017). This requires twice as much CPU time for alignment as MAPEX, and the post-

alignment step is typically faster for MAPEX, although it can be longer for samples

with very high mouse contamination (Fig. S3). For three representative PDX tumors,

all three methods yield similar callsets (Figure 2.2A). The differences are primarily

confined to low-frequency variants, and almost all high-frequency variants are called

by all three methods (Figure 2.2B). MAPEX might reduce power to identify low-

frequency subclonal variants, if some of the few reads supporting a variant BLASTed

to incorrect locations. This would yield an intermediate variant score. Because

variant scores are strongly bimodal (Fig. S2), we expect that MAPEX causes little

to no reduction in power. Across 34 PDX tumors, all three methods yield a similar

dramatic reduction in called variants (Figure 2.2C).

To further validate MAPEX, we compared PDX variant calls before and after

filtering to the primary tumor from which the PDX was derived, where mouse con-

tamination is not an issue. Across 34 PDX tumors derived from 9 primaries, MAPEX

dramatically enriches PDX calls for variants that were also found in the primary tumor

and removes few PDX calls that were found in the primary tumor. Among variants

in the PDXs, only 0.3% to 10% called before MAPEX filtering were also found in
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3.2 Alignments and variant callers

All alignments were done using bwa-memwith default parameter settings
(Li and Durbin, 2009). For initial variant calling, we aligned all reads in the
samples to the human reference genome GRCh37. We then called variants
using MuTect version 1.1.1 (Cibulskis et al., 2013), MuTect2 (as part of
the GATK version 3.6, McKenna et al. (2010)), and Varscan 2 (Koboldt
et al., 2012), all with default parameters. MuTect 1 and 2 variant
calls were used without any post-filtering, but for Varscan 2 we used
the built-in processSomatic and fpfilter functions with default
parameters to generate a set of high-confidence variant calls. Variants
were annotated with Oncotator (Ramos et al., 2015) and the annotation
database oncotator_v1_ds_April052016. We considered only
non-synonymous single nucleotide variants when comparing between
methods. For paralog filtering, we used a conservative variant score cutoff
of 0.8.

For comparison with Bruna et al. (2016), we aligned reads to a
combined human/mouse reference genome GRCh37/mm9 and called
variants using MuTect 1.1.1. We calculated the fraction of mouse
contamination using the method described in Bruna et al. (2016). Briefly,
they generated data comparing the fraction of mouse cells in a sample
with the fraction of total reads aligned to the mouse portion of a combined
reference genome. We used this data to fit a LOESS regression model for
contamination fraction vs fraction aligned, and used this to predict mouse
contamination based on the fraction of reads aligned to the mouse genome
in our samples.

For comparison with bamcmp (Khandelwal et al., 2017), we
aligned reads separately to the human and mouse reference genomes
and ran bamcmp with default parameters. The output of bamcmp

includes alignment files for reads that aligned to only the human
reference and that aligned to both references but with a higher human
alignment score. We merged these two alignments, performed indel
realignment and base score recalibration using the GATK, and used
the merged alignment to call variants with Mutect version 1.1.1.
All scripts (doi:10.5281/zenodo.1112101) and the version of mapexr

(doi:10.5281/zenodo.1112234) used to conduct the analysis have been
archived with Zenodo.

4 Results & Discussion

4.1 Methodological

MAPEX is a lightweight filtering algorithm that adds little overhead or
complexity to existing tumor variant-calling pipelines. The runtime for
mapexr is linear in the number of variants to be filtered, processing
roughly 250 variants per minute on a 4-core machine (Figure S1).

MAPEX has only one tunable parameter, the minimum mapping
quality score required for a variant read. The default minimum score is 1,
which includes all reads with an unambiguous best mapping. In pipelines
in which a minimum mapping quality score is used for variant calling,
that score should also be supplied to mapexr, to prevent evaluating reads
that were not used by the variant caller. The output from mapexr is an R
data frame with four columns – chromosome, start location, variant score,
and variant classification – and one row for each variant evaluated. Users
may also optionally provide a file path to mapexr which will generate
a tab-delimited file with BLAST results and scores at the read level. The
user can choose the variant score threshold used to classify variants as
human- or mouse-derived. Here we use a threshold of 0.5, so that a variant
is flagged as spurious if less than half of the supporting reads BLAST
as “on target”. In practice, the distribution of variant scores is bimodal
and highly concentrated at 0 and 1, so results are insensitive to the exact
threshold (Fig. S2).
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Fig. 2. Comparison of MuTect 1.1.1 variants calls between MAPEX, combined reference,
and bamcmpmethods. A: Detailed breakdown of variant call overlap between the unfiltered
human alignment (squares), MAPEX filtered human alignment (right circles), bamcmp
filtered human alignment (top circles) and unfiltered combined alignment (bottom circles)
for representative PDXs created from three different primary tumors. B: Variant allele
frequencies for calls in 34 PDX samples that are concordant (n=1663 variants) and
discordant (n=552 variants) between the methods. C: Comparison of total calls between
the methods, n=34 PDX samples. Boxplots depict 25th and 75th percentile with 1.5⇥IQR
whiskers. Notches are Median ± 1.58⇥IQR/sqrt(n), and represent rough estimates of 95%
confidence interval around the median.

4.2 Filtering mouse calls from PDX samples

One important use case for MAPEX is as a post-variant-calling filter for
PDX samples that have been aligned to a human reference genome. To test
the precision of MAPEX, we compared variant calls from aligning reads
to the human reference and filtering with MAPEX to calls from two other
methods. The first alternate method is to align reads to a combined human
and mouse reference and then call variants (Bruna et al., 2016), which we
refer to as the “combined reference” method. This requires similar CPU
time to using MAPEX. The second method is to align reads separately to
human and mouse references and call variants using only those reads that
align better to the human reference, which is the method implemented in
bamcmp (Khandelwal et al., 2017). This requires twice as much CPU time
for alignment as MAPEX, and the post-alignment step is typically faster for
MAPEX (Fig. S3). For three representative PDX tumors, all three methods
yield similar callsets (Figure 2A). The differences are primarily confined to
low-frequency variants, and almost all high-frequency variants are called
by all three methods (Figure 2B). MAPEX might reduce power to identify
low-frequency subclonal variants, if some of the few reads supporting a
variant BLASTed to incorrect locations. This would yield an intermediate
variant score. Because variant scores are strongly bimodal (Fig. S2), we
expect that MAPEX causes little to no reduction in power. Across 34

Figure 2.2. Comparison of MuTect 1.1.1 variants calls between MAPEX, com-
bined reference, and bamcmp methods. A: Detailed breakdown of variant call overlap
between the unfiltered human alignment (squares), MAPEX filtered human align-
ment (right circles), bamcmp filtered human alignment (top circles) and unfiltered
combined alignment (bottom circles) for representative PDXs created from three dif-
ferent primary tumors. B: Variant allele frequencies for calls in 34 PDX samples
that are concordant (n=1663 variants) and discordant (n=552 variants) between the
methods. C: Comparison of total calls between the methods, n=34 PDX samples.
Boxplots depict 25th and 75th percentile with 1.5×IQR whiskers. Notches are Me-
dian ± 1.58×IQR/sqrt(n), and represent rough estimates of 95% confidence interval
around the median.
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the primary tumor, but 23% to 90% of variants called after MAPEX filtering were

found in the primary tumor (Table S1). This suggests that MAPEX enriches strongly

for true variants. Among variants found both in the primary after MAPEX filtering

and in the PDX before MAPEX filtering, 97% to 100% were retained in the PDX

after MAPEX filtering (Table S1). Only one variant identified in each of two primary

tumors was filtered by mapexr in a derived PDX. In primary tumor EMC1222, only

60% (slightly above the 50% cutoff) of variant reads mapped on-target for the pri-

mary variant (suggesting that it may be a spurious variant caused by a paralogous

sequence), while in the PDXs only 20-45% (slightly below the cutoff) of variant reads

mapped on-target. In EMC226, the variant appears to be from human wild-type to

mouse wild-type, so 55% of variant reads (in a PDX with 57% mouse contamination),

mapped to the mouse genome. Together these results suggest that MAPEX removes

few true variants.

