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Goal-directed behavior requires cognitive control to regulate neural processing 

when conflict is encountered. The dorsal anterior cingulate cortex (dACC) has 

been associated with detecting response conflict during conflict tasks. However, 

recent findings have indicated not only that two distinct subregions of dACC are 

involved in conflict processing but also that the conflict occurs at both perceptual 

and response levels. We clarified a functional dissociation of the caudal dACC 

(cdACC) and the rostral dACC (rdACC) in responding to different sources of 

conflict. The cdACC was selectively engaged in perceptual conflict whereas the 

rdACC was more active in response conflict. Further, the dorsolateral prefrontal 

cortex (DLPFC) was coactivated not with cdACC but with rdACC. We suggest 

that cdACC plays an important role in regulative processing of perceptual conflict 

whereas rdACC is involved in detecting response conflict.  

 

Goal-directed behavior often requires humans to overcome interference caused by 

distraction. The Stroop task1 is one of the most frequently employed paradigms for 

studying human ability to control cognition in the face of interference. Subjects are 

asked to name the color of colored words. Response time (RT) is increased in naming 

the ink color of an incongruent stimulus (e.g., “RED” printed in blue ink) compared to a 

neutral stimulus (e.g., “XXXX” printed in blue ink). This is referred to as the Stroop 

interference effect. The conflict monitoring theory suggests that the dorsal anterior 

cingulate cortex (dACC) plays a role in detecting conflict in tasks such as the Stroop 

task and the flanker task2, and the dorsolateral prefrontal cortex (DLPFC) engages in 

resolving the conflict3-6. An important aspect of this theory is that the conflict is caused 

at the response level.  

In recent years, however, increasing numbers of neuroimaging studies have 

suggested that cortical responses to conflict depend on the source of conflict 7. 
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Specifically, it has been suggested that rostral dACC (rdACC) recruitment is restricted 

to the response conflict whereas caudal dACC (cdACC) is involved in pre-response 

conflict8-10. A neuropsychological study of patients with legions in cdACC or rdACC 

has supported this dissociation11. Other neuroimaging studies12-15 and a recent review16 

found that two distinct regions within rostral and caudal dACC are involved in conflict 

processing but that the functions of the two subregions were not differentiated. We 

localized the coordinates of dACC activations reported in the previous studies and 

identified two distinctive subregions of dACC, which correspond to posterior rostral 

cingulate zone and anterior rostral cingulate zone17 (Figure 1). 

We assumed that rdACC and cdACC are involved in the conflict tasks and 

dissociated by the source of conflict: perceptual conflict recruits cdACC whereas 

response conflict recruits rdACC. We employed a version of the Stroop matching task 

used in a previous behavioral study18 that allowed measurement of perceptual conflict 

and response conflict separately. Experimental tasks were composed of two conditions, 

a color-response condition (CR) and a word-response condition (WR), in which each 

condition included incongruent and neutral trials. Thus four types of trials were 

included; incongruent CR (iCR), neutral CR (nCR), incongruent WR (iWR) and neutral 

WR (nWR). Response conflict was minimized in iCR as subjects were only required to 

identify the sample color by selecting the corresponding color from two color cues and 

thus the interference effect was assumed to be caused by perceptual conflict at the pre-

response level. In contrast, response conflict was maximized in iWR in which subjects 

were to translate the ink color of the colored word stimulus into a verbal representation, 

inhibiting the prepotent processing. Thus, the interference effect in WR was caused by 

both perceptual and response conflict.  

Behavioral performance on the tasks showed that hit rates of each subject were 

higher than 96% in all conditions. RT was analyzed using a two-way repeated-measure 
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ANOVA (Figure 2). The results showed significant main effects of both conflict 

(F(1,12)= 43.222, MSe=.013, p=.000) and response modality (F(1,12)= 38.747, MSe=.059, 

p=.000), as well as a significant interaction effect (F(1,12)= 18.086, MSe=.005, p=.001). 

The interference effect was greater in WR (284 ms) than in CR (125 ms). Since the 

response cues of iWR induced response conflict but the sample of iWR also included 

perceptual conflict, we calculated the response interference effect (i.e., 159 ms) by 

subtracting nWR from iWR in each subject. There was no significant difference 

between the sizes of the two interference effects (t(12)=.933, p=.369) nor a significant 

correlation between them (r=.285, p=.345). These results do indicate, however, that the 

Stroop interference effect is caused by both perceptual and response conflicts18,19. 

