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Abstract

Computational models of the immune system (IS)
and pathogenic agents have several applications,
such as theory testing and validation, or as a com-
plement to �rst stages of drug trials. One possible
application is the prediction of the lethality of new
In�uenza A strains, which are constantly created
due to antigenic drift and shift. Here, we present
several simulations of antigenic variability in In-
�uenza A using an agent-based approach, where
low level molecular antigen-antibody interactions
are explicitly described. Antigenic drift and shift
events are analyzed regarding the virulence of emer-
gent strains against the IS. Results are discussed
from a qualitative point of view taking into account
recent and generally recognized immunology and
in�uenza literature.

1 Introduction

There are several approaches to IS and pathogen
modeling [1], among which models based on dif-
ferential equations are probably the most common
[2]. This methodology is mostly used for modeling
particular aspects of the IS and pathogens, among
which is its use on the study of in�uenza dynamics
[3, 4, 5] and treatment [6].

Agent-based modeling (ABM) techniques are
well suited for describing the diversity of IS and
pathogen dynamics [7], taking into account behav-
ior distribution [8], simpli�ed insertion of new enti-
ties or substances and natural consideration of non-
linear interactions between agents, capturing emer-
gent phenomena [9]. Most agent-based approaches
model a generic IS [10, 11, 12, 13, 14], and use such
model to simulate particular situations (e.g., HIV
infection [15, 16, 17], pulmonary tuberculosis [18])
or test speci�c theories (e.g. immunological mem-

ory [19]). Some models speci�cally target partic-
ular contexts; such is the case of the models de-
veloped by C. Beauchemin, used for the study of
in�uenza A infections. In [20], the in�uence of the
disease's spatial distribution is investigated using a
simple model capable of reproducing the virus ba-
sic dynamical features. The initial distribution of
infected cells, regeneration rate of dead cells and
proliferation rate of immune cells are further inves-
tigated in [21]. The same model was also used to
reproduce the dynamics of in vitro infection with
in�uenza A [22], e�ectively combining in vitro and
in silico tools.

In this study we describe an immune-in�uenza
A agent-based model, with emphasis on low level
molecular antigen-antibody interactions. The
model was developed using the LAIS simulator [23],
and can be divided in three parts: a) epithelium, a
tissue composed of epithelial cells, subject to infec-
tion by in�uenza A; b) IS cells, which work together
in order to remove infections; and c) in�uenza A
virions. Agents are modeled at the cellular (epithe-
lial and IS cells) or virion (in�uenza A) level. The
IS submodel has been successfully used in the sim-
ulation of bacterial attack and vaccine administra-
tion, demonstrating memory, speci�city and spe-
cialization features [24]. In the present case, the
aim is to study antigenic drift and shift events in
in�uenza A, and analyze the virulence of emergent
strains. The main results of this study serve to
clarify: a) the �ne balance of in�uenza antigens
in a successful infection; b) the role of speci�c IS
properties in dealing with in�uenza infection; c) the
di�culties antigenic drift can pose on the IS re-
sponse; and d) the potential dangers of antigenic
shift. Hopefully, this type of models could serve a
useful purpose in predicting the virulence of annual
in�uenza epidemics, and more importantly, the up-
rising of a lethal in�uenza pandemic due to anti-
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genic shift. In section 2 the in�uenza virus is pre-
sented from human and physiopathological points
of view. The LAIS simulator and the immune-
in�uenza A model are described in sections 3 and
4, respectively. In section 5 simulations and results
are presented and compared with immunology and
in�uenza theory from literature. Finally, in section
6 we conclude the presented work, underlining the
model's potential, envisaging possible forms of so-
lidifying the produced results.

2 The In�uenza virus

In�uenza is caused by a virus that attacks mainly
the upper respiratory tract, leading to symptoms
such as high fever, myalgia and sore throat, among
others. Most people recover without requiring any
medical treatment; however, in high-risk groups
(e.g. the elderly) the infection may lead to severe
complications of underlying diseases, pneumonia
and death. The disease spreads quickly at a global
level in seasonal epidemics, with signi�cant eco-
nomic impact. Annual epidemics are estimated to
result in three to �ve million cases of severe illness
and between 250,000 and 500,000 deaths worldwide
[25].
Among the several types of in�uenza virus which

attack humans, type A has the highest mutation
rate and causes the most aggressive symptoms, be-
ing responsible for all known in�uenza pandemics
[26, 27, 25].