To validate the usefulness of MAPEX in practice, we focused on calls within known

cancer-associated genes, using the COSMIC database . Among the pancreatic ductal

adenocarcinoma (PDAC) samples in COSMIC, 34 genes are mutated in more than

3% of samples. Before filtering with MAPEX, 910 variants were found in these genes

among the 34 PDXs we studied. After filtering with MAPEX, only 70 variants were

retained.

These results suggest that MAPEX removes many false positives, dramatically

simplifying variant interpretation. Of particular interest are KRAS, TP53, and

SMAD4, which are the most commonly mutated genes in PDAC (Table 2.1). All

of the KRAS mutations filtered by MAPEX are I187V mutants, which result from

aligning wild-type mouse KRAS reads to human KRAS, and all 34 PDXs retained

the KRAS mutation found in their primary tumor. All of the SMAD4 and TP53

mutations that were retained by MAPEX in the PDXs also appeared in the corre-

sponding primary tumors, and all of those filtered were not found in the corresponding

primary tumors. ARID1A is particularly susceptible to spurious variants caused by
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Table 2.1. Variants detected in PDX samples for important PDAC genes.

before MAPEX after MAPEX
Total Samples with Total COSMIC

Gene variants a variant variants prevalence
KRAS 56 34 34 0.64
TP53 9 9 7 0.39
SMAD4 5 5 5 0.14
SYNE1 3 3 0 0.05
CSMD3 96 25 0 0.05
GNAS 6 6 6 0.05
HMCN1 10 5 0 0.04
APC 12 11 0 0.04
NEB 31 17 0 0.04
WDFY4 6 4 1 0.04
LRP1B 32 18 1 0.04
ARID1A 131 33 1 0.04

mouse contamination; only one of the 133 variants originally called in ARID1A was

retained by MAPEX. We confirmed that the single retained variant was found in

the primary tumor from which the PDX was derived, while none of the 132 rejected

variants were found in their corresponding primaries.

2.5.3 Effects of variant call filters on PDXs

We carried out our primary analyses with the variant caller MuTect 1.1.1, but to test

the performance of MAPEX with other variants callers, we also considered MuTect2

and Varscan 2.

If mouse contamination were perfectly filtered, the number of called variants

should not depend on the level of mouse contamination. For all three variant callers

the number of raw calls was strongly correlated with estimated mouse contamination

(Fig. 2.3A-C), although MuTect2 and Varscan2 did produce substantially fewer calls

overall than MuTect 1. After filtering with MAPEX, the numbers of variants called by

all three callers was not significantly correlated with the level of mouse contamination

(Fig. 2.3D-F).

Importantly, as a post-variant-calling filter, MAPEX can not evaluate variants



36

“mapex” — 2017/12/13 — page 4 — #4

4 Mannakee et al.

Table 1. Variants detected in PDX samples for important PDAC
genes.

before MAPEX after MAPEX
Total Samples with Total COSMIC

Gene variants a variant variants prevalence
KRAS 56 34 34 0.64
TP53 9 9 7 0.39
SMAD4 5 5 5 0.14
SYNE1 3 3 0 0.05
CSMD3 96 25 0 0.05
GNAS 6 6 6 0.05
HMCN1 10 5 0 0.04
APC 12 11 0 0.04
NEB 31 17 0 0.04
WDFY4 6 4 1 0.04
LRP1B 32 18 1 0.04
ARID1A 131 33 1 0.04

that were also found in the primary tumor and removes few PDX calls that
were found in the primary tumor. Among variants in the PDXs, only 0.3%
to 10% called before MAPEX filtering were also found in the primary
tumor, but 23% to 90% of variants called after MAPEX filtering were
found in the primary tumor (Table S1). This suggests that MAPEX enriches
strongly for true variants. Among variants found both in the primary after
MAPEX filtering and in the PDX before MAPEX filtering, 97% to 100%
were retained in the PDX after MAPEX filtering (Table S1). Only one
variant identified in each of two primary tumors was filtered by mapexr
in a derived PDX. In primary tumor EMC1222, only 60% (slightly above
the 50% cutoff) of variant reads mapped on-target for the primary variant
(suggesting that it may be a spurious variant caused by a paralogous
sequence), while in the PDXs only 20-45% (slightly below the cutoff)
of variant reads mapped on-target. In EMC226, the variant appears to be
from human wild-type to mouse wild-type, so 55% of variant reads (in
a PDX with 57% mouse contamination), mapped to the mouse genome.
Together these results suggest that MAPEX removes few true variants.

To validate the usefulness of MAPEX in practice, we focused
on calls within known cancer-associated genes, using the COSMIC
database . Among the pancreatic ductal adenocarcinoma (PDAC) samples
in COSMIC, 34 genes are mutated in more than 3% of samples. Before
filtering with MAPEX, 910 variants were found in these genes among
the 34 PDXs we studied. After filtering with MAPEX, only 70 variants
were retained. These results suggest that MAPEX removes many false
positives, dramatically simplifying variant interpretation. Of particular
interest are KRAS, TP53, and SMAD4, which are the most commonly
mutated genes in PDAC (Table 1). All of the KRAS mutations filtered
by MAPEX are I187V mutants, which result from aligning wild-type
mouse KRAS reads to human KRAS, and all 34 PDXs retained the KRAS
mutation found in their primary tumor. All of the SMAD4 and TP53
mutations that were retained by MAPEX in the PDXs also appeared in
the corresponding primary tumors, and all of those filtered were not found
in the corresponding primary tumors. ARID1A is particularly susceptible
to spurious variants caused by mouse contamination; only one of the
133 variants originally called in ARID1A was retained by MAPEX. We
confirmed that the single retained variant was found in the primary tumor
from which the PDX was derived, while none of the 132 rejected variants
were found in their corresponding primaries.
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Fig. 3. Effects of variant caller on analyzing xenograft samples with MAPEX. A,B,C:
For all three calling algorithms and 34 xenograft samples (black dots), the number of raw
variants called was strongly dependent on estimated mouse contamination. D,E,F: After
filtering with MAPEX, the number of calls was independent of mouse contamination for all
three callers. Lines show linear regressions and shading denotes 95% confidence intervals.

4.3 Effects of variant call filters on PDXs

We carried out our primary analyses with the variant caller MuTect 1.1.1,
but to test the performance of MAPEX with other variants callers, we also
considered MuTect2 and Varscan 2.

If mouse contamination were perfectly filtered, the number of called
variants should not depend on the level of mouse contamination. For
all three variant callers the number of raw calls was strongly correlated
with estimated mouse contamination (Fig. 3A-C), although MuTect2 and
Varscan2 did produce substantially fewer calls overall than MuTect 1. After
filtering with MAPEX, the numbers of variants called by all three callers
was not significantly correlated with the level of mouse contamination
(Fig. 3D-F).

Importantly, as a post-variant-calling filter, MAPEX can not evaluate
variants that were not initially called. Filters implemented with a variant
caller, generally designed to improve results from primary tumors, can
cause problems when using MAPEX. For example, MuTect2 applies a
clustered event filter designed to reduce the number of false-positive variant
calls due to mis-alignment of highly paralogous sequences. In regions of
high similarity between mouse and human, this filter can remove true
variants. For instance, Figure 4 shows the result of aligning a PDX with
modest mouse contamination to the human reference for a small portion of
the KRAS oncogene. MuTect 1.1.1 and Varscan 2 both called three variants
at this locus, and MAPEX correctly rejected the two spurious variants
arising from mouse contamination and retained the true G12D variant.
MuTect2 fails to call any of these variants, because they are filtered as likely
homologous mapping events, so MAPEX does not see and cannot retain
the true G12D variant. In our PDX samples, we found instances of the
clustered event filter removing true variants from other PDAC oncogenes,
including SMAD4 and TP53.