For fMRI data, we compared incongruent trials with neutral trials for CR and WR 

separately (Figure 3a and Supplementary Table 1). The results showed that when 

subjects performed CR, cdACC activity (peaked at y=16) was greater on iCR than on 

nCR. In contrast, both cdACC and rdACC (peaked at y=16 and at y=33, respectively) 

showed greater activity on iWR than on nWR. However, the comparison of iCR with 

nCR includes only perceptual conflict, whereas the comparison of iWR with nWR 

includes both perceptual and response conflicts. Thus we analyzed the same data using a 

two-way ANOVA using factors of the conflict (incongruent vs.neutral) and the response 

modality (WR vs. CR) in order to measure perceptual conflict and response conflict 

separately (see Figure 3b and Supplementary Table 2). We found a positive main effect 

of the conflict in cdACC (peaked at y=5). In contrast, an interaction effect (i.e., [iWR – 

nWR] – [iCR – nCR]) was significant in rdACC (peaked at y=27). The main effect of 

response modality (i.e., [WR – CR]) was not significant in any subregion of ACC. We 

depicted BOLD signal changes of each trial type in the ROIs within both cdACC and 

rdACC in figure 4. In comparisons of peak activation between iCR and nCR and 

between iWR and nWR using paired-sample t-tests (two-tailed), the cdACC activation 

was higher in iCR than in nCR (t(12)=2.360, p=.036) and in iWR than in nWR 
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(t(12)=3.303, p=.006). In contrast, in the rdACC region, the peak activation was higher in 

iWR than in nWR (t(12)=2.963, p=.012), whereas iCR and nCR were not different 

(t(12)=.442, p=.666).  

To test the relationship between neural activity (i.e., the conflict effect) and 

behavioral responses (i.e., the interference effect), we calculated conflict effects of each 

subject using the peak value of the BOLD signal changes (i.e., iWR - nWR for the 

response conflict and iCR - nCR for the perceptual conflict) in both cdACC and rdACC. 

The results showed that the positive correlation between the interference effect observed 

in CR and the perceptual conflict effect was significant in cdACC (r=.623, p=.023) but 

not in rdACC (r=.402, p=.173). In contrast, the interference effect in WR and the 

response conflict effect showed a significant positive relationship in rdACC (r=.740, 

p=.004) but not in cdACC (r=.508, p=.076). The estimated response interference effect 

was highly correlated with rdACC activity (r=.748, p=.003) but not with cdACC 

activity (r=.424, p=.148).  

An additional important finding was observed in DLPFC (see Supplementary 

Table 1; Brodmann area (BA) 9; Talairach coordinates: 48, 13, 27). The comparison of 

the incongruent condition with the neutral condition showed enhanced neural activity of 

DLPFC in WR but not in CR. In other words, DLPFC was coactivated with rdACC but 

not with cdACC. The coactivation of DLPFC and rdACC was also observed in the two-

way ANOVA as the positive interaction effect which reflects response conflict (see 

Supplementary Table 2; BA 46; -42 19 21). DLPFC activation in the main effect of 

conflict was mainly caused by iWR since no activation of DLPFC was observed in 

comparison of iCR with nCR. fMRI results showed a functional dissociation of the 

conflict processing within dACC, in which response conflict recruits rdACC whereas 

perceptual conflict involves cdACC in accordance with previous studies8-10,15. The 

coordinates within each subregion of dACC are similar to the mean coordinates of the 
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previous studies (see Figure 1). Our ROI analyses confirmed this dissociation, in which 

response conflict results in greater activation in rdACC. In addition, the level of cdACC 

activation was highly related to the interference effect caused by perceptual conflict but 

not by response conflict. According to these findings, it is reasonable to expect that 

error processing is specific only to rdACC. Studies have supported this expectation, 

finding that cdACC was specific to the conflict but not to error processing, while 

rdACC showed error-related activation10,20. 

Cortical response to conflict processing has been observed in rdACC8,9,21,22 while 

others found it in cdACC5,6,23. One possible interpretation of this disagreement is that 

those studies did not separate response-specific conflict from perceptual conflict and 

thus the cdACC activation in their studies might represent an accumulated effect of two 

types of conflict. Another potential interpretation is that the studies employed a 

predefined ROI within cdACC24 or that a large region across dACC was activated by 

both pre-response and response25.  

