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Chapter 1

Introduction

The brain is the most complex computational device known to Man. Not only does it mediate our

orientation in both external (physical) and internal worlds, but—even more astonishingly—the brain

enables study of itself. Yet, this amazing device is composed of only a limited set of neurons and their

connections. Neuroscience—in all its disguises—approaches the device with the belief that knowledge

of function and structure of these basic building blocks will eventually help us understand how the brain

understands itself.

Brain’s connection to the external world is provided by sensory systems. External inputs (light,

sound, touch, etc.) are detected by sensory receptors, translated into internal representations, which

in turn are interpreted into percepts, and eventually lead to (motor) actions. Such transformations—

especially in the beginning of the processing chain—are themain topics of sensory neuroscience.

The auditory branch of sensory neuroscience tries to explain how the brain (i.e. us) makes sense

of the acoustic environment. Unfortunately for the reader,despite centuries of interest (Cooper, 1801;

Cooper and Home, 1800; Holder, 1668), auditory neuroscience lacks famous clinical cases, which would

make for a catchy introduction. Thus, rustling leaves attracting the attention of a barn owl (Winer et al.,

2005) cannot match an iron rod shattering the prefrontal cortex of Phineas Gage (Harlow, 1848), or the

profound memory loss of the truly unfortunate patient H. M (Scoville and Milner, 1957). Nevertheless,

as we are constantly bombarded by sounds, we effortlessly extract necessary information, whether sur-

rounded by fellow colleagues at a cocktail party, or huntingfor prey (being a barn owl). When rapid

changes in air pressure (sounds) hit our ears, sounds are transformed in cochlea into series of action po-
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tentials, which, after several processing steps in the brainstem and thalamus, reach the primary auditory

cortex, the acoustic gateway of cerebral cortex.

The electrophysiological approach to study the function ofneurons in the auditory system is

to record the electrical activity of small numbers of neurons, while probing the sensory receptors with

various sounds. The recorded electrical activity then serves as an estimate of the internal representation

of the particular acoustic stimulus. The activity of neurons in the primary auditory cortex is the main

topic of this thesis. Before the main chapters, however, we step back and offer a brief—necessarily

idiosyncratic—summary of some of the key aspects of neuronal activity in auditory cortex.

1.1 Auditory cortex—pariah of sensory cortices

After more than six decades of research (Bremer and Bonnet, 1949; Tunturi, 1944; Woolsey and Walzl,

1942) there is no consensus on how auditory cortex is defined (Read et al., 2002). Although many would

agree on a definition based on the pattern of input connections and the type of sensory inputs provided

by the thalamus, it is both astonishing and confusing that sixty years of physiological research were not

enough for a comprehensive characterization of even the primary auditory cortex (Ehret, 1997).

Yet, the neural activity in the auditory system seems to be “simple” enough to study. Small

variations in sound pressure are transformed at the cochleainto spikes that traverse the auditory nerve,

pass several subcortical auditory stations (cochlear nucleus, superior olive, inferior colliculus, thala-

mus), and eventually reach auditory cortex. To study neuralprocessing in this pathway, one might begin

by studying the transformation of sound into spikes at the auditory nerve, and then follow the neural

representation of sound through the various subcortical stations. Eventually, one would have to grapple

with the more complex representations emerging at the higher stations, but the whole process seems

straightforward.

An analogous research paradigm dominated the study of thevisual cortexfor several decades

since Hubel and Wiesel’s seminal work on the primary visual cortex (Hubel and Wiesel, 1977), and

remains important even today. Hubel and Wiesel showed that many neurons in the primary visual

area could be driven to fire at high rates in response to oriented bars appropriately positioned in the

visual field. This eventually led to an appealing general model of sensory processing in which visual

recognition is achieved by constructing an appropriate series of representations of the visual world

2
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from the simpler representations at the previous stage, a view supported by anatomical evidence for

an anatomical hierarchy of connections in visual cortex (Felleman and Essen, 1991).

Since the early start of single-unit recordings in the auditory system (Davies et al., 1956; Galam-

bos and Davis, 1943) many acoustic stimuli have been used to probe neurons in auditory cortex, includ-

ing tones (Moshitch et al., 2006), sweeps (Orduña et al., 2001; Zhang et al., 2003), ripples (Kowalski

et al., 1996a,b), TORCS (Elhilali et al., 2004) and natural sounds (Bar-Yosef et al., 2002; Machens et al.,

2004). However, no acoustic feature analogous to the oriented bar has emerged (Nelken, 2004; Nelken

et al., 2003).

The universally agreed upon property of primary auditory cortex is its tonotopical organiza-

tion, which replicates decomposition of sounds into separate frequency components at the cochlea

(Merzenich et al., 1973, 1975; Nicholls et al., 2001; Schreiner, 1995; Schreiner et al., 2000), and is

preserved at the subcortical processing stations as well. Because tonotopy is such a robust feature,

many studies have tried to relate responsiveness to variousfeatures to tonotopical organization. Among

features which have been mapped relative to isofrequency columns are response latency (Mendelson

et al., 1997), intensity threshold (Phillips et al., 1994; Sutter and Schreiner, 1995), operating range (Heil

et al., 1992a, 1994), frequency modulation rate (Heil et al., 1992b; Mendelson et al., 1993), binaural

response type (Imig and Adrián, 1977), sharpness of frequency tuning (Heil et al., 1992b; Schreiner and

Mendelson, 1990), etc.; see also (Ehret, 1997; Read et al., 2002; Schreiner et al., 2000) and references

therein for more details. Overall, the overlap of various parameter mappings parallel and orthogonal to

the tonotopic axis is usually described as the modular organization of auditory cortex (Schreiner et al.,

2000), lacking the elegance and effectiveness of visual cortex organization.

Auditory cortex thus remains a pariah among her (non-chemical) sensory sisters, visual and

somatosensory cortices. Our knowledge of basic processingin auditory cortex still does not match the

detailed descriptions of processing (understanding of structure and function) of visual and somatosen-

sory (especially barrel) cortices (Callaway, 1998; Douglas and Martin, 2004). Although the majority

of auditory studies mentioned in this section were conducted in anesthetized animals, the situation in

awake preparations seems to be even more complicated.

3

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

08
.2

46
4.

1 
: P

os
te

d 
4 

N
ov

 2
00

8



1.2 Awake auditory cortex

Most of what is known about the activity of neurons in the auditory cortex comes from studies inanes-

thetizedpreparations. However, the presence of anesthetic drugs (Gaese and Ostwald, 2001; Populin,

2005), as well as depth of anesthesia (Armstrong-James and George, 1988) influence neuronal activity,

with different drugs having different effects on neuronal activity (Cheung et al., 2001; Wehr and Zador,

2005). In addition, studying neuronal activity during behavior, which requires active participation of the

animal is, of course, impossible in anesthetized preparations.

Studies of neuronal activity in the auditory cortex ofawake(unanesthetized) animals have a long

history (Evans and Whitfield, 1964; Gerstein and Kiang, 1964; Goldstein et al., 1968; Hubel et al., 1959;

Katsuki et al., 1962, 1958; Whitfield, 1957), and were recently resurrected by several groups (see for

example Barbour and Wang, 2003; Chimoto et al., 2002; deCharms et al., 1998; Elhilali et al., 2004;

Gaese and Ostwald, 2003; Recanzone, 2000; Wang et al., 2005).

With the resurgence of work in the awake preparations in the last decade, many researchers

have emphasized the rich repertoire of neuronal responses in awake animals, including sustained re-

sponses to sounds (Barbour and Wang, 2003; Gaese and Ostwald, 2003; Liang et al., 2002; Recanzone,

2000; Wang et al., 2005), which are a sharp contrast to the typically transient sound-evoked responses

observed in anesthetized preparations (DeWeese et al., 2003; Doron et al., 2002; Heil, 1997; Phillips

and Irvine, 1981). Thus, part of the auditory community emphasises responses observed mostly in

awake preparations: “Under anesthetized conditions, phasic responses are the typical discharge patterns

in the auditory cortex, even for responses to complex vocalizations. A distinct characteristic of neural

responses inunanesthetized auditory cortex is sustained firing,a property that stands in sharp contrast

to barbiturate-anesthetized cortex.” (Liang et al., 2002,emphasis added). Another part of auditory

community argues that neuronal activity is almost completely described as seen in anesthetized prepa-

rations: “This is not to dispute the existence of sustained excitatory responses to tone or noise burst

stimuli as far rostral in the central auditory system as the auditory cortex, especially in unanesthetized

animals. . .The onset response is, however, arguably the dominant feature of central neural responses,

especially in the forebrain.” (Phillips et al., 2002, emphasis added).

Such debate has surprisingly been present (and unresolved)in the auditory community for the

past fifty years, since Robert Galambos first stated: “The search for correlates for the steady state [re-
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sponses toward tones] at the cortical level has to a large extent been unsuccessful, and for such informa-

tion as we do possess we have to thank those who have used unanesthetized preparations.” (Galambos,

1954). However, the fact that a particular neuron can be driven at high rates when probed with a par-

ticular sound tells us little about how that particular sound (or sound in general) is represented across

a population of neurons. Indeed, focusing on the rather special types of responses, one is almost guar-

anteed a biased view of population activity, given the oftenreported wide range of response properties

(response zoo) present in unanesthetized auditory cortex (Chimoto et al., 2002; Evans and Whitfield,

1964; Recanzone, 2000), including a substantial proportion of unresponsive cells (Hubel et al., 1959).

1.3 Beyond sound in auditory cortex

The simple framework for studying visual (or analogously auditory) processing described above as-

sumes that each stage of the processing hierarchy can be studied independently. Such framework is

appealing because it posits a series of feedforward, possibly nonlinear, filters organized into feedfor-

ward networks, which are much easier to study than recurrentnetworks.

However, imagine that you hear a shout: “Fire!” If you are part of a firing squad, you might

pull a trigger; and if you are on the receiving end of the firingsquad, you might merely brace yourself

for the inevitable. If you are in your hotel room watching TV,you might decide to put on your slippers

and see what the commotion is about; if you are, however, reading this thesis, it would be very hard to

distract your attention by any outcry. In all cases, your auditory system will process the same acoustic

stimulus, yet the neural activity (which precedes your motor response) will be different. It is clear that

how you respond to the exclamation will depend on the behavioral or cognitive context.

Unfortunately for scientists, the mammalian brain is not a simple feedforward network. One

cannot simply model the flow of information as undergoing a unidirectional transformation. Particularly

in the cortex, it is clear that the representation of sensoryinformation depends also on the animal’s

behavioral and/or cognitive state, and on how that information is to be used, and not only on the activity

at the ear (cochlea).

Since the earliest studies of auditory processing, it has been clear that an animal’s behavioral

or attentional state can play a crucial role in shaping the response characteristics (Hernandez-Peon

et al., 1956), even at the level of single neurons (Hubel et al., 1959). Follow-up studies on the cortical
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correlates of auditory attention over the next decades werescant (Hocherman et al., 1976; Miller et al.,

1972, 1980), until in recent years a series of studies have renewed interest in the field (Brosch et al.,

2005; Fritz et al., 2005a, 2003, 2005b).

Factors other than attention can also influence activity of single neurons in the primary auditory

cortex: various behavioral contingencies (Beaton and Miller, 1975; Miller et al., 1972), eye position (Fu

et al., 2004; Werner-Reiss et al., 2003), and somatosensorystimulation (Brosch et al., 2005; Fu et al.,

2003; Lakatos et al., 2007; Schroeder et al., 2001).

Auditory cortex—especially the primary auditory cortex—has been traditionally viewed as

a pure sensory area acting as a (non)linear filter on signals passing through thalamus to “higher” cortical

areas. However, the presence of nonauditory activity in primary auditory cortex strongly argues against

such a simple view.

1.4 Rats in auditory research

Auditory research uses a variety of experimental animals toelucidate the function and structure of

auditory system. Experimental preparations for studying the auditory system at the level of single neu-

rons include non-human primates (Beaton and Miller, 1975; deCharms et al., 1998; Durif et al., 2003;

Hocherman et al., 1976; Miller et al., 1972; Populin, 2006; Ryan and Miller, 1978; Ryan et al., 1984),

ferrets (Fritz et al., 2005a, 2003, 2005b), guinea pigs (Edeline et al., 1993; Edeline and Weinberger,

1993), gerbils (Ohl and Scheich, 1997), cats (Las et al., 2005; Oatman, 1971, 1976; Tollin et al., 2005;

Ulanovsky et al., 2003), bats (Suga and Ma, 2003), songbirds(Hahnloser et al., 2002; Sen et al., 2001;

Theunissen and Doupe, 1998), chinchillas (Langner et al., 2002), mice (Linden et al., 2003), and others.

For experiments described in this thesis, we have used rats as experimental animals. Rats are

another well-established established group of experimental animals in auditory research (Doron et al.,

2002; Kelly and Sally, 1988; Sally and Kelly, 1988), used successfully in both anesthetized (DeWeese

et al., 2003; DeWeese and Zador, 2006; Kilgard and Merzenich, 1998a,b; Wehr and Zador, 2003, 2005,

and many others) and awake experiments (Gaese and Ostwald, 2003; Nakamura, 1999; Ono et al., 1985,

and others).
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Rats (rodents in general) offer several advantages when used as experimental preparations (es-

pecially when compared to humans and non-human primates). First, rats are relatively inexpensive

to maintain. Second, the choice of rodents allows us to exploit the full armamentarium of modern

electrophysiological, molecular and imaging approaches that are currently difficult or impossible to ap-

ply in primates, such as whole-cell patch-clamp methods (Wehr and Zador, 2003; Zhang et al., 2003),

viral-mediated delivery of genes of interest (Rumpel et al., 2005), or molecules that allow monitoring

(Miesenböck, 2004) or even perturbing neuronal activityin-vivo (Boyden et al., 2005) at the level of

single neurons. Finally, rats can be trained to perform sophisticated behavioral tasks (Feierstein et al.,

2006; Uchida and Mainen, 2003).

1.5 Recording neuronal activity

Most of what we know about activity in the brain at the level ofsingle neurons comes from various

recordings of electrical neuronal activity. The rest of this thesis offers analysis and description of neu-

ronal activity recorded using patch-clamp technique with glass pipette, in cell-attached and whole-cell

configurations (Hamill et al., 1981; Margrie et al., 2002). In this section we briefly summarize the dif-

ferences between patch-clamp recordings and conventionalrecording techniques, which are important

for the rest of the text.

Since the advent of modern electrophysiology (Adrian, 1926; Adrian and Matthews, 1927; Hart-

line, 1925), recording individual action potentials in response to sensory stimuli quickly became stan-

dard in auditory neurophysiology as well (Adrian et al., 1938; Hallpike et al., 1937). Recordings using

tungsten electrodes (Hubel, 1957) almost immediately became the mainstream magic wand of electro-

physiology, and we will refer to them as the conventional recording technique.

The conventional recording technique uses metal electrodewhich acts as an antenna when in-

serted into neural tissue. The electrode then “picks-up” electrical signal (i.e. action potentials) from

nearby neurons. Good recording (good single unit isolation) with conventional electrodes requires a suf-

ficient number of spikes; skilled practitioners typically search for neurons with sufficiently high firing

rates and large spikes, which are easily distinguishable from other neurons. Although it is possible for

a committed investigator to isolate even neurons with a low spontaneous firing rate, such neurons rarely

appear in analyses, possibly because they do not offer enough signal (i.e. too few spikes), or are im-

7

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

08
.2

46
4.

1 
: P

os
te

d 
4 

N
ov

 2
00

8



mediately discarded. Conventional recording techniques thus appear selectively biased toward neurons

providing strong signal.

By contrast, recording with a glass patch pipette in cell-attached mode (extracellular mode

recording action potentials only) is not explicitly biasedtoward active and responsive neurons, or neu-

rons with large action potentials, and provides excellent single unit isolation (DeWeese et al., 2003;

Margrie et al., 2002). With cell-attached recording, single unit isolation depends on the physical contact

between the glass electrode tip and the neuron. The selection bias of cell-attached recording is thus

based on the neuron’s “patchability,” rather than on the firing rate or responsiveness of the target neu-

ron; only to the extent that patchability is correlated withfunctional characteristics such as firing rate or

responsiveness would cell-attached recording (indirectly) bias the sampled population.

Recently, extracellular recording techniques with metal electrodes underwent significant im-

provements in the form of tetrodes (for example Feierstein et al., 2006; Harris et al., 2000; Henze et al.,

2000; Mehta et al., 2002), or silicone probes (for example Barthó et al., 2004; Csicsvari et al., 2003).

Experimenters using these techniques can record activity of more neurons in parallel, and identify neu-

rons based on different spike parameters (signatures). Such recordings are then less biased toward active

neurons. Nevertheless they still rely on neuronal activity, and neurons with extremely low firing rates

can still be missed, simply because collecting a sufficient number of spikes might take considerable

amount of time.

Patch-clamp recordings, in whole-cell configuration, alsooffer an opportunity to recordintra-

cellular activity of neurons. Most of what is known about intracellular neuronal activity comes from

studies inbrain slices(Edwards et al., 1989; McCormick et al., 1985; Stevens and Zador, 1998, and

many others). Recently, several laboratories introduced whole-cell recording techniques inanesthetized

in-vivo preparations in various sensory systems: auditory (DeWeese and Zador, 2006; Tan et al., 2004;

Wehr and Zador, 2003, 2005; Zhang et al., 2003), visual (Anderson et al., 2000; Carandini and Fer-

ster, 2000; Ferster and Jagadeesh, 1992; Jagadeesh et al., 1993, 1997; Pei et al., 1991), somatosensory

(Brecht et al., 2003; Brecht and Sakmann, 2002; Bruno and Sakmann, 2006; Bureau et al., 2004; Pe-

tersen et al., 2003b; Zhu and Connors, 1999), and olfactory (Margrie and Schaefer, 2003; Schaefer et al.,

2006). Whole-cell recordings in-vivo are very challenging, and their application inawakeanimals is

technically difficult. Only very recently, several studieshave described successful whole-cell recordings
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in somatosensory (barrel) cortex of awake (unanesthetized) mice and rats (Brecht et al., 2004; Crochet

and Petersen, 2006; Lee et al., 2006; Margrie et al., 2002; Petersen et al., 2003a).

1.6 Thesis outline

This thesis is divided into six chapters (following this Introduction), followed by three appendices con-

taining supplementary information. Each chapter was intended to be self-contained, so they do not have

to be read in the order they are presented.

Second chapter (Sec. 2) contains a detailed description of experimental techniques: surgery,

recording, and training techniques we used in awake head-fixed rats. We have also included a detailed

description of all sets of stimuli we used to probe neurons, analytical methods used to analyze data, and

description of computational models used in other parts of the thesis.

Third chapter (Sec. 3) focuses on description of single-neuron responses in primary auditory

cortex of awake head-fixed rats. The primary emphasis of thispart is on the sparse representation of

various auditory stimuli we used to probe neurons, and the heterogeneity of responses of single neurons.

To characterize population responses to sound in the auditory cortex we asked the question “What

is the typical response to acoustic stimuli?” instead of what is usually asked “What is the stimulus

that evokes a response?” We found that the population response was sparse, with many unresponsive

neurons. In addition, the responsive neurons showed a greatvariety of responses. This heterogeneity

of neuronal responses (“response zoo,” courtesy of AnthonyM. Zádor) was, however, surprisingly well

characterized by lognormal distribution of firing rates.

The observation that firing rates in awake auditory cortex were lognormally distributed was even

more interesting given the observation of lognormal distribution of synaptic weights in the cerebral cor-

tex. The fourth chapter (Sec. 4) focuses on mechanisms whichcould give rise to lognormal distribution

of firing rates, as well as synaptic weights. We proposed specific types of correlations among synaptic

connections, and formulated a multiplicative learning rule which led to the observed distributions.

We were also able to characterize intracellular activity ofneurons in awake auditory cortex.

The fifth chapter (Sec. 5) contains analysis of so-called up and down states in awake auditory cortex.

We show that up and down states—the “signature” subthreshold dynamics so often described in various
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cortical areas of anesthetized animals—were rare in the primary auditory cortex of awake rats, instead,

subthreshold dynamics was consisted of brief, infrequent fluctuations of membrane potential.

The experiments described and analyzed in chapters 2–4 wereconducted in naïve awake rats.

As behavior or attention can influence neuronal activity even in primary sensory areas, we developed

a setup for head-fixed behavior. In the sixth chapter (Sec. 6)we describe the sound discrimination

task we have used to study behavior in head-fixed rats. We present a comparison of basic behavioral

parameters between restrained and unrestrained rats, as well as evidence of nonauditory modulations of

single neuron activity in auditory cortex.

Finally, in the seventh chapter (Sec. 7) we briefly summarizeresults from chapters 3–6.

The first appendix shows raster plots of all hundred neurons we identified to evaluate response

significance. The rasters are presented to supplement the data analysed in Sec. 3. The second appendix

shows raster plots of neuronal activity of fifteen neurons recorded in head-fixed rats performing the

sound discrimination task. The rasters supplement data presented in Sec. 6. The third appendix presents

schematics of surgical implants, and the lickometer we usedin experiments with awake head-fixed rats.

The schematics supplement experimental procedures described in Sec. 2.

1.7 Disclosures

All experiments were conducted under supervision of Anthony Zador, as my scientific mentor. Michael

R. DeWeese performed 31 cell-attached and 5 whole-cell recordings of those analyzed in chapters 3–5.

Chapter 4 was prepared in collaboration with Alexei Koulakov, who also developed mathematical proofs

of several statements mentioned in the chapter (not shown inthis text).

10

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

08
.2

46
4.

1 
: P

os
te

d 
4 

N
ov

 2
00

8



Chapter 2

Experimental procedures

We have developed an experimental preparation that allows us to use patch-clamp recording techniques

in awake head-fixed rats. This chapter starts with a description of the surgical procedure we used to

prepare animals for head-fixed recordings. Then we continuewith a description of the experimental

setup we developed to record from both naïve and trained head-fixed rats. We also describein-vivo

patch-clamp recording techniques, together with acousticstimuli used in our experiments, and custom

data acquisition (plus stimulus delivery) system. The finalparts of this chapter focus on data analysis,

a detailed description of simulation experiments, and a description of training procedures for head-

fixed behavior. Brief description of the relevant experimental methods is also included in each of the

following results chapters.

2.1 Experimental animals

We used rats as experimental animals. For experiments onnaïvehead-fixed animals we used Sprague-

Dawley rats, 21–30 days old at the time of surgery. Forbehavioralexperiments we used Long-Evans

rats, 23–25 days old at the beginning of training, 33–50 daysold at the time of surgery.

2.2 Surgery

Rats were anesthetized in strict accordance with the National Institutes of Health guidelines, as approved

by the Cold Spring Harbor Laboratory Animal Care and Use Committee. Part of scalp was removed
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Figure 2.1: Example of a craniotomy performed during preparation for head-fixed recordings.

together with underlying tissue, and the exposed bone was cleaned and dried out. The left temporal

muscle was cut and partially removed to enable access to the left temporal bone. The exposed area—

except for the craniotomy site (see below)— was dried out andcovered with a thin layer of either Krazy

Glue (Krazy Glue, Columbus, OH), or VetBond (3M, St. Paul, MN). The layer of dry glue was then

covered with a thin layer of dental acrylic (except for the craniotomy site) and left to dry.

A small craniotomy (maximum size of 1.5 mm×1.5 mm) and durotomy were then performed

over the left (primary) auditory cortex (Fig. 2.1). Perfectdurotomy with no bleeding was of utmost

importance for the success of recordings because it preserved the health of the cortex and prevented

contamination of electrode tips. The position of the craniotomy was determined by its distance from

bregma (4.5 mm posterior, and 4 mm ventral), and its relationship to other bone sutures. The presence

of clear auditory single-unit responses and/or local field potentials were further used as physiological

criteria to confirm the location of the auditory cortex. Based on the anatomical landmarks and physi-

ological criteria we expect that the neurons recorded in this thesis were in the primary auditory cortex

(Doron et al., 2002).

The brain surface was covered with Kwik-Cast (World Precision Instruments, Sarasota, FL)

immediately after performing the durotomy as well as between recording sessions. The whole area was

protected by a plastic well with a removable cap (Appendix C). An aluminum headpost was attached to

the skull with Relyx Luting Cement (3M ESPE, St. Paul, MN). A silver chloride ground wire was im-

planted on the back of the animal, with the silver chloride pellet on one end positioned subcutaneously,
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and a golden pin on the other end attached to the headpost. After surgery, the animals were allowed at

least 24 hours of recovery before the first recording session.

2.3 Recording setup

During the recording (or training) session, the head of the animal was fixed in the headpost holder

and the animal was positioned inside a plastic tube, which provided loose restraint of body movements

(Fig. 2.2). Rats were not forced to enter the recording tube,and usually just ran inside. Occasionally, if

a rat did not voluntarily enter the tube, the session was postponed.

The animals sat quietly, occasionally moved their limbs, groomed, whisked, etc. The behavioral

state of each animal was monitored by a closed video circuit.Excessive movement, signs of stress, or

discomfort of the animal were used to indicate the end of the session.

During behavioral sessions, a custom made “lickometer” wasplaced in front of rat’s mouth to

monitor behavioral responses (licking) and deliver water drops as rewards. The lickometer contains

a water delivery port (a modified 18 gauge needle) in the middle, below it there is a vacuum port

providing suction to remove excess water, if necessary. Tongue licks were defined and measured as

interruptions of infrared beam positioned across the end ofwater port. The lickometer is a modified

version of choice ports, originally developed by Naoshige Uchida and Zachary Mainen (Uchida and

Mainen, 2003) for training freely moving rats. Water rewards were delivered via a gravitational system

from a 50 ml reservoir (syringe), and water delivery was controlled by solenoid valves (NResearch, West

Caldwell, NJ). Air-puffs as behavioral penalties were delivered from an air outlet (via plastic tubes) to

a modified 16 gauge syringe needle. The syringe needle was aimed at the animal’s snout. Air pressure

at the outlet was set to 30–35 psi (pounds-force per square inch; for people actually using SI units, the

pressure would correspond to 207–241 kPa).