Overall, the performance of MAPEX does not depend sensitively
on the variant caller used, but callers can introduce specific biases. In
particular, the default parameters for Varscan 2 yield high sensitivity but
low specificity, so the use of the built-in post-call variant filters is necessary
to prevent excessive false positives (Fig. S4). By contrast, the default
parameters for MuTect2 yield much higher specificity, but at the cost of
sensitivity in the PDX context. Currently, the clustered event filter cannot
be disabled in MuTect2. We thus advise that users pairing MAPEX with
MuTect2 be cautious when interpreting callsets from PDX samples in
genes with high similarity between human and mouse.

4.4 Flagging potential false positives resulting from
paralogous sequences

In addition to removing mouse contamination from PDX samples,
MAPEX can also filter potential paralogs in primary samples. Across

Figure 2.3. Effects of variant caller on analyzing xenograft samples with MAPEX.
A,B,C: For all three calling algorithms and 34 xenograft samples (black dots), the
number of raw variants called was strongly dependent on estimated mouse contami-
nation. D,E,F: After filtering with MAPEX, the number of calls was independent of
mouse contamination for all three callers. Lines show linear regressions and shading
denotes 95% confidence intervals.

that were not initially called. Filters implemented with a variant caller, generally

designed to improve results from primary tumors, can cause problems when using

MAPEX. For example, MuTect2 applies a clustered event filter designed to reduce

the number of false-positive variant calls due to mis-alignment of highly paralogous

sequences. In regions of high similarity between mouse and human, this filter can

remove true variants. For instance, Figure 2.4 shows the result of aligning a PDX

with modest mouse contamination to the human reference for a small portion of

the KRAS oncogene. MuTect 1.1.1 and Varscan 2 both called three variants at this

locus, and MAPEX correctly rejected the two spurious variants arising from mouse

contamination and retained the true G12D variant. MuTect2 fails to call any of these

variants, because they are filtered as likely homologous mapping events, so MAPEX

does not see and cannot retain the true G12D variant. In our PDX samples, we

found instances of the clustered event filter removing true variants from other PDAC

oncogenes, including SMAD4 and TP53.

Overall, the performance of MAPEX does not depend sensitively on the variant

caller used, but callers can introduce specific biases. In particular, the default param-
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eters for Varscan 2 yield high sensitivity but low specificity, so the use of the built-in

post-call variant filters is necessary to prevent excessive false positives (Fig. S4). By

contrast, the default parameters for MuTect2 yield much higher specificity, but at the

cost of sensitivity in the PDX context. Currently, the clustered event filter cannot be

disabled in MuTect2. We thus advise that users pairing MAPEX with MuTect2 be

cautious when interpreting callsets from PDX samples in genes with high similarity

between human and mouse.

2.5.4 Flagging potential false positives resulting from paralogous sequences

In addition to removing mouse contamination from PDX samples, MAPEX can also

filter potential paralogs in primary samples. Across 93 PDAC primary tumors, a

mean of 11% of total variant calls were flagged by MAPEX as potential paralogs,

with a range of 2-33%. The genes in which variants were most frequently flagged as

potentially arising from paralogous sequences include members of large gene families,

such as mucins, zinc-finger nucleases, and the PRAME family (Table 2.2). Variants

in citrate synthase (CS) were also frequently flagged (Table 2.2). Citrate synthase has

a known pseudogene NCBI: LOC440514 that was responsible for all of the spurious

calls. We called variants with MuTect 1.1.1 and filtered with MAPEX, but MuTect2

includes new clustered event and read-mapping quality filters to prevent calling vari-

ants caused by paralogs. Using MAPEX yielded call sets that were identical with

MuTect2 for all the genes in Table 2.2, with the exception of MUC12 and MUC5B,

which differed by 3 variants. MAPEX can thus be efficiently and confidently used

to remove variants that likely arise from paralogous sequences, with the additional

benefit that the reason for classifying a variant as a potential paralog, as well as the

genomic locations of the paralogous sequences, can be investigated.
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Fig. 4. This Integrative Genomics Viewer (Thorvaldsdóttir et al., 2013) window covers a
portion of the human KRAS gene. The C>T variant is the classic KRAS G12D mutation
that appears in many PDAC tumors. The A>G and T>C variants both result from aligning
wild-type mouse reads to the human sequence. When used with MuTect 1.1.1 or Varscan
2, MAPEX correctly retains only the G12D variant. MuTect2, however, filters all three
variants, so the G12D variant cannot be retained.

93 PDAC primary tumors, a mean of 11% of total variant calls were
flagged by MAPEX as potential paralogs, with a range of 2-33%. The
genes in which variants were most frequently flagged as potentially arising
from paralogous sequences include members of large gene families, such
as mucins, zinc-finger nucleases, and the PRAME family (Table 2).
Variants in citrate synthase (CS) were also frequently flagged (Table 2).
Citrate synthase has a known pseudogene NCBI: LOC440514 that
was responsible for all of the spurious calls. We called variants with
MuTect 1.1.1 and filtered with MAPEX, but MuTect2 includes new
clustered event and read-mapping quality filters to prevent calling variants
caused by paralogs. Using MAPEX yielded call sets that were identical
with MuTect2 for all the genes in Table 2, with the exception of MUC12
and MUC5B, which differed by 3 variants. MAPEX can thus be efficiently
and confidently used to remove variants that likely arise from paralogous
sequences, with the additional benefit that the reason for classifying a
variant as a potential paralog, as well as the genomic locations of the
paralogous sequences, can be investigated.

5 Conclusion
Genome sequencing is an increasingly important tool in cancer research,
but spurious variant calls remain a challenge. MAPEX is an algorithm
designed to filter spurious variants caused by mouse reads in patient-
derived xenografts (PDXs) and caused by paralogous sequences in
primary tumors. We showed that MAPEX is as sensitive and specific
as more computationally intensive methods for calling variants from
PDX tumors. We also showed that MAPEX successfully flags variant
calls in potentially problematic gene families in primary tumors. Our
implementation, mapexr, fits cleanly into standard tumor variant-calling
pipelines and runs quickly on modern desktop computers. MAPEX is
thus a potentially useful new component for many tumor variant-calling
pipelines.

Table 2. Top genes for which MAPEX
flagged variants as potentially arising from
paralogs.

Variants Samples with
Gene flagged a flagged variant

ZNF814 15 15
CS 12 7
IGFN1 8 6
KMT2C 7 7
FRG1 6 6
LILRB3 6 6
MUC12 6 6
RGPD3 6 6
USP6 6 3
FCGBP 5 4
MUC5B 5 5
NBPF1 5 3
PRAMEF11 5 4
PRB4 5 3
RGPD8 5 4
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Figure 2.4. This Integrative Genomics Viewer (Thorvaldsdottir et al., 2013) window
covers a portion of the human KRAS gene. The C>T variant is the classic KRAS
G12D mutation that appears in many PDAC tumors. The A>G and T>C variants
both result from aligning wild-type mouse reads to the human sequence. When used
with MuTect 1.1.1 or Varscan 2, MAPEX correctly retains only the G12D variant.
MuTect2, however, filters all three variants, so the G12D variant cannot be retained.
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Table 2.2. Top genes for which MAPEX flagged variants as potentially arising from
paralogs.