2.1 Physiopathology

In�uenza, as most viruses, takes over the replica-
tive machinery of host cells in order to grow and re-
produce, with cunning strategies to evade immune
defenses. More speci�cally, in�uenza virus infects
epithelial cells of the respiratory tract.
Cytotoxic T cells (Tc) are crucial in the elimi-

nation of viral infection, killing infected cells via
recognition of a complex formed by viral antigenic
peptide and MHC class I self molecules [28, 29].
The release of IFN-γ by Helper T cells (Th) is an-
other important aspect of the immune response,
promoting resistance to viral subversion. Usually,
in a primary viral encounter, the defensive role of
antibody is diminished, as viral particles take shel-
ter in the intracellular habitat, mostly infecting ad-

jacent cells, thus limiting their extracellular expo-
sure. When an antibody response is initiated, the
infection is either widespread or controlled by cell-
mediated mechanisms. However, antibody plays an
important part in preventing reinfection: in sec-
ondary challenges speci�c memory B cells exist and
are ready to produce high a�nity antibodies which
will bind and neutralize free virions before they gain
entrance into host cells.

One of the strategies the in�uenza virus uses to
escape detection is changing antigens by drift or
shift. In the �rst case, drift occurs through point
mutations in the viral genome during replication,
which can lead to a loss of immunity from previ-
ously existing antibodies. Major antigen changes
take place during antigenic shift, which can oc-
cur when two viruses simultaneously infect a host
cell; the infected cell acts as a �mixing vessel�, pro-
ducing a new virus composed of genome segments
belonging to the original viruses [30]. In�uenza
A displays both these strategies; antigenic drift
causes seasonal in�uenza epidemics, while antigen
shift, although rarer, may cause serious in�uenza
pandemics [26]. In�uenza A carries two surface
antigens, hemagglutinin (HA) and neuraminidase
(NA), both of which recognize the same host re-
ceptor, sialic acid [31]. HA and NA de�ne the
virus subtype accordingly to their reactivity [30].
Some well know subtypes, due to their lethality, are
H1N1 (Spanish �u, 1918), H2N2 (Asian �u, 1957),
H3N2 (Hong Kong Flu, 1968) and H5N1 (avian �u,
current pandemic threat) [26, 27]. HA binds sialic
acid, a necessary �rst step for gaining entry into
the host cell; NA on the other hand cleaves sialic
acid to facilitate the release of progeny virus and
promote the spread of infection. A successful infec-
tion depends, among other factors, on the balance
of these two antigens [31].

3 LAIS simulator

The LAIS simulator is a multithreaded agent-based
simulation platform, o�ering a set of tools for the
simulation of biological systems. The platform is
implemented in Java and makes use of following
open source libraries: a) the Repast Agent Sim-
ulation Toolkit [32] classes that provide or sim-
plify spatial organization and visualization, event
scheduling and simulation output (e.g., charts,

2

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
30

3.
1 

: P
os

te
d 

15
 S

ep
 2

00
8



CSV �les, movies); and b) the Simple XML seri-
alization library1 that provides simple class devel-
opment and instantiation using XML.

The two main actors in the LAIS framework are
substances and agents. The simulator is organized
in two layers: a) a specialized cellular automaton
(CA) responsible for substance di�usion, reaction
and degradation; and, b) the agent layer where the
agents move and act. The communication between
these layers occurs when agents produce or con-
sume substances, or when an agent action depends
on the underlying substances. Current implemen-
tation restricts the simulation to discrete time and
two-dimensional space. The multithreading capa-
bilities of the simulator work by equally distribut-
ing the CA cells through a number of threads de-
pendent on the number of available processor cores;
this is possible because during a simulation step,
each CA cell becomes an independent processing
unit [23].

3.1 Substances

Substances are uniquely identi�ed by a 64 bit
string, allowing a repertoire of 264 ≈ 1019 di�er-
ent substances. In the model speci�cation it is
possible to attribute speci�c biological functions
to di�erent bit substrings. The biological a�nity
between substances primarily depends on the exis-
tence of complementary zones, i.e., regions where
the biological substances can ��t� with each other.
To mimic the IS, the bit string of substances that
model IS antibodies are composed by: a) a constant
region responsible for secondary functions such as
macrophage binding or complement �xation, and
b) a variable region which is used to determine the
binding a�nity with antigen. The biological a�n-
ity is implemented by the Hamming distance be-
tween two substance bitstrings [33].