For recordings, the plastic cap and Kwik-Cast layer were removed and the cortex was covered

with physiological buffer (in mM: NaCl, 127; Na2CO3, 25; NaH2PO4, 1.25; KCl, 2.5; MgCl2, 1; and

glucose, 25) mixed with 1.5% agar. Each recording session usually lasted for 1.5–2 hours. We recorded

from each animal during several recording sessions (usually 2 or 3 sessions per rat). Because the glass

electrodes we used (see below) had a rather wide shank and thecortical area available for recordings
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Figure 2.2: Experimental setup for patch-clamp recordingsin awake head-fixed rats. Plastic tube, head-
post holder were mounted on a recording platform, together with a speaker (facing the right ear of the
animal.) Behavioral state and body movements were monitored by video camera mounted directly in
front of the animal. The recording platform was mounted on anair-table to prevent vibrations from
outside the sound booth. A lickometer was placed in front of the rat’s mouth during behavioral sessions
to monitor licking and deliver water.
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was small, the number of recording sessions was limited by the total number of electrode penetrations.

We usually performed up to 15–20 electrode penetrations peranimal.

2.4 Electrophysiology

Recordings were obtained using standard blind patch-clamprecording techniques in cell-attached or

whole-cell configuration (see also DeWeese et al., 2003; Machens et al., 2004; Wehr and Zador, 2003).

Electrodes were pulled from filamented, thin-walled, borosilicate glass (outer diameter, 1.5 mm; inner

diameter, 1.17 mm; World Precision Instruments, Sarasota,FL) on a vertical two-stage puller (Narishige,

East Meadow, NY). For recording, electrodes were filled withinternal solution containing (in mM): KCl,

10; KGluconate, 140; HEPES, 10; MgCl2, 2; CaCl2, 0.05; MgATP, 4; Na2GTP, 0.4; Na2Phosphocreatine,

10; BAPTA, 10; and biocytin, 1%, pH 7.25; diluted to 290 mOsm.Resistance to bath was 3.5–5.0 MΩ

before seal formation. Recordings were obtained using Axopatch 200B (Axon Instruments, Union City,

CA) and a custom data acquisition system written in MATLAB (Mathworks, Natick, MA, see also

Sec. 2.9), with a sampling rate of either 4 kHz or 10 kHz.

Before inserting an electrode into cerebral cortex, positive pressure (150–200 mbar) was applied

to the electrode (glass pipette) to prevent debris from accumulating in the electrode tip as it would travel

through cortex. After an electrode was in the cortex positive pressure was lowered to approximately

100–120 mbar, and upon reaching 150–200µm depth, the pressure was further lowered to 70–75 mbar.

With this positive pressure the pipette was slowly advanced(in 1–2µm steps) and the resistance was

continuously monitored in voltage-clamp mode. Voltage pulses (-10 mV, 30 ms) were delivered at a rate

of 7–8 Hz and the evoked changes in current were monitored to assess the pipette’s resistance. Increase

in the pipette resistance usually signalled the presence ofcellular membrane. Once the pipette’s re-

sistance increased to 6–8 MΩ, positive pressure was released and a seal between the electrode tip and

membrane was established. However, sometimes suction (usually 10–20 mbar, but occasionally up to

100 mbar) had to be applied to establish a stable seal.

Cell-attached recording requires a seal of only 10–20 MΩ, whereas whole-cell recordings re-

quire at least 1 GΩ seals. Therefore, in the cell-attached configuration almost every neuron encountered

can be patched. Although virtually all neurons encounteredcould be patched, not all recordings were

sufficiently stable and the seals were “lost” before the fullset of stimuli was presented. Neurons were
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5 mV

A

50 mV

0.5 s

B

Figure 2.3: Examples of patch-clamp recordings in awake head-fixed rats. (A) An example trace of
neuronal activity recorded in cell-attached configuration. (B) An example trace recorded in whole-cell
configuration. Note the ten-fold difference in signal amplitude.Grey rectanglesshow position of sound
stimuli (tones of various frequencies and intensities.)

recorded in all depths, with more neurons encountered in themiddle cortical layers, as estimated by the

micromanipulator travel distance. At least one spike was recorded for each neuron.

Both cell-attached and whole-cell recordings offered an excellent signal to noise ratio (Fig. 2.3).

Spike amplitudes in cell-attached (extracellular) recordings were in the millivolt range, often in tens of

millivolts. Signal amplitudes for whole-cell (intracellular) recordings were in tens of millivolts, as the

signal varied from resting membrane potential (for example-70 mv) to peaks of action potentials (for

example 20 mV).

2.4.1 Technical aspects of whole-cell recordings in awake rats

Most of what is known about intracellular neuronal activitycomes from studies inbrain slices(Blanton

et al., 1989; Cauli et al., 1997; Edwards et al., 1989; McCormick et al., 1985; Stevens and Zador, 1998;
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Stuart et al., 1993, and many others). Recently, several laboratories introduced whole-cell recording

techniquesin-vivo in various sensory systems: auditory (DeWeese and Zador, 2006; Tan et al., 2004;

Wehr and Zador, 2003, 2005; Zhang et al., 2003), visual (Anderson et al., 2000; Carandini and Ferster,

2000; Ferster and Jagadeesh, 1992; Jagadeesh et al., 1993, 1997; Pei et al., 1991), somatosensory (Brecht

et al., 2003; Brecht and Sakmann, 2002; Bruno and Sakmann, 2006; Bureau et al., 2004; Petersen et al.,

2003b; Zhu and Connors, 1999), and olfactory (Margrie and Schaefer, 2003; Schaefer et al., 2006).

The vast majority of in-vivo studies of intracellular activity has been performed inanesthetized

preparations. Whole-cell recordings in-vivo are very challenging, and their application inawakean-

imals is technically difficult. Only very recently, severalstudies have described successful whole-cell

recordings in somatosensory (barrel) cortex of awake (unanesthetized) mice and rats (Brecht et al., 2004;

Crochet and Petersen, 2006; Lee et al., 2006; Margrie et al.,2002; Petersen et al., 2003a).

Obtaining a gigaohm seal between the electrode tip and neuronal membrane is a necessary

condition for a successful whole-cell recording. Overall,we were able to obtain gigaohm seals in about

one third of our attempts (penetrations). However, not all seals were successfully transformed into

a whole-cell configuration, usually due to sudden movement of the animal. Similar success rates have

been reported for both anesthetized and awake recordings (Margrie et al., 2002).

Factors that probably influenced the success rate of our recordings included the animal’s move-

ment, and possible contamination of electrode tips when penetrating cortical surface. In addition, the

actual number of attempts to obtain whole-cell configuration (for this study) was limited. We have in-

terleaved whole-cell and cell-attached recordings in order to maximise amount of data obtained from

each animal. Because each attempt to obtain a gigaohm seal requires a clean fresh electrode tip, we

were usually able to obtain good seal only on the first neuron—in a given penetration—we encountered.

When the attempt failed, we continued searching for cells and used cell-attached recordings to record

from more neurons in the same penetration. Each recording session lasted approximately 1.5–2.5 hours,

therefore the number of penetrations (especially when we recorded from multiple neurons) was limited

to 3–5 per recording session.

We have successfully recorded intracellular activity for several minutes (see Fig. 5.1 on page 92

for an example). The recordings were sufficiently stable andoffered an excellent signal-to-noise ratio.

Recordings described in this text lasted between 2–13 min (mean 7.4 min, median 7 min, n = 19 neu-
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rons), with one additional neuron from which we recorded forapproximately 2 hours. Good stability of

recordings was evident during periods of animal movements,such as whisking, licking or even groom-

ing. Such movements usually did not cause any apparent changes in recording quality. Gross, sudden

movements of the whole body (such as adjusting body position), however, usually led to an abrupt end

of recording.

2.5 Acoustic stimuli

We have used several types of acoustic stimuli (sounds), allof which were presented free-field in

a double-walled sound booth (Industrial Acoustics Company, Bronx, NY). For experiments on naïve

head-fixed rats, free-field stimuli were presented at 97.656kHz using the TDT System 3 (Tucker-Davis

Technologies, Gainesville, FL) connected to an amplifier (Stax SRM 313, STAX Ltd, Japan), which

drove a calibrated electrostatic speaker (taken from the left side of a pair of Stax SR303 headphones)

located 8 cm lateral to, and facing, the contralateral (right) ear. For behavioral experiments on head-

fixed rats, free-field stimuli were either presented with thesetup just described, or were presented at

a 200 kHz sampling rate using a custom built real-time Linux system driving a high-end Lynx L22

audio card (Lynx Studio Technology Inc., Newport Beach, CA)connected to the same amplifier and

calibrated speaker as mentioned previously.

2.5.1 Tones

The main sets of stimuli forcell-attached recordingsconsisted of 100 ms long pure-tone pips of 16,

20, or 64 different frequencies logarithmically spaced between 1–40 kHz (81 % of recordings, 134 out

of 166) presented at either 20, 50, 80 dB sound pressure level(SPL) (n = 43), or at 0, 30, 60 dB SPL

(n = 15), or at 0, 20, 40, 60 dB SPL (n = 76). For the rest of the recordings (19 %, 32 out of 166)

the stimulus protocol contained 100 ms long pure-tone pips of 28 frequencies logarithmically spaced

between 2–48 kHz presented at 60 dB SPL. All tones were repeatedly presented in a fixed pseudo-

random order at a rate of 2 tones per second. A full tuning curve was obtained for each neuron, i.e. each

neuron was probed at least once with each tone of a particularstimulus protocol.
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We used the same sets of tone stimuli forwhole-cell recordings(n = 19 neurons out of 20). The

neuron shown in Fig. 2.6 on page 27 was probed with 50 ms long tones, logarithmically spaced between

0.1–40 kHz presented at 0, 30, 60 dB SPL.

2.5.2 Frequency modulated sweeps

In 22 neurons (13% of recordings, 22 out of 166) we also presented frequency-modulated sweep stim-

uli. Sweeps covered the frequency range from 1 to 40 kHz, and both upward (from 1 to 40 kHz) and

downward (from 40 to 1 kHz) going sweeps were presented at 6 different rates (25, 50, 75, 100, 125,

150octaves/s) for each neuron.

2.5.3 Natural sounds

For cell-attached recordingsnatural sound stimuli were presented for 28 neurons, 23 of these neurons

were also presented with pure tones (14% of recordings, 23 out of 166), and five neurons were presented

only with natural sounds. The natural sound stimuli were taken from a commercially available audio

compact disc,The Diversity of Animal Sounds(Cornell Laboratory of Ornithology), originally sampled

at 44.1 kHz and resampled at 97.656 kHz for stimulus presentation (Machens et al., 2004). The sounds

chosen had no special relevance to the rats (unlike e.g. rat pup calls), and therefore are less likely

to engage specialized processing mechanisms; to the extentthat these sounds are representative of the

acoustic environment of humans, they are also representative for rats, which often share the same habitat

as humans. Altogether, four natural sound segments were presented for each neuron, with at least

4 repeats of each segment per neuron. The segments includedJaguar call(track 3, seconds 2 to 11 for

total duration of 10 s),Bowhead Whale(track 9, seconds 1 to 10, 10 s duration),Knudsen’s Frog(track

11, seconds 1 to 10, 10 s duration), andBearded manakin(track 19, seconds 0.1 to 5.1, 5 s duration).

The peak amplitude of each segment was normalized to the±10 V range of the TDT system, which

corresponded to 80 dB SPL.

Six neurons were probed with the same set of natural sounds inwhole-cell recordings.
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2.5.4 Behavioral stimuli

In the sound-discrimination go/no-go task we used pure tones and frequency modulated tones (war-

bles) as stimuli. Tones were 500 ms long pure-tone pips of 1, 2, 4, 8, 16, 32, and 40 kHz presented at

70 dB SPL.

Warbles (500 ms) were synthesized according to:

warble(t) = A(sin(2πfct +
indm

fm
(cos(2πfmt + φm −

π

2
)) + φc), (2.1)

whereA stands for the final amplitude ofwarble (our range was±1 V), fc stands for carrier

frequency of the underlying tone,φc is the phase of the carrier,fm modulation frequency,φm modula-

tion phase, andindm modulation index. Note, that our modulation index (indm) represents frequency

deviation from the modulation frequency, whereas the usualdefinition would define modulation index

as indm

fm

.

2.6 Data analysis

2.6.1 Spike extraction and analysis for cell-attached recordings

Spikes recorded in cell-attached mode were extracted from raw voltage traces by applying a high-pass

filter and thresholding (Fig. 2.4). Spike times were then assigned to the peaks of suprathreshold seg-

ments, and rounded to the nearest millisecond.

Individual spikes can assume very different shapes even in asingle cell (Fig. 2.4). In some

cases we observed bursts of spikes, during which spike amplitude sometimes decreased severalfold.

For example, for the cell shown in Fig. 2.4, both single spikes and bursts were sometimes evoked

approximately 40 ms following tone termination. Such largechanges in spike characteristics could result

either in a failure of spike detection, or errors in spike sorting in conventional extracellular tungsten

recordings.

Spikes were recorded at a sampling rate of 4 kHz for 88 neuronsin our main set of cell-attached

recordings (n = 166 neurons), and 10 kHz for the remainder of the population. For the analysis of spike

shape (Sec. 3.9 on page 65), the spike waveforms recorded at 4kHz were resampled to 10 kHz (using
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Figure 2.4:(A) Cell-attached recordings provide an excellent signal-to-noise ratio. Four second long
raw voltage trace recorded in cell-attached mode in the auditory cortex of an unanesthetized rat.
(B) Cell-attached recording allows for high quality single unit isolation. Voltage trace from A was high-
pass filtered, and spikes were easily identified in the trace after thresholding (grey line). Spike times
(dots) were assigned to peaks of suprathreshold segments.Grey squaresindicate the positions of stimuli
(pseudorandom sequence of 100 ms long tones of different frequencies and attenuations). The trace seg-
ment on the right shows the last 60 ms of the response to the 7th stimulus (asterisk).(C) Spike shape can
change significantly in a single neuron. Spike times (dots) are assigned to peaks of suprathreshold seg-
ments. The burst in the right panel preceded the single spikeshown in the left panel by approximately 5
seconds. Both examples were tone-evoked, and occurred about 40 ms after stimulus termination.
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Matlab resample function). We then computed the mean spike waveform for each neuron, and defined

spike widthas the time difference between the peak (maximum amplitude)and valley (minimum ampli-

tude following the peak) of the waveform. Because the spike waveforms were (re)sampled at 10 kHz,

spike widths are rounded to the nearest tenth of a millisecond. For each cell we also computed the

amplitude index, the absolute value of peak-to-valley-ratio, of the mean spike waveform.

2.6.2 Evoked response analysis for cell-attached recodings

Responses to stimuli were divided into 50 ms duration time bins. In addition, tone-evoked responses

were also binned in frequency space. We use the termresponse binto refer to subdivisions of a re-

sponse in general, as defined below for various stimuli. Whenwe explicitly refer to binning in time, or

frequency, we use the termsresponse epoch,or octave binrespectively.

Tones

Tone-evoked responses were divided into four 50 ms longresponse epochs(see also Fig. 3.3 on page 49).

The spontaneousepoch was defined as the 50 ms long period preceding stimulus onset. Theearly

epoch was defined as the first 50 ms of stimulus duration, thelate epoch as the last 50 ms of stimulus

duration, and theoff epoch as the first 50 ms after stimulus termination. In frequency space the responses

were grouped into one-octave-wide bins, which resulted in 4or 5 frequency bins (octave bins) per cell

(depending on the stimulus protocol used, see Sec. 2.5.1 above).

Thespontaneous firing ratefor each cell was computed as a mean of firing rates across all trials

in the spontaneous epoch for a given cell.Evoked firing rateswere computed for each combination

of response epoch and octave bin as a mean of firing rates of alltrials in the specific octave-epoch

combination.

The distribution of firing rates across octave bins for each response epoch was fit with a log-

normal distribution (see also Fig. 3.4 on page 51, and Fig. 3.5 on page 52). To fit each distribution, the

octave bins with zero firing rate were removed, and the mean and variance of the distribution of log-

transformed firing rates were computed. The mean and variance obtained directly from the data were

then used as parameters for the normal distribution fit to log-transformed firing rates. The goodness-of-

fit for each distribution was assessed using the Kolmogorov-Smirnov test.
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The significance of stimulus-evoked changes in firing rates was evaluated with the Wilcoxon

signed-rank test, i.e., a non-parametric paired, two-sided test of the hypothesis that the difference in

firing rates between the matched trials in two different epochs comes from a distribution whose me-

dian is zero. For each octave andearly, late, andoff response epochs we tested on a trial-by-trial

basis whether the stimulus-evoked firing rate increased or decreased significantly compared to the cor-

respondingspontaneousepoch. For this test, we only considered cells with at least 20 trials per octave

bin (69 %, 100 cells out of 145).

For the analysis ofresponsiveness of single neurons(see Sec. 3.4 on page 53) the evaluation

of significance involved 15 comparisons for most of the cells, because the responses of most cells were

binned into 15 response bins (5 octave bins times 3 response epochs). Therefore, we used a significance

criterion of either p < 0.0033 (for 15 comparisons, 0.05/15), or p < 0.0042 (for 12 comparisons, 0.05/12)

to keep the overall significance criterion for each cell at p <0.05. To be considered tone-responsive,

a cell had to show a significant change in firing rate (increaseor decrease) in at least one response bin.

For thepopulation responseanalysis (see Sec. 3.4 on page 53, and Sec. 3.5 on page 56) the

response bins from all neurons were considered independentand their responsiveness was evaluated

with the Wilcoxon signed-rank test using a significance criterion of p < 0.01. To evaluate the population

response in theearly response epoch the fraction of bins showing a significant increase, decrease, or no

change in the firing rate was computed for each octave bin in the early response epoch. The fraction

of responsive bins in theearly response epoch was then defined as the mean of the octave-bin fractions

in the epoch. Analogous computations were carried out for the late andoff response epochs. To com-

pute the population response across all epochs, the fraction of responsive bins was computed from all

response bins (from all neurons) pooled together.

Careful inspection revealed no clear examples of frequencytuning sharper than about one oc-

tave, suggesting that it would be appropriate to pool together responses to tones within an octave. To

confirm systematically that our results were robust to this choice we repeated this analysis with half-

octave wide (i.e. narrower) frequency bins, two, and four octaves wide (i.e. wider) frequency bins, and

50 ms long response epochs. To control for neurons with more transient or sustained responses we

performed the population response analysis with 25, 75, and100 ms duration response epochs and one-
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octave-wide frequency bins. The results of these analyses,however, were the same as for the basic

analysis with one-octave-wide frequency bins and 50 ms duration response epochs (not shown).

Frequency-modulated sweeps

Responses to frequency-modulated sweeps (FM-sweeps) weresubdivided into 50 ms duration response

epochs. Slower sweeps, with 25 or 50octaves/s, contained four or two 50 ms epochs, respectively, during

the stimulus presentation. Faster sweeps (75, 100, 125, 150octaves/s) contained one 50 ms epoch. For

all sweep rates we also added anoff epoch starting either at the sweep termination (for 25, 50, 75,

100octaves/s), or immediately after the response epoch (for 125, 150octaves/s). Each response was thus

divided into 32 response bins (including upward and downward moving sweeps). Therefore, for the

analysis of significance of sweep-evoked responses in individual neurons we used a significance cri-

terion of p < 0.0016 (0.05/32). To compute the population response to FM-sweeps all response bins

were considered statistically independent and their responsiveness was computed using a significance

criterion of p < 0.01.

Natural sounds

Responses to natural sounds were also divided into 50 ms duration response epochs. Ten second long

segments thus contained 200 response bins each, and five second long segments contained 100 response

bins. Natural sound-evoked responses were used only for theanalysis of stimulus-evoked changes in

firing rate, because none of the recordings met our criterionfor the test of evoked response significance

(i.e. at least 20 trials per response bin.)

2.6.3 Analysis of whole-cell recordings

Spikes recorded in the whole-cell configuration were detected in the same way as in cell-attached con-

figuration. High-pass filter was applied to raw voltage traces, and the filtered trace was thresholded.

Spike times were then assigned to the peaks of suprathreshold segments and rounded to the nearest

millisecond.

Voltage traces were recorded with action potentials superimposed on subthreshold activity. To

analyze only the subthreshold activity, action potentialswere removed from raw voltage traces by me-
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Figure 2.5: Median filter was applied on the raw voltage traces to remove action potentials. Thethick
grey line shows the raw voltage trace recorded in unanesthetized auditory cortex. The action potentials
shown were truncated at -20 mV. The black line shows the filtered voltage trace (4 ms median filter).
Note that the filtered trace preserves subthreshold voltagefluctuations.

dian filtering (Fig. 2.5). We used 4 ms median filter, where each point in the voltage trace was replaced

with a median of itself and 16 or 40 (depending on sampling rate) surrounding points (Jagadeesh et al.,

1997). Therefore, large fast fluctuations (action potentials) were removed, while slower fluctuations

(up to very fine details) were preserved. All subthreshold traces shown were median filtered, unless

otherwise specified.

Traces were selected for further analysis after careful visual inspection. Nonstationary traces,

and traces in which the fifth percentile value of the membranepotential across the trace was above

50 mV were excluded from further analysis.

Kurtosis analysis

For each recorded trace we computed akurtosis excessk of membrane voltage distribution (DeWeese

and Zador, 2006; Olshausen and Field, 2004):

k =
1

n

n∑

i=1

(vi − vmean)4

σ4
− 3, (2.2)

wheren is the number of data points (samples) in a voltage trace,vi is the membrane potential

at data pointi, vmean is the mean membrane potential across the trace, andσ is the standard deviation of

membrane potential across the trace. The kurtosis of a normal distribution is equal to zero, whereas for
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heavy-tailed distributions (distributions with tall peakand long tails) kurtosis is greater than zero. For

this analysis we used 7 s long voltage traces (neurons 2–15),except for neuron 1, for which we recorded

data in 4 s long trials. Traces from neurons recorded with continuous data acquisition (neurons 16–20)

were divided into 7 s long non-overlapping segments.

We used kurtosis (henceforth we shall use the term kurtosis instead of kurtosis excess) to

measure “sparseness” of subthreshold activity. Occasional deviations from mean membrane potential

(bumps) lead to long tailed distribution of membrane potential values, and kurtosis higher than zero.

Note that, because the recordings were performed in awake animals, recordings were more suscepti-

ble to pulmonary and cardiac pulsations, recording instabilities, animal movements (e.g. grooming),

etc.These events typically lead to a decrease in kurtosis because they smear out the peak in the mean of

the voltage histogram near the resting potential (DeWeese and Zador, 2006).

Bump analysis

Subthreshold membrane potential activity usually appeared as occasional voltage fluctuations above

resting membrane potential (bumps, see Sec. 5 on page 89 for details). Theresting membrane potential

for each trace was defined as the fifth percentile value of the membrane potential across the trace. We

quantified durations of bumps by measuring the amount of timethe membrane potential stayed above

a given threshold. “Gaps” shorter than 20 ms were included into bumps, as they might have reflected

“noisy” fluctuations of membrane potential. We usedabsolute thresholdsof 10, and 15 mV above

resting potential and computed durations of continuous voltage segments above given threshold. For

each trace,maximum potential amplitudewas defined as the difference between absolute maximum

potential (in each trace) and resting membrane potential for the trace. We also usedrelative thresholds

defined as 20 %, and 40 % of the maximum potential amplitude andcomputed durations of continuous

voltage segments above threshold. The 20 % threshold corresponded to 7.33±1.18 mV when expressed

in absolute units. Note that such a threshold is probably quite low (see for example Petersen et al.,

2003a; Stern et al., 1997) and thus may lead to an overestimation of the actual “bump” duration.

Because bump durations can vary from several milliseconds to about 1–1.5 s (especially for the

lowest thresholds, see Fig. 5.4 on page 97) we divided the detected bumps into three classes: bumps

shorter than 100 ms, bumps between 100–200 ms, and longer than 200 ms (up-states). For each neuron
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Figure 2.6: Subthreshold tuning curve of a neuron in unanesthetized auditory cortex. Frequency-
intensity tuning curve shows robust subthreshold activityfor this neuron. Note the prominent on and
off responses, i.e. responses to the onset and the offset of some stimuli. The trace shown are average
responses (of median-filtered traces) to 50 ms tones. Each trace contains 10 ms of spontaneous activity
before the tone (see upper right corner).

we computed the fraction of bumps belonging to each class, aswell as the fraction of up-time neurons

spent in bumps (up-states) of different durations (Fig. 5.5).

Subthreshold tuning in awake auditory cortex

One of the basic characteristics of neurons in auditory cortex is the tuning curve. Subthreshold frequency-

intensity tuning curve of one neuron is shown in Fig. 2.6. Each trace represents 10 ms of spontaneous ac-

tivity followed by response to 50 ms tones of various frequencies and intensities. This neuron displayed

prominent on and off responses (two bumps), and the responses covered about 4-5 octaves of frequency

range at 60 dB SPL. The best frequency of this neuron was around 40 kHz, where best frequency was

defined as the tone frequency which elicited discernible responses at threshold sound intensity (i.e. the

lowest sound intensity applied still capable of eliciting responses). The tuning curve is comparable

to subthreshold tuning curves from anesthetized preparations (Machens et al., 2004; Tan et al., 2004;

Zhang et al., 2003), although no example [known to the authorof this text] in auditory literature shows

such prominent subthreshold off response.
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Figure 2.7: Subthreshold tuning can be broader than suprathreshold tuning.Bottomtraces show average
subthreshold responses to 100 ms tones presented at 60 dB SPL. Each trace contains 50 ms of sponta-
neous activity (see upper right corner). Responses to four nearby frequencies were averaged together for
each average trace shown in this plot.Top rasters show positions of spikes detected in the raw voltage
trace. Notice that detectable subthreshold responses covered wider frequency range than the spiking
output. Note also the low spiking activity arising from robust subthreshold dynamics.