Variants Samples with
Gene flagged a flagged variant

ZNF814 15 15
CS 12 7
IGFN1 8 6
KMT2C 7 7
FRG1 6 6
LILRB3 6 6
MUC12 6 6
RGPD3 6 6
USP6 6 3
FCGBP 5 4
MUC5B 5 5
NBPF1 5 3
PRAMEF11 5 4
PRB4 5 3
RGPD8 5 4

2.6 Conclusion

Genome sequencing is an increasingly important tool in cancer research, but spurious

variant calls remain a challenge. MAPEX is an algorithm designed to filter spuri-

ous variants caused by mouse reads in patient-derived xenografts (PDXs) and caused

by paralogous sequences in primary tumors. We showed that MAPEX is as sensi-

tive and specific as more computationally intensive methods for calling variants from

PDX tumors. We also showed that MAPEX successfully flags variant calls in po-

tentially problematic gene families in primary tumors. Our implementation, mapexr,

fits cleanly into standard tumor variant-calling pipelines and runs quickly on modern

desktop computers. MAPEX is thus a potentially useful new component for many

tumor variant-calling pipelines.
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Chapter 3

BATCAVE: Bayesian Analysis Tools for

Context-Aware Variant Evaluation

3.1 Abstract

Detecting somatic mutations withins tumors is key to understanding treatment re-

sistance, patient prognosis, and tumor evolution. Mutations at low allelic frequency,

those present in only a small portion of tumor cells, are particularly difficult to detect.

Many algorithms have been developed to detect such mutations, but none models a

key aspect of tumor biology. Namely, every tumor has its own profile of mutation

types that it tends to generate. We present BATCAVE (Bayesian Analysis Tools

for Context-Aware Variant Evaluation), an algorithm that first learns the individual

tumor mutational profile and mutation rate then uses them in a prior for evaluating

potential mutations. We also present an R implementation of the algorithm, built on

the popular caller MuTect. Using simulations, we show that adding the BATCAVE

algorithm to MuTect improves variant detection. It also improves the calibration of

posterior probabilities, enabling more principled tradeoff between precision and re-

call. We also show that BATCAVE performs well on real data. Our implementation

is computationally inexpensive and straightforward to incorporate into existing Mu-

Tect pipelines. More broadly, the algorithm can be added to other variant callers,

and it can be extended to include additional biological features that affect mutation

generation.

3.2 Introduction

Cancer develops through the accumulation of somatic mutations and clonal selection

of cells with mutations that confer an advantage. Understanding the evolutionary
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history of a tumor, including the mutations that drive its growth, the genetic di-

versity within it, and the accumulation of new mutations, requires accurate variant

identification, particularly at low variant allele frequency (Williams et al., 2016; Bozic

et al., 2016; Williams et al., 2018b; Shi et al., 2018). Accurate variant calling is also

critical for optimizing the treatment of individual patients’ disease (Ding et al., 2012;

Mardis, 2012; Chen et al., 2013; Borad et al., 2014; Findlay et al., 2016). Low fre-

quency mutations challenge current variant calling methods, because their signature

in the data is difficult to distinguish from the noise introduced by Next Generation

Sequencing (NGS), and this challenge increases with sequencing depth.

Many methods have been developed for calling somatic mutations from NGS data.

The earliest widely used somatic variant callers developed specifically for tumors,

MuTect1 (Cibulskis et al., 2013) and Varscan2 (Koboldt et al., 2012), used a com-

bination of heuristic filtering and a model of sequencing errors to identify and score

potential variants and set a threshold score designed to balance sensitivity and speci-

ficity. Subsequent research gave rise to a number of alternate strategies, including

haplotype-based calling (Garrison & Marth, 2012), joint genotype analysis (Somatic-

Sniper (Larson et al., 2012), JointSNVMix2 (Roth et al., 2012), Seurat (Christoforides

et al., 2013), CaVEMan (Jones et al., 2016), and MuClone (Dorri et al., 2019)), al-

lele frequency-based analysis (Strelka (Saunders et al., 2012), LoFreq (Wilm et al.,

2012), EBCall (Shiraishi et al., 2013), deepSNV (Gerstung et al., 2012), LoLoPicker

(Carrot-Zhang & Majewski, 2017), and MuSE (Fan et al., 2016)), and ensemble and

deep learning methods (MutationSeq (Ding et al., 2012), BAYSIC (Cantarel et al.,

2014), SomaticSeq (Fang et al., 2015), and SNooPer (Spinella et al., 2016)). These

methods vary in their complexity and specific focus. But they all implicitly or explic-

itly assume that the rate of mutation is uniform across the genome.

The mutational processes that generate single nucleotide variants in tumors do not

act uniformly across the genome. If fact, even the processes of spontaneous mutation

that are active in all somatic tissues depend sensitively on local nucleotide context
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(Nik-Zainal et al., 2012a; Alexandrov et al., 2015; Lee-Six et al., 2018). Additional mu-

tational processes are active in tumors, due to mutagen exposure or defects in DNA

maintenance and repair, and these processes are also sensitive to local nucleotide

context (Alexandrov et al., 2013b; Helleday et al., 2014b; Nik-Zainal et al., 2016;

Kandoth et al., 2013; Alexandrov et al., 2016). The specific mutational processes ac-

tive in a particular tumor generate its unique mutation profile, and differences within

and between tumor types are pronounced (Stephens et al., 2005; Burrell et al., 2013;

Nakamura et al., 2015; Witkiewicz et al., 2015; Kumar et al., 2016). For example,

the mutation profiles differ substantially among the three breast tumors illustrated

in Figure 3.1B-D.

Here we present an enhanced variant-calling algorithm that uses the biology of

each individual tumor’s mutation profile to improve identification of low allelic fre-

quency mutations. Our BATCAVE algorithm first estimates the tumor’s mutation

profile and mutation rate using high-confidence variants and then uses them as a prior

when calling other variants. Our R implementation of the algorithm, batcaver, takes

output from the MuTect variant caller as input and returns the posterior probability

that a site is variant for every site observed by MuTect. Using both simulated and

real data, we show that the addition of a mutation profile prior to MuTect produces a

superior variant caller. Our algorithm is simple and computationally inexpensive, and

it can be integrated into numerous other variant callers. Broad adoption of our ap-

proach will enable more confident study of low allelic frequency mutations in tumors

in both research and clinical settings.

3.3 Materials and methods

3.3.1 Somatic variant calling probability model

At every site in the genome with non-zero coverage, Next Generation Sequencing

produces a vector x = ({bi}, {qi}), i = 1 . . . d of base calls b and their associated
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Figure 3.1. Real tumor mutation profiles. In each panel, the x-axis corresponds
to each of the 96 possible mutation types, and the y-axis is the proportion of total
mutations of each type. (A) The observed mutation profile of an acute myeloid
leukemia used in our real data analysis (Griffith et al., 2015). (B) The observed
mutation profile of a breast tumor used in our real data analysis (Shi et al., 2018).
(C)&(D) The observed mutation profiles of two additional breast tumors (Alexandrov
et al., 2019).
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quality scores q, where d is local read depth. Variant callers use the data x to choose

between competing hypotheses:

H0 : Alt allele = m; ν = 0 (3.1)

H1 : Alt allele = m; ν = f̂ . (3.2)

Here m is any of the 3 possible alternate non-reference bases and ν is the variant

allele frequency. The maximum likelihood estimate of ν is simply f̂ , the number of

variant reads divided by the local read depth. The posterior probability of a given

hypothesis, P(m, ν), is the product of the likelihood of the data given that hypothesis

and the prior probability of that hypothesis. Assuming that reads are independent,

this is

P(m, ν) = p(m, ν) ·
d∏
i=1

fm,ν(xi), (3.3)

where fm,ν(xi) is the probability model for reads, and p(m, ν) is the prior.

Assuming that the identity of the alternate allele and its allele frequency are

independent and that ν is uniformly distributed, Eq. 3.3 becomes

P(m, ν) = p(m) ·
d∏
i=1

fm,ν(xi). (3.4)

The focus of BATCAVE is to provide a tumor- and site-specific estimate of the prior

probability of mutation p(m).