LAIS represents substances as real valued con-
centrations, allowing to: a) model di�usion and re-
action phenomena in the CA layer; and b) simu-
late the substances present on the agent surface,
in the agent layer. Antigens are modeled as sub-
stances and thus di�erentiated from pathogenic
agents themselves.

New substances can be dynamically created dur-
ing simulation as the result of: a) di�erent sub-

1http://simple.sourceforge.net/

stances produced by mutation of cloning agents;
and, b) substance merging. Merging can be either
a�nity dependent, such as in the antigen-antibody
complex formation or independent, such as in the
case of the complex formed by MHC and the anti-
gen peptide.
The simulator o�ers the possibility to group the

substances into families in order to: a) simplify the
process of tracking substances with similar func-
tions, e.g. in B cell response, where a multitude
of di�erent antibodies are temporarily produced;
and, b) allow the de�nition of substance merging
rules a�ecting speci�c families. In the latter case,
model speci�cation is considerably facilitated and
the substance merging simulation becomes compu-
tationally feasible.

3.2 Agents

Agents have a set of conditional rules which eval-
uate state, super�cial substance concentration and
the local CA cell, analyzing local substance concen-
tration, as well as substances displayed by other
agents. These rules are grouped in lists of rules;
each list of rules is associated to a list of actions. A
�rule list - action list� mapping is called a �gene�. In
order to perform the actions in a list, all the rules
in the associated gene rule list must yield true. Fig.
1 shows the schematics of a LAIS agent. Rules and
actions are hard-coded Java classes, but accept in-
stantiation parameters, making them �exible. The
grouping of rules and actions with di�erent instan-
tiation parameters permits a vast range of behav-
iors. If a particular behavior cannot be achieved
using available rules and actions, it is relatively
simple to code additional ones, following speci�c
interfaces. The agent set of genes (each one being
a �rule list - action list� mapping) can be referred as
the agent's genotype. Evolution takes place when
an agent creates another agent, either by a cloning
process (e.g., cellular division) or by producing a
di�erent type of agent (e.g., an infected immune
cell producing viruses). In such cases, rules and
actions are also cloned. These have a mutation pa-
rameter which can modify referenced substances.
Agent movement is controlled by these rules; move-
ment can be random, inertial (higher probability of
moving forward) or substance dependent (simulat-
ing chemotaxis, cell movement directed by a chemi-
cal concentration gradient [28]). LAIS supports the
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Figure 1 � The LAIS agent model.

exchange of genetic code (at gene level) [16], allow-
ing models to represent realistic evolving systems.

4 Model description

One of the most complex challenges when develop-
ing a IS model is to �nd a balance between scale,
granularity and computational feasibility. Features
that are included in the model should not only be
theoretically and experimentally sound, but also
relevant for in the context of the simulations to
perform. Knowledge gaps, incomplete data and
excluded system features imply that models are in-
complete, always abstract to some point. However,
an incomplete model can still do a good job of sim-
ulating reality. Biological systems can also work
without various parts; they are robust, having re-
dundant features and components with overlapping
functions. As such, if a model captures the prin-
cipal components of a biological system, there is
no reason why it cannot yield realistic simulations
[34].
The model here presented includes several dis-

tinct entities and substances which approximately
re�ect aspects we consider the most relevant of
immune-in�uenza A dynamics. Tables 1 and 2 re-
spectively summarize characteristics of agents and
substances included in the model.

5 Simulations and results

The simulations presented in this section were per-
formed using a 14x14 toroidal hexagonal grid. Dur-
ing a steady-state phase, were no infection or IS

response is taking place, the number of distinct
agents varies between 400 and 500. At peak im-
mune responses, the number of distinct agents can
reach 2× 105.
These simulations yielded a considerable quan-

tity of data, of which we present and interpret the
most relevant, either in the form of graphs or tex-
tual descriptions during analysis and discussion of
simulations.

5.1 In�uenza subtypes and antigenic

drift

The balance of sialic acid a�nity between HA and
NA antigens is of major importance for e�cient
virus replication [31]. In this experiment, four sim-
ulations are performed, each with the deployment
of one in�uenza subtype at ticks 50 and 500. Each
subtype has a di�erent set of super�cial antigens,
with speci�c a�nities for sialic acid (the super�-
cial receptor of epithelial cells). Table 3 shows the
di�erent antigens bit string and a�nity with sialic
acid (whose bit string is 04D2h), prior to muta-
tion; only the 16 less signi�cant bits are relevant
for this a�nity; bits 16 to 31 (in italic) are used to
determine a�nity with TCR when antigen is com-
plexed with MHC. These a�nity values are merely
demonstrative, and do not correlate with sialic acid
a�nity of �real� HA and NA types.
The four antigens presented in table 3 allow to

experiment with four in�uenza subtypes: H1N1,
H1N2, H2N1 and H2N2. Again, these do not cor-
relate with the real subtypes.