While subthreshold bumps represent a combination of synaptic inputs, spiking responses repre-

sent neuronal output. In Fig. 2.7 we compared frequency tuning of subthreshold responses and spiking

(suprathreshold) responses. The neuron responded with prominent subthreshold on and off responses to

100 ms tones at 60 dB SPL, with responses covering frequency 2.5–40 kHz frequency range (4 octaves).

However, the spiking output was rather sparse with only a fewspikes elicited. Spike responses covered

a frequency range of about 6.5–40 kHz, which was more than 1 octave less than the subthreshold tuning.

Thus subthreshold tuning curves can be wider than suprathreshold tuning curves, which suggests that

neuronal synaptic inputs cover wider frequency range than can be detected using extracellular recording

techniques (DeWeese and Zador, 2000; Ojima and Murakami, 2002).
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2.6.4 Cell counts

Cell-attached recordings

Results summarized in Sec. 3 on page 44, and Sec. 4 on page 73 are based on analysis of cell-attached

recordings in awake head-fixed rats. We recorded from 166 neurons1 (in 25 animals) out of which we

identified 145 neurons (in 24 animals) with at least 8 trials per octave bin.

For the analysis ofstimulus-evoked changes in firing ratewe identified neurons with at least

8 trials per response bin (5 trials for natural sounds). For the analysis ofsignificance of stimulus-evoked

responseswe identified neurons with at least20 trialsper response bin.

Tones

We recorded from 166 neurons (100 %), while presenting pure-tone pips. For further analysis

of firing rates evoked by 50 or 60 dB tones we identified 145 neurons (87 %) with at least 8 trials per

response bin. For the analysis of evoked response significance we further identified a subset of 100

neurons (60 %) with at least 20 trials per response bin.

For 91 neurons (55 %) we also presented 30 or 40 dB tones. All ofthese neurons were used for

the firing rate analysis, and 62 neurons (37 %) from this subset—those with at least 20 trials per response

bin—were used for the analysis of evoked response significance. Accordingly, out of 43 neurons (26 %)

presented with 80 dB tones we selected 22 (13 %) for firing rates analysis, and 6 (4 %) with at least

20 trials per octave bin for the analysis of evoked response significance.

Frequency modulated sweeps

Frequency modulated sweeps were presented for 22 (100 %) neurons, all of which were used

for the firing rates analysis. Seventeen neurons (77 %) with at least 20 trials for each sweep rate and

direction were further selected for the analysis of significance of sweep-evoked responses.

Natural sounds

Natural sounds were presented for 28 neurons (100 %). Twenty-seven neurons (96 %) with at

least 5 trials for each natural sound segment were identifiedfor the analysis of stimulus-evoked firing

rates.
1Thirty-one recordings (19 %) were performed by Michael R. DeWeese.
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Whole-cell recordings

Results summarized in Sec. 5 on page 89 are based on analysis of data obtained using whole-cell record-

ings in awake head-fixed rat. Altogether, we report results from 20 intracellular whole-cell recordings2

in the unanesthetized auditory cortex of 13 Sprague-Dawleyrats (24–30 days old). One recorded trace

has been used as an example in Fig. 2 in DeWeese and Zador (2006).

2.7 Simulation experiments

2.7.1 Discriminability of firing patterns

To compare stimulus representations in sparse and dense neuronal populations we computed the simi-

larity of pairs of spike patterns that were either both generated by neurons with firing rates drawn from

lognormal (sparse) distributions, or both generated by neurons with firing rates drawn from truncated

Gaussian (dense) distributions. For the simulated lognormal distribution of firing rates we used param-

eters given by the distribution of spontaneous firing rates (Sec. 3.3), with a mean of 1.3, and a standard

deviation of 1.0, both on a logarithmic scale. To create a corresponding (truncated) Gaussian distribu-

tion of firing rates we matched the mean firing rate and entropyof the lognormal distribution, which

corresponded to a Gaussian with a mean of 4.2sp/s and a standard deviation of 5.2sp/s, on a linear scale,

with negative firing rates replaced by rates drawn again fromthe same distribution until the distribution

contained only non-negative firing rates.

To simulate responses of neuronal populations, we first drewtwo patterns,X andY , of firing

rates—each of these rate patterns was a vector of n = 200 values, representing the firing rate of each

neuron in the population. For the sparse patterns each element of each vector was drawn from the sparse

distribution; similarly for the dense patterns, each element was drawn from the dense distribution. We

then generated 100 individual spike patterns from each ratepattern by treating each element as the rate

(in a 10 ms window) of a Poisson process.

2Five recordings (25 %) were performed by Michael R. DeWeese.
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We defined thediscriminabilityq(X, Y ) between a pair of rate patterns (i.e. between two sets

of firing ratesX andY over a population of neurons) as:

q(X, Y ) =
〈x · x′〉〈y · y′〉

〈x · y〉2
(2.3)

wherex andx′ are patterns of spike counts drawn fromX, andy andy′ are spike patterns

drawn fromY ; the brackets denote averages over all pairs of spike patterns (instantiations of the Poisson

spike trains). We then used adiscriminability score (Q)—the average discriminability over pairs of rate

patterns—to quantify how different spike patterns drawn from the different underlying distributions

were:

Q = 〈q(X, Y )〉rates (2.4)

We thus could compareQ for patternsX andY drawn from a sparse distribution toQ for

patternsX andY drawn from a dense distribution.

The higher the discriminability score, the more discriminable are the spike patterns drawn from

one pattern of rates compared to another pattern of rates. A discriminability score close to 1 means

that spike patterns from one rate pattern are (on average) the same as spike patterns from another rate

pattern.

2.7.2 Hebbian learning for sparse and dense firing rate representations

To compare learning of neuronal activity patterns arising in sparse (lognormal) or dense (Gaussian)

distribution of firing rates we used a single neuron model with Hebbian synapses. Parameters for sparse

and dense distributions were estimated from data, as described in the previous section.

From the firing rate distributions we generated atraining setof k firing rate patterns, each

consisting ofn neurons with firing rates chosen randomly from the same firingrate distribution. One

neuronal pattern was randomly chosen to be thetargetpattern, and the remaining patterns were labeled

asnontargetpatterns. Every other pattern in the training set was then replaced by the target pattern.

From the training set of firing rate patterns we then generated a set of spike patterns representing popu-

lation outputs during 10 ms windows: each firing rate was replaced by a number of spikes generated by
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a Poisson process (λ = firing rate) in a 10 ms window. Each input spike pattern in thetraining data set

represented a 10 ms snapshot of neuronal spiking activity. Note that while the targetfiring rate patterns

were identical, the actual targetspike patternswere not (although they were similar, see also previous

section) because they were generated by a stochastic Poisson process.

We simulated learning in a single sigmoidal neuron withn inputs (corresponding ton neurons

in the input patterns) and one output. In each trial (a singlepresentation of input pattern) the sigmoidal

neuron computed its output (response) as a weighted sum of its inputs transformed by a sigmoidal

function. After the trial, the neuronal response was used tocompute a new set of synaptic weights.

Thus, the neuronal responseyt in trial t was computed as:

yt = σ(
n∑

i=1

wt−1

i xt
i), (2.5)

wherewt−1

i are current synaptic weights (computed in the previous trial) associated with current

inputsxt
i, andσ = 1/(1 + e−100z+6.2) is a sigmoid function withz as parameter (i.e.,z =

∑
i wixi).

The weightswi were initialized with values from 0 to 1 drawn from a uniform distribution, and

then normalized so that
∑

wi = 1. After the presentation of each input pattern, weights wereadapted

according to a Hebbian learning rule:

wt
i = wt−1

i + η ytxt
i (2.6)

wheret = 1, . . . , k denotes trials (presentations of individual input patterns),η is the learning

rate,yt is the current neuronal response (i.e. , postsynaptic activity), xt
i denotes theith input in the

current trial (i.e. , presynaptic activity),w0
i is the set of initial synaptic weights.wk

i is thus the final

set of synaptic weights after presenting allk input patterns. We repeated the simulation experiment

1000 times, each time drawing a different set ofn = 100 neurons, andk = 100 trials. The value at each

point (trial t) of Fig. 3.15C was computed asσ(
∑

i wt
ix

t
i) for each experiment and then averaged across

experiments. The line thickness in panel C represents the standard error of the mean.
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2.8 Head-fixed behavior

We have developed sound discrimination go/no-go task to study effects ofvigilance/alertnesson neu-

ronal responses in auditory cortex in head-fixed rats (Fig. 2.8). In this section we describe the structure

of the task, and of individuals trials, and training procedures.

2.8.1 Sound discrimination go/no-go task

In the sound discrimination go/no-go task, rats were trained to respond (i.e. lick) to target sounds while

listening to a continuous stream of 500 ms sounds (separatedby silent intervals). The rats were also

trained not to respond to distractor sounds or during inter-trial intervals. We have used pure tones and

warbles (frequency modulated tones) as stimuli (see also Sec. 2.5). Some rats were trained with tones as

targets and warbles as distractors; for some rats we presented warbles as targets and tones as distractors.

For each rat, however, we kept the task contingencies the same. In the following description we assume

that warbles were presented as targets, and pure tones were presented as distractors. Distractor tones

were of different (eight) frequencies to ensure that rats were not discriminating between concrete sounds,

but rather discriminating differentquality of sounds, i.e. tone vs frequency modulation. Because rats

did not initiate trials, we have definedtrial in this task as inter-stimulus interval, i.e. the period from

the beginning of one sound stimulus to the beginning of the next one. Each trial thus contained a single

sound stimulus.

Target and distractor trials were randomly interleaved.Targettrials started with a target sound,

followed by thereward period(Fig. 2.9.) Responses (i.e. licks) during the target soundsor reward period

were rewarded with a drop of water. The reward period was followed by apenalty period,duration

of which was drawn randomly from an exponential distribution with a mean of 1–2 s, therefore, the

duration of the penalty period occasionally exceeded 10 s ormore. The penalty period was followed

by beginning of the next trial, and thus corresponded to the inter-trial interval in a general sense. Any

licks during the penalty period were penalized by an air-puff (500 ms) and a restart of the penalty period

(with the same parameters.)Distractor trials started with a distractor sound immediately followed by

a penalty period. Therefore, any licks during distractor trials were penalized by air-puffs and restarted

the penalty period (if the lick happened during the penalty period).
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Figure 2.8: Training and recording setup for head-fixed behavior. During (re)training and recording
head-fixed sessions, a rat was positioned inside a plastic tube with a lickometer placed in front of
his/her/its mouth.
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Figure 2.9: Trials of sound discrimination go/no-go task. Target trials (top) started with 500 mstarget
sound, followed by a 3 s reward period, during which responses (i.e. licks) were rewarded with a drop of
water. The reward period was followed by a (random duration)penalty period, during which licks were
penalized by air-puffs. Distractor trials (bottom) started with a 500 msdistractor sound, immediately
followed by apenalty period. Any licks during distractor trial were penalized by an air-puff. Target and
distractor trials were randomly interleaved during a behavioral session. See also Fig. 6.1.

In our task, rats were then trained todiscriminatedifferent sounds by responding to target

sounds and not responding to anything else. In addition, rats were trained to“understand” task struc-

ture, i.e. wait for a sound and lick only when a (target) soundis presented.

We computedperformancein the task as a measure combining how well a rat can discriminate

sounds, and how well a rat can follow task structure. We defined responses(ri) in individual trials (ti) as

1 for correct trials, and 0 for error trials. Correct trials included target trials during which the rat licked

in response to a target, and distractor trials during which the rat did not lick. Error trials included the

rest of the trials.
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Discrimination performance(d) was computed as a running average of responsesri in k con-

secutive trials:

di =
1

k

i∑

j=i−k+1

rj , (2.7)

where i ≥ k. We have usedk = 20 trials for our computations. Therefore,di = 1 for

20 consecutive correct trials, anddi = 0 for 20 consecutive error trials.

We computed apenalty period extension(ε) as a measure of how well rats followed task struc-

ture. For each trial we computedεi as a ratio of the actual duration of the penalty periodεact
i and the

intended duration of the penalty periodεint
i for that trial:

εi =
εact
i

εint
i

, (2.8)

whereεi = 1 when the rat followed trial structure, andεi > 1 when the rat licked outside

the reward period. Recall that for each trial the duration ofthe penalty period was drawn randomly

before the trial (intendedduration). Whenever the rat licked during the penalty period, the period was

restarted with the same parameters (in addition to air-puff). Therefore, when the ratdid not follow the

task structure (i.e. licked during penalty period), theactual penalty period duration was longer than

intended andε > 1. When the rat did not lick during the penalty period,εact
i = εint

i , andεi = 1. Then

we computed̄εi as a running average of the penalty period extensionεi in k = 20 consecutive trials:

ε̄i = (1/k)
∑i

j=i−k+1
εi, wherei ≥ k.

We defined performancepi in each trial as a ratio of discrimination performance to a running

average of the penalty period extension:

pi =
di

ε̄i
. (2.9)

Performance, as we defined it, was bounded between 0 and 1. Thebest performance,pi = 1,

was achieved whenever the rat performed 20 consecutive correct trials, with no licks during the penalty

period in trial ti. On the other hand,pi = 0 for twenty consecutive error trials, regardless of any

(possible) licks during the penalty period.
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2.8.2 Analysis of response parameters

We used the termslick or licking to describe the “stereotypical oromotor ingestive responses, which in-

clude tongue protrusions, lateral tongue and mouth movements” (Whishaw and Kolb, 2005). Licks—as

detected by our lickometers—corresponded to brief interruptions of an infrared beam in the lickometer

(Sec. 2.3 on page 13). Licking was the only behavioral response, especially in the head-fixed posi-

tion. We have, therefore, measured and compared several licking parameters (lick duration, lick latency,

licking frequency) between freely moving and head-fixed sessions.

For analysis oflick durations in freely moving and head-fixed sessions we identified licks

shorter than 200 ms. Longer licks were rare and usually corresponded to interruptions of the infrared

beam by various body parts, for example tail in freely movingsessions. Licks identified in alloper-

ant freely moving sessions were pooled together for each animal, and licks identified in all head-fixed

sessions were also pooled together. To compare distributions of lick durations between (operant) freely

moving and head-fixed sessions we first divided duration distributions into 5 ms wide bins, and then

used nonparametric Wilcoxon rank-sum test (Mann-Whitney Utest) to compare the resulting discrete

probability density functions.

We have definedresponse latencyas the latency of the first lick in a response lick train (we only

considered response latencies 10–1000 ms for this analysis). To compute response latencies in freely

moving session we pooled together first lick latencies from all target trials in the last three operant freely

moving sessions. Analogously, we pooled together first licklatencies from all target trials in head-fixed

sessions. We then compared distributions of response latencies using the nonparametric Wilcoxon rank-

sum test (Mann-Whitney U-test).

Licking frequencyin freely moving sessions (head-fixed sessions) was computed by first align-

ing lick trains from target trials in all operant freely moving sessions (all head-fixed sessions). The

aligned lick trains were added together to compute “laster PSTH,” i.e. peristimulus time histograms

from licking rasters. We then estimated the power spectral density of laster PSTHs using Welch’s

method of spectral estimation. Main licking frequency was then defined as the frequency of the maxi-

mum peak in 3–40 Hz range. The distribution of licking frequencies from freely moving sessions was

compared to the distribution of licking frequencies from head-fixed sessions using Wilcoxon rank-sum

(Mann-Whitney U-test).
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2.8.3 Training protocol

Rats were usually trained in batches of four, housed together in one cage. All rats were picked randomly

at postnatal age of 23–24 days. Initially we tried training rats as young as 20 days, but rats younger than

23 days usually sat passively until they reached 23–24 days of age. We did not specifically select for

male or female rats.

Rats were water-deprived one day before the first training session, with otherwise free access

to food. During training, rats received water during training sessions in the form of rewards, and for

a limited time (20–30 min) each day at a randomly chosen time after the last session for that day. After

the first day of water deprivation the rats lost about 10 % of their body weight. Eventually, after a few

days, their growth resumed and rats gained 1–2 g of body weight a day (in the water-deprivation regime).

Animals were trained on a training platform similar to the recording platform described in

Sec. 2.3, with the plastic tube closed on both sides to prevent the rats from escaping. As areward

for correct licking responses we used sugar water, 5% sucrose in millipore water, to ensure continuous

water delivery without air bubbles. We have not found any difference in training progress or performance

when using 5% aspartame solution, or pure water. We used 500 ms air-puffs topenalizerats for licking

incorrectly.

Training for the sound discrimination task consisted of twomain phases, freely moving and

head-fixed. Rats were trained freely moving for the full task, and retrained in the head-fixed position

after reaching sufficient performance.

The first two sessions in the freely moving phase were introductory. Rats were trained to asso-

ciate a target sound with water reward in theclassical conditioningparadigm. Each target sound was

followed by a drop of (sugar) water, which was in turn followed by a random-length inter-trial interval.

Rats werenot penalized for licking incorrectly during these classical conditioning sessions.

Starting with the third session, we switched to anoperant conditioningparadigm, and intro-

duced air-puffs as penalty for incorrect licks. Rewards were no longer delivered automatically after

each target, but rats had to initiate rewards by responding (licking) during the reward period. In most

cases, rats switched seamlessly to operant conditioning; in rare cases we had to manually deliver several

rewards as a “reminder.” If a particular rat was licking actively during the third session, we introduced

an air-puff as a penalty for incorrect responses. We startedwith shorter air-puffs (10–100 ms), and in-
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creased air-puff duration to 500 ms, usually during the samesession. After the first air-puff, most of the

rats stopped performing for several minutes, but then gradually resumed licking.

We introduced a single distractor stimulus, randomly interleaved with targets after two, occa-

sionally three operant conditioning sessions with targetsonly. We started with 30 % of distractors for

one session, continued with 50 % of distractors in the following (sometimes the same) session, and

rarely—for “very active” rats—used 70 % of distractors and 30 % of targets.

After about two more sessions with a single distractor we introduced another distractor in one

session, two more distractors in the following 1–2 sessions, and finally four more distractors to reach

8 different distractors. Thus in about 10–12 sessions rats were exposed to the full task, and their dis-

crimination performance usually reached at least 80 %.

One day after the last freely-moving session, rats underwent surgery (Sec. 2.2). We have per-

formed surgeries both on water-deprived rats and rats whichreceived water for one day before surgery,

and found no difference. After surgery, rats were allowed atleast 24 hours to recover, after which they

were water-deprived again.

Two days (usually) after surgery, we started retraining theimplanted water-deprived rats in

a head-fixed position. Most rats started licking, and eventually performing the task, during the first 20–

30 min in the head-fixed position. After two to three head-fixed retraining sessions the rats were ready

for head-fixed recordings.

2.9 Data acquisition system

All data was obtained using a custom made data acquisition and stimulus delivery system written in

Matlab. This section describes the design and implementation of a modular system for continuous data

acquisition, with flexible on-line stimulus delivery.

Originally, data was obtained using a legacy trial-based system designed and used for record-

ings in anesthetized animals. However, with more and more recordings in awake head-fixed animals,

the original system—although very useful for its original purpose—became unsuitable for three main

reasons. First, a considerable portion of the electrophysiological signal—the inter-trial interval—was

not recorded in the trial based system. Depending on the actual experiment design, inter-trial inter-
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vals corresponded to 15–25 % of data. Because experiments inawake animals tend to be shorter than

experiments in anesthetized animals, inter-trial intervals effectively represented lost valuable data. Sec-

ond, all stimuli had to be prepared before the experiment. Any change in structure of desired stimuli

(type, different parameters, different order of stimuli, etc.) led to resynthesizing of the stimulus file.

Third, the system was designed to be rather monolithic. All components of the system were dependent

on various other components, and communication among different components (change of parameters,

change of path, etc.) was explicitly specified. Therefore any change in the system (adding functionality,

adding recording channels, adding another sound channel, etc.) required direct changes in various (often

unrelated) parts of the code, often introducing inconsistencies, or even errors.

We have designed a modular, event-based system to address limitations of the original data

acquisition system. The system’s functionality was split into four main subsystems: data acquisition,

stimulus delivery, data processing, and behavioral control (Fig. 2.10). Each subsystem contained several

modules, each providing a well-defined, separate task. Splitting the system’s functionality into separate

modules ensured that changes in different subsystems couldbe made without any changes in the other

subsystems. Thus, the data acquisition subsystem contained modules for analog input (ai), analog output

(ao), digital input/output (dio), etc. The stimulus delivery subsystem contained thestimulusczarmodule

“supervising” stimulus delivery. Stimuli requested by another module (for examplestimulusprotocol)

were prepared (synthesized/loaded) bystimulusczarand uploaded to appropriate hardware by separate

modules (for examplesoundload). The data processing subsystem provided means for online data

processing by extracting relevant portions of data (datagurumodule) from continuous stream delivered

by ai. Boxmasterwas the main module of the behavioral subsystem, providing behavioral control

by uploading the task description, and continuously updating behavioral input supplied by the subject

performing the task. The module thus served as an interface for other modules (behavioral protocols)

providing on-line data analysis of behavior. Two modules provided additional functionality:control

module provided basic information about current experiment, and was responsible for coordinating

communication among other modules; and thesealtestmodule used to search for cells during patch-

clamp recordings.

Communication among different modules was implemented as event-based. In this paradigm,

each module implemented “responses” to specific, defined “events.” When an event occurred, for ex-
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Figure 2.10: Structure of data acquisition system. Core functionality is split into four subsystems:daq
(data acquisition),stimuli (stimulus delivery),data (data processing), andbehavior (behavior control).
Each subsystem contains several modules providing separate tasks.Control andsealtestare modules
providing additional functionality.Other modules provide specialized tasks, not necessarily related to
any of the main subsystems.

ample the user pressed a button to start recording, modules were notified that a particular event has oc-

curred, and appropriate portions of the code in “responsive” modules were executed. Thus, events were

essentially anonymous, and different modules could be replaced with completely different portions of

the code, different (number of) modules, as long as the new code provided the samefunctionalityas the

original code.

The system was implemented in Matlab (version 6.5.1, Mathworks, Natick, MA), and requires

Data Acquisition (DAQ) Toolbox (version 2.2) (Fig. 2.11). We have tried other (later) versions of Matlab

and DAQ Toolbox, but due to the apparent Mathworks policy of consistently introducing inconsistencies

in new versions of their products, all data was obtained using the original Matlab version. On the

hardware side of data acquisition we used PCI-MIO-16E-4 data acquisition card (National Instruments

Corporation, Austin, Tx).

We originally used RP2.1 Real-Time Processor (TDT, Alachua, Fl) for three purposes: to de-

liver sounds, to control behavior, and to create a timestampsignal. Delivering sounds was the main

purpose. All sounds were created as Matlab vectors sampled at 97.656 kHz, uploaded to the RP proces-
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Figure 2.11: An example of the data acquisition session. Screenshot of a “dummy” data acquisition
session, showing the actual implementation of the modular structure. Each module is represented by a
single window. See text for details.

sor, and played after being triggered by the data acquisition card. Behavioral control was implemented

in a separate RP processor, and used a state machine paradigmbased on a design originally developed

and coded by Lung-Hao Tai. Additionally, in some experiments we delivered a timestamp signal (a con-

tinuous stream of Manchester encoded 22-bit integers), used to synchronize the electrophysiological

signal with the separately recorded video signal. The timestamp signal was recorded simultaneously in

one of the recording channels and one audio channel of the video signal.

We have recently replaced RP processors with a standalone GNU/Linux system with a real-time

kernel (version 2.14.29). Real-time linux system runs on a separate computer, and uses a high-end audio

card (Lynx L22, Lynx Studio Technology Inc., Newport Beach,CA) to deliver sounds at 200 kHz. The

system—behavioral state machine and Lynx sound card driver—was developed by Calin Culianu.
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The modular, event-based design of our data acquisition system enabled us to smoothly make

changes in a working environment by simply adding or replacing software modules (usually a single

one) without making any changes in the system’s core. Thus adding new functionality (behavioral sub-

system), or replacing existing hardware (real-time GNU/Linux instead of RP processor) was straightfor-

ward. Finally, the versatility of the system is best documented by its various configurations as used by

several members of our laboratory: patch-clamp recordings, dual patch-clamp recordings, behavioral

training, patch-clamp recordings in behaving rats, extracellular tungsten recordings, recordings with

rigid tetrodes (in anesthetized, awake naïve, and behavingrats); delivering sounds, current pulses, light

via LEDs, etc.
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Chapter 3

Sparse representation of sounds in

auditory cortex of unanesthetized rats

How does a population of cortical neurons encode a sensory stimulus such as a sound? At one extreme,

the neural representation could be dense, engaging a large fraction of neurons, each with a broad re-

ceptive field. At the other extreme, the neural representation could be sparse, at any moment in time

engaging only a small fraction of neurons, each highly selective with a narrow receptive field. Although

a dense code under some conditions makes the most efficient use of the “representational bandwidth”

(DeWeese et al., 2005) available in a neuronal population—why should a large fraction of neurons re-

main silent most of the time?— sparse models have recently gained support on both theoretical (Asari

et al., 2006; Olshausen and Field, 2004; Smith and Lewicki, 2006) and experimental (Baddeley et al.,

1997; Brecht et al., 2004; Dan et al., 1996; Hahnloser et al.,2002; Margrie et al., 2002; Szyszka et al.,

2005; Vinje and Gallant, 2000) grounds. However, it is not atpresent clear which of these is a better

model of sensory representations in the auditory cortex. Inorder to distinguish between these alterna-

tives experimentally, we must know what fraction of neuronsresponds to a given stimulus.