3.3.2 Site-specific prior probability of mutation

The probability that we have denoted p(m) in Eq. 3.4 is more precisely the joint

probability that a mutation has occurred M and that it was to allele m, which we

denote p(m,M). But p(m,M) is not uniform across the genome. Rather it de-

pends on the local genomic context C, so its full form is p(m,M |C) (Buisson et al.,

2019). Assuming that m and M are independent conditional on the genomic context,
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p(m,M | C) = p(m | C)p(M | C), which we can use Bayes’ theorem to further

decompose as

p(m,M | C) = p(m | C)p(C |M)
p(M)

p(C)
. (3.5)

We next show how to estimate the quantities in Eq. 3.5.

3.3.3 Estimation of the mutation profile

Many aspects of genomic architecture can affect the somatic mutation rate at multiple

scales (Buisson et al., 2019). Here we focus on a small-scale feature, the trinucleotide

context, which is known to strongly affect the prior probability of single-nucleotide

mutation (Nik-Zainal et al., 2012a; Alexandrov et al., 2015; Lee-Six et al., 2018). The

trinucleotide context of a genomic site consists of the identity of the reference base

and the 3’ and 5’ flanking bases. Folding the central base to the pyrimidines, there

are two possible bases at the focal site, and there are four possible bases 3’ and 5’ of

the focal site, yielding 2 · 4 · 4 possible tri-nucleotide contexts C. At the focal site, a

mutation m can be to any of three alternate alleles. Indexing by the c = {1 . . . 32}

contexts and by the m = {1 . . . 3} alternate bases, we have 96 possible substitution

types Sm,c. Eq. 3.5 is then

p(Sm,c) = p(m | C = c)p(C = c |M)
p(M)

p(C = c)
. (3.6)

The first two terms on the right-hand side can be estimated from the observed mu-

tation profile (Fig. 3.1).

We model the observed mutation profile S as multinomial with parameter π =

{πm,c}. Each element of π represents the expected proportion of mutations that are to

allele m and in context c. In a tumor with many high-confidence observed mutations,

π could be estimated directly from the observed mutation profile S. But in practice

many entries in π would then have zero weight. We thus model the distribution of S
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as Dirichlet-multinomial with pseudo-count hyper-parameter α,

π | α ∼ Dirichlet(α)

S | π ∼ Multinomial(π).
(3.7)

In BATCAVE we use the symmetric non-informative hyper-parameter α = 1, so a

priori mutation is equally likely to any allele and in any context.

To estimate π, we identify a subset of high confidence variants, based on an

initial calculation of their likelihood given the data. These are variants for which the

evidence in the read data overwhelms any reasonable value of the site-specific prior

probability of mutation. Let D be the set of high confidence variant calls, which we

define as those having posterior odds greater than 10 to 1 without the site-specific

prior, and s ∈ D be the substitution type of each mutation in D. The posterior

distribution of π is then p(π | D) ∼ Dirichlet(α′) where

α′m,c = αm,c +
∑
s∈D

I{s = sm,c}, (3.8)

and I is the indicator function. Returning to Eq. 3.6, given that a mutation has

occurred, the posterior probability it occurred in context c is

p(C = c |M,D) =

∑
m α

′
m,C=c∑

m,c α
′
m,c

. (3.9)

The posterior probability of mutation to allele m given that a mutation has occurred

in context C = c is then

p(m | C = c,D) =
α′m,C=c∑
m α

′
m,C=c

. (3.10)

The prior probability of each particular trinucleotide context p(C = c) is computed

simply as the proportion of sequenced trinucleotide contexts that have context c.

The R implementation of BATCAVE ships with pre-computed tables for both human

whole exomes and whole genomes.
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3.3.4 Estimation of the mutation rate

The final piece of Eq. 3.6 is p(M), the prior probability of mutation, which we

specify as the per-base per-division mutation rate µ. In an exponentially growing

and neutrally evolving tumor, branching process calculations (Williams et al., 2018b)

show that the expected total number of mutations Mtot between two allele frequencies

(fmin,fmax) is

Mtot(fmin, fmax) = N
µ

β

(
1

fmin
− 1

fmax

)
. (3.11)

The number of bases N is 3·109 for a whole genome and 3·107 for a whole exome. The

quantity µ/β is the effective mutation rate, where β is the fraction of cell divisions that

lead to two surviving lineages. We make the simplifying assumption that there is no

cell death (β = 1), so we somewhat over-estimate µ. We then estimate µ by counting

observed high-confidence mutations between allele frequencies fmin and fmax. We set

fmax to be the largest allele frequency in D, but we must choose fmin conservatively,

depending on sequencing depth. In the R implementation of BATCAVE, fmin is a

free parameter. For this paper, we set fmin = 0.05, because we are working at high

depth.

3.3.5 Likelihood function

The current implementation of BATCAVE builds on MuTect, because MuTect reports

the log ratio of the likelihood functions for the null and alternative hypotheses (Eq.

3.1) as TLOD (MuTect1) or t lod fstar (MuTect2). We used MuTect 1.1.7 for all

analyses in this paper, so we have

TLOD = log10

(∏d
i=1 fm,ν=f̂ (xi)∏d
i=1 fm,ν=0(xi)

)
. (3.12)
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The log posterior odds is the log likelihood ratio (TLOD) plus the log prior odds, so

the posterior odds in favor of the alternate hypothesis for a given substitution type is

P(m, ν = f̂)

1− P(m, ν = f̂)
= 10TLOD+logit10(p(Sm,c)). (3.13)

Here p(Sm,c) is the prior probability of a substitution of type Sm,c, as described in

Eq. 3.6 and specified in Eq. 3.9-3.11. When comparing our posterior odds to those of

MuTect, we assume a uniform per-base probability of mutation of 3 · 10−6 (Cibulskis

et al., 2013), so

PMuTect(m, ν = f̂)

1− PMuTect(m, ν = f̂)
= 10TLOD−6. (3.14)

3.3.6 Implementation

We have implemented the BATCAVE algorithm as an R package batcaver. The

package leverages the Bioconductor packages BSgenome (Pagès, 2019), GenomicAlign-

ments (Lawrence et al., 2013), VariantAnnotation (Obenchain et al., 2014), and

SomaticSignatures (Gehring et al., 2015) for fast and memory-efficient variant an-

notation and genomic context identification. Reference sequences are specified as

BSgenome objects, allowing efficient access to genomic context information.

3.3.7 Tumor simulations

We used a neutral branching process with no death and µ = 3·10−6 to simulate realis-

tic distributions of mutation frequencies. Tumors were simulated with three different

mutation profiles composed of COSMIC mutation signatures (version 2) (COSMIC

Consortium, 2019). Each simulated profile includes COSMIC signature 1, which is

found in nearly all tumors and is associated with spontaneous cytosine deamination.

The “Concentrated” profile (Fig. 3.2A) is an equal combination of COSMIC signa-

tures 1, 7, and 11, which has a large percentage of C > T substitutions such as are
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Figure 3.2. Simulated tumor mutation profiles. As in Fig. 3.1, in each panel the
x-axis corresponds to each of the 96 possible mutation types, and the y-axis is the
proportion of total mutations of each type. (A) A mutation profile used for simulating
tumors, made up of equal proportions of COSMIC mutation signatures 1, 7, & 11.
(B) Equal proportions of signatures 1, 4, & 5. (C) Equal proportions of signatures 1,
3, & 5.
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often seen in cancers caused by UV exposure (Alexandrov et al., 2013a). The “In-

termediate” profile (Fig. 3.2B) is an equal combination of COSMIC signatures 1, 4,

and 5, which has been associated with tobacco carcinogens and is representative of

some lung cancers (Alexandrov et al., 2013a). The “Diffuse” profile (Fig. 3.2C) is

an equal combination of COSMIC signatures 1, 3, and 5, which has been associated

with inactivating germline mutations in the BRCA1/2 genes leading to a deficiency

in DNA double strand break repair (Nik-Zainal et al., 2016). Simulated variants were

sampled from a combination of the Cancer Genome Atlas (TCGA) and Pan-Cancer

Analysis of Whole Genomes (PCAWG) databases, which include mutations found in

all types of cancer. Whole genome (100X depth) and whole exome (500X depth) reads

were simulated from the GRCh38 reference genome using VarSim (Mu et al., 2015)

and aligned with BWA (Li & Durbin, 2009), both with default parameters. Variants

were inserted to create tumors with BAMSurgeon with default parameters (Ewing

et al., 2015) and called with MuTect 1.1.7 (Cibulskis et al., 2013) with the following

parameters:

java -Xmx24g -jar $MUTECT JAR --analysis type MuTect --reference sequence $ref path

--dbsnp $db snp

--enable extended output --fraction contamination 0.00 --tumor f pretest 0.00

--initial tumor lod -10.00 --required maximum alt allele mapping quality score

1 --input file:normal $tmp normal --input file:tumor $tmp tumor --out $out path/$chr.txt

--coverage file $out path/$chr.cov.