5.1.1 Analysis of results

The H1N1 subtype has high a�nity HA and NA,
meaning it can rapidly infect cells (due to HA), and
proliferate in larger quantities (due to NA). In prin-
ciple, this should be the most lethal strain. How-
ever, that is not the case. Its rapid proliferation,
killing and infecting epithelial cells too fast (�g. 2),
limits its own expansion; the sudden high number
of extracellular virions draws the attention of hu-
moral mechanisms; the presence of a large number
of locally infected cells provokes a strong Th cell
reaction, due to B cell and APC antigen presenta-
tion; this leads to the production of IFN-γ (limiting
the spread of the infection) and the activation of Tc
cells ; these destroy locally infected epithelial cells,

4

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
30

3.
1 

: P
os

te
d 

15
 S

ep
 2

00
8



Table 1 � Agents included in immune-in�uenza A model.

Agent Type Behavior

In�uenza A Pathogen (virus) Infect and insert genetic code in epithelial cells, forcing them to produce
in�uenza A virions; infection is dependent on HA antigen-sialic acid a�n-
ity, while virion release is dependent on NA antigen-sialic acid a�nity.

Epithelial cell Epithelium Non-moving agents; display sialic acid at surface.
Tc cell Immune System Kill infected cells (i.e., cells displaying MHC Class I + antigenic peptide

complex).
Th cell Immune System Produce substances which assist other immune cells.
B cell Immune System Produce antibody; present antigen to Th cells via MHC Class II.
APC cell Immune System Phagocyte (ingest) pathogenic agents and antigens, with greater proba-

bility if pathogen is covered with antibody (opsonized); present antigen
to Th cells via MHC Class II.

putting a de�nitive stop to the viral infection. In its
�rst strike, the H1N1 strain lasted approximately
215 ticks, with a maximum of 80 simultaneous ep-
ithelial infections (�g. 2).
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Figure 2 � Healthy and infected epithelial cells

during challenge from H1N1 subtype.

The H1N2 and H2N1 strains proved to be more
infectious, lasting about 275 ticks in their �rst
strike (�gs. 3 and 4, respectively). H1N2 can infect
cells quickly (high a�nity HA), but the number of
released virions is low (low a�nity NA), resulting
in a maximum of less than 20 virions simultane-
ously present in the extracellular milieu; however,
a maximum of 80 simultaneous epithelial infections
indicates this is not an handicap, on the contrary,
the low virus titer allows it to remain concealed
from humoral mechanisms, with barely detectable
Th and B cell responses. As a consequence, lit-
tle humoral memory was created. In the second
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Figure 3 � Healthy and infected epithelial cells

during challenge from H1N2 subtype.

strike, the strain provokes a state of chronic ill-
ness lasting a record value of 390 ticks, the highest
value of all eight infections (four primary, four sec-
ondary), with virus titer never reaching the 30 unit
mark. On the other hand, the maximum viral titer
in the primary H2N1 infection is of 46 units (the
highest of all eight infections), but correspondently
provokes the most powerful humoral response (�gs.
8); the immune memory created quickly eliminated
the strain during the second strike, lasting no more
than 130 ticks.

The H2N2 strain, with low a�nity HA and NA,
proved to be the least resistant and the least infec-
tious (�g. 5).
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Table 2 � Substances included in immune-in�uenza A model.

Substance Source Location E�ector function

Interferon-γ, IFN-γ Th Local Inhibits sialic acid production in epithelial cells,
protecting them from infection; increases proba-
bility of epithelial cell apoptosis.

Interleukin-2, IL-2 Th Local Induces proliferation of activated Th, Tc and B
cells.

Interleukin-12, IL-12 APC Local Induces Th proliferation and IFN-γ production.
Antibodies (family) B Local, Super�cial Variable region binds antigen depending on a�n-

ity; constant region (Fc) binds Fc receptors on
APC cells.

Antigens (family) In�uenza A Local, Super�cial HA antigens bind sialic acid promoting infection,
NA antigens cleave sialic acid promoting virion re-
lease.