The direct experimental approach to measuring the density of a cortical code would begin by si-

multaneously recording sound-evoked responses of all the neurons in the auditory cortex to an ensemble

of stimuli; one could then simply count the number of spikes elicited by each stimulus. Unfortunately,

currently available recording techniques do not permit such a direct approach. An alternative approach

is to record the activity of a representative subset of neurons serially, and infer the population response
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from this sample. In this way, the population code could in principle be inferred by sequentially sam-

pling a large population of single unit responses.

We have used cell-attached recording in the primary auditory cortex of unanesthetized rats to

sample the population response to brief tones and other stimuli. Because we were interested in the

population response, we presented the same stimulus ensemble to each neuron, rather than optimizing

the stimulus to drive each neuron to fire maximally (O’Connoret al., 2005; Wang et al., 2005). Thus, we

could assess the fraction of neurons that responded to each stimulus we presented. Our data, therefore,

address the question: “What is the typical response across the entire neuronal population to a particular

stimulus?” rather than: “What is the optimal stimulus for a particular neuron?”

We find that the typical population response in unanesthetized auditory cortex is sparse. Con-

sistent with previous findings in barrel cortex (Margrie et al., 2002), some neurons had very low spon-

taneous firing rates (≤0.01spikes/s); at the other extreme, some neurons had driven rates in excess of

50spikes/s. However, a given stimulus typically elicited a high firing rate (≥20spikes/s) in only about 3 %

of the population. Note that sparseness as used here refers only to the fraction of neurons active at a

given instant; it is quite possible that each neuron might, under the appropriate conditions (e.g. when

presented with an optimal stimulus), participate in a representation by firing at a high rate. Our results

represent the first quantitative experimental support for the hypothesis that the representation of sounds

in the auditory cortex of unanesthetized animals is sparse.

3.1 Results

We recorded responses of neurons in the auditory cortex of head-fixed unanesthetized rats. Because our

approach was to construct the population response one neuron at a time, we did not optimize the stimulus

ensemble to conform to the response properties of each neuron, but instead probed many neurons with

the same ensemble. In this way, we could reconstruct the overall population response.

The primary stimulus ensemble consisted of pure-tone pips of different frequencies and ampli-

tudes (145 neurons in 24 animals, see Sec. 2.5). For some neurons we also tested additional stimulus

ensembles, consisting of either the same tones presented atdifferent amplitudes (113 neurons), fre-

quency modulated sweeps (22 neurons), or natural sounds (27neurons, see Sec. 2.5, and Sec. 2.6.4 for

details). Recordings were at all cortical depths (Fig. 3.1).
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Figure 3.1: Frequency histogram of recording depths shows that all depths were represented in our sam-
ple. All depths (n = 141) were given by the micromanipulator reading, and as such are only approximate.
For four cells the depth information was not available, and they are not included in the figure.

Our goal was to record the responses to stimuli generated by arepresentative sampling of neu-

rons in the auditory cortex. We therefore chose to record with a glass patch pipette in cell-attached

mode, a method which is not explicitly biased toward active and responsive neurons, or neurons with

large action potentials, and which provides excellent single unit isolation (DeWeese et al., 2003; Margrie

et al., 2002) (see Sec. 2.6.1 on page 20). With cell-attachedrecording, single unit isolation depends on

the physical contact between the glass electrode tip and theneuron. The selection bias of cell-attached

recording is thus based on the neuron’s “patchability,” rather than on the firing rate or responsiveness

of the target neuron; only to the extent that patchability iscorrelated with functional characteristics

such as firing rate or responsiveness would cell-attached recording (indirectly) bias the sampled popula-

tion. By contrast, good single unit isolation with conventional extracellular (e.g. tungsten; Hubel, 1957)

electrodes requires a sufficient number of spikes; skilled practitioners typically search for neurons with

sufficiently high firing rates and large spikes. Although it is possible for a committed investigator to

isolate even neurons with a low spontaneous firing rate, for the purposes of this study, cell-attached

recording seemed a particularly suitable choice.

3.2 Neuronal responses are heterogeneous

Consistent with the earliest studies of unanesthetized auditory cortex (Davies et al., 1956; Evans and

Whitfield, 1964; Hubel et al., 1959), tones evoked a wide range of response patterns. Tones could elicit

either an increase or a decrease in a neuron’s firing rate (compared to the background firing rate), or
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both; the change could be transient, delayed, or sustained;and the response pattern could be different

for different frequencies in a single neuron.

Fig. 3.2 shows some examples of the range of response types weobserved. In one neuron

(Fig. 3.2A), tones elicited a transient, short latency response of the sort commonly observed in the

barbiturate-anesthetized auditory cortex. In a second neuron (Fig. 3.2C), tones elicited a suppression of

background activity. In a third neuron (Fig. 3.2B), higher frequency tones (~8-40 kHz) elicited vigorous

sustained firing; interestingly, lower-frequency tones elicited transient responses in the same neuron,

emphasizing that the distinction between “transient” and “sustained” applies to responses, not neurons.

Other more complex response patterns were also observed (Fig. 3.2D-G.) Finally, half of the neurons

tested (50 %, see below) showed no change in firing rate for anystimulus presented (Fig. 3.2H). Because

a given neuron could show very different response patterns to stimuli of different frequencies (e.g.

Fig. 3.2B), we could not find a simple and objective scheme fororganizing neurons into a small number

of distinct classes, such as “transient,” “sustained,” “off,” etc.The neurons shown in Fig. 3.2 are a subset;

the complete set of responses from the entire data set are shown in Appendix A.

3.3 Population response is lognormally distributed

We first analyzed the basic population response elicited by tones, beginning with the response to tones

presented at 50 or 60 dB. We divided the tone-evoked responseinto four 50 ms long “epochs”:spon-

taneous, early, late, and off(Fig. 3.3, also see Sec. 2.6.2). To ensure a sufficient numberof trials for

assessing the statistical significance of putative changesin firing rate compared to the background, we

grouped responses across nearby frequencies (one-octave-wide bins; 4 or 5 octave bins for each re-

sponse epoch). Control analyses using narrower (half-octave) bins gave similar results (see Sec. 2.6.2),

as expected from the relatively broad frequency tuning of neurons in the rat primary auditory cortex

(Kilgard and Merzenich, 1999; Sally and Kelly, 1988); see also Moshitch et al. (2006).

Both spontaneous and evoked firing rates were typically low (see Tab. 3.1 and Fig. 3.4). The

median spontaneous firing rate across the population was 2.8spikes/s. The mean was somewhat higher

(4.9spikes/s) because it was dominated by a relatively small set of neurons—possibly interneurons (see

Sec. 3.8 on page 62)—with high spontaneous rates.
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Figure 3.2: Tone-evoked responses in the auditory cortex ofunanesthetized rats are heterogeneous. The
panels show response dynamics of eight representative neurons to 60 dB tones. Firing rate curves in the
bottom of the rasters were computed by first summing the spikes in 1 ms bins overall frequencies shown,
and then convolving the resulting peristimulus time histogram (PSTH) with a Gaussian (σ =3 ms). In
each panel, dots represent individual spikes, thegrey shaded regionindicates the tone duration (100 ms).
(A) transient onset response (maximum firing rate 22spikes/s); (B) transient onset response followed by
sustained excitatory response followed by off response (50spikes/s); (C) suppressive response (19spikes/s);
(D) late onset response followed by strong off response (62spikes/s); (E) late onset response (9spikes/s);
(F) off response (66spikes/s); (G) sustained response combined with suppressive response (17spikes/s);
(H) non-responsive cell (2spikes/s). See also Appendix A for more examples.
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Figure 3.3: Cells were characterized by their activity during each of the response epochs:spontaneous,
early, late, andoff, each 50 ms long.Spontaneousepochs cover spontaneous activity before the stimulus,
early and late epochs cover first and second half of the stimulus duration (100 ms) respectively, and
off epochs cover 50 ms period after stimulus termination. In frequency space, individual trials were
grouped into one-octave-wide bins, and averaged to providea firing rate value for each octave bin. This
figure shows a spike raster plot for an example neuron (with a sustained excitatory response), where
each row represents a single trial, and each dot marks the occurrence of a spike. Shown are responses
to 1–40 kHz tones (60 dB SPL, left ordinate.) Individual trials were grouped into 5 spontaneous, and
15 evoked response bins (right ordinate.) Note that the top quarter of an octave is not included in any of
the bins.
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Epoch Firing rate (spikes/second)
median mean±std

Spontaneous 2.8 4.9±6.1
Early 2.7 7.0±11.2
Late 2.0 5.4±9.3
Off 2.3 6.0±10.1
Early + Late1 2.4 6.2±10.3
All evoked epochs2 2.4 6.2±10.2

Table 3.1: Firing rates for different response epochs were typically low. Each value was computed
across all octave bins from all 145 cells for the corresponding epoch(s) (n = 693 octave bins for each
epoch). Firing rate for a given octave bin was defined as mean firing rate of all trials grouped inside
that octave bin. The table shows firing rates of responses to 50 or 60 dB SPL tones (n = 145 neurons).
1“Early + Late” values were computed across all octave bins fromearlyandlateresponse epochs, which
cover the entire stimulus duration (100 ms).2For each cell, firing rates across all response bins were
pooled to give an estimate of evoked firing rate.

Evoked firing rates showed the same pattern: a low median (2.0–2.7spikes/s) and a somewhat

higher mean (5.4–7.0spikes/s). The higher mean rates reflect the fact that in some neurons,some frequen-

cies evoked vigorous firing (Fig. 3.4, bottom). However, such well-driven responses were the exception

rather than the rule; as quantified below, most neurons did not respond vigorously to any of the tones

presented. Note that for a neuron to contribute on average atleast one spike to the population represen-

tation of a sound in a 50 ms window, its evoked firing rate must exceed 20spikes/s.

To assess whether the low firing rates resulted from some intrinsic defect of the spike generating

mechanism, perhaps introduced by the cell-attached recording method, we extracted the shortest inter-

spike interval for each neuron. In most neurons, the shortest ISI was less than 10 ms (median shortest

ISI = 4 ms, n = 145). Thus the low firing rates do not appear to arise from an intrinsic inability of neurons

to fire rapidly, but instead presumably arise from differences in the synaptic drive received by different

neurons.

The distribution of spontaneous firing rates across the population was remarkably well fit with

a lognormal distribution—that is, the logarithm of the firing rates showed a Gaussian distribution

(Fig. 3.4BC). Because the lognormal distribution has a “heavy tail,” most spikes were generated by

just a few neurons: About 16 % of neurons—the subset of 23 neurons firing at higher than 9.5spikes/s—

accounted for 50 % of all spikes.
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Figure 3.4: Firing rates of most neurons were low and followed a lognormal distribution.(A) Fre-
quency histogram of nonzero spontaneous firing rates in individual octave bins (n = 567 octave bins,
from 145 neurons). Each neuron contributed a maximum of 4 or 5data points (because each neuron
had 4 or 5 octave bins per epoch). The filled arrow shows the position of the median spontaneous firing
rate, and the open arrow shows the position of the mean spontaneous firing rate.(B) The distribution of
spontaneous firing rates (dots) was fit with a lognormal distribution (grey line), the mean and variance of
which were given by the mean and variance of the original firing rate distribution (see Sec. 2.7). The log-
normal distribution appears as a normal distribution on a (semi-)logarithmic scale. The error bars show
95 % confidence intervals determined by bootstrapping.(C) Same data as in (B) plotted as a cumulative
density function of the spontaneous firing rate (dark line) overlayed with the cumulative density function
of the lognormal fit (grey line). (D), (E), (F) The cumulative density functions of evoked firing rates for
early (D), late (E), andoff (F) response epochs also followed lognormal distributions(same format as
in (C).
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epochs respectively.
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Since the observed firing rate distributions contained manymore low firing rates than high firing

rates we compared lognormal and exponential fits to the observed firing rate distributions (Fig. 3.5).

Parameters of both fits were given by parameters of the observed firing rate distributions. That is, for

each epoch the mean and standard deviation of lognormal fit were given by mean and standard deviation

of distribution of (natural) logarithms of firing rates, andthe mean of the exponential fit was given by

the mean of the observed firing rate distribution. Lognormaldistribution provided a better fit to the data

than exponential distribution in each response epoch. Bothcumulative density and probability density

functions of the lognormal fits provided excellent approximations to the data.

Although lognormal distributions have widely been used to describe the interspike interval dis-

tributions from a single neuron, population responses are usually reported to be exponentially distributed

(Abeles et al., 1990; Baddeley et al., 1997; Gaese and Ostwald, 2003); this is, to our knowledge, the first

report that firing rates across a population of neurons are lognormally distributed.

3.4 Population response is sparse

What is the typical response across the entire neuronal population to a particular stimulus? That is, what

fraction of the neurons responds to a given stimulus? Fig. 3.6 depicts the evoked population response

to a tone at each epoch (early, late, off;see Sec. 2.6.2). Each column shows the fraction of the neuronal

population responding in a given response bin, and can be thus interpreted as a snapshot of neural

activity over the population at a given instant in time.

The typical stimulus-evoked population response was sparse. The majority of neurons showed

no discernable response to any tone during any response epoch (Fig. 3.6 top, grey bars); an example of

such an unresponsive neuron was shown in Fig. 3.6H. During each 50 ms response epoch only about

10 % of neurons showed any significant stimulus-locked increase in firing rate (Fig. 3.6 top,Inc), and

a smaller fraction showed a significant stimulus-locked decrease (Fig. 3.6 top,Dec). Note that the

definition we use here for responsiveness is quite inclusive: even if a tone elicits only a 1spike/s increase

over the baseline firing rate, this response might still be deemed responsive if the spontaneous rate was

sufficiently low for us to detect a change.

The form of sparseness we report has sometimes been termed “population sparseness,” to distin-

guish it from “lifetime sparseness” (Olshausen and Field, 2004; Willmore and Tolhurst, 2001). Lifetime
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Figure 3.6: Only a small fraction of the neuronal populationparticipated in the response to an acoustic
stimulus at any instant (see Sec. 2.6 for details).(A) The top panel shows the fractions of response bins
per octave displaying no change (No), a significant (p = 0.01)increase (Inc), or a significant decrease
(Dec) in the stimulus-evoked firing rate during theearly response epoch. Error bars show standard
deviations of the fractions of response bins. The bottom panel shows frequency histograms of firing rate
changes in theearly epoch. Thegrey histogramshows firing rate changes for response bins from the
‘No’ bar from the top panel, and the black histogram shows firing rate changes for response bins from
the ‘Inc’ and ‘Dec’ bars from the top panel. The inset shows the black histogram in more detail. Both
panels in (A) include data from 468 response bins (n = 100 neurons).(B), (C) Same format as above for
late (B) andoff (C) epochs.
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sparseness refers to the selectivity of a single neuron probed with different stimuli, and can be assessed

for a single neuron during a single unit experiment. Population sparseness refers to the response of

the population to a given stimulus. Responses in visual cortex have been reported to show population

sparseness (Weliky et al., 2003), but population sparseness has not previously been assessed in auditory

cortex.

Even among the minority of neurons that responded to a particular stimulus, the typical response

was modest. Fig. 3.6 (bottom) quantifies the distribution ofchanges elicited by a typical tone across the

population. The median stimulus-evoked firing rate was approximately the same as the spontaneous

rate (2.8 vs. 2.7spikes/s, spontaneous vs. early; see Tab. 3.1), and the distributionof evoked responses

was barely distinguishable from the spontaneous distribution (cf. Fig. 3.4). Only a very small fraction—

about 2–3 %—of the population showed a well-driven (≥20spikes/s) response during any epoch (Fig. 3.6;

note that an increase of 20spikes/s implies only a single extra spike in the 50 ms response bin we con-

sider). However, the activity in this small fraction raisedthe mean (as opposed to the median) firing

rate by nearly 50 % during the early epoch (4.9 vs. 7.0spikes/s; changes during later epochs were smaller;

see Tab. 3.1). Thus the presentation of a tone caused only a barely discernable change in the activity of

most of the population; but an appreciable number of extra spikes was concentrated in a small fraction

of neurons.

Half of the cells (50 %) did not show any significant change (increase or decrease) in firing

rate during any response epoch, to any tone. At the other extreme, a few broadly tuned cells showed

significant changes in firing rate in all (4 or 5) octave bins (i.e. across the whole frequency space tested)

for at least one of the response periods.

It might appear that the sparseness we report is incompatible with the broad frequency tuning

of rat auditory cortical neurons. However, we found that sparseness was not achieved through narrow

frequency tuning. Instead, it arose through a combination of factors. First, 50 % of the neural population

failed to respond to any of the simple stimuli we presented. Second, responses were often brief; in many

neurons, the change in firing rate was limited to just one of the three response epochs. Thus, sparseness

of the response in time contributed to the overall sparseness of the population response. Finally, even

when changes occurred they were typically small; the increase in firing rate exceeded 20spikes/s in only
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about a quarter of the statistically significant responses.As a result, only a small fraction of neurons

responded vigorously to any tone, even though frequency tuning was broad.

3.5 Other stimuli

In a subset of neurons, we tested stimuli other than the 50 or 60 dB standard tones used to probe most of

the population. For some neurons we evaluated responses to quieter (30 or 40 dB SPL; n = 62 neurons)

or louder (80 dB SPL; n = 6 neurons) tones. As shown in Fig. 3.7,the quieter tones elicited responses

in a smaller fraction (3% increase, 2% decrease in firing rate) of the population than our 50 or 60 dB

standard (10% increase, 4% decrease), but the louder tones did not elicit responses in a significantly

larger fraction (11% increase, 6% decrease, t-test p = 0.66). Thus the sparseness of responsiveness to

pure tones did not appear to result from the amplitude of the stimuli we used.

In order to assess whether such sparse population encoding was restricted to pure tones, in some

neurons we also tested other stimuli. In one subset of neurons, we also tested FM-sweeps (Sec. 2.6.2).

In a different subset of neurons, we tested the response to anensemble of complex (natural) sounds

(Machens et al., 2004). The population response (Fig. 3.7) elicited by sweeps (n = 17), as well as fir-

ing rates evoked by natural sounds (n = 27) and sweeps (n = 22) was similar to that elicited by tones

(Fig. 3.8).

The estimated distribution of evoked firing rates might be dependent on sample size and number

of trials per each response bin used in analysis. Although the sample size of neurons probed with natural

sounds (n = 27) that we used to estimate firing rate changes might seem small compared to the size of

the main data set of neurons probed with tones (n = 145), we show that limiting ourselves to a smaller set

of neurons probed with tones did not change our estimates (Fig. 3.9). We subsampled the set of neurons

probed with tones (n = 145) to match set of neurons probed withnatural sounds both in size (n = 27) and

number of trials per response bin. For each tone-neuron drawn randomly, the number of trials in each

response bin was matched (trials were chosen randomly) to a given neuron probed with natural sounds.

Therefore, a randomly generated sample of such neurons matched the set of neurons probed with natural

sounds both in size and distribution of number of trials. Distributions of stimulus-evoked changes in

firing rates (Fig. 3.9AB; see also Fig. 3.6) remained essentially the same. The estimated fraction of
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Figure 3.7: Only a small fraction of the neuronal populationwas engaged in the response to any stim-
ulus. (A), (B), (C), (D) Each panel shows fractions of response bins with either no change (No), or
a significant (p < 0.01) increase (Inc), or decrease (Dec) in stimulus-evoked firing rate for the given
stimulus. For this analysis the response bins were pooled together(A) Responses to 30 or 40 dB tones
(n = 62 neurons).(B) Responses to 50 or 60 dB tones (n = 100 neurons). For responsive fractions in
individual response epochs, see Fig. 3.6.(C) Responses to 80 dB tones (n = 6 neurons).(D) Responses
to 54 dB sweeps (n = 17 neurons). Error bars show standard deviations of the fractions of response bins.
Note that only neurons for which we assessed response significance (Sec. 2.6.2) were used for analysis
in this figure.
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Figure 3.8: Only a small fraction of the population showed a well-driven stimulus-evoked response at
any instant, regardless of which stimulus ensemble was used. The figure shows the cumulative frac-
tion of stimulus-evoked changes in firing rate for various stimuli. The overlapping colored patches
show 95 % confidence intervals obtained by bootstrap. The large overlap between the responses to the
different stimulus ensemble suggests that stimulus-dependent differences in evoked firing rates were
rather small. Different colors correspond to different stimuli: black—30 or 40 dB tones (n = 91 neurons,
1365 response bins);blue—50 or 60 dB tones(n = 145 neurons, 2079 response bins);red—80 dB tones
(n = 22 neurons, 330 bins);green—natural sounds(n = 27 neurons, 18900 bins); andmagenta—sweeps
(n = 22 neurons, 704 bins).
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Figure 3.9: Smaller sample size did not influence estimates of response distributions and fraction of
well-driven bins. In panels(A), (B) we show that smaller sample size did not change response distribu-
tions for neurons probed with natural sounds and neurons probed with tones.(A) Response distribution
for neurons probed with natural sounds (n = 27). Response wasdefined as difference between evoked fir-
ing rate and spontaneous firing rate for each response bin. All response bins were pooled for this figure.
(B) Response distribution for matched set of neurons probed with 50–60 dB tones. To match dataset
from panel A 1000 sets of n = 27 neurons were drawn (without replacement) from the original set of
neurons probed with tones (n = 145). For each selected neuronthe number of trials in each response
bin was matched (trials were chosen randomly) to a given neuron probed with natural sounds. There-
fore, all 1000 randomly drawn sets of neurons probed with tones matched set of neurons probed with
natural sounds both in size and distribution of number of trials. Panel shows mean frequency histogram
of 1000 randomly drawn sets of neurons. In panels(C), (D) we show that smaller sample size did not
change the estimate of fraction of well-driven bins. Well-driven response bins were defined as response
bins for which the (absolute) difference between evoked andspontaneous firing rate was at least 20sp/s.
Panels show frequency histograms of fractions of well-driven response bins estimated by bootstrap from
original data set. Arrow shows estimate of fraction of well-driven bins (Sec. 3.4).(C) For this panel we
randomly drew (with replacement) 1000 sets of n = 27 neurons probed with tones to match number of
neurons probed with natural sounds. This panel shows frequency histogram of fractions of well-driven
response bins computed from 1000 such randomly drawn sets ofneurons.(D) Twenty-seven neurons
were drawn randomly (with replacement) from set of neurons probed with tones to match set of neurons
probed with natural sounds both in size and number of trials per response bin. For each randomly drawn
set of neurons we pooled response bins together and computedfraction of well-driven bins. The panel
shows frequency histogram of fractions of well-driven response bins computed from 1000 randomly
drawn matched sets of neurons. 59
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highly responsive cells (Sec. 3.4) did not change by using a smaller sample of neurons (Fig. 3.9CD).

Decreasing the sample size of neurons probed with tones did not change our population estimates.

Thus, although we cannot rule out the possibility that some stimuli other than those we tested

might elicit responses in a larger fraction of neurons in auditory cortex, the fact that stimuli ranging

from the simplest (tones and sweeps) to the most complex (natural sounds) evoke such sparse population

responses leads us to conclude that sparse responses are notanomalous.

3.6 Binary responses

In the anesthetized auditory cortex, tones typically elicit transient responses (Heil, 1997), a subset of

which show high trial-to-trial reliability which was termed “binary” (DeWeese et al., 2003). These

highly reliable neurons were of interest because they provided an existence proof that the cortex is capa-

ble of precisely controlling spike count as well as spike timing, and therefore challenged conventional

theories that posited that cortical computation is necessarily noisy (reviewed in DeWeese et al., 2005).

However, it has recently been suggested that such binary neurons were an artefact of anesthesia

(Wang et al., 2005). This claim was surprising, because apparently binary responses can be found in

the published literature on auditory cortex of alert animals (e.g. Fig. 4A from Chimoto et al. (2002);

Fig. 4A from Barbour and Wang (2003)). Fig. 3.10 shows further examples of binary responses from

the unanesthetized rat preparation used in this study. These responses indicate that binary spiking is not

an artefact of anesthesia.

How common are such binary responses? Because the goal of thepresent experiments was to

assess typical responses to a broad range of different stimuli, we did not present each stimulus a suf-

ficient number of times to assess reliability, so we can provide only a lower bound on the prevalence.

Moreover, we made no attempt to optimize stimuli to maximizefiring reliability; it may be that, with

the appropriate choice of stimuli, it is possible to elicit binary responses from many or most neurons

in auditory cortex, in the same way that it is possible with the appropriate choice of stimuli to elicit

sustained firing. Indeed, we observed sustained firing ( > 20spikes/s evoked increase in firing rate over the

100 ms stimulus duration) in only 4/100 neurons, which is comparable to the lower bound of 2/100 neu-

rons in which we were able to confirm binary spiking. Interestingly, one neuron (shown in Fig. 3.2B)

fell into both categories. Note that categories such as sustained or transient firing characterize only
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Figure 3.10: Some neurons in the unanesthetized auditory cortex exhibit responses with low trial-to-
trial variability in spike count. The spike rasters show details of responses for two neurons from the
corresponding panels of Fig. 3.2. For each of these neurons,every trial consisted of either one spike or
no spikes, with no multi-spike responses during the onset transient occurring inside the 20 ms window
(grey rectangles); the stimulus was presented from 0 to 100 ms. Responses suchas these, which were
termed “binary” since they consist of ones and zeros, can be shown to have significantly lower trial-
to-trial variability than less structured (e.g. Poisson) responses at these firing rates (DeWeese et al.,
2003). Examples such as these from the unanesthetized cortex demonstrate that binary responses are
not anesthesia artifacts.

the mean of the response as opposed to binary firing, which depends on both the mean and the vari-

ance. Nevertheless, it appears that the prevalence of binary and sustained responses to simple tones are

comparable.