Variants identified by MuTect are labelled as to whether they pass all filters, fail

to pass only the the evidence threshold tlod f star filter, or fail to pass any other

filter. Variants that passed all filters or failed only tlod f star were then passed to

BATCAVE for prior estimation and rescoring.



52

3.3.8 Calibration metric

To quantify the difference in calibration between MuTect and BATCAVE, we used the

Integrated Calibration Index (Austin & Steyerberg, 2019). Briefly, a loess-smoothed

regression was fit by regressing the binary (True=1, False=0) true variant classifica-

tion against the reported posterior probability for both MuTect and BATCAVE. For

a perfectly calibrated caller, the regression fit would be the diagonal line y = x. The

Integrated Calibration Index is a weighted average of the absolute distance between

the calibration curve and the diagonal line of perfect calibration.

3.3.9 Real data

We analyzed two real data sets, one from an acute myeloid leukemia (AML) (Griffith

et al., 2015) and one from a multi-region sequencing experiment in breast cancer (Shi

et al., 2018). We downloaded the normal and primary whole-genome AML tumor

bam files from dbGaP accession number phs000159.v8.p4. Griffith et al. generated a

platinum set of variant calls for this tumor (Griffith et al., 2015), which we used for

our true positive dataset. We downloaded the normal and tumor whole-exome breast

cancer bam files from NCBI Sequence Read Archive accession SRP070662. Shi et

al. generated a gold set of variant calls for each tumor region sequenced (Shi et al.,

2018), which we used for our true positive dataset. For these multi-region data, we

ran BATCAVE separately on each sequenced region and combined results to generate

precision-recall curves. We called variants using Mutect 1.1.7 as in our simulations,

except that both these data sets were originally aligned to GRCr37, so we used that

reference.
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3.4 Results

We implemented BATCAVE as a post-call variant evaluation algorithm to be used

with MuTect (Versions 1.1.7 or >2.0) (Cibulskis et al., 2013). BATCAVE extracts the

log-likelihood ratio for each potential variant site from the MuTect output, and then it

uses that ratio to separate the potential sites into high and low confidence groups. The

mutation profile and mutation rate are estimated from the high confidence sites, and

the posterior probability of mutation is then recomputed for all sites. The BATCAVE

algorithm is inexpensive, processing 22,000 variants per second on a typical desktop

computer, which corresponds to roughly 100 seconds to process a 500X exome and

2,000 seconds for a 100X whole genome.

To test the performance of BATCAVE, we generated six different tumor/normal

pairs, corresponding to 100X whole genomes and 500X whole exomes for three dif-

ferent mutation profiles. The three mutation profiles were chosen to resemble a

melanoma (concentrated), a lung cancer (intermediate), and a BRCA-driven breast

cancer (diffuse) (Fig. 3.2). We also tested BATCAVE using two real cancer data

sets, a whole-genome Acute Myeloid Leukemia (AML) (Griffith et al., 2015) and a

whole-exome multi-region breast cancer (Shi et al., 2018). In both, deep sequencing

and variant validation were performed with the specific purpose of evaluating tumor

variant calling pipelines. Because our focus is on evaluating the statistical calling

model, we computed all test metrics using only those potential variants that passed

MuTect’s heuristic filters and entered the statistical model.

3.4.1 Tests using simulated data

To improve variant identification, the context-dependent prior probability of muta-

tion must converge to an accurate representation of the data generating distribution

within the set of high-confidence mutations. When applied to simulated data, the

prior converged within a few hundred mutations (Fig. 3.3). For comparison, in our
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Figure 3.3. Convergence of the mutational prior to the data generating distribu-
tion. Plotted is the Kullback-Leibler divergence between the simulated and estimated
profiles versus number of incorporated mutations for whole exomes. Convergence for
whole genomes is similar.

simulated data sets the number of high-confidence mutations ranged between 1,500

and 5,000, and in the real AML we test on it is over 17,000 (Griffith et al., 2015).

We assessed classification performance using the areas under both the receiver

operating characteristic and the precision-recall curves, because the classes are unbal-

anced (approximately 5 to 1 ratio of false to true variants in our simulated data). By

both metrics BATCAVE outperforms MuTect (Fig. 3.4A&B, Fig. 3.6A&B, and Ta-

ble 3.1). The extent of the performance difference is dependent on both the sequencing

depth and the concentration of the mutation profile. Deeper sequencing and more

concentrated mutation profiles increase the performance advantage of BATCAVE.

For all simulated tumors, the estimated mutation rate was approximately 3 · 10−7

Table 3.1. Variant calling metrics for all data sets.
Scenario Mutation profile µ AUROC AUPRC ICI

(estimated) MuTect BATCAVE MuTect BATCAVE MuTect BATCAVE
100X whole genome Concentrated 3.6e-7 .987 .993 .972 .975 .117 .287
100X whole genome Intermediate 3.2e-7 .987 .989 .972 .973 .118 .214
100X whole genome Diffuse 3.2e-7 .988 .989 .971 .973 .120 .219
500X whole exome Concentrated 3.6e-7 .848 .929 .674 .758 .138 .109
500X whole exome Intermediate 3.6e-7 .847 .881 .677 .706 .108 .112
500X whole exome Diffuse 3.6e-7 .850 .873 .676 .698 .105 .116
real AML (Griffith et al., 2015) Actual 3.6e-8 – – .995 .996 – –
real breast (Shi et al., 2018) Actual 3.6e-8 – – .972 .972 – –

µ = per-base mutation rate, AUROC/AUPRC = Area Under Receiver Operating
Characteristic / Precision-Recall Curve, ICI = Integrated Calibration Index. Smaller
values of ICI are superior.
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(Table 3.1), which is lower than the simulated rate of 3 · 10−6. This is likely due to

restrictions within BAMSurgeon, such as sequencing depth and quality, that prevent

100% of simulated variants from being inserted into the reads.

We also assessed calibration, the likelihood that a potential variant with a given

posterior probability is actually a true variant. We measured overall calibration per-

formance using the Integrated Calibration Index (ICI) (Austin & Steyerberg, 2019),

which integrates the difference between predicted and observed probabilities, weighted

by the density of the predicted probabilities. This metric is particularly useful in

our case, because the density of posterior probabilities is bi-modal (Fig. 3.4C&D

and 3.6C&D). A large fraction of true negative variants have posterior probabilities

less than 10−4, far below any meaningful threshold, so we evaluated calibration only

on potential variants with posterior probability greater than 0.01. For these potential

variants, BATCAVE tends to increase posterior probabilities of low probability but

true variants (density curves in Fig. 3.4C&D and 3.6C&D) while decreasing prob-

abilities of low probability but false variants. For 500X exomes, the calibration of

BATCAVE is better than MuTect across the full spectrum of posterior probabilities

(Fig. 3.4 and Table 3.1). For 100X whole genomes, the calibration of BATCAVE is

slightly worse (Fig. 3.6 and Table 3.1), likely because there are few low probability

true positive variants in tumors sequenced to 100X depth. As with the other metrics,

the advantage of BATCAVE increases with the concentration of the mutation profile

and the sequencing depth.