Another important finding was also found in DLPFC (BA 9/46), which was 

coactivated with dACC only when response conflict occurred. This supports previous 

studies in which DLPFC plays an important role in cognitive control by resolving 

prepotent responses5,21. Even though the interference effect was observed and the 

perceptual conflict activated cdACC, no activation was observed in DLPFC when no 

response conflict occurred. These results suggest that DLPFC is involved in resolving 

only response conflict. However, previous studies reported coactivation of DLPFC, in 

which they found cdACC activation to pre-response conflict such as semantic conflict8 

and target detection10. One possible interpretation of this disagreement is that the task 

conditions of those studies might have required additional top-down processing from 

DLPFC such as a change of response selection strategy26. 
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Taken together, we suggest that distinct subregions of dACC are involved in 

conflict processing: cdACC is engaged in perceptual conflict and rdACC is involved in 

response conflict. DLPFC seems specifically recruited only for response conflict, which 

indicates that only response conflict requires top-down cognitive control processing in 

order to override prepotent responses. These results support the conflict monitoring 

theory3, but it might be possible to add a perceptual conflict module to the current 

conflict monitoring theory as a mediator. However, it is unclear how the brain resolves 

the perceptual conflict that occurred in the present study. One plausible suggestion is 

that cdACC plays a role in regulative processing at a perceptual level even if no 

response conflict occurs27. This regulative model would present more general account in 

the conflict monitoring system. 
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METHODS SUMMARY 

Thirteen neurologically healthy right-handed volunteers (ages 19 - 32; five females) 

without color blindness participated in this study. We used a variation of the Stroop 

color-word task in which a sample and a set of two alternative cues were presented in a 

screen. All words in the samples and response cues were presented in Korean. 

Experimental conditions were composed of four types of conditions; iCR, nCR, iWR 

and nWR. The iCR and nCR included two colored rectangles as response cues whereas 

in iWR and nWR the response cues were two color names in words. The task required 

subjects to match the color of the sample with a corresponding response cue. All 

experimental stimuli and null events continued for 2 sec and inter-stimulus-intervals 

averaging 2.9-second followed. All trial types were replicated 48 times in randomized 

order. 

Images were acquired with a 3-T MRI system (Oxford magnet, Varian console 

magnet built by ISOL, fMRI center at KAIST in Daejeon, Korea). T2*-weighted 

gradient echo planner images (EPI) with 20 interleaved slices were acquired for the 

functional images (TR=2sec, TE=35ms, FA=85°, matrix=64X64, in-plane 

resolution=3.44mm, thickness=5mm) which were composed of 2 runs (294 volumes per 

run). T1-weighted images were also obtained.  

SPM5 was used for image preprocessing and statistical analyses. Temporal and 

spatial disparities between slices were corrected and then the images were normalized to 

a standard MNI-305 T1-weighted image and accordingly resampled by isotropic 3mm 

voxels. The images were then spatially smoothed with an 8mm FWHM Gaussian 

kernel. Each condition was included in constructing a general linear model using a 

canonical hemodynamic response function. Contrast images were constructed by 

comparison of experimental events with null events. The contrast images were 
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submitted to group-level random-effects analyses (thresholded at p<.05 corrected using 

the false discovery rate28). Paired-sample t-tests and a two-way ANOVA were used.  
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Figure 1. Localization of dACC activations during the Stroop or Stroop-like tasks 

found in selected studies. The white circles are located within rdACC and the 

gray circles are located in cdACC. Two triangles indicate the average 

coordinates of the white circles and of the gray circles. Each location indicates 

Talairach coordinates29 showing the highest peak value in each study. The 

numbers indicate references; 19, 28, 310, 415, 525, 616, 712, 813, 930, 1014. Four of 

these studies (references 1-4) found both cdACC activity sensitive to pre-

response conflict and rdACC activity sensitive to response conflict, one study 

(reference 5) found cdACC activity sensitive to both pre-response conflict and 

response conflict, and others (references 6-10) found two subregions within 

dACC sensitive to conflict processing with no functional dissociation. The 

average coordinates of white circles are x, y, z = 2, 26, 31, and those of gray 

circles are x, y, z = 1, 10, 42. 

 

Figure 2. Behavioral performance on the Stroop tasks. Each bar represents the 

mean of RTs in each condition. Error bars indicate the mean ± the standard 

error of the mean (s.e.m.) 

 

Figure 3. Significant activation within dACC. (A) The conflict effect observed in 

only cdACC (red) for CR but in both cdACC and rdACC (yellow) for WR. (B) 

The main effect of conflict (incongruent vs. neutral) showed significant activation 

in cdACC (red). A positive interaction effect ([iWR - nWR] - [iCR - nCR]) was 

significant in rdACC (yellow).  
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Figure 4. BOLD signal changes of each trial type with cdACC (the left) and 

rdACC (the right). Error bars indicate mean ± s.e.m. 
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