3.7 Neither spatial nor laminar position predicts responsepattern

The heterogeneity of response patterns to simple tones led us to wonder whether neurons with similar

properties might be clustered into nearby regions of the cortex; for example, neurons with predominantly

transient responses might be found in one region, and sustained neurons might be found in another. In

some cases, therefore, we recorded from multiple cells in a single electrode penetration. Because the

recording electrodes were aligned approximately perpendicular to the cortical surface, the cells recorded

in a single electrode penetration likely belonged to the same or neighboring cortical column.
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We did not detect any clustering of response patterns; highly responsive cells were often very

near unresponsive cells. Fig. 3.11 shows an example with fiveneurons recorded over two penetrations

(three in one penetration, and two more in a penetration approximately 50–100µm ventro-caudal from

the first penetration). In the first penetration, one neuron was unresponsive, one showed suppression

over a wide range of frequencies, and the third showed enhanced firing over an even wider range of

frequencies. In the second penetration, both neurons were unresponsive. The fact that unresponsive

neurons were often mixed closely with responsive neurons indicates that unresponsiveness need not

indicate gross cortical damage (cf. Evans and Whitfield, 1964) or recording from a region of cortex that

was unresponsive to the stimuli we were presenting, but thatinstead neurons with different selectivity

are comingled.

We also wondered whether firing rate was correlated with cortical depth (Fig. 3.12). We

segregated neurons (n = 141) recorded at different corticaldepths into 6 groups corresponding to the

cortical layers (Games and Winer, 1988). We compared the firing rates using multiple comparisons

based on Kruskal-Wallis test and found that the spontaneous(Fig. 3.12A) and mean evoked firing rates

(Fig. 3.12B) were not significantly different, with the exception of layer II, which displayed firing rates

significantly lower (p < 0.01) than the other cortical layers(layer I contained only one neuron and was

not included in the comparisons).

3.8 Very responsive neurons may be narrow-spiking interneurons

Because we could record from only a relatively small number of neurons in a single penetration, we

cannot rule out the possibility that more thorough samplingof all the nearby neurons in a region might

reveal subtler forms of spatial or laminar organization that escaped our detection. Alternatively or addi-

tionally, responsiveness might be correlated with single neuron properties such as type, morphology, and

molecular expression pattern. Although in this study we didnot recover neurons for histological anal-

ysis and so could not assess whether there was a correlation with morphology or molecular expression

pattern, we did attempt to correlate responsiveness with cell type.

Cortical neurons can be grouped into two broad classes: excitatory neurons that release glu-

tamate at their synapses; and inhibitory interneurons, which release GABA. Most cortical neurons are

excitatory. GABAergic neurons can have diverse morphological, physiological, or molecular charac-
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Figure 3.11: Neurons recorded in a single penetration can show very different tone-evoked responses.
Response rasters are shown from neurons recorded in two penetrations (left and right columns); the
penetration depicted in the right column was about 50-100µm ventro-caudal from the penetration de-
picted on the left. Dots represent individual spikes and grey shaded regions indicate the tone duration
(60 dB, 100 ms). Firing rate curves at the bottom of the rasters were computed by first summing the
spikes in 1 msec bins overall frequencies shown, and then convolving the resulting PSTH with a Gaus-
sian (σ =3 ms). Depths of recordings were measured perpendicular to the cortical surface, as given by
micromanipulator readings. The cell shown in panel (D) is the same as that in Fig. 3.2B
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Figure 3.12: Firing rates were similar across cortical layers. Neurons (n = 141) were segregated into
6 groups corresponding to cortical layers (see text for details). (A) Spontaneous firing rates were com-
puted for each response bin.(B) Evoked firing rates were computed in all evoked response bins.
Boxes show the positions of the lower quartile (25th percentile), median (white horizontal line), and
upper quartile (75th percentile). Whiskers extend to the most extreme values within 1.5 times the in-
terquartile range from the ends of the box.Grey circlesshow positions of values beyond the ends of
whiskers.

teristics (Markram et al., 2004). Excitatory and inhibitory neurons can also be distinguished based on

a variety of physiological parameters (Cauli et al., 1997; McCormick et al., 1985). In particular, the fir-

ing rate of some inhibitory interneurons—the so-called fast-spiking subtype—is higher when stimulated

by current injection. Spike width and shape has been used in previous studies to assign spikes recorded

extracellularly in vivo to putative excitatory and inhibitory neurons in hippocampus (Csicsvari et al.,

1999), and cortex (Barthó et al., 2004). We therefore asked whether spike shape might predict response

patterns in our sample.

Based on previous studies (for example Cauli et al., 1997; McCormick et al., 1985), we expected

that fast-spiking interneurons would likely have narrow and symmetric spikes. For each cell we there-

fore computed the spike width, and also the “spike amplitudeindex” as a measure of spike symmetry

(Sec. 2.6.1). For our population of cells the spike widths ranged from 0.4 ms to 1.9 ms, with a median

value of 0.9 ms. We defined the spike amplitude index as the absolute value of the spike peak-to-valley-

ratio. A spike amplitude index of unity indicates a perfectly symmetrical spike, whereas a value greater

than unity indicates a tall spike, and a smaller value indicates a spike with a deep valley; a fast-spiking

interneuron would be expected to have a low spike amplitude index. Spike amplitude indices ranged

from 0.8 to 34.3, with a median value of 2.0.
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Figure 3.13: Very responsive neurons might be narrow-spiking interneurons. Neurons with higher
evoked firing rates tended to have narrow, symmetrical spikes. (A) Spike width decreased with increas-
ing evoked firing rate (n = 144 neurons).(B) Neurons with higher mean evoked firing rates displayed
more symmetrical spikes. Perfectly symmetrical spikes would fall on thegrey horizontal line. The large
dots in both panels denote cells with mean evoked firing rates> 20spikes/s. The black lines in both panels
indicate average values in 5spikes/s bins. The mean evoked firing rate for each cell was computed asthe
mean firing rate across all response bins. In panel (A) all points were jittered slightly so that overlying
points could be seen. One cell had a very large spike amplitude index of 34.3 (spike width 1.9 ms, mean
evoked firing rate 1.3spikes/s) and was excluded from both panels.

Neurons with higher evoked firing rates tended to have narrower spikes (Fig. 3.13A), suggesting

that interneurons were over-represented among the most responsive neurons. Indeed, the seven most re-

sponsive neurons—those with a mean evoked firing rate (computed across all octave bins and response

epochs) higher than 20spikes/s—had narrow spikes with spike widths less than or equal to 0.9ms. Neu-

rons with high firing rates also tended to have symmetrical spikes (Fig. 3.13B). Although spike width

and shape are only at best crude surrogates for cell type, thestriking correlation between these quanti-

ties and tone responsiveness suggest that a substantial fraction of the most responsive neurons may be

interneurons.

3.9 Sparse coding for reliable stimulus representation andlearning

Why should the cortical representation of an acoustic stimulus be sparse? Several explanations have

been advanced. One set of proposals focuses on the energy used by neural activity; sparse represen-

tations involve fewer spikes and thereby minimize the energetic costs associated with a neural repre-

sentation (Attwell and Laughlin, 2001; Laughlin and Sejnowski, 2003; Levy and Baxter, 1996). Other
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proposals focus on the advantages of sparse representations for computation. For example, it has been

suggested that the statistics of natural sensory environments are sparse, and that a sparse code provides

a natural match to such environments (Lewicki, 2002; Olshausen and Field, 2004, 1997). Recently, it

was shown how a sparse overcomplete representation could beused to solve the “cocktail party prob-

lem” (i.e. separate a single auditory stream from several mixed together) (Asari et al., 2006).

Fig. 3.14 demonstrates one benefit of sparse representations in the present context. This simple

example is not intended as a model of auditory cortex, but merely to illustrate some of the basic intuitions

underlying sparse representations. We compared the representation of auditory stimuli by two hypothet-

ical neuronal populations, one dense and the other sparse. In thesparsepopulation (Fig. 3.14AB), firing

rates were drawn from the lognormal distribution we observed (mean = 1.3, std = 1.0, both on a log-

arithmic scale), whereas in thedensepopulation firing rates are drawn from a hypothetical Gaussian

distribution (Fig. 3.14CD), the mean firing rate and entropy(a measure of the representational capacity)

of which were matched to the observed distribution (mean = 4.2, std = 5.2, elements from the dense dis-

tribution with negative firing rates were discarded and drawn again from the same distribution until the

dense distribution contained only non-negative firing rates; see Sec. 2.7 for details).

To examine the ability of each population to represent a pairof distinct stimuli, we drew two

patterns of firing rates (X andY ), corresponding to the two stimuli, from the sparse distribution; and

similarly drew two patterns from the dense distribution. Itseems reasonable to suppose that a good

neural representation of a pair of distinct stimuli should allow the stimuli to be easily discriminated.

Specifically, since at any instant an organism only has access to a set of spikes rather than to the un-

derlying firing rates, the stimuli should be discriminated on the basis of the pattern of spikes across

the population—that is, on the basis of the spikes representing a single instantiation of the firing rates.

The question, then, is how well a spike train drawn fromX can be discriminated fromY , and how this

discriminability depends on whetherX andY are drawn from sparse or dense distributions.

The spike trains drawn from the sparse distribution were dominated by a few outliers—a few

neurons with high firing rates—which could be used to reliably discriminate the patternX from Y even

by eye. By contrast, the absence of such outliers in the spiketrains drawn from the dense distribution

made it difficult to discriminate these patterns. This intuition can be quantified by a discriminability

measureQ (Sec. 2.7), which confirmed that the sparse representationswere consistently more easily
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Figure 3.14: Spike patterns generated from sparse distributions of firing rates are dominated by a small
number of neurons with higher firing rates and are more distinct than patterns generated from dense
distributions.(A), (B) Two examples of spike patterns generated from sparse (lognormal) distributions
of firing rates. The top panels show two distributions of firing rates for 200 neurons drawn from the
same underlying lognormal distribution matching our data.Each of the bottom panels show 100 spiking
patterns (columns) generated for each neuron in the population, with summary neuronal activity for
the 100 patterns depicted as a histogram on the right side of each panel; note the tall peaks in each
histogram that greatly facilitate the discriminability between these two sparse patterns of activity. Each
spike pattern represents a snapshot of neuronal activity during 10 ms (Sec. 2.7). Dots represent the
occurrence of at least one spike in 10 ms wide windows.(C), (D) Two examples of spike patterns
generated from dense (normal) distribution of firing rates.Parameters for the normal distribution were
chosen to match mean firing rate, total amount of spikes, and entropy of the lognormal distribution.
Same format as in (A) and (B). 67
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discriminated than the dense ones (Q = 5.0 for sparse representations, compared toQ = 1.9 for dense

representations).

3.10 Hebbian learning of spike patterns from sparse and dense distribu-

tions

Similarity of evoked activity patterns might also facilitate their learning. We have studied a single

neuron model with Hebbian synapses to compare learning of neuronal activity patterns arising in sparse

(lognormal) or dense (Gaussian) distribution of firing rates (Fig. 3.15). Parameters for sparse and dense

distributions were estimated from our data, as described inprevious section.

From the firing rate distributions we first generated a training set ofk = 100firing rate patterns,

each consisting ofn = 100 neurons with firing rates chosen randomly from the same firing rate distribu-

tion. Every other pattern in the training set was the sametargetpattern. From the training set of firing

rate patterns we then generated a set ofspike patternsrepresenting a 10 ms snapshot of neuronal spiking

activity. Note that while thetarget firing rate patternswere identical, the actualtarget spike patterns

were not (although they were similar, see previous section), because they were generated by a stochastic

Poisson process (see Sec. 2.7.2).

We simulated learning in a single sigmoidal neuron withn inputs corresponding ton neurons

in the input patterns, and one output (see Sec. 2.7.2 for details). In each trial (a single presentation of

input pattern) the sigmoidal neuron computed its output as aweighted sum of its inputs transformed by

a sigmoid function. After the trial, synaptic weights were updated according to the Hebbian learning

rule, i.e. weights corresponding to stronger inputs grew stronger.

Fig. 3.15 documents the learning process in detail for both sparse and dense representations.

The top panels show the two distributions of firing rates fromwhich we generated input firing rate

patterns. Panel B shows examples of input spike patterns generated from firing rate patterns forn = 100

neurons andk = 100 trials. Red dotsshow spikes generated by the target pattern (every second trial),

black dots show spikes from the nontarget patterns. The histograms on the right side of each of the input

patterns show spiking activity for target patterns (red line), and nontarget patterns (black line). Note that

the red histogram is easily distinguishable from the black histogram for the sparse distribution.
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Figure 3.15: Hebbian learning is easier and faster for neuronal patterns derived from sparse distributions
of firing rates.(A) The distribution of firing rates of dense and sparse populations used in the simulation.
The parameters of the sparse (lognormal) distribution weretaken from the observed data; the parameters
of the dense distribution were matched in mean firing rate andentropy.(B) Sample rasters for thetarget
(red) and background (black) patterns, and the associated firingrate histograms. A spike pattern from
the target distribution is presented to a model neuron with Hebbian synapses every other trial; non-
target spike patterns presented on alternating (background) trials are drawn from a new distribution
each trial. The target sparse distribution contains a few outliers that dominate learning, whereas the
absence of such outliers in the dense distribution leads to slower and less efficient learning.(C) The
ratio of responses elicited by target patterns on a model neuron with Hebbian synapses (see Eq. 2.6) to
non-target responses is shown. The ratio grows faster and asymptotes to a higher level for the sparse
distribution, indicating that learning is faster and more efficient.
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We repeated the simulation experiment 1000 times, each timedrawing a different set ofn = 100

neurons, andk = 100 trials. Panel C shows the ratio of target to nontarget responses averaged across ex-

periments (line thickness represents the standard error ofthe mean). For sparse representation, the ratio

grew faster and reached higher asymptotic value, indictingthat learning was faster and more complete

than for dense representations.

Model neurons with Hebbian synapses learned to discriminate sparse patterns more rapidly and

completely than dense patterns. Moreover, spike patterns discriminations was easier for sparse than

dense patterns (see previous section). Thus the presence ofa handful of neurons with high firing rates

can facilitate stimulus discrimination and learning in a simple model.

3.11 Discussion

We used cell-attached techniques in the auditory cortex of unanesthetized rats to measure the responses

of individual neurons to simple acoustic stimuli; we then used this data set to infer the stimulus-evoked

activity across the population. The distribution of firing rates across the population was lognormal rather

than exponential, and stimuli typically elicited a high firing rate in only about 3 % of the population.

Such sparse representations may offer computational advantages, including faster and more complete

learning of auditory patterns.

3.11.1 Sparse representations in cortex

Experimental evidence for sparse coding has been found in a range of experimental preparations, in-

cluding the visual (Baddeley et al., 1997; Vinje and Gallant, 2000), motor (Brecht et al., 2004), barrel

(Margrie et al., 2002) and olfactory systems (Perez-Orive et al., 2002; Rinberg et al., 2006; Szyszka

et al., 2005), the zebra finch auditory system (Hahnloser et al., 2002), and cat LGN (Dan et al., 1996).

However, the sparseness of representations in the auditorycortex has not been explicitly addressed in

previous work. Our results constitute the first direct evidence that the representation of sounds in the

auditory cortex of unanesthetized animals is sparse.

Our data support the “efficient coding hypothesis,” (Barlow, 1961) according to which the goal

of sensory processing is to construct an efficient representation of the sensory environment. Sparse
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codes can provide efficient representations for natural scenes (Olshausen and Field, 2004, 1997). Sparse

representations may also offer energy efficient coding, where fewer spikes are required compared to

dense representations (Attwell and Laughlin, 2001; Laughlin and Sejnowski, 2003; Levy and Baxter,

1996).

A growing body of theoretical work on sparse representations suggest they may be useful for

computation (Asari et al., 2006; Guyonneau et al., 2004; Lewicki, 2002; Olshausen and Field, 2004,

1997; Smith and Lewicki, 2006). Sparse representations have become increasingly important in statis-

tical machine learning (Girosi, 1998). One intuition underlying this approach is that it can be easier to

recognize a sparse pattern in a high-dimensional space thana dense pattern in a low dimensional space.

This was illustrated in Fig. 3.14, where spike trains drawn from a sparse distribution could more easily

be discriminated than those drawn from a dense distribution. This discriminability in turn can make the

patterns easier to learn rapidly (Fig. 3.15). Thus an advantage of sparse cortical representations may be

to facilitate rapid learning of arbitrary auditory patterns.

3.11.2 Sparse representations and optimal stimuli

The sparse and heterogeneous responses we report are consistent with many previous single unit studies

of auditory cortex in unanesthetized animals, including the classical studies (Evans and Whitfield, 1964);

(see also Abeles and Goldstein, 1972; Brugge and Merzenich,1973; Gerstein and Kiang, 1964; Miller

et al., 1974; Volkov and Galaziuk, 1989). In many anesthestized preparations (e.g. barbiturate and

ketamine), sound-evoked responses are typically transient (DeWeese et al., 2003; Doron et al., 2002;

Heil, 1997; Phillips and Irvine, 1981). With the resurgenceof work in the awake preparation in the last

decade, many researchers have emphasized the much richer repertoire of responses in awake animals,

including especially sustained responses (Barbour and Wang, 2003; Chimoto et al., 2002; Gaese and

Ostwald, 2003; Recanzone, 2000).

Our study complements recent work aimed at identifying “optimal” stimuli—stimuli that elicit

high sustained firing rates (deCharms et al., 1998; O’Connoret al., 2005; Wang et al., 2005). The fact

that a stimulus can be optimized to drive a particular neuronwell, tells us little about how this stimulus

is represented across the population. Our data suggest thatonly a minority of neurons are engaged in

the representation of many stimuli; indeed, the fact that most stimuli drive most neurons only weakly
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explains why finding the optimal stimulus for any given neuron can be such a challenge. Thus although

there may be an optimal stimulus for any given neuron, most stimuli are not optimal for most neurons,

and so are represented sparsely across the population.
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Chapter 4

The emergence of lognormal distributions

in cortical networks

Spontaneous neuronal activity in cerebral cortex depends on the underlying cortical circuitry. Corti-

cal neurons receive most of the synaptic inputs from other cortical neurons via intracortical synapses

(Ahmed et al., 1994; Benshalom and White, 1986; McGuire et al., 1984; Peters and Payne, 1993). Cor-

tical networks, however, appear to be only sparsely connected, with most of the neurons not connected

to other neurons (Holmgren et al., 2003; Markram, 1997; Markram et al., 1997; Thomson et al., 2002).

Synaptic strengths themselves can be variable, and it has been shown recently that the distribution of

synaptic strengths in cortex follows a lognormal distribution (Song et al., 2005), i.e. the logarithm of

synaptic strengths is normally distributed (Fig. 4.1). This means that the majority of existing connec-

tions are rather weak with occasionally (very) strong connection.

Synaptic connectivity itself depends on neuronal activity. Common mechanisms thought to

underlie this dependence include activity-dependent synaptic changes (Bi and Poo, 2001; Malenka and

Nicoll, 1999), and activity-dependent axon and dendrite dynamics (Engert and Bonhoeffer, 1999; Lang

et al., 2004; Maletic-Savatic et al., 1999; Matsuzaki et al., 2004; Ruthazer et al., 2003). We have shown

(Sec. 3.3) that the firing rates (both spontaneous and stimulus evoked) of neurons in awake auditory

cortex follow a lognormal distribution (Fig. 4.1). Therefore, the majority of neurons in the auditory

cortex appear to be quite silent, with few very active neurons.
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Figure 4.1: Lognormal distributions in the cerebral cortex. (A) Distribution of intracortical synaptic
strengths is lognormal, i.e. appears normal on a (semi)logarithmic scale. Reprinted from Song et al.
(2005).(B) Distribution of spontaneous firing rates in auditory cortexof awake rats follows a lognormal
distribution.

Lognormal distributions of both synaptic strengths and firing rates provide experimentally ver-

ified constraints for population activity and wiring in cerebral cortex. However, it is not immediately

clear how a lognormally distributed population of firing rates could arise from an underlying network

with lognormally distributed connection strengths. Intuitively (see also below), if neuronal activity is

dependent on an underlying set of (lognormally distributed) independentsynapses/connections, then the

distribution of neuronal activity is expected to be normal (Gaussian). It is also unclear, how the under-

lying lognormal distribution of synaptic strengths arisesin connection to the related neuronal activity.

In this chapter we first formulate a linear model of spontaneous network dynamics. Based on

the model, we propose that synaptic input correlations are sufficient for the neuronal network to display

lognormal firing rate distribution. We then show how both lognormal distribution of synaptic strengths

and lognormal distribution of firing rates can arise via a multiplicative Hebbian learning rule; then we

briefly discuss the experimental predictions based on our model.

4.1 Spontaneous activity in a network with recurrent connections

In the following we describe neuronal activity in a network of n neurons, each of which is characterized

by its firing ratefi, i = 1, 2, · · · , n (Fig. 4.2). Connection strengths among (pairs of) neurons are given
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Figure 4.2: Simulations used linear neurons as basic units of computation. Output ofith neuron (fi)
was computed as a weighted sum of its inputs (f1, f2, · · · , fn). Synaptic connection from neuronj to
neuroni had an associated weight (synaptic strength)Wij .

by the square connection matrixW , with Wij equal to strength of connection from neuronj to neuroni

(Fig. 4.3). To describe spontaneous activity in this network we assume that spontaneous firing rates

are primarily determined by recurrent intracortical connections (Douglas et al., 1995). Therefore, the

network activity can be described with the following linearmodel:

fi =

n∑

j=1

Wijfj , (4.1)

where activity (firing rate)fi of each neuron is computed as a weighted sum of activities of all

neurons in the network. Theith row of matrixW then containsinput synaptic strengths forith neuron,

andjth column containsoutputsynaptic strengths forjth neuron.

When written in a compact matrix form, Eq. 4.1 becomes:

f = Wf , (4.2)

which is an eigenvector problem for matrixW . Thus the vector of firing ratesf is an eigen-

vector of synaptic connection matrixW with a corresponding unit eigenvalue. Such a description is

consistent with the notion off representing spontaneous activity, i.e. not varying (much) in the absence

of external inputs. In the following we assume that the synaptic connectivity matrix has a unit princi-
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Figure 4.3: Connectivity matrixW described connection strengths, and its eigenvectorf provided
spontaneous firing rates.(A) Connectivity matrix for network in (B). Connection strengths were ran-
domly drawn from lognormal distribution. Strengths of connections are given in arbitrary units. Note
that, in general, synaptic strengths can be zero, i.e. some connections might be “missing.” Note also that
connections are unidirectional, so that, in generalWij 6= Wji, i.e. the connectivity matrixW does not
have to be symmetric.(B) Cortical activity was modelled as a recurrent network. Herewe show an ex-
ample network ofn = 12 neurons (circles), where each neuron is connected (lines) to all other neurons.
Circle diameters are plotted proportional to neuron’s firing rate (fi), and line widths are proportional to
synaptic strengths ofincomingconnections for each neuron.Red, andblue neurons are neurons with
maximum, andminimumfiring rate, respectively.

pal eigenvalue, with all other eigenvalues much lower than one. Then, the firing rates are given by the

principal eigenvectorf of W .

To model thedynamicsof the network given by Eq. 4.2 we rewrite the equation in terms of

temporal evolution of firing rates,f(t + ∆t) = W (t)f(t). Such interpretation leads to an important

constraint on the connectivity matrix values. If the synaptic weights are large, firing rates in subsequent

iterations will grow without bounds. Analogously, small weight values will cause firing rates to decay

over time. To ensure stable firing rates, the connectivity matrix must be normalized in each step. Such

normalization could be achieved by many general mechanismsthought to stabilize neuronal activity,

such as changes in synapse number (Engert and Bonhoeffer, 1999), changes in neuronal excitability

(Desai et al., 1999), or activity dependent synaptic scaling (Desai et al., 2002; Turrigiano et al., 1998).

4.2 Independent connections among neurons

In a straightforward implementation of Eq. 4.1, we first generated a synaptic connectivity matrix with

lognormally distributed uncorrelated elements (Fig. 4.4). The parameters of the lognormal distribution
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were mean = 0.5 (on a log scale), and unit standard deviation,which were similar to experimentally

observed values (Song et al., 2005).

However, spontaneous firing rates (given by the principal eigenvector) were not lognormally

distributed. In fact, all firing rates were very similar, as shown in Fig. 4.4. The distribution of firing

rates was indeed very different from the experimentally observed distribution (Fig. 4.1), in which firing

rates varied across several orders of magnitude.

The failure of the simple model withuncorrelatedlognormally distributed synaptic weights is

summarized in a cartoon in Fig. 4.4. In the figure, neurons aredepicted by circles where the diameter

is proportional to the firing rate. Connecting lines correspond to synaptic connections, and line width

is proportional to connection strength. Because the connection matrix was uncorrelated, the strengths

of incoming connections for each neuron came from a distribution with the same mean. Therefore, if

the number of inputs to each neuron was large enough, each neuron received the same average input,

which led to very similar neuronal firing rates. The example in Fig. 4.4 shows 12 neurons (and their

connections) drawn randomly from the principal eigenvector f . We identified two neurons (out of the

12) with maximum(red) andminimum (blue) firing rate. Note that both firing rates (diameters) and

incoming weights (line widths) of the colored neurons were very similar.

Model dynamics based on a connectivity matrix with uncorrelated synaptic weights failed to

replicate experimental data. Therefore, we explored different types of correlations among synaptic

weights.

4.3 Output weight correlations do not lead to lognormal distribution

We first introduced correlations amongoutput synaptic weights for each neuron. These correlations

would correspond to correlations among synapses on the axonof each neuron. Recall that output synap-

tic weights for a particular neuronj were stored in thejth column of the connectivity matrixW , there-

fore, the connectivity matrix with output weight correlations appeared as a column matrix (Fig. 4.5).