In practice, variant callers are typically used with a threshold score above which

a variant is called. The user’s choice of threshold ideally meets their need to bal-

ance precision and recall; accurate posterior probability estimates enable an informed

choice. For posterior probability thresholds between 60 and 90%, the precision of

BATCAVE calls is similar to the chosen threshold (Fig. 3.5&3.7). For this range

of thresholds, however, the posterior probabilities from MuTect poorly predict pre-

cision (Fig. 3.5&3.7). For any posterior probability threshold above 70%, MuTect
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Figure 3.5. Posterior probability calibration for realistic calling thresholds, for 500X
exomes. Plotted is precision and recall for variants identified using various realistic
posterior probability thresholds. At these thresholds, the precision of BATCAVE is
much closer to the given threshold than MuTect, no matter the concentration of the
mutation profile.

has a false positive rate of roughly 8%, whereas BATCAVE has a false positive rate

that decreases as the threshold increases. The cost of MuTect’s compressed range

of posterior probabilities is recall; at any posterior probability threshold BATCAVE

has recall better than MuTect. Consequently, BATCAVE posterior probabilities are

more informative than MuTect’s with regard to choosing a calling threshold.

3.4.2 Tests using real tumor data

We tested BATCAVE using two data sets for which deep sequencing and variant val-

idation were performed with the express purpose of evaluating tumor variant calling

pipelines, yielding high quality true and false positive data (Griffith et al., 2015; Shi

et al., 2018). However, only variants called by at least one variant caller were vali-

dated. As a result, there are no validated true or false negative calls, so we considered

only precision-recall comparisons for these data.

Griffith et al. sequenced the whole genome of an acute myeloid leukemia (AML)
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primary tumor to a depth of >360X and used targeted sequencing to validate nearly

200,000 mutations (Griffith et al., 2015). We estimated a per-base mutation rate for

this tumor of 4 · 10−8, which is consistent with previous estimates of AML mutation

rates (Griffith et al., 2015; Williams et al., 2018b). For both MuTect and BATCAVE,

the precision-recall curve is almost perfect for the validated variants (.995 & .996 area

under the curve) (Fig. 3.4E and Table 3.1).

Shi et al. performed multi-region whole exome sequencing on six individual breast

tumors to a mean target sequencing depth of 160X and validated all variants identified

by three different variant calling pipelines (Shi et al., 2018). We estimated an average

per-base mutation rate for these tumor regions of 4 · 10−8, which is consistent with

observed mutation rates for breast cancers (Alexandrov et al., 2019) and with the

low number of validated somatic mutations. For the validated variants, MuTect and

BATCAVE yielded almost identical precision-recall curves (Fig. 3.4F and Table 3.1)

3.5 Discussion

BATCAVE is an algorithm that leverages the biology of individual tumor muta-

tion profiles to improve identification of low allelic frequency somatic variants. Our

implementation is built on MuTect, one of the most widely used somatic variant

callers. BATCAVE improves on the classification accuracy of MuTect in synthetic

data (Fig. 3.4A-D, 3.6, and Table 3.1) across the entire range of recall and specificity.

Moreover, BATCAVE is better calibrated than MuTect at relevant posterior probabil-

ity thresholds (Fig. 3.5 and 3.7), allowing researchers and clinicians to make informed

choices about the trade-off between precision and recall. For real data, testing on

validated calls shows that BATCAVE does not degrade performance for variants that

are relatively easy to identify (Fig. 3.4E&F and Table 3.1). The BATCAVE algorithm

can thus be included in a wide variety of sequencing pipelines.

We evaluated BATCAVE with simulated tumors with three different mutation pro-
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files and two real tumors. The simulated diffuse and intermediate profiles (Fig. 3.2A&B)

represent baseline profiles of lung and breast tumors, respectively. And the concen-

trated profile (Fig. 3.2C) represents a tumor driven by a particular mutational process,

such as UV exposure. But mutational profiles are highly heterogeneous, so concen-

trated profiles can be found in any tumor type (e.g., Fig. 3.1C). The two real data

sets we considered are among the few for which extensive validation of variant calls

has been performed (Griffith et al., 2015; Shi et al., 2018). They happen, however, to

have diffuse mutation profiles (Fig. 3.1A&B), which reduces the expected advantage

of BATCAVE over MuTect (Table 3.1). A more fundamental challenge of using these

real data for testing callers is that only a subset of potential variants are validated.

This subset tends to be relatively easy to call, so both MuTect and BATCAVE have

almost perfect precision and recall for variants that pass heuristic filters (Fig. 3.4

and Table 3.1). Moreover, few true negative sites are validated, so specificity and

calibration are impossible to calculate. Deep sequencing experiments that validate

random samples of uncalled potential variants would give much-needed insight into

the differences among statistical models in variant calling.

The improved calibration of BATCAVE posterior probabilities compared to Mu-

Tect provides several advantages. In practice, called variants are often manually

reviewed to further reduce false positives (Barnell et al., 2019). Improved calibration

enables users to focus review on the most questionable variants. In the clinic, iden-

tified variants act as biomarkers for susceptibility to targeted drugs (Boutros, 2015).

Well-calibrated posterior probabilities facilitate the use of probabilistic risk models

in the choice of treatment (Holmberg & Vickers, 2013), rather than an all or nothing

approach. For research purposes, the International Cancer Genome Consortium rec-

ommends that catalogs of somatic mutations target a precision of 95% and a recall

of 80% (International Cancer Genome Consortium, 2019). Achieving this goal while

minimizing cost demands well-calibrated posterior probabilities.

Our current implementation of BATCAVE is as a post-calling algorithm for Mu-
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Tect, but the algorithm is broadly applicable. We chose to build BATCAVE off Mu-

Tect because MuTect is widely used, has state-of-the-art sensitivity and specificity,

and includes numerous heuristic filters and alignment adjustments that reduce the

prevalence of sequencing errors in results (Cibulskis et al., 2013; Griffith et al., 2015).

But the mutational prior can be incorporated into almost any caller with an underly-

ing probabilistic model. For example, Strelka2 computes a joint posterior probability

over tumor and normal genotypes, assuming a constant somatic mutation probability

at each genomic site (Kim et al., 2018). Replacing that constant probability with a

mutational prior would require a more complicated manipulation of the quality scores

output by Strelka than for MuTect, but it is conceptually straightforward.

The BATCAVE algorithm is computationally inexpensive; our current implemen-

tation adds 1 second per 22,000 variants evaluated to a standard GATK best-practices

variant calling pipeline. The majority of the computational cost is associated with

extracting the trinucleotide context for each potential variant site from the reference

genome. Since most callers are already walking the reference genome during the

calling process, extracting the trinucleotide context simultaneously would virtually

eliminate the computational cost of implementing a mutational prior.

The BATCAVE algorithm incorporates genomic context into the probabilistic

model for variant calling. Our current implementation focuses on trinucleotide con-

text, which is known to have a large effect on local mutation rates (Martincorena &

Campbell, 2015; Hollstein et al., 2017). There are, however, many other aspects of

genomic context that can affect local mutation rates (Buisson et al., 2019), includ-

ing replication timing (Stamatoyannopoulos et al., 2009), expression level (Pleasance

et al., 2010), and chromatin organization (Schuster-Böckler & Lehner, 2012). Some of

these, such as replication timing and chromatin organization, could be incorporated

into the BATCAVE mutational prior using the empirical distribution of mutations

in the human germline (Hodgkinson & Eyre-Walker, 2011). Others, such as expres-

sion level, could be tumor-specific, but would require information not available in the
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variant calls to compute. In the long run, we believe that incorporating more tumor

biology into variant calling models will continue to improve performance.

BATCAVE divides the data into two classes: high- and low-confidence variants.