MHC Class I Epithetial cells Super�cial When complexed with antigenic peptide, can bind
TCR CD8 in Tc cells, depending on a�nity.

MHC Class II APC, B Super�cial When complexed with antigenic peptide, can bind
TCR CD4 in Th cells, depending on a�nity.

TCR CD8 Tc Super�cial Binds MHC Class I + antigenic peptide complex
present on the surface of infected epithelial cells,
promoting the destruction of such cells.

TCR CD4 Th Super�cial Binds MHC Class II + antigenic peptide complex
present on the surface of APCs and B cells, pro-
moting assistance to such cells.

Fc receptor APC Super�cial Binds antibody constant region, promoting more
e�cient phagocytosis.

Sialic acid Epithetial cells Super�cial Recognized by HA and NA in�uenza antigens.

Table 3 � In�uenza antigens bit string and a�nity

with sialic acid.

Antigen Bit string A�nity

HA1 0707 7B21h 0.8125
HA2 1616 0622h 0.3125
NA1 2D2D 1B2Dh 0.8125
NA2 3C3C 0BDDh 0.5000

5.1.2 Balance between HA and NA anti-

gens

This experiment demonstrated the �ne balance be-
tween HA and NA antigens and their importance in
a successful infection. A high a�nity HA antigen
seems to be more important for kick starting the
infection, while NA functions like a throttle, deter-
mining the number of released virions. As observed

in the simulations, high a�nity NA is probably not
an optimum companion for high a�nity HA. More
testing is required in order to better explore HA-
NA balance, and its exact e�ect on the success of an
infection. Such a study must take into account that
in�uenza strains may have other infectivity param-
eters, and that antigenic drift causes noise which
can di�cult the analysis of results. In this last
case, the solution is to perform a greater number
of tests for the same parameters, in order to obtain
more statistically signi�cant results.

5.1.3 E�ects of antigenic drift in immune

response, immune memory and anti-

body e�ectiveness

Antigenic drift can be asserted indirectly by con-
sidering the number of di�erent antigens present
in the simulation environment. The IS tries to re-
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Figure 4 � Healthy and infected epithelial cells

during challenge from H2N1 subtype.
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Figure 5 � Healthy and infected epithelial cells

during challenge from H2N2 subtype.

spond with the production of a larger diversity of
antibody, in a reaction to the stimulus from the
many di�erent antigens.

In all cases, except for H1N2, immune memory
was acquired against the invading strain. How-
ever, the e�ectiveness of memory is reduced when
compared to a simulation of non-mutating bacte-
ria using the same simulation platform and basic
IS model [24]; in this case, it was possible to ob-
serve a relatively high degree of antigen-antibody
complex; this occurs because B cells are stimulated
by a single antigen, resulting in plasma cells which
produce high a�nity antibody; this antibody binds
large quantities of antigen, resulting in also large
quantities of antigen-antibody complex. In the case
presented here, �gs. 6, 7, 8 and 9 show that very
small quantities of antigen-antibody complex are
produced. This happens due to antigenic drift; each
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Figure 6 � Substance family concentration during

challenge from H1N1 subtype.
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Figure 7 � Substance family concentration during

challenge from H1N2 subtype.

newly created in�uenza virion can be di�erent from
its precursor, deploying di�erent types of antigen,
not yet known to the latest versions of antibody
[29].

5.1.4 Role of Tc cells

As described in literature, the average number of
Tc cells during an immune response is one order
of magnitude above the number of Th cells [28],
which was con�rmed by the obtained results. Sud-
den drops in infected epithelial numbers, visible in
�gs. 2, 3, 4 and 5, occur practically at the same
time when e�ector Tc cells begin to be massively
produced, thus demonstrating their cytotoxic func-
tion.

7

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
30

3.
1 

: P
os

te
d 

15
 S

ep
 2

00
8



0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

Ticks

C
on

ce
nt

ra
tio

n

 

 
Antigens
Antibodies

Antigen+
Antibody
Complex

Figure 8 � Substance family concentration during

challenge from H2N1 subtype.
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Figure 9 � Substance family concentration during

challenge from H2N2 subtype.