Correlations were introduced by first generating a connectivity matrix with lognormally distributed un-

correlated elements (mean = 0.5, std = 1), and then multiplying each column with a value randomly

drawn from a lognormal distribution with the same parameters. The resulting distribution of synaptic

weights was then normalized to have unit standard deviation. It can be shown that the distribution of the
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Figure 4.4: Random uncorrelated connection weights donot lead to lognormal distribution of sponta-
neous firing rates.(A) Synaptic connectivity matrix (W ) for 500 neurons. Synaptic strengths spanned
several orders of magnitude. We therefore plotted logarithms of synaptic strengths (color scale) to stress
their normal distribution in a log-space. Because synapticstrengths were uncorrelated, the weight matrix
looked like a “white-noise” matrix.(B) Distribution of synaptic weights in W was lognormal, i.e. ap-
peared normal when plotted on a logarithmic scale.(C) Spontaneous firing rates arising from neuronal
network with synaptic weights given byW were similar. The set of firing rates was given by principal
the eigenvector ofW (see Eq. 4.1.) The rates were normalized to have a unit average. (D) Distribution
of firing rates (from C) was not lognormal, all firing rates were approximately the same.(E) Synaptic
weights and firing rates of 12 randomly chosen neurons tendedto be similar. Each circle corresponds
to one neuron, with diameter proportional to its firing rate.Thickness of connecting lines corresponds
to strengths (synaptic weights) ofincomingconnections for each neuron. Neurons (and connections)
shown inredandblueshow two neurons withmaximum, resp.minimumfiring rates from the sample
shown. Note that firing rates (diameters) and synaptic weights (line widths) tend to be similar.
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products of two numbers drawn from lognormal distributionsis itself lognormal. Briefly, let’s assume

that variablesη andν follow normal distributions. Then variableseη andeν follow lognormal distribu-

tions, and their producteηeν = eη+ν also follows lognormal distribution, because it is an exponential

of a sum of two normally distributed variables.

However, output (column) correlations in the connectivitymatrixW did not lead to lognormal

distribution of firing rates (Fig. 4.5). Although synaptic weights were lognormally distributed, firing

rates (principal eigenvector) were not. The cartoon in Fig.4.5 demonstrates that all neurons received

connections with, on average, the same synaptic strengths.Note that althoughredandblue lines con-

nected togreyneurons (output connections) tended to have the same thickness for eachgreyneuron, the

lines connected toredandblueneurons (input connections) had, on average, the same width.

4.4 Input weight correlations lead to lognormal distribution

We then introduced correlations amonginput synaptic weights for each neuron. These correlations

would correspond to correlations among synapses on a dendritic arbor of each neuron. The connectivity

matrix with input weight correlations appeared as a row matrix (Fig. 4.6), because input synaptic weights

for a given neuroni were stored in theith row of matrixW . Correlations in the connectivity matrix

W were introduced by first generating lognormally distributed uncorrelated values (mean = 0.5, std = 1)

and then multiplying each row with value drawn randomly fromlognormal distribution with the same

parameters. The resulting distribution was then normalized to have unit variance.

Spontaneous firing rates generated by our model displayed a wide range of values, and were

lognormally distributed. It can also be shown that principal eigenvector values (firing rates) of a (sub-

stantially large) row connectivity matrix with lognormally distributed values are also lognormal. The

reason why row-correlated connectivity matrix yielded lognormally distributed spontaneous firing rates

is shown in Fig. 4.6. Note the incoming connections of two colored neurons: ared onewith maximum

firing rate, and ablue onewith minimum firing rate. Theredneuron received connections with much

higher average synaptic strength (line width) than theblue neuron. Note also that thered and blue

lines leaving individualgrey neuronshad very different widths, corresponding to very differentoutput

synaptic strengths.
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Figure 4.5: Correlations among synaptic weights on the sameaxon (output correlations) donot lead to
lognormal distribution of spontaneous firing rates. Same format as in Fig. 4.4.(A) Synaptic connectivity
matrix (W ) for 500 neurons. Note the vertical “stripes” showing column correlations.(B) Distribution
of synaptic weights was lognormal.(C), (D) Spontaneous firing rates (principal eigenvector ofW ) were
very similar. Firing rates were normalized to have unit average. (E) Firing rates and synaptic weights
tended to be similar, as shown on an example of 12 randomly chosen neurons.Redandbluecircles show
neurons withmaximum, resp.minimumfiring rates (out of he sample shown), with their corresponding
incoming connections.
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Figure 4.6: Correlations among synaptic weights on the samedendrite (input correlations) lead to log-
normal distribution of spontaneous firing rates. Same format as in Fig. 4.4.(A) Synaptic connectivity
matrix (W ) for 500 neurons. Note the horizontal “stripes” showing input correlations.(B) Distribution
of synaptic weights was lognormal.(C) Spontaneous firing rates varied with occasional high values.
Firing rate were normalized to have unit average.(D) Distribution of spontaneous firing rates was log-
normal.(E) Set of 12 randomly chosen neurons shows few neurons with highfiring rates (circles), and
higher corresponding synaptic weights (line widths).Redandbluecircles show neurons withmaximum
andminimumfiring rates (and their corresponding incoming connections).
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These results suggest that row-correlated connectivity matrix with lognormally distributed synap-

tic weights is sufficient to replicate experimental observations of lognormally distributed synaptic weights

and lognormally distributed spontaneous firing rates.

4.5 Required connectivity can arise by a multiplicative learning rule

In previous sections we assumed that synaptic weights givenby connectivity matrixW were already

lognormally distributed. As we mentioned above, synaptic weights can be influenced by neuronal activ-

ity and vice versa. What are then the mechanisms which could lead to lognormal distribution of synaptic

weights?

The interplay between neuronal activity and strength of neuronal connections is often described

in terms of Hebbian plasticity rules. In general, Hebbian rules describe changes in synaptic strengths

depending on correlations between pre- and postsynaptic firing (Abbott and Nelson, 2000), where the

“often-used” (effective) synapses are strengthened and ineffective ones weakened. In this section we

propose amultiplicative Hebbian learning rulecapable of producing the required structure of connec-

tivity matrix with lognormal distribution of synaptic weights.

The learning rule for synaptic weights defines how the weights change in subsequent time steps.

In the Hebbian learning rule, the change is dependent on presynaptic and postsynaptic activity (firing

ratesfi andfj , see also Eq. 4.1). In contrast to the conventional Hebbian learning rule we propose that

the synaptic weight changes are depedent on the weights as well:

∆Wij(t) = ε1f
α
i (t)W β

ij(t)f
γ
j (t) − ε2Wij(t), (4.3)

where∆Wij stands for synaptic weight change in timet, Wij is a synaptic weight of a connec-

tion from neuronj to neuroni, andfi, fj stand for firing rates (activity) of neuronsi andj respectively;

ε1, ε2, α, β, andγ are parameters. The two terms in Eq. 4.3 describe Hebbian learning (fα
i W β

ijf
γ
j ) and

(passive) synaptic decay (−Wij). Parametersε1 andε2 determine contributions of Hebbian learning

and synaptic decay.
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In each time step (iteration)∆t, synaptic weights are updated according to:

Wij(t + ∆t) = Wij(t) + ∆Wij(t). (4.4)

Power parametersα, β, γ are essential parameters of the learning rule. The sum of parameters

α + β must be below 1. Ifα + β > 1, synaptic weights would grow in each time step, given that

the synaptic decay is weaker than Hebbian potentiation. It can be shown that ifα + β → 1− then the

distribution of synaptic weights (given byW ) becomes lognormal.

We demonstrate this result in Fig. 4.7. We simulated the proposed multiplicative Hebbian rule

in a population ofn = 500 neurons. For simulation parameters we usedε1 = ε2 = 0.1, andα = β =

γ = 0.48. We started the simulation by generating a binary connectivity matrix W (0) with randomly

assigned valuesWij(0) of 0 or 1 determining whether neuronj was connected to neuroni (Wij(0) = 1),

or not (Wij(0) = 0). The probability ofWij = 1 was set to 0.15, similar to probabilities reported in

literature (Thomson and Bannister, 2003; Thomson et al., 2002). The initial connectivity matrixW (0)

was thus equivalent toadjacency matrixdescribing connectivity regardless of connection strength. Note

that W (0) was not necessarily a symmetric matrix, because all connections Wij(0) were generated

randomly. MatrixW (0) then described a directed graph withn = 500 vertices.

After 100 iterations, the connectivity matrixW developed a “plaid” structure exhibiting both

row and column correlations (Fig. 4.7). The proposed learning rule preserved the initial sparse circuit

connectivity given byW (0), i.e. new connections were not formed and existing connections did not

disappear. Both synaptic connection weights and spontaneous firing rates followed lognormal distribu-

tions (Fig. 4.7). The example network in Fig. 4.7 (compare toFig. 4.6) shows that neuronal firing rates

(circle diameters) varied, and neurons with higher activity (red) received stronger connections (wider

connecting lines) than neurons with lower activity (blue). The proposed multiplicative learning rule was

thus capable of reproducing both experimental observations: lognormal distribution of synaptic weights

and lognormal distribution of (spontaneous) firing rates.
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Figure 4.7:(A) Synaptic connectivity matrix (500 neurons) with “plaid” structure (horizontal and verti-
cal “stripes”.) This matrix arose after 100 iterations of multiplicative Hebbian learning rule (see text for
details.) Note that here we donot plot log(W ) as in the previous figures.(B) Adjacency matrix for W
was not symmetric, i.e. synaptic connections formed a directed graph.(C), (D) Distributions of synaptic
weights (C) and firing rates (D) were lognormal, i.e. appeared as normal on logarithmic axis.(E) Set of
randomly selected 12 neurons shows occasional neurons withhigh firing rates (circles), with stronger
corresponding synaptic weights (line widths).Redandbluecircles show neurons withmaximumand
minimumfiring rates and their corresponding incoming connections.See also Fig. 4.6 for comparison.
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4.6 Model predicts synaptic correlations

We have described a theoretical model of cortical dynamics,which is able to capture two experimental

observations about synaptic weights and neuronal firing rates. Our model implies that row-correlations

in the connectivity matrix are sufficient for lognormal distribution of firing rates in the given circuit.

This means that synapses on a given dendrite (dendritic arbor) would have similar strengths. However,

mean synaptic strength across the dendrites of one neuron should be different, on average, from mean

synaptic strength across the dendrites of another neuron. Furthermore, if the two lognormal distributions

arise according to the multiplicative Hebbian rule, one would expect to find correlations among output

synapses (on the same axon) as well, thanks to the “plaid” structure of the connectivity matrix. Two

signature properties should then be present: on the same dendrite synaptic strength are correlated with

different values from dendrite to dendrite; and synaptic strengths are correlated on axons of individual

cells.

We suggest that two signatures of the proposed model could bedetected experimentally. Two-

photon imaging techniques can be used to measure propertiesof individual synapses localized on dif-

ferent neurons. Postsynaptic indicators of synaptic strength would allow the measurement ofinput cor-

relations, i.e. detecting the row structure in a connectivity matrix. Such postsynaptic indicators would

include AMPA receptors, NMDA receptors, PSD-95 density in individual synapses (Gray et al., 2006;

Kopec et al., 2006; Shi et al., 1999). Detecting changes in synaptophysin, synaptobrevin, or VAMP

fluorescence (Ahmari et al., 2000; Bozza et al., 2004; Miesenböck et al., 1998; Park et al., 2006) could

be used to estimateoutputsynaptic weights, i.e. the column structure in the synapticweight matrix.

The presence of both predicted signatures would then suggest that synaptic weights and firing rates are

“interconnected” via a multiplicative Hebbian learning rule.

4.7 Discussion

We have studied properties of cortical networks which couldgive rise to lognormal distributions of

synaptic weights and firing rates. We propose that correlations among neurons’ synaptic inputs lead to

a lognormal distribution of firing rates in a neuronal population, provided that synaptic strengths them-

selves are lognormally distributed. In addition we proposea multiplicative Hebbian learning rule which
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can give rise to specific correlations in the synaptic weightmatrix and, consequently, to lognormally

distributed synaptic weights and firing rates.

We have used a simple linear model based on the observed distributions of firing rates and

synaptic weights. The model does not incorporate any possible temporal relationship among neuronal

inputs, such as spiking input correlations. Additional factors—which might describe various properties

of neurons—are also not included in the model. Suppose, for example, that the excitability of each

neuron was described by a “neuronal excitability factor”αi. Then, the circuit dynamics described by

fi = αi

∑
Wijfj , with lognormally distributedαi and independentWij , would lead to lognormally

distributedfi. Such “excitability,” however, would not have any associated learning rule, like the one

proposed above (Sec. 4.5). Thus, although our proposed linear model issufficientto explain the ex-

perimental observations and make predictions, it is notnecessaryto explain the observed data. There

is a large class of other possible models—nonlinear, utilizing temporal input correlations, or utilizing

additional factors, such as “excitability”—which might also account for the observations.

4.7.1 Lognormal distribution of firing rates

We used cell-attached patch clamp recordings to record neuronal activity. Cell-attached recording differs

from conventional extracellular recording methods—especially from tungsten recordings with single

electrode—in its selection bias (see also Margrie et al., 2002). In conventional recording, single-unit

isolation requires neural activity: the experimenter typically searches for neurons by isolating either

stimulus-evoked or spontaneous spikes. In either case, neurons with low firing rates—spontaneous or

evoked—tend to be undersampled. During cell-attached recording, by contrast, a glass patch pipette is

advanced until it is in physical contact with the neuron, so neurons are selected solely on the basis of

the experimenter’s ability to form an electrical seal between the pipette tip and the neuronal membrane.

Seal formation does not require neuronal activity, so even neurons with very low firing rates are as likely

to be included in the sample as those with high firing rates.

Although lognormal distributions have been used widely to describe the interspike interval dis-

tributions from a single neuron, population responses are usually reported to be exponentially distributed

(Abeles et al., 1990; Baddeley et al., 1997; Gaese and Ostwald, 2003). We propose that the different

sampling bias of cell-attached recordings enabled us to sample the low tail of firing rate distribution.
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It would be of interest to see whether lognormal distribution of firing rates is present in neuronal data

sets obtained using different recording techniques with similar recording biases, such as optical (Ohki

et al., 2005), tetrodes (Feierstein et al., 2006), or silicone probes (Barthó et al., 2004).

4.7.2 Signatures of multiplicative Hebbian plasticity

We propose that lognormal distribution of synaptic weights(Song et al., 2005) could arise in a recur-

rent network as a result of a multiplicative Hebbian learning rule. The presence of this plasticity rule

could be inferred from the “plaid” structure of the synapticconnectivity matrix. Correlations among

input synaptic weights (“row” correlations) and correlations among output synaptic weights (“column”

correlations) could be detected experimentally by measuring pre or postsynaptic synaptic strengths re-

spectively. Some correlations have already been observed (Song et al., 2005, Supplementary material).

Interestingly, the distribution of input synaptic weightshas beenindirectlymeasured previously

(Konur et al., 2003). The authors measured the distributionof diametersof synaptic spines on dendritic

arbors of pyramidal neurons in cortex and hippocampus. Since spine volume is proportional to spine

diameter cubed, and spine volume seems to be linearly correlated with synaptic strength (as given by

the size of the postsynaptic density and the number of presynaptic docked vesicles), spine diameter

could serve as an indirect measure of (input) synaptic strength. The coefficient of variation of spine

diameters in the same neuron was around 0.3, whereas the coefficient of variation for the means of spine

diameters across cells was 0.14. For the row matrix in Fig. 4.6 the coefficient of variation of cube roots

of input synaptic weights (rows) was around 0.23, and the coefficient of variation across cells/rows was

0.24. Moreover, distributions of cube roots of synaptic weights in each row resembled slightly skewed

distribution of spine diameters in Konur et al. (2003).

We propose that one could test for the presence of correlations by first measuring the spread of

the distribution of (logarithm of) mean synaptic strengthswithin cells (row distribution for example),

and then measuring the spread of an analogous distribution obtained from a reshuffled (randomized) set

of synaptic weights. If the randomization procedure destroys any existing correlations, or if there were

no correlations present in the original sets, then the mean synaptic strengthsafter randomizationwill

be similar and their distribution will be narrow. Thus the distribution of (logarithms of) mean synaptic
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weights significantly wider than an analogous distributionof mean synaptic weights after reshuffling

would indicate the presence of correlations among synapticweights.

4.7.3 Lognormal distributions

The normal (Gaussian) distribution is probably the most often assumed (and consequently used) dis-

tribution of observations across scientific disciplines. However, almost all physical and chemical laws

in nature are ruled by multiplication, not by addition (Arita, 2005). And given that many independent

multiplicative processes will give rise, in their limits, to lognormal distribution, it should come as no

surprise that many processes in nature were identified as being lognormally distributed. For example,

such different sets of observations as survival times aftercancer diagnosis, size of crystals in ice cream,

size of oil drops in mayonnaise, length of spoken words in phone conversations, and the age of marriage

of women in Denmark (Limpert et al., 2001, and references therein) all follow lognormal distributions.

It remains to be seen whether any of the mechanisms we propose(or similar) could be responsible for

generation of lognormal distributions in other systems.
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Chapter 5

Up-states are rare in awake auditory

cortex

Dynamics of activity in cortical networks is dependent on complex interactions between neuronal ac-

tivity, synaptic strengths, and intrinsic neuronal properties (Getting, 1989; Harris-Warrick and Marder,

1991). An intriguing example of an intrinsic neuronal property is bistability of the neuronal membrane

potential, often described in terms of “up” and “down” states. During the two states, membrane poten-

tial transits between two main values, restingdownstate, and depolarizedupstate, staying in both states

often for several seconds, while spending very little time in intermediate values (Cowan and Wilson,

1994; Steriade et al., 1993a).

Up and down states have attracted a considerable attention,as they have been suggested to

underlie persistent activity in cortical networks (McCormick et al., 2003; Wang, 2001). The persis-

tent activity, in turn, is thought to underlie such interesting processes as short-term (working) mem-

ory (Camperi and Wang, 1998; Goldman-Rakic, 1995; Marder etal., 1996; Wang, 2001), or attention

(Chance et al., 2002; McCormick et al., 2003). Large, persistent changes in membrane potential can also

occur in a response to behavioral state changes (Steriade etal., 2001), or sensory stimulation (Anderson

et al., 2000; Carandini and Ferster, 1997). Up and down states have been observed in frontal cortical

areas (Lewis and O’Donnell, 2000; Léger et al., 2005), somatosensory (Sachdev et al., 2004; Steriade

et al., 2001), visual (Lampl et al., 1999), olfactory areas (Luo and Katz, 2001; Margrie and Schaefer,

2003), striatum (Stern et al., 1997; Wilson and Kawaguchi, 1996), and many others.
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The precise origin and function of up and down states, however, remain unknown. Various

studies suggested the involvement of intracortical mechanisms (Steriade et al., 1993b), intrinsic network

properties (Lampl et al., 1999; McCormick et al., 2003), pairwise correlations among neuronal inputs

(Benucci et al., 2004), or activity-dependent synaptic depression among excitatory neurons (Holcman

and Tsodyks, 2006).

Answering the question of the significance of up-states is complicated by the fact that there

is no universally agreed upon definition of what constitutesup and down states. Up-states are usually

presented as stereotyped plateaus at which the membrane potential remains for a prolonged period (sec-

onds). However, some studies havefailed to observe up and down states, for example in somatosensory

cortex (Bruno and Sakmann, 2006; Wilent and Contreras, 2005), or visual cortex (Anderson et al., 2000)

where many neurons did not display typical up and down states. Up and down states were also not pre-

viously observed in studies performed in auditory cortex (DeWeese and Zador, 2006). Importantly, the

vast majority of studies describing the canonical long up and down states have been conductedin-vitro

or in-vivo in anesthetized preparations, and it is unclear whether thepresence of up and down states rep-

resents a specific feature of anesthetized, or sleeping brain (Mahon et al., 2003). Few studies conducted

in unanesthetized preparations suggested disruption of up-states depending on behavioral state (Crochet

and Petersen, 2006; Steriade et al., 2001).

Here we used whole-cell patch-clamp recording techniques to record intracellular activity of

neurons in auditory cortex of awake head-fixed rats. We have generalized the definition of up-states,

and defined several membrane potential thresholds. We foundthat long up-states were rare in awake

auditory cortex, with only 4 % of up-states longer than 200 ms. Most neurons displayed only brief up-

states (bumps) and spent most of the time near their resting potential, typically spending less than 4 %

of recording time in up-states longer than 200 ms.

5.1 Whole-cell recordings in awake rats are stable

We have used the whole-cell patch-clamp technique to recordintracellular activity of neurons in auditory

cortex of awake head-fixed rats. Altogether we recorded from20 neurons in 13 animals (Sprague-

Dawley rats, postnatal day 24–30).
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We have successfully recorded intracellular activity for several minutes (Fig. 5.1A). The record-

ings were sufficiently stable and offered an excellent signal-to-noise ratio. Some recordings displayed

small and very slow fluctuations in the resting membrane potential. Since we have analysed 7 s long

traces (Sec. 2.6.3 on page 24), any small fluctuations in the resting membrane potential on a scale of

minutes did not affect the analyses described below. Indeed, the coefficient of variation of the rest-

ing membrane potential (for each trace) across all neurons in our sample was 3.95±2.26 %, which

would correspond to a mean difference of 2.5 mV from trace to trace for a neuron with -60 mV rest-

ing potential. Recordings described in this text lasted between 2–13 min (mean 7.4 min, median 7 min,

n = 19 neurons), with one additional neuron from which we recorded for approximately 2 hours.

5.2 Membrane potential dynamics is typically “bumpy”

The basic features of subthreshold activity in auditory cortex of awake rats are demonstrated by an ex-

ample trace shown in Fig. 5.1B. Most of the time, the membranepotential stayed near the resting level,

and occasionally, large rather brief excursions of the membrane potential were observed. Sometimes the

membrane potential excursions were high enough to reach threshold for action potential(s). Such ex-

cursions will be henceforth called bumps (“brief ones”) or up-states (“longer ones”). Bumps (up-states)

could be either spontaneous (i.e. with no apparent relationship to the auditory stimulus presented), or

stimulus evoked (i.e. following the presentation of a soundstimulus after a brief delay). Both types of

bumps are shown in Fig. 5.1B. The very first brief bump was probably spontaneous, and most of the

other bumps were stimulus evoked (note the temporal relationship between stimuli and voltage trace in

the figure). Also note that there were no apparent large fluctuations in resting membrane potential. All

voltage traces shown in the remainder of this chapter will bemedian-filtered (i.e. action potentials have

been removed; see Sec. 2.6.3 and Fig. 2.5 for details).

The basic impression of subthreshold activity as mostly staying near the resting level and oc-

casionally displaying brief excursions is shown in more detail in Fig. 5.2. The three neurons shown

displayed both spontaneous and tone-evoked bumps, but mostof the time their activity stayed close to

the resting membrane potential. The bottom trace in Fig. 5.2B shows a 1 minute of recording, docu-

menting that the basic characteristics did not change even on longer time scales.
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Figure 5.1:(A) Whole-cell recordings in unanesthetized auditory cortex can be stable for several min-
utes. Notice the small and slow fluctuations in resting membrane potential (“baseline”) which could
be caused by animal movements or electrode seal instability. Grey rectanglesshow positions of sound
stimuli. Brief rectangles (up to approximately 1.1 min) show positions of 100 ms tones, long rectangles
(rest of the trace) show positions of natural sounds played.Note the long time scale compared to other
figures in this text.(B) Seven seconds long example of raw voltage trace recorded in awake head-fixed
rat. Subthreshold activity usually consisted of brief excursions of membrane potential, both spontaneous
and sound-evoked.Grey rectanglesshow positions of 100 ms long tones of different frequenciesand
intensities. Note the large signal-to-noise ratio of raw signal.
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0.5 s

40 mV

A

B

5 s

Figure 5.2: Subthreshold activity in unanesthetized auditory cortex was usually “bumpy.” Examples
of recordings from three different neurons demonstrate themain observation, that subthreshold dynam-
ics in awake auditory cortex consisted of brief, sporadic fluctuations in membrane potential (bumps).
(A) Each trace shows 6 s of subthreshold activity from differentneurons.Grey rectanglesshow positions
of 100 ms tones of different frequencies and intensities.(B) Top trace shows 6 s of subthreshold activity
out of 1 min of activity shown in the bottom trace (grey square).
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Figure 5.3: Kurtoses of recorded traces are usually large and positive, reflecting brief fluctuations of
membrane potential.(A) Example traces from three different neurons with very different kurtoses.
Histograms on the right show distributions of membrane potential values for each trace. Thefirst trace
(from neuron 7,red dotin top panel) displayed very high kurtosis thanks to very brief infrequent bumps.
Thesecond trace(from neuron 5,green dotin top panel) displayed still considerable kurtosis, thanks to
brief bumps. Thethird trace(from neuron 9) displayed negative kurtosis close to zero and therefore was
not plotted in the top panel. Nevertheless, the trace still contained brief bumps, which were, however,
frequent, thus smearing the strong peak in the voltage histogram and driving kurtosis close to zero.
Note that the voltage histogram for neuron 9 resembled bimodal distribution often used to describe
up and down-states.(B) Recorded traces displayed, on average, large and positive kurtoses. Shown
are distributions of trace kurtoses for all 20 neurons.Full grey large circles show means, and empty
large circles show medians of kurtoses for each neuron. Notethe logarithmic scale on y-axis. The
large circles on the right showmean of meansandmean of mediansof kurtoses across neurons, their
respective standard deviations were 37.6 and 5.9, both smaller then the circle diameter. Occasionally,
some traces displayed kurtoses very close to zero, or even small negative values (see also the bottom
trace). These are not displayed, because of logarithmic axis, but their presence can be inferred from
asymmetrically positioned medians.
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We have quantified the basic impression of “bumpy” activity by computing kurtosis of the mem-

brane potential histogram for each recorded trace (DeWeeseand Zador, 2006), see Sec. 2.6.3 on page 24

for details. Kurtosis measures “peakedness” of membrane potential distribution, and as such is large

(greater than zero) for distributions with strong peaks andlong tails, and zero for normal (Gaussian)

distribution (Olshausen and Field, 2004). Therefore, traces with most of the activity near the resting

potential and only occasional voltage excursions would have kurtosis greater than zero, because their

membrane potential distribution would have a strong peak around the resting potential value, and a long

tail corresponding to peaks of (occasional) bumps.

