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Seismological and geochemical observations have revealed a complex structure for 

the earth’s core-mantle boundary (CMB) region, with lateral and chemical 

heterogeneities1-3. The presence of higher than expected concentrations of 

siderophile elements (Ni, Co, Pt etc) in the earth’s mantle, iron enrichment of the 

lower mantle relative to the upper mantle, and a possible carbon flux from the core 

suggest the possibility of continual long-term exchange of materials between the 

core and the mantle4-8. The chemical interactions of molten iron with complex 

mantle oxides, and diffusion have been postulated as key mechanisms9-10. A 

number of studies have been carried out on the reduction reactions taking into 

account the extreme conditions of high-temperature and high-pressure in earth’s 

interior 11-13. These studies have, however, neglected to consider the influence of 

carbon on these reactions. The earth’s metallic core is rich in carbon (~ 5 wt% C), 

and there is a growing evidence for the presence of carbon in the earth’s mantle as 

well14. Carbon can affect redox conditions through chemical interactions with 

oxygen, and is a critical element in determining the oxidation state of siderophile 

elements15. Here we present a study of the interactions between liquid iron and 

alumina-carbon substrates at 1,823K in argon atmosphere, and report on the 

formation of a Fe-Al0.25-0.5 alloy at ambient pressure. Iron induced reduction of 

alumina in the absence of carbon, has been previously reported to occur only at 

pressures above 60 GPa and temperatures of 2,200K16.  Our results demonstrate 

that carbon enriched iron is capable of reducing alumina in regions of much lower 

pressures. These chemical reactions could provide an important mechanism for the 

reduction reactions occurring in earth’s interior, and be responsible for far higher 

levels of heterogeneities than currently believed.  



According to various models for the major-element composition of the bulk 

silicate earth (primitive mantle), alumina is the fourth abundant refractory oxide 

component with concentrations ranging between 3.3 to 4.7%17. It has been postulated 

that the core-mantle boundary region may be enriched in Al2O3 and CaO. Chemical 

interactions between liquid iron and Al2O3 constitute a significant component of 

possible exchange reactions between the core and the lower mantle. While no chemical 

reaction is known to occur between iron and Al2O3 at ambient pressure, iron was found 

to reduce alumina at high pressures. Pressure was assumed to reverse the direction of 

this redox reaction through a modification of the chemical nature of iron, making it 

more electropositive than aluminum at high pressures16. Using FactSage™ 

themochemical data base18, we carried out phase equilibria calculations for the Al2O3-

Fe-C ternary system, aiming to investigate the influence of carbon on the 

kinetics/direction of this redox reaction at ambient pressures. Computations indicated 

the presence of small amounts of liquid aluminum co-existing with liquid Fe, Al2O3 and 

C at 1,823K pointing towards a possible local reduction of alumina. Small amounts of 

Al are known to significantly affect the concentration of ferric ion (Fe3+) in 

(Mg,Fe)(Si,Al)O3 perovskite19. Consequently, the high temperature chemistry of Al2O3-

Fe-C system, and the influence of carbon on the exchange reactions between liquid iron 

on one side and refractory oxides from another side is very important for understanding 

the transfer of elements in the interior regions of earth. We, therefore, decided to 

conduct an in-depth experimental investigation on Al2O3 and liquid Fe in the presence 

of carbon using a sessile-drop method along with x-ray micro-diffraction and back-

scattered electron microscopic analysis. 



High purity (99.8%) fused alumina was mixed thoroughly with synthetic 

graphite (0-40 wt%) with 5% phenolic resin as a binder. Refractory substrates were 

prepared by compacting the mixture in a steel die using a hydraulic press and pressing 

to a pressure up to 10MPa. The compacted cylindrical substrates (25 mm diameter, 3-4 

mm thick) were baked at 423 K for 48 hrs for enhancing their structural integrity; the 

evaporation of binder volatiles created a micro-porous substrate thereby providing 

possible channels for the penetration of small amounts of molten iron into the refractory 

substrate. Sessile drop investigations on the Al2O3-C/liquid iron system were carried out 

at 1,823 K in a laboratory scale, horizontal tube resistance furnace20. Initially, the 

sample was held on a specimen holder, which could be pushed to the centre of the hot 

zone in the furnace with the help of a stainless steel rod.  The weight of the metallic iron 

used was 1.0 gm.  The furnace tube was purged with pure argon throughout the duration 

of the experiment with a flow rate of 1.0 l/min.  The assembly was held in the cold zone 

of the furnace until the desired temperature was attained and was then inserted into the 

hot zone. This eliminated any reaction that could occur at lower temperatures and 

possibly influence the phenomena to be studied at the temperature of interest. The 

melting of the metal droplet marked the beginning of the reaction time; the Al2O3-C/Fe 

drop assembly was quenched after fixed periods of reaction time (30 min., 60 min.) by 

withdrawing the tray into the cold zone of the furnace. A high resolution charge-coupled 

device (CCD) camera fitted with an IRIS lens was used to capture the live in-situ 

phenomena in the furnace. The output from the CCD camera was channelled to a digital 

video recorder (DVD) and a television monitor to record the entire experimental process 

as a function of time. For microscopic investigations, the reacted assembly was set in an 

epoxy resin mould; the set assembly was then sectioned carefully to expose a cross-



sectional view of the Al2O3-C substrate/metal assembly and was again reset in a mould. 

Due to very poor wetting between the refractory substrate and liquid iron, the reacted 

metal droplet was loosely attached to the substrate and could be easily removed. The 

exposed interfacial region was reset in an epoxy mould to prevent substrate degradation 

due to the hygroscopic nature of alumina, was characterised using x-ray micro-

diffraction analysis. 