The high-confidence variants are used to estimate the mutational prior and mutation

rate, which are then used to improve the calling of low-confidence variants. Statis-

tically, this is an empirical Bayesian approach (Robbins, 1954), in which the high

and low-confidence variants are treated as parallel experiments (Morris, 1983; Efron,

2014). In general, high-confidence variants tend to have relatively high allelic frequen-

cies, and consequently tend to have arisen early in tumor development. An implicit

assumption of our approach is that the mutational process does not change between

high- and low-confidence variants, implying that the mutational profile of the tumor

is temporally constant. Recent studies have found differences in mutational profiles

among variants of different allelic frequencies (Rubanova et al., 2018), although those

differences are relatively small. A potential extension of the BATCAVE algorithm is

to process potential variants in order of descending allelic frequency and to update

the estimated mutational prior as the algorithm proceeds. This approach might in-

crease sensitivity to low-frequency variants generated by recently-arisen mutational

processes, at the cost of potentially increasing sensitivity to patterns of sequencing

error.

Our results show that adding a mutational prior substantially improves proba-

bilistic variant calling, particularly for tumors with concentrated profiles. Improved

variant calling increases the benefit-to-cost ratio of deep sequencing in both research

and clinical applications. Moreover, BATCAVE proves to be a better calibrated

caller than vanilla MuTect (Fig. 3.5). Different users will prefer different tradeoffs in

terms of precision and recall, which can be more accurately made with BATCAVE.

Our R implementation, batcaver, can be easily incorporated into any MuTect-based

pipeline, and the mutational profile algorithm can be incorporated into many other

callers.
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3.6 Software availability

The batcaver R package can be downloaded or installed from

http://github.com/bmannakee/batcaver

The version of batcaver used to generate results and all analysis code have been

preserved on Zenodo

https://doi.org/10.5281/zenodo.3471715

Python code used to generate simulated tumors has been preserved on Zenodo

https://doi.org/10.5281/zenodo.3471741

3.7 Acknowledgments

This work was supported by the National Science Foundation via Graduate Research

Fellowship award number DGE-1143953 to BKM and by the National Institute of

General Medical Sciences of the National Institutes of Health under award number

R01GM127348 to RNG. We thank Prof. Edward J. Bedrick for fruitful discussions

about the statistical model. This material is based upon High Performance Comput-

ing (HPC) resources supported by the University of Arizona TRIF, UITS, and RDI

and maintained by the UA Research Technologies department.

3.8 Supplementary figures



63

Figure 3.6. Variant-calling performance on simulated 100X whole genomes. As in
Fig. 3.4A-D, but for 100X whole genomes.
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Chapter 4

Conclusion

4.1 Summary of my work

In Chapter 2 I described MAPEX, an algorithm designed to facilitate improved vari-

ant calling from tumors grown in mice (patient-derived xenografts). When human

tumors are grown in mice their blood supply, connective tissue, and immune infiltra-

tion are all performed by mouse cells. As a result, when these tumors are removed and

dissected for sequencing a significant fraction of DNA extracted is from the mouse.

With careful dissection this fraction can be low, leading to the problem of deter-

mining whether low frequency variants identified by a variant calling algorithm are

somatic mutations in the tumor, or derived from wild-type mouse DNA. The MAPEX

algorithm and associated R package mapexr takes as input the NGS reads derived

from the xenograft along with a set of somatic variant calls, and uses the NCBI tool

BLASTN to separate mouse reads from human. MAPEX then outputs a new set of

variant calls classified as either tumor somatic or mouse wild type. I demonstrated

that the algorithm performs as well as competing methods, while being easy to use.

In Chapter 3 I described BATCAVE, an extension of the allele-frequency based

statistical variant calling model, along with an R implementation of the method.

BATCAVE leverages information about the biological processes under way in every

tumor to provide a tumor-and-site-specific prior probability of mutation for every site

in the genome. I show that the new method improves measures of variant classification

ability across a range of sequencing depths and mutation profiles, while adding little

computation to existing variant calling pipelines. The algorithm is general, and can

be easily extended to incorporate a wide variety of functional forms for both the prior

and the likelihood.
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4.2 Future directions

While ensemble and deep learning methods provide promise for improved accuracy

in variant calling, they suffer from the need for external training data and a lack of

biological interpretability. Meanwhile, there remain important improvements to be

made in the older, more interpretable, class of variant callers focused on modeling

posterior probabilities of variants. A major hurdle in the evaluation of variant calling

methods is the scarcity of high quality validated datasets for testing. All major variant

calling validation studies to date use the union of an ensemble of variant callers to

select mutations to validate (Griffith et al., 2015; Shi et al., 2018). As a result,

every validated mutation is by definition callable, and the set of very low frequency

mutations for which the read evidence is ambiguous are not fully characterized in

terms of true positives and true negatives (Griffith et al., 2015; Shi et al., 2018).

What is required for a true test of statistical models for variant classification is to

also validate at least a large random sample of variants for which the heuristic filters all

pass, but the posterior probability for the variant is below the classification threshold.

The paucity of data validated in such a way has led the cancer sequencing meth-

ods field to move away from the underlying statistical model for variant calling and

toward improvements to heuristic filters and alignment. The advantage of focusing

on heuristic filters is that limited sequencing can be done to find common failure

modes, and heuristic rules created to deal with those modes. However, in a world

where every failure mode resulting from the complexity of the genome and the se-

quencing process there will remain a need for a statistical model to deal with the

underlying variant generating process. The work in Chapter 3 of this dissertation is

a demonstration of the potential benefits that can be derived from better models of

the mutation generating process. My hope is that this demonstration will shift the

cost-benefit characteristics of deep tumor sequencing and variant validation experi-

ments, resulting in data sets amenable to the complete investigation of the properties
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of detailed models of the mutation generating process.

Genomic contexts that effect the probability of mutation occur at multiple scales

(Buisson et al., 2019). The tri-nucleotide context is a small scale feature comprised

of three adjacent bases. Other important mutational processes, such as mutational

hotspots resulting from DNA minor groove orientation around nucleosomes (Pich

et al., 2018), non-canonical DNA secondary structures (Georgakopoulos-Soares et al.,

2018), and DNA hairpins (Buisson et al., 2019), are characterized by mesoscale fea-

tures comprised of approximately 30 nucleotides. Finally, large scale processes op-

erating at the chromosome or chromosome region level (Hodgkinson & Eyre-Walker,

2011) and replication timing (Stamatoyannopoulos et al., 2009) are known to effect

mutation rates. The method in Chapter 3 could be extended to account for many of

these meso- and large-scale processes through the incorporation of annotated genome

maps containing relative mutation rates at multiple scales.

An inherent assumption of my work is that while every tumor has its own charac-

teristic mutation rate, that mutation rate is the same at every region of the genome.

In other words, a particular genomic context has the same prior probability of mu-

tation wherever it occurs. While this assumption is better that assuming than every

tumor has the same underlying mutation rate, there is potentially a great deal of

benefit from incorporating large scale features of the genome and their demonstrated

effect on the local mutation rate. For instance, There is a strong 10-bp periodicity

in mutation rate associated with DNA minor groove orientation around nucleosomes,

and the magnitude of this effect is dependent on the same mutational processes un-

derlying the tri-nucleotide context mutation profile (Pich et al., 2018). I believe that

modeling minor groove orientation mapping and tri-nucleotide context mutation pro-

files my provide significant improvement to the statistical model developed in Chapter

3.

The accumulation of mutations in a tumor is an evolutionary process, with impor-

tant implications for tumor biology. In Chapter 3 I make the explicit assumption that
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the mutation processes operating in a tumor are constant throughout tumor evolu-

tion. One important addition to the work presented here will be to use large datasets

of validated mutations to investigate the evolution of mutational processes. Better

validated data sets and very deep sequencing will be required to do this because

most variants present in a tumor are present at low frequency, and a large num-

ber of variants are required to identify change-points in mutation profiles (Rubanova

et al., 2018). It is my sincere hope that the contributions in this dissertation help to

facilitate the evolution of the field along these lines.
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