The examples in Fig. 5.3A document kurtosis values for threedifferent neurons. A “canonical”

trace fromneuron 7showed very brief infrequent bumps, and thus had a very high kurtosis (k = 262),

which corresponded to very tall membrane potential histogram with a very long tail (shown on the

right). The trace fromneuron 5showed considerably more activity. While the bumps were still brief, the

neuron spent more time away from the resting potential, thussmearing the strong peak in the membrane

potential histogram, which led to a decrease in kurtosis (k =7). Finally, the third trace in Fig. 5.3 shows

an example fromneuron 9displaying even higher activity manifested by a higher number of (wider)

bumps. In this case the neuron spent even more time away from the resting potential and the trace

kurtosis was k = -0.2. The membrane potential histogram of this trace (bottom right) resembled the

bimodal histogram often studied in connection with canonical up and down states (for example in Stern

et al., 1997).

Overall, kurtoses of subthreshold responses recorded in awake auditory cortex were typically

large and positive (Fig. 5.3 top), reflecting occasional brief fluctuations in—otherwise resting—membrane

potential. Individual neurons could display a wide range ofkurtosis values, but both mean and median

kurtoses for each neuron in our sample were positive. The mean and median kurtosesacross all traces

we analyzed were equal to 18 and 5.6 respectively. Note, however, that kurtosis values for traces like

neuron 9above are not plotted in Fig. 5.3 because of the logarithmic y-axis. Nevertheless, the presence

of such low kurtoses can be inferred from asymmetrically positioned medians (empty circles) for some

neurons.
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5.3 Most up-states are brief

Although kurtosis values were typically large, corresponding to bumpy subthreshold dynamics, for some

of the recorded traces we have observed low kurtoses, suggesting wide distributions of membrane poten-

tial values. Such low kurtosis values could arise in different ways. Membrane potential could fluctuate

randomly around its mean value, giving rise to normal (unimodal) distribution of membrane potential

values, or could display prominent up and down states, giving rise to bimodal distribution of membrane

potential values. After a careful visual inspection, whichverified the presence of bumps in recorded

traces, we have concluded that random fluctuations were not the main cause of low kurtosis values

in our data. Bimodal distribution of membrane potential could arise when neurons displaycanonical

long up and down states(in the order of seconds) (Cowan and Wilson, 1994; Steriade et al., 1993a,b);

or when neurons displayrapidly changing brief up and down states(Petersen et al., 2003a) (see also

the bottom trace in Fig. 5.3B). These two scenarios (canonical up and down states vs. brief, frequent

bumps) would display very similar membrane potential distributions, and therefore, very similar kur-

toses. To differentiate between these two scenarios we computed up-state durations in our data set.

We computedup-state durationsas lengths of continuous membrane potential segments above

a given threshold (Fig. 5.4A). The usual methods of computing up-state durations assume bistability

of membrane potential and estimate up-state thresholds based on the resultingbimodalityof membrane

potential histograms (Lewis and O’Donnell, 2000; Stern et al., 1997). Alternatively, in the case of

traces containing onlywell isolatedbumps, one can measure durations at half maximum for each bump

(DeWeese and Zador, 2006). However, we have observed a variety of subthreshold dynamics with

most traces displayingunimodal voltage histograms, with the rest of the traces showing avariety of

bump shapes(see Figs. 5.2–5.3 for examples). Therefore, we could not rely on the traditional methods

and used insteadabsolutethresholds: 10, and 15 mV above resting membrane potential;and relative

thresholds: 20 %, and 40 % of maximum potential amplitude (see Sec. 2.6.3 on page 24 for details).

Gaps shorter than 20 ms were considered spurious fluctuations in membrane potential and were included

in bumps (see an example in Fig. 5.4A). The lowest relative threshold (20 % of maximum amplitude)

was always lower than 10 mV, and corresponded to 7.33±1.18 mV across all neurons, with occasional

values as low as 5.24 mV above resting membrane potential. Both 10 mV and 20 % thresholds appeared

to be lower than thresholds used to compute up-state durations in otherin-vivo studies (Léger et al.,
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Figure 5.4: Up-states in unanesthetized auditory cortex were usually brief. (A) We have quantified
duration of up-states by computing durations of continuoussegments above a given voltage threshold.
An example trace from neuron 9 shows up-state detection for four thresholds:10 mV, 15 mV, 20 %
max, and40 % max. Thin horizontal grey lineshows the value of the resting membrane potential for
this trace. Gaps shorter than 20 ms were included in up-states (arrow). (B) Distribution of up-state
durations detected in all traces from neuron 9 for two thresholds. Most up-states were brief (bumps),
with occasional bumps longer than 200 ms.(C) Each panel shows distributions of up-state durations
(black dots) for all 20 neurons.Large full grey circlesshow mean bump durations, and large empty
circles show median bump durations for each neuron. Note thelogarithmic scale on y-axis.Leftcolumn
panels show up-state (bump) durations for absolute thresholds: 10, and 15 mV above resting membrane
potential.Rightcolumn panels show up-state (bump) durations for relative thresholds: 20 %, and 40 %
of maximum potential amplitude (see Sec. 2.6.3 on page 24 fordetails).
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2005; Stern et al., 1997). For example, using the method fromStern et al. (1997), up-state threshold for

the bottom trace in Fig. 5.3B would be 12 mV above resting potential. Thus up-state (bump) durations

computed here are likely to be anoverestimatecompared to other studies.

The membrane potential spent most of the time near its resting level (i.e. below bump thresh-

old). Bumps (up-states) covered only about 12.5±10 % of the recorded traces across all neurons,

and appeared with an average “bump frequency” of 2.6±1.4bump/s (10 mV threshold; 21.5±14 %, and

3.4±1.6bump/s for 20 % threshold).

Up-states in awake auditory cortex were usually brief (Fig.5.4B), despite the fact that their du-

rations might have been overestimated. For each neuron the typical bump duration was in the order of

tens of milliseconds, with isolated bumps being several hundred milliseconds long. Even for the lowest

thresholds the mean bump duration across neurons was less than 60 ms (46±56 ms, median = 30 ms for

10 mV threshold, and 60±77 ms, median = 37.5 ms for 20 % threshold; Fig. 5.4C top). Not surpris-

ingly, bump durations decreased and fewer bumps were detected for the higher thresholds (29±39 ms,

median = 18 ms for 15 mV threshold, and 28±39 ms, median = 18 ms for 40 % threshold; Fig. 5.4C

bottom).

5.4 Long up-states are rare

For some neurons, bump durations were considerable and reached hundreds of milliseconds, around

1–1.5 s in a few cases, resembling the “canonical” up-statesobserved in other cortical areas. However,

these long up-states were rare, with only 2 % of all bumps longer than 200 ms (188 out of 9245 bumps,

10 mV threshold; 4 % for 20 % threshold) (Fig. 5.5A). Individual neurons displayed a range of fractions

of short, intermediate bumps, and long up-states (Fig. 5.5C), with most neurons containing more than

70 % of short bumps ( < 100 ms). The low percentage of long up-states could be artificially low due to the

high number of very short bumps, and long up-states could still occupy a large portion of the depolarized

membrane potential state simply thanks to being longer. We therefore computed the proportion of up-

state time (i.e. away from resting membrane potential) neurons spent in bumps of different durations:

short bumps ( < 100 ms), intermediate up-states (100–200 ms), and long up-states (> 200 ms).

Neurons typically spent only 3.7 % oftotal recording timein up-states longer than 200 ms

(20 % threshold, 0.6 % for 10 mV threshold). Most ofup-state timewas spent in brief bumps (Fig. 5.5B),

98

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

08
.2

46
4.

1 
: P

os
te

d 
4 

N
ov

 2
00

8



despite long up-states usually lasting several-fold longer than the brief bumps. Long up-states ( > 200 ms)

covered, on average, around 9 % or 17 % of up-state time, even for the lowest thresholds. Individual neu-

rons displayed a “continuum” of up-state times spent in bumps of different durations (Fig. 5.5D). This

spectrum of up-state proportions was evident especially for the lowest threshold (20 % max). Neurons

ranged from “canonical” bumpy neurons with up-state time devoted solely to brief bumps, to neurons

spending more of their depolarizations in long up-states, which still, however, formed the minority of

all bumps (compare corresponding panels in Fig. 5.5C and D).

In summary, subthreshold dynamics of most recorded traces was consistent with bumpy activity

(Fig. 5.3), with few traces displaying behavior consistentwith longer up-states. Neurons spent most of

the time in down-states (i.e. close to the resting potential), with mostly brief bumps, and occasionally

bumps were longer than 200 ms (Figs. 5.4–5.5). Even neurons spending more up-state time in long

up-states still contained the majority of brief and intermediate bumps, consistent with rapidly changing

patterns of membrane potential fluctuations, rather than the canonical long up-states lasting up to several

seconds.

5.5 Discussion

We have recorded intracellular activity of neurons in auditory cortex of unanesthetized head-fixed rats.

The recordings were sufficiently stable and permitted us to record subthreshold activity for minutes.

Neurons spent most of their time near the resting membrane potential, and their subthreshold dynamics

consisted of usually brief, occasionally long up-states. Most neurons displayed brief infrequent bumps

of subthreshold activity, and occasionally neurons displayed rapid fluctuations of membrane potential

with a few long up-states.

5.5.1 Recording stability

The apparent stability of whole-cell patch-clamp recordings even in awake animals is probably deter-

mined by mechanical stability of the gigaohm seal (Hamill etal., 1981; Margrie et al., 2002). We have

not observed any major changes in the recorded signal due to brain, cardiac or pulmonary pulsations.

Even relatively major movements (licking, grooming, whisking, etc.) did not cause any apparent dis-
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Figure 5.5: Long up-states were rare. Because bump durations can vary depending on the threshold
(see Fig. 5.4), bumps were divided into three groups based onbump duration: < 100 ms,100–200 ms,
and > 200 ms. (A) Fraction of long bumps (> 200 mV) was very low for each threshold. Even for the
lowest thresholds the fraction of long bumps was around 2 % (10 mV threshold), or 4 % (20 % max).
(B) The average fraction of time spent in up-state was low for each threshold. Even for the lowest
thresholds (10 mV, 20 % max) long bumps (> 200 mV) covered only around 9 % (17 %) of up-state
time, on average, despite being several fold longer than most of the short bumps. Note that neurons
spent most of their time in down-state (see text for details), which is not included in the figure. Note
also that our method of bump detection likely overestimatedbump durations (see text for details). Error
bars show standard deviations.(C) Fractions of short, intermediate bumps, and long up-statesvaried
among neurons (left 10 mV, right 20 % max threshold).(D) Fractions of up-state time varied among
neurons (left 10 mV, right 20 % max threshold).
In panels (C), and (D) neurons were colored based on what fraction of up-state time they spent inshort
bumps( < 100 ms): > 66 %, 33–66 %, and < 33 %.
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ruptions in the recordings. The recording times we observedagreed with recording times mentioned in

other studies of intracellular activity in awake animals (Covey et al., 1996; Margrie et al., 2002; Steriade

et al., 2001). Whole-cell recordings in awake animals couldthen be used to further elucidate synaptic

mechanisms underlying sensory perception (excitation vs.inhibition) in awake animals, and even to

record intracellular activity in animals performing well-defined behavior.

5.5.2 Intracellular activity in auditory cortex

Several studies have focused on intracellular activity of neurons in auditory cortex so far. Studies con-

ducted in auditory cortex ofanesthetizedanimals (DeWeese and Zador, 2006; Las et al., 2005; Ojima

and Murakami, 2002; Tan et al., 2004; Wehr and Zador, 2003, 2005; Zhang et al., 2003) all support the

general impression that subthreshold activity in auditorycortex consists mainly of brief and infrequent

voltage excursions, as either stated explicitly in the text, or inferred from the data presented.

The intracellular activity in auditory cortex ofawakeanimals has been studied only rarely (Rib-

aupierre et al., 1972; Serkov and Volkov, 1984; Volkov and Galaziuk, 1985, 1989). These studies were

conducted in awakeimmobilizedcats using sharp electrodes. Although acutely immobilizedanimals

represent very non-physiological condition, results fromthese studies also demonstrate brief bumps in

subthreshold dynamics with occasional longer “up-state” (see for example Fig. 3 in Volkov and Galaz-

iuk, 1989).

5.5.3 Up and down states in the cerebral cortex

Subthreshold dynamics in various parts of the brain has often been described in terms of a bistable

membrane potential, spontaneously fluctuating between twosubthreshold values, so-calledupanddown

states. During depolarized up-states neurons are more active and can fire action potentials, whereas

during hyperpolarized down-states neurons sit quietly at their resting potential (but see Petersen et al.,

2003a). Neurons toggle their membrane potential between upand down states, with very little time

spent in between. Time scales of canonical up and down statesare considerably longer than the duration

of, for example, action potentials with up-states lasting several seconds. Up and down states have been

described and characterized for several decades (Cowan andWilson, 1994; Steriade et al., 1993a,b;

Wilson and Groves, 1981). More recently, the bistability ofthe membrane potential has been described

101

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

08
.2

46
4.

1 
: P

os
te

d 
4 

N
ov

 2
00

8



in-vitro (Cossart et al., 2003; Sanchez-Vives and McCormick, 2000), as well as in-vivo in frontal cortical

areas (Lewis and O’Donnell, 2000; Léger et al., 2005), somatosensory (Petersen et al., 2003a; Sachdev

et al., 2004; Steriade et al., 2001; Timofeev et al., 2001), visual (Anderson et al., 2000; Lampl et al.,

1999), olfactory (Luo and Katz, 2001; Margrie and Schaefer,2003), other areas (Paré et al., 1998), and

striatum (Kasanetz et al., 2002; Mahon et al., 2003; Stern etal., 1997; Wilson and Kawaguchi, 1996).

Up and down states have not been previously described in auditory cortex (DeWeese and Zador,

2006). Our data presented above are consistent with a predominance of brief voltage excursions, with

only occasional long up-states. The mean up-state durationwe detected was 60 ms using a low detection

threshold. Average up-state durations reported in studiesusing rigorous criteria for state detection are

in the 300–500 ms range (Lewis and O’Donnell, 2000; Stern et al., 1997). It is unclear why auditory

cortex would be different in terms of subthreshold dynamics, although it is an intriguing possibility that

there is an inherent difference between auditory and other sensory areas. Recording differences might

contribute to the lack of up and down states in auditory cortex; indeed even in somatosensory cortex the

two states are not always apparent (Bruno and Sakmann, 2006;Wilent and Contreras, 2005).

A more plausible explanation is that the lack of up-down states in auditory cortex is simply

caused by differences in nomenclature, and bumps observed in auditory cortex are simply brief up-

states (DeWeese and Zador, 2006). We have presented evidence supporting a wide range of up-state

durations, with occasional long up-states ( > 200 ms). Neurons spent various times in up-states of differ-

ent durations, depending on the voltage threshold used for up-state detection. Data presented in several

studies (Anderson et al., 2000; Jagadeesh et al., 1992) support the view of a wide range of up-state

durations, with only about 13–60 % of cells identified as two-state based on bimodal voltage histograms

in (Anderson et al., 2000).

Another intriguing possibility is that up and down states might represent very specific activity

occurring during sleep or anesthesia, and as such might be dependent on the state of vigilance (Mahon

et al., 2003). Experiments in anesthetized animals designed to resemble waking state, such as stimu-

lation of subcortical inputs (Lewis and O’Donnell, 2000), cortical desynchronization (Kasanetz et al.,

2002); and direct experiments in awake animals: transitionfrom sleeping to waking state (Steriade

et al., 2001), transition from quiet wakefulness to whisking (Crochet and Petersen, 2006), all caused

disruption of up-down states with cortical activity usually switching to up-state. We have not explicitly
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controlled the behavioral state of animals in our experiments, and although we are confident that our rats

were not sleeping during recordings (based on video monitoring of animal activity), it is possible that

the longest up-states we observed might have occurred during different behavioral/attentional states.

Further experiments recording intracellular activity in awake animals during well controlled behavior

would be needed to elucidate the origin and function of up-down states.
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Chapter 6

Sound discrimination in freely moving

and head-fixed rats

The transformation of an external sensory stimulus into an internal percept is thought to require several

(but probably many) computational steps, most of which are arguably unknown at present. One of the

hard computational problems in auditory neuroscience is that of auditory scene analysis (cocktail-party

problem), in which we are able to extract one auditory streamfrom a (noisy) background and perceive

it as a distinct auditory object. A fundamental feature of auditory scene analysis is auditory stream

segregation, a phenomenon in which interleaved sequences of sounds are decomposed into separate

perceptual streams (Bregman, 1990). The ability of a listener to segregate auditory streams is affected

by, and possibly dependent on, attention (Cusack et al., 2004).

The primary auditory cortex has been traditionally viewed as a primary sensory area, i.e. a uni-

modal area primarily involved in the processing of sounds. However, since the early observations (Hubel

et al., 1959), multiple studies (Beaton and Miller, 1975; Brosch et al., 2005; Fu et al., 2003; Hocherman

et al., 1976; Miller et al., 1972) have suggested that sound-evoked responses in the (primary) auditory

cortex are influenced by the behavioral context in which the sounds are presented. This view is further

supported by the reported heterogeneity and sparseness of responses to various sound stimuli in auditory

cortex ofnaïveawake animals (Chimoto et al., 2002; Recanzone, 2000, see also Sec. 3).

The attentional and behavioral modulations of single neuron activity indicate the involvement

of primary auditory cortex in rather elaborate computations, meaning that the neurons in the primary
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auditory cortex might not be just simple “feature detectors” , but instead might represent the auditory

world in terms of auditory “objects” (Nelken et al., 2003). The primary auditory cortex thus seems to

be a good candidate for at least the first step in auditory stream segregation; see (Fishman et al., 2001;

Micheyl et al., 2005) for some experimental evidence.

We have developed an experimental setup for studying behavior and neural correlates of behav-

ior in head-fixed rats, with the ultimate goal of studying auditory stream segregation in single neurons.

We focused on auditory attention as one particular aspect ofauditory stream segregation and—as a first

step—we have developed a sound discrimination go/no-go task, in which head-fixed rats listened to

a continuous auditory stream and reported which sound they heard. Here we present ourfull account on

training rats for the sound discriminations task, and provide comparison of various response parameters

in restrained and unrestrained rats. We also present evidence documenting nonauditory modulation of

responses of single neurons in rats performing the task.

6.1 Sound discrimination go/no-go task

We have trained 33 Long-Evans rats in a sound discriminationgo/no-go task (Fig. 6.1, see also Sec. 2.8

on page 33). Water-deprived rats listened to a continuous stream of (randomly interleaved) target and

distractor 500 ms sounds, separated by silent random lengthinter-trial intervals. The rats were trained

to lick in response to target sounds, and all correct responses were rewarded with a drop of water. All

other licks, i.e. licks in response to distractor sounds, orlicks during inter-trial interval were penalized

by air-puff(s), and lengthening of the penalty period (inter-trial interval). We have used pure tones and

FM-tones (warbles) as sound stimuli. Individual rats were either trained with tones as targets (warbles

as distractors), or warbles as targets (tones as distractors), see Sec. 2.5.4 on page 20 for details. We

have not observed any differences between these two types ofstimuli, and in the following we will only

refer totargetanddistractorstimuli. Initially we have used 3 s “reward period” following the stimulus

in distractor trials (Fig. 6.1), during which licks were penalized. In a later variant of the task, distractor

stimuli were followed directly by a penalty period, i.e. distractor trials were, on average, 3 s shorter

than target trials (compare Fig. 6.1 with Fig. 2.9 on page 35). We have not observed any difference

between these two types of tasks, and in the following we refer to both of these variants simply as sound

105

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

08
.2

46
4.

1 
: P

os
te

d 
4 

N
ov

 2
00

8



Figure 6.1: Trial structures of soud-discrimination go/no-go task. Target trials (top) started with 500 ms
target sound, followed by a 3 s reward period, during which responses (i.e. licks) were rewarded with
a drop of water. The reward period was followed by a (random duration)penalty period, during which
licks were penalized by air-puffs. Distractor trials (bottom) started with a 500 ms longdistractor sound,
followed by a “reward period,” followed by apenalty period. Any lick during the distractor trial was
penalized by an air-puff. We have also used a variant of this task in which distractor sounds were
immediately followed by a penalty period, see Fig. 2.9 on page 35. Target and distractor trials were
randomly interleaved during a behavioral session.

discrimination go/no-go task. Rats trained for the initialvariant of the task were used as examples for

figures presented in this text.

Rats were initially trained freely moving for the full task,and retrained in head-fixed position

afterwards (see Sec. 2.8.3 on page 38 for details). During the freely moving phase, rats were trained

inside a plastic tube (closed on both ends) which provided only a very loose body restraint. Training

started with a fewclassical conditioningsessions, during which only target sounds were presented and

rats were trained to associate the target sounds with water rewards. Classical conditioning sessions were

followed by severaloperant conditioningsessions, i.e. rats had to initiate water delivery by licking.

During the operant sessions we gradually introduced distractor stimuli. Finally, rats were implanted

with a headpost and recording well, and—after at least 24 hours of recovery—were retrained in the

head-fixed position. Twenty-one rats (64 % out of 33 rats) were retrained for at least one head-fixed
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training session. We have also recorded the activity of 53 neurons in 10 head-fixed trained animals

(30 %, see below).

6.2 Rats perform well when freely moving as well as when head-fixed

A well-trained rat was required todiscriminatetarget and distractor stimuli, i.e. to lick in response to

target stimuli and not distractor stimuli; as well as tofollow the task structure, i.e. not to lick during

inter-trial intervals.

We have defineddiscrimination performanceas a measure of the rat’s ability to discriminate

between target and distractor stimuli (Fig. 6.2A, see also Eq. 2.7 on page 36, and Sec. 2.8 for details).

Correct responses—licks in target trials and no licks in distractor trials—were assigned 1, and incorrect

responses—no licks in target and licks in distractor trials—were assigned 0. Discrimination perfor-

mance was then computed as a running average of correct/incorrect responses in 20 consecutive trials.

The rat’s ability to “understand” task structure, i.e. not to lick during penalty period, was quan-

tified using apenalty period extension(Fig. 6.2B, Eq. 2.8 on page 36). Recall that whenever a rat

licked during the penalty period, the period was restarted with the same parameters again (in addition

to an air-puff penalty). Thus, rats that did not follow the task structure would have the actual penalty

periods longer than intended, whereas penalty period duration for rats following the task structure would

equal the intended duration. Penalty period extensions wasdefined as ratio of actual to intended period

duration, and was computed as a running average in 20 consecutive trials.

Performancein the sound discrimination task was defined as the ratio of discrimination perfor-

mance to penalty period extension (Fig. 6.2C, Eq. 2.9 on page36). This measure then included both the

ability to discriminate sound stimuli, and the ability to follow task structure.

For most operant freely moving training sessions we used randomly interleaved target and dis-

tractor stimuli, which appeared with equal probability (Sec. 2.8.3 on page 38). Chancediscrimination

performancewould then be equal to 0.5. Analogously,discrimination performancefor a rat licking in

response to each stimulus, as well as for a rat not respondingat all, would be equal to 0.5. The finalper-

formance, however, could be lower than 0.5, even for rats with very good discrimination performance,
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Figure 6.2: Rats performed well when freely moving as well aswhen head-fixed. This figure shows
performance parameters during several behavioral sessions for one rat. The rat performed well during
freely moving sessions (top row), both in target and distractor trials (middle row), and also during
head-fixed sessions (bottom row).(A) Discrimination performance insession 1, session 2, andsession
14. Higher value means better discrimination performance.(B) Penalty period extension during the
same sessions as in panel (A). Lower value (i.e. penalty period closer to its intended duration) means
better “understanding” of task structure.(C) Performance in sound discrimination task was defined
as ratio of discrimination performance to penalty period extension. (D) Discrimination performance
in target trialsanddistractor trialsduring session 14. Target and distractor trials appeared with equal
probability and were randomly interleaved.(E) Penalty period extension, and(F) performance (ratio
of discrimination performance to penalty period extension) for target trialsanddistractor trialsduring
session 14. (G) Discrimination performance in (freely moving)session 14compared with performance
in (following) head-fixedsession 15. (H), (I) Same format as in (G) for head-fixedsession 16, and
session 17.
All traces in this figure are plotted as running averages of 20consecutive trials.
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because performance also includedpenalty period extension. Inability of a rat to follow task structure

well would then lead to higherpenalty period extensionand lowerperformance.

The performance of freely moving rats improved during training (Fig. 6.2 top row). During the

initial classical conditioning sessions (session 1, session 2in the example) rats usually licked actively

as documented by the relatively high discrimination performance. Note however, that during the initial

sessions rats did not follow the task structure well as shownin Fig. 6.2B. Thus despite the very good

discrimination performance insession 2, the actual performance was much lower than insession 14

(Fig. 6.2C), which was the last (operant) freely-moving session before implantation. The top row in

Fig. 6.2 documents the improvement in performance in subsequent freely moving training sessions

(the discrimination performance is higher and the penalty period is lower).

Rats performed well in both target and distractor trials (Fig. 6.2 middle row). In sessions in

which targetanddistractortrials were randomly interleaved, rats showed good discrimination perfor-

mance (Fig. 6.2D), with low penalty period extension (Fig. 6.2E), which led to very good overall per-

formance for both types of trials (Fig. 6.2F).

The performance of head-fixed rats was comparable with theirprevious performance in freely

moving sessions (Fig. 6.2 bottom row). Note that the rat started performing quickly in the very first

head-fixed retraining session (session 15), and the performance reached the level achieved during the

freely moving training (session 14).