X-ray micro-diffraction data was obtained using Philips X’pert Materials 

Research Diffractometer using Cu Kα radiation (50 KV, 40 mA). We used a mono-

capillary (0.5 mm) attachment in the incident beam for selected area diffraction studies, 

0.04° Soller slits in the diffracted beam, and high resolution (55μm x 55μm) PIXcel 

solid state x-ray detector.  As Fe-Al intermetallic was expected to form in the sub-

surface region in very small quantities, it was important to apriori identify local regions 

of high concentration. Using (220) Fe3Al peak position (44.187°, 100%), diffraction 

mapping of the substrate surface was carried out to locate regions of high intensity for 

this peak. X-ray diffraction results are presented in Fig. 1 for three Al2O3-C substrates 

(0%C, 10%C and 20%C) which had been in contact with liquid iron for 30 minutes. For 

the substrate containing 0%C, the diffraction pattern showed only corundum peaks (R-

3c; a = 4.7588Å, c = 12.992 Å). However for alumina substrates containing carbon 

(10% and 20%), several additional peaks belonging to cubic aluminium-iron alloys 

(Fe3Al: Fm3m, a = 5.7934 Å; FeAl: Pm3m, a = 2.8954 Å) were observed. The locations 

of several of these peaks were quite distinct from the corundum peaks resulting in an 

unambiguous characterization of the new phase. This phase was observed for carbon 

concentrations up to 60%. Diffraction mapping was also carried out for pure iron and 



pure aluminium peaks; we could not locate any regions of local high concentration 

and/or diffraction peaks for these metals in the substrate. 

Back-scattered scanning electron microscopic results on Al2O3-10%C substrate 

are shown in Fig. 2 along with EDS results on selected regions. While several small 

droplets of Fe-Al0.25-0.5 (bright regions) were found close to the refractory substrate-

liquid iron interface, much higher concentrations of the alloy were seen precipitated 

deeper in the substrate. These deposits formed a quenched fluid-like network that 

appeared to co-exist with alumina, a result consistent with good wettability between 

molten Fe3Al (melting point: 1,803 K) and alumina21. Although we could clearly locate 

several regions containing simultaneously high concentrations of Fe and Al, we did not 

find any local regions containing pure Fe which was consistent with x-ray diffraction 

results. Due to poor wetting between molten iron and Al2O3-C (up to 40%) and a 

tendency between alumina and iron to be mutually exclusive from their immediate 

neighbourhood, very small amounts of molten iron were expected to penetrate the 

refractory substrate22-23. Molten iron, that managed to diffuse into the refractory 

substrate, participated in reduction reactions with Al2O3 and C to produce Fe-Al0.25-0.5 

intermetallics. A key feature of these EDS profiles was the low levels of carbon and 

oxygen observed in the regions of high Fe/Al concentrations. A high magnification 

SEM image for the Al2O3-20%C substrate shows clear evidence for the simultaneous 

co-existence of Al2O3, C and Fe-Al alloy (see Fig.S1 Supplementary Information). 

Alumina can not be reduced by pure liquid iron at ambient pressures. It is 

possible that the reduction reactions are being driven by the carbon present in the 

substrate. Carbon has a high solubility in liquid iron at 1,823 K; molten iron can 

therefore easily dissolve carbon from the Al2O3-C refractory during its penetration in 



the substrate 23-24. With solute carbon having a very high activity for reduction, it is 

quite likely that alumina gets reduced by the solute carbon producing aluminium, which 

in-turn reacts locally with molten iron to produce Fe-Al alloy. With higher levels of 

metal penetration expected with increasing carbon in the refractory substrate24, copious 

amounts of Fe-Al observed in the Al2O3-40%C substrate, further support this 

mechanism (see Fig.S2 Supplementary Information). Experiments were also carried out 

on alumina-20% natural graphite substrates to investigate the influence of ash impurities. 

Silica and alumina were both reduced by the carbon enriched molten iron as no oxygen 

peak was observed in EDS results (see Fig.S3 Supplementary Information). The 

presence of other oxides did not prevent this reaction from occurring. This result is of 

great significance for carbon based reduction reactions due to simultaneous presence 

several oxides and their complexes in the CMB region. 

We conclude that alumina can undergo reduction in Al2O3-Fe-C ternary system 

at ambient pressures. Our results reveal that carbon induced reduction reactions can 

provide an alternative reaction pathway in earth’s interior, supplementing other modes 

of reactions. Extreme conditions of pressure/temperature, and high concentrations of 

carbon are simultaneously present in the earth’s outer core and in the core-mantle 

boundary region; each of these is individually capable of the driving the reduction of 

alumina by liquid iron. For making a realistic comparison with geochemical data, it is 

important to determine the combined influence of carbon and high pressure/temperature 

conditions on the reduction reactions between complex mantle oxides and liquid iron.  
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Figure Legends 

Figure 1 X-ray diffraction profiles collected from the Al2O3-C substrates after contact 

with molten iron at 1,823 K for 30 minutes (C, corundum; G, Graphite; Fe3Al, iron-

aluminium alloy; (hkl) indices given in parenthesis). As most of the peak positions for 

Fe-Al and Fe3Al tended to overlap, the stoichiometry of Fe-Al alloy could not be 

determined from XRD patterns. (hkl) indices for Fe3Al have been given in this figure.  

 

Figure 2 Back scattered SEM image and EDS data for a region deep in the reacted 

Al2O3-10%C substrate. Liquid iron droplet was in contact with the substrate near the top 

right corner. While region ‘A’ represents concentrated Fe-Al alloy, region ‘B’ shows a 

fluid network of Fe-Al on top of Al2O3.  
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