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The flight ability of animals is restricted by the scaling effects imposed by physical 

and physiological factors. In comparisons of the power available from muscle and 

the mechanical power required to fly, theoretical studies have predicted that the 

margin between the powers should decrease with body size and that flying animals 

have a maximum body size1-7. However, predicting an absolute value of this upper 

limit has been difficult because wing morphology and flight styles vary among 

species. Albatrosses and petrels have long, narrow, aerodynamically efficient wings 

and are considered to be soaring birds. Here, using animal-borne accelerometers, 

we show that scaling analyses of wing-flapping frequencies in these seabirds 

indicate that the maximum size limit for soaring animals is a body mass of 41 kg 

and a wingspan of 5.1 m. Soaring seabirds were observed to have two modes of 

flapping frequencies: vigorous flapping during takeoff and sporadic flapping 

during cruising flight. In these species, high and low flapping frequencies were 

found to scale with body mass (mass–0.30 and mass–0.18) in a manner similar to the 

predictions from biomechanical flight models (mass–1/3 and mass–1/6)2, 4, 6, 8-10. The 
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scaling relationships predicted that animals larger than the limit will not be able to 

flap fast enough to stay aloft under unfavourable wind conditions. Our result 

therefore casts doubt on the flying ability of large, extinct pterosaurs. The largest 

extant soarer, the wandering albatross, weighs about 10 kg, which might be a 

pragmatic limit to maintain a safety margin for sustainable flight and to survive in 

a variable environment.  

     Albatrosses fly thousands of kilometres in a few days to forage11 and always return 

to their nesting grounds during breeding. When albatrosses are viewed from the deck of 

a ship, they seem to transit effortlessly with the ship for a prolonged period with no 

significant flapping of their wings. A combination of the high-aspect ratio of their wings 

and the anatomical capability to lock their wings in a stretched position12 permits 

albatrosses to travel with the lowest energy expenditure among seabirds13. While 

albatrosses are highly specialised for soaring, this does not exactly mean that their flight 

consists only of gliding; rather, they have been observed to flap their wings under calm 

wind conditions12. According to records of heart beat rates, the flight cost of wandering 

albatrosses is the highest during takeoff and is higher during flight in headwinds than 

when the wind is behind them14. One possible explanation is that for albatrosses, both 

takeoff and flying in headwinds require relatively more flapping.  

     Precise kinematic descriptions of wing flapping by free-flying birds are still rare in 

the literature15. In particular, measuring the quantitative characteristics of an entire 

flight, from takeoff to landing, under natural conditions has been virtually impossible. 

However, due to recent innovations in measuring technology, small accelerometers have 

been developed for the study of flight kinematics in the field. Using these animal-borne 

accelerometers, we continuously monitored the flight performance of albatrosses and 

petrels during their long-distance foraging trips at sea. Based on these data, scaling 

analyses were conducted for five procellariiform species, including streaked shearwater 
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Calonectris leucomelas (mean body mass = 0.6 kg, n = 7), white-chinned petrel 

Procellaria aequinoctialis (1.3 kg, n = 5), sooty albatross Phoebetria fusca (2.3 kg, n = 

2), black-browed albatross Thalassarche melanophrys (3.4 kg, n = 4) and wandering 

albatross Diomedea exulans (9.4 kg, n = 8), the largest soaring bird.  

     Figure 1A provides an example of the acceleration records for a streaked shearwater 

during takeoff from the water surface and subsequent flight. A spectrogram calculated 

from the time series data of acceleration indicated that the shearwater flapped with a 

high frequency (7.5 Hz) at the beginning and then sporadically, with a lower constant 

frequency (4.2 Hz), throughout cruising flight. Unsupervised cluster analysis k-means 

methods were used to obtain ten discrete spectra from the entire data of this individual 

(Fig. 1B). Two frequencies, 7.5 and 4.2 Hz, corresponded with continuous flapping 

during takeoff and sporadic flapping during cruising flight, respectively. Since their 

introduction by David Attenborough in his book16 and in his documentary film 

(http://jp.youtube.com/watch?v=Cjmtt_B_i4A), streaked shearwaters have become 

famous as a seabird that climbs trees. Some ornithologists consider that tree-climbing is 

essential for takeoff to compensate for streaked shearwaters’ limited capacity of 

flapping. However, these birds actually have enough capacity for taking off from the 

ground by jumping into the air accompanied by vigorous wing flapping (see 

Supplementary Movie1). Streaked shearwaters are a pelagic seabird that relies on 

marine food resources. During their foraging trips at sea, they sometimes land on the 

sea surface and capture prey by surface-seizing or shallow dives. The ability to achieve 

multiple takeoffs by wing flapping is therefore critical for the survival of streaked 

shearwaters.  