Overall, theperformanceof freely moving rats was similar to the performance of head-fixed

rats (Fig. 6.3A, n = 21 rats, p = 0.05, Wilcoxon rank-sum test). Note that the performance measure could

be lower than 0.5 because it also included the penalty periodextension (Sec. 2.8), and rats that did

not follow the task structure reached lower performance values. Performance values were computed as

the 75th percentile across operant freely moving, or head-fixed sessions. Discrimination performance,

however, was better in freely moving animals (Fig. 6.3B, n = 21 rats, p < 0.01, Wilcoxon rank-sum test).

For eighteen rats, however, the 75th percentile of discrimination was > 60 % in the head-fixed session.
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Figure 6.3: Comparison of performance of freely moving and head-fixed rats.(A) Performanceof freely
moving and head-fixed rats was similar. Note that the performance measure also includes penalty period
extension.(B) Discrimination performancetended to be better in freely moving rats. All values were
computed as the 75th percentile across operant freely moving sessions, or head-fixed sessions. All points
in this figure were jittered slightly so that overlying points could be seen.

6.3 Response parameters are similar in freely moving and head-fixed rats

Rats licked actively during training sessions (Fig. 6.4). Licking was usually less prominent during the

first training sessions, but as the training progressed, rats would lick more during target trials, and less

during distractor trials (Fig. 6.4A). Well-trained rats also licked only occasionally during penalty periods

(Fig. 6.4B).

The ability of rats to learn to lick in response to targets is further documented in the bottom

of Fig. 6.4. Licking rasters (“lasters”) show positions of individual licks in target and distractor trials

during three different training sessions for one rat. The rat improved its licking from session 1 to session

14 with many more correct trials, and stimulus locked lick trains. Furthermore, in head-fixed session

17, the lick trains became more stereotypical, with improved response latency. Notice the oscillations

in the laster PSTH shown at the bottom of Fig. 6.4E.

Because licking was the only behavioral response of rats in the sound discrimination task (espe-

cially in the head-fixed position), we wondered whether headfixation led to any major changes in basic

response parameters: durations of individual licks, response latency, and frequency of licking (Fig. 6.5).

Lick durations tended to be shorter in head-fixed rats (Fig. 6.5 top). A typical distribution of

lick durations pooled across all operant freely moving and head-fixed sessions for one rat is shown in

Fig. 6.5A. Note that we only considered licks shorter than 200 ms for this analysis, as longer licks were
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Figure 6.4: Well-trained rats licked more during reward period in target trials, and less during penalty
period (top). Licking responses were more stereotypical for well trained rats (bottom). Here we show
basic licking characteristics for the same rat as in Fig. 6.2. (A) Number of licks per second during
reward period. Only target sounds were presented duringsession 1. Both targetanddistractorsounds
were presented during session 14.(B) Same format as in (A) for penalty period. All traces are plotted
as running averages of 20 consecutive trials.(C) Lick rasters (“lasters”) of responses during several
training sessions. Top: Licking responses duringtargettrials insession 1(same rat as in Fig. 6.2). Each
colored tick denotes a single lick. Bottom: Time histogram of the rasters above. Note that only target
trials were presented in session 1.(D) Same format as in (C) forsession 14. Target trialsanddistractor
trialswere interleaved with equal probability.(E) Same format as in (C) for head-fixedsesion 17(third
head-fixed session). Only the first 100 trials from each session (and stimulus type) are plotted in panels
(C), (D), and (E).
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rare, and usually corresponded to interruptions of an infrared beam by various body parts of a rat. Typ-

ical lick durations in operant freely moving sessions—as estimated by medians of lick distributions—

were around 40–50 ms (n = 33 rats, Fig. 6.5B). A comparison of lick durations detected in freely moving

and head-fixed sessions (n = 21 rats) showed that, on average,head-fixed rats tended to have slightly

shorter licks. The distributions of lick durations were narrower then distributions of their counterparts

in freely moving sessions (notice the generally smaller standard deviations in Fig. 6.5C). For most

rats (n = 15, black circles in Fig. 6.5C) the distributions oflick durations were significantly different

(p < 0.01, Wilcoxon rank-sum test) between freely moving andhead-fixed sessions.

Response latency, as estimated by first lick latency, tendedto improve in the head-fixed position

(Fig. 6.5 middle). To estimate response latency we computedfirst lick latencies during the last three

operant freely moving sessions, and all head-fixed sessions. We have only considered first lick laten-

cies longer than 10 ms and shorter than 1 s for this analysis. Typical first lick latencies were around

500 ms in freely moving (n = 33 rats, Fig. 6.5D), as well as head-fixed sessions (n = 21 rats, Fig. 6.5E).

A comparison of response latencies computed in freely moving and head-fixed sessions showed that, on

average, response latencies were similar, and tended to be shorter in head-fixed sessions. Distributions

of first lick latencies werenot significantly different (empty circles in Fig. 6.5F) for most rats (n = 13

rats, p < 0.01, Wilcoxon rank-sum test).

Rats licked regularly, in theta frequency, both in freely moving and head-fixed sessions (Fig. 6.5

bottom). The oscillations in laster PSTH in Fig. 6.4E suggested an apparent rhythmicity of licking

behavior. This rhythmicity was evident in the power spectraof laster PSTHs from different training

sessions (Fig. 6.5G). To compute the power spectra we first aligned all lick trains for a given session

with respect to the first lick, added the lick trains togetherto obtain aligned laster PSTH, and then

computed the power spectrum density of the PSTH. The peak of the power spectrum between 3–40 Hz

then defined the main licking frequency. Typical main licking frequency in freely moving sessions was

around 7 Hz (n = 33 rats, Fig. 6.5H), inside the theta frequency band (4–12 Hz). Main licking frequencies

in this analysis were estimated as the peaks of power spectracomputed from aligned laster PSTHs

pooled across all operant freely moving sessions, and all head-fixed sessions. Comparison of licking

frequencies between freely moving and head-fixed sessions (n = 21 rats, Fig. 6.4I) showed that head-

fixed rats tended to lick at slightly lower frequencies. Licking frequencies in freely moving and head-
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Figure 6.5: Lick parameters were comparable for freely moving and head-fixed rats. Durations of
individual licks (top row), first lick latency (middle row),and licking frequency (bottom row) were
similar in freely moving and head-fixed sessions.(A) Distribution of lick durations for the rat from
Figs. 6.2–6.4. Licks from alloperantbehavioral sessions (8 freely moving, 3 head-fixed) were pooled
together. (B) Distribution of medianlick durations for all rats (n = 33).(C) Meandurations of licks
identified during freely moving and head-fixed sessions weresimilar (n = 21 rats).(D) Distribution of
medianfirst lick latencies infreely movingsessions (n = 33 rats).(E) Distribution ofmedianfirst lick
latencies inhead-fixedsessions (n = 21 rats).(F) Meanfirst lick latencies in freely moving and head-
fixed sessions were similar (n = 21 rats).(G) Frequency spectra of aligned laster PSTHs (see text) for
rat from Figs. 6.2–6.4. The plotted spectra were normalizedwith respect to the peak ofsession 17.
(H) Distribution of main licking frequencies in freely moving sessions (n = 33 rats, see text).(I) Rats
licked at theta frequency both in freely moving and head-fixed sessions (n = 21 rats). All points in this
panel were jittered slightly so that overlying points couldbe seen.
Lick parameters forfreely moving sessions, andhead-fixed sessionswere computed from licks pooled
together from alloperant freely moving, and head-fixed sessions, respectively. Thelarger circlesin
panels (C), (F), (I) show values computed for rat shown in panel (A). Full circles in (C), (F) show
animals with significantly different values (see text). Error bars show standard deviations.

113

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

08
.2

46
4.

1 
: P

os
te

d 
4 

N
ov

 2
00

8



fixed sessions were different (p < 0.001, Wilcoxon rank-sum test), with head-fixed licking frequencies

slightly lower, but main licking frequencies remained in theta range (4–12 Hz).

Head-fixed rats tended to lick with shorter licks, and lickedat slightly lower frequencies. How-

ever, head-fixed rats tended to have shorter first lick latencies, i.e. shorter reaction time, when compared

to freely moving sessions.

6.4 Lick-locked (nonauditory) responses in auditory cortex

We recorded from 53 neurons (in 10 animals) during the sound discrimination task. During 18 (34 %)

of these recordings, however, the animal failed to perform the task. From the remaining 35 recordings

we identified 15 (28 %) recordings (in 7 animals) with at least40 total recorded trials (median = 52 trials

per recording).

Neurons displayed a range of responses during the sound discrimination task (Fig. 6.6, see also

Appendix B for a complete set of neurons). In accordance withour findings in naïve head-fixed rats

(Sec. 3), some neurons showed suppression of their activity(Fig. 6.6A), some showed an increase in

their activity (Fig. 6.6B).

The neuron shown in Fig. 6.6A displayed marked suppression of its activity. The suppression

had very short latency and relatively long duration (~2 s), and was restricted to trials during which the

rat licked in response to the stimulus, i.e.correct target trialsanderror distractor trials. The remarkable

similarity between responses in trials containing different acoustic stimuli (tones vs. warbles), but simi-

lar behavioral responses is further documented in Fig. 6.6C. In the figure, spiking responses are plotted

relative to lick trains aligned with respect to the first lick. In both cases neuronal activity gradually

returned to its previous level about 2 s after the ratstartedlicking. This suppression of neuronal activity

was not limited to lick trains which occurred as responses, as shown by similar suppression of activity

during lick trains which started > 4 s after a stimulus (other). Note, that although there was no sound

stimulus presented in the case ofotherlick trains, there was 500 ms air-puff which started simultane-

ously with first licks inotheranderror distractortrials. Because air-puffs sounded like quiet white-noise

stimuli we cannot conclude that the suppression of activitywassolelydue to licking. However, the fact

that neuronal activity was still suppressed at least 500 ms after any possible acoustic stimulus was over,

and that the suppression of neuronal activity appeared to belocked to the start of lick trains regardless
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Figure 6.6: Neuronal responses in correct and error trials during a sound discrimination go/no-go task.
(A) Neurons displayed a range of responses in sound discrimination task. The raster plot shows spiking
responses of a single neuron. Colored dots represent individual spikes,light greyshaded region indicates
stimulusduration,grey ticksindicateindividual licks. Trials are sorted into four groups depending on the
stimulus and outcome of each trial.(C) Spiking responses duringlick trains. Lick trains were aligned
with respect to the first lick.Other responsesinclude lick trains which occurred during the penalty
period ( > 4 s after the start of the trial).(E) Some neurons displayed lick-locked spiking responses. All
licks surrounded by spikes were aligned with respect to the start of eachlick. Firing rate curves beneath
the rasters were computed by summing the spikes in 1 ms bins, convolving the resulting PSTH with
a Gaussian (σ = 20 ms in A, C,σ = 10 ms in E), and then normalizing to the maximum peak of all firing
rate curves.(B), (D), and(F) Same format as in panels (A), (C), and (E) for another neuron.
See Appendix B for a complete set of neurons.
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of their occurrence, suggested that licking might play a role in modifying neuronal activity in primary

auditory cortex. Suppression of spiking activity for this neuron appeared to be lick-locked (Fig. 6.6E).

Note, that in case of individual licks there was no acoustic stimulus present.

We have observed similar responses in another neuron (Fig. 6.6B). In this case, licking activity

seemed to “evoke” spiking activity, as spikes were almost exclusively observed incorrect targetanderror

distractortrials. Spiking activity seemed to be locked to the beginning of lick trains (Fig. 6.6D), but note

the spike trains locked to first licks inotheranderror distractortrials, which were evoked by air-puffs.

However, spiking responses aligned to individual licks (Fig. 6.6F) showed that spikes were lick-evoked

even incorrect target trials(see the intimate relationship between spikes and licks in Fig. 6.6D).

Because correct and error target trials contained exactly the same stimulus, but differed in their

behavioral outcomes, changes in neuronal activity during these two types of trials could be considered

correlates of changes in the behavioral state of the animal.We have evaluated the difference in spiking

responses in correct and error target trials by computing choice probability between spike counts during

the first 100 ms of target stimulus, and then used bootstraping to estimate the significance of choice

probability values. We have not observed any significant choice probability between responses in correct

and error target trials with choice probabilities of 0.51±0.05 (n = 14 neurons). We were only able to

compute choice probabilities during the first 100 ms of stimulus, because all later neuronal activity was

likely affected (“contaminated”) by licking (see above).

6.5 Discussion

We have developed a behavioral setup for studying behavior in head-fixed rats. Using a sound discrim-

ination go/no-go task, we have showed and compared responseparameters of unrestrained and head-

fixed rats performing the task. Head-fixed rats’ performanceand response parameters were similar to

the parameters measured in the unrestrained condition. Head-fixed rats tended to respond with shorter

licks, and licked at lower frequencies than in preceding freely moving sessions. The response latency,

however, tended to improve in the head-fixed position compared to freely moving sessions. We have

also documented examples of sensorimotor (licking) activity modulating responses of single neurons in

the primary auditory cortex of behaving head-fixed rats.
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6.5.1 Head-fixed behavior

Experiments using head-fixed (head-restrained)primateshave a long tradition in auditory research

(Beaton and Miller, 1975; Durif et al., 2003; Hocherman et al., 1976; Miller et al., 1972; Populin, 2006).

To avoid some disadvantages of primate studies (namely longtraining time, monkey “resistance” to au-

ditory tasks, and high cost), many groups have chosen other experimental animals and studied neuronal

activity in head-fixed animals during different auditory tasks, and in different cortical areas. Tone detec-

tion and discrimination have been studied in the primary auditory cortex of ferrets (Fritz et al., 2005a,

2003, 2005b), guinea pigs (Edeline et al., 1993; Edeline andWeinberger, 1993), gerbils (Ohl and Sche-

ich, 1997), and in the lateral hypothalamus (Nakamura and Ono, 1986; Nakamura et al., 1987; Ono and

Nakamura, 1985; Ono et al., 1986, 1985), and posterior parietal cortex of rats (Nakamura, 1999); sound

localization has been studied in cats (Tollin et al., 2005).

Licking responses are one of the commonly used physiological outputs used to measure the

behavioral state of head-restrained animals (see for example Fritz et al., 2003, 2005b; Nakamura, 1999;

Ono and Nakamura, 1985, and others), in addition to autonomic responses (Edeline and Weinberger,

1993; Ohl and Scheich, 1997), or eye saccades (Tollin et al.,2005). Licking is an example of a rhythmic

orofacial behavior, and shares modal frequencies (theta 4–12 Hz) with other rhythmic behaviors, e.g.

sniffing, chewing, sucking, lapping, and whisking (Berg andKleinfeld, 2003; Gao et al., 2001; Harvey

et al., 2001; Kepecs et al., 2006; Nakamura and Katakura, 1995; O’Connor et al., 2002; Sachdev et al.,

2001; Vajnerová et al., 2003; Weijnen, 1998). The licking frequencies (and other parameters) that we

detected agree with these observations, as well as with studies explicitly providing information about

licking behavior in head-fixed rats performing a whisker detection task (Stüttgen et al., 2006; Wiest and

Nicolelis, 2003).

Restraining animals can, however, change parameters of rhythmic behaviors (required to per-

form tasks), such as whisking (Gao et al., 2003; Sellien et al., 2005). The relative inaccessibility of

the drinking spout in head-fixed position probably contributed to the decrease in licking frequency in

our task (Davis and Smith, 1992; Weijnen, 1998). Such a decrease in licking frequency (or licking

in general), together with a more demanding task (discrimination with longer inter-trial intervals) likely

contributed to lower performance values in head-fixed position. The overall slight decrease in licking

parameters in head-restrained animals could be important when interpreting results from studies relying
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on licking as main behavioral output. Especially when animals perform a conditional avoidance task

(for example Fritz et al., 2003) during which he/she must stop licking in order to avoid punishment.

6.5.2 Nonauditory modulation of activity in auditory cortex

Primary auditory cortex has been traditionally viewed as aprimary sensory area, i.e. exclusively spe-

cialized in processing of sounds. However, even some of the early studies suggested that neural activity

in early stages of auditory processing might be influenced bynonauditory factors; such as “attention”

influencing “electric activity” in the cochlear nucleus (Hernandez-Peon et al., 1956), and “attention

units” in auditory cortex (Hubel et al., 1959). Since then, multiple studies supported the idea of multi-

sensory, or behavioral interactions in auditory cortex, whether they were using evoked potentials (Giard

and Peronnet, 1999; Oatman, 1971, 1976; Picton et al., 1971), field potentials (Ghazanfar et al., 2005),

magnetoencefalography (Gobbelé et al., 2003; Lütkenhöneret al., 2002), or fMRI (Calvert et al., 1997;

Foxe et al., 2002; Johnson and Zatorre, 2005; Kayser et al., 2005; Petkov et al., 2004)

Even at the level of single neurons in the primary auditory area, neuronal responses can be

influenced by behavioral contingencies (Beaton and Miller,1975; Miller et al., 1972), selective attention

(Hocherman et al., 1976; Miller et al., 1980), eye position (Fu et al., 2004; Werner-Reiss et al., 2003),

or somatosensory stimulation (Brosch et al., 2005; Fu et al., 2003; Lakatos et al., 2007; Schroeder et al.,

2001). The “top-down” (attention, behavioral contingencies), and “bottom-up” (somatosensory, eye

movements) influences can be seen as enhancing auditory responses, and auditory processing (Lakatos

et al., 2007; Schroeder and Foxe, 2005). Auditory cortex—even the primary auditory cortex—should

not be viewed as a pure sensory area acting as a (non)linear filter on signals passing through thalamus

to “higher” cortical areas. The presence of nonauditory activity in the primary auditory cortex also

suggests that better control of behavioral stateand monitoring of other sensory modalities and motor

activity seems necessary when studying neuronal responsesin awake animals.

118

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

08
.2

46
4.

1 
: P

os
te

d 
4 

N
ov

 2
00

8



Chapter 7

Conclusions and perspectives

We have developed a setup for studying neuronal activity in head-fixed rats. We have used the setup

in combination with patch-clamp recordings to record the activity of single neurons in the auditory

cortex of awake naïve and behaving head-fixed rats. We have progressed from characterizing various

experimental and theoretical aspects of both extracellular and intracellular neuronal activity in naïve

animals toward studying neuronal activity in behaving animals.

Representation of sounds in awake auditory cortex was sparse (Sec. 3), with stimuli typically

eliciting a high firing rate in only about 3 % of the population. We have used patch-clamp recordings

with glass pipette and sequentially sampled single neuronsto obtain an estimate of population activity.

Different recording bias of patch-clamp recordings—basedon physical contact with neuron, rather than

neuronal activity—enabled us to sample neurons with very high, as well as very low firing rates. Our

data suggests that only a minority of neurons are engaged in the representation of many stimuli; indeed,

the fact that most stimuli drive most neurons only weakly explains why finding the optimal stimulus for

any given neuron can be such a challenge. Thus, although there may be an optimal stimulus for any

given neuron, most stimuli are not optimal for most neurons,and so are represented sparsely across the

population.

Although individual neurons displayed a variety of evoked responses, population activity was

well-characterized by a lognormal distribution (Sec. 4). We have studied properties of cortical net-

works which could give rise to lognormal distributions of firing rates and synaptic weights (Song et al.,

2005). We proposed that correlations among neurons’ synaptic inputs led to lognormal distribution of
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(spontaneous) firing rates in neuronal populations, provided that synaptic strengths themselves were

lognormally distributed. In addition, we proposed a multiplicative Hebbian learning rule which can give

rise to specific correlations in the synaptic weight matrix and, consequently, to lognormally distributed

synaptic weightsandfiring rates.

Intracellular activity in awake auditory cortex was consistent with the idea that neurons receive

barrages of synchronized inputs (Sec. 5). Neurons typically spent less than 4 % of their time in up-

states (fluctuations of membrane potential) longer than 200ms, with most neurons displaying only brief

bumps in their subthreshold dynamics.

Primary auditory cortex has usually been studied without regard to the behavioral or attentional

context of the sounds presented. Having studied sound representation in naïve animals, we sought to

study neuronal activity under tight behavioral control (Sec. 6). In a sound-discrimination task, we com-

pared performance and various behavioral parameters in restrained and unrestrained rats, and demon-

strated modulation of single-neuron activity in the primary auditory cortex by nonauditory (licking)

influences.

The head-fixed experimental setup offers excellent stability, which can be exploited byin-vivo

imaging techniques in awake animals, as already demonstrated in anesthetized preparations (Ohki et al.,

2005; Yaksi and Friedrich, 2006). It would be of interest to see whether techniques such as imaging

of population activity, or different recording techniqueswith recording biases similar to patch-clamp

recordings (such as tetrodes (Feierstein et al., 2006), or silicone probes (Barthó et al., 2004)), would

yield similar results: sparse representation of sounds, lognormal distribution of firing rates, etc..

We have suggested that neurons with high firing rates might beinterneurons, based on extracel-

lular electrophysiological signatures. We have not observed any dependence between neuronal activity

and depth of recording, based on an estimate of recording depth. Blind in-vivo recordings can provide

only estimates of such cell-type specific, or cortical layer-specific effects. Using new molecular ap-

proaches, specific populations of neurons (for example, neurons in a specific layer, neurons projecting

to or from a specific area, etc.) can be “tagged” and the presence of the tag during blind recording

could serve as asignatureof the tagged populations. Such a tag could be, for example, based on

channelrhodopsin-2 (Boyden et al., 2005); a light sensitive cation-selective channel, which can couple

a light flash to a spike with millisecond precision. During a recording it would be therefore possible to
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distinguish a tagged neuron based on whether the neuron generates a short latency spike in response to

light flash.

Perhaps even more interestingly, channelrhodopsin-2 tagscould be used tostudy behavior

(in head-fixed configuration as well). One could record the activity of a selected subpopulation of

neurons in an animal performing a behavioral task, or even perturb activity of a selected population

of neurons. Although such tags could be used in freely movingpreparations as well, head-fixed animals

present a more convenient approach, as one would be allowed more freedom searching for the tagged

population.

In summary, the head-fixed experimental setup with awake animals offers excellent control of

stimulus parameters, such as stimulus location in auditoryexperiments, or whisker stimulation in so-

matosensory experiments. Restrained animals provide great possibility for imaging structure and func-

tion in cerebral cortex of awake behaving animals. New molecular approaches could be used for labeling

specific subpopulations of neurons in auditory cortex. One could identify labeled subpopulations during

in-vivoblind recordings, or even perturb activity of specified neuronal subpopulations during behavior.
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Appendix A

Tone-evoked responses in awake auditory

cortex

Tones evoked a wide range of response patterns in the auditory cortex of unanesthetized rats. To sup-

plement results summarized in Sec. 3 we show raster plots of responses of all neurons for which we

assessed response significance (n = 100) in the following fivefigures .

Each panel in Figs. A.1–A.5 shows response dynamics of one neuron probed with 50–60 dB

tones. Firing rate curves beneath each of the rasters were computed by first summing the spikes in 1 ms

bins overall frequencies shown, and then convolving the resulting peristimulus time histogram (PSTH)

with a Gaussian (σ = 3 ms). In each panel, dots represent individual spikes, andthe grey shaded region

indicates tone duration (100 ms).
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Figure A.1: Tone-evoked responses in awake auditory cortex1
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Figure A.2: Tone-evoked responses in awake auditory cortex2
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Figure A.3: Tone-evoked responses in awake auditory cortex3
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Figure A.4: Tone-evoked responses in awake auditory cortex4
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Figure A.5: Tone-evoked responses in awake auditory cortex5
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Appendix B

Neuronal activity in sound discrimination

go/no-go task

Neurons displayed a range of responses during a sound discrimination go/no-go task. To suppplement

examples presented in Sec. 6.4 we show raster plots for 15 neurons in Figs. B.1–B.8. In each figure, the

left column (panels A, C, E) shows a summary for one neuron, and the right column (panels B, D, F)

shows summary for different neuron.

Panel(A) shows a raster plot of spiking responses for a single neuron.Colored dots represent

individual spikes,light grey shaded region indicatesstimulusduration,grey ticksindicateindividual

licks. Trials are sorted into four groups depending on the stimulus and the outcome of each trial. Panel

(C) shows spiking responses duringlick trains, which were aligned to the first lick.Other responses

include lick trains which occurred during the penalty period ( > 4 s after the start of the trial). Panel(E)

shows spiking responses to individual licks. All licks surrounded by spikes were aligned to the start of

eachlick. In all panels, the firing rate curves beneath the rasters were computed by adding the spikes

in 1 ms bins, convolving the resulting PSTH with a Gaussian (σ = 20 ms in A, B, C, Dσ = 10 ms in E,

F), and then normalizing to the maximum peak of all firing ratecurves. Panels(B), (D), and(F) are

presented in the same format as panels (A), (C), and (E) for different neuron.
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Figure B.1: Neuronal responses during a sound discrimination task 1
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Figure B.2: Neuronal responses during a sound discrimination task 2
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Figure B.3: Neuronal responses during a sound discrimination task 3
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Figure B.4: Neuronal responses during a sound discrimination task 4
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Figure B.5: Neuronal responses during a sound discrimination task 5
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Figure B.6: Neuronal responses during a sound discrimination task 6
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Figure B.7: Neuronal responses during a sound discrimination task 7
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Figure B.8: Neuronal responses during a sound discrimination task 8
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Appendix C

Schematics of surgical implants and

lickometer

The following five figures show schematics of the surgical implants we used for head-fixed recordings,

and a schematic of the lickometer we used to detect licking.

An aluminum headpost (Fig. C.1) was glued to a rat’s skull. During experiments, the headpost

was held fixed by a headpost holder (Fig. C.2). A plastic capped well (Figs. C.3–C.4) was implanted on

top of the craniotomy. The lickometer (Fig. C.5) was placed in front of the rat’s mouth, and was used to

both deliver water reward and measure the animal’s licking.

The implants and the lickometer were made by Robert Eifert, who also drew the schematics.
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Figure C.1: Headpost
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Figure C.2: Headpost holder
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Figure C.3: Recording well
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Figure C.4: Recording well cap
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Figure C.5: Lickometer
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