5.2 Antigenic shift

Antigenic shift is a major antigenic change which
occurs at irregular intervals, being the main respon-
sible for in�uenza pandemics. In the in�uenza virus
family, only in�uenza A is susceptible to this event.
Antigenic shift can lead to the evolution of new hu-
man in�uenza A virus through the acquisition of a
new HA gene encoding a di�erent subtype from an
avian in�uenza, or by the adaptation of an avian
virus, causing it to become transmissible between
humans [26].
In this experiment we infect the host with two

di�erent in�uenza strains, H1N2 and H2N1, which
were studied separately in the previous subsection.
The goal is to verify the occurrence of antigenic
shift, and if it leads to the creation of a more infec-
tious subtype.
At tick 50, 25 units of H1N2 and 25 units of H2N1

are deployed in the simulation environment. Con-
trary to what was veri�ed in the previous subsec-
tion, H2N1 seems to adapt better in a competitive
situation; as can be veri�ed in �g. 10, H2N1 virion
titer is constantly superior to that of H1N2.
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Figure 10 � Evolution of In�uenza A subtypes

during antigenic shift simulation.

The appearance of H1N1 subtype con�rms the
existence of antigenic shift; at tick 175, the emer-
gent H1N1 subtype experiences a fast rise, surpass-
ing the impact of the H1N2 subtype, which never
really takes o�, as opposed to what was observed
in the previous experience. However, the emer-
gent H1N1 subtype does not become more infec-
tious than the original H1N2, which becomes the
IS main adversary. The overall infection was elim-
inated in 250 ticks, slightly faster than what was
veri�ed in some of the previous cases. The higher
number of initially inserted virions would suggest
that this combination is �weaker� than the insertion
of isolated strains; however, the elevated number
of viral titter may also have conducted to a faster
humoral response, accelerating the removal of in-
fection; this is corroborated by �g. 12, which in-
dicates a 100 tick interval between virion insertion
and beginning of humoral response; in the previ-
ous cases this value was closer to 150 ticks (�gs. 6
and 8). The H2N1 original strain reached a maxi-
mum value of 65 units of circulating virion, �g. 10,
higher than any of the previous cases. From ticks
150 to 190, there were more infected epithelial cells
than healthy ones (�g. 11), a situation which never
occurred while the subtypes were studied in isola-
tion.
When the B cell response takes place, cells under-

going somatic hypermutation do not often become
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Figure 11 � Evolution of epithelial cells during

antigenic shift simulation.

plasma cells; in fact, plasma cell number barely
surpasses half the number of cells in somatic hy-
permutation, con�rming the di�culty in keeping
pace with continuously mutating and recombining
antigens. This is further veri�ed in �g. 12, show-
ing elevated antigen diversity (the highest in all in-
�uenza simulations). Production of antigen + anti-
body complex was very low, in spite of the variety
of produced antibodies.

Several Tc cells become activated at tick 75 due
to recognition of MHC Class I + antigen complex
presented by epithelial cells; however, they lack
the ability of becoming e�ector without the help
of Th cells, which only occurs from tick 150 on-
ward, when the humoral response takes place. At
this stage, IFN-γ kicks in, slowing the spread of
infection; a few e�ector Tc cells also begin to elimi-
nate infected epithelials. At tick 200, a spike in Tc
clonal expansion and e�ector production results in
the rapid extermination of infected cells (�g. 11);
when the remaining virion infect healthy cells, the
massive quantity of Tc e�ector clones immediately
eliminates such cells, severely limiting the replica-
tion capabilities of the virus. After the infection is
fully removed and IFN-γ dissipated, epithelial cells
begin to populate epithelial free spaces.

6 Conclusions

Simulation results were within our initial expec-
tations. A novel simulation of immune-in�uenza
A infections was developed and successfully tested
against theoretical data from literature. The anti-
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Figure 12 � Substance family diversity during

antigenic shift simulation.

genic drift simulations demonstrated the impor-
tance of HA and NA balance in a successful infec-
tion, while clarifying the role of speci�c IS cells in
the immune response; the di�culties antigenic drift
can pose on the IS response were also asserted. In
the antigenic shift experiment, though the event
was observed, the appearance of a lethal strain was
not veri�ed. To further study this event, more sub-
types should be taken into account and other infec-
tivity parameters, such as virion extracellular sur-
vival time, should be considered.
Given the stochastic nature of these simulations

and considering the complexity of simultaneous
antigenic drift and shift, each set of parameters
should be tested a su�cient number of times in
order to be adequately explored from a statistical
point of view. Nonetheless, the achieved results
demonstrate that this model could be a starting
point for predicting the impact of in�uenza epi-
demics and the probability of pandemic outbreak.
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