     Data obtained from the largest soaring bird, the wandering albatross, indicate a 

similar pattern (Fig. 1C). Wandering albatrosses usually run on the ground or the sea 

surface during takeoff (see Supplementary Movie2). Our data indicated that they flap at 
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relatively higher frequencies during takeoff than during cruising flight (Fig. 1C). The 

differences between the high and low flapping frequencies of wandering albatrosses 

were not as marked as those of streaked shearwaters (Fig. 1B, D). All individuals in the 

five species of Procellariiformes had ‘top’ and ‘low’ gears for wing flapping. The time 

percentage of flapping varied among individuals within each species (Fig. 2A), possibly 

due to variable wind conditions, as reported in previous observations12, 14. The larger 

species had lower time percentages of slow flapping (Fig. 2A), which indicated a less-

frequent use of flapping. Based on our observations, wandering albatrosses spend only 

1.2–14.5% of time in slow flapping and 0.1–0.4 % in quick flapping, i.e., not zero (Fig. 

2A). Both high and low flapping frequencies decrease, albeit with different slopes, 

according to the size of the bird (Fig. 2B). The lower and higher stroke frequencies were 

proportional to mass–0.18 and mass–0.30, respectively (major axis estimation, see 

Methods).  

     Takeoff is the most crucial task for flying birds and requires more active flapping 

than level flight because the flight speed is zero at the beginning and the birds must 

raise their body mainly by muscular effort. Birds can thus be expected to flap their 

wings at the maximum power of their muscles when taking off. The upper limit of the 

flapping frequency would be proportional to mass–1/3 for geometrically similar birds4, 6, 

8, 9. Indeed, the observed scaling exponent (–0.30) was near the predicted value (–1/3).  

     In level flight, a bird must flap its wings to generate lift, and an optimum wing-

flapping frequency exists at which lift and gravity forces on the bird are in equilibrium 

and mechanical power is minimum for sustainable flight performance6. 

Procellariiformes may be able to keep themselves airborne indefinitely without flapping 

their wings, if the surrounding air is moving1, but when flight is not aided by the winds, 

the birds have to flap to avoid being pulled down by drag and gravity. The slow 

sporadic flapping of Procellariiformes during cruising flight is required to accelerate the 
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birds’ flight speed when wind conditions are unfavourable. The thrust (lift) produced by 
the wing flapping is, 1

2 ρCLSU 2 , where ρ is the density of the air (kg m–3), CL is the lift 

coefficient, S is the area of the wing (m2), U is the speed of the wing (m s–1). The wing 

speed U is proportional to the products of frequency f (Hz = s–1) and the amplitude A 

(m) of wing flapping: U ∝ fA . Assuming geometric and dynamic similarities (CL = 

const., m ∝ L3 , S ∝ L2 and A ∝ L, where m is the mass and L is the representative length 

of the body), the thrust would be proportional to f 2L4 . The amount of resistance that 

confronts a bird seeking to change its flight velocity can be quantified as a function of 

mass (∝ L3). In other words, large body mass is accelerated only with difficulty because 

of the large inertia. This situation can be expressed as f 2L4 ∝ L3. We thus obtain the 

following relationship of the minimum flapping frequency with body mass for 

geometrically similar birds: 

f ∝ m−1/ 6 . (1) 

This relationship is the same for continuously flapping birds4, 6, 9, 10 and close to the 

obtained result of lower flapping frequencies proportional to m–0.18 (Fig. 2B). The 

present study compares phylogenetically but not geometrically similar species 

( wingspan ∝ m0.37 , wingarea ∝ m0.58 , see Methods), with larger species having 

relatively longer and smaller wings. This might partially explain the discrepancy 

between observed and expected scaling of flapping frequency versus body mass.  

     In the Freq-Mass diagram (Fig. 2B), the two lines of the higher and lower flapping 

frequencies would, if extended, intersect at a body mass of 41 kg (5.1-m wingspan). 

Thus, albatross-like animals weighing close to 41 kg would lack any power margin to 

fly under unfavourable winds. Furthermore, an animal heavier than 41 kg would not be 

able to flap fast enough to accelerate its flight speed. These deductions lead to an 

interesting implication regarding the maximum size of soaring animals, including 
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extinct pterosaurs. Pterosaurs existed from the late Triassic to the end of the Cretaceous 

(220–65 million years ago)17. According to fossil-based estimates, their body mass 

ranged from 0.015 kg (0.4-m wingspan) to 70 kg (10.4-m wingspan) and they are 

thought to have had large narrow wings similar to those of albatrosses17. The 

morphology and flight ability of pterosaurs are widely debated5, 7, 18-20. Giant pterosaurs 

such as Pteranodon (16.6 kg, 6.95-m wingspan) and Quetzalcoatlus (70 kg, 10.4-m 

wingspan) are generally believed to have conducted soaring flight like that in extant 

albatrosses17, 21. Other mass estimates of Quetzalcoatlus have ranged from 85 to 250 

kg22. Based on our morphologic measurements of Procellariiformes (mass = 0.53 

wingspan2.7), for Pteranodon a body mass of 95 kg corresponds to wingspan of 6.95 m 

while for Quetzalcoatlus a body mass of 295 kg corresponds to a wingspan of 10.4 m. If 

those large pterosaurs had extremely slender bodies, more so than albatrosses and 

petrels, the maximum power of their muscles would have been less and their flapping 

capacity accordingly diminished. Previous work on the flight performance of pterosaurs 

has often been based on the dogmatic assumption that pterosaurs were predominantly 

aerial piscivores living in coastal areas22.   

     Our study of living Procellariiformes as model animals infers that pterosaurs larger 

than 41 kg (or 5.1-m wingspan) could not have attained sustainable flight. Some studies 

have proposed that large pterosaurs such as Pteranodon and Quetzalcoatlus used slope 

soaring, thermal soaring and possibly dynamic soaring17. However, our results indicate 

that this would only have been possible under very specific—but highly unlikely—

environmental conditions such as constant strong winds or thermals. As demonstrated 

for albatrosses, which are mostly restricted to the Southern Ocean’s “roaring forties”, 

where powerful winds blow consistently, sustained flapping is necessary at certain 

stages of flight. Stronger and more constant wind conditions are essential for the 

sustainable flight of large pterosaurs. If other environmental factors (strength of gravity 

and density of the air) have changed over geological time, this might explain the brief 
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appearance of large pterosaurs in the fossil record5. Alternatively, the results of the 

present study lend support to a recent reappraisal suggesting that large pterosaurs were 

terrestrial stalkers, finding much of their food via terrestrial, ground-level foraging22. 

Extant Procellariiformes employ the novel method of soaring to minimise the energetic 

costs of transit but they do not rely exclusively on soaring because the winds do not 

always allow it. Instead, these birds must have enough flapping ability to be able to take 

off from the sea surface and to attain sustainable flight under unfavourable winds.  

 

Methods 

     Field experiments were conducted during breeding periods at Possession Island, 

Crozet Archipelago (wandering albatross, white-chinned petrels, sooty albatross in 

2006/07); Kerguelen Islands (black-browed albatross in 2005/06), in the South Indian 

Ocean with permission from the ethics committee of the Institut Polaire Paul Emile 

Victor. Field studies in Japan were conducted on Sangan Island, Japan (streaked 

shearwater in 2006) with permission from the Ministry of the Environment and the 

Agency for Cultural Affairs, government of Japan, and the Ethics Committee of 

University of Tokyo. Acceleration data loggers (D2GT, Little Leonardo Ltd., Tokyo, 

Japan) were used to detect the flapping movements of birds. The D2GT was 15 mm in 

diameter and 53 mm in length, with a mass of 18 g in the air; it recorded depth (1 Hz), 

two-dimensional acceleration (32 Hz) and temperature (1 Hz). The accelerometers were 

attached with waterproof tape to the feathers on the back or belly of the birds when 

departing for foraging trips and were retrieved when the birds returned to their nests. 

Loggers were positioned to detect longitudinal and dorsoventral accelerations. The raw 

values recorded by the accelerometers were converted into acceleration (m s–2) as 

described previously23.  
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     Data analysis. To investigate modulation of the wing-flapping frequency throughout 

flying periods, a spectrogram of the dorsoventral acceleration was calculated by 

continuous wavelet transformation with the Morlet wavelet function24, 

ψ(η) = π −1 4eiω0ηe−η 2 2 , where ω0 is the nondimensional frequency, here taken to be 10. 

The newly developed software “Ethographer”, which works on the Igor Pro 

(WaveMetrics, Inc., Lake Oswego, OR, USA) platform, readily allowed discrete stroke 

frequencies to be obtained from the spectrogram for each bird by unsupervised cluster 

analysis, k-means methods. The main focus in the scaling analyses of the present study 

was on the slope of regression. Major axis (MA) estimations for the scaling 

relationships were performed in R25. Morphological measurements were conducted in 

the field. As in a previous study12, wingspan and wing area of the instrumented birds 

were measured including the torso segment between the wings. Scaling relationships 

were obtained as follows: 

wingspan = 1.3 mass0.37,  

wingarea = 0.15 mass0.58.  

The scaling relationships were significantly different from one-third and two-thirds 

powers, as would be predicted based on geometric similarity (n = 22, α = 0.05).  
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Figure legends 

Fig. 1 Spectrogram calculated from dorsoventral acceleration (black line) of a 

streaked shearwater (A) and a wandering albatross (C) during takeoff from the 

sea surface (black horizontal bars) and subsequent flight (grey horizontal bars). 

Ten discrete spectra were obtained from the entire data of the streaked 

shearwater (B) and the wandering albatross (D). Arrows indicate the 

frequencies used for takeoff (red) and sporadic flapping (blue).  

 

Fig. 2 (A) The relationship between body mass and time percentage of slow 

(blue plots) and quick (red plots) flapping in a foraging trip of all individuals from 

the five species of albatrosses and petrels. (B) The relationship between body 

mass and wing-flapping frequencies. Regression lines were calculated for high 

(red plots) and low (blue plots) frequencies using MA estimation25. Dashed lines 

were extrapolated for larger animals. The two lines intersect at a body mass of 

41 kg (5.1-m wingspan), as indicated by the arrow